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A stochastic model has been created to efficiently explore the parameter space surrounding 

schemes for a new dye-sensitized solar cell and photoelectrochemical constructs. Models of 

a variety of semiconductor configurations that are populated with surface-anchored light-

absorbing dye molecules and electrocatalysts are simulated under various illumination 

conditions. Absorption of light by dyes results charge transfer with the semiconductor 

scaffold to create mobile opposite charges in the dye layer that hop by self-exchange electron 

transfer across the semiconductor surface and ultimately accumulate on electrocatalysts or 

recombine. Additionally, simulations of transient absorption pulsed-laser experiments are 

compared to those of continuous illumination conditions to determine if pulsed-laser 

experiments can be used as an analog for real-world sunlight illumination conditions. 

Results from these simulations help to expand the current knowledgebase for these systems 

via rapid analysis of a wide range of parameter sets in order to better understand the 

limitations and possibilities for these and similar systems. It is our hope that these results 

are used by researchers to better focus their efforts in developing cost-competitive dye-

sensitized solar energy conversion technologies. 



1 
 

INTRODUCTION 
 

 

As the effects of global climate change become more apparent it is increasingly 

obvious that a paradigm shift is necessary in the sources from which we harvest our energy. 

On the forefront of possible sources are both wind and solar energy due to their relative 

abundance and ease of conversion into electricity. The leading solar energy conversion 

technology is the photovoltaic solar cell. Over 90% of the solar cell market is dominated by 

light-absorbers consisting of crystalline silicon, with the remaining fraction dominated by 

toxic crystalline CdTe. Although crystalline silicon is economically most viable, it is by no 

means the optimal light-absorber material for a solar cell, because it requires an expensive 

purification process, its indirect bandgap results in it being a weak light-absorber near its 

bandgap energy minimum, and recombination is dominated by Auger bulk non-radiative 

recombination, therefore decreasing its maximum efficiency versus other 1.1 eV bandgap 

materials with direct bandgap transitions.1 Optimal solar cells contain light absorbers whose 

recombination is entirely radiative, 

which is the minimum rate of 

recombination for any solar energy 

conversion device.2 Thus, opportunities 

remain to improve on commercial 

crystalline silicon solar cells using other 

solar cells that utilize lower-cost and 

more efficient materials. One such 

technology is the dye-sensitized solar 

Figure 1. Maximum efficiency by bandgap or dye 
quasi-bandgap as determined by the Shockley–
Queisser limit. 
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cells (DSSC), whose world record certified sunlight-to-electrical power conversion efficiency 

is presently only 14%.3 While this falls below efficiencies of commercially available silicon 

solar cells (22.7%)4, DSSCs may be advantageous for niche applications because of their 

possibility for low-temperature processing and manufacturing and tunability of the light-

absorber to enable idealized bandgap energies and few non-radiative pathways for 

recombination.5 

 

DSSCs make use of dye molecules as their light absorbing medium. They typically 

consist of a thin film of high-surface-area metal-oxide semiconductor with surface-anchored 

dyes, a heterogeneous-catalyst-coated counter electrode, and a redox-active electrolyte to 

mediate the charge between the two electrodes. Most of the state-of-the-art demonstrations 

Figure 2. Scheme showing alternate kinetic pathway (in green) to dye regeneration which allows for less 
energy to be wasted and therefore a smaller quasi-bandgap dye that absorbs more light than traditional 
pathways such as the one shown in blue. 
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have historically utilized nanocrystalline anatase-phase TiO2 as the metal-oxide 

semiconductor, platinum nanoparticles as the counter-electrode catalyst, and 

triiodide/iodide (I3-/I-) in nitrile-based solvents as the electrolyte redox shuttle. Presently, 

even the leading DSSC dyes (N719, SM317, ADEKA-1+LEG4) have differences in energies of 

their lowest-energy vibronic states (E00), which can be thought of as quasi-bandgaps, that 

are far from ideal (1.7 eV, 1.8 eV, 1.9 eV respectively) (Figure 1).6 A major reason for this 

limitation in these DSSCs is the fact that the typical I3-/I- redox shuttle used to regenerate the 

dyes wastes on the order of 500 mV as heat during disproportionation of two molecules of 

I2- into I3- and I- (Figure 2). This loss could be mitigated by taking an alternate kinetic 

pathway by which I- is directly oxidized into I2, or even better yet, into I3-. The downside to 

these lower-energy pathways is that either reaction requires that two electrons are 

transferred, necessitating that two electron-holes accumulate at a single site. This is typically 

not possible on dye molecules and so the introduction of catalysts is required. These 

catalysts can receive electron-holes through electron transfer reactions from other 

molecules on the film that can propagate from dye molecule to dye molecule through self-

exchange electron transfer reactions.7 However, the process of charge accumulation on 

catalysts sites is both complex and not fully explored. While experimental efforts are 

eventually needed, initial stochastic modeling work on this sort of system has been done to 

better explore the parameter space of this system. 

Such modeling allows for this highly complex system to be evaluated by easily 

adjusting single parameters in order to identify ideal conditions that are worth studying 

experimentally. Additionally, it helps to identify limits in certain systems so that 

experimentally it can be determined how well devices are performing relative to their 
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maximum potential performance. This thesis primarily describes a model created to 

evaluate such systems. Other similar models have been created before, but none are as 

thorough in terms of features desired as this one.8,9 In addition to simply describing this 

model (primarily in the Appendices), Chapters 1 and 2 of this thesis describe studies that use 

this model to identify useful parameter spaces for DSSCs and related dye-sensitized 

photoelectrochemical cells that directly drive energy-storing fuel-forming reactions. 

Chapter 1 aims to answer some basic questions including: “What is the ideal ratio of 

dyes to catalysts on a film?”, “How greatly does an absorbance distribution such as the one 

created by the Beer-Lambert Law perturb the yield for catalyst turnover?”, “What is the 

fluence dependence of the yield for catalyst turnover?”, “How much more difficult is it to 

accumulate 4 electron-holes on one catalyst – as desired for O2 evolution through water 

oxidation – as opposed to just 1 or 2 – as desired for iodide oxidation or proton reduction to 

H2?”, and “Are pulsed laser experiments a useful analog for studying materials behavior for 

systems under continuous illumination?”. 

Chapter 2 aims to answer some questions related to the geometry of the system. 

These include: “Does a series of separated particles accurately represent a morphologically 

complex film?”, “To what degree does interparticle necking matter?”, “Can this complex 

system more simply be represented by a square with periodic boundary conditions yet still 

result in similar conclusions?”, “Does the use of polarized light for excitation perturb the 

results of the model?”, and “What extent of surface coverage of dye molecules is necessary 

for a substantial percolation network to exist?” 

The code for the models and comprehensive instructions for the use of that code are 

found in the appendices. The model was originally written in Mathematica and then 
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converted to Python but all studies herein were conducted using some version of the 

Mathematica model. Explanations of both versions of the model can be found in Appendix A 

(Mathematica) and Appendix C (Python) with full copies of the code for reference in 

Appendices B and D for Mathematic and Python, respectively. 

Chapter 3 is an unrelated piece of work describing a scientific outreach experiment 

designed to educate middle school through undergraduate-level students about ion motion 

and desalination. Appendix E describes the outreach experiment discussed in Chapter 3 as 

well as provides pictorial instructions. Appendix F is another unrelated piece of work 

describing the design and construction of a slurry baggie solar water splitting Z-scheme 

reactor, which is described in detail in a prior review article from our group.10 
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CHAPTER 1. Preliminary Model Testing 
Introduction 

Designing and evaluating architectures for solar fuels generation are worthwhile 

academic research endeavors that may one day lead to an economically pertinent technology 

that enables long-term seasonable energy storage and/or a transportation fuel.1–5 This type 

of energy storage is predicted to be necessary when society is powered by substantial 

renewable energy.5 Architectures for solar fuels constructs generally fall into several broad 

categories. The most efficient designs consist of photovoltaic-grade materials with buried-

junctions for effective photovoltaic action and that are protected from corrosion using 

chemically insulating overlayer coatings or direct electrical wiring to aqueous electrolytes 

where materials electrocatalysts perform the electrochemical reactions.3,6–11 Other designs 

rely on coupled processes that together are much less well understood and often occur at 

semiconductor–liquid junctions with or without molecular electrocatalysts and/or dye 

sensitizers.12–31 Each of these constructs has benefited from experimental and computational 

studies of its photophysical and photochemical processes in order to elucidate mechanistic 

details of operation and identify architectures that result in large power-conversion 

efficiencies. Some models capture bulk collective dynamics and overall photovoltaic 

performance using statistical ensemble models. For example, limiting physical processes in 

buried-junction designs and non-molecular photoelectrochemical designs have been 

simulated successfully using coupled differential equations that capture deterministic 

behaviors expected from statistical thermodynamics.4,32–34 For mesoporous dye-sensitized 

designs, transport phenomena for redox-active species in solution and rates of electron 

transport between dyes and within mesoporous thin films have been modeled using various 
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methods with numerical results that are reasonably consistent with experimental 

observations.35–44 However, a limitation of simulations that capture continuous and/or bulk 

behaviors is that they lack the granularity required to capture dynamics that occur at 

discrete molecular light absorbers and electrocatalysts. The molecularity of these 

photochemical designs can be studied using ab initio calculations, density functional theory, 

electronic structure determination, and molecular dynamics simulations. However, these 

atomic-level calculations are too fine-grained to capture dynamics that occur across 

nanometer-to-micron-sized regions consisting of hundreds to thousands of molecules that 

are critical in order to predict the overall function of the materials system. A modeling 

domain that is intermediate between these two size regimes is required to capture the 

micro-kinetic behavior of these systems on pertinent size scales. This need motivated us to 

develop a physically pertinent numerical modeling and simulation package based on a 

discrete-time random walk Monte Carlo method and that we will share publicly. It is the first 

of its kind that captures salient features of dye-sensitized and cocatalyst-modified constructs 

with the aim to help guide and progress the design of these systems to a practical level of 

device viability. 

An enormous number of fundamental experiments have been conducted on dye-

sensitized mesoporous thin films using a broad range of techniques.45,46 To better 

understand observed behaviors related to charge transfer, Monte Carlo simulations have 

been performed that simulate Markovian micro-kinetic processes and quantify rates of 

electron and energy transfer between dyes only.45,47 Some of the initial work was reported 

by Meyer and colleagues in the early 2000s, who modeled surface transport processes via 

classical discrete-time random walk Monte Carlo simulations across a two-dimensional 
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lattice with periodic boundary conditions.48 Around the same time, Nelson, Durrant and 

colleagues introduced a mathematically rigorous model for charge recombination from 

these TiO2 nanocrystallites to surface-bound dyes based on a continuous-time random walk 

model.42,49–52 A critical assumption in this type of random walk model is that the walkers are 

independent and also that the location of the oxidized dye does not change appreciably on 

the timescale of the recombination process, which is not often a valid assumption.37,53–62 

Since that time, additional random walk Monte Carlo models have been reported for 

analogous processes and using computer code with similar features and limitations as first 

reported in the early 2000s.41,63–67 In 2009, Ardo and Meyer were the first to incorporate 

specifically spherical nanoparticle supports into discrete-time random walk models, thus 

removing the need for periodic boundary conditions.58,59 This was an important advance, 

because it remedied the non-physical limitation of the two-dimensional simulations, which 

over-counted regions on the particles near the poles and contained no accurate means to 

accurately quantify spherical polar angular position in three dimensions. Knowing the 

spatial positioning of each perturbed dye is important when modeling experimental data 

obtained using time-resolved polarization spectroscopy techniques that can be used to 

measure rates of transport across surfaces such as self-exchange electron transfer or energy 

transfer across nanometer-scale particles and on the nanosecond and longer timescales.58,59 

Since then other discrete-time random walk models have incorporated three-dimensional 

semiconductor nanoparticles60,61,68,69 and even included surface-confined interparticle 

charge transport across necking regions.67,70 Interparticle charge transport is an important 

process that captures dynamics occurring over the scale of several semiconductor 

nanoparticles. While our code described herein is also able to simulate interparticle charge 
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transport behavior, it is not utilized 

in our initial simulations because 

that process is of secondary 

importance to the majority 

intraparticle kinetic processes. 

Unique to our model, in comparison 

to all other prior models,45,47,71,72 is 

that we identify kinetic parameters 

that lead to the most effective 

utilization of photons for turnover of multiple-electron-transfer cocatalysts under the 

simulated condition of pulsed-light excitation or continuous illumination. We report results 

from a series of parametric time-inhomogeneous random walk Monte Carlo simulation 

studies using isolated spherical nanoparticles arranged as a stack to mimic their spatial 

location as a thin film. These results are highly pertinent to dye-sensitized cocatalyst-

modified semiconductor nanoparticles that constitute mesoporous photoelectrochemical 

electrodes or consist of colloidal suspensions. 

 

Experimental 

Modeling Framework.  

The architecture modeled is motivated by mesoporous thin films of nanoparticles 

that are commonly used in dye-sensitized photoelectrochemical constructs, where 

nominally identical spherical anatase TiO2 nanocrystallites contain discrete surface-

anchored light-absorbing moieties and redox-active electrocatalysts (Figure 1.1). In the case 

Figure 1.1. Model schematic showing the events that are 
included in the model to mimic the major kinetic processes that 
are operative in actual dye-sensitized photoelectrochemical 
constructs. 
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of traditional dye-sensitized materials, both the light-absorbers and the electrocatalysts are 

molecules, but the model is general in that, for example, the light-absorbing units could be 

surface-confined material units like quantum dots or nanocrystalline regions with isolated 

optical transitions in the solid-state, or the electrocatalysts could be materials whose charge 

localization and transport follows a hopping or polaronic transport mechanism.73 The model 

is able to simulate discrete processes that spatially exchange states, such as self-exchange 

Dexter or Förster energy transfer or self-exchange electron transfer initiated at an oxidized 

or reduced dye. Self-exchange electron transfer is the process assumed for the simulations 

performed herein with hops to only the closest adjacent dyes being possible, which is a valid 

assumption based on reasonable conditions and prior analyses.74 The structure is 

incorporated into the model as 100 spheres that are positioned optically in series as a one-

dimensional stack but that do not physically interact. The top sphere in this stack is 

considered to be at the surface of the thin film with subsequent spheres further down from 

the surface, at larger z-coordinates. The surfaces of these spheres are tessellated as 

icosahedra, using Wolfram Mathematica’s built-in “Geodesate” function, which results in 

approximately evenly spaced points that represent possible locations of molecules. By 

tessellating 5 icosahedra, 252 points were generated on the surface of the sphere, with 240 

hexagonally packed (6 adjacent points), and the remaining 12 pentagonally packed (5 

adjacent points). It was not necessary to specifically identify the nanoparticle radius, 

molecule radius, film thickness, and film porosity, because they are all related and so only 

their relative sizes are pertinent. However, based on the values chosen for the number of 

locations for molecules per particle (252), the number of particles per stack (100), and the 

use of a stack to model a mesoporous film of ~50% porosity, the geometry is consistent with 
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characteristics of typical dye-sensitized mesoporous TiO2 thin films.60,74,75Per particle, a 

specific number of these 252 points was chosen as positions of electrocatalysts that could be 

oxidized/reduced once or multiple times. Multiple transfers are desired in practical 

applications that make and break stable chemical bonds via multiple-electron/proton-

transfer reactions. The position of each electrocatalyst on a single particle was chosen at 

random, with an additional option to evenly distribute the electrocatalysts over each particle 

such that each particle had the same number of electrocatalysts. The remaining points were 

chosen to be dyes and based on the pulsed photon fluence chosen for the experiment, 

locations for initial photoexcitation were chosen as a subset of dye positions. All simulations 

assumed unity quantum yield for rapid excited-state electron transfer between photoexcited 

dyes and the semiconductor support, such that photoexcitation always resulted in an 

oxidized/reduced dye molecule. For each semiconductor nanoparticle, its number of mobile 

electrons/holes was set equal to the number of oxidized/reduced molecular charges on its 

surface; however, the transport processes of the electrons/holes were not simulated. 

Information regarding generation of initial conditions are described in more detail below. The 

simulation proceeded by randomly choosing from a series of options at each timestep, 

including self-exchange electron transfer between two adjacent dyes or electrocatalysts, 

electron-transfer recombination between the semiconductor nanoparticle and an 

oxidized/reduced dye or electrocatalyst, photoexcitation of a ground-state dye – when 

conditions of continuous illumination were simulated – or doing nothing. When an 

electrocatalyst reached a redox state required for an electrocatalytic turnover event, the 

electrocatalyst was immediately regenerated and the same number of charges in the 

semiconductor nanoparticle were removed to simulate their collection elsewhere in the 
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system. This occurred repeatedly until all charge-separated states either recombined or 

drove electrocatalysis. Information regarding this simulation loop and the resulting output 

data are described in more detail below. 

Generation of Initial Conditions. Initial assignment of photoexcited dyes, and therefore charge 

separated dyes, was performed multiple ways depending on the desired simulated 

condition. A set number of photoexcited dyes was either distributed over the entire stack or 

placed on each particle in the stack, e.g. for the case of 200 photoexcitations over the 100-

particle stack (<npe> = 2), either 2 dye positions were chosen randomly per particle or 200 

particle numbers and dye positions were chosen randomly across the entire stack. The 

assignment was made using weights incorporated via an assignment matrix, with weights 

based on one or more geometric considerations. One option for the assignment matrix was 

a Beer–Lambert law generation profile, 

𝑊BL = 10−
𝑛

𝑁
(Abs)

= 10
𝑛

𝑁
log10(𝑇)

       (1) 

where the probability of photoexcitation decreases exponentially as the position of the dye 

is deeper in the stack, WBL is the weight 

associated with a given position from the 

Beer–Lambert law weighting function and 

ranges from 0 to 1, n is the particle number 

in the stack, N is the total number of 

particles, Abs is the absorbance of the entire 

particle stack, and T is the fraction of 

transmitted light through the entire particle 

stack. As such, molecular positions closer to 

Figure 1.2. Simulated assignment of photoexcited 
dyes based on the Beer–Lambert law as a function 
of particle number/depth at the indicated excitation 
fluences and repeated a total of 50,000 times per 
condition. 
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the top of the particle stack were more likely to be photoexcited. This assignment, if repeated 

a statistically significant number of times, yields a distribution of excited dyes that follows 

an exponential decay with particle height, as predicted by the Beer–Lambert law (Figure 

1.2). Another independent option for the assignment matrix was based on polarized light 

excitation and well-defined radial transition dipole moments for the surface-anchored dyes. 

This assignment weighs each position based on the inclination angle of the dye relative to 

the electric field vector of the polarized excitation light, 

𝑊A = cos2𝜃         (2) 

where WA is the weight associated with a given position from the anisotropy weighting 

function and 𝜃 is the angle between the normal from the center of a particle and the 

molecular position on its surface and the electric field vector of the polarized excitation light. 

Prior to performing the simulations, a list of data for each electrocatalyst, dye, and oxidized 

dye was generated that contained relevant parameters including molecule type (dye or 

electrocatalyst), recombination probability, hopping probability, oxidation state, and an 

array of positions for 5 or 6 adjacent molecules. Adjacent molecules were within 2.5 times 

the center-to-center distance between molecules the size of [RuII(bpy)3]2+ when in van der 

Waals contact. The recombination probability was set to be the same for electron transfer 

between the semiconductor and either an oxidized/reduced dye or an electrocatalyst. Also, 

when an oxidized/reduced dye is adjacent to an electrocatalyst, the hopping probability to 

the electrocatalyst was set to effectively 90%. This latter point is described in more detail 

below. These hopping and recombination probabilities were calculated from time constants 

ranging from 40 ns to 800 μs in steps of three points on a logarithmic scale. For each 

nanoparticle, the probability of recombination was scaled by the number of charges in that 
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semiconductor nanoparticle. A second list of information was generated that was updated at 

each Monte Carlo iteration during the simulation, which included the two-dimensional 

coordinates for all molecules that were altered from their initial state as (particle number, 

position number). At time zero this list only contained the locations of dyes that were initially 

photoexcited; as the initially photoexcited dyes became altered from their initial state over 

time these coordinates were replaced by those of other dyes or electrocatalysts. 

Simulation Loop. After initially defining the state of the system at time equal to zero, Monte 

Carlo simulations were performed by looping over the list of molecules that were altered 

from their initial state (second list). For each, a probability, Px, was assigned that ranged from 

0 to 1 for the possible options of recombination, hopping to an adjacent point, or doing 

nothing, and with probabilities defined as follows, 

𝑃𝑥 =
𝑡step

𝜏𝑥
          (3) 

where tstep is the amount of time between time points and τx is the ensemble average time 

constant for the process, x. At the end of each simulated timestep, the list of molecules was 

altered from its prior state and then the Monte Carlo process was repeated, assuming that a 

small and predefined timestep had passed. The value of the timestep varied and was chosen 

for each condition so that Px as a percentage was < 1.1% for self-exchange electron transfer 

between dyes and was < 0.3% for recombination to oxidized/reduced dyes or 

electrocatalysts. The value of the timestep resulted in the probability of transferring a charge 

from an oxidized/reduced dye to an adjacent electrocatalyst being ~30%. This probability 

was set to be 27 times greater than the probability of transferring a charge between adjacent 

dyes via a self-exchange reaction in order to reflect the reasonable condition that electron 

transfer to/from an oxidized/reduced dye from/to an electrocatalyst is thermodynamically 
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favorable and thus much more probable. The exact 27-times-greater probability was chosen 

such that there was exactly a 90% probability this would occur after an oxidized/reduced 

dye on hexagonally packed sites became adjacent to an electrocatalyst, with a nominally 

lower probability of occurring on pentagonally packed sites. The derivation of this 

probability is shown in Equation 4. 

∑ (
27

27+5
) (2 (

1

27+5
))

𝑛

= (
27

27+5
) (

1

1−
2

27+5

) = (
27

27+5−2
) = 0.9∞

𝑛=0       (4) 

 This Monte Carlo process was repeated until no oxidized/reduced dyes remained. Specific 

parameters used for various model inputs are listed in Table 1.1. An additional option in the 

model was its ability to mimic conditions of continuous illumination, which incorporated 

repeated light excitation events. The initial number of photoexcited dyes was set to zero and 

after each timestep there was an additional probability for photoexcitation that scaled based 

Table 1.1. Values and expressions used for parameters in the Monte Carlo simulations. 

 

Name Value(s) Unit 

τhop(Dye–Dye) 
40, 80, 160, 400, 800, 1600, 4000, 8000, 16000, 40000, 

80000, 160000, 400000, 800000 
ns 

τhop(Cat–Cat) τhop–DyetoDye ns 
τhop(Dye–Cat) τhop–DyetoDye / 27 ns 
τhop(Cat–Dye) τhop–DyetoDye x 1013 ns 

τrecomb(SC–Dye) per particle 
40, 80, 160, 400, 800, 1600, 4000, 8000, 16000, 40000, 

80000, 160000, 400000, 800000 
ns 

τrecomb(SC–Cat) per particle τrecomb–SCtoDye ns 
time step, tstep Minimum[3.75 x τhop–DyetoDye, τrecomb–SCtoDye] / 350 ns 
number of trials per data point 25 – 
percent of incident light transmitted 
through the thin film 

43.4 % 

number of initially excited dyes per stack 10, 50, 100, 200, 400, 800, 2000, 4000, 8000, 16000 – 
number of particles in the stack 100 – 
number of molecular positions (points) 
per particle 

252 – 

percent surface coverage of molecules 100 % 
maximum number of points adjacent to 
each molecule 

6† – 

maximum redox state of electrocatalysts 1, 2, 4 – 
number of electrocatalysts per stack 252 – 

number of electrocatalysts per particle†† 2 – 

number of initial photoexcitation events 

per particle (npe)†† 
1, 2, 4, 8, 20 – 
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on the desired intensity of solar illumination and was weighted according to the assignment 

matrix calculated from the Beer–Lambert Law and polarization considerations. Simulations 

using the condition of continuous illumination were terminated after 25,000,000 iterations 

and all data was used to calculate time-averaged steady-state values. While these values 

included the initial data prior to reaching a steady-state condition, its influence on the 

average values was insignificant because its inclusion only resulted in a < 0.25% change in 

the value, on average. 

Output Data.  

During the simulation the number of times that an electrocatalyst is completely 

oxidized/reduced by a dye is recorded, because it is the most useful parameter to quantify 

the effectiveness that a condition drives solar photochemical transformations. From this it is 

possible to calculate the percent turnover, i.e. the percentage of photoexcitations that 

contributed to turnover of an electrocatalyst. Photoexcitations that contributed to 

electrocatalyst oxidation/reduction but did not result in electrocatalyst turnover did not 

count toward this total. To reduce computation time, photoexcitations that were not able to 

contribute to electrocatalyst turnover were identified and removed from the simulations 

before any timesteps had been performed. This occurred when a photoexcited dye was on a 

nanoparticle that either had zero electrocatalysts on its surface or had fewer photoexcited 

dyes than the maximum oxidation/reduction state of an electrocatalyst. When these 

photoexcited dyes were removed, they were counted as being unproductive toward 

electrocatalyst turnover. Data were collected under a wide range of starting conditions 

including varied maximum redox state of the electrocatalysts, number of electrocatalysts, 

initial excitation fluence (i.e. number of initially excited dyes), use of a Beer–Lambert law 
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distribution when assigning dye photoexcitations throughout the stack, self-exchange 

electron-transfer time constant between adjacent molecules, and electron-transfer 

recombination time constant between surface-anchored molecules and photo-generated 

charges in the semiconductor support. 

 

Results and Discussion 

General simulation conditions and data interpretation for the base case.  

For each specific condition simulated herein, turnover percentage is reported as a 

function of 1 of 14 logarithmically-spaced hopping time constants, 1 of 14 logarithmically-

spaced recombination time constants, and 1 of up to 10 logarithmically-spaced initial 

excitation fluences. These fluences are quantified as the average number of photoexcitations 

per particle over the stack of 100 particles and so a fluence of <npe> = 2 means that there 

were on average 2 photoexcitations per particle, or 200 photoexcitations created over the 

stack of 100 particles. Each combination of parameters for these three variables was 

simulated 25 times, and therefore 2500 semi-independent particles were analyzed resulting 

 

 

b a c 

Figure 1.3. (a) Sheet plots representing the percentage of photoexcited dyes that ultimately contribute to 
double oxidation/reduction of an electrocatalyst and turnover, when electrocatalysts are present at 1% surface 
coverage at the indicated initial pulsed-light excitation fluences. (b) Non-linear least squares sigmoidal best-
fits of the data in panel a as a function of the ratio of the recombination time constant to the hopping time 
constant. (c) Plot of the data in panel a as a function of the initial pulsed-light excitation fluence at the indicated 
ratio of the recombination time constant to the hopping time constant. 
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in a total of 250 – 400,000 photoexcited dyes being averaged per condition. The particles are 

semi-independent in that electron transfer did not occur between molecules on separate 

particles, but that photoexcitation that followed the Beer–Lambert law generated an unequal 

number of initially photoexcited dyes on each particle such that particles nearer to the top 

of the film had more oxidized/reduced dyes while those farther from the top of the film had 

fewer oxidized/reduced dyes. 

The data presented herein are reported as three-dimensional contour plots, one for 

each excitation fluence, as a function of the hopping time constant and recombination time 

constant (Figure 1.3a). The base case model used to obtain the data shown in Figure 1.3 

included polarized Beer–Lambert law weighting to assign a distribution of photoexcited 

dyes, and electrocatalysts that could be maximally oxidized/reduced twice and occupied 1% 

of the possible molecular positions. Each three-dimensional contour plot for this condition 

changes monotonically as values on either axis increase, and therefore a series of single-

fluence contour plots can easily be visualized as a series of three-dimensional sheet that 

spans all possible hopping and recombination time constants. This method of data 

visualization helps one identify the optimal fluence for ranges of kinetic parameters, as 

evidenced by sheet crossover. An example of this is the band of green shown crossing 

through the light blue sheet in Figure 1.3a as the percent turnover sharply increases. 

Visualizing the range of kinetic parameters that lead to band formation, i.e. crossing of two 

sheets, can provide insights into differences in nearly identical monotonic behavior. 

However, it is also apparent from Figure 1.3a that the percent turnovers are nearly the same 

for each ratio of the recombination time constant to the hopping time constant and thus, the 

observed independent variable is not the hopping time constant or the recombination time 
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constant but is instead their ratio. This means that a two-dimensional plot that captures the 

overall effect represented by the sheets can be generated using the recombination-to-

hopping time-constant ratio as the independent variable. This is shown as two-dimensional 

plots in Figure 1.3b, which were obtained by recasting all points for each sheet shown in 

Figure 1.3a with the recombination-to-hopping time-constant ratio as the independent 

variable and fitting the data to the sigmoidal function shown using non-linear least-squares 

(R2 > 0.975 except for the case of <npe> = 0.1 which resulted in poor signal to noise). As 

fluence increases from <npe> = 0.1 to <npe> = 8, the maximum percent turnover increases 

monotonically but maintains the same functional form. From <npe> = 8 up to the maximum 

of <npe> = 160, the steep portion of the sigmoidal fit shifts to larger recombination-to-

hopping time-constant ratios but still reaches the same maximum percent turnover. Larger 

recombination-to-hopping time-constant ratios are optimal because hopping is critical to 

electrocatalyst turnover while recombination is detrimental. The maximum percent 

turnover is only ~90%, because ~10% of dye photoexcitations occur on particles containing 

zero electrocatalysts based on the fact that electrocatalysts are distributed randomly at an 

average of 1% coverage per particle. 
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The two-dimensional plots shown in Figure 1.3b report the percent turnover as a 

function of the ratio of the kinetic parameters, and they span the range of excitation fluences. 

A variation on Figure 1.3b is shown in Figure 1.3c, where the parameters are rearranged so 

that the normalized percent turnover is reported as a function of the excitation fluence, and 

they span the range of ratios of the kinetic parameters where hopping is more probable than 

recombination. It is apparent from these data that an intermediate fluence is ideal for each 

specific recombination-to-hopping time-constant ratio. The generally downward concave 

shape to the data occurs because the complete twice-oxidation/reduction of each 

electrocatalyst is less likely to occur at low fluence while the equal-concentration second-

order recombination behavior is more detrimental to the percent turnover at high fluence. 

However, even though these data show that higher fluences result in a smaller relative value 

for percent turnover, the overall rate of turnover events still increases at higher fluences, as 

seen in Figure 1.4. Also, as the recombination-to-hopping time-constant ratio increases, the 

b 

Figure 1.4. (a) Sheet plot representing the number of photoexcited dyes that ultimately contribute to double 
oxidation/reduction of an electrocatalyst and turnover when electrocatalysts are present at 1% surface coverage at 
the indicated initial pulsed-light excitation fluences. (b) Representation of the data in panel a as a function of the 
ratio of the recombination time constant to the hopping time constant using base-10 logarithmic scaling of the y-
axis values so that lower fluence data can be seen more clearly. 
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optimal fluence, indicated by the global maximum of the data, decreases slightly and then 

greatly increases because recombination is relatively slow and therefore equal-

concentration second-order recombination does not outcompete photoexcitation until large 

fluences are used. 

Effect of electrocatalyst behavior.  

