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Abstract

Metabolomics genome wide association study (GWAS) help outline the genetic contribution 

to human metabolism. However, studies to date have focused on relatively healthy, population-

based samples of White individuals. Here, we conducted a GWAS of 537 blood metabolites 

measured in the Chronic Renal Insufficiency Cohort (CRIC) Study, with separate analyses in 

822 White and 687 Black study participants. Trans-ethnic meta-analysis was then applied to 

improve fine-mapping of potential causal variants. Mean estimated glomerular filtration rate was 

44.4 and 41.5 mL/min/1.73m2 in the White and Black participants, respectively. There were 

45 significant metabolite associations at 19 loci, including novel associations at PYROXD2, 
PHYHD1, FADS1-3, ACOT2, MYRF, FAAH, and LIPC. The strength of associations were 

unchanged in models additionally adjusted for estimated glomerular filtration rate and proteinuria, 

consistent with a direct biochemical effect of gene products on associated metabolites. At several 

loci, trans-ethnic meta-analysis, which leverages differences in linkage disequilibrium across 

populations, reduced the number and/or genomic interval spanned by potentially causal single 

nucleotide polymorphisms compared to fine-mapping in the White participant cohort alone. 

Across all validated associations, we found strong concordance in effect sizes of the potentially 
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causal single nucleotide polymorphisms between White and Black study participants. Thus, 

our study identifies novel genetic determinants of blood metabolites in chronic kidney disease, 

demonstrates the value of diverse cohorts to improve causal inference in metabolomics GWAS, 

and underscores the shared genetic basis of metabolism across race.

Graphical Abstract

Keywords

metabolomics; GWAS; trans-ethnic meta-analysis

INTRODUCTION

With the application of metabolomic profiling in large cohorts, several independent GWAS 

have identified more than 100 variants associated with plasma, serum, and urine metabolite 

levels.1-11 Many of these loci encode enzymes or transporters directly involved with 

the given metabolite’s synthesis, reabsorption, or secretion, including within the kidney. 

Because of the direct relationship between gene product and metabolite, many loci have 

large effect sizes on metabolite levels and the proportion of metabolite variance explained, 

as compared to GWAS for common diseases.12 Taken together, these studies have enhanced 

our understanding of the genetic basis of human metabolism and identified both genes and 

metabolites relevant to human disease.13

One major limitation of the studies conducted to date is that most of the genetic and 

metabolomics data have been generated in White individuals. Although rare studies have 

been conducted among Black individuals,14, 15 no study has conducted GWAS in a racially 

heterogeneous cohort. This represents a missed opportunity to illustrate concordance in the 

genetic architecture of human metabolism across diverse groups. Further, the identification 

of shared signals across different racial groups has the potential to narrow the list of 

potential causal variants underlying select gene-metabolite associations,16, 17 an approach 

that has been applied to racially diverse GWAS of glycemic traits, erythropoietic indices, 

and estimated glomerular filtration rate (eGFR), among others.18-20 Finally, the majority of 
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cohorts examined in metabolomics GWAS to date have been relatively healthy, population-

based samples. Recent GWAS that focused on urine metabolites in a European chronic 

kidney disease (CKD) cohort have illuminated loci that are highly informative for renal 

tubular physiology and for the absorption, distribution, metabolism, and excretion of 

numerous metabolites, underscoring the value of examining disease-specific cohorts.9, 10

The Chronic Renal Insufficiency Cohort (CRIC) Study is a prospective cohort study 

designed to include a racially diverse group of adults with mild to moderate CKD.21,22 

Approximately half of those recruited had diabetes, and in the first phase of enrollment, 

were less than 75 years of age, limiting the number of individuals with age-related 

diminutions of glomerular filtration rate but otherwise non-progressive disease. As a result, 

the cohort was enriched for individuals at relatively greater risk of subsequent CKD 

progression and adverse cardiovascular outcomes.23 Here, we report the results of GWAS 

of blood metabolites assayed by liquid chromatography-mass spectrometry (LC-MS) in the 

CRIC Study, with separate analyses in self-identified Black and White study participants. 

