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Abstract
How humans process and utilize experienced outcomes and
actions to adapt to a constantly evolving and noisy world is
an important area of research. We investigate the role of the
pupil-linked arousal system in adaptive value-based decision-
making in an uncertain and changing environment using a two-
armed bandit task with occasional changes in reward contin-
gencies. We find that pupil size fluctuation encodes reward-
and uncertainty-related values across trials; moreover, pupil
size reflects future-choice-dependent contributions of these
variables to learning and decision-making: larger pupil encod-
ing of reward prediction error (RPE) promotes reward-driven
switches in choice, while larger pupil encodings of estima-
tion uncertainty (EU) promotes uncertainty-driven switches in
choice. Furthermore, individual differences in pupil’s encod-
ing of RPE and EU correlate with individual variabilities in
choice bias and task performance. Given the relationship of
pupil size to noradrenergic and cholinergic modulations, these
results provide insights into the computational and neural pro-
cess underlying adaptive decision-making.
Keywords: decision-making; uncertainty; multi-armed ban-
dit; Bayesian modeling; pupillometry

Introduction
Decision-making under uncertainty is a central aspect of hu-
man cognition, fundamental to navigating the complexities of
daily life. In a constantly evolving and largely unpredictable
world, the ability to make successful decisions hinges on
our capacity to continually learn from our environment and
adapt our choices accordingly. A central question in this dy-
namic decision-making process is understanding how expe-
rienced outcomes and previous actions guide these adaptive
decisions. This study aims to examine the mechanisms and
computations of adaptive choices in humans, particularly ex-
amining how they are represented in physiological states, as
assessed by fluctuating pupil size, known to be related to both
noradrenergic and cholinergic activity in the cortex (Joshi &
Gold, 2020; Mathôt, 2018; Reimer et al., 2016; Gilzenrat,
Nieuwenhuis, Jepma, & Cohen, 2010; Aston-jones & Cohen,
2005).

Despite the established links between adaptive choices,
learning, and pupil response, systematic explanations of how
learned factors and mechanisms influence adaptive choices
are still lacking. This gap is partly due to the constrained
focus of the existing studies. Many studies focus solely
on learning or inference without any decision-making com-
ponents (Nassar et al., 2012), or are based on perceptual
decision-making that do not rely on previously learned,

reward-based information (Kucewicz et al., 2018; van der
Wel & van Steenbergen, 2018; Colizoli, de Gee, Urai, &
Donner, 2018; Urai, Braun, & Donner, 2017). Studies on
value-based decision-making tend to adopt a more station-
ary environment (Fan et al., 2023) or do not balance out the
anti-correlation between reward and uncertainty (Jepma &
Nieuwenhuis, 2011; Preuschoff, ’t Hart, & Einhäuser, 2011).

To address these limitations and deepen our understand-
ing of how the pupil-linked arousal system influences the
integration of learning with adaptive choices, this study in-
vestigates pupil fluctuations in individuals engaged in a dy-
namic two-armed bandit task, a commonly used value-based
decision-making paradigm in both behavioral sciences and
machine learning that captures the interplay between learning
and decision-making (Wilson, Geana, White, Ludvig, & Co-
hen, 2014; Cohen, McClure, & Yu, 2007). To create a chang-
ing environment, we modify the classical bandit task to have
occasional ”change-points” with changes in reward contin-
gencies that influence the participants’ estimation of reward
and uncertainty, thereby encouraging them to modify their
existing decision strategies from time to time. By analyz-
ing the relationship between trial-to-trial updates of learned
variables, choice alterations, and pupil responses, we aim to
discern whether the arousal-indexed pupil response merely
tracks variables such as reward prediction error (RPE) and
uncertainty, or reflects a more profound relationship between
learning and decision-making. This study seeks to shed light
on the process by which learned variables are incorporated
into actual decision-making, thereby offering new insights
into the complex mechanisms of adaptive choice behavior.