To understand the role that the redox state required for electrocatalyst turnover 

plays in the outcomes of the simulations, we performed simulations using electrocatalysts 

that each required only a single redox event for turnover (Figure 1.5). The general trends 

observed are very different than those observed for electrocatalysts requiring two redox 

events for turnover (Figure 1.3). For example, at lower fluences the probability of 

electrocatalyst turnover is small when it requires two redox events (Figure 1.3a,b, in pink) 

whereas the probability can be large when a single redox event is required for electrocatalyst 

turnover (Figure 1.5a,b, in pink). This drastically different behavior occurs at low fluences, 

because many photoexcitation events occur on particles where there are too few 

oxidized/reduced dyes to perform multiple redox reactions with any given electrocatalyst. 

b 

Figure 1.5. (a) Sheet plots representing the percentage of photoexcited dyes that ultimately contribute to single 
oxidation/reduction of an electrocatalyst and turnover, when electrocatalysts are present at 1% surface 
coverage at the indicated initial pulsed-light excitation fluences. (b) Non-linear least squares sigmoidal best-
fits of the data in panel a as a function of the ratio of the recombination time constant to the hopping time 
constant. (c) Plot of the data in panel a as a function of the initial pulsed-light excitation fluence at the indicated 
ratio of the recombination time constant to the hopping time constant. 
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As the fluence increases, photoexcitations become concentrated enough that they are 

reliably created in sufficient numbers to oxidize/reduce electrocatalysts once or twice as 

needed for turnover. However, then the limitation in the percent turnover is the ratio τrecomb 

/ τhop(Dye–Dye), where faster relative rates of hopping (small τhop(Dye–Dye) are more beneficial to 

percent turnover (Figure 1.3b and Figure 1.5b), as described above. Another notable 

difference that arises from decreasing the number of redox events required for 

electrocatalyst turnover is shown in Figure 1.5c versus Figure 1.3c. Unlike the case when 

each electrocatalyst requires two redox events for turnover, single redox events at 

electrocatalysts are most likely to occur at the lowest fluences. At very high fluences, the 

relative percent turnover is small irrespective of the redox state required for electrocatalyst 

turnover. This behavior is almost entirely dictated by τrecomb / τhop(Dye–Dye), where faster 

hopping (small τhop(Dye–Dye)) and slower recombination (large τrecomb) are optimal and 

conditions of higher fluence suffer from increased rates of recombination due to it being an 

equal-concentration second-order kinetic process in the number of oxidized/reduced 

molecules per particle. In summary, low fluence is optimum when electrocatalyst turnover 

requires single redox events. However, when electrocatalyst turnover requires two redox 

events, <npe> ≈ 10 is optimum at small values of τrecomb / τhop(Dye–Dye) and this optimal value 

for <npe> increases as τrecomb / τhop(Dye–Dye) increases (Figure 1.3c). 
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Effect of the Beer–Lambert law.  

Use of the Beer–Lambert law to model the photoexcitation distribution in 

mesoporous thin films used in dye-sensitized solar cells is in general accurate for non-

scattering films. However, to understand the influence that the photoexcitation profile has 

on electrocatalyst turnover we compared the condition where photoexcitation events 

followed a Beer–Lambert law distribution to the condition where the number of 

photoexcitation events was the same for each particle and therefore spatially homogeneous 

over the stack (Figure 1.6 and Figure 1.7, respectively). The lowest possible fluence resulting 

in homogenous photoexcitation events (npe = 1) resulted in only one oxidized/reduced dye 

per particle, and therefore a 0% chance of turnover for electrocatalysts requiring two or 

more redox events for turnover. In this case, use of the Beer–Lambert law distribution was 

beneficial. However, for all other values of <npe> evaluated, the percent turnover is larger 

when uniform photoexcitation occurs instead of using a Beer–Lambert law excitation profile. 

Figure 1.6. (a) Sheet plots representing the percentage of photoexcited dyes that ultimately contribute to 
double oxidation/reduction of an electrocatalyst and turnover when electrocatalysts are present at 1% 
surface coverage at the indicated initial pulsed-light excitation fluences that follow the Beer-Lambert law or a 
uniform distribution over the stack. (b) Non-linear least squares sigmoidal best-fits of the data in panel a as a 
function of the ratio of the recombination time constant to the hopping time constant.  
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For example, Figure 1.6 shows nearly identical plots for the dark green sheet (<npe> = 8, with 

Beer–Lambert law generation) and the brown sheet (npe = 4, without Beer–Lambert law 

generation) meaning that uniformly exciting dyes is approximately the same as having twice 

as many total excitations that follow a Beer–Lambert law distribution. This is because the 

Beer–Lambert law distribution often results in some photoexcitations that occur too 

sparsely to be useful and others that are so concentrated that the equal-concentration 

second-order nature of the recombination process results in more rapid loss of 

oxidized/reduced dyes. That is, toward the bottom of the stack it is likely that some 

photoexcitations occur on particles with no other photoexcitation events and therefore these 

events are never able to contribute to the two redox events required for turnover of an 

electrocatalyst. And at the top of the stack the rate of recombination is fast because these 

particles often have significantly more photoexcitations per particle than <npe>. Also, notably 

for the condition of <npe> = 2, uniform photoexcitation provides little benefit over 

photoexcitation that follows a Beer–Lambert law distribution, because the rates of equal-

Figure 1.7. (a) Sheet plot representing the percentage of photoexcited dyes that ultimately contribute to double 
oxidation/reduction of an electrocatalyst and turnover when electrocatalysts are present at exactly 2 per particle 
at the indicated initial pulsed-light excitation fluences as a uniform distribution over the stack. (b) Non-linear 
least squares sigmoidal best-fits of the data in panel a as a function of the ratio of the recombination time 
constant to the hopping time constant. 
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concentration second-order recombination are not drastically different for particles with 

few photoexcitations. Collectively, these data suggest that optimal conditions include having 

a very thin layer of strongly-absorbing material or a thick layer of weakly-absorbing 

material. Alternatively, introducing scattering particles to more evenly distribute the 

incoming light across the stack is beneficial. Non-uniform photoexcitation is also 

problematic for fundamental studies of charge carrier dynamics and interfacial electron-

transfer processes measured using transient absorption spectroscopy, because the 

ensemble kinetic behavior simultaneously reports on several simple first-order and/or 

second-order kinetic processes but under different initial excitation conditions. The 

aggregate transient absorption signal therefore not follow traditional kinetic models, which 

is a behavior that has been reported previously in the literature.45,47,49–52,61 

Figure 1.8. (a) Sheet plots representing the percentage of photoexcited dyes that ultimately contribute to the 
indicated single (1X), double (2X), or quadruple (4X) oxidation/reduction of an electrocatalyst and turnover , 
when electrocatalysts are present at 1% surface coverage at the indicated initial pulsed-light excitation 
fluences. (b) Non-linear least squares sigmoidal best-fits of the data in panel a as a function of the ratio of the 
recombination time constant to the hopping time constant. 

  b a 

10-4 10-3 10-2 10-1 100 101 102 103 104

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
u
rn

o
v
e
r

 τrecomb / τhop(Dye-Dye)

<npe> 1X Catalysts

 1 
 8 
 80 

<npe> 2X Catalysts

 1 
 8 
 80 

<npe> 4X Catalysts

 1 
 8 
 80 



26 
 

Effect of electrocatalyst valency.  

While the model herein shows that it is more difficult to oxidize/reduce an 

electrocatalyst twice instead of just once, many reactions require even more than two redox 

events for electrocatalytic turnover. For example, oxidation of water to molecular dioxygen 

occurs via a four electron, four proton redox reaction, and in Nature’s oxygen-evolving 

complex this net reaction is thought to occur via a single concerted O–O bond-forming step.76 

Because of the large interest in the oxygen evolution reaction, and other reactions requiring 

even more redox equivalents like molecular dinitrogen reduction to ammonia (6 electrons 

and 6 protons) and carbon dioxide reduction to methane (8 electrons and 8 protons), we 

performed simulations using electrocatalysts that are capable of accumulating 1, 2, or 4 

charges prior to turnover, and did so at low (<npe> = 1), intermediate (<npe> = 8), and high 

(<npe> = 80) photon fluences. Figure 1.8 and Figure 1.9 show that in order to net 

oxidize/reduce an electrocatalyst four times, especially large fluences are required. 

However, this condition is not beneficial from a recombination perspective and therefore, 

b 

Figure 1.9. (a) Sheet plots representing the percentage of photoexcited dyes that ultimately contribute to 
quadruple oxidation/reduction of an electrocatalyst and turnover when electrocatalysts are present at 1% 
surface coverage at the indicated initial pulsed-light excitation fluences. (b) Non-linear least squares sigmoidal 
best-fits of the data in panel a as a function of the ratio of the recombination time constant to the hopping time 
constant. 
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large values for τrecomb / τhop(Dye–Dye) are needed to observe large values for percent turnover. 

These data follow the trends observed in Figure 1.3c where there is an optimal fluence that 

results in the largest percent turnover when τrecomb / τhop(Dye–Dye) is large. Collectively, these 

data suggest that optimal fluence scales with the number of redox events required for 

turnover of an electrocatalyst. 

Effect of electrocatalyst coverage. 

 Another parameter evaluated was the percent of positions occupied by 

electrocatalysts rather than dyes. In the base case, maximally twice oxidized/reduced 

electrocatalysts with a 1% coverage – or on average 2.52 electrocatalysts per particle – were 

used, and photoexcitation events were distributed according to a Beer–Lambert law 

distribution. In Figure 1.10, this condition is used to compare effects with other 

electrocatalyst coverages of 0.5%, 2%, and 4%, which correspond to on average 1.26, 5.04, 

and 10.08 electrocatalysts per particle, respectively. While 1% electrocatalyst coverage 

appears to be optimal when τrecomb / τhop(Dye–Dye) is large, higher coverages are optimal as 

τrecomb / τhop(Dye–Dye) decreases. With increasing coverage of electrocatalysts, accumulation of 

charges at electrocatalysts is more difficult, because the same number of oxidized/reduced 

dyes is diluted over a larger number of electrocatalyst sites. This limits percent turnover 

when τrecomb / τhop(Dye–Dye) is large and therefore turnover is overall ineffective when there 

are too many electrocatalysts in the system. These simulation results are consistent with 

behavior that we observed previously via pulsed-laser spectroscopy experiments.60 If τrecomb 

/ τhop(Dye–Dye) is small such that electrocatalyst turnover is poor, dilution of charges among 

electrocatalysts no longer limits the percent turnover and instead recombination is limiting. 

In these cases, having a larger coverage of electrocatalysts results in a larger percent 
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turnover because oxidizing/reducing an electrocatalyst occurs more frequently. This is clear 

from the data in Figure 1.10 where as τrecomb / τhop(Dye–Dye) increases, the optimal coverage of 

electrocatalysts changes from 4% (green sheet) to 2% (light green sheet) and ultimately to 

1% (yellow sheet). The condition of 1% coverage of electrocatalysts remains optimal under 

the fluences, electrocatalyst coverages, and values of τrecomb / τhop(Dye–Dye) evaluated. 

However, the value of τrecomb / τhop(Dye–Dye) where the optimal electrocatalyst coverage 

changes is dependent on the fluence. At low fluence, the size of the band in the sheet plot 

where the 1% electrocatalyst coverage condition is optimum is largest, while the transition 

of 4% to 1% electrocatalyst coverage being optimum occurs over the smallest region in the 

figure (Figure 1.10a). At high fluence, τrecomb / τhop(Dye–Dye) must be near-optimal in order for 

1% electrocatalyst coverage to be most effective at electrocatalyst turnover, and bands for 

both 2% and 4% electrocatalyst coverage are large (Figure 1.10d). This observation is 

extremely pertinent to dye-sensitized photoelectrochemical constructs, where most 

experimental demonstrations report that low coverages of electrocatalysts lead to the 

largest efficiencies for light-driven oxygen evolution through water oxidation.77 Data from 

our simulations suggest that when the electrocatalyst coverage is relatively large (≥ 4%), 

optimal performance is observed at larger fluences and large values of τrecomb / τhop(Dye–Dye). 

However, if lower fluences are used, our data suggest that a lower coverage of 

electrocatalysts is optimum. 

A major challenge in using the results reported above to predict behaviors of dye-sensitized 

photoelectrochemical constructs is that most often efficiencies for light-driven oxygen
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evolution through water oxidation are measured using conditions of continuous illumination 

and not initial pulsed-light excitation as simulated herein. This prompted us to quantify the 

percent electrocatalyst turnover during conditions of continuous illumination, which was 

mathematically implemented as a probability for light excitation at each step in the Monte 

Carlo simulation. 

Effect of pulsed-light excitation versus continuous-wave illumination.  

Figure 1.10. Sheet plots representing the percentage of photoexcited dyes that ultimately contribute 
to double oxidation/reduction of an electrocatalyst when electrocatalyst are present at the indicated 
surface coverage at the initial pulsed-light excitation fluence of (a) <npe> = 1, (b) <npe> = 2, (c) <npe> 
= 4, or (d) <npe> = 8. 
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A major challenge in using the results reported above to predict behaviors of dye-

sensitized photoelectrochemical constructs is that most often efficiencies for light-driven 

oxygen evolution through water oxidation are measured using conditions of continuous 

illumination and not initial pulsed-light excitation as simulated above. This prompted us to 

quantify the yield for electrocatalyst turnover during conditions of continuous illumination, 

which was mathematically implemented as a probability for light excitation at each step in 

the Monte Carlo simulation.  

In order to realize efficiency gains in dye-sensitized photoelectrochemical constructs, 

detailed mechanisms and quantum yields for electron, charge, and energy transfer processes 

are necessary. Common techniques used to probe these processes include transient-

absorption spectroscopy and time-resolved photoluminescence spectroscopy.45 However, it 

is not known whether these pulsed-laser pump–probe techniques can replicate behaviors 

observed under practical conditions of continuous-wave illumination, which is the relevant 

condition for actual application of these photochemical materials systems. For this reason, 

we modeled the effects of repeated light excitation under conditions of solar-simulated 

illumination for a state-of-the-art dye-sensitized solar cell (~20 mA cm-2) but under the 

caveat that surface-anchored electrocatalysts are present and that each requires one, two, 

or four redox events for turnover to mimic common conditions required for electrocatalytic 

reactions. For electrocatalysts requiring a single redox event for turnover, results from 

repeated light excitation at intensities of effectively 1 sun and 10 suns are in excellent 

agreement with results obtained using simulated initial pulsed light excitation at low 

fluences (<npe>  =  0.5–1.0 excitation) (Figure 1.11a). Data obtained for conditions of 

effectively 100 suns were very similar to those under lower light intensities, albeit with small 
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differences described in more detail below. When each electrocatalyst required two or more 

redox events for turnover, results over the same range of solar-simulated light intensities 

could not be reproduced by any condition utilizing initial pulsed-light excitation (Figure 

1.11b and c). Also, it is clear from these data that turnover yields are no longer the same for 

each value of τrecomb/τhop(Dye–Dye), meaning that τrecomb/τhop(Dye–Dye) is not a reasonable single 

independent variable for these data and that all data in a single sheet can no longer be 

represented by a sigmoidal function in terms of τrecomb/τhop(Dye–Dye).The sensitivity of 

turnover yield to the light excitation condition depends on which time constant is varied. 

Starting at the optimal condition of small τhop(Dye–Dye) and large τrecomb, turnover yield 

decreases substantially as the recombination time constant decreases; however, turnover 

yield is nearly constant as the hopping time constant increases. This suggests that the 

optimal condition is one where recombination is dictating the overall turnover yield, for 

electrocatalysts requiring two or four redox events for turnover (Figure 1.11b and c), but not 

for electrocatalysts requiring a single redox event for turnover (Figure 1.11a).  

The plots shown in Figure 1.11are rich in information, but interpreting them when 

τrecomb/τhop(Dye–Dye) is not a good indicator of turnover yield is challenging. Therefore, we 

Figure 1.11. Sheet plots representing the percentage of photoexcited dyes that ultimately contribute to (a) 
single, (b) double, or (c) quadruple oxidation/reduction of an electrocatalyst and turnover, when electrocatalysts 
are present at 1% surface coverage at the indicated initial pulsed-light excitation fluences (colored sheets, 
taken from Figure 1.2) or continuous illumination solar-simulated fluences (grayscale sheets). 

b c a 
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decided to analyze the data under 

conditions where one time constant 

is fixed while the other time 

constant is varied. Because of the 

vastly different yields for 

electrocatalyst turnover under large 

and small time constant values, we 

decided that this analysis should be 

performed for multiple values of the fixed time constants, and therefore that the perimeter 

of the plots shown in Figure 1.11 would be most instructive and representative of the overall 

behavior. The resulting panoramic plots were constructed by starting at the condition where 

turnover yield is smallest, i.e. where τhop(Dye–Dye) is largest and τrecomb is smallest, and 

reporting turnover yield as the time constants are stepped clockwise along the perimeter of 

the plots in Figure 1.11a and b. This protocol is shown schematically in Figure 1.12 and the 

resulting plots are shown in Figure 1.13a and b. As expected, the plots are nearly symmetric 

for the condition when electrocatalysts required a single redox event for turnover (Figure 

1.13a), however the plots are clearly asymmetric for the condition when electrocatalysts 

required two redox events for turnover (Figure 1.13b). The causes of this asymmetry are due 

to the complex interplay of the competing kinetic processes. To understand which kinetic 

processes are rate-limiting for each set of time constants, it is useful to examine the steady-

state number of oxidized/reduced molecules present on the surface of the nanoparticles as 

a function of the intensity of repeated light excitation (Figure 1.13c, d and 1.14). This is 

because the relationship between the number of charges present at steady-state, the photon 

Figure 1.12. Schematic detailing the process used to create a 
panoramic plot by tracing the perimeter of the parameter space 
covered by the sheet plot as 1, 2, 3, and 4, to allow for facile two-
dimensional viewing for a wide range of parameters. 
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fluence rate, and the charge loss mechanisms is well known based on detailed balance and 

Kirchhoff's current law. It follows that under steady-state conditions, per particle, the rate of 

generation of charges due to photon absorption (G = Ilight) equals the rate of loss of charges 

due to recombination and electrocatalytic turnover (R), which by mass action has the 

following kinetic rate law, 

Figure 1.13 Panoramic plots tracing the perimeter of the parameter spaces covered by the sheet plots in (a) Figure 1.11a 
and (b) Figure 1.11b, with the greyed-out regions indicating the independent variables for all panels and the labels for 
regions 1, 2, 3, and 4 as descriptors for all panels. As references, panels (a) and (b) also contain data from the indicated 
initial pulsed-light excitation simulations (colored data, taken from Figure 1.2). Panoramic plots for the conditions in 

panels (a) and (b) showing the average number of molecular charges per particle at steady-state (<nssc>) as (c and d) 
raw data and (e and f) normalized to the data obtained using a 10-fold-lower photon fluence and converted into perceived 

reaction order in <nssc>. 
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𝑅 =  𝑘1(𝑛𝑠𝑠𝑐)ν1 + 𝑘2(𝑛𝑠𝑠𝑐)ν2        (5) 

where ki represents the rate constants for the rate-limiting reactions, nssc is the steady-state 

number of charges on the nanoparticle, and vi represents the order of the reactions in nssc. 

Assuming that only one process with νi ≠ 0 dominates the loss term, R, the following log–log 

relation and derivative hold at steady-state (where G = R), 

 𝑙𝑜𝑔10[𝑛𝑠𝑠𝑐] =  
1

𝜈
𝑙𝑜𝑔10[𝐼𝑙𝑖𝑔ℎ𝑡] −

1

𝜈
𝑙𝑜𝑔10[𝑘],       (6a) 

and so 

𝑑(𝑙𝑜𝑔10[𝑛𝑠𝑠𝑐])

𝑑(𝑙𝑜𝑔10[𝐼𝑙𝑖𝑔ℎ𝑡])
=

1

𝜈
           (6b) 

Further analysis of the equation for the slope (eqn (6b)) under the assumption that 

the rate-limiting loss mechanism does not change reveals that when the light intensity is 

increased by an order of magnitude, such that d log10[Ilight] = 1, the following relations hold, 

 𝑑(𝑙𝑜𝑔10[𝑛𝑠𝑠𝑐]) =  
1

𝜈
=  𝑙𝑜𝑔10[𝑛𝑠𝑠𝑐_ℎ𝑖𝑔ℎ] −  𝑙𝑜𝑔10[𝑛𝑠𝑠𝑐_𝑙𝑜𝑤],     (7a) 

and so 

 𝜈 =  
1

𝑙𝑜𝑔(
𝑛𝑠𝑠𝑐_ℎ𝑖𝑔ℎ

𝑛𝑠𝑠𝑐_𝑙𝑜𝑤
)
         (7b) 

where high and low stand for the relative conditions of high and low light intensity. Using 

eqn (7b) and comparing the ratio of the steady-state number of charges per particle at 

several light excitation intensities (Figure 1.13e and f), one can glean the apparent order of 

the rate-limiting reaction for loss of charges and therefore, gain information as to the process 

that limits the yield for electrocatalyst turnover. Starting with the data in Figure 1.13c and d, 

these plots are clearly asymmetric, irrespective of whether the trends in electrocatalyst 

turnover yield are nearly symmetric (Figure 1.13a) or asymmetric (Figure 1.13b). This 

suggests that the number of charges present at steady-state is not the only indicator of the 
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asymmetry in the trends for turnover yield. 

The number of steady state charges reaches 

a maximum value when both τhop(Dye–Dye) and 

τrecomb are at their maximum value (Figure 

1.13c and d, boundary 1|2), which is not the 

optimal condition for turnover yield. 

Irrespective, this condition makes sense 

because a large value for τrecomb means that 

recombination is slow and a large value for 

τhop(Dye–Dye) means that a long time is 

required for an oxidized/reduced dye to encounter an electrocatalyst so that the charge can 

then be lost due to turnover. Under this condition, turnover yield is nearly the same as under 

the optimal condition where instead τhop(Dye–Dye) is small (Figure 1.13a and b). This means 

that when recombination is slow, hopping does not limit turnover yield, which is a 

conclusion that is consistent with the analysis of the data in Figure 1.11a and b.  

Before analyzing the trends in the apparent orders of the rate-limiting reactions 

shown in Figure 1.13e and f, it is useful to understand how each reaction order is manifested 

in the data shown in Figure 1.13e and f and what reaction order is expected for each rate-

limiting reaction. In order to determine the reaction order in the number of charges per 

particle for each kinetic process that results in loss of charge, simulations were performed 

using initial homogeneous pulsed-light excitation in the presence of only one kinetic process 

for loss of charge. Results from these hypothetical scenarios when npe is the same for each 

particle are shown in Figure 1.15. The rate of recombination was found to exhibit a second-

Figure 1.14. (a) Sheet plots – oriented like all other 
sheet plots – representing the steady-state number of 
oxidized/reduced species when electrocatalysts 
require double oxidation/reduction for turnover and 
are present at 1% surface coverage at the indicated 
continuous illumination solar-simulated fluences. 



36 
 

order dependence on <nssc> due to recombination having a first-order dependence on the 

number of oxidized/reduced molecules and a first-order dependence on the equal number 

of charges in the semiconductor nanoparticle (Figure 1.15a). However, when photon fluence 

was low such that <nssc> ≤ 1, a single recombination event per particle removed all of its 

charge carriers meaning that each particle only had a binary state of having zero or one 

charge-separated  states and therefore the ensemble average behavior over all particles was 

in fact first-order in <nssc> (Figure 1.15b). Interestingly, the observed rate of electrocatalyst 

turnover was determined to be approximately first-order in the number of charges per 

particle over the majority of the time that oxidized/reduced dyes were present (Figure 

1.15c), irrespective of the number of electrocatalysts per particle.  

The data in Figure 1.13e suggest that under all light excitation intensities studied and 

irrespective of the values of τhop(Dye–Dye)and τrecomb, there is a substantial first-order 

contribution from <nssc> to the loss of charges. At boundary 4|1, first-order behavior is 

expected because <nssc> < 1 (Figure 1.13c) and ~80% of the molecular charges are lost due 

c 

Figure 1.15. (a,b) Number of oxidized/reduced dyes remaining over time after the indicated initial uniform pulsed-light 
excitation fluences, in the absence of electrocatalysts. (c) Number of oxidized/reduced species remaining over time after 
the indicated initial uniform pulsed-light excitation fluences at the indicated uniform number of electrocatalysts per 
particle, in the absence of recombination. The y-axis in panel a is reciprocally scaled so that linear behavior indicates equal-
concentration 2nd-order kinetic processes, while the y-axes in panels b and c are logarithmically scaled so that linear 
behavior indicates 1st-order kinetic processes. Kinetic parameters from best-fits of these data are shown in Table 1.2. 
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to recombination (Figure 1.13a), which is manifest as a first-order dependence on the 

number of charges per particle, while the remaining charges contribute to electrocatalyst 

turnover, which is also first-order in the number of charges per particle. At boundaries 1|2, 

2|3, and 3|4, first-order behavior is expected because >80% of the molecular charges 

contribute to electrocatalyst turnover (Figure 1.13a). However, notably, as observed at 

boundary 1|2, some second-order behavior is expected from the remaining molecular 

charges that are lost due to recombination (<20%). This is because at high fluence <nssc> > 1 

(Figure 1.13c) and even at low fluence some particles likely have nscc > 1. It is challenging to 

draw additional conclusions from these data due to the near independence of the observed 

behavior on the time constants or light excitation conditions, and poor signal-to-noise for 

the lowest excitation condition. However, this is not the case for electrocatalysts that require  

two redox events for turnover (Figure 1.13f).   

 

Recombination, 
# excitations 

remaining > 100 
(Figure 1.15a) 

Recombination, 
# excitations 

remaining < 100 
(Figure 1.15b) 

Turnover, 
Initial  (2 

electrocatalysts 
per particle) 

(Figure 1.15c) 

Turnover, 
initial (3 

electrocatalysts 
per particle) 

(Figure 1.15c) 

kinetics 
equal-

concentration 
2nd-order 

1st-order 1st-order 1st-order 

npe = 1 – 
1.23 x 10-3 timestep-

1 
0  timestep-1 0  timestep-1 

npe = 2 
3.32 x 10-5 
timestep-1 

1.43 x 10-3 timestep-

1 
5.46 x 10-5 timestep-

1 
5.92 x 10-5 timestep-

1 

npe = 5 
3.15 x 10-5 
timestep-1 

1.34 x 10-3 timestep-

1 
1.52 x 10-4 timestep-

1 
1.86 x 10-4 timestep-

1 

npe = 10 
3.17 x 10-5 
timestep-1 

1.38 x 10-3 timestep-

1 
2.01 x 10-4 timestep-

1 
2.80 x 10-4 timestep-

1 

npe = 50 
3.11 x 10-5 
timestep-1 

1.47 x 10-3 timestep-

1 
2.44 x 10-4 timestep-

1 
3.55 x 10-4 timestep-

1 

mean  
319 (± 9 x 10-7) 

timestep-1 
137 (± 9 x 10-5) 

timestep-1 
– – 

Table 1.2. Best-fit rate constants from the linear regions of the data in Figure 1.15. 
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For electrocatalysts that require two redox events for turnover, all processes that 

result in the loss of molecular charges require two oxidized/reduced dyes. However, this 

does not mean that charge loss will be second-order in the number of charges per particle, 

because rates of electrocatalyst turnover and rates of recombination when <nssc> < 1 exhibit 

first-order dependencies on the number of charges (Figure 1.15b and c). At boundary 4|1 

and as expected, first-order behavior is dominant because at all light excitation intensities 

<nssc> < 1 (Figure 1.13d) and ~100% of the molecular charges are lost due to recombination 

(Figure 1.13b). At boundary 1|2, significant second-order behavior is expected because most 

molecular charges are lost due to recombination (>70%) (Figure 1.13b) and at high fluence 

<nssc> > 1 (Figure 1.13d) and even at low fluence some particles likely have nssc > 1. This same 

behavior occurs at boundary 2|3, although at high fluence, turnover yield is larger (Figure 

1.13b) and so there is a more significant contribution from the first-order behavior of 

electrocatalyst turnover. However, under this condition the apparent order of nssc in the rate-

limiting reaction for loss of charges is much larger than two, suggesting that turnover is 

larger than second-order in the number of charges per particle or that the observed rate 

constant for turnover increases at higher light excitation intensities. The data in Figure 1.15c 

suggest that for the electrocatalyst coverages and fluences used here, the rate constant 

increases considerably, which therefore explains the even larger apparent reaction order 

observed as a global maximum near boundary 2|3 (Figure 1.13f). Lastly, first-order behavior 

again dominates at boundaries 3|4 and 4|1 (Figure 1.13f), which is expected because 

turnover yield decreases to <10% in these regions (Figure 1.13b).  

The consequences of the behavior and limiting mechanisms described above are 

important in that for the case of electrocatalysts that each requires one redox event for 
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turnover, the four boundaries at 4|1, 1|2, 2|3, and 3|4 show drastically different <nssc> as a 

function of both illumination intensity and time constants, yet a nearly constant first-order 

contribution from nssc to the loss of charges, suggesting that the fluence dependence of the 

rate-limiting reaction for loss of charges is responsible for the symmetric trends in turnover 

yield observed for the data shown in Figure 1.13a. This also helps to explain the minor 

asymmetry in turnover yield observed at boundary 1|2 under 100 suns of repeated light 

excitation where <nssc> > 1 and turnover yield is only ~60%, meaning that second-order 

recombination occurs for ~40% of the oxidized/reduced molecules. This rationale also 

suggests that the more pronounced asymmetric trends in turnover yield observed in Figure 

1.13b are due to the order of the photon fluence on the rate-limiting reaction for loss of 

charges. For these data, the approximate order of nssc in the rate-limiting reaction for loss of 

charges ranges from one (boundary 4|1), to two (boundary 1|2), to one but with variable 

observed rate constant for electrocatalytic turnover (boundary 2|3), and again to nearly one  

 (boundary 3|4). The anomalous asymmetry in turnover yield is most apparent by 

comparing data near boundaries 1|2 and 3|4, which are regions that are symmetric in 

turnover yield at low fluence for electrocatalysts that require a single redox event for 

turnover (Figure 1.13a). The asymmetry in turnover yield for electrocatalysts that require 

two redox events for turnover is due to differences in the order of nssc in the rate-limiting 

reaction for loss of charges, which near boundary 1|2 is approximately two due to the equal-

concentration second-order nature of the reaction, while near boundary 3|4 is 

approximately one due to ensemble effects.  

The implications of these results are very important for dye-sensitized 

photoelectrochemical cells and related solar fuel constructs. It is clear that a range of 
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observed kinetic dependencies will exist for the various processes that are operative in dye-

sensitized photoelectrochemical materials under constant solar-simulated illumination at 1–

100 suns. This means that fitting data to simple kinetic models and analyzing trends in the 

resulting kinetic parameters will be greatly convoluted by whether each semiconductor 

nanoparticle has greater than or less than one charge at steady-state. In reality, this behavior 

is even more complex than reported herein because our models assumed that charges on 

oxidized/reduced dyes could not transport to other semiconductor particles, that all 

particles were identical in size, and that there was no distribution in the electronic states in 

the semiconductor or in the molecular states such that the kinetics could be described by 

straightforward traditional kinetic rate laws based on the law of mass action. Collectively, 

these data suggest that kinetic behaviors observed in dye-sensitized photoelectrochemical 

cells may not be due to heterogeneous environments or non-ideal kinetic processes, but 

rather the complex interplay of limiting regimes in chemical catalysis that are pertinent to 

these constructs. Data from these simulations also suggest that, experimentally, kinetics 

observed using pulsed-laser spectroscopies may represent a convolution of several  

traditional kinetic equations even if a single underlying kinetic phenomenon is 

operative. This underscores an even broader conclusion from this study, which is the 

observation that for electrocatalysts that required multiple redox events for turnover, the 

conditions of initial pulsed-light excitation could not reproduce the behavior observed based 

on simulations that mimic the conditions of continuous illumination. Thus, fundamental time 

constants for kinetic processes must be obtained using any pulsed-laser fluence but then 

based on the values obtained, a specific pulsed-laser fluence must be used in order to predict 

the performance of the materials system under real-world sunlight illumination. This is 
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unfortunate because it requires a larger degree of experimental specificity and 

interpretation in order to perform meaningful experiments on these materials systems. For 

materials systems whose electrocatalysts only require that they are oxidized/ reduced once 

for turnover, a specific pulsed-laser fluence consistent with exciting approximately one dye 

per particle should mimic the performance under conditions of continuous illumination, 

assuming that the underlying material geometry, molecular arrangements, and mechanistic 

kinetic processes used in the models presented herein are accurate for the systems under 

study. These conclusions are consistent with experimental observations and analyses 

previously reported in the literature, which are conflicting on the mechanisms, kinetics 

processes, and even order of reactions in charges that are operative in dye-sensitized 

photoelectrochemical constructs45,78,79 and therefore, this remains a very active area of 

research. 