Unlike prior metabolomics GWAS, this analysis synthesizes results from a racially diverse 

study cohort, enriched for CKD and its metabolic correlates.

METHODS

CRIC Study.

Between 2003-2008, 3939 individuals with mild to moderate kidney disease were recruited 

at 13 CRIC sites across the US.21, 22 Study participants were all between the age of 21 and 

74 years, with an eGFR of 20-70 ml/min/1.73m2. Patients with polycystic kidney disease or 

on active immunosuppressive agents for glomerulonephritis were excluded from the study. 

A total of 1800 randomly selected participants who attended the year 1 visit underwent 

blood metabolomic profiling. Of these individuals, 1678 had also undergone genome-wide 

genotyping, including 687 self-identified Black study participants and 822 self-identified 

White study participants. All participants provided written informed consent, and the study 

adhered to the Declaration of Helsinki and was approved by the institutional review board of 

the Perelman School of Medicine at the University of Pennsylvania.

Clinical characteristics.

Estimated GFR was calculated from serum creatinine and cystatin C using the CRIC 

Study equation.24 Urine protein-creatinine ratio was determined from 24-hr urine collection 

or random spot measures. Diabetes was defined as self-reported use of insulin or oral 

hypoglycemic medications, fasting blood glucose ≥126 mg/dL or a non-fasting level ≥200 

mg/dL, or an HbA1c ≥6.5%. Hypertension was defined as self-reported antihypertensive 

medication use, systolic blood pressure ≥140 mmHg, or diastolic blood pressure ≥90 mmHg. 

Cardiovascular disease was self-reported.

Metabolomics.

Detailed methods, including QC characteristics, of the Broad Institute metabolomics 

methods have been published.25 In brief, a combination of three LC-MS injections were 

used to profile metabolites in year 1 visit fasting plasma that had been stored at −80°C. 
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Metabolomics analyses were conducted 2018-2019. All data were acquired using LC-MS 

systems comprised of Nexera X2 U-HPLC systems (Shimadzu Scientific Instruments) 

coupled to Q Exactive/Exactive Plus orbitrap mass spectrometers (Thermo Fisher Scientific). 

Positively charged polar analytes were measured in 10 μL of plasma via protein precipitation 

with the addition of nine volumes of 74.9:24.9:0.2 v/v/v acetonitrile/methanol/formic acid, 

with supernatants injected onto a 150 x 2 mm Atlantis HILIC column (Waters) and MS 

analyses carried out using electrospray ionization in the positive ion mode using full scan 

analysis over m/z 70-800. Negatively charged polar analytes were measured in 30 μL 

of plasma via protein precipitation with the addition of four volumes of 80% methanol, 

with supernatants injected onto a 150 x 2.0 mm Luna NH2 column (Phenomenex) and 

MS analyses carried out using electrospray ionization in the negative ion mode using 

full scan analysis over m/z 60-750. Positively charged lipids were measured in 10 μL of 

plasma via protein precipitation with the addition of nineteen volumes of isopropanol, with 

supernatants injected onto a 100 x 2.1 mm ACQUITY BEH C8 column (1.7 μm; Waters) 

and MS analyses carried out using electrospray ionization in the positive ion mode using 

full scan analysis over m/z 200-1100. Pairs of pooled plasma quality control samples were 

analyzed at intervals of approximately 20 study samples, with one sample from each pair 

used for MS drift correction and the other for evaluation of analytical reproducibility. 

Raw metabolomics data were processed using TraceFinder (Thermo Fisher Scientific) and 

Progenesis QI (Nonlinear Dynamics). Identification of metabolite peaks was conducted 

by matching measured retention times and masses to mixtures of reference metabolites 

analyzed in each batch and to an internal database of >600 compounds that have been 

characterized.