Results
Post-change-point pupil fluctuation captures the
variability in switch delay due to different noise
levels
We examine pupil diameters from fifty-four participants play-
ing a novel two-armed bandit decision task that involved
repeated choices among two options (Figure 1A; also see
Methods). On each trial, the reward outcome for each
option was sampled from a Gaussian distribution with a
mean that switched among three values (30, 50, and 70) at
unannounced change-points throughout the task (Figure 1B).
Change-points occurred independently for the two options at
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Figure 1: A. Task illustration. On each free trial, subjects chose between two options (purple or orange) and observed the
outcome of the selected option. On each forced trial, subjects can only select the option with a circle around (purple here). B.
An example block (96 trials) with reward generation process visualized. Solid lines: underlying mean reward levels (30, 50,
or 70) for each option. Change-points are represented by abrupt shifts of reward levels. Dots: reward outcomes (between 1 to
100) drawn from the Gaussian distribution based on the mean and the noise level (high noise = 20, low noise = 10). Shaded
areas: forced trials. C. An example of the ideal Bayesian posterior probability distribution of the reward level of an option.
ER: Expected reward (posterior mean). EU: Expected uncertainty (1 minus the probability of the maximum a posteriori (MAP)
reward level). D. Tendency to switch option (top) and outcome-evoked baselined pupil response (bottom) after a high-to-low
change-point under two different noise levels.

random intervals during a game; on average, they occurred
once every 24 trials (true volatility = 1/24). The standard de-
viation of the Gaussian reward generation process for both
options changed simultaneously between two noise levels (10
or 20). The participants were explicitly informed about the
current noise level in every trial.

To examine how pupil fluctuations relate to the processes
of belief updating and strategy changing throughout the
game, we use a Bayesian ideal observer (IO) model to com-
pute each subject’s posterior estimates of the per-trial reward
level for each option given the sequence of behavioral choices
and observations (see Methods). Because the Bayesian model
places a distribution over the posterior reward estimates, it
naturally captures the uncertainty inherent in the observa-
tion possibly represented by the brain. Using the Bayesian
IO model, we derive the trial-wise estimates of expected re-
ward (ER, defined as the weighted average of the reward lev-
els based on posterior probability) and estimation uncertainty
(EU, defined as the probability that the most likely reward
level is not the actual generative reward mean; see Figure 1C).

We find that the fluctuation of pupil response across tri-
als encodes the delay in switch actions due to different noise
levels, particularly after the subjects observe a high-to-low
change-point (Figure 1D). Behaviorally, subjects switch be-
tween options soon after observing a high-to-low change
point on a previously preferred option and do so sooner in

the (easier) low-noise condition (Figure 1D, top). The mag-
nitude of the outcome-evoked pupil dilation also peaks and
then decays shortly after the high-to-low change point, with
the peak occurring earlier in the low-noise condition (Fig.
1D, bottom). This suggests that pupil response is sensitive
to outcome changes, in a way that reflects the variability in
adaptive choice behaviors.

Pupil response encodes the interaction between RPE
and choice
We categorize each choice on a trial based on the sign of the
model-fitted reward prediction error (RPE), and examine the
corresponding post-outcome pupil size prior to choice. While
the pupil response does not differ significantly between neg-
ative RPE (“(-)RPE”) and positive RPE (“(+)RPE”) condi-
tions, significant variability emerges when the conditions are
further categorized based on whether the choice on the next
trial is a ”switch” (shift away from the current option) or
”stay” (continue to choose the current option) (Figure 2A,
B). This implies that post-outcome pupil response may en-
code an interaction between RPE and upcoming choice, since
pupil responded to RPE differently depending on the upcom-
ing choice.