 

 

 

Conclusions 

This work developed and reported a new and advanced model for charge transport 

across dye-sensitized materials that are most pertinent to photoelectrochemical cells for 

solar fuels constructs. Results from the model indicate the largest yields for electrocatalyst 

turnover occur when the ratio τrecomb / τhop(Dye–Dye) is large and that while higher fluences 

result in larger absolute rates of electrocatalyst turnover, the yields decrease for 

electrocatalysts that require two oxidations/reductions for turnover. In general the model 

results also suggest that yield for turnover of these electrocatalysts was largest when the 
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total absorbance of the sample was low or scattering particles are introduced to randomize 

excitation over the thickness of the nanoparticle stack. Results also suggest that having 1% 

coverage of electrocatalysts, which equates to ~2.5 electrocatalysts per particle, maximizes 

the yield for turnover of electrocatalysts for the geometry and parameters considered in the 

model. The models also show that simulated continuous illumination can be attained 

through repeated light excitation and in this case observed kinetic behavior can be first-

order or second-order in the number of charges per particle, or some linear combination of 

these processes. Under simulated 1 Sun excitation conditions incorporating dyes used in 

state-of-the-art dye-sensitized solar cells, on average less than one oxidized/reduced dye 

was present per particle at steady-state and the purely second-order kinetic processes for 

recombination resulted in ensemble first-order kinetic behavior due to the binary redox 

state of each nanoparticle. This suggests that for effective dye-sensitized 

photoelectrosynthetic cells for solar fuels production, a low coverage of electrocatalysts is 

best and depending on the illumination intensity and electron-transfer time constants, yields 

for electrocatalyst turnover can be quite high under solar simulated conditions. 
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CHAPTER 2.  Geometric Considerations 
Introduction 

Systems similar to dye-sensitized solar cells have been the focus of numerous 

previous studies including our own as detailed in Chapter 1 of this thesis.  These studies aim 

to better understand and optimize the experimental conditions that yield the best-

performing devices. While our previous study focused on exploring different features of our 

developed model over a simple surface consisting of isolated spherical semiconductor 

particle supports, it lacked a key tie to real-world experiments in that photoexcitation events 

and molecules were isolated to a single particle within the larger surface. This meant that 

electron-holes on one particle would only be able to reach catalysts on that same particle, 

resulting in overall more restrictive percolation zones than real-world mesoporous thin 

films. Interparticle hopping is not entirely a new concept for implementation in these types 

of models but, as was the case previously, we believe the additional functionality that our 

model has over its predecessors offers a good opportunity to better understand these 

systems. 

Experimental 

Modeling framework 

A model has been created that aims to simulate the structure of thin films mesoporous 

TiO2 which is ostensibly made up of nearly identical spherical nanoparticles. Experimentally, 

this film is then coated by dye and catalyst molecules which is simulated by creating a 

distribution of molecular surface sites and assigning each to be a dye, catalyst, or nothing. 

Some dye molecules on this simulated surface are randomly assigned to be sites of 

photoexcitation. The simulation proceeds by stepping forward by a time step of fixed size 
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and allowing each electron-hole on the surface to hop to an adjacent molecule through self-

exchange reactions, recombine with an electron injected into the bulk of the TiO2, or else 

remain stationary. The probabilities for each of these events to happen is predetermined 

during simulation initialization based on input time constant values for hopping and 

recombination. The parameter of interest is, in general, the yield for electron-holes created 

by photoexcitation events ultimately resulting in complete oxidation of catalysts leading to 

catalyst turnover. Primarily, catalysts in this study require 2 electron-holes to oxidize 

completely.  The underlying framework is for the most part the same as the previous study 

except for changes as described below. 

Changes from our previous study 

One takeaway from our previous report detailing results from Monte Carlo 

simulations of dye and cocatalyst modified spherical nanoparticles was that, in the case of 

models that simulated pulsed-light excitation, the time constant used to determine the 

probability of self-exchange electron transfer hopping between adjacent dyes and the time 

constant used to determine the probability of recombination between charges in the 

semiconductor and oxidized/reduced dyes were each not the true independent variable but 

rather that the ratio of those two time constants was the independent variable. Therefore, in 

τhop 100000 50000 20000 10000 5000 2000 1000 500 200 100 50 20 10 5 2 1 

τrecomb 
1000 1000000               

τratio1 
1E-2 2E-2 5E-2 1E-1 2E-1 5E-1 1E0 2E0 5E0 1E1 2E1 5E1 1E2 2E2 5E2 1E3 

τratio2 
1E1 2E1 5E1 1E2 2E2 5E2 1E3 2E3 5E3 1E4 2E4 5E4 1E5 2E5 5E5 1E6 

Table 2.1. Values of τrecomb and τrecomb used in these studies and the resulting τratio 

values. 
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order to better structure this next study and save time on performing redundant and 

unnecessary simulations, the independent variables consisted of a one-dimensional array of 

hopping time constants each paired with only one of two different recombination time 

constants. This is in contrast to our previous study where the array of independent variables 

consisted of values resulting from a large two-dimensional matrix of hopping and 

recombination time constants resulting in a three-dimensional sheet plot. By using fewer 

combinations, a larger range of time constant ratios could be simulated with minimal 

experimental redundancy in order to speed up overall computation time. Some overlap in 

the time constant ratios was intentionally implemented as a precaution in case our previous 

assumption that the time constant ratio was the most appropriate independent variable 

proved to be invalid. In this way, 25 distinct time constant ratios were simulated in this work 

with 7 time constant ratios being in both sets of time constant ratios, as shown in Table 2.1. 

Another important difference between our prior study and that reported herein is the 

process by which molecular sites are assigned. Instead of using Mathematica’s built-in 

tessellation function to create a fixed geometric pattern of positions, a method based on 

Fibonacci spirals was used to evenly distribute points over the surface of a sphere. The 

benefits of this are two-fold. The greater benefit is that the spiral method scales to any 

number of points. Tessellation always resulted in the same pattern containing a very specific 

number of total points while the spiral method allows any number of points to be utilized. 

This allows for differing point densities on each identically-sized particle or the same point 

density on particles of different sizes. The other benefit of implementing Fibonacci spirals to 

determine positions on the spherical particles is that molecular positions on each particle 

are no longer all relatively the same. In the case of tessellation, each relative position on a 
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given particle is always the same while Fibonacci spirals generate differing relative positions 

per particle. Irrespective, in both cases all positions on each particle are rotated azimuthally 

and longitudinally based on the center of the particle to create a random relative orientation 

among particles. 

The model utilized for the simulations herein also includes other differences versus 

our prior implementation of the model: (1) The height (z-coordinate) of a dye molecule is 

used to determine the probability of excitation according to the Beer–Lambert law 

generation profile, instead of the height of the particle to which the dye is anchored like in 

our prior study. This was a necessary change to accommodate non-linear particle 

geometries. (2) Each molecule is considered adjacent to all molecules within a fixed distance 

from its center, which results in a variable number of adjacent molecular positions, instead 

of fixing the number of adjacent molecular positions to 5 or 6 like in our prior study. For 

example, this means that molecules near necking regions between two particles have 

potentially more neighbors than molecules far from necking regions. Overall, this results in 

there being 6 – 8 adjacent molecular positions depending on the local geometry. (3) 

Photoexcitations that occur on particles that contain zero electrocatalysts or occur in too few 

number to result in electrocatalyst turnover are identified at the beginning of the simulation 

and the simulation is terminated once only electron/holes from these photoexcitations 

remain, instead of removing these photoexcitations from the outset like in our prior study. 

(4) Instead of assuming that hopping can occur between all molecules on a single particle 

like in our prior study, percolation zones are identified for each molecular position because 

in many cases particles touch and therefore adjacent molecules may be located on other 

particles. A percolation zone consists of the molecular positions that a charge can hop among 
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from a given oxidized/reduced molecule. In our prior study each particle was a separate 

percolation zone, because the particles did not touch, and all positions were occupied by a 

molecular dye or molecular electrocatalyst. For the more complex geometries modeled 

herein, many percolation zones do not contain all molecular positions on a particle but often 

contain molecular positions on several adjacent particles.  

Surfaces 

The major focus of this study is to model and simulate several surface geometries and 

other related surface conditions, instead of a surface that is made up of a stack of separate 

particles that are not in physical contact with each other like in our prior study and thus only 

influence each other in some cases through competitive light absorption. The surfaces 

modeled herein are defined in Figure 2.1 and in most cases are in physical contact, thus 

allowing molecules on different particles that are in close spatial proximity to be considered 

a 

 

b c d 

Figure 2.1. Different example modeling surfaces used in this study named as follows. (a) Separate. (b) 
Touching. (c) Necked. (d) Tube. 4 example particles shown for each geometry above where experimental 
conditions use stacks of 100 particles. Red and green spheres represent catalysts and photoexcitation 
positions respectively.  



48 
 

adjacent and resulting in inter-particle charge transport. This is very important, because it 

represents a more physical scenario encountered experimentally when studying typical 

mesoporous thin films utilized in dye-sensitized photoelectrochemical constructs. While the 

modeled particles change spatial configuration significantly, a stack of 100 particles is used 

like in our prior study. However, unique to the work herein is that some geometries have 

more particle overlap and therefore fewer possible molecular positions per particle. This 

means that in a stack of 100 particles, there is in total a different number of molecular 

positions on the entire surface. To account for this difference a fixed percentage of the total 

number of dye molecules is excited, rather than a fixed number of dye molecules per stack 

like in our prior study. 

Results and discussion 

Effect of surface geometry and photon fluence 

The primary focus of this study is to compare the turnover yield of several geometric 

possibilities when considering the modeled surface. The most straightforward comparison 

is to test the same conditions over all four surfaces shown in Figure 2.1. The results of this 

are shown in Figure 2.2. Each subplot shows a different fluence condition simulated and all 

four possible surfaces as indicated. These results show that, as far as turnover yield is 

concerned, for optimal time constants, the Touching, Necked, and Tube surfaces all perform 

the same while the Separated particle surface is ~10% less effective. This is due to the fact 

that on a separated surface, it is much more likely to excite dyes on percolation zones, which 

in this case are particles, where there are no catalysts and so those excitations will never 

contribute to catalyst turnover. On the other surfaces, excitations may occur far from 

catalysts, but because all molecular positions contain a molecule, the entire surface is one 
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large percolation zone and thus there is always a possible pathway to eventually reach a 

catalyst. For this reason, the connected surfaces outperform the separate particles only when 

the time constant ratio is large and therefore electron-holes are able to hop many times 

between adjacent molecules before recombining. An unexpected but interesting result is that 

it does not seem to matter how connected a surface is in terms of necking such that surfaces 

with only one or two molecules that bridge charge transport between neighboring particles, 

as in the Touching structure, is just as effective as having many molecules bridge 

interparticle charge transport, as in the Tube structure.  

Figure 2.2. Plots showing yield for electrocatalyst turnover as a function of time constant ratio for each 
of four surfaces and under four different fluence conditions represented as the percentage of dyes on 
the surface that are initially photoexcited: (a) 0.25%, (b) 0.5%, (c) 1.0 %, (d) 2.0%. 
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 The results from the direct 

surface comparison prompted 

the question of “How far do 

electron-holes travel if there are 

in a connected system?” A 

modification to the model was 

made which recorded the entire 

hopping path of an electron hole 

through its lifetime and a tally 

was made of the number of 

unique particles was that was visited during that lifetime. This was averaged over all 

excitations in a given experiment and the results are shown in Figure 2.3. One of the most 

striking takeaways is that the number of particles visited plateaus using conditions that are 

far smaller than the maximum time-constant ratio. The time constant ratio can essentially 

be thought of the number of random-walk hops an individual electron-hole can expect to 

take before recombining and so one would initially expect that the larger the ratio, the 

further the total distance traveled. However, the simulated systems have catalysts in them 

and an electron-hole will stop travelling once it reaches one. While the ratio may indicate 

that a much further distance is possible, these results show us that a catalyst is typically 

found far closer than the maximum possible travel distance. When viewing these results, it 

is also important to remember that the particles used in these surfaces are all initially the 

same size prior to necking and so the “particles” in the Tube surface are effectively much 

smaller in that there are fewer molecules to hop between before reaching the next particle. 

Figure 2.3. The average number of particles 
visited by an individual electron-hole during its 
lifetime averaged over 25 repetitions of 4 different 
fluences. 
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While it seems like electron-holes on Tube surfaces travel much further than those on 

Touching surfaces, the distances are actually the same, because the particles are just 

different sizes. 

 

 

Maximum expectations 

Initially, it seemed that the results from Figure 2.2a were higher than expected, which 

prompted us to question what the maximum turnover yield is given no limitation on hopping 

distance. For example, on the Separate surface, in order to contribute to turnover yield, 

electron-holes had to populate catalysts in a 2:1 ratio while at the same time the initial dye-

to-catalyst ratio was 1:4. This combined with the fact that some electron-holes would 

inevitably recombine and others would be photogenerared on particles containing zero 

catalysts, made a >20% yield seem high. 

A simpler model was created to simulate the sorting of electron-holes onto catalysts 

with no kinetic or recombination considerations. This model first took a specified number of 

catalysts and sorted them onto individual particles on the surface. It then took a specified 

number of photoexcitations and sorted them onto the individual particles on the surface 

which resulted in electron-holes on those particles. Then, for each particle, if there were both 

catalysts and electron-holes, holes were randomly sorted amongst the catalysts on their 

particle. Finally, the number of pairs of electron-holes on catalysts were tallied and counted 

toward turnover yield. This model identified the maximum possible yields, given only 

statistical constraints and not kinetic ones. For example, given a particle with 2 catalysts and 

2 electron-holes, the ideal result would be that both electron-holes oxidize/reduce the same 
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catalyst and result in a single turnover event. However, it is just as likely in this example that 

each electron-hole oxidizes/reduces a different catalyst and zero turnover events occur. For 

this example situation the maximum expected yield is instead only 50% under the ideal 

circumstances. Determination of the maximum yield was performed on systems of 100 

individual particles, 250 catalysts, and between 0 and 2000 photoexcitations. This was 

repeated for catalysts requiring 1, 2, 3, or 4 electron-holes to turnover and each datapoint 

taken was the average of 1000 such simulations. These results are shown in Figure 2.4. 

Our previous concerns that, on a Separate surface with 1% catalyst coverage and 

photoexcitation of 0.25% of dye molecules, a result of >20% yield seemed high were 

apparently incorrect as this statistical model shows that such a system exhibits a maximum 

turnover yield of ~22%. The maximum values for fluence conditions of interest are indicated 

in Figure 2.4(b). 
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Figure 2.4. Plots representing the average percentage of photoexcited dyes that ultimately contribute 
to electrocatalyst turnover… based on sorting with no recombination considerations for a Separate 
particle surface. (a) Showing expected yield for 0-2000 excitations and for systems using catalysts 
requiring 1-4 electron-holes for turnover as indicated. (b) Showing only systems in which catalysts 
which require 2 electron-holes are needed with y-values indicated at relevant fluences. 
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Considering data for the Separate surface, each fluence condition resulted in nearly 

the same shaped plot but each plateaued at a different value as shown in Figure 2.5a. These 

values were then scaled by the maximum possible turnover yield to determine how each 

fluence condition performed relative to its maximum performance. When this scaling was 

done, as seen in Figure 2.5b, it was observed that the performance of each fluence condition 

was the same as all other fluence conditions. Two interesting conclusions result from this 

observation. The first of these is that only the time constant ratio determines how effectively 

an experiment performs relative to its maximum potential. That is not to say that all fluence 

conditions perform equally but rather that different fluence conditions do not have different 

requirements for the time constant ratio on their performance. The second conclusion is that 

maximum performance is reached well before the maximum simulated time constant ratio 

and that a time-constant ratio of 104 is sufficient for maximum performance of the Separate 

surface regardless of fluence. 
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Figure 2.5. Plots showing the yield for catalyst turnover as a function of time constant ratio at fluences 
as indicated on a Separate particle surface. (a) Unscaled yield. (b) Yield scaled by pertinent maximum 
expected yield by fluence as indicated in Figure 2.4b. 
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Effect of photon polarization 

Another major consideration was whether using polarized light excitation would 

have a significant impact on turnover yield. In this model, the use of polarized light was 

implemented by weighting the likelihood of photoexcitation for a molecule oriented along 

the axis of polarization higher than molecules oriented in another direction. A discussion of 

this weighting was made in our prior study. This weighting option was not examined in out 

prior study but could potentially be relevant with more complex geometries, such as those 

used here. Figures 2.6a and 2.6b show the results of this study on Separate particle and on a 

Tube respectively. The overall conclusion is that that polarized light has no effect on the 

turnover yield regardless of what Surface used or what fluence condition used. 

 

 

 

 

Figure 2.6.  Plots showing yield for catalyst turnover comparing conditions where polarized light is 
used in the initial excitation or is not used for fluences as indicated and on (a) Separated particles. (b) A 
Tube. 
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Effect of vacant molecular positions 

Another variable that seemed pertinent to examine in a geometric study was total 

molecular coverage shown in Figure 2.7. Experimentally, dying a film is an imperfect process 

and we hoped to examine the results when less than total molecular coverage is attained. As 

discussed above, a percolation network is important as electron-holes resulting from 

photoexcitation must be able to hop to catalysts. Here we examine how turnover yield is 

affected by the size of the percolation networks. The initial conditions of this study were the 

similar to previous studies with 1% of molecular sites being selected as catalyst sites and 1% 

of the remaining sites (dye sites) being selected as initially photoexcited. Only the 1% 

excitation fluence condition was used in this case. However, unlike previous studies a certain 

percentage of potential molecular positions were chosen to be vacant before catalyst 

selection. For example, in a Separate surface with 25,000 total molecular positions, 50% 

vacant spot coverage, 1% catalyst coverage, and 1% dye photoexcitation, 12,500 sites are 

randomly selected to be empty spots, 125 of the remaining sites are chosen to be catalyst 

sites, and 124 sites (rounded from 123.75) are chosen to be initially photoexcited dyes.  The 

results of this study  One of the first conclusions is that the percolation network does not 

begin to effect the turnover yield until nearly 50% of the molecular positions are vacant and 

that even at that coverage, electron-holes are still able to hop to catalysts if given enough 

time prior to recombining. This indicates that even with 50% coverage of vacant spots, a 

percolation network still exists but that it may not provide a direct path to hop to a catalyst 

and therefore the number of hops to reach a catalyst may be larger than when no molecular 

positions are vacant. Along with this, it seems that the percolation network is insufficient for 

significant catalyst turnover at 75% coverage of vacant spots and that between 50% and 
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75% coverage of vacant spots the percolation zones become significantly smaller and more 

discrete. Interestingly, when comparing the breakdown of the percolation network between 

the three connected surfaces, the Tube Surface performs the worst of the three followed by 

the Necked surface. This suggests that although the Tube surface seems like it should be the 

most robust in terms of percolation network, this is not the case and that perhaps this more 

complex percolation network is reliant on a larger fraction of its total molecular sites 

meaning that the removal of any sites is more likely to disrupt it.  
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Figure 2.7. Plots showing the yield for catalyst turnover as a function of time constant ratio with a 
specified percentage of potential molecular positions left unoccupied as indicated on (a) Separate 
particles (b) a Touching Surface (c) a Necked Surface (d) a Tube Surface. 
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A second conclusion that can be drawn from these results is that the Separated system 

is more greatly affected by coverage of vacant spots as seen in Figure 2.7a. Even at only 10% 

coverage the turnover yield at high values of the time constant ratio has started to decrease 

noticeably and at no simulated time constant ratio do simulations reach the performance of 

those with 0% coverage of vacant spots. This may be due to the fact that a Separated particle 

surface is already made up of a number of smaller percolation zones and so is more 

susceptible to further disconnections within those zones to form multiple smaller 

percolation zones. It is more likely for an electron-hole to remain isolated from catalysts if it 

can only hop across a single particle. On the other hand, an electron-hole that is isolated from 

catalysts on its own starting particle may still be able to reach a catalyst if it can hop to 

another particle in any of the connected surfaces. 

 

Effect of simplifying the surface geometry   

Many of the conclusions of these geometric studies have thus far been that there are  

variables that do not significantly impact the yield for catalyst turnover in our system. This 

led us to question if the added complexity of our three-dimensional model over other models 

results in significantly different outcomes, besides time-resolved anisotropy information, or 

if a simpler two-dimensional geometry would be equivalent. To this end, a two-dimensional 

square model was created that can be simulated similarly to the three-dimensional models, 

but with several important differences. A depiction of this modeled surface is shown in 

Figure 2.8. One important difference is that every molecule in the model is located on one 

large square and therefore geometric considerations such as polarization and the Beer-

Lambert Law are not relevant. This square consists of 158 molecular positions per 
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dimension, which results in a surface with nearly the same number of molecular sites as the 

Separated surface (1582 = 24,964 as opposed to 250*100 = 25,000). Another important 

difference is that periodic boundary conditions are utilized so that opposite edges (right/left 

and top/bottom) are adjacent and therefore allow hopping to “wrap around” from one side 

to another. The final major difference between the three-previous dimensional models and 

this two-dimensional model is that election density is distributed homogenously. This is 

done in an attempt to effectively capture the equal-concentration second-order 

recombination behavior based on the concentration of injected electrons/holes in the 

semiconductor support while treating all molecular sites as connected. However, simply 

treating this surface as one large particle results in an extremely large recombination rate as 

all injected electrons are in that same particle. To correct for this, the relative electron 

density is scaled down by a factor equal to the dimension of the surface, 158 in this case. This 

Figure 2.8. Depiction of a Square surface consisting of a 30 x 30 grid of molecules, where small blue dots 
represent catalysts molecules, multicolored dots represent photoexcitations, and the remainder of the 
molecular positions represent ground-state dye molecules. Actual simulations were performed using 
periodic boundary conditions, to allow for hopping between opposite edges of the square surface, and 
a 158 x 158 grid but that becomes difficult to visualize as a figure. 
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can be thought of as 158 particles each with 158 molecular positions and with the electrons 

distributed evenly across all particles. We think this is a reasonable comparison to the 

Separated surface containing 100 particles each with 250 molecular positions with slight 

confinement of surface charges to subsets of dyes in smaller percolation zones. 

Before trying to compare these results to our previous results, it seemed prudent to 

first compare our previous results with those same surfaces while spreading all electron 

density homogenously over the entire surface. This was done on both a Separated surface 

and on a Tube surface and the results are shown in Figure 2.9. The primary difference 

between the homogenized and non-homogenized surfaces are in the mid-range of time 

constant ratios where turnover yields initially become non-negligible, where homogenized 

surfaces are more effective at turnover. This makes sense as this homogenization is a net 

shift of electron density away from electron-holes and so should strictly increase 

performance under conditions where the performance is recombination rate limited.  

 

Figure 2.9. Plots comparing experiments in which electron density is homogenized across all 
positions vs those in which electron density remains fixed to particles which have electron-
holes on them. (a) On a Separated surface. (b) On a Tube surface. 
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 The other consideration that must be made when implementing the two-dimensional 

square surface is how to assign adjacent molecular positions. The two clear options in this 

case are to allow hopping only to strictly the 4 nearest neighbors or to also allow diagonal 

hopping and thus 8 adjacent molecular positions. Molecules on the three-dimensional 

surfaces typically had 6 adjacent molecular positions but varied between 4 and 8 depending 

on connectivity. By evaluating both two-dimensional neighboring options of 4 and 8 (Figure 

2.10), the range of neighbors used for three-dimensional surfaces was spanned. The main 
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Figure 2.10. Plots showing experiments on a 158 x 158 molecule Square surface while 
allowing hopping only in orthogonal directions or allowing hopping to diagonally adjacent 
neighbors as indicated. Different fluence conditions separated into different plots for reading 
clarity. (a) exciting 2% of dye molecules. (b) exciting 1% of dye molecules. (c) exciting 0.5% of 
dye molecules. (d) exciting 0.25% of dye molecules. 
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impact that the number of adjacent molecular positions had in the two-dimensional model 

was on the minimum time constant ratio value that resulted in non-negligible turnover yield. 

This is reasonable because having the option to hop diagonally allows a hole to more quickly 

explore its surroundings and become adjacent to a catalyst at which point it very likely end 

up oxidizing that catalyst. The result is a range of turnover yields for each time constant ratio 

Figure 2.11. Plots comparing experiments on a 158 x 158 molecule Square surface with 
Separated and Tube surfaces that have had electron density homogenized. Different fluence 
conditions separated into different plots for reading clarity. (a) exciting 2% of dye molecules. 
(b) exciting 1% of dye molecules. (c) exciting 0.5% of dye molecules. (d) exciting 0.25% of dye 
molecules. 
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that span the conditions of 4 to 8 adjacent molecular positions for conditions of non-

negligible turnover yield and non-near-optimal turnover yield.  

 With these considerations of electron density homogenization and 4 versus 8 nearest 

neighbors we analyze the differences in turnover yield for a two-dimensional Square surface 

in comparison to a three-dimensional Separated surface and Tube surface (Figure 2.11). 

These results are not terribly surprising in that the two variations of the two-dimensional 

square surface do bracket the results of the previously studied three-dimensional surfaces 

after they have been homogenized. A two-dimensional square surface that only allows for 

hopping to 4 adjacent molecular positions results in a smaller turnover yield than a 

homogenized three-dimensional Separated surface while a two-dimensional square surface 

that allows for hopping to 8 adjacent molecular positions results in a larger turnover yield 

than a homogenized three-dimensional Tube surface. Despite the fact that results from the 

two-dimensional square surface do not perfectly match those of either of these previously 

studied three-dimensional surfaces, it is clear that they are able to capture the overall 

behavior in turnover yield as a function of time constant ratio including peak performance 

yields at high values of the time constant ratio. 

 As a follow up to this study, a hexagonally packed surface was created which allows 

hopping to 6 nearest neighbors rather than to 4 or 8 nearest neighbors. This surface and a 

comparison to a homogenized Tube Surface are shown in Figure 2.12. This comparison 

shows that this hexagonally packed surface tracks the behavior of the Tube Surface well at 

all time constant ratios and that there are no significant deviations. From this we can 

conclude that, in terms of turnover yield, the topological information that needs to be 

accurately represented in the model includes only the number of nearest neighbors and the 
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overall connectivity of the system. In this way, it is important to accurately represent both 

the short- and long-range order of the system being modeled but not necessary to specify 

the relative arrangement of these components. 

 

Conclusions 

This work continued the development of an advanced model for charge transport 

across dye-sensitized materials. Simulations show that, while using a more complex 

geometry which more closely resembles real experimental conditions, there is minimal 

difference in turnover yield after pulsed-light excitation conditions between three-

dimensional surfaces with different types of interparticle connections. That is, yields are 

affected by the forming of connections between particles to allow interparticle hopping but 

changing the degree to which particle surfaces overlap does not have any significant effect. 

Results from simulations also indicate that the use of polarized light has little effect on 
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Figure 2.12. (a) Depiction of a planar surface which has been hexagonally packed with molecules such 
that each molecule has 6 nearest neighbors. (b) A comparison between results obtained from the surface 
shown in part (a) with those using a homogenized Tube surface as shown in Figure 2.9b and 2.11. 
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turnover yield. If fact, in comparison to a fully planar two-dimensional model incorporating 

periodic boundary conditions, simulations involving none of the geometric information or 

complexity of other models capture most of the behavior of those more complex models 

including maximum turnover yield performance. Finally, results show that for a Separated 

surface of individual particles, relative performance to maximum performance is 

independent of fluence used in the simulation. 
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CHAPTER 3.  Outreach Development 
Even though our planet contains large reservoirs of water as oceans, access to 

drinking water is a global concern, because large amounts of salt are fatal to humans. While 

electrochemical desalination, i.e. electrodialysis, is a process that is capable of generating 

potable water from saltwater, most chemistry curricula do not teach this process. Therefore, 

we developed a curriculum and accompanying low-cost activity to expose students from 

middle school to undergraduate studies to the concept of electrodialysis and the importance 

of polymeric ion-exchange membranes in the electrodialysis process. The curriculum 

provides background by introducing the students to issues of water access, current state-of-

the-art solutions and the scenarios where each are optimal, and the urgent need for 

alternative and innovative processes for clean, potable water generation. The concepts and 

techniques presented in this curriculum cover those relevant to desalination, which 

encompass several physical phenomena that span multiple disciplines. The supporting 

activity that accompanies this curriculum allows students to perform electrodialysis and 

monitor the progress of the reaction using pH-sensitive dyes, which inherently includes 

many concepts that are relevant to general chemistry. The scientific depth of this curriculum 

is easily adjusted to challenge students at various levels of expertise. 

Introduction 

Scarcity of clean, potable water is a problem of immediate and enormous concern. It 

affects people in both developing nations and developed nations and is the root of numerous 

violent conflicts.1,2 The United Nations has projected that in less than 15 years, nearly half of 

the global population will live in areas of water stress.3 Moreover, most of these people will 

live in developing nations. In the United States, people in Southern California are 



66 
 

experiencing a prolonged drought, 

which affects the entire nation because 

California is the major supplier of 

domestic produce.4 While water is 

relatively abundant on Earth, > 96% of 

it contains salt at concentrations that 

are unhealthy to humans and plants. 

Therefore, technologies to desalinate 

salt water and convert it to potable 

water are hugely important. In 

developed nations, with infrastructure to support an electric grid and the capital and labor 

to construct nearly billion-dollar desalination plants, reverse osmosis (RO) is the state-of-

the-art commercial means used to desalinate ocean water.5–7 The RO process occurs through 

pressurization of a container of salt water, which forces water molecules through a 

semipermeable membrane that excludes most solutes, including salt ions, resulting in less 

salty water on the other side of the membrane (Figure 3.1). Desalination by RO occurs when 

the external applied pressure opposes and exceeds the natural osmotic pressure between the 

salt water and the desalinated water on the other side of the membrane. Electrodialysis (ED) 

is a technique that is comparable to RO in terms of energy requirement.8–12 Desalination by 

ED occurs when an external potential is applied between two chambers containing water of 

differing salinity such that the electric potential opposes and exceeds the natural chemical 

potential difference between the charged species in the solutions. This forces salt ions 

through a series of permselective polymeric ion-exchange membranes that each 

Figure 3.1. Diagram depicting two desalination processes: 
reverse osmosis (RO) and electrodialysis (ED). The goal of 
RO is to transport water (red) and the energy (E) 
requirement to do so is proportional to the difference in salt 
concentration across the membrane (purple wavy lines). The 
goal of ED is to transport salt (blue) and the E requirement 
to do so is proportional to the logarithm of the ratio of the 
salt concentrations on each side of the membrane. 

(55.5 M) H2O

(~0.6 M) NaCl

H2O (55.5 M)

NaCl (< 0.006 M)

RO: E = aROΔC

ED: E = aEDlog(C1/C2)

Ocean Water  |  Membrane  |  Potable Water
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predominantly transports ions of one charge type, resulting in net transport of ions away 

from the salty water thus desalinating it (Figure 3.1). 

The activity presented herein demonstrates desalination by ED, as well as its relevance to 

concerns of global importance, i.e. desalination of salt water to potable levels. It introduces 

the chemical physics and mechanisms of polymeric ion-exchange membranes and 

techniques common to chemists and chemical engineers, notably pH, dialysis, and 

electrochemistry. 