Metabolomic data processing.

Drug metabolites and metabolites missing in >50% of samples were excluded from the 

present analysis, leaving 537 metabolites for evaluation (median % missing, 0%; range 

0% to 47%). Missing values were imputed with the lowest observed level, as has been 

done previously.26, 27 Metabolites were log(base2)-transformed to normalize their skewed 

distributions. The residuals of the linear regression of the log-transformed metabolites 

on age, sex, the first 10 principal components (PCs) of the log-transformed metabolites 

(to account for any factors related to batch of processing), and the first 10 race-specific 

genetic PCs (to account for population sub-structure) were used in subsequent GWAS. In 

supplemental analyses, metabolites were additionally adjusted for eGFR and urine protein-

creatinine ratio.

Genotyping and imputation.

Genotyping was conducted in 3641 CRIC participants using the HumanOmni1-Quad arrays 

(Illumina).28 Data cleaning was performed following a protocol that included evaluations 

of per-SNP and per-individual call rates, phenotypic and genotypic sex mismatches, 

relatedness, and genetic ancestry. Altogether, 99,457 (SNPs with duplicate positions or 

across-individual call rate <95%) out of 1,050,925 SNPs and 27 samples (across-SNP call 

rate <95%, sex mismatch, or related) were removed during quality control and data cleaning. 

We then filtered for minor allele frequency (>5%) and Hardy-Weinberg Equilibrium p-value 

(>0.00001). Genotype data were then imputed to a common set of SNPs using Trans-Omics 
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for Precision Medicine (TOPMed) (Freeze 5 on GRCh38) as the reference panel,29, 30 

leading to a final set of 9,161,457 markers in White study participants and 15,508,234 

markers in Black study participants for GWAS. Mean African ancestry was 0.81 for the 

Black cohort and 0.01 for the White cohort.

Genome-wide association studies.

Associations were estimated under an additive genetic assumption separately in the White 

and Black cohorts using Fast Association Tests (FAST) software.31 Starting with the 

larger sample (White cohort), the association between metabolite and SNP was considered 

statistically significant at the Bonferroni adjusted genome-wide threshold of P < 9.3 x 10−11 

(5 x 10−8 / 537 metabolites). For each metabolite, we identified the index SNP with the 

lowest statistically significant P-value within a 1-Mb genomic locus. Associations identified 

in the White cohort were considered shared across cohorts if there was a corresponding 

association within 500 kb on either side of the index SNP in the Black cohort at P < 1.0 x 

10−3 (0.05 / 48 significant metabolites in the White cohort). Gene mapping and annotation 

was performed by querying Ensembl Regulatory Build, with significant SNPs assigned to 

overlapping, upstream, or downstream genes.32 We estimated the Pearson correlations (r) of 

metabolites and eGFR and metabolites and log urine protein-creatinine ratio, and for both 

analyses evaluated whether there was a difference in r between metabolites with validated 

genetic associations versus all other metabolites by Fisher transformed t-test.

Trans-ethnic fine mapping.

For metabolites with shared genetic associations across White and Black cohorts, we 

performed fine-mapping separately in White and Black cohorts using SuSiE, assuming that 

each genetic locus contained one causal variant.33, 34 For loci with more than one metabolite 

association, e.g. NAT8, AGXT2, and FADS1-3, we focused on the most significantly 

associated metabolite among White study participants. Fine-mapping establishes credible 

sets of SNPs that have 99% probability of containing a variant with a non-zero causal 

effect regulating plasma metabolite levels. When the 99% credible set contained more than 

one SNP in the White cohort, we tried to narrow the results by performing trans-ethnic 

fine-mapping across the White and Black cohorts using MANTRA,16 which allowed us 

to calculate the posterior probability of a variant being included in the credible set across 

groups. To compare effect sizes across race, we plotted GWAS beta coefficients and coded 

allele frequencies in the White and Black cohorts for the 99% credible set of SNPs from 

fine-mapping of the White cohort.