We construct a logistic regression model to predict the next
choice action using RPE, pupil response, and their interac-
tion terms. We compare the performance of the model with
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Figure 2: Interaction effect of RPE and choice on pupil response. (A-B) Z-scored baselined pupil response trace over the course
of the outcome-viewing period, separated by (A) sign of RPE, and (B) both RPE sign and upcoming choice (paired-t test by
subjects: p1,3 = 0.01, p1,4 < 0.001, p2,4 < 0.001, p3,4 < 0.001, where 1,2,3,4 correspond to the order of the legend). (C) Model
fit (accuracy) across logistic regression models predicting choice on the next trials. (D) Logistic regression coefficients for
RPE, post-outcome pupil response, and interaction term. (E) Average frequency of staying on the next trial given possible or
negative RPE, trials median-split by pupil size. Frequency of staying given negative RPE is larger in the condition with larger
pupil size (paired t-test, p < 0.001); frequency of staying given positive RPE is not significantly different for the two pupil
conditions (paired t-test, p=0.211).

two other models: (1) a baseline “dummy” model that always
predicts ”stay” (since subjects show a strong repetition bias),
and (2) a logistic regression model with only RPE as the pre-
dictor (Figure 2C). The model including pupil response and
the interaction term has significantly higher average cross-
validation accuracy than the model with only RPE (paired t-
test stats=-3.225, p=0.03) and the dummy model (paired t-test
stats=-17.71, p < 0.001). The regression coefficients (Figure
2D) are significant for both RPE, pupil response, and the in-
teraction term. The results above suggest that post-outcome
pupil response is predictive of upcoming choice, in a way that
may be interactive with RPE.

To further quantify the dynamic RPE encoding in the pupil,
we regress baseline-corrected pupil time courses against the
trial-wise estimates of RPE magnitude (|RPE|) and EU differ-
ence between the two options (∆EU = EUchosen−EUunchosen),
separately for positive and negative RPE, and for stay and
switch trial conditions (Figure 3). The magnitude of pupil
scaling differs depending on both the sign of RPE and the
future choice action. When RPE is positive, pupil response
significantly scales with the size of RPE only if the upcoming
choice is a stay rather than a switch (Figure 3A, top figure).
In contrast, when RPE is negative, pupil response shows a

larger scaling with |RPE| if the upcoming choice is switch
rather than stay (Figure 3A, bottom figure). In other words,
the predictability of pupil trace on the magnitude of RPE
changes across the choice conditions. Thus, what the pupil
response reflects is not simply the value or magnitude of RPE
or a signal indicating switch versus stay; rather, it reflects the
relationship between RPE and the upcoming choice. Larger
encoding of the magnitude of RPE in the pupil size during
the reward feedback (in both positive and negative RPE con-
ditions) leads to more reward and error-driven choices (i.e.
to stay when the reward increases and switch when the re-
ward decreases). The significant scaling difference emerges
shortly (0.5 to 1s) after the outcome onset, suggesting that
future choice difference is reflected in the early feedback pro-
cessing stage.

We perform another regression analysis on the pupil
time course against the trial-wise difference in EU (∆EU =
EUchosen − EUunchosen, Figure 3B). When RPE is negative,
pupil size scales more positively with ∆EU if followed by a
stay choice (Figure 3B, top). When RPE is positive, pupil size
shows moderately but not significantly larger scaling with
∆EU before a switch choice (Figure 3b, bottom). As with
|RPE|, the pupil response seems to encode not the value but
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Figure 3: Time course of A. RPE and B. ∆EU (EUchosen −EUunchosen) scaling in the pupil, computed as the sample-by-sample
multiple linear regression of baseline-corrected pupil dilation onto the two variables. Regression coefficients were computed
separately for the four choice conditions. RPE and ∆EU were normalized for each subject before splitting into different
conditions. Lower bars (green and red) indicate p-values ≤ 0.05 from the Wilcoxon signed-ranked test of the difference
between each time course and zero. Shaded areas (gray) indicate p-values ≤ 0.05 from a two-sample paired t-test between the
two time courses. Baseline: 100ms before the trial onset.

the relevance of ∆EU in forming the upcoming choice: larger
∆EU encoding in the pupil size leads to more uncertainty-
driven and less reward-driven choice (e.g. staying on the
more uncertain choice even after a worse-than-expected out-
come) in the following trial.