Technical Background 

Two of the most important physical 

processes that dictate the performance of 

desalination by ED are mass transport (i.e. the 

rate) and membrane thermodynamics (i.e. 

energetics). Mass transport is simply that: the 

transport of mass. It constitutes a collection of 

processes that are common to plant-scale chemical engineering, including both RO and ED. 

A mathematical and physical description of basic transport phenomena are described in the 

Supporting Information. The thermodynamics of membrane processes for ED are primarily 

dictated by the net charge of the functional groups that are covalently bound, i.e. fixed, at the 

membrane surface. The most common charged groups are sulfonates for cation-exchange 

membranes (CEMs) and quaternary ammoniums for anion-exchange membranes (AEMs) 

(Figure 3.2).13,14 The presence of these fixed charges affords CEMs with preferential 

transport of cations through their bulk and affords AEMs with preferential transport of 

anions through their bulk. A physical explanation of this basic membrane physics is 

Figure 3.2. Most common fixed-charge groups 
found in ion-exchange membranes: sulfonates 
(left) in CEMs and quaternary ammoniums, e.g. 
trimethylammonium (right), in AEMs. 
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described in the Supporting Information. During 

desalination by ED, CEMs predominantly 

transport Na+, but for the purpose of the activity 

associated with this curriculum Na+ can be 

replaced by H+, because they have the same charge 

and proton concentration is easier to visualize. 

Experimental Methods 

Electrochemical Setup 

The experimental setup for the activity is 

shown in Figure 3.3 and consists of three 

chambers each constructed from a standard 

disposable 2.5 mL square-bottomed plastic 

cuvette. Holes (8 mm in diameter) are drilled near the bottom of one side of each of the two 

outer cuvettes and two holes are drilled through opposite sides of the middle cuvette. The 

holes are then covered in Teflon tape, by wrapped it around the walls of the cuvette twice, 

and then, using scissors, the tape covering each hole is cut out and removed. The Teflon tape 

serves as a gasket to form a water-tight seal with the membranes. Two commercial 

polymeric ion-exchange membranes are placed between pairs of the cuvettes and the 

completed cell is then clamped together with a C-clamp to ensure water-tight seals. By 

driving an anodic reaction (oxidation) in the chamber in contact with the AEM and a cathodic 

reaction (reduction) in the chamber in contact with the CEM, ions in the center cuvette are 

forced through the membranes based on their charge such that cation transport occurs 

predominantly through the CEM and anion transport occurs predominantly through the 

Figure 3.3. Diagram of cell setup consisting of 
three cuvettes, two ion-exchange membranes 
(cation-exchange membrane (CEM) and anion-
exchange membrane (AEM)), and two carbon-
cloth electrodes that are slid down the inside 
end faces of each cuvette and connected to a 
battery using alligator clips and wires. Also 
shown are the directions of predominant ion 
transport (SO42–, H+) through each membrane 
and net current flow during ED. 
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AEM. This process desalinates (deionizes) 

the water in the central chamber via ED. 

From here on we refer to the outer chamber 

in contact with the AEM as the anode 

chamber and the outer chamber in contact 

with the CEM as the cathode chamber. 

 

Deionization with Acid 

Desalination is a subset of a broader technique called deionization where instead of 

solely removing mineral salt ions, ions in general are removed, e.g. protons and conjugate 

bases. Both desalination and deionization obey the same physics that dictates the rate (mass 

transport) and energetics (membrane thermodynamics) of these processes. Replacement of 

salt with acid is useful for a low-cost version of this activity because acid concentration, i.e. 

as pH, is facile to measure precisely using a colorimetric indicator, whereas salt 

concentration is not. In the activity described herein, aqueous H2SO4 is used as the acid in 

place of NaCl, such that H+ are transported by the CEM instead of Na+ and SO42– are 

transported by the AEM instead of Cl–. Thymol blue is used as the colorimetric pH indicator. 

Thymol blue has two pKa values (8.9 and 1.6) and therefore it exhibits two distinct color 

transitions (red-to-yellow-to-blue) based on the activity of protons in the solution it is 

dissolved in, i.e. pH.15–17 The color changes occurring at low pH are important in this activity 

to monitor the deionization process of ~0.01 M acid (pH ≈ 2.0). 

The nature of the current-carrying electrodes is not strict; however, in the activity 

described herein, carbon cloth electrodes were positioned inside the outer chambers and 

Figure 3.4. Thymol blue pH indicator at pH values of 1 
to 10 in steps of 1 (from left to right). 
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connected to a 9 V battery. ED occurred with the 

application of any potential beyond that required to 

drive two electrochemical redox half reactions, which 

were likely 4 H+ + 4 e– → 2 H2 and 2 H2O → O2 + 4 H+ 

(water electrolysis at 1.23 V) when H2SO4 was used. 

Therefore, 9 V was a large excess of potential but it 

helped facilitate rapid deionization; generally, the 

larger the potential the faster the rate of the 

electrochemical reactions. It is critical that the anode of 

the ED cell be connected to the '+' terminal of the 

battery and the cathode of the ED cell be connected to 

the '–' terminal of the battery. If not, the central 

chamber will become enriched in ions instead of depleted of ions as current is passed. After 

30 minutes, the battery was disconnected and thymol blue pH indicator was added to each 

chamber. Do not add thymol blue while the battery is connected, because thymol blue reacts 

at the electrodes and degrades. 

Several possible variations to the activity are discussed in the Supporting Information 

and include using a different power source, type of electrode, pH indicator, type of acid 

and/or salt instead of acid, and operating the cell for a longer time. 

Safety Considerations 

This activity uses dilute but caustic solutions that are eye, skin, and respiratory 

irritants and therefore, skin contact, eye contact, and inhalation should be avoided through 

use of proper personal protective equipment. Moreover, prior to initiating the experiments 

Figure 3.5. Digital photographs of the ED 
cell after 9 V was applied across the cell for 
30 min and thymol blue pH indicator was 
added: (top) front view (bottom) top-
down view. Originally, each of these three 
chambers contained 5 mM H2SO4 and was 
completely colorless. 



71 
 

a procedure for safe disposal of these solutions must exist. Another potential hazard is 

electrical shock from the 9 V battery; therefore, during ED the battery and cell should not be 

handled. Moreover, after the ED process is complete the leads should be disconnected from 

the battery terminals in order to prevent the possibility of forming an electrical shunt that 

can result in high currents being passed and large dissipation of heat. Additionally, if this 

activity is performed with younger children, they can assemble the dry electrochemical cell 

but it is advised that a supervisor add the acid solution to each chamber, immerse the 

electrodes in solution, attach the battery, and disconnect the battery at the end of the 

experiment. 

 

Results 

After 30 minutes of electrodialysis using a 9 V battery and subsequent addition of 

thymol blue pH indicator to all three chambers originally containing transparent and 

colorless solutions, the outer chambers appeared red while the center chamber appeared 

orange due to successful deionization. The differences in color will be more (less) 

pronounced if the experiment is performed for more (less) than 30 minutes or a smaller 

(larger) volume of solution is used. The color directly relates to the pH of the solution and 

therefore to the number of free H+ (H3O+) in solution. 

 

Discussion 

This activity was performed with > 25 middle-school students, high-school students, 

and undergraduate students majoring in chemistry. Formal survey feedback was obtained 

from the high-school students. Each student performed the activity but worked in pairs to 
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assist in more delicate procedural steps. About half of the high-school students obtained the 

intended results. Those that did not either did not make large enough holes in their Teflon 

tape or attached their battery backward. Greater than one third of the high-school students 

remarked that this activity was more enjoyable and a better learning experience than "Juice 

from Juice," a well-established outreach activity that the students also performed in the same 

day. "Juice from Juice" is a dye-sensitized solar cell activity where blackberry dyes are used 

to fabricate solar cells. It is based on the activity published by Smestad and Grätzel in 1998,16 

and more recently popularized by the Solar Center for Chemical Innovation and supported 

by the National Science Foundation. The most common feedback received from the high-

school students was to increase the clarity of the instruction, such as related to background 

information, steps in the procedure, names of the components used, and conclusions based 

on observed outcomes. Several students also suggested that technical names for each 

component be listed to assist in describing the processes involved in the overall function. 

Adjustments were made to the curriculum in support of this feedback, such as emphasizing 

the importance of the orientation of the battery connection. 

 

The following inquiry questions may be asked of students to promote critical thinking and 

to assess learning outcomes. 

• Explain why the cathode (and anode) chamber become more acidic (or basic) over 

time. 

• Explain why the color change due to thymol blue depends on the type of acid used. 

• If the difference in color is subtle, experimentally how can the color change be 

increased in terms of the power source, time, and concentration of acid initially used? 
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• Explain why a color change of thymol blue is, or is not, observed with weaker acids 

such as vinegar (acetic acid)? 

• Is a color change due to thymol blue expected if the solutions contain both acid and 

salt? Why or why not? 

 

Conclusions 

A hands-on scientific inquiry activity and accompanying curriculum have been 

developed to promote the importance of desalination to future science leaders. This activity 

allows for a wide distribution of subject-matter to be covered, including acid strength (pH), 

conductivity dependence on type and concentration of salt solution (i.e. electrolyte), pH 

indicators, spectrophotometry, polymeric ion-selective membranes, ionic circuits, osmotic 

pressure, among other topics. The flexibility in setup of this activity, which has many cost-

effective options for implementation, allows for dissemination throughout many levels of 

science education and with a limited budget for supplies. We envision this being a core 

component in advanced chemistry courses at the middle-to-high-school level and general 

chemistry courses at the college level. 

 
 

Conclusions 
A model has been made which simulates the accumulation of electron-holes on 

catalyst sites in dye-sensitized solar cell like systems both under continuous illumination 

and during pulsed laser light experiments. Many simulated conditions have been tried to 

best determine what limitations these systems have experimentally and what parameters 

are crucial to model correctly. These findings as well as the model itself can be used by 
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researchers studying dye-sensitized solar cells or any system which relies on charge 

accumulation in trap sites. 
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APPENDIX A.  Modeling Guide in Mathematica 
 The Guide 

A user’s manual in cutting edge Monte Carlo modeling of intermolecular electron-hole 

hopping and accumulation at materials electrocatalyst sites on procedurally generated 

photo-sensitized mesoporous semiconductor surfaces 

 

 First there will be a high-level overview of the code and its capabilities. A second more 

in-depth explanation section by section will follow. For even more detailed explanations of 

code, please see in-line comments. The language here will be fairly colloquial, so this isn’t 

terribly boring to write (so that I actually do it) and so that it isn’t (as) terribly boring to read. 

The descriptions are given in the same order as the code for ease of reference and writing. It 

may be helpful to read this along with the code side by side.  

 

The model – a program in two acts 

The model is currently set up to run in two different pieces for reasons that will be 

made clear later. The first part creates a surface analogous to mesoporous TiO2. The second 

runs a Monte Carlo experiment on the generated surface. These will both be discussed at a 

high level and then in detail separately.  The overall goal of the program is to better 

understand charge accumulation at catalyst sites on photo-sensitized surfaces. A relevant 

example of such a system is TiO2 sensitized with Ru(bpy)3 like dyes in a Dye sensitized solar 

cell (DSSC). We model this type of system as a number of spherical particles parameterized 

in a number of ways that have set molecular sites which can hold, dyes, catalysts, or nothing 

at all. The catalysts act as thermodynamic sinks which can be oxidized or reduced multiple 
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times. This is crucial to the behavior of DSSC-like systems which require performing 

chemistry involving multiple electrons simultaneously. In our system, light interacts with 

the dye molecules which creates a mobile electron-hole pair. The electron then (we assume 

instantly and with 100% quantum yield) injects into the TiO2 leaving behind a lone hole. 

Through electron-hole hopping this hole can “hop” from neighboring molecule to 

neighboring molecule until it either A) recombines with an electron in TiO2 or B) reaches a 

catalyst. Once on the catalyst, the electron-hole may still recombine but once enough holes 

have gathered on the catalyst to perform the chemistry required, the catalyst fully turns over 

and the excitations are considered to have contributed to turnover. Determining what 

conditions and what systems lead to a large percentage of excitations turnover is the focus 

of this model. Additionally, kinetic information is recorded so we can determine how the 

system is progressing over time. 

 

Act I – Creating the Surface 

Overview 

 In this part, a surface to run future models on can be created with various settings. 

These include particle size ranges, particle necking ranges, whether to form a cluster or a 

stack, and the density of molecular positions on the surfaces of these particles. After settings 

are chosen, the code procedurally generates a surface one particle at a time. This starts with 

1 particle and continually proposes additional particles. Each proposal is either determined 

to meet all settings or is rejected and a new proposal is made. This continues until the 

number of particles in the surface are as specified. Once particles are placed, molecular 

positions for each particle are set either using Mathematica’s tessellation functionality (don’t 
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use this) or using Fibonacci spirals which can be scaled to particle size. Once positions are 

chosen, particle neighbors are determined, and valid positions are determined. Particle 

neighbors are any particles in contact with a given particle meaning that molecular sites on 

any of a particle’s neighbor list could potentially be neighbors of sites on that particle. Valid 

positions are positions which are not within a neighboring particle and which are also not 

too close to other molecular sites. Once valid positions are determined, the distance between 

each molecular site and every site that could potentially be a neighboring site is calculated 

and stored in a large table. From this table, the nearest neighbors for each molecular site are 

selected. Following this selection, all pertinent information needed to run a model is stored 

for this surface and may be exported later. Prior to exportation, a few graphics are displayed 

so we can get a decent idea of the surface we are about to save. Following the graphics, 

exportation will take the filename specified in the settings and save everything needed to 

run the model into a WDX file. After exportation there are two code blocks which allow 

further investigation into the surface created but are not actually needed to run the model. 

The first of these blocks display information related to the number and spacing of nearest 

neighbors. The second of these creates a graphic showing the percolation zones in the 

surface.  For more details, everything above will now be discussed further below. 

Detailed Walkthrough 

Functions 

There are two functions created in the first section. The first is pythag[] which is 

simply an application of the Pythagorean theorem in 3D. This is used preferentially over 

Mathematica’s built in EuclideanDistance[] function because it is slightly faster since it does 
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not apply an Absolute value to each pair of distances. Since we’re working with all real points, 

there is no need to take the absolute value after squaring. 

This is a doozy and not necessary to understand from the beginning. The second 

function is a nasty looking thing but is somewhat simpler than it appears. This is the 

FloodFill[] function and is optionally used in the final block of code in the surface generation 

program. This function also appears in the main code where it is actually needed. Flood fill 

is a recursive algorithm used in many programs and is the same basic function used by that 

little paint can in Paint to color in a whole area. Paint is an easy example to explain how it 

works but you can also check out (https://en.wikipedia.org/wiki/Flood_fill) for some 

helpful gifs. Anyway, an example with paint: Say you have an image that is all black and white 

pixels and you want to color a certain area red. By clicking that red paint can in a white pixel, 

you select white as the target-color and red as the replacement color. The flood fill algorithm 

now takes over and proceeds as follows:  

-If the current pixel is the target color, change to the replacement color and then call Flood 

Fill on the pixel above it, the pixel below it, the pixel to the right and the pixel to the left. 

-If the pixel is not the target color (if it was black or already changed red) return and do 

nothing. 

That’s it! In this way, the algorithm changes the initial pixel and then checks all its 

neighbors and then checks all their neighbors and so on until it hits a pixel that isn’t white 

and then is just leaves that pixel alone and doesn’t check its neighbors. So eventually, all 

pixels that are of the same color that are in contact with each other get altered and all other 

pixels get left alone. So how does this have anything to do with the code? The model relies 

on electron-holes hopping from neighbor to neighbor until they reach a catalyst or 

https://en.wikipedia.org/wiki/Flood_fill
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recombine. Depending on experimental settings, the recombination lifetime may be 

extremely long, and catalysts may be fairly scarce. This means there are potentially scenarios 

in which excitations occur on molecules which have no catalysts in their network or 

percolation zone.  If this is the case, the electron-hole will continue to hop around until it 

recombines. If the recombination lifetime is very long relative to the hopping lifetime, this 

will take computationally forever that the model will have to be terminated. That sucks and 

is something to be avoided so before anything begins, a modified flood fill algorithm is used 

to identify which sections of the generated surface are in contact with each other. That way 

excitations occurring on molecules with no catalysts in their network can be identified and 

dealt with. More on that when discussing part II. The use of FloodFill[] in the surface 

generator is to identify what the percolation zones are. Often, the whole generated surface 

is mutually connected and so this is all a moot point. However, if the procedural generation 

happened to create a few patches of disconnected molecule sites, this is good to know ahead 

of time. For large surfaces, this will use an extremely large amount of RAM and so should be 

used only after saving and preparing for the computer used to hang for a bit. The actual 

implementation of the function will be discussed in the Functions section of part II so that I 

can move on to the actual program now. 

Settings 

Settings are probably the simplest to understand but also the most important to get 

right. Ideally, nothing outside of the settings section will ever need to be changed by a user. 

The stackName is simply the filename to be used if the surface generated is exported. 

r1positions is the number of molecular sites which will be placed on a particle of radius 1. 

Other size particles will have their number scaled so the packing density is the same. 
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moleculeRadius is the effective radius of each molecular site. This is analogous to the van Der 

Waals radius. This and all other radius settings are in units where 1 = 15 nm so that the 

standard size particles (which are 15 nm in radius) can have a radius of 1. Molecules will not 

be able to be placed within 2 molecular radii of each other on other particles (if they are too 

near each other near the particle boundaries) but will packed on the same particle as close 

as needed determined by r1positions. neckingMin and neckingMax set the amount of overlap 

that can occur between particles. This represents the fraction of the particles radius which 

can be overlapped by another particle. In the case that two particles are of different sizes, 

the fractional overlap is calculated from the smaller particle’s perspective. In this way, 

necking of 0 means particles will all be tangent to each other, necking of 1 means the center 

of a particle will be at the surface of another, and necking <0 means particles will not be in 

contact. Initial necking of a proposed particle is chosen from a uniform distribution between 

the necking minimum and maximum. partRadMin and parRadMax are the ranges that a 

proposed particle’s radius is bounded by. The choice of new radius is taken from a uniform 

distribution between the bounds. 1 is a standard size so this range should ideally be around 

1. numParticles is simply the number of particles to be used in the surface. Usually 100 for 

large experiments and 10 for quick test trials. FIB is a Boolean that, if left true, will use 

Fibonacci Spirals to assign molecule positions around each particle. If set False, tessellation 

will be used and will not be as good and will not work if particles of different sizes are used. 

Leave FIB true unless there is a very good reason to change it. Stack is a Boolean that, if true, 

will always add new particles along the z-axis such that the final surface is a single column 

of particles. If False, a cluster that grows out in 3D will be created. ClusterCompactness is only 

relevant if stack is False and determines how tightly packed particles in a clustered surface 
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will be. Large positive values (10) will result in nearly spherical clusters of particles while 

large negative values (-10) will result is long dendritic chains of particles. reach is the 

number of molecular radii that an adjacent molecule can be away and still be considered a 

nearest neighbor. So, if moleculeRadius = 0.05 and reach = 3.0 then any molecule within 0.15 

of a given molecule is that given molecule’s neighbor. reach should be set such that each 

molecule has between 5-10 nearest neighbors. The graphics at the end can help evaluate if a 

reach value is appropriate. 

Choosing Particles 

Particles are chosen iteratively until the number set by numParticles have been 

chosen. The first particle is given a random radius and is set at (0,0,0). Each additional 

particle is added on to the surface starting from an existing particle. So, the 2nd particle will 

grow off the 1st and the 3rd will grow off either the 1st or the 2nd and so on. After the first 

particle, a new proposed particle is generated by choosing a new valid particle radius, 

choosing an existing particle to “Grow off of”, choosing a random unit vector off that chosen 

particle, and then choosing a valid necking fraction with that chosen particle. At this point 

the proposed particle is a valid particle as far as the chosen existing particle but it must be 

verified that new particle doesn’t overlap any other existing particles too much. The 

fractional overlap is calculated between the new particle and all existing particles and if any 

of them surpass the requirement set by neckingMax the particle is rejected. Otherwise the 

particle is set, and its position and radius are stored for future reference. In the case of 

particle rejection, the random proposal process begins from the start with a new radius, new 

attachment point, etc. The choosing of the attachment point is where ClusterCompactness is 

brought into use. Rather than give the choice of the attachment point a simple uniform 
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distribution the weight of a particle being chosen is equal to the reverse order of addition to 

the surface raised to the power of cluster compactness. So, if ClusterCompactness 3 and there 

were currently 5 particles in the cluster, the weights of particles being chosen as an 

attachment point would be [125,64,27,8,1] for particles [1,2,3,4,5] and particles are more 

likely to be added to older particles. If ClusterCompactness was -3, the weights would be 

[1/125,1/64,1/27,1/8,1] for particles [1,2,3,4,5] and particles would be more likely to be 

added to the newest particles. A uniform distribution can be achieved with a 

ClusterCompactness of 0. 

 

Setting Sites 

Sites are usually set with Fibonacci spirals, if this turned off, rather than generate an 

arrangement of sites, a set pattern with 252 sites per particle is used. This is not scaled for 

size. If FIB is true, a number of sites will be placed over each particle using math derived from 

Fibonacci spirals (golden spirals). More info on that here: 

http://blog.marmakoide.org/?p=1. Once sites have been chosen, particles must be randomly 

rotated so that the spiral axis is not always oriented in the same direction. This helps 

maintain an isotropic distribution over the surface. This rotation is done by, choosing two 

random angles. The inclination angle chosen between 0 and 180 degrees and the azimuthal 

angle chosen between 0 and 360 degrees are used to create a rotation matrix which is 

multiplied by the positions previously determined. The sites are then shifted over to their 

particle’s center and scaled radially based on the radius. These newly calculated positions, 

rotated positions, are stored for further use. 

 

http://blog.marmakoide.org/?p=1
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Finding Nearest Particle Neighbors 

All intermolecular hole hopping is based on nearest neighbors. That is, when an 

oxidized dye is given the opportunity to electron-hole transfer between sites, the list of sites 

it can transfer between are its nearest neighbors. The same is true when a dye is going to 

oxidize a catalyst. Pretty much everything in this model is based on these lists of nearest 

neighbors. This makes generating this list of neighbors crucial if anything meaningful is to 

be learned. On the plus side, if the list of nearest neighbors isn’t generated correctly, the 

model fails so catastrophically that it crashes or else outputs data that is clearly meaningless. 

While this is a major problem, its nice that is easy to catch.  

To begin finding nearest neighbors, the distances between all sites and all possibly 

neighboring sites must be calculated. Then the possible neighboring sites are sorted by 

distance and added to the list of neighbors for a given site until the next nearest neighbor is 

further away then the reach distance. This is easier said than done and this will be the bulk 

of computation time when running this surface generator. The reason that is this is a 

problem that scales as n2m2 where n is the number of particles and m is the number of sites 

per particle. This is because, initially all molecular sites are potential neighbors of each other 

and so the distance between all sites and all other sites must be calculated. We mitigate this 

somewhat by first identifying particle neighbors 

We find particle neighbors in much the same way we will find molecule neighbors. All 

particles are potential neighbors of each other and so a cross-distance (Xdistance in the code 

in several places) table is created. Once created, we use this table to determine which 

particles are touching and identify them as neighbors. This is done by iterating over all 

particles and then for each particle iterating over all the particles again (including the first 
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particle) and determining if the center-to-center distance between both particles is less than 

their combined radii. If so, they are in contact and are therefore neighboring. 

Determining Valid Sites 

Not all sites are created equal. Some are inside neighboring particles. Some sites are 

too close to other sites. In the settings section, a molecular radius was specified. If a 

molecular site on another particle is within this radius, the two sites are too close and are set 

as invalid. Presently, both molecular sites are set as invalid even though in theory one could 

be left without any problems. This molecular radius checking only occurs between molecular 

sites and sites on other particles, not on the same particle. This effectively checks the 

necking/creased region where particles come together in which molecules might end up too 

close to each other. The molecular spacing between sites on the same particle is determined 

by the number of positions placed on a radius 1 particle and the Fibonacci spiral math. If 

molecules on the same particle end up too close together, this number of positions must be 

adjusted. With these considerations in mind, the code iterates over all particles and over all 

sites on these particles. Each site is assumed to be valid and then tested against a pair of if 

statements which check whether the site is inside a neighboring particle or too close to 

another site. If either of those checks fail, the site is invalid. If it passes both checks, the site 

is stored in the list of valid positions. After this process, the number of valid positions per 

part is calculated and stored for future iterating. To save time, this iteration is done alongside 

the iteration over all particles to determine neighboring particles. 

Finding Nearest Molecule Neighbors 

Next molecular neighbors will need to be determined but instead of every site in the 

whole system being a potential neighbor, only sites on neighboring particles will need to be 
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considered. This is an n2 process (every particle checked against every other particle) and 

helps us reduce the nearest neighbor distance from n2m2 to something more like 3nm2 

(assuming every particle has about 2 neighbors) which is a huge savings if n ~100 and 

m~1000.   

Now that only molecular sites on neighboring particles must be considered, the 

process that was done on particles is repeated for each molecular site. The computationally 

expensive part is making the Xdistance table. The table is made by iterating over each 

particle and molecular site on that particle to create a row in this table. To create the row 

each potential neighboring site is iterated over and the distance to the original site is 

calculated. All of this is stored in a table of format:  

{particle#, position#, distance to particle#position# from particle i position j}  

where particle I, position j represents the original particle. Once this row is created, it is 

sorted by distance in ascending order and stored in the table. Once this is done for every 

molecular site, the table is ready to be used to assign nearest neighbors! 

 Once the Xdistance table is made, neighbors can be assigned. An empty table of NNs 

is created to store nearest neighbors. Next, for each position, a variable number of neighbors 

is added to this table. The reason that the number is variable is that, depending on surface 

geometry, the packing between sites will not be consistent. To do this, each position is 

iterated over and starting at the 2nd nearest potential neighbor (skipping the first because 

each site is its own 1st nearest “neighbor”), each site is checked against the reach limit to be 

a neighbor. If a potential neighbor is within the reach distance, it is added to the nearest 

neighbor list and the distance between the neighbors is recorded for later use. This continues 

until some potential nearest neighbor is not within reach. Once one potential neighbor fails, 
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all neighbors for a given site have been found and its time to move on to the next site and 

find its neighbors. 

 After this, the next step used to be to set inverse nearest neighbors. This is no longer done 

but I will leave the discussion of why this is no longer necessary for future reference. This section 

can be skipped. Once nearest neighbors are set, inverse nearest neighbors are set. A given 

site’s list of inverse nearest neighbors’ list is a list of all site for which the given site is a 

nearest neighbor. This was implemented when the qualification for being a nearest neighbor 

were on a rolling basis (a potential neighbor had to be not more than 5% further than the 

next previous neighbor) and so there wasn’t necessarily a 1-to-1 correspondence between 

nearest neighbors (site A might have had site B as a nearest neighbor but site B might not 

have had site A as a neighbor). Now that there is a hard cutoff, this is largely redundant as 

the list of a particle’s nearest neighbors and its inverse nearest neighbors are exactly the 

same. The downside to the hard cutoff is that, depending on the geometry of the system two 

points that are very nearly the same distance may not both be included or excluded. Sort of 

like if you get a B in a class with 89.99 % and someone else gets an A with 90.01%. The reason 

for this is that, again depending on the geometry, if points are spaced out just right, all points 

might end up being nearest neighbors if using a rolling cutoff. Using the grade scale as an 

example again, this would be like if, as long as you are within 1% of the person ahead of you, 

you would get the same grade as that person. This can lead to situations with students getting 

grades of: 90.5%, 89.7%, 89%, 88.4%, 87.8%... etc. and giving everyone an A because they 

were all within some limit to the next point. These are both contrived examples but these 

sorts of things will happen in the model. Both of these methods have their limitations and 

downsides but the hard cutoff is much more consistent and behaves as expected so that is 
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the nearest neighbor assignment method used. The point is that Inverse Nearest Neighbors 

are no longer useful and are a vestigial remnant of previous requirements. Much like the 

vermiform appendix in humans. 

 Alongside this sorting, a few geometric parameters are determined. Those are: 

molecular vectors (a vector for each molecule oriented from that molecule’s particle’s center 

radially outward; this is how the electric dipole moment of each molecule in the system is 

assumed to be oriented), molecular angles (an angle for each molecule which is the angle 

between its molecular vector and the polarization of the electric field of incident light: 

<0,1,0>), and the anisotropy contribution (a calculation based on the molecular angle used 

to determine polarization anisotropy). These things are only ever needed in the full model if 

anisotropy measurements are turned on and polarized light is used but it is simpler to 

calculate them once here and be done with it while were already iterating over the whole 

surface. 

Graphics 

Wow! You reached the end of the actual code! Now for some pictures! The code that 

runs these graphics is actually after the setting of the rotated positions and then again after 

the setting of the valid positions but since all the cells in Mathematica are grouped together, 

the graphics are displayed after the end of the cell.  

The first graphic is a display of the particles in the system. If there are fewer than 15 

particles in the system, the positions (before validation) will also be displayed. Here you can 

see that some positions are grouped very closer to others or else merging into other particles 

because these are all positions and not only valid ones. It is also worth noting that the size of 

the position spheres corresponds to the molecular radius specified in the beginning.  
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The second pair of graphics displays the position on the first 5 particles (as long as 

there at least 5) in different colors. One displays the valid positions while the other displays 

all positions. These help visualize the spherical overlap and what is getting cut off when 

necking occurs. If particles are not in contact and therefore all positions are valid, rather than 

display the same graphic twice, Mathematica takes a shortcut and simply puts a 2 at the 

corner of the graphic to show it is displayed twice. If there are fewer than 5 particles, nothing 

prints out. 

The last graphic is a repeat of the first but this time showing only valid positions. This 

also includes two green spheres which show reach distance from two sites on particle 1. 

These are just two examples of what will be included in the nearest neighbor list for those 

two sites. These should ideally, encompass, as closely as possible, the nearest ring of sites to 

the site they are centered on and can be a helpful indicator of what is going wrong if the 

nearest neighbor lists aren’t generating well. Again, this only displays if there are fewer than 

15 particles in the system as, in most cases, displaying 1000s of positions on hundreds of 

particles is not worth the computational wait time. If there are more than 15 particles, this 

does not display at all as you already have a printout of the surface sans particles.  

 

Exporting 

 If the surface generated look good, running this section will save a copy with the 

filename specified in the settings section into your Documents folder. This can take a few 

minutes depending on how large the surface generated was. Presently the filetype is a WDX 

which is a Mathematica specific extension that is the most efficient at storing a collection of 

Mathematica variables to be accessed later. It isn’t usable by anything but Mathematica. It is 
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worth noting that Export[] does not ask permission before overwriting previous files so if 

you have a surface you want to keep but the filename is going to overwrite something, make 

sure to move the previous file out of documents or else change the filename (in the cell with 

Export[]). 

Neighboring Statistics 

 Optional section! This section is used to create a breakdown of how the neighboring 

is distributed in the model. Nothing from this will be saved by exporting, this is purely for 

displaying information. The first thing that happens here is that the positionDistances list 

(which is a list of all distances between nearest neighbors) is flattened and converted to 

angstroms (instead of using the 1 = 15 nm units). Once in angstroms, the exponentially 

weighted average distance is calculated. If distance dependent hopping is enabled (in the 

main model) this is the distance that the specified hopping rate will be applied to. For 

example, if the specified hopping time constant is 40 ns, a hopping distance that is equal to 

this exponentially weighted average distance will have an effective time constant that is 40 

ns while hopping distances that are shorter will have an effective hopping time constant that 

is <40 ns and hopping distances that are longer will have an effective time constant that is 

>40 ns. These will be exponentially distributed but the point that is the exponentially 

weighted average will be the one to receive the specified rate. In order to achieve this 

distribution, hopping rates are scaled so that once the exponentially scaling is applied, the 

desired distribution is achieved. This amounts to scaling everything by the inverse of the 

scaling factor that would be applied to the average. That was very wordy so hopefully an 

example (with pseudo made up numbers) will clarify:  
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Say you’ve got some distribution of hopping distances between nearest neighbors. 