RESULTS

Study sample.

Characteristics of the study sample are shown in Table 1, with 687 Black and 822 White 

study participants. Mean age in both groups was 58.9 years, with a lower percentage of 

women in the White subcohort of the CRIC Study. The prevalence of hypertension, diabetes, 

and cardiovascular disease were higher in the Black subcohort of the CRIC Study, and the 

mean eGFR was 44.4 and 41.5 mL/min/1.73m2 in the White and Black groups, respectively.
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GWAS.

In the White cohort, 48 associations achieved Bonferroni adjusted genome-wide 

significance. Of these, 45 associations—spanning 45 metabolites at 19 different genetic 

loci—were also significant in the Black cohort (Figure 1, Table 2). Our results replicate 

several well-established gene-metabolite associations. Select examples include NAT8, 

which encodes N-acetyltransferase 8, and the acetylated amino acids N-acetylornithine, 

N-alpha-acetylarginine, N6-acetyllysine, and N-acetylphenylalanine; AGXT2, which 

encodes Alanine-glyoxylate aminotransferase 2, and its substrates 2-aminoisobutyric acid, 

dimethylguanidino valeric acid (DMGV), and symmetric dimethylarginine (SDMA); ASPG, 

which encodes asparaginase and its substrate asparagine; and FADS1-3, which encodes 

Fatty acid desaturases 1-3, and its highly unsaturated lipid products spanning various 

lipid classes, including PC (phosphatidylcholines), CE (cholesterol esters), and TAG 

(triacylglycerols).

Previously unreported associations were identified based on review of the published 

literature and by individual look-up of each association in the NHGRI-EBI Catalog of 

human GWAS (https://www.ebi.ac.uk/gwas/).1-11 Based on this review, we highlight 11 

previously unreported metabolite associations across seven genetic loci (Table 2): N6-

methyllysine and N6,N6-dimethyllysine at PYROXD2; guanine and 5-methylcytidine at 

PHYHD1; two diacylglycerols (DAG 38:5, DAG 38:4) at FADS1-3; PS plasmalogen 36:3 at 

ACOT2; CE 22:4 at MYRF; oleoyl glycine at FAAH; and two phosphatidylethanolamines 

(PE 36:4, PE 38:5) at LIPC. Notably, other metabolites (i.e. distinct from the metabolites 

above) have previously been reported at PYROXD2, PHYHD1, FADS1-3, MYRF, and 

LIPC, including several other PEs at the latter locus. No previous metabolite associations 

have been reported at FAAH or ACOT2.

Figure 2A shows the 45 metabolites with significant associations validated across the Black 

and White study participants distributed on the basis of their cross-sectional correlations 

with eGFR. Figure 2B shows the distribution of correlations for these 45 metabolites 

with urine protein-creatinine ratio. Compared to all other metabolites, the 45 validated 

GWAS hits demonstrated a similar distribution of correlations with eGFR and proteinuria. In 

addition, the P-value of associations for the 45 significant associations were not attenuated 

in GWAS models additionally adjusted for eGFR and proteinuria (Supplementary Figure 

S1).

Trans-ethnic meta-analysis.

Next, we conducted trans-ethnic meta-analysis, with the goal of improving the resolution 

of fine-mapping of potential causal variants. To illustrate the value of this approach in 

metabolomics GWAS, we began with the White cohort, where the large majority of 

studies have been conducted to date. For 8 of the 19 loci examined, the White specific 

analysis yielded a single likely causal SNP, such that there was no opportunity for further 

improvement through trans-ethnic analysis. For the remaining 11 loci, the White-specific 

analysis yielded 2 or more potentially causal SNPs (spanning a mean genomic distance of 

30,050 bp, range 1472 to 139,855 bp), whereas Black-specific analysis yielded 1 to 128 

potentially causal SNPs (spanning a mean genomic distance of 466,777 bp, range 0 to 