RPE & EU-related pupil response reflects individual
variability in performance and choice bias

To understand how variabilities in pupil encoding of RPE
and EU across the four choice conditions might contribute
to different overall decision behavior, as well as performance
differences across subjects, we take the subject-wise regres-
sion coefficients for |RPE| and ∆EU shown in Figure 3 for
each condition, and correlate them with individual subjects’
tendency to stay (Figure 4). After experiencing a negative
RPE, subjects whose pupil responses were more predictive of
|RPE| before a (-)RPE⇒switch action, and less predictive of
RPE before a (-)RPE⇒stay action, are generally more likely
to stay and had better overall task performance (Figure 4A).

Furthermore, subjects with larger pupil encoding of neg-
ative RPE before a (-)RPE⇒switch action also have lower
subjective volatility rates (Pearson’s r = -0.31, p=0.023), a
model-fitted subjective belief of rate of reward change (see
Method) that is associated with self-reported lower anxi-
ety scores in State-Trait Anxiety Inventory (STAI-Y) test
(STAI-Y-A: Pearson’s r=0.32, p=0.017; STAI-Y-B: Pearson’s
r=0.29, p=0.035).

After experiencing a positive RPE, larger pupil encod-
ing of ∆EU before a (+)RPE⇒switch action is associated
with a higher frequency of staying and better performance
(Figure 4B). Together, we see that individual differences in

choice tendency, partially associated with subjective beliefs
of environmental volatility and anxiety levels, are reflected
in variable pupil encoding of RPE and EU to guide upcom-
ing choices. More conservative subjects show larger encod-
ing of RPE to guide reward and error-driven switch actions
((-)RPE⇒switch) and larger encoding of DeltaEU to guide
uncertainty-driven switches ((+)RPE⇒switch).

Discussion
In this study, we explore the interplay between the pupil-
linked arousal system and adaptive value-based decision-
making amidst uncertain and fluctuating environments. Uti-
lizing a novel two-armed bandit paradigm with intermittent
shifts in reward contingencies, our findings reveal that pupil
dynamics are not mere reflections of reward and uncertainty
values based on prior experiences. Instead, they signify
how these factors influence future choices when performing
adaptive decision-making in a dynamic environment. Larger
pupil encoding of reward prediction error (RPE) facilitates
reward-driven switches in choice, while larger pupil encoding
of estimation uncertainty (EU) facilitates uncertainty-driven
switches in choice. Furthermore, individual differences in
pupil’s encoding of size of RPE and EU difference corre-
late with individual variability in choice tendency and task
performance. More conservative subjects show larger encod-
ing of RPE to guide reward and error-driven switch actions
((-)RPE⇒switch) and larger encoding of DeltaEU to guide
uncertainty-driven switches ((+)RPE⇒switch).

Our investigation extends the theoretical framework (Yu &
Dayan, 2005) that proposes two forms of task-related uncer-
tainty crucial for effective learning and decision-making in
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Figure 4: Individual choice bias (top) and task performance (bottom), correlated with per-subject RPE and ∆EU beta weights
computed in Figure 3. A. Correlation with RPE weights for (−)RPE ⇒ stay condition (green) and (−)RPE ⇒ switch condition
(red). B. Correlation with ∆EU weights for (+)RPE ⇒ stay condition (green) and (+)RPE ⇒ switch condition (red).

dynamic settings: expected uncertainty, stemming from ob-
servational noise and a known ignorance about the environ-
ment (as captured by estimation uncertainty in our study),
and unexpected uncertainty, arising from unpredicted, gross
changes in the environment (as reflected by reward predic-
tion errors). Our results underscore how these uncertainties
are encoded in the pupil’s dynamics, influencing adaptive
decision-making processes.