You also specify that the hopping time constant should be 40 ns. You find that the 

exponentially weighted average of your distribution is 16 angstroms. If you were to apply 

the exponential scaling to this 16 angstrom distance, the scaling factor for that particular 

distance would be 10. That means, when the model runs, hops that are 16 angstroms long 

will have an effective time constant of 400 ns. This isn’t correct because you want 40 ns to 

be the arithmetically averaged effective time constant. To correct for this, you scale all 

hopping factors by 1/10. This results in the exponential average distance having a total scale 

factor of 1 with an exponential distribution around it. Taking an arithmetic average at this 

point therefore also gives you a scale factor of 1. In this way, you specified 40 ns to be the 

hopping time constant and, on average, that is the hopping time constant, there is just an 

exponentially distributed series of scale factors that is set to 1 for the exponential average.  

After this distribution is calculated, several things are printed out and several graphs 

are displayed. The printouts include the arithmetic and exponential average of the distances 

between neighbors, the closest neighbor (this is important because this is the neighbor that 

will potentially cause the hopping probability to shoot above 100%) , the scale factor that 

the closest neighbor receives, the average hopping factor (should always be 1), and the 

average correction factor (1/10 in the example above).  

The first two graphs display the distribution of nearest neighbor distances, first in 

units of 1 = 15nm and then in angstroms. The third graph is a histogram of the number of 

nearest neighbors that a site has. Its good if this is a distribution around 6-8 with some tails 

on either side. It will change based on geometry but should reflect that the nearest ring to a 

site are included in its nearest neighbors. The final plot is a distribution of scaling factors for 
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the distance distribution of the system. The reason that it increases at lower values is that 

these scale factors are applied to the probability to hop rather than the hopping time 

constant. Notice that the scale factor for the value that is the average value is equal to 1. This 

is just a graphical display of what math will be applied in the main model and is only 

diagnostic and does not need to be run before exporting. 

 

Percolation Zone Statistics 

 Another optional section! This applies the FloodFill[] function discussed above to the 

surface generated to determine if there are separate percolation zones. It then displays these 

zones in different colors (often the whole thing will be 1 color because everything is 

connected). This is done by iterating over each position in the system and checking to see if 

it has been assigned to a zone. If its still set to percolation zone 0, then a new zone has been 

found and FloodFill will be called here. So, the first time this happens, the zone will be set to 

1. All other zones reached by FloodFill will then also be set to 1. The iteration moves on and 

if it finds another 0 that means it found a point disconnected from zone 1 and so sets this to 

zone 2. FloodFill then fills out more zone 2 sites. This goes on until every position has been 

assigned to a nonzero zone. While this is happening the zone sizes and positions are recorded 

for displaying graphics. It should be noted that if an individual zone is too large(usually if 

everything is connected and the surface is large) this will crash due to either exceeding the 

RAM limitations of the computer or the recursion depth. The recursion depth is set quite 

high before running this and if that is not enough, it can be increased. After that, the graphic 

displays and you’ve reached the end of the code!  
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Act II – Running the Model 

Overview 

 The second program starts by importing the results from the first program. This is 

the scaffold which the model will run on. There are a number of user settings that allow for 

this surface to be used in different ways.  Based on these user settings, the stackInfo table 

(the table which contains all information about every molecular site in the surface will be 

filled out.  Almost immediately after the settings, the program will enter a series of loops 

which contain everything else. This is because, typically when running the model, we want 

to run it many times to build up meaningful statistics, and we also want to run with a number 

of different parameters. So instead of having to run the model, change parameters, run, 

change, run, change… almost the entire thing is placed inside a set of loops. These loops 

iterate over hopping and recombination constants so that modeled results under many 

conditions can be tested. Shortly after the start of these loops, a third loop, the trials loop, 

will start. This inner loop is simply to repeat conditions over and over and build up statistics.  

Once inside the loop, it is time to start initializing the system. This will involve setting 

the type of each molecular site, determining recombination rates, determining hopping 

rates, and determining percolation zones. To begin, first vacant spots (sites with no 

molecule) are set followed by catalysts sites. Every other site is assumed to be a dye location 

and then a number of these dyes are chosen to be initially excited dyes. All of these choices 

can be controlled in the settings in terms of the number of each, whether they are randomly 

chosen over the surface or on a particle by particle basis, and whether light effects such as 

the Beer-Lambert law, or polarization should be considered when assigning excited dyes. 

Once all molecules have been set, the various hopping and recombination probabilities must 
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be set in the stackInfo table for future reference. Various counters are initialized, and 

molecular sites are sorted into percolation zones then we are ready to begin the main loop. 

The main loop is where the simulation actually runs. The main loop has a very simple 

structure to it: At each timestep, give every charge a chance to do something, adjust the 

system accordingly, and move on. This typically continues until there are no more oxidized 

dyes left in the system. If CW mode is enabled then there is also a chance of adding more 

mobile charges (additional excitation events) to the system in which case the end condition 

is simply a number of timesteps having passed. The choices given to each charge are to 

recombine, hop to a neighboring molecule, or do nothing. A charge, in this case, is referring 

to an electron hole either on a dye or catalyst. If a catalysts is maximally oxidized, instead of 

being given a choice, it instead turns over (performs some chemistry). While all of these 

things are happening various parameters are tabulated for analysis later. Once the main loop 

is complete the program is essentially done. Some exporting of data files occurs amongst and 

after the ending of the other loops to output data of interest and then there are some extra 

optional cells for displaying graphics and making videos and stuff. The end! 

Detailed Walk-Through 

Importing 

 The first thing that happens is importing the surface and data from the previous 

program. This essentially lets us keep using variables from the surface as if we had just 

finished running it. This is nice because, often we want to run 10-50 simulations on the same 

surface and this way we know we are starting from the same point each time. We also save 

time not having to prepare the surface each time. Most variables here use the same names 

as when exporting previously. 
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Functions 

There are 7 functions here used as support functions of which 6 are super straight 

forward. 

probFromTau[], when given a time constant (tau) will return a probability that the 

event 

associated with the time constant will happen in the span of the timestepsize of the model. 

For example, if the time constant for hopping is 40 ns that means on average there should be 

a hop every 40 ns. If the model’s timestep size (calculated later) happens to be 1 ns, then 

there should be about 1/40 of a hop every timestep or else the chance for a hop to occur in 

1 timestep should be 1/40.  

 dipoleOverlapFunc[] is a function that takes the relative angle between the electric 

dipole moment of a dye and the orientation of the electric field of incident polarized light and 

returns a value based on how well they overlap. 

 degeneracyOverlapFunc[] is a function that takes the same parameter as the 

dipoleOverlapFunc[] but instead returns a value based on the degeneracy of this angle over 

the surface of a sphere. This is no longer needed as the spherically distributed positions no 

longer need to be corrected for angle degeneracy over a sphere. 

 probAbsInit[] is now just the absolute value of the dipole overlap function. In previous 

iterations of this model it was necessary to also correct for degeneracy of points on a sphere 

(there are more points around the sphere at the equator than near the poles) but this is no 

longer the case. 

 lightIntensityBeersLaw[] takes a molecular depth fraction (the percent of the way 

through the film a given molecule is with the top molecule being 0% and the bottom molecule 
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being 100%) and provides a Beer’s Law weighting for excitation. This weighting, if used in 

settings, will be applied when determining which dyes absorb incident light. The idea here 

is that when light is incident on a film(surface) some of the light is absorbed as it travels 

through the film. Particles lower down/further from the light source are receiving less light 

than those right on the surface. Therefore, molecules nearer to the light source are more 

likely to absorb light than those further down. Beer’s Law (The Beer-Lambert Law) creates 

and exponential decay from 100% intensity to a set value specified by the percent light 

transmitted out the back. Experimentally, this value could be calculated by measuring the 

absorbance of a film. Presently, the light transmitted is always set to a fixed amount such that 

the molecule furthest from the light source receives a percent of light determined by 

fracTrans  that the topmost molecule does. 

 distanceBetweenMolecules[] is exactly the same as pythag[] in the previous program 

but with a long name for no real reason. It applies the Pythagorean theorem to find the 

distance between two real points in 3D space. 

 FloodFill[] is a doozy for sure. Fortunately, I’ve already written this out once so rather 

than explain it again I can just refer you to FloodFill from the previous program. 

 

Settings 

 There are a number of settings to be aware of while running this model. The first 

several are booleans followed by a couple of integers and then the settings for each molecule 

type.  
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absBLLaw, if set to True will use the Beer-Lambert Law to weight the assignment 

probability for the excitation of dyes according to lightIntensityBeersLaw[]. If set to false, all 

positions are weighted equally. 

absAnisotropy, if set to True will make use of probAbsInit[] when weighting 

assignment probabilities for excitation of dye. This will simulate the use of polarized light 

which will favorably excite dyes whose electric dipole created by absorbing a photon is 

aligned with the direction of polarization of the electric field of the incoming light. Effectively 

this means that the tops and bottoms (the poles) of each particle will be more favorably 

excited than other locations. This creates areas of high concentration and low concentration 

in terms of excited dyes which then, by diffusion become homogenous. By watching the 

polarization anisotropy decay, one can back out the effective diffusion coefficient of the self-

exchange hole transfer process. 

CWmode, If enabled, will allow additional dyes to be excited over time as the system 

is Continuously Illuminated. If CWmode is enabled, the end condition will use the specified 

number of timesteps instead of waiting to eliminate all excited dyes. Also, it is likely that the 

number of initially excited number of dyes should be set to zero. 

DistanceDependentHopping will change the effective hopping constants between 

nearest neighbors based on the distance between them. The arithmetic average of all 

hopping constants in the system will be the setting hopping constant.  If False, all hopping 

constants will be the same regardless of distance. 

ElectronSpreading, if enabled will blur out the volume of the surface that an injected 

electron is said to be in. If False, there is considered to be one injected electron in the volume 

of a given particle for every hole currently on a molecule on that particle’s surface. If True, 
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each injected electron is “distributed” over several particles starting from an electron hole 

and taking relative particle size and neighboring into consideration. Doesn’t do anything in 

systems for disconnected particles. This is entirely fabricated and is an approximation of a 

correction that could be made to distribute electron density. This has no basis in physics but is 

still probably better than nothing even if hard to justify in a paper. 

ElectronAreaScaling, if enabled will scale the effective electron density by a particle’s 

relative size. This makes the second order recombination behavior more “fair” when 

particles of different sizes are used. 1 electron-hole pair on a 10 nm particle and 1 electron-

hole pair on a 30 nm shouldn’t have the same recombination probabilities. Doesn’t do 

anything for systems with equally size particles. This is fabricated and has no basis in physics 

other than that this seems like a reasonable adjustment to make. 

 electronDistributionHomogenized, if enabled, will assume that all electrons in the film 

are moving so quickly so as to all be effectively everywhere. This sets the electron density to be 

equal everywhere and sets it to be the sum of the total electrons in the film divided by the 

number of particles in the film. 

maxOxState is the maximum oxidation state of catalysts to be use in this system. 

Typically set to 2 or 4. Once a catalyst has acquired this many charges, it will turnover 

(perform chemistry) and those charges will be removed from the system. This turnover 

occurs at the timestep following the one in which it was filled. 

numTrials is the number of times to repeat the inner loop to build up statistics. 25 

times is a good number to use for most things. If making a video of hopping, only 1 trial is 

needed. 2-5 times is a good number to use when testing new code. 
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Absorbance and fracTrans are only relevant if a Beer’s Law distribution is used. If 

used, the Beer’s Law exponential will decay down to the value of fracTrans. Absorbance is an 

alternative way to specify this if that is easier. If specifying absorbance rather than fracTrans 

directly, fracTrans should be set to 10^(-absorbance) 

Dead Spot Settings! Dead spots are molecular sites on the surface which have no 

molecules. These cannot be hopped to and can simulate lower coverage dying of film or be 

used to see when percolation networks break down. DSFixed which, if true uses 

DSperParticle and if False uses pctDS. If using DSperParticle, a set number of dead spots will 

be selected for each particle and exactly that number will be used. If pctDS is used, a certain 

percentage of molecular sites over the whole surface will be chosen to be dead spots. This 

will be completely random. 

Catalyst Setting operate almost exactly like dead spot settings! If CatFixed is True, a 

number (CatperParticle) of catalysts will be placed on each particle in the system. Otherwise, 

a percent (pctCats) of molecular sites in the system will be occupied by catalysts. 1 percent 

is about optimal under many conditions. 

Dye Settings operate much the same way as dead spots and catalysts. If DyesFixed is 

True then a number (DyesperParticle) will be excited on each particle while if it is False then 

a number (DyePerFilm) will be excited over the whole film. It should be noted that all sites 

which are not dead spots or catalysts are, by default, dye location and that this does not affect 

that. This affects the number of Initially Excited Dyes. If UsePercent is set to True than the 

percent specified in PctExcitedDyes will overwrite the DyesPerFilm number. If using 

CWmode, starting with 0 or 1 dyes is usually good. 
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RecTurnovers, RecTimeBehavior, and RecAnis are used to specify whether to record 

(and export) behavior about the Turnover yield, species behavior over time, and anisotropy 

over time respectively. 

RecHopPaths should only be used for smaller surfaces (<25 particles) unless you’re 

using a powerful computer and willing to wait a long time. If enabled, this setting will keep a 

running list of every location that an electron hole has traveled to. This is useful for mapping 

out the movement of holes across a surface and for making videos of such. Note that this 

records every time a hole hops to a new location, not where it is at every timestep. Therefore, 

a playback of multiple holes hopping across the surface will not show the system over time 

but rather over sequential locations for each hole. This means that if a Dye 1 hops from A to 

B to C to D in the first 4 timesteps while dye 2 hops from W to X to Y to Z over the course of 

50 timesteps, the two will appear to be hopping at the same rate. 

Part is a quick way to separate two sets of hopping and recombination values wished 

to be run. By default, if an array of hopping and recombination values are both specified all 

combinations of those arrays are run. Often it is better to specify two subsets of such arrays 

and run one subset as part 1 and another as part 2. Other subsets could similarly be specified. 

KHOP and KRECOMB should really be called τhop and τrecombine. These are the lists of 

time constants to iterate over in two external loops. So if 5 different hopping values and 3 

different recombination values are specified, the system will run the simulation 15 times, 

using each pair once. Each of these times will be repeated a number of times equal to 

numTrials. Notice that these are specified in nanoseconds and the end of the array is 

multiplied by 10-9 so to specify a hopping rate of 40 ns, you would simply include 40 in the 

array, not 40 x 10-9. 
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Initialization 

 This is a complicated model and therefore there a many things that need to be 

initialized. For many of them, the order in not important. For some it is. So, in the order that 

the code is currently in here are the things set up in this section. To begin some geometry 

parameters are identified. These could realistically be moved into the surface generation 

program, but they aren’t computationally intensive, so it hasn’t been worth it to move them 

yet. First the minimum and maximum height values are identified, and the total thickness is 

identified so that, if Beer’s Law is used, molecular positions can be given a proper Beer’s Law 

weighting. Additionally, the Particle sizes and particle regions (the volume over which an 

electron could be shared over) are determined so that if ElectronSpreading and 

ElectronAreaScaling are used the math is mostly done. Also, the effective molecular radius is 

specified here and for consistency should be left the same as it was by the surface generator. 

Another list created is the oxList which is a list of all the current oxidation state of every 

molecule on the surface. 

 Next the number of (excited) dyes and catalysts are determined based on whether 

they are to be distributed on a particle-by-particle basis or over the whole surface. 

 Next a number of empty tables are created to hold data. allHops will store a list of 

every hopping distance that was hopped to later backout an observed hopping constant. 

timeDecays will store the number of dyes remaining over time. CompTable is a table that will 

hold the Compiled Data for exporting after iterating over all hopping and recombination 

constants. ParameterPoint is a counter that counts what step of the time constant loops the 

simulation has reached so that data (which must be stored linearly) can be appropriately 

stored while looping over a 2-D grid).  
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 Next, the time constant loops begin and the time constants are specified. The HRR 

(hopping-recombination ratio which is actually the recombination-hopping ratio) is 

determined. These values are placed in the header rows of the Compilation Table. More 

tables are initialized to store the turnovers per particle, catalysts reached, and total number 

of turnovers. More Counters are initialized to store the different potential automatic 

recombination cases. These count the times that the simulation has, automatically 

recombined electron-holes because they had no chance to contribute to catalyst turnover. 

Tables for the number of dyes remaining over time, a list of hopping distances, tracing 

parameters (if needed), and counters for the number of catalysts reached and number of 

catalysts turned over. 

 Next, many time constants are dealt with. The timestep size is calculated by finding 

the minimum size of effect we’d hope to see and dividing by 350. This should ensure that 

most processes in the simulation will have a small (~1%) chance to occur on any given 

timestep. This is to ensure that the probabilities are roughly constant timestep to timestep 

and that few events are missed.  Following this, all other hopping constants are set. Although, 

in all experiments so far all recombination constants have remained the same, there is the 

option to provide different recombination constants for each oxidation state of a catalyst. If 

the max oxidation state is going to be greater than 4, additional rates would have to be 

appended to the tauRecombCatRates Table. Additionally, each catalyst can have two 

different recombination rates. One for fast recombination and one for slow. This is to roughly 

mimic the stretched exponential behavior seen by experimentalists. Each catalyst will be 

given randomly one of the two rates provided for each oxidation state. The weighting of 

which rate is given is determined by the population fraction. So, if popFrac1A = 0.38 38% of 
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catalysts sites will be given the time constant specified in tauRecombCatRates[[1, 1]] and 

62% will be given the time constant specified by tauRecombCatRates[[1, 2]]. 

 Next there are all of the time constants (taus) are converted to probabilities. This is 

essentially just dividing the time step size by each time constant and reflects the probability 

each of these things has to occur over the course of one timestep. 

 Finally, there are a few more counters that are initialized that keep track of the 

number of dyes left, the number of recombination events that have occurred from dyes, the 

number of non oxidized catalysts left, the number of recombination events that have 

occurred from each oxidation state of catalyst, the number of each oxidation state of catalyst 

at any given time, the initial and final charge distributions, the runStress(a running list of the 

number of items in the POI list at each timestep), the runTimes (a running list of how long it 

takes to complete each timestep), and the anisotropy which will be used as a place to store 

the polarization anisotropy value calculated each round. 

Assigning Positions 

 The assignment of molecule positions first assigns dead spots, the catalysts and 

finally, determines which of the remaining dyes will be initially excited. To do this a few 

tables must be created. First a table to store all the relative likelihoods for a dye to absorb a 

photon is created. Initially every site is given the same weight but if Beer’s Law is used or 

polarized light is used these will be changed later. Next is a table containing all possible 

choices for molecules. This table is in the format of (particle #, position #). Flattened 

Positions is the same list of coordinates but in a 1-D list instead of a 2-D list. Depending on 

whether molecules are to be chosen on a particle by particle basis or over the whole surface 

at once, having these possible choices in two different lists is very helpful.  
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 Next the system is reset. That is, all possible positions are reset to be dyes. This is 

done so that each iteration through the trials loop or through each of the time constant loops 

allows for molecular arrangements to differ. 

 First to be assigned are dead spots. To start an empty list of chosen sites is created to 

hold future choices. Then, if dead spots are to be assigned on a particle by particle basis, the 

correct number of dead spots are chosen on each particle and appended to the list of choices. 

If dead spots are to be assigned over the whole film, the flattened positions list is used so that 

all possibilities are available at once. Once all choices have been made iterate over all the 

choices setting the type of the molecule to 3 in the stackInfo Table, the choice weighting to 0 

(can’t have these positions again) and mark down the positions remaining. 

 Next up is catalyst assignment which functions pretty much the same way as dead 

spot assignment. An empty array of catalyst choices is created and then depending on 

whether the number of catalysts is meant to be fixed over the surface or per particle, a 

number of selections are made and appended to the list. Once the array of catalyst choices 

are made, the stackInfo table is updated and the sites are made unavailable for future 

selection. Additionally, recombination rates are chosen and stored in the stackInfo table 

based on population fractions and time constants specified in initialization. 

 Finally, setting the (excited) dyes is a little different. First, each molecule has a 

molecular depth fraction calculated. This will be used to assign weighting if Beer’s Law is 

used. Then an empty array for dye selections is created. Next, the choice of dye excitations 

must be weighted if Beer’s Law or polarized light are used. For each of these modifications, 

the governing function (lightIntensityBeer’sLaw or probAbsInit) are mapped over all 

positions and the resulting matrix is multiplied against the choice weighting matrix. Once the 
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weighting matrices are taken care of, the selection proceeds the same as dead spots or 

catalysts. Dyes are chosen, using the determined weights, either by particle or over the whole 

surface. Once chosen, the oxList table is updated to reflect that these dyes are now oxidized. 

Determining Percolation Zones 

 As discussed in the surface generation section previously, sorting molecular sites into 

percolation zones can be important to make sure simulations run smoothly. This is only 

really the case if there are multiple zones (if there are separate particles, sites isolated by 

dead spots, etc.). Determining percolation zones works the same way it did in the surface 

generation section. To start all positions are set to zone 0. Then Floodfill is called on the first 

position and it (along with all mutually connected positions are set to zone 1. Once the first 

all of Floodfill has run its course, the model iterates through all remaining positions to see if 

any are still set to zone 0. If so, that position must be in a different percolation zone than the 

first call and so Floodfill is called again starting from that new position and starts assigning 

positions in contact with it to zone 2. This continues until every position is assigned to a non-

zero zone.  

 Once every position has had a zone number assigned to it, it is necessary to sort the 

positions into zones. Basically, we need to know what positions are in each zone not just 

what zone each position belongs to. Once positions are sorted into zones it is possible to 

count the number of catalysts and excitations in each zone. This is done after setting the 

hopping values but will be discussed here. This next step is to identify “hopeless excitations”. 

This is probably not the best name for these but these are essentially excitations which we 

know, from timestep 0, will never contribute to turnover. There are two reasons this may 

occur. The first way this happens is when excitations occur and have no catalysts in their 
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percolation zones and so will eventually recombine. The other way this happens is if there 

are not enough excitations in a given zone (even if there are catalysts) to turnover a catalyst. 

For example, if it takes 4 charges to turn over a catalysts and there are only 2 excitations that 

occur in a given zone, we know before things start that those excitations will never 

contribute. All excitations in a given zone are going to be hopeless or not so we can also 

identify hopeless zones as those containing hopeless excitations. 

Identifying hopeless excitations is important because the simulation can be terminated once 

it has been reduced to only hopeless excitations. This can be identified as the time at which 

excited states only exist in hopeless zones. Often, this will be the time at which there are no 

more excited dyes at all and so all of this is unnecessary. However, in the case that there is 

an excited dye which has no possible catalysts to reach, the simulation would potentially 

continue on for hours or days waiting for this single dye to recombine. This is only a problem 

if the hopping rate is very fast and the recombination rate is very slow meaning that the 

expected number of timesteps to recombination can be extremely large. So, on the off chance 

that this is the case, its worth it to do a bit of this pre-sorting ahead of time so that a 

simulation that should last 30 second doesn’t instead last 30 hours. 

 

Setting Hopping Values 

 There are two things to consider when assigning hopping values: the number of dye 

and catalyst neighbors that a position has, and (potentially) the distance between each pair 

of neighbors. This latter consideration is only taken into account if distance dependent 

hopping is turned on. This process is done by iterating through each molecule in the system 

and filling in the stackInfo table appropriately. If a position contains a dye, it is given a dye 
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recombination rate and its list of hopping probabilities (scaled by a distance factor or not) 

are created appropriately neighbor by neighbor as each is identified as a dye or a catalyst. 

The same is true for catalysts with assignments of analogous recombination and hopping 

rates. All of these rates are stored in the stackInfo table for lookup in the main loop. 

 

A few other minor things are taken care of at this point and throughout this section. 

A POI (point of interest (yes, another poor name choice) ) list is created and randomly sorted. 

If traceRecord is turned on, the initial positions of every dye are stored so animations can be 

created later. 

Next up is the main loop! Everything up to this point should run in a few seconds but 

the bulk of the program is up next. 

 

Main Loop – Timestep Checks 

 The first part of every timestep is to see if the main loop should end. This is done by 

checking a variable called EndCondition which can be made true in two ways. The primary 

way this happens is when there are no more dyes in the POI list in non-hopeless (this is why 

I shouldn’t name things) zones. This occurs when either there no more dyes remaining 

excited at all or when all remaining dyes are in hopeless zones (and therefore will eventually 

recombine). The second way EndCondition can be triggered is if CWmode is on and a certain 

number of timesteps has past. The reason the CWmode needs a separate condition is that 

the simulation starts at, and may often have, no excited dyes in the stack so the whole thing 

would end as soon as it began. 
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 Other than checking for the end, there is a status update which occurs every 1000 

timesteps and prints out (to the console) various statistics of interest so that we can 

continuously make sure things are running smoothly. 

Main Loop – Bookkeeping 

Bookkeeping consists of recording everything as specified by the settings. First up on 

this is to record the anisotropy value for the timestep. This is simply the sum of all anisotropy 

contributions of all molecules in the POI list scaled by the number of molecules in that list. 

This average anisotropy contribution should, for an ideal system start at 0.4 and decay down 

to 0 but depending on geometric considerations this may not always be the case. More info 

here:  

https://en.wikipedia.org/wiki/Fluorescence_anisotropy  

 One of the next things to take care of is determining where the electrons are. Electrons 

are not handled explicitly in the model but they are the source of recombination, so we still 

need to know generally where they are. The primary assumption here is that when a dye is 

excited, an electron-hole pair is created after which the electron injects into the TiO2 leaving 

a hole on the dye. The whole can hop around and is handled by the model but the electron is 

just assumed to be somewhere in the volume of the particle the hole is at the surface of. So a 

particle with 5 excited dyes/oxidized dyes on its surface is assumed to have 5 electrons 

within its volume. This is true even if all of holes on the surface didn’t originally start out on 

this particular particle. So a hole which hops from dye to dye and ends up switching particles 

ends up bringing its electron along for the ride. This isn’t terribly rigorous but as a rough 

approximation, its not terrible either. The point of all this is that at the start of each timestep 

we need to count up the number of holes on the surface of each particle, so we know how 

https://en.wikipedia.org/wiki/Fluorescence_anisotropy
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many electrons are within each particle. This electron count can be modified in 2 ways both 

of which are completely fabricated and not rigorous so are typically not used but also seem 

like reasonable approximations. The first way is with ElectronSpreading which, if turned on 

allows some of the electron density in a particle to leak into neighboring particles. This is 

done by taking the total number of electrons in a given particle and distributing them across 

the given particle and all of its neighbors with the given particle being given a double weight 

compared to the others. These distributions  are also weighted by a particles relative size 

(surface area being used as “size”) so that a larger neighbor will take more of the distribution 

than a smaller neighbor. The other way to modify the electron count is with AreaScaling. This 

simply divides the electron density by the size (surface area) of a particle relative to a radius 

1 particle. 1 electron in a radius 30 nm particle provides a lot more electron density than 1 

electron in a 10 nm particle. Neither of these are physically rigorous but seem reasonable all 

the same. The reason we need to know the number of electrons (or electron density) per 

particle is that molecule recombination rates will be scaled by the number of electrons there 

are to recombine with. 

 The last thing to take care of in the bookkeeping step is to record the time behavior if 

specified. This is simply adding a row to a very large table which tabulates the various 

phenomenon at each timestep. This can get very large if running an experiment for a long 

time so it may be necessary under certain conditions to put this block inside a 

If[timestep%5==0,…]; statement (only perform this every 5 timesteps). 

Main Loop – Iterating the POI List 

This is really the main body of the whole thing. The overarching idea is that at every 

timestep, every molecule with a hole (every item on the POI list ) will get a chance to have 
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that hole do something. That something can be recombine, hole-hop to a neighboring 

molecule, or do nothing. This is determined by a probabilistic choice determined by the 

hole’s environment. So, for each element of the POI list we first need to pull all relevant 

information. The element being looked at is usually referred to as the “point” while the line 

of the stackInfo table which contains all of its information is referred to as the “position”. 

This is done so it is faster (and shorter to read) to reference this information in the upcoming 

section.  

The first thing that needs to happen for each molecule is that we need to decide what 

type of molecule we’re dealing with. This is the first branching Which statement. These 

basically function as if else statements in other languages except are harder to read.  If 

something is determined to be a dye, the next step is to pull all relevant information needed 

to construct the choice for that dye. That means pulling the recombination probability from 

the stackInfo table, pulling the list of nearest neighbors, and pulling the hopping probabilities 

between those nearest neighbors. Once this information is ready, a weighted choice is made. 

If the total probability of this weighted choice would exceed 100%, the probabilities are 

normalize such that they sum to exactly 100% and the option to do nothing is removed. This 

weighted choice consists of 3 real options: hop, recombine, or do nothing. The choice is 

constructed as a list which is equal to the number of neighbors a molecule has +2. If a 

molecule has X nearest neighbors and choice from 1-X will represent choosing to hop to that 

neighbor while a choice of X+1 will represent choosing to recombine and a choice of X+2 will 

represent a choice to do nothing. 
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 A catalyst’s choices are run the same way with the exception that if a catalyst 

starts at the maximum oxidation state, it will instead turnover and its choice will 

automatically be to do nothing for that round. 

After a choice is made it has to be validated or else a new choice must be made. A valid 

choice is any choice to recombine, to do nothing, or to hop to a molecule which has not been 

maximally oxidized. This means that the only way for a choice to be invalid would be if the 

choice was made to hop to a catalyst that was already filled or to hop to an already oxidized 

dye. If this is the case, the choice is rejected and is taken again. 

Once a choice is validated, it must be implemented. This is essentially just more 

bookkeeping and keeping track of what goes where. If the choice to hop, the relevant 

information for the hop target is pulled from the stackInfo table. Both the source and target 

molecules must have their oxidation states changed and the element on the POI list must be 

updated so that the target is now on the list. Additionally, if traceRecord is True, then the hop 

is recorded for purposes of creating animations later. If the choice is to recombine, oxidation 

states are updated and the element (if completely empty) if removed from the POI. The 

counter which steps forward is also decremented by one to account for the fact that an 

element was dropped from the list. 

The only other real consideration in resolving these choices is that when a catalyst’s 

oxidation state changes, the hopping probabilities of all neighboring molecules must be 

updated. This is because the model allows for different hopping rates to be used for an empty 

catalyst vs a 1st oxidized catalyst vs a 2nd oxidized catalyst. When a catalyst’s oxidation state 

changes all of its neighbors are looked up and the hopping probability from them to the given 
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catalyst is updated to reflect this. This gets especially complicated in the unlikely event that 

there is a hopping even which occurs between two catalysts. 

It should also be noted that a catalyst with multiple holes on it only receives one entry 

on the POI list and therefore only one “turn”. For this reason, when a hole on a dye hops to a 

catalyst with at least one charge already, the entry on the POI is deleted rather than being 

reassigned. 

Other than updating the status of the POI and the stackInfo table, various statistics 

are tabulated (recombinations, turnovers, etc. as they occur). 

Main Loop – CW 

 In the case that an experiment is being run in CW mode (continuous illumination) 

there is also a chance that a new excitation is added to the system at each timestep. For no 

real reason at all, this is handled at the end of each timestep instead of with all the 

bookkeeping up front. First a random number is compared with the probability that an 

excitation occurs. If the random number is smaller than the excitation probability, a new 

excitation must be assigned to the system. This works the same way as previous assignments 

except that currently occupied sites must be taken into account and weighted as 0 in the 

weighted choice of where to place the excitation. Once chose, its appended to the POI list and 

its time to move on to the next time step. 