Rhee et al. Page 7

Kidney Int. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ebi.ac.uk/gwas/


993,254 bp). Trans-ethnic meta-analysis reduced the number of potentially causal SNPs and 

the genomic interval spanned by these SNPs at seven loci compared to the White specific 

analysis. As shown, trans-ethnic meta-analysis highlighted between 1 to 70 potential causal 

SNPs spanning a mean genomic distance of 27,360 bp, with range 0 to 152,544 bp (Table 3, 

Supplementary Table S1).

Illustrative graphs for glycine at CPS1 and PE 38:6 at LIPC are shown in Figure 3. 

At CPS1, trans-ethnic meta-analysis identified a single SNP rs1047891 as potentially 

causal in this region for the association with glycine. Notably, this is a coding variant 

that results in a change in protein sequence, pThr1405Asn, that has been implicated as 

a cause of neonatal pulmonary hypertension and hyperhomocysteinemia.35, 36 At LIPC, 

trans-ethnic meta-analysis highlighted the SNPs rs2043085 and rs261291, both non-coding 

SNPs upstream of the LIPC gene.

Effect size comparison.

In addition to providing an opportunity to enhance fine-mapping, our trans-ethnic study 

design permits the direct comparison of biologic effect sizes at shared SNPs across Black 

and White cohorts. Focusing on the validated metabolite associations highlighted in Table 

2, we identified the plausible causal SNPs across all 45 associations among White study 

participants using SuSiE and then compared the beta estimate at each SNP between White 

and Black cohorts. As shown in Figure 4A, we observed strong concordance in the beta 

estimates of each SNP on corresponding metabolite level across groups. Figure 4B plots the 

coding allele frequency at each of these same SNPs, highlighting the known heterogeneity in 

allele frequencies across White and Black cohorts.

DISCUSSION

Since the first published metabolomics GWAS in 2008,12 the literature has grown 

in terms of sample size, depth of genome coverage, and number of metabolites 

measured, significantly expanding our understanding of the genetic determinants of human 

metabolism. Here, we sought to extend current knowledge by examining a racially 

heterogeneous cohort enriched for CKD.

Consistent with studies to date, the validated loci in our study encode proteins that 

are directly involved in biochemical processes, providing a high degree of plausibility 

for the locus-metabolite associations. More specifically, of the 19 loci underlying the 

45 validated associations in our study, 17 encode enzymes, many that act directly on 

the associated metabolite(s). Some of these associations highlight the high degree of 

specificity of metabolite measurements: for example, the association of ACADS, which 

encodes the short-chain acyl-CoA dehydrogenase, with the short-chain C4 carnitine and 

the association of ACADM, which encodes the medium-chain acyl-CoA dehydrogenase, 

with the medium-chain C6 and C8 carnitines. Two of our novel associations were at 

loci previously not associated with metabolite levels. FAAH encodes Fatty acid amide 

hydrolase, an enzyme that hydrolyses the carbon-nitrogen bond in fatty acid amides and 

ethanolamines.37 Whereas prior work applied metabolomics to FAAH knock-out mice to 

identify FAAH substrates,38 we show how leveraging common variation at the human locus 

Rhee et al. Page 8

Kidney Int. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is complementary, nominating oleoyl glycine as a novel substrate. ACOT2 encodes Acyl-

CoA thioesterase 2, an enzyme involved in mitochondrial fatty acid metabolism; however, it 

is not known to act directly on the associated lipid metabolite PS plasmalogen 36:3.