In line with the theory, a larger pupil encoding of RPE
facilitate a shift towards reward-driven choices, mirroring
the role of unexpected uncertainty in prompting individuals
to reconsider and potentially revise their strategies and be-
liefs in light of new outcomes (Cohen et al., 2007). On the
other hand, when the pupil predominantly encodes EU, which
aligns with the concept of expected uncertainty, subsequent
choices appear less influenced by recent reward outcomes, in-
dicating a strategy to reduce known environmental uncertain-
ties, enhancing long-term learning and reward gain. Given the
known modulation of pupil size by norepinephrine (NE) and
acetylcholine (ACh) systems (Joshi & Gold, 2020; Mathôt,
2018; Reimer et al., 2016; Gilzenrat et al., 2010; Aston-jones
& Cohen, 2005), our findings also resonate with the pro-
posed antagonistic interplay between NE and ACh in mod-
ulating adaptive cognitive processing (Cohen et al., 2007; Yu
& Dayan, 2005). The distinct and variable pupil encodings
of RPE and EU in our study can reflect the underlying neural
mechanisms of NE and ACh in guiding adaptive decision-
making.

Our findings can also be interpreted in the context of adap-
tive gain theory related to the pupil-linked LC-NE system
(Aston-jones & Cohen, 2005). The theory suggests that the
firing activities of LC-NE neurons modulate cortical circuit
responsiveness, facilitating task engagement or disengage-
ment and thus enabling adaptive responses to dynamic en-
vironments. Our findings suggest that the pupil-linked LC
system may regulate engagement with options by modulat-
ing the informational value of rewards and uncertainties dur-
ing decision-making. This modulation appears to direct up-
coming choices to be more reward-focused or uncertainty-
focused, depending on the contextual relevance of each. Ad-
ditionally, individuals with a stronger propensity for repeti-
tion require a greater enhancement in information gain from
rewards and uncertainty to override this bias and adapt their
choices accordingly. This nuanced understanding of the LC-
NE system’s role offers a bridge between learning mecha-
nisms and adaptive decision-making.

The reason behind the system’s dynamic adjustment in pri-
oritizing reward and estimation uncertainty remains an open
question. A potential explanation, rooted in the efficient cod-
ing theory (Barlow, 1961), is that the pupil-linked LC-NE
arousal system might be instrumental in the optimal distribu-
tion of cognitive resources during adaptive decision-making.
This hypothesis aligns with the observation that decision-
making leverages both reward and uncertainty to efficiently
allocate cognitive effort, particularly in contexts where such
allocation yields significant adaptive advantages. The ten-
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dency to explore in the face of estimation uncertainty aligns
with a strategic investment in gathering information for long-
term gain, while the shift in choice following large negative
reward prediction error after change-points underscores an
adaptive response to unexpected environmental changes.

However, our study does not establish a causal link be-
tween pupil size variations and adaptive choice behavior. Fu-
ture research should, therefore, employ methods such as ma-
nipulating pupil size via luminance adjustments to directly as-
sess its impact on decision-making. Such investigations could
further unravel the complex interplay between cognitive pro-
cesses and decision-making under uncertainty, enriching our
understanding of the brain’s navigational strategies in com-
plex decision landscapes.

Methods
Dataset
A total of sixty French adult individuals, free from any
known psychiatric or neurological disorders, participated in
this study in exchange for a monetary reward. Two partic-
ipants were excluded due to incomplete participation in the
experiment. Additionally, one participant was excluded fol-
lowing the incidental discovery of a brain anomaly during
MRI scanning. A further three participants were excluded
due to chance-level task performance (the average reward ob-
tained fell below two standard deviations above chance level,
which was determined by the average reward accrued across
1,000 iterations of making random choices on the same re-
ward sequences). After these exclusions, the data from the
remaining fifty-four subjects were analyzed. This group had
an average age of 25.9 years (SD = 6.5, age range: 18-44),
consisting of 28 women and 26 men.