Recording Data 

 The final section of code that runs in the main block is the part after the main loop 

which deals with exporting data in three different files (if specified). The first thing that 

happens after the main look is a check to see if the last trial of the main loop was the shortest. 

This is relevant because the data from the trials are averaged together but each trials will 
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not necessarily take the same number of timesteps. If one trial takes 5000 timesteps and the 

next one takes 8000, the arrays of data can’t be averaged together until we make them the 

same size. We can do this in 2 ways: Make everything as long as the longest trial or make 

everything as short as the shortest trial. If we wanted to extend all of our short data to make 

it longer, we would need to fill in the ends with something which is a problem because we 

don’t always have something appropriate to fill in there. For the number of dyes remaining 

we could easily fill in all zeros for all future timesteps. For number of recombinations 

however, we can’t just tack on a bunch of zeros or even a bunch of whatever the last value 

was and be able to rely on that. So, for sake of simplicity and accuracy and to avoid having to 

determine the most accurate way to fabricate anything, we instead truncate data to match 

the shortest trial. This ensures that everything we have, even if less than we originally 

collected, is real. In order to do that we need to keep track of the shortest trial. 

 If turnovers are set to be recorded, the turnovers are averaged over the number of 

trials and then stored in a large table organized by hop and recombination rates. Both the 

number and percent of turnovers are stored. Following the end of the trials loop, but within 

the time constant loops, this table is exported.  The table is exported after each pass through 

one of the time constant loops (overwriting the previous one each time) so that if the 

program crashes (or if a windows update restarts the computer ☹) the latest possible 

version of this table will have been saved. 

 If anisotropy and time behavior data are requested, those (which have been collected 

and organized during the bookkeeping step in the main loop) are truncated (down the to 

shortest trial) and added to the corresponding tables. These are also exported after each pass 

of the time constant loops but instead of overwriting each time, the parameter point is 
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appended to the filename to we end up getting timebevaiorfile_1, timebevaiorfile_2, 

timebevaiorfile_3… etc. which, while not elegant, is the only reliable way to save a set of 

potentially very large files without risking a memory overload. Ideally these would export at 

one multitabbed excel file but if the experiment takes more than a few thousand steps and 

there are many parameter points, Mathematica will run out of memory trying to save that 

monster file. So, a bunch of small files it is! They’re kind of annoying to handle afterward but 

it only takes a short MATLAB script to stich them together as needed. 

 Following all the exporting, a simulation summary is printed out with a final sanity 

check to see how believable the data will be.  

 The End! Congrats on making it this far in this crazy mess of a program! Only one 

thing left and its totally optional and ancillary to the actual function. 

Creating Videos 

 When making videos only one trial and one set of hopping and recombination 

constants needs to be used. This is because the animation blocks of code will pull the list of 

hops from the last trial to make the animation. It should also be noted that a very long 

experiment will result in a very long animation and possibly an insurmountably large export. 

 The first block of code in this section doesn’t actually create an animation but rather 

a still image showing what is essentially the last frame of a potential animation. This is to 

quickly see if its worth trying to export by seeing if the catalysts end up on a side of the image 

that will be shown. It should also be noted that this image is rotatable like most Mathematica 

3D images and that, like most Mathematica 3D images, will preserve that rotation upon being 

recreated. That is, if you create an image, spin it around to see the back, rerun an experiment, 

and then make a new image, the new image may also be turned around. Therefore, if you do 
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decide to rotate the still image created, be sure to delete that output cell once you are done 

so that Mathematica is forced to reset the rotation upon re-outputting. This is important 

because this default rotation will be the perspective that the animation will be in. This is, in 

theory, changeable but is way too much work and is much better just to run your quick 

animation experiment 50 time to find one that looks good from the front. 

 The way the still image works, and subsequent animations, is that each hole is given 

a color and a series of spheres in that color are created at every point that hole occupied 

according to the DyeTraces table. This table is a list of {particle #, position # coordinates} and 

so to create the actual spheres, the molecular positions must be looked up using these 

coordinates. All of these colored spheres are overlaid on an image containing all molecular 

spheres in yellow. Because these images involve a very large number of spheres, it is 

important to keep the surfaces used in these animation experiments small (5-10 particles 

max) if possible. Mathematica really doesn’t like trying to animate 30,000 spheres in each 

frame. 

 The animations come in 4 types which are composed of two choices with two options 

each. Option 1 (which determines which block of code to use next) is whether you want an 

animation which follows the path of a single hole or animates all of them. Option 2 is whether 

or not you want to show a hole’s hopping history or just its current location. This is 

controlled by simply commenting out the history bits as needed. 

 Making the animations works very similarly to making the still image. To start, the 

background is the starting layer of yellow molecules over the whole surface. After that hole 

positions are added on top as different colored spheres. For each frame, that index of the 

DyeTraces is used. So in frame 3, the third location that Dye#1,Dye#2,Dye#3,Dye#4,…etc. 
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was in is used as the location of that dye’s sphere. Additionally, if histories were turned on, 

indexes up to that point are used as location for slightly smaller spheres of the same color. 

 Once created, there is not a great way to view the animation in Mathematica that 

doesn’t take just as long as exporting and watching the video, so the next step is to export a 

video and see if it looks okay. The exporting process will take a long time (possibly a couple 

hours for a 2-3 minute animation) and the file size will be obnoxiously large. Unfortunately, 

I have not found a better export method or file type to use that Mathematica can handle and 

will playback on a PC.  Making these animations is very much a trial and error process until 

you get something that looks good to you. 
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APPENDIX B.  Model in Mathematica 

Surface Generation 

 startTime=AbsoluteTime[]; (*sets starting time for reference later*) 
 
(*SUPPORTING FUNCTIONS*) 
pythag[p1_,p2_]:=((p1[[1]]-p2[[1]])^2+(p1[[2]]-p2[[2]])^2+(p1[[3]]-p2[[3]])^2)^0.5; (*distance formula*) 
 
FloodFill[part_,pos_]:=( (*used to find percolation zones*) (*only used in troubleshooting*) 
  If[(stackInfo[[part,pos]][[1]]!=3)&&(percolationZone[[part,pos]]==0), 
     percolationZone[[part,pos]]=zoneCount; 
       If[Length[stackInfo[[part,pos]][[2]]]>=1, 
        
 FloodFill[stackInfo[[part,pos]][[2]][[1]][[1]],stackInfo[[part,pos]][[2]][[1]][[2]]]; 
         If[Length[stackInfo[[part,pos]][[2]]]>=2, 
          
 FloodFill[stackInfo[[part,pos]][[2]][[2]][[1]],stackInfo[[part,pos]][[2]][[2]][[2]]]; 
           If[Length[stackInfo[[part,pos]][[2]]]>=3, 
            
 FloodFill[stackInfo[[part,pos]][[2]][[3]][[1]],stackInfo[[part,pos]][[2]][[3]][[2]]]; 
             If[Length[stackInfo[[part,pos]][[2]]]>=4, 
              
 FloodFill[stackInfo[[part,pos]][[2]][[4]][[1]],stackInfo[[part,pos]][[2]][[4]][[2]]]; 
               If[Length[stackInfo[[part,pos]][[2]]]>=5, 
                
 FloodFill[stackInfo[[part,pos]][[2]][[5]][[1]],stackInfo[[part,pos]][[2]][[5]][[2]]]; 
                 If[Length[stackInfo[[part,pos]][[2]]]>=6, 
                  
 FloodFill[stackInfo[[part,pos]][[2]][[6]][[1]],stackInfo[[part,pos]][[2]][[6]][[2]]]; 
                  
 If[Length[stackInfo[[part,pos]][[2]]]>=7, 
                    
 FloodFill[stackInfo[[part,pos]][[2]][[7]][[1]],stackInfo[[part,pos]][[2]][[7]][[2]]]; 
                    
 If[Length[stackInfo[[part,pos]][[2]]]>=8, 
                      
 FloodFill[stackInfo[[part,pos]][[2]][[8]][[1]],stackInfo[[part,pos]][[2]][[8]][[2]]]; 
                      ]; 
                    ]; 
                  ]; 
                ]; 
              ]; 
            ]; 
          ]; 
        ]; 
       
     ]; 
  ) 
(*----------------------------------------------------------------------------------------------------------------------------- ------*) 
(*-----------------------------------------------------------------------------------------------------------------------------------*) 
(*----------------------------------------------------------------------------------------------------------------------------- ------*) 
(*Stack Settings - No need to change anything outside of this section!*) 
stackName = "10PartClusterForVid.wdx"; (*If the stack looks good, remember to export at the end. This is the 
name that will be used.*) 
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r1positions = 250; (*The number of positions that will be spread over a particle with radius 1, other sizes 
particles will have position #s scaled*) (*A distance of 1 = 15 nm*) 
moleculeRadius= 0.05; (*analogous to the van der Waals radius of a molecule*) 
neckingMin= 0.25; (*minimum particle necking value*) (*Necking 0 is exactly touching. non zero values 
indicate the % of the smaller radius that is overlapped*) 
neckingMax = 0.25; (*0.25 is a realistic value*) 
partRadMin = 1.0; (*minimum radius possible for a particle*) 
partRadMax =1.0; (*maximum radius possible for a particle*) (*A distance of 1 = 15 nm*) 
numParticles = 10; (*How many particles will be in the surface created, if using more than 15, individual 
positions will not be plotted*) 
FIB=True; (*True = use Fibonacci spirals to place points over each particle. SETTING FALSE MEANS 
Tessellation will be used instead, only allows 252 points per particle*) 
stack = True; (*If true, particles will form a single column rather than a cluster*) 
ClusterCompactness = 0; (*0 is totally random, positive make a tighter spherical cluster, negative makes a 
long dendritic cluster*) 
reach = 7.0; (*multiplier which determines how many molecular radii limit being a nearest neighbor*) 
(*-----------------------------------------------------------------------------------------------------------------------------------*) 
(*----------------------------------------------------------------------------------------------------------------------------- ------*) 
(*-----------------------------------------------------------------------------------------------------------------------------------*) 
(*SETTING PARTICLES*)  
partCenters = {{0,0,0}};  (*Initial particle center at zero. Table to store all particle centers*) 
particleRadii = Table[1,{i,numParticles}]; (*A table to store the radii of al particles*) 
particleRadii[[1]] = RandomReal[{partRadMin,partRadMax}]; (*initial particle radius*) 
(*Iterates over all particles and attempts to find a place for them. This is done by choosing an existing particle,  
a random new particle size, a random direction from that existing particle and a valid necking  with that 
existing particle. 
Then the new particle is checked against all existing particles to make sure it is not closer than the required 
by the maximum necking. 
If valid, it is added to the stack, otherwise new random choices for all parameters are chosen*)  
For[x=2,x<=numParticles,x++,  
   validChoice = False; 
   While[validChoice==False, 
     centerChoice = RandomChoice[Reverse[Range[Length[partCenters]]]^ClusterCompactness-
>Range[Length[partCenters]]]; (*Weighted choice for particle to build off of*) 
     currentCenter = partCenters[[centerChoice]]; 
     size = RandomReal[{partRadMin,partRadMax}]; 
     neck = size*RandomReal[{neckingMin,neckingMax}]; 
     If[stack==True, (*if a stack is to be formed, the next particle is always directly along the z-
axis, otherwise choose a random point on a sphere*) 
       unit = {0,0,1}; 
      , 
       unit = RandomPoint[Sphere[]];  (*Sphere[] function accounts for angular 
degeneracy when choosing points*) 
      ]; 
     offset = Max[particleRadii[[centerChoice]]+(1-neck)*size,particleRadii[[centerChoice]]*(1-
neck)+size]; (*the distance between the old and new particle centers while counting the neckign on the 
smaller of the two*) 
     newCenter = currentCenter+offset*unit; 
     validChoice=True; 
     For[i=1,i<=Length[partCenters],i++, 
       dist =((newCenter[[1]]-partCenters[[i]][[1]])^2+(newCenter[[2]]-
partCenters[[i]][[2]])^2+(newCenter[[3]]-partCenters[[i]][[3]])^2)^(0.5); (*finds the distance to all other 
particles*) 
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       minC2CDist = Max[particleRadii[[i]]+(1-neckingMax)*size,particleRadii[[i]]*(1-
neckingMax)+size]; (*the minimum distance two particles can be to one another, with different particle sizes, 
necking maximums are based on the smaller of the particles*) 
       If[dist<minC2CDist, 
         validChoice=False; 
        ];  
       ]; 
    ]; 
   partCenters = Append[partCenters,newCenter] ;(*stores the particle center to the list of centers*) 
   particleRadii[[x]]=size; (*stores the particles radii in the list of particle radii*) 
  ]; 
(*----------------------------------------------------------------------------------------------------------------------------- ------*) 
(*------------------------------------------------------------------------------------------------------------ -----------------------*) 
(*----------------------------------------------------------------------------------------------------------------------------- ------*) 
(*SETTING POSITIONS*) 
If[FIB==True, (*if using FIB spirals, scales the number of positions by the particle size. Otherwise 252 per 
particle must be used*) 
   positionsPerParticle = Table[Round[r1positions*particleRadii[[i]]^2],{i,1,numParticles}]; 
(*calculates the number of molecular positions per particle based on radius*) 
  , 
   positionsPerParticle = Table[252,{i,1,numParticles}]; 
   Needs["PolyhedronOperations`"]; 
   psub =Round[Geodesate[PolyhedronData["Icosahedron", "Faces"],5][[1]][[14;;265]],0.0001];  (*Uses 
icosahedrons to get particle positions if not using FIB spirals*) 
  ]; 
 
positions = Table[0,{i,1,numParticles}]; (*Creates a table to hold all molecular positions as XYZ coordinates*) 
rotatedPositions = Table[0,{i,1,numParticles}]; (*Creates a table to hold all molecular positions after they 
have undergone two random rotations as XYZ coordinates*) 
goldenAngle = Pi*(3.0-Sqrt[5.0]); (*stores the golden angle for use in math below*) 
 
For[part=1,part<=numParticles,part++, (*iterates over all particles in the surface*) 
   n = positionsPerParticle[[part]]; (*pulls the number of positions for the current particle*) 
   c = partCenters[[part]]; (*pulls the particle center from the current particle*) 
   rad = particleRadii[[part]];(*pulls the particle radii from the current particle*) 
   If[FIB==True, (*if Fibonacci spirals are used, calculates xyz coordinates for the current particle based 
on n,c,rad and the Golden Angle*) 
     rho = Table[goldenAngle*i,{i,0,n}]; 
     z = Table[(1-1.0/n)-(2.0/n)*i,{i,0,n-1}]; 
     r = Table[Sqrt[1-z[[i]]^2],{i,1,n}]; 
     x = Table[r[[i]]*Cos[rho[[i]]],{i,1,n}]; 
     y = Table[r[[i]]*Sin[rho[[i]]],{i,1,n}]; 
     positions[[part]] = Table[{x[[i]],y[[i]],z[[i]]},{i,1,n}]; (*stores the positions calculated in the 
positions table*) 
     , 
     positions[[part]] = psub; (*if Fibonacci spirals are not used, all particles use the same 
icosahedron tessellation position list*) 
    ]; 
   theta = RandomReal[{0,360}]; (* chooses a random azimuthal angle*) 
   phi = RandomReal[{0,180}]; (*chooses a random polar angle*) 
   rot = {{Cos[phi],Sin[phi],0},{-
Cos[theta]*Sin[phi],Cos[theta]*Cos[phi],Sin[theta]},{Sin[theta]*Sin[phi],-Sin[theta]*Cos[phi],Cos[theta]}}; 
(*rotation matrix based on phi, theta*) 
   rotatedPositions[[part]] = Table[(positions[[part]][[i]]).rot*rad+c,{i,1,n}]; (*calculates and stores the 
rotated positions based on the rotation matrix*) 
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  ]; 
(*------------------------------------------------------------------------------------------------------------ *) 
(*These lines create and plot graphics displaying all particles in the surface and, if there are ≤15 particles in 
the surface, also their positions*) 
pointSpheres = Table[Sphere[partCenters[[i]],particleRadii[[i]]],{i,1,numParticles}];  
molSpheres = 
Table[Table[{Yellow,Sphere[rotatedPositions[[j]][[i]],moleculeRadius]},{i,1,positionsPerParticle[[j]]}],{j,1,nu
mParticles}]; 
If[numParticles<=15,Graphics3D[{pointSpheres,molSpheres},Boxed-
>False],Graphics3D[{pointSpheres},Boxed->False]] (*Plot what the initial surface will look like BEFORE 
forced dead spots are removed*) 
(*-----------------------------------------------------------------------------------------------------------------------------------*) 
(*-----------------------------------------------------------------------------------------------------------------------------------*) 
(*-----------------------------------------------------------------------------------------------------------------------------------*) 
(*DETERMINING NEIGHBORING PARTICLES*) 
XPartDistances = {}; (*creates a cross distance table to be used in finding particle nearest neighbors*) 
For[k=1,k<=numParticles,k++, (*iterates over every particle*) 
   distances= Table[{i,pythag[partCenters[[k]],partCenters[[i]]]},{i,numParticles}]; (*calculates the 
distances to every other particle from the current particle*) 
   XPartDistances = Append[XPartDistances,distances]; (*adds the distance table to the cross distance 
table*) 
  ]; 
neighbors = Table[{},{i,numParticles}]; (*creates a table to store particle neighbors*) 
validPositions = Table[{},{i,numParticles}]; (*creates a table to store molecular positions that are valid. This 
will be the position list used from here on and the one exported*) 
For[k=1,k<=numParticles,k++, (*iterates over all particle*) 
   For[l=1,l<=numParticles,l++, (*for each particle k, iterates over all particles*) 
     If[l!=k&&pythag[partCenters[[k]],partCenters[[l]]]<=particleRadii[[k]]+particleRadii[[l]], 
(*if particles l and k are within their combined radii from each other and are not the same particle, they are 
neighbors*) 
        neighbors[[k]] = Append[neighbors[[k]],l]; 
       ]; 
    ]; 
   For[j=1,j<=positionsPerParticle[[k]],j++, (*for each position on particle k, check to see if it within any 
of the neighboring particles*) 
     valid = True; 
     For[i=1,i<=Length[neighbors[[k]]],i++, 
       neighborPart = neighbors[[k]][[i]]; 
      
 If[pythag[partCenters[[neighborPart]],rotatedPositions[[k]][[j]]]<=(particleRadii[[neighborPart]]+m
oleculeRadius), 
         valid=False; 
        , 
         For[m=1,m<=positionsPerParticle[[neighborPart]],m++, (*also check to see 
if it is too close to other molecules on separate particles*) 
            intermoldist = 
pythag[rotatedPositions[[neighborPart]][[m]],rotatedPositions[[k]][[j]]]; 
            If[intermoldist<(2*moleculeRadius),(*currently the TOO CLOSE 
condition is that molecules have overlapping Van der Waals radii *) 
              valid=False; 
             ]; 
           ]; 
      
        ]; 
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      ]; 
     If[valid,validPositions[[k]] = Append[validPositions[[k]],rotatedPositions[[k]][[j]]];]; 
(*stores the positions that are valid*) 
    ]; 
   neighbors[[k]] = Append[neighbors[[k]],k]; (*stores the particle's neighboring particle*) 
  ]; 
validPerPart = Table[Length[validPositions[[i]]],{i,1,numParticles}]; (*counts the number of valid positions 
per particle*) 
Print["Particle Neighbors Found!"]; 
Print["Time Passed = ", Floor[(AbsoluteTime[]-startTime)/60]," minutes, 
",PaddedForm[Mod[(AbsoluteTime[]-startTime),60],{4,2}]," seconds"];  
If[numParticles>=5, (*if there are at least 5 particles creates graphics showing the first 5 particles of rotated 
positions and valid positions*) 
 (*Plots ALL positions on the first 5 particles. Will get angry but can be ignored if there are fewer than 5 
positions*) 
 
ListPointPlot3D[{rotatedPositions[[1]],rotatedPositions[[2]],rotatedPositions[[3]],rotatedPositions[[4]],rotat
edPositions[[5]]},BoxRatios->Automatic,PlotStyle->PointSize[Large]] 
  (*Plots ONLY VALID on the first 5 particles. Will get angry but can be ignored if there are fewer than 5 
positions*) 
  
ListPointPlot3D[{validPositions[[1]],validPositions[[2]],validPositions[[3]],validPositions[[4]],validPositions[
[5]]},BoxRatios->Automatic,PlotStyle->PointSize[Large]] 
 ] 
 
(*---------------------------------------------------------------------------------------------- -------------------------------------*) 
(*----------------------------------------------------------------------------------------------------------------------------------- *) 
(*-----------------------------------------------------------------------------------------------------------------------------------*) 
(*NEIGHBORING Positions*) 
(*stackInfo Structure: {type,{NN},recomb prob,{Hopping Probs}} type 1 = abs, type 2 = cat, type 3 = dead 
spot*) 
stackInfo =Table[Table[{1,0,0,0},{j,1,validPerPart[[i]]}], {i,numParticles}]; (*creates the stackinfo table which 
contains all reference information throughout the simulation*) 
(*calculates an inclination angle for every valid position to be used in anisotropy studies*) 
inclinationAngleArray = Table[Table[(180/Pi)*ArcTan[((validPositions[[i]][[j]]-
partCenters[[i]])[[2]])/((validPositions[[i]][[j]]-partCenters[[i]])[[1]])],{j,1,validPerPart[[i]]}], 
{i,numParticles}]; 
xDistances = Table[Table[{},{j,1,validPerPart[[i]]}],{i,numParticles}]; (*cross distance table holding distance 
from every particle to every potential neighboring particle*) 
 
 
For[i=1,i<=numParticles,i++, (*iterates over all particles*) 
   For[j=1,j<=validPerPart[[i]],j++, (*iterates over every position on particle i*) 
      xDist = {}; 
      For[k=1,k<=Length[neighbors[[i]]],k++, (*iterates over all neighboring particles to particle 
i*) 
        nP = neighbors[[i]][[k]]; 
        For[m=1,m<=validPerPart[[nP]],m++, (*iterates over every position on the 
neighboring particle*) 
          xDist = 
Append[xDist,{nP,m,pythag[validPositions[[i,j]],validPositions[[nP,m]]]}]; (*calculates the distance between a 
position [i,j] and every possible neighbor *) 
         ]; 
       ]; 
      xDist = SortBy[xDist,Last]; (*sorts all possible neighboring positions by distance*) 
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      xDistances[[i,j]] = xDist; (*stores the position neighbors in the large cross-distance table by 
Particle #, Position #, distance from [i,j]*) 
     ]; 
  ]; 
 
 
If[numParticles<=15, (*repeat of previous graphic using yellow positions but now showing only valid 
positions. Also shows two example nearest neighboring limits in green.*) 
 pointSpheres = Table[Sphere[partCenters[[i]],particleRadii[[i]]],{i,1,numParticles}]; 
 molSpheres = 
Table[Table[{Blue,Sphere[validPositions[[j]][[i]],moleculeRadius]},{i,1,Length[validPositions[[j]]]}],{j,1,numP
articles}]; 
 NNsphere = {Opacity[0.5],Green,Sphere[validPositions[[1]][[1]],moleculeRadius*reach]}; 
 NNsphere2 = {Opacity[0.5],Green,Sphere[validPositions[[1]][[-1]],moleculeRadius*reach]}; 
 Graphics3D[{pointSpheres,molSpheres,NNsphere,NNsphere2},Boxed->False] (*Plots surface after removal of 
dead spots. Consider commenting this out if creating a large surface*) 
 ] 
 
Print["Position Neighbors Found!"]; 
(*SETS NEAREST NEIGHBORS*) 
(*creates a bunch of tables to store relevant orientation information for each molecule*) 
moleculeVectors = Table[Table[0,{j,1,validPerPart[[i]]}],{i,1,numParticles}]; 
moleculeAngles = Table[Table[0,{j,1,validPerPart[[i]]}],{i,1,numParticles}]; 
anisContribution = Table[Table[0,{j,1,validPerPart[[i]]}],{i,1,numParticles}]; 
positionDistances = Table[Table[{},{j,1,validPerPart[[i]]}],{i,numParticles}]; (*creates a table to store 
distances between nearest neighbors*) 
NNs =Table[Table[{},{j,1,validPerPart[[i]]}],{i,numParticles}]; (*creates a table to store nearest neighbor 
positions for each position*) 
For[i=1,i<=numParticles,i++, (*iterating over all particles*) 
   For[j=1,j<=validPerPart[[i]],j++, (*iterating over positions*) 
       maxNN = 2; (*resets the INDEX of the maximum nearest neighbor to 3*) 
       While[(xDistances[[i]][[j]][[maxNN]][[3]])<=reach*moleculeRadius, (*while the 
next neighbor is within the reaching radius, continue to append the NN and position distance*) 
         NNs[[i]][[j]] = 
Append[NNs[[i]][[j]],{xDistances[[i]][[j]][[maxNN]][[1]],xDistances[[i]][[j]][[maxNN]][[2]]}]; 
         positionDistances[[i]][[j]] = 
Append[positionDistances[[i]][[j]],xDistances[[i]][[j]][[maxNN]][[3]]]; 
         maxNN=maxNN+1; (*keep moving on to the next possible neighbor*) 
        ]; 
       stackInfo[[i]][[j]][[2]]=NNs[[i]][[j]] ; (*stores the generated list of nearest neighbors 
in the stack Info matrix*) 
     
      moleculeVectors[[i]][[j]] = validPositions[[i]][[j]]-partCenters[[i]]; (*finds the radially 
outward 3d vector that describes each molecules orientation*) 
      moleculeAngles[[i]][[j]] = 
ArcCos[Dot[moleculeVectors[[i]][[j]],{0,1,0}]/Norm[moleculeVectors[[i]][[j]]]]; (*calculates the angle made 
between molecular orientations and light polarity*) 
      anisContribution[[i]][[j]] = 1.5*(Cos[moleculeAngles[[i]][[j]]])^2 - 0.5; (*calculates the 
contribution to the anisotropy a molecule would have if oxidized based on its angle*) 
     
     ];  
  ]; 
Print["Position Neighbors Set!"]; 
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Print["Time Passed = ", Floor[(AbsoluteTime[]-startTime)/60]," minutes, 
",PaddedForm[Mod[(AbsoluteTime[]-startTime),60],{4,2}]," seconds"];  

 

(*Once you get a surface that looks good, make sure to run this to export it to Documents*) 
Export[stackName, {stackInfo,    inclinationAngleArray, {{numParticles, validPerPart}},    validPositions, 
PositionDistances, particleRadii, neighbors,    partCenters, moleculeAngles, anisContribution}]; 
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Full Model 

stackName = "TestStack.wdx"; 
stack=Import[stackName]; 
stackInfo = stack[[1]]; 
inclinationAngleArray = stack[[2]]; 
numParticles = stack[[3]][[1]][[1]]; 
positionsPerParticle = stack[[3]][[1]][[2]]; 
moleculePositions = stack[[4]]; 
NNDistances = stack[[5]]; 
particleRadii = stack[[6]]; 
particleNeighbors = stack[[7]]; (*contains neighboring particles of each particle. Each particle is at the end of 
its own list of neighbors *) 
particleCenters = stack[[8]]; 
moleculeAngles = stack[[9]]; 
anisotropyContribution = stack[[10]]; 
(*SUPPORTING FUNCTIONS*) 
probFromTau[x_]:=timeStepSize/x; 
dipoleOverlapFunc[x_]:=(Cos[x])^2; 
degeneracyAbsFunc[x_]:=Sin[x]   ; 
probAbsInit[x_]:=Abs[dipoleOverlapFunc[x](*degeneracyAbsFunc[x]*)] ;    (* This allows polarized light 
absorption (for when excited by a laser), plus inclination angular degeneracy *) 
lightIntensityBeersLaw[x_]:=10^(-((Log10[1/fracTrans]))*x)    ; 
distanceBetweenMolecules[x1_,y1_,z1_,x2_,y2_,z2_]:=Sqrt[(x1-x2)^2+(y1-y2)^2+(z1-z2)^2] ;(*PYTHAG*) 
 
FloodFill[part_,pos_]:=( 
  If[(stackInfo[[part,pos]][[1]]!=3)&&(percolationZone[[part,pos]]==0), 
     percolationZone[[part,pos]]=zoneCount; 
       If[Length[stackInfo[[part,pos]][[2]]]>=1, 
        
 FloodFill[stackInfo[[part,pos]][[2]][[1]][[1]],stackInfo[[part,pos]][[2]][[1]][[2]]]; 
         If[Length[stackInfo[[part,pos]][[2]]]>=2, 
          
 FloodFill[stackInfo[[part,pos]][[2]][[2]][[1]],stackInfo[[part,pos]][[2]][[2]][[2]]]; 
           If[Length[stackInfo[[part,pos]][[2]]]>=3, 
            
 FloodFill[stackInfo[[part,pos]][[2]][[3]][[1]],stackInfo[[part,pos]][[2]][[3]][[2]]]; 
             If[Length[stackInfo[[part,pos]][[2]]]>=4, 
              
 FloodFill[stackInfo[[part,pos]][[2]][[4]][[1]],stackInfo[[part,pos]][[2]][[4]][[2]]]; 
               If[Length[stackInfo[[part,pos]][[2]]]>=5, 
                
 FloodFill[stackInfo[[part,pos]][[2]][[5]][[1]],stackInfo[[part,pos]][[2]][[5]][[2]]]; 
                 If[Length[stackInfo[[part,pos]][[2]]]>=6, 
                  
 FloodFill[stackInfo[[part,pos]][[2]][[6]][[1]],stackInfo[[part,pos]][[2]][[6]][[2]]]; 
                  
 If[Length[stackInfo[[part,pos]][[2]]]>=7, 
                    
 FloodFill[stackInfo[[part,pos]][[2]][[7]][[1]],stackInfo[[part,pos]][[2]][[7]][[2]]]; 
                    
 If[Length[stackInfo[[part,pos]][[2]]]>=8, 
                      
 FloodFill[stackInfo[[part,pos]][[2]][[8]][[1]],stackInfo[[part,pos]][[2]][[8]][[2]]]; 
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                      ]; 
                    ]; 
                  ]; 
                ]; 
              ]; 
            ]; 
          ]; 
        ];  
     ]; 
  ) 
(*----------------------------------------------------------------------------------------------------------------------------- ------*) 
(*-----------------------------------------------------------------------------------------------------------------------------------*) 
(*----------------------------------------------------------------------------------------------------------------------------- ------* 
NotebookSave[]; (*Saves notebook when cell is executed to save tears later*) 
startTime=AbsoluteTime[]; 
$RecursionLimit = 50000; 
date = ToString[Mod[DateList[][[1]],100]]<>ToString[DateList[][[2]]]<>ToString[DateList[][[3]]]; 
Print["Status: Build Loaded\n","Time Passed = ", Floor[(AbsoluteTime[]-startTime)/60]," minutes, 
",PaddedForm[Mod[(AbsoluteTime[]-startTime),60],{4,2}]," seconds"]; 
 
seed=RandomPrime[{10^9,10^10}]; (*Uses the random number generator to get a random number that we 
will use to reset the number generator with a value we can store*) 
(*seed = FromDigits["deadbeef"];  (*Sets the seed to a consistent value for testing. Comment this line out to use 
the random seed above*)*) 
SeedRandom[seed]; (*Resets the random number generator with the seed determined above *)  
(*-------------------------------------------------------------------------------------------------------------------------------*)  
(*------------------------------------------------------------------------------------------------------------------------ -----------*)  
(*-----------------------------------------------------------------------------------------------------------------------------------*) 
(*RUN OPTIONS*) 
 
absBLLaw=False; (*True assigns initially excited dyes according to Beers Law absorbance, False makes the 
assignments randomly*) 
absAnisotropy=False;  (*True assigns initially excited dyes taking into account the angle on inclination with 
respect to the incoming light, False is random*) 
CWmode = False; (*if true, only excites one dye initially and then allows excitations to happen during the 
simulation based on illumination*) 
 
distanceDependantHopping = False; (*if true, the same number of nearest neighbors will be used but they will 
have different hopping probabilities*) 
electronSpreading = False; (*non-physical approximation which allows electrons to spread slightly away from 
their hole*) 
electronAreaScaling = False; (*non-physical approximation which scales electron density by particle surface 
area*) 
(*electronDistributionFixed = False;*) 
electronDistributionHomogenized = False; (*approximates that all electrons move fast enough that the whole 
surface receives the same electron density*) 
maxTimeSteps = 2000; (*Maximum number of timesteps to take in a CW experiment*) 
maxOxState=2; (*Maximum oxidation state that can be reached by the catalysts*) 
CWSuns = 1; 
numTrials = 3; 
absorbance=0.044;  (* 99% is 0.256; 72% is 0.193 *) 
fracTrans=0.10(*10^(-absorbance)*); 
 
(*Dead Spots*) 
DSFixed = False; (*If True, use per particle value, otherwise use per film value*) 
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DSperParticle = 0; 
pctDS = 0.0; (*% of positions covered by deadspots*) 
(*Catalysts*) 
CatFixed = False; (*If True, use per particle value, otherwise use per film value*) 
CatperParticle = 2; 
pctCats = 1.0; (*1.0 = 1%*) 
(*Dyes*) 
DyesFixed = False; (*If True, use per particle value, otherwise use per film value*) 
DyesperParticle = 10; 
DyesPerFilm = 20; 
UsePercent = True; (*allows a percent of a surfaces sites to be used rather than a fixed number*) 
PctExcitedDyes = 1.0; (*1 = 1%, 100 = 100%*) 
If[UsePercent==True, 
   DyesPerFilm = Round[(PctExcitedDyes/100.0)*Total[positionsPerParticle]*(1-pctDS)*(1-pctCats)];  
  ]; 
part = 1; 
 
(*Recording*) 
RecTurnovers = True; 
RecTimeBehavior = True; 
RecAnis = True; 
RecHopPaths = False; 
 
 
(*KHOP AND KRECOMB are arrays of all hopping and recombination time constants. They will all pair-wise be 
iterated over*) 
KHOP = {100000,50000,20000,10000,5000,2000,1000,500,200,100,50,20,10,5,2,1}*10^(-9); 
If[part==1, 
  KRECOMB = {1000}*10^(-9); 
  ]; 
If[part==2, 
  KRECOMB = {1000000}*10^(-9); 
  ]; 
(*----------------------------------------------------------------------------------------------------------------------------- ------*)  
(*-----------------------------------------------------------------------------------------------------------------------------------*) 
(*SETUP*) 
maxZ = Max[moleculePositions[[;;,;;,3]]]; 
minZ = Min[moleculePositions[[;;,;;,3]]]; 
particleAreas = particleRadii^2; 
particleRegions = Table[2*particleAreas[[i]],{i,1,numParticles}]; 
If[electronSpreading==True, 
  For[x=1,x<=numParticles,x++, 
     For[y=1,y<=Length[particleNeighbors[[x]]]-1,y++, 
        particleRegions[[x]]=particleRegions[[x]]+particleAreas[[particleNeighbors[[x]][[y]]]]; 
        ]; 
     ]; 
  ]; 
stackHeight = maxZ-minZ; (*calculates film thickness*) 
If[DyesFixed==True, (*overwrites set number of dyes if a set number per particle is specified*) 
   numInitialExcitedDyes = numParticles*DyesperParticle;, 
   numInitialExcitedDyes = DyesPerFilm; 
  ]; 
If[CatFixed==True, (*Determines the number of catalyst on the film depending on whether there is a set 
number per particle or film*) 
   numCatalysts = numParticles*CatperParticle;, 
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   numCatalysts=Round[(pctCats/100)*Total[positionsPerParticle],1]; 
  ]; 
(*FILENAMES*) 
turnoverFileName = 
date<>"_Turn_"<>ToString[maxOxState]<>"X_"<>ToString[numInitialExcitedDyes]<>"Part"<>ToString[part]
<>"_Excitations_"<>StringTake[stackName,{1,-5}]; 
timeFileName = 
date<>"_Time_"<>ToString[maxOxState]<>"X_"<>ToString[numInitialExcitedDyes]<>"Part"<>ToString[part]
<>"_Excitations_"<>StringTake[stackName,{1,-5}]; 
anisotropyFileName = 
date<>"_Anis_"<>ToString[maxOxState]<>"X_"<>ToString[numInitialExcitedDyes]<>"Part"<>ToString[part]<
>"_Excitations_"<>StringTake[stackName,{1,-5}]; 
If[absBLLaw==True,  
   turnoverFileName=turnoverFileName<>"_BL.CSV"; 
   timeFileName=timeFileName<>"_BL.XLSX"; 
   anisotropyFileName=anisotropyFileName<>"_BL.XLSX"; 
  , 
   turnoverFileName=turnoverFileName<>".CSV"; 
   timeFileName=timeFileName<>".XLSX"; 
   anisotropyFileName=anisotropyFileName<>".XLSX"; 
  ]; 
 
allHops = Table[{},{j,1,Length[KRECOMB]*Length[KHOP]}]; 
allTimes = Table[{},{j,1,Length[KRECOMB]*Length[KHOP]}]; 
allAnis = Table[{},{j,1,Length[KRECOMB]*Length[KHOP]}]; 
 
turnoverTable = Table[0,{j,1,Length[KHOP]*Length[KRECOMB]+1}]; 
turnoverTable[[1]] = {"TauRecomb (ns)","TauHop (ns)","TauRatio","Percent Turnovers","Number 
Turnovers"}; 
ParameterPoint = 0; (*Counter for parameter point (Hopping & Recombination Constants Combination)*) 
For[R = 1,R<=Length[KRECOMB],R++, (*Loops over all recombination rates*) 
  For[H = 1,H<=Length[KHOP],H++, (*Loops over all hopping rates*) 
    tauHopDyetoDye = KHOP[[H]]; (*Lifetime for Dye to Dye hopping*) 
    tauRecombDye= KRECOMB[[R]] ;(*Lifetime for dye recombination*)(*467*(10^-6)*) 
    ParameterPoint++; (*Keeps track of what iteration the model is on*) 
    HRR = N[KRECOMB[[R]]/KHOP[[H]]]; (*Find the hopping-recombination ratio*) 
    timeDecays = {}; 
    timeTable = Table[{{"Timestep","Time","Dyes Remaining","Charges","Turnovers","Dye 
Recombinations","Catalyst Recombinations","Catalysts Remaining","Excitations"}},{i,1,numTrials}]; 
    anisTable = Table[{{"Timestep","Time","Excited Molecules","Anisotropy"}},{i,1,numTrials}]; 
     
    (*Creates Tables to store Data of interest*) 
    turnoverTotals=0; 
     
    (*Creates Counters for recording the number of dyes which are removed in the auto recombine step*) 
    noCatRecombinations = 0; 
    loneChargeRecombinations = 0; 
    autoRecombinations = 0; 
    hops = {}; 
    shortest = 10^10; 
    For[trials = 1,trials<=numTrials,trials++, (*Loops over the number of trials specified to build up statistics*) 
     EndCondition=False; 
     If[RecHopPaths==True, 
       DyeTraces = Table[{},{i,1,numInitialExcitedDyes}]; 
       DyeIds = Range[numInitialExcitedDyes]; 
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       Print["Start: ",DyeIds]; 
      ]; 
     Print["Hop Rate: ",tauHopDyetoDye*10^9," ns","\nRecomb Rate: ",tauRecombDye*10^9," ns","\nParameter 
Point: ",ParameterPoint,"\nTrial: ",trials,"\nTime Passed = ", Floor[(AbsoluteTime[]-startTime)/60]," 
minutes"]; 
     (*Creates Counters for the number of times a catalyst has been found and the number of turnovers per trial*) 
     turnovers = 0; 
     numDyes = numInitialExcitedDyes; 
     (*-----------------------------------------------------------------------------------------------------------------------------------*)  
     (*-----------------------------------------------------------------------------------------------------------------------------------*)  
     (*-----------------------------------------------------------------------------------------------------------------------------------*) 
     (*PRIMARY PARAMETERS*) 
     (*calculates the minimum effective time constant and makes sure the time step size is much smaller*) 
     effectiveAnisTau = tauHopDyetoDye*3.75; 
     minTau = Min[effectiveAnisTau,tauRecombDye]; 
     timeStepSize =  minTau/350.0; (*2.0*(10^-9)*) (*NANOSECONDS*) (*MUST BE SMALLER THAN FASTEST 
OBSERVABLE*) 
     moleculeRadius=0.05; (*in units of 1 = 15nm*) 
     tauExcite = (14.8*(10^-6))/CWSuns; 
     (*sets Hopping rate from cat back to dye to be huge to prevent reverse hopping*) 
     tauHopCattoDye = tauHopDyetoDye*100000000000; 
     (*TABLES ARE CREATED TO STORE RATES FOR CATALYST BEHAVIOR. THESE MUST BE MANUALLY 
CHANGED BASED ON MAX OX STATE*) 
     tauHopDyetoCat = Table[0,4,1]; (*Creates a table to store dye oxidation rates of catalysts from dyes*) 
     tauHopDyetoCat[[1]] = tauHopDyetoDye/27; (* lifetime associated with hopping from a Dye to a catalyst 
that has 0 charges*) 
     tauHopDyetoCat[[2]] = tauHopDyetoDye/27; (*27 is used here to ensure that an adjacent dye hops to a 
catalyst 90% of the time before hopping away from it.*) 
     tauHopDyetoCat[[3]] =tauHopDyetoDye/27; 
     tauHopDyetoCat[[4]] = tauHopDyetoDye/27; 
     tauHopCattoCat = Table[0,4,1]; (*Creates a table to store catalyst oxidation rates of catalysts*) 
     tauHopCattoCat[[1]] = tauHopDyetoDye; (*Lifetime associated with a hop from ANY catalyst to a cat0*) 
     tauHopCattoCat[[2]] =tauHopDyetoDye;  
     tauHopCattoCat[[3]] = tauHopDyetoDye;  
     tauHopCattoCat[[4]] =tauHopDyetoDye;  
      
     tauRecombCatRates = Table[0,4,2]; (*Creates a table to store recombination rates for catalysts*) 
     tauRecombCatRates[[1,1]]=tauRecombDye;(*32.2*(10^-6); (*Fast lifetime for a single oxidized catalyst*)*) 
     tauRecombCatRates[[1,2]]=tauRecombDye;(*692.0*(10^-6);(*Slow lifetime for a single oxidized 
catalyst*)*) 
     tauRecombCatRates[[2,1]]=tauRecombDye;(*32.2*(10^-6);(*Fast lifetime for a double oxidized catalyst*)*) 
     tauRecombCatRates[[2,2]]=tauRecombDye;(*692.0*(10^-6);(*Slow lifetime for a double oxidized 
catalyst*)*) 
     tauRecombCatRates[[3,1]]=tauRecombDye;(*32.2*(10^-6);(*Fast lifetime for a triple oxidized catalyst*)*) 
     tauRecombCatRates[[3,2]]=tauRecombDye;(*692.0*(10^-6);(*Slow lifetime for a triple oxidized catalyst*)*) 
     tauRecombCatRates[[4,1]]=tauRecombDye;(*32.2*(10^-6);(*Fast lifetime for a quadruple oxidized 
catalyst*)*) 
     tauRecombCatRates[[4,2]]=tauRecombDye;(*692.0*(10^-6);(*Slow lifetime for a quadruple oxidized 
catalyst*)*) 
     popFrac1A = 0.38; (*Fraction of catalyst population that will undergo FAST recombination when singly 
Oxidized*) 
     popFrac2A = 0.5; (*Fraction of catalyst population that will undergo FAST recombination when doubly 
Oxidized*) 
     popFrac3A = 0.5; (*Fraction of catalyst population that will undergo FAST recombination when triply 
Oxidized*) 



132 
 

     popFrac4A = 0.5;(*Fraction of catalyst population that will undergo FAST recombination when quadruply 
Oxidized*) 
      
     tauTurnover = 1*(10^-9); (*NANOSECONDS*) (*NOT USED*) (*Lifetime for a fully oxidized catalyst to 
perform chemistry*) 
     (*-----------------------------------------------------------------------------------------------------------------------------------*)  
     (*----------------------------------------------------------------------------------------------------------------------------------- *)  
     (*-----------------------------------------------------------------------------------------------------------------------------------
*)(*SECONDARY PARAMETERS*) 
      
     (*Converts lifetimes to probabilities *) 
     probExcite = probFromTau[tauExcite]; 
     probHopDyetoDye = probFromTau[tauHopDyetoDye]; 
     probHopDyetoCat = probFromTau[tauHopDyetoCat]; 
     probHopCattoDye = probFromTau[tauHopCattoDye]; 
     probHopCattoCat = Map[probFromTau][tauHopCattoCat];(*converts all lifetimes into probabilities for 
oxidizing catalysts from dyes*) 
     probRecombCatRates = Map[probFromTau][tauRecombCatRates]; (*converts all lifetimes into probabilities 
for recombination over the timestep*) 
     probHopDyetoCat = Map[probFromTau][tauHopDyetoCat];(*converts all lifetimes into probabilities for 
oxidizing catalysts from dyes*) 
     probDyeRecomb = probFromTau[tauRecombDye]; (*Probability that a dye will recombine over the 
timestep*) 
     probTurnover = probFromTau[tauTurnover]; (*NOT USED*) 
      
     dyeRecombinations=0; (*prepares to count the number of dye recombinations that occur*) 
     catalystRecombinations=Table[0,maxOxState]; (*sets up an array to store the number of catalyst 
recombinations by oxidation state*) 
     catalystSpecies = Table[0,maxOxState]; (*creates an array to store the number of each catalyst species by 
oxidation state*) 
     anisotropy = 0; (*will be use to total the anisotropy after each pass of the loop*) 
     excitations=0;(*prepares to count the number of dye excitations that occur during the run*) 
      
     (*--------------------------------------------------------------------------------------------------------------------------------*) 
     (*-----------------------------------------------------------------------------------------------------------------------------------*) 
     (*-----------------------------------------------------------------------------------------------------------------------------------*) 
     (*-----------------------------------------------------------------------------------------------------------------------------------*) 
     (*-----------------------------------------------------------------------------------------------------------------------------------*) 
     (*-----------------------------------------------------------------------------------------------------------------------------------*) 
     (*PRE SIMULATION PRINTOUT*) 
     Print["-------------------------------------NEW RUN-----------------------------------------"]; 
     (*-----------------------------------------------------------------------------------------------------------------------------------*) 
     (*----------------------------------------------------------------------------------------------------------------------------------- *) 
     (*----------------------------------------------------------------------------------------------------------------------------------*) 
     (*ASSIGNMENT OF CATALYST AND DYE POSITIONS*) 
     oxList = Table[Table[0,{j,1,positionsPerParticle[[i]]}],{i,numParticles}]; (*resets the table that stores the 
oxidation states of every molecule*) 
     openPositions = 0; (*resets a counter that will store the number of valid positions in the whole surface*) 
     choiceWeighting = Table[Table[1,{j,1,positionsPerParticle[[i]]}],{i,numParticles}]; (*initializes a table of 
selection weights per molecule*) 
     possiblePositions = Table[Table[{i,j},{j,1,positionsPerParticle[[i]]}],{i,numParticles}]; (*initializes the list of 
all possible positions*) 
     FlattenedPositions = Flatten[possiblePositions,1]; 
     For[x=1,x<=numParticles,x++, (*iterates over all positions and resets them all to be non-oxidized dyes and 
counts them as open*) 
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       For[y=1,y<=Length[stackInfo[[x]]],y++, 
          stackInfo[[x,y]][[1]]=1; (*Reset the position to be a dye position*) 
          openPositions++; 
         ]; 
      ]; 
     (*SETTING DEAD SPOTS*) 
     DSArray = {}; (*creates an empty array to store empty molecular positions*) 
     If[DSFixed, (*if the number of dead spots is to be fixed per particle, choose that many for each and add them 
to the DSArray*) 
       For[x=1,x<=numParticles,x++, 
          DSArray = AppendTo[DSArray,RandomSample[ choiceWeighting[[x]]-> 
possiblePositions[[x]],DSperParticle]]; 
         ]; 
      ,(*if DS in not Fixed per particle, choose them randomly over the film*) 
       numDeadSpots = Round[(pctDS/100.0)*openPositions]; (*number of spots assigned to be neither dyes 
nor catalysts*) 
       DSArray = RandomSample[Flatten[choiceWeighting]->FlattenedPositions ,numDeadSpots]; 
      ]; 
     For[d=1,d<=Length[DSArray],d++, (*iterate over all the dead spots chosen, mark them as full positions, set 
their probability to be chosen to 0, and set their type in the stack info matrix*) 
       dpos = DSArray[[d]]; 
       stackInfo[[dpos[[1]],dpos[[2]]]][[1]]=3; 
       choiceWeighting[[dpos[[1]],dpos[[2]]]]=0; 
       openPositions--; 
      ]; 
     (*SETTING CATS*) 
     CatArray  = {}; (*creates an array to store the positions of all catalysts in the surface*) 
     If[CatFixed, (*if catalysts are to be fixed per particle, choose the appropriate number on each particle and 
store them*) 
       For[x=1,x<=numParticles,x++, 
          CatArray = AppendTo[CatArray,RandomSample[choiceWeighting[[x]]-
>possiblePositions[[x]],CatperParticle]]; 
         ]; 
      , (*If Cats are Not Fixed per particle, choose them randomly over the whole film*) 
       numCats = Round[(pctCats/100.0)*openPositions]; 
       CatArray = RandomSample[Flatten[choiceWeighting]->FlattenedPositions,numCats]; 
      ]; 
     For[c=1,c<=Length[CatArray],c++,(*iterate over all catalysts chosen, mark the positions as full, set their 
probability for selection to 0, and choose additional parameters for them in the stack info matrix*) 
       cpos = CatArray[[c]]; 
       stackInfo[[cpos[[1]],cpos[[2]]]][[1]]=2; 
       choiceWeighting[[cpos[[1]],cpos[[2]]]]=0; 
       recomb1 = RandomChoice[{popFrac1A,1-popFrac1A}-
>{probRecombCatRates[[1,1]],probRecombCatRates[[1,2]]}]; (*randomly choose a 1st recombination rate*) 
       recomb2 = RandomChoice[{popFrac2A,1-popFrac2A}-
>{probRecombCatRates[[2,1]],probRecombCatRates[[2,2]]}]; (*randomly choose a 2nd recombination rate*) 
       recomb3 = RandomChoice[{popFrac3A,1-popFrac3A}-
>{probRecombCatRates[[3,1]],probRecombCatRates[[3,2]]}]; (*randomly choose a 3rd recombination rate*) 
       recomb4 = RandomChoice[{popFrac4A,1-popFrac4A}-
>{probRecombCatRates[[4,1]],probRecombCatRates[[4,2]]}]; (*randomly choose a 4th recombination rate*) 
       stackInfo[[cpos[[1]],cpos[[2]]]][[3]]={recomb1,recomb2,recomb3,recomb4}; (*sets each catalysts 4 
recombination rates*) 
      ]; 
     (*calculate the fraction depth of each molecular position in the surface and stores in a table*) 
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     moleculeDepthFraction = Table[Table[{(moleculePositions[[i]][[j]][[3]]-
minZ)/stackHeight},{j,1,positionsPerParticle[[i]]}],{i,1,numParticles}]; 
     (*SETTING DYES*) 
     DyeArray = {}; (*creates an array to store the positions of all initially excited dyes*) 
     If[absBLLaw, (*if Beers Law is to be used*) 
       (*calculates the probability weight from Beer's Law for each molecule based on depth*) 
       placementWeighting = Map[lightIntensityBeersLaw,moleculeDepthFraction];  
       choiceWeighting = choiceWeighting*placementWeighting; (*factors in beers law weighting to open 
positions*) 
      ]; 
     If[absAnisotropy,choiceWeighting = choiceWeighting*Map[probAbsInit,moleculeAngles];];(*Apply 
Anisotropy effects if turned on*) 
     If[DyesFixed, (*If dye positions are to be fixed per particle, choose them per particle based on weight 
previously calculated*) 
       For[x=1,x<=numParticles,x++, 
         DyeArray = AppendTo[DyeArray,RandomSample[choiceWeighting[[x]]-
>possiblePositions[[x]],DyesperParticle]]; 
        ]; 
      DyeArray = Flatten[DyeArray,1]; 
      ,(*chooses dyes randomly over the surface*) 
       DyeArray = RandomSample[Flatten[choiceWeighting]-> FlattenedPositions,DyesPerFilm]; 
      ]; 
     (*Set the position of the initially excited absorbers in the status Matrix*)  
     For[a=1, a<=Length[DyeArray],a++,(oxList[[(DyeArray[[a]][[1]]),(DyeArray[[a]][[2]])]])=1;]; 
      
     (*-----------------------------------------------------------------------------------------------------------------------------------*) 
     (*-----------------------------------------------------------------------------------------------------------------------------------*) 
     (*-----------------------------------------------------------------------------------------------------------------------------------*) 
     (*Sorting dye positions into percolation zones*) 
     (*creates a table to store the percolation zone of each molecule*) 
     percolationZone = Table[Table[0,{j,1,positionsPerParticle[[i]]}],{i,1,numParticles}]; 
     zoneCount=0; (*counter that keeps track of the number of zones there are so far*) 
     For[x=1,x<=numParticles,x++, (*iterates over all particles*) 
       For[y=1,y<=positionsPerParticle[[x]],y++, (*iterates over all positions on particle x*) 
          If[(stackInfo[[x,y]][[1]]!=3)&&(percolationZone[[x,y]]==0), (*if the molecule isn't a dead spot 
and it is still set to zone 0, flood*) 
             zoneCount++ (*count the new zone discovered!*) 
               FloodFill[x,y]; (*Run a recursive algorithm to identify all molecular positions which 
are connected to each other starting from here*) 
            ]; 
         ]; 
      ]; 
      
     Zones = Table[{},{i,1,zoneCount}]; (*creates a table to store the (particle, position) coordinates of all 
molecules by zone*) 
     ZonesPos = Table[{},{i,1,zoneCount}]; (*creates a table to store the XYZ coordinates of all molecules by 
zone*) 
     ZoneSizes = Table[{i,0},{i,1,zoneCount}]; (*creates a table to store the size of each zone*) 
      
     For[z=1,z<=zoneCount,z++, (*iterates over all zones*) 
       For[x=1,x<=numParticles,x++, (*iterates over all particles*) 
         For[y=1,y<=Length[stackInfo[[x]]],y++, (*iterates over all positions*) 
            If[percolationZone[[x,y]]==z, (*if the molecule belongs to current zone, store its PP 
and XYZ coordinates*) 
               Zones[[z]] = AppendTo[Zones[[z]],{x,y}]; 
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               (*ZonesPos[[z]] = AppendTo[ZonesPos[[z]],positions[[x,y]]];*) (*not 
actually used outside of troubleshooting*) 
              ]; 
           ]; 
        ]; 
       ZoneSizes[[z]][[2]] =Length[Zones[[z]]]; (*calculates the size of each percolation zone*) 
      ]; 
     (*-----------------------------------------------------------------------------------------------------------------------------------*) 
     (*-----------------------------------------------------------------------------------------------------------------------------------*) 
     (*-----------------------------------------------------------------------------------------------------------------------------------*) 
      
     If[distanceDependantHopping==True, (*if different nearest neighbors should receive different hopping 
weights based on distance*) 
       allDistAng = Flatten[NNDistances]*15*10; (*creates an array off all nearest neighbor distances*) 
       molRadAng = moleculeRadius*15*10; (*Van der Waals radius of molecules in angstroms*) 
       tunnelFactor = 0.35; 
       ExpAve=(-Log[Mean[Exp[(-tunnelFactor)*(allDistAng-
2*molRadAng)]]]/tunnelFactor)+2*molRadAng; 
       AveFactor =Exp[(ExpAve-2*molRadAng)*(-0.35)]; 
       AveFactorInverse = 1.0/AveFactor; 
       ]; 
      factors = {}; 
     (*iterates through all positions and counts the number of catalyst neighbors to each to assign weighted 
hopping probabilities*) 
     For[x=1,x<=numParticles,x++, (*iterates over all the particles*) 
       For[y=1,y<=positionsPerParticle[[x]],y++, (*iterates over each position on a particle*) 
          If[stackInfo[[x,y]][[1]]==1, (*currently looking at a dye*) 
            stackInfo[[x,y]][[3]]=probDyeRecomb; 
            neighbors = stackInfo[[x,y]][[2]]; (*retrieves the list of nearest neighbors for the 
given particle and position*) 
            hopProbs = Table[0,{Length[neighbors]}]; (*creates a table to store a molecule's 
hopping probability to each nearest neighbor*) 
            For[z=1,z<=Length[neighbors],z++, (*iterates over each neighbor in the list*) 
              If[distanceDependantHopping==True, (*if distance dependence, calculate 
relative hopping weight neighbor by neighbor*) 
               distanceFactor = AveFactorInverse*Exp[(-
tunnelFactor)*(NNDistances[[x,y]][[z]]*15*10-2*molRadAng)]; 
               factors = AppendTo[factors,distanceFactor]; 
               ,distanceFactor=1;]; (*if no distance dependence, weight everything by 1*) 
              If[stackInfo[[neighbors[[z]][[1]],neighbors[[z]][[2]]]][[1]]==1, 
hopProbs[[z]]=probHopDyetoDye*distanceFactor; ];(*Neighbor is a dye*) 
              If[stackInfo[[neighbors[[z]][[1]],neighbors[[z]][[2]]]][[1]]==2, 
hopProbs[[z]]=probHopDyetoCat[[1]]*distanceFactor; ];(*Neighbor is a catalyst*)    
             ]; 
           ]; 
          If[stackInfo[[x,y]][[1]]==2, (*currently looking at a catalyst*) 
            neighbors = stackInfo[[x,y]][[2]]; (*retrieves the list of nearest neighbors for the 
given particle and position*) 
            hopProbs = Table[0,{Length[neighbors]}]; (*creates a table to store a molecule's 
hopping probability to each nearest neighbor*) 
            For[z=1,z<=Length[neighbors],z++, (*iterates over each neighbor in the list*) 
              If[stackInfo[[neighbors[[z]][[1]],neighbors[[z]][[2]]]][[1]]==1, (*Neighbor is 
a dye*) 
                hopProbs[[z]]=probHopCattoDye; 
                ]; 
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              If[stackInfo[[neighbors[[z]][[1]],neighbors[[z]][[2]]]][[1]]==2, (*Neighbor is 
a catalyst*) 
                hopProbs[[z]]=probHopCattoCat[[1]]; 
               ];  
             ]; 
           ]; 
          stackInfo[[x,y]][[4]]=hopProbs; (*assigns the array of hopping probabilities to the position in 
the stack info.*) 
         ]; 
      ]; 
     POI = RandomSample[DyeArray]; (*randomly sorts the initial points of interest list to make order of action 
arbitrary*) 
      
     CatsPerParticle = Table[0,{i,1,numParticles}]; (*prepares a table to count the number of catalysts per 
particle*) 
     initialChargeDistPZ = Table[0,{zoneCount}]; (*prepares a table to count the number of excitations per 
percolation zone*) 
     CatsPerPZ = Table[0,{i,1,zoneCount}];(*prepares a table to count the number of catalysts per percolation 
zone*) 
     For 
[x=1,x<=Length[POI],x++,initialChargeDistPZ[[percolationZone[[POI[[x]][[1]],POI[[x]][[2]]]]]]++;];(*counts 
up the number of excitations on each particle*) 
     For[cat=1,cat<=Length[CatArray],cat++, 
CatsPerPZ[[percolationZone[[CatArray[[cat]][[1]],CatArray[[cat]][[2]]]]]]++;]; (*Counts Cats per percolation 
Zone*) 
     For[cat=1,cat<=Length[CatArray],cat++, CatsPerParticle[[CatArray[[cat]][[1]]]]++; ]; (*Counts the number 
of Catalysts per particle and stores in Array*) 
     hopelessZones = {}; (*creates an array that stores all zone with either 0 cats or fewer excitations than the 
maximum number*) 
     For[x=1,x<=Length[POI],x++, (*for each molecule currently with a charge (all dyes during this prestart 
calculation)*) 
       p = POI[[x]]; (*current molecule*) 
       pz = percolationZone[[p[[1]]]][[p[[2]]]]; (*percolation zone of the molecule*) 
        If[(CatsPerPZ[[pz]]==0 )||(initialChargeDistPZ[[pz]]<maxOxState),(*If dyes can't contribute 
to a full catalyst, do the recombination thing*) 
           If[CatsPerPZ[[pz]]==0 ,noCatRecombinations++;]; (*if the excitation is 
hopeless because of lack of cats, record that*) 
           If[initialChargeDistPZ[[pz]]<maxOxState ,loneChargeRecombinations++;]; 
(*if the excitation is hopeless because it lacks fellow excitations in its zone, record that*) 
           If[!MemberQ[hopelessZones,pz], (*if the zone is hopeless and is not yet on 
the list, add it*) 
             hopelessZones = AppendTo[hopelessZones,pz]; 
            ]; 
         ]; 
      ]; 
     If[RecHopPaths==True, For[x=1,x<=numInitialExcitedDyes,x++,DyeTraces[[x]] = 
AppendTo[DyeTraces[[x]],POI[[x]]];];]; 
     (*-----------------------------------------------------------------------------------------------------------------------------------*) 
     (*----------------------------------------------------------------------------------------------------------------------------------- *) 
     (*-----------------------------------------------------------------------------------------------------------------------------------*) 
     Print["--------------------------------Beginning Main Loop------------------------------------"]; 
     (*MAIN LOOP*) 
     timestep=0; (*WOOOOOOO finally going to start doing stuff!!!!!!*) 
     While[EndCondition==False,  (*keep going until there are no more excited dyes*) 
       If[Mod[timestep,1000]==0, (*every 1000 timesteps*) 
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         If[And[numDyes<=0,CWmode==False],EndCondition=True;]; 
         sanityCheck = dyeRecombinations+numDyes+turnovers*maxOxState; (*performs a sanity 
check by adding up all the places excitations could have been lost*) 
         For[state=1,state<=maxOxState,state++, 
           sanityCheck = 
sanityCheck+state*catalystSpecies[[state]]+catalystRecombinations[[state]]; 
          ]; 
       If[numCatalysts>0, 
          allHopeless = True;  (*checks to make sure at least one dye remains in a non-hopeless zone*) 
          For[x=1,x<=Length[POI],x++, 
            p=POI[[x]]; 
            pz = percolationZone[[p[[1]]]][[p[[2]]]]; 
            
If[And[!MemberQ[hopelessZones,pz],stackInfo[[p[[1]],p[[2]]]][[1]]==1],allHopeless=False;];]; 
          If[allHopeless, (*if all remaining excitations are in hopeless zones, terminate the trial after 
bookkeeping*) 
            numDyes=0;  
            Print["FORESAKEN!"]; 
            For[x=1,x<=Length[POI],x++, 
              p=POI[[x]]; 
              If[stackInfo[[p[[1]]]][[p[[2]]]][[1]]==1, 
                autoRecombinations++; 
                dyeRecombinations++; 
               ]; 
             ]; 
            EndCondition=True; 
           ]; 
        ]; 
         Print["Timestep: ",timestep,"\nParameter Point: ",ParameterPoint,"\nTurnovers = 
",turnovers,"\nRecombinations from Dyes = ",dyeRecombinations,"\nDyes remaining excited = 
",numDyes,"\nSingle catalysts remaining excited = ",catalystSpecies[[1]],"\nDouble catalysts remaining 
excited = ",catalystSpecies[[2]],"\nSanity Check: ",sanityCheck]; 
        ]; 
        
       timestep++; (*keeps ticking away...*) 
       If[RecAnis==True, 
         anisotropy=0; (*Measure Anisotropy for the timestep*) 
         For[x=1,x<=Length[POI],x++, anisotropy = anisotropy 
+anisotropyContribution[[POI[[x]][[1]],POI[[x]][[2]]]];]; 
         If[Length[POI]>0,anisotropy = anisotropy/Length[POI];,anisotropy=0;]; 
         timestepStress = 1.0*Length[POI]; 
         anisRow = {timestep,timestep*timeStepSize,timestepStress,anisotropy}; 
         anisTable[[trials]] = AppendTo[anisTable[[trials]],anisRow]; 
        ]; 
       electronsPerParticle = Table[0,{numParticles}]; (*creates a table to count the number of injected 
electrons per particle*) 
       electronDensityPerPart = Table[0,{numParticles}];  
       charges = 0; 
       numDyes = 0; 
       numberCatalysts = 0; 
      For [x=1,x<=Length[POI],x++, (*iterates over all currently excited molecules and counts which particle they 
are on. Assume electron stay local*) 
         point = POI[[x]]; 
         charges=charges+oxList[[point[[1]],point[[2]]]]; 
         If[stackInfo[[point[[1]],point[[2]]]][[1]]==1, 
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           numDyes=numDyes+1, 
           numberCatalysts=numberCatalysts+1; 
          ]; 
        
 electronsPerParticle[[point[[1]]]]=electronsPerParticle[[point[[1]]]]+oxList[[point[[1]],point[[2]]]]; 
        ]; 
       If[electronSpreading==True, 
         For [x=1,x<=numParticles,x++, (*iterates over all currently excited molecules and counts 
which particle they are on. Assume electron stay local*) 
           
 electronDensityPerPart[[x]]=electronDensityPerPart[[x]]+electronsPerParticle[[x]]*(2*particleAreas
[[x]])/(particleRegions[[x]]); 
            For[y=1,y<=Length[particleNeighbors[[x]]]-1,y++, 
              neighbor = particleNeighbors[[x]][[y]]; 
              electronDensityPerPart[[neighbor]] = electronDensityPerPart[[neighbor]] 
+electronsPerParticle[[x]]*(particleAreas[[neighbor]])/(particleRegions[[x]]); 
             ]; 
           ]; 
        ,  
         electronDensityPerPart = electronsPerParticle; 
        ]; 
       If[electronAreaScaling==True,electronDensityPerPart = 
Table[electronDensityPerPart[[i]]/particleAreas[[i]],{i,1,numParticles}];]; 
       If[electronDistributionHomogenized==True, 
         electronDensityPerPart = Table[Mean[electronDensityPerPart],{i,1,numParticles}]; 
        ]; 
       If[RecTimeBehavior==True, 
         timeRow = 
{timestep,timestep*timeStepSize,1.0*numDyes,1.0*charges,1.0*turnovers,1.0*dyeRecombinations,1.0*Total[
catalystRecombinations],1.0*numberCatalysts,1.0*excitations}; 
         timeTable[[trials]] = AppendTo[timeTable[[trials]],timeRow]; 
        ]; 
       For[mol=1,mol<=Length[POI],mol++, (*for every timestep, iterates through the list of Points of 
interest*) 
         point = POI[[mol]]; (*pulls the x,y coordinates from the POI list for the current molecule we 
are looking at*) 
         position=  stackInfo[[point[[1]],point[[2]]]]; (*uses the x,y coords to retrieve the relevant 
information about the molecule we are looking at*)  
         Which[position[[1]]==1, (* CURRENTLY LOOKING AT A DYE*) 
            probHop = position[[4]]; (*pulls the probabilities from the position info 
array*) 
            NN = position[[2]]; 
            probDyeRecomb = position[[3]]*electronDensityPerPart[[point[[1]]]]; 
            choiceValid=False; 
            While[choiceValid==False, (*makes a choice for what happens to the dye we 
are looking at*) 
          
         If[Total[probHop]+probDyeRecomb<1, 
               dyeChoice=RandomChoice[Flatten[{probHop,probDyeRecomb,(1-
Total[probHop]-probDyeRecomb)}]-> Table[i,{i,Length[probHop]+2}]];  
          , (*if the probabilities are greater than 1, don't allow the option to do nothing (still weights according to 
size)*) 
          dyeChoice=RandomChoice[Flatten[{probHop,probDyeRecomb}]-> Table[i,{i,Length[probHop]+1}]];  
          ]; 
              If[(dyeChoice>Length[probHop]) 
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 ||((stackInfo[[NN[[dyeChoice]][[1]],NN[[dyeChoice]][[2]]]][[1]]==1 ) 
                    && 
oxList[[NN[[dyeChoice]][[1]],NN[[dyeChoice]][[2]]]]==0) 
                
 ||((stackInfo[[NN[[dyeChoice]][[1]],NN[[dyeChoice]][[2]]]][[1]]==2 ) 
                    && 
oxList[[NN[[dyeChoice]][[1]],NN[[dyeChoice]][[2]]]]<maxOxState), 
                choiceValid=True; 
               ]; 
             ]; 
            Which[dyeChoice<=Length[probHop], (*Hop to another position*) 
              hopTarget = NN[[dyeChoice]];(*determines which neighbor has 
been selected*) 
              hopTargetInfo = stackInfo[[ hopTarget[[1]],hopTarget[[2]]]]; 
              hops = 
AppendTo[hops,(timeStepSize/(probHop[[dyeChoice]]))*10^9]; 
              If[hopTargetInfo[[1]]==1,(*Target is a dye*) 
                oxList[[ hopTarget[[1]],hopTarget[[2]]]]++; (*increases the 
oxidation state of the target*) 
                oxList[[point[[1]],point[[2]]]]--; (*decreases ox state of the 
source*) 
                POI[[mol]]=hopTarget; (* target replaces source in POI 
list*) 
               
 If[RecHopPaths==True,DyeTraces[[DyeIds[[mol]]]]=AppendTo[DyeTraces[[DyeIds[[mol]]]],hopTarg
et];]; 
               ]; 
              If[hopTargetInfo[[1]]==2,(*Target is a catalyst*) 
                initialHopTargetState = oxList[[ 
hopTarget[[1]],hopTarget[[2]]]]; (*stores starting state for bookeeping*) 
                oxList[[ hopTarget[[1]],hopTarget[[2]]]]++;(*increases the 
oxidation state of the target*)        
                targetNN=hopTargetInfo[[2]]; 
                For[z=1,z<=Length[targetNN],z++, 
                  neighbor = targetNN[[z]]; 
                  targNeighInfo = 
stackInfo[[neighbor[[1]],neighbor[[2]]]]; 
                  pos = 
FirstPosition[targNeighInfo[[2]],hopTarget][[1]]; 
                 
 If[targNeighInfo[[1]]==1,stackInfo[[neighbor[[1]],neighbor[[2]]]][[4]][[pos]]=probHopDyetoCat[[ini
tialHopTargetState+1]];]; 
                 
 If[targNeighInfo[[1]]==2,stackInfo[[neighbor[[1]],neighbor[[2]]]][[4]][[pos]]=probHopCattoCat[[init
ialHopTargetState+1]];]; 
                 ]; 
                oxList[[point[[1]],point[[2]]]]--; (*decreases ox state of the 
source*) 
                POI[[mol]]=hopTarget; (* target replaces source in POI 
list*) 
               
 If[RecHopPaths==True,DyeTraces[[DyeIds[[mol]]]]=AppendTo[DyeTraces[[DyeIds[[mol]]]],hopTarg
et];]; 
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                catalystSpecies[[initialHopTargetState+1]]++; (*increase 
the count of the catalyst type just created*) 
                If[initialHopTargetState!=0,(*IF hopping to a previously 
oxidized catalyst*) 
                  catalystSpecies[[initialHopTargetState]]--; 
                  POI=Delete[POI,mol] ; (*If catalyst was previously 
oxidized, just remove point hopped from point of interest*)  
                  If[RecHopPaths==True,DyeIds = 
Delete[DyeIds,mol];]; 
                  mol--; (*moves backward one step in the loop to 
account for deleting the current point in the list*) 
                 ]; 
               ]; 
             , (* Branch of the Dye Choice Which Statement*)    
             dyeChoice==Length[probHop]+1,(*RECOMBINE*) 
              oxList[[point[[1]],point[[2]]]]--; (*reduces the number of charges on 
the dye*) 
              POI=Delete[POI,mol];(*dyes only ever have 1 charge so after it is 
gone, the dye is now just a normal point *) 
              If[RecHopPaths==True,DyeIds = Delete[DyeIds,mol];]; 
              mol--; (*moves backward one step in the loop to account for deleting 
the current point in the list*) 
          
              dyeRecombinations++; 
             ]; 
           ,(* Branch of the Particle Type Which Statement*) 
           position[[1]]==2,(*CURRENTLY LOOKING AT A CATALYST*) 
            catOxState = oxList[[point[[1]],point[[2]]]]; 
            catRecombProb = 
position[[3]][[catOxState]]*electronDensityPerPart[[point[[1]]]]; 
            probHop= position[[4]]; 
            NN = position[[2]]; 
            choiceValid=False; 
                
            If[catOxState == maxOxState, (*Check to see if a Catalyst is fill, if so recombine 
catalyst until empty*) 
              catChoice = Length[probHop]+2; 
              turnovers++; 
              catalystSpecies[[maxOxState]]--; 
              oxList[[point[[1]],point[[2]]]]=0; 
              For[z=1,z<=Length[NN],z++, 
                neighbor = NN[[z]]; 
                pos = 
FirstPosition[stackInfo[[neighbor[[1]],neighbor[[2]]]][[2]],point ][[1]]; 
                If[stackInfo[[neighbor[[1]],neighbor[[2]]]][[1]]==1, 
                 
 stackInfo[[neighbor[[1]],neighbor[[2]]]][[4]][[pos]]=probHopDyetoCat[[1]]; 
                 ]; 
                If[stackInfo[[neighbor[[1]],neighbor[[2]]]][[1]]==2, 
                 
 stackInfo[[neighbor[[1]],neighbor[[2]]]][[4]][[pos]]=probHopCattoCat[[1]]; 
                 ]; 
               ]; 
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              POI=Delete[POI,mol]; (*If the catalyst has no more charges on in, 
remove it from the list*) 
              If[RecHopPaths==True,DyeIds = Delete[DyeIds,mol];]; 
              mol--; (*moves backward one step in the loop to account for deleting 
the current point in the list*) 
          
             , (*if not full, choose something to do*) 
           While[choiceValid==False, 
               catChoice=RandomChoice[Flatten[{probHop,catRecombProb,(1-
Total[probHop]-catRecombProb)}]-> Table[i,{i,Length[probHop]+2}]]; 
                If[ 
                  Or[catChoice>Length[probHop], 
                   
 And[stackInfo[[NN[[catChoice]][[1]],NN[[catChoice]][[2]]]][[1]]==1 ,  
                     
 oxList[[NN[[catChoice]][[1]],NN[[catChoice]][[2]]]]==0], 
                   
 And[stackInfo[[NN[[catChoice]][[1]],NN[[catChoice]][[2]]]][[1]]==2 , 
                     
 oxList[[NN[[catChoice]][[1]],NN[[catChoice]][[2]]]]<maxOxState] 
                   ], 
                  choiceValid=True; 
                 ]; 
              ]; 
         ]; (*end check full catalyst*) 
         
            If[catChoice<=Length[probHop], (*Hop to a target*) 
              hopTarget = NN[[catChoice]];(*determines which neighbor has 
been selected*) 
              hopTargetInfo = stackInfo[[ hopTarget[[1]],hopTarget[[2]]]]; 
              If[(hopTargetInfo[[1]]==1),(*hopping to a dye*) 
                 
                oxList[[ hopTarget[[1]],hopTarget[[2]]]]++;(*increase the 
oxidation state of target*) 
                oxList[[point[[1]],point[[2]]]]--;(*reduces the oxidation 
state of the source*) 
                For[z=1,z<=Length[NN],z++, 
                  neighbor = NN[[z]]; 
                  pos = 
FirstPosition[stackInfo[[neighbor[[1]],neighbor[[2]]]][[2]],point ][[1]]; 
                 
 If[stackInfo[[neighbor[[1]],neighbor[[2]]]][[1]]==1, 
                   
 stackInfo[[neighbor[[1]],neighbor[[2]]]][[4]][[pos]]=probHopDyetoCat[[oxList[[point[[1]],point[[2]]
]]+1]];]; 
                 
 If[stackInfo[[neighbor[[1]],neighbor[[2]]]][[1]]==2, 
                   
 stackInfo[[neighbor[[1]],neighbor[[2]]]][[4]][[pos]]=probHopCattoCat[[oxList[[point[[1]],point[[2]]]
]+1]];]; 
                 ]; 
                catalystSpecies[[catOxState]]--; (*reduces the number of 
catalysts of the type just lost*) 
                POI=Append[POI,hopTarget];(*Adds the target dye to the 
point of interest list*) 
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                If[oxList[[point[[1]],point[[2]]]]==0, (*If the catalyst is now 
empty, remove it*) 
                  POI=Delete[POI,mol]; 
                  mol--; (*moves backward one step in the loop to 
account for deleting the current point in the list*) 
                 , (*IF the catalyst is Not empty*) 
                  catalystSpecies[[catOxState-1]]++; (*count the 
catalyst type just created*) 
                 ]; 
               ]; (*END cat hop to a dye*) 
              If[(hopTargetInfo[[1]]==2),(*hopping to a catalyst*) 
                hopTargetOxState = oxList[[ 
hopTarget[[1]],hopTarget[[2]]]]; 
                oxList[[ hopTarget[[1]],hopTarget[[2]]]]++ ; 
                oxList[[point[[1]],point[[2]]]]--; 
                targetNN=hopTargetInfo[[2]]; 
                For[z=1,z<=Length[targetNN],z++, 
                  neighbor = targetNN[[z]]; 
                  pos = 
FirstPosition[stackInfo[[neighbor[[1]],neighbor[[2]]]][[2]],hopTarget][[1]]; 
                 
 If[stackInfo[[neighbor[[1]],neighbor[[2]]]][[1]]==1, 
                  
 stackInfo[[neighbor[[1]],neighbor[[2]]]][[4]][[pos]]=probHopDyetoCat[[oxList[[ 
hopTarget[[1]],hopTarget[[2]]]]]];]; 
                 
 If[stackInfo[[neighbor[[1]],neighbor[[2]]]][[1]]==2, 
                  
 stackInfo[[neighbor[[1]],neighbor[[2]]]][[4]][[pos]]=probHopCattoCat[[oxList[[ 
hopTarget[[1]],hopTarget[[2]]]]]];]; 
                 ]; 
                For[z2=1,z2<=Length[NN],z2++, 
                  neighbor = NN[[z2]]; 
                  pos = 
FirstPosition[stackInfo[[neighbor[[1]],neighbor[[2]]]][[2]],point ][[1]]; 
                 
 If[stackInfo[[neighbor[[1]],neighbor[[2]]]][[1]]==1, 
             
                  
 stackInfo[[neighbor[[1]],neighbor[[2]]]][[4]][[pos]]=probHopDyetoCat[[oxList[[point[[1]],point[[2]]
]]+1]];]; 
                 
 If[stackInfo[[neighbor[[1]],neighbor[[2]]]][[1]]==2, 
                
                  
 stackInfo[[neighbor[[1]],neighbor[[2]]]][[4]][[pos]]=probHopCattoCat[[oxList[[point[[1]],point[[2]]]
]+1]];]; 
                 ];       
                catalystSpecies[[catOxState]]--; 
                catalystSpecies[[hopTargetOxState+1]]++; 
                If[hopTargetOxState==0, (*IF hopping to a newly oxidized 
catalyst*) 
                  POI=Append[POI,hopTarget]; (*Adds the target 
catalyst to the point of interest list*) 
                 , (*if hopping to an already oxidized catalyst*) 
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                  catalystSpecies[[hopTargetOxState]]--; (*if a 
catalyst was previously oxidized, reduce the count of the kind it previously was*) 
                 ]; 
                If[catOxState==1, (*if the catalyst hopped from is now 
depleted (it was at 1)*) 
                  POI=Delete[POI,mol]; 
                  mol--;, (*moves backward one step in the loop to 
account for deleting the current point in the list*) 
                  catalystSpecies[[catOxState-1]]++; (*if a catalyst 
has been reduced without being depleted add one catalyst of the type which it now is*) 
                 ]; 
                ];  (*END cat hop to another cat*) 
             ];  (*END Cat choice = HOP*) 
             
            If[catChoice==Length[probHop]+1, (*Recombine!*) 
               
              oxState = oxList[[point[[1]],point[[2]]]]; 
              catalystRecombinations[[oxState]]++; (*increments the catalyst 
recombination type that occurred*) 
              catalystSpecies[[oxState]]--; 
              oxList[[point[[1]],point[[2]]]]--;(*reduces the number of charges on 
the catalyst*) 
              For[z=1,z<=Length[NN],z++, 
                neighbor = NN[[z]]; 
                pos = 
FirstPosition[stackInfo[[neighbor[[1]],neighbor[[2]]]][[2]],point ][[1]]; 
                If[stackInfo[[neighbor[[1]],neighbor[[2]]]][[1]]==1, 
                 
 stackInfo[[neighbor[[1]],neighbor[[2]]]][[4]][[pos]]=probHopDyetoCat[[oxList[[point[[1]],point[[2]]
]]+1]]; 
                 ]; 
                If[stackInfo[[neighbor[[1]],neighbor[[2]]]][[1]]==2, 
                 
 stackInfo[[neighbor[[1]],neighbor[[2]]]][[4]][[pos]]=probHopCattoCat[[oxList[[point[[1]],point[[2]]]
]+1]]; 
                 ]; 
           
               ]; 
              If[oxState==1, (*If the catalyst only had 1 charge left*) 
                POI=Delete[POI,mol]; (*If the catalyst has no more charges 
on in, remove it from the list*) 
                mol--;(*moves backward one step in the loop to account for 
deleting the current point in the list*) 
                If[RecHopPaths==True,DyeIds = Delete[DyeIds,mol];]; 
               , (*if the cat had more than one charge left*) 
                catalystSpecies[[oxState-1]]++; (*if the catalyst wasn't 
depleted, a reduced but still oxidized type was created*) 
               ]; 
             ];(*END Cat choice recombine*) 
           ]; (*END Molecule type Which Statement*) 
         ];(*END OF POI LOOP*) 
       
        If[CWmode==True, (*only excite new dyes if CW Mode is on*) 
          (*possibly excite a new dye this timestep*) 
          If[timestep>=maxTimeSteps,EndCondition=True;]; 
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          If[RandomReal[]<=probExcite, 
            excitations++; 
            choiceWeightingThisTime = choiceWeighting; 
           
 For[x=1,x<=Length[POI],x++,choiceWeightingThisTime[[POI[[x,1]],POI[[x,2]]]]=0;]; 
            newDye = Flatten[RandomSample[Flatten[choiceWeightingThisTime]-> 
Flatten[possiblePositions,1],1],1]; 
            oxList[[newDye[[1]],newDye[[2]]]]=1; 
            POI = AppendTo[POI,newDye]; 
           ]; 
         ]; 
       
      ];(*END OF MAIN LOOP*) 
     If[timestep<shortest,shortest=timestep;]; 
     turnoverTotals=turnoverTotals+turnovers; 
     ]; (*END OF TRIALS LOOP*) 
    If[RecTurnovers==True, 
      turnoverAverage = turnoverTotals*1.0/numTrials; 
      turnoverPercent = turnoverAverage/numInitialExcitedDyes; 
      turnoverRow = 
{tauRecombDye*10^9,tauHopDyetoDye*10^9,HRR,turnoverPercent,turnoverAverage}; 
      turnoverTable[[ParameterPoint+1]]=turnoverRow; 
     ]; 
    If[RecAnis==True, 
      anisTableTrim=Table[anisTable[[i]][[1;;shortest+1]],{i,1,numTrials}]; 
      anisMean = Mean[anisTableTrim]; 
     ]; 
    If[RecTimeBehavior==True, 
      timeTableTrim=Table[timeTable[[i]][[1;;shortest+1]],{i,1,numTrials}]; 
      timeMean = Mean[timeTableTrim]; 
     ]; 
    noCatRecombinations = 1.0*noCatRecombinations/numTrials; 
    loneChargeRecombinations = 1.0*loneChargeRecombinations/numTrials; 
    autoRecombinations = 1.0*autoRecombinations/numTrials; 
    (*-----------------------------------------------------------------------------------------------------------------------------------*) 
    (*----------------------------------------------------------------------------------------------------------------------------- ------*) 
    (*----------------------------------------------------------------------------------------------------------------------------------- *) 
    (*EXPORTING*) 
    If[RecAnis==True, 
     anisotropyFileNameTemp = StringTake[anisotropyFileName,StringLength[anisotropyFileName]-
5]<>"_"<>ToString[ParameterPoint]<>StringTake[anisotropyFileName,-5]; 
     Export[anisotropyFileNameTemp,anisMean]; 
     ]; 
    If[RecTimeBehavior==True, 
     timeFileNameTemp = StringTake[timeFileName,StringLength[timeFileName]-
5]<>"_"<>ToString[ParameterPoint]<>StringTake[timeFileName,-5]; 
     Export[timeFileNameTemp,timeMean]; 
     ]; 
    If[RecTurnovers==True,Export[turnoverFileName,turnoverTable];]; 
    sanityCheck = dyeRecombinations+numDyes+turnovers*maxOxState; (*Perform a sanity check to make sure 
all bookkeeping adds up*) 
    For[ox =1,ox<=maxOxState,ox++, sanityCheck= sanityCheck 
+(ox*catalystSpecies[[ox]]+catalystRecombinations[[ox]]); ]; 
    totalTime = (AbsoluteTime[]-startTime)/60; (*determines how long it took the program to run from start to 
final printout*) 
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    (*POST SIMULATION PRINTOUT*) 
    Print["-------------------------------------END RUN-----------------------------------------"]; 
    Print["Dye Excitations = ", excitations]; 
    Print["Turnovers = ",turnovers]; 
    Print["Recombinations from Dyes = ",dyeRecombinations]; 
    Print["Dyes remaining excited = ",numDyes]; 
    For[ox=1,ox<=maxOxState,ox++, Print[ToString[ox]," - Oxidized catalyst remaining excited = 
",catalystSpecies[[ox]]];]; 
    For[ox=1,ox<=maxOxState,ox++, Print[ToString[ox]," - Oxidized catalyst recombined = 
",catalystRecombinations[[ox]]];]; 
    Print["Sanity Check: ", sanityCheck," should be equal to ",numInitialExcitedDyes+excitations]; 
    Print["Total Time Passed = ", Floor[(AbsoluteTime[]-startTime)/60]," minutes, 
",PaddedForm[Mod[(AbsoluteTime[]-startTime),60],{4,2}]," seconds"]; 
     
    allHops[[ParameterPoint]]=hops; 
    If[RecTimeBehavior==True,allTimes[[ParameterPoint]]=timeMean;]; 
    ]; (*END OF HOP CONSTANT LOOP*) 
  ]; (*END OF RECOMBINE CONSTANT LOOP*) 
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APPENDIX C.  Modeling Guide in Python 
This guide will serve as a user’s manual for running Monte Carlo Simulations using 

the python model. This guide will not be as thorough as the one for the Mathematica code 

because most of the reasoning behind it is the same. Instead it will highlight the differences 

between the two. For more detailed explanations of the code please refer to the inline 

comments and for more detailed reasoning behind some of the decisions made, please see 

the Mathematica code guide. 

 

Overview 

At a high level, this program is used to model the accumulation of electron-holes on 

catalysts anchored to dye-sensitized nanoparticles. This accumulation is the result of these 

holes hopping between surface anchored molecules through self-exchange electron 

transfer processes as they as they move across the surface and eventually trap on catalysts 

sites. As with the Mathematica version of this program, there are two main functional 

parts: the creation of a surface, and the running of the model on a surface. This breakdown 

allows a surface created by the first part to be used over and over under different 

experimental conditions. One of the main differences with Python is that there are actually 

three pieces of code: the surface builder, the model runner, and the GUI interface which 

controls the other two. This allows conditions to be tested easily without having to worry 

about making typos while scrolling through 1000 lines of code to try and change one 

parameter here and another one there. 
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The GUI 

The GUI has 2 panels.  The first panel is the Full Model panel and controls the 

running of the model on a pregeneratred surface. The input parameters are sorted under 

relevant headings.  

The first heading are global run options. These are four Boolean values which by 

default start as False. Checking any of these boxes will set them to true when the Go is 

pressed. Polarized Excitation controls whether an anisotropic distribution of initial excited 

states will be created based on using polarized light for excitation. Distant Dependent 

Hopping determines whether hopping to neighbor values will be weighted by distances 
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between those neighbors. If this option is selected, the hopping probability set according to 

the Hopping Taus will be modified based on inter-neighbor distances but the average 

hopping probability for the whole modeled surface will remain unchanged. Electron 

Spreading and Electron Area Scaling are non-physical, non-rigorous approximations which 

aim to correct for lack of modeled electron behavior in this model. Area Scaling will scale 

the electron density a given particle receives by that particle’s surface area while the 

spreading function will share some electron density from a given particle with the 

neighboring particles based on their relative sizes. More details on these functions can be 

found in the other guide as well as in in-line comments. 

The second heading controls options for what data are recorded during a 

simulation. Behavior over time will record many different statistics every timestep. These 

statistics will be averaged over a number of trials and truncated to the shortest trial. They 

will be stored in separate excel files by parameter point. Anisotropy will record the value of 

the polarization anisotropy of the system at every timestep. This value is averaged over 

trials and truncated to the shortest trial. An Excel file is created for these data for each 

parameter point. Turnover Yields records the fraction of initial photoexcitations which 

ultimately contribute to catalyst turnover in both number and percent. These values are 

averaged over a number of trials and exported as a large table organized by parameter 

point. Hopping Paths will record the path taken by every photoexcitation from start to 

finish. This will be overwritten each trial or parameter point and should only be done a 

single time to make a hopping video. 

The Beer-Lambert Law section controls initial excitation distribution and whether a 

Beer-Lambert distribution should be applied to the weights of the positions for 
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photoexcitation. If the box is checked, the will be applied according to the value entered in 

the Fractional Transmittance box. This box may be filled directly or else the Absorbance box 

can be filled and the corresponding value will be calculated. 

The Continuous Illumination section controls whether a simulation will include the 

possibility for additional photoexcitations to occur after each timestep (as under sun light 

illumination) or whether the only photoexcitation events will occur as timestep 0 (as in a 

pulsed laser experiment). If the box is checked there will an additional probability for 

photoexcitation events to occur based on the value in the Suns box. Additionally, an ending 

timestep will be set by Max Timesteps because having zero excited dyes is no longer a 

useful ending condition. 

The Molecular Distributions section controls how photoexcitations, catalysts, and 

dead spots are distributed over the modeling surface. This essentially allows for 4 options 

for each and the number entered in the #/% column will be handled according to the first 

two columns for each row. This means that a specific number of excitations could be placed 

on each particle, a specific number of excitations could be placed over the whole surface 

(By Particle left unchecked), a certain percentage of each particle’s molecules could be 

excited initially (only really relevant if there are different sizes of particles), or that a 

certain percentage of molecules will be excited over the whole film. This last option is the 

default option. These options are handled the same for each molecular species (excitation, 

dead spot, and catalyst) and all default to a percent-based usage over the whole film. It 

should also be noted that when using percentages that the percent entered will correspond 

to the percent of the total possible when it comes time to assign positions of each of the 

molecular species. During the simulation, dead spots are assigned first, followed by 
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catalysts, followed by excitations. This means that, for example, one could input 50% to be 

the total surface coverage for all 3 species and that 50% of all sites would be dead spots, 

25% of all sites (50% of all non-dead spots) would be catalysts, and 12.5% of sites (50% of 

what is left) would be initially excited dyes. 

The Repetitions section controls the loops that the simulation will run through. The 

Trials look is how many identical repetitions of each parameter point to make. In general, 

results from separate trials loops will be averaged together. The Hopping Taus and 

Recombine Taus each take in a string of comma separated values which are in units of 

nanometers. The simulation will run through all combinations of these values with each 

combination designated as a parameter point. For example if 3 Hop values are given and 2 

Recombine values are given the simulation will run 6 times total (H1R1, H2R1, H3R1, 

H1R2, H2R2, H3R2). These values are the hopping and recombination time constants use in 

the simulation for an excited state (before weighting from other factors). If you plan to 

repeatedly use a set of values, you can save the set using the Save Values button. They will 

then appear in the corresponding drop-down menu the next time the program is opened. 

However, it should be noted that only one such set of values can be saved per running of 

the program. If many sets of value need to be entered in the drop-down menus quickly, the 

excel file containing those values can be found in the SavedSettings folder and edited 

manually.  

The Surface section is where a pregenerated surface can be chosen from the drop-

down menu. Alternatively, you can type in the name of the surface you want. The drop-

down menu contains the scanned results of all surfaces in the Surfaces folder and so is a 

complete list of all surfaces it is possible to load. If something you want is not on this list, 
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typing it in won’t work either. Below that is the entry for what the maximum oxidation 

state of a catalyst should be. This doesn’t really belong here but also doesn’t really belong 

in any other sections, so this seemed like where it fit the best. 

Above the Surface section are two buttons. The Go button starts a simulation with 

the selected surface and with the input parameters. The Load Button loads a selected 

surface and displays a plot of it so you can visualize what is being loaded. 

The second panel is the Surface Generation panel. This takes a number of 

parameters and can be used to create a surface by hitting the Go button. The preview 

button will generate a text description of the surface to be generated for proof reading if 

that is desired. It should be noted that if you run a surface generation, you must exit out of 

the GUI and reopen for it to appear in the surface drop-down menu. 
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Most of the variables here are fairly straightforward but a few are not so obvious. 

The Surface Name will be the file name used as well as the identifier used in the Run model 

panel. The Number of Particles is simply the number of particles to be used in the modeled 

surface. Number of Positions is the number of molecules that will be able to bind to a 

particle. This is the number used for a radius 1 particle and this value is scaled for particles 

of different sizes to maintain the same point density. The Molecular Radius is the size of the 

individual molecules and should be entered in units where 1 = 15 nm. This is done so that 

particles (which are meant to be 15nm in radius) can have a radius of 1 to keep certain 

math simple. This value should be near the van der waals radius of a modeled molecule. 

The default value is probably fine is almost all cases. Molecular Reach is a value that, when 

multiplied by the molecular radius gives the length (still in units of 1 = 15 nm) that two 

adjacent molecules must be within to be considered neighbors. All molecules within 

molecular radius* molecular reach of a given molecule are neighbors of that molecule. 

Stack? Is a true or false value which is by default true. If true, each particle added to the 

surface will be added to the bottom of the surface directly downward whereas if the value 

is false, particles may be added to the surface in any direction resulting in a cluster rather 

than a stack. Necking takes both a minimum and maximum value and ensures that every 

particle necks with a least one other particle by the minimum amount (in order to be 

attached to the surface) and that the overlap between any two molecules is no more than 

the maximum value (particles cannot be on top of each other). These values represent a 

fraction of a particle’s radius that can overlap with another particle. If two particles have a 

necking value of 0, their surfaces are exactly touching each other, and any negative values 

result in particles that are not in contact at all. Meanwhile, a particle with a necking value of 
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1 (100%) with another will have its entire radius overlapped by the other particle such 

that the surface of the other particle passed through the center of the first particle. Particle 

Size also takes a