Other novel associations identified in our study highlighted new metabolites at loci that 

had previously been linked to other metabolites. These results nevertheless provide new 

insight. For example, PYROXD2 encodes Pyridine nucleotide-disulphide oxidoreductase 

domain 2, a mitochondrial enzyme of undetermined function.39 Oxidoreductases, enzymes 

that catalyze the transfer of electrons from one molecule to another, fall into several 

different categories: those that act on CH-OH groups, CH-CH groups, sulfur groups, heme 

groups, etc as electron donors. Prior GWAS have identified associations at this locus with 

blood levels of asymmetric dimethylarginine5 and urinary levels of trimethylamine,10, 40 

metabolites of interest in CKD research. Our study identified new associations at this locus 

for N6-methyllysine and N6,N6-dimethyllysine. The common feature across these disparate 

molecules is the presence of a methylated amine, suggesting a specific role for PYROXD2 

oxidoreductase action on CH-NH groups that would lead to the removal of a methyl group 

from these molecules.

Our findings do not appear to be strongly influenced by CKD. In theory, metabolite GWAS 

among CRIC study participants could have highlighted metabolites that are normally low 

abundance in circulation but accumulate with GFR loss, or genes that are upregulated when 

kidney function declines.41 However, we did not observe a skew in the density plots of 

GWAS results compared to all other metabolites in relation to correlation with eGFR or 

proteinuria. Further, the strength of association for validated metabolites was unaffected 

by additional adjustment for eGFR and proteinuria. These findings underscore the close 

proximity of gene and trait for our validated associations—in most cases the associated 

metabolite interacts directly with the gene products as its metabolic substrate or product. 

Another theoretical advantage of metabolomics GWAS in the CRIC study is the ability to 

link metabolites and genetic loci that are associated with CKD pathogenesis. Of 19 loci 

highlighted by our study, CPS1 and NAT8 have previously been associated with eGFR.42 

CPS1 encodes carbamoyl-phosphate synthase 1, which is involved in the catabolism of its 

associated metabolite glycine.

Because glycine is required for creatine biosynthesis, the association between CPS1 and 

eGFR has been attributed to its effect on creatinine production rather than kidney function, 

supported by the observation that this locus is associated with GFR estimated by serum 

creatinine but not cystatin C. By contrast, NAT8 has been associated with eGFR calculated 

using creatinine and cystatin C, as well as with CKD status. We recently conducted a 

targeted analysis of NAT8 genetic variants in the African American Study of Kidney 

Disease and Hypertension, Atherosclerosis Risk in Communities study, and BioMe and 

found significant associations between the NAT8 locus and 14 acetylated amino acids, five 

of which were also associated with kidney failure.43 Our current results reinforce the key 

biologic impact of NAT8, a gene highly expressed in the kidney proximal tubule, on amino 

acid acetylation and motivate further inquiry into its role in CKD pathogenesis.15
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The ability to conduct trans-ethnic analyses is a major strength of our study. Local linkage 

disequilibrium (LD) structure is a key obstacle to identifying causal variants that underlie 

select associations. Increasing sample size in the same population does not circumvent this 

challenge. By contrast, leveraging differences in local LD structure between populations 

enriched for European and African ancestry can enhance the signal at the causal variant 

because SNPs strongly linked to the causal variant in White individuals may not be strongly 

linked in Black individuals, or vice versa.16, 17 Because of relatively low average LD, 

cohorts enriched for African ancestry may offer a particular advantage in these analyses. 

As noted, we began with the White cohort—where most studies have been conducted 

to date—and focused on the loci where the White specific analysis identified two or 

more potential causal SNPs. At seven of these eleven loci, we found that trans-ethnic meta-

analysis improved the resolution of fine-mapping. Whereas one of the illustrative examples 

confirms a known coding variant in CPS1, the other SNPs highlighted by trans-ethnic 

meta-analysis are non-coding, and we acknowledge further functional analysis would be 

required to establish causality. Nevertheless, our results build on the existing literature that 

support the value of racially diverse cohorts to improve causal inference in GWAS.18-20

In addition to performing an analysis across the White and Black subcohorts of the CRIC 