Experimental Design
Novel two-armed bandit task Participants performed 8
blocks (2 hours long) of a novel non-stationary two-armed
bandit decision-making task. Each block involves 96 trials
of repeated choices among two options. The reward outcome
for each option (ranges between 1 and 100) is sampled from a
Gaussian distribution with a mean that switches among three
values (30, 50, and 70) at random intervals of change points
based on a true volatility rate of 1/24 (change happens every
24 trials on average, with a minimum of 10 trials between
consecutive changes on the same option). The occurrences
of change-points are independent for the two options. The
standard deviation of the reward generation process for both
options changes between periods of 10 (low noise) or 20 (high
noise), and subjects are explicitly informed about the current
noise level on every trial. Each game includes periods of 4
consecutive forced-choice trials to independently control for
reward and uncertainty levels.

Pupil diameters are recorded from the subjects during the
task using Tobii at 60Hz. The subjects are also asked to com-
plete clinical questionnaires (BIG-5, STAI, Lot R) for anxiety
and pessimism assessments.

Learning model: Bayesian Ideal Observer (IO)

We assume that subjects behave as an ideal Bayesian ob-
server, tracking the reward value and uncertainty in their
estimation. We denote the reward obtained from arm i (i = 0
denotes the left arm, i = 1 denotes the right arm) on trial t as
yi,t , which generated from a Gaussian distribution with mean
µi,t ∈ {30,50,70} and standard deviation σt ∈ {10,20}. With
probability v (volatility), a change-point occurs on arm i
and µi,t+1 is redrawn from {30,50,70} without replacement
(µi,t+1 ̸= µi,t ). Change-points happen independently for each
arm. The goal of the subjects is to infer the trial-by-trial
underlying reward mean µi of the two arms without knowing
when the change-point occurs. By Bayesian probability
theory, the posterior estimate of the reward mean µi,t+1 of
arm i on trial t + 1, given all past observations y1:t+1, the
known standard deviations σ1:t+1, and volatility v, is given
by:

p(µi,t+1|y1:t+1,σ1:t+1,v) ∝ p(µi,t+1,y1:t+1,σ1:t+1,v)
∝ p(yt+1|µi,t+1,σ1:t+1)∑µi,t p(µi,t |y1:t ,σ1:t ,v)p(µi,t+1|µi,t ,v)

Volatility v is fitted for each subject as a free parameter
in the Bayesian model. Using the ideal observer model, we
derive the trial-wise estimates of the following variables:
Expected Reward (ER) the expected value of the pos-
terior estimate of the reward mean, marginalized over the
posterior distributions of the three levels of reward mean:
ERi,t = E[µi,t ]

Reward Prediction Error (RPE) difference between the
actual reward obtained and the expected reward: RPEi,t =
Ri,t −ERi,t

Estimation Uncertainty (EU) the posterior probability
that the most likely reward mean is not the actual generative
reward mean:

EUi,t = P(µi,t ̸= argmaxrP(µi,t = µ|y1:y)|y1:t)

Pupil Diameter Measurements

Pupil diameter was sampled at 60 Hz and recorded through-
out the task using Tobii eye-tracker. Blinks detected by the
tracker device’s detection algorithm were removed using lin-
ear interpolation of values measured before and after each
identified blink with a margin of 0.1. Blink-filtered diameter
was low-pass filtered using a bi-directional 4th order Butter-
worth filter with a cutoff frequency of 30 Hz.

The pre-processed pupil measurements were then z-scored
in each session for each participant. The average pupil size
after outcome was computed for each trial by taking the mean
of z-scored pupil measurements during the [0.5,1.5] second
interval of the outcome-viewing period. The change of the
pupil response after outcome is obtained by subtracting the
baseline pupil average (100ms before the outcome onset)
from the pupil measurements.
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