Study, we compared the effect sizes of shared SNPs at all of the validated associations 

identified in our study. In our view, a metabolomics GWAS is particularly well suited for 

this analysis for two reasons. First and as already noted, the close proximity of gene and 

trait translates into larger effect sizes. This proximity reduces the possibility that differential 

environmental interactions could drive variability in allelic effects between groups. Second, 

the metabolites and loci of interest span a range of biochemical pathways, providing a 

broader base of comparison across race than would be possible with a single disease or 

phenotype GWAS. Across all 45 validated associations, our results demonstrate that each 

SNP has nearly the same biologic effect, i.e. impacts circulating blood metabolite levels to 

the same extent, regardless of race. This does not preclude the possibility that differences 

in allele frequencies, in addition to differences in environment, could contribute to variation 

in the blood metabolome across populations. Further, we note that our analysis across racial 

groups is unable to confirm ancestry specific signals.

In sum, expanding metabolomics GWAS to consider disease-specific and racially diverse 

populations yields new insights. Although modest in size relative to other recent 

metabolomics GWAS, our analyses highlight the particular advantage of diverse study 

cohorts for fine mapping. More work is required to verify causality at select SNPs 

highlighted by our trans-ethnic meta-analysis, including metabolomic analysis of tissue to 

understand how genetic variation impacts metabolism within the kidney.44 Future studies 

should also further expand the racial diversity of our study cohorts and further integrate 

omics data in CRIC beyond the genome and metabolome, i.e. to include the epigenome and 

proteome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Metabolite GWAS in Black and White study participants in the CRIC Study. In the plot, 

each circle represents a distinct metabolite plotted along the x-axis for its lowest GWAS 

P-value of association in the White cohort (index SNP), and then along the y-axis for the 

lowest P-value of association in the Black cohort within 500 kb on either side of the index 

SNP. For validated associations, the size of the circle correlates with the distance between 

the White and Black index SNPs.
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Figure 2. 
Distribution of Pearson correlations of metabolites with CKD measures. Kernel density plot 

of metabolite associations with eGFR (A) and proteinuria (B), shown for metabolites with 

validated GWAS associations (solid line) and all other metabolites (dotted line).
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Figure 3. 
Trans-ethnic fine mapping at CPS1 and LIPC. For the glycine association at CPS1 (A) and 

the PE 38:6 association at LIPC (B): regional plots for White and Black cohorts showing 

P-values and SNP correlations (top), credible sets of potential causal SNPs within White and 

Black cohorts (middle), and output from trans-ethnic meta-analysis (bottom).
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Figure 4. 
Comparison of validated metabolite loci between White and Black cohorts. Scatter plots of 

effect size of coded allele on metabolite levels (A) and coded allele frequencies (B) for the 

99% credible set of SNPs from the White cohort fine-mapping.
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Table 1.

CRIC study sample for metabolomics GWAS

Black White

Sample size 687 822

Age, years 58.9 (10.2) 58.9 (11.0)

Female 348 (50.7%) 324 (39.4%)

eGFR, ml/min/1.73m2 41.5 (17.1) 44.4 (16.8)

Urine Protein/Creatinine Ratio, g/g (IQR) 0.2 (0.1 - 0.9) 0.1 (0.1 - 0.5)

Total Cholesterol (mg/dL) 182.5 (43.2) 180.1 (42.8)

High-density Lipoprotein (mg/dL) 49.8 (16.6) 47.4 (15.1)

Low-density Lipoprotein (mg/dL) 102.5 (36.0) 96.3 (32.8)

Triglycerides (mg/dL) 138.5 (99.4) 167.1 (114.7)

Statin use 387 (56.6%) 499 (61.0%)

Hypertension 657 (95.6%) 683 (83.3%)

Diabetes 359 (52.3%) 377 (45.9%)

Cardiovascular disease 281 (40.9%) 278 (33.8%)

Data represents means (standard deviation) unless otherwise noted eGFR, estimated glomerular filtration rate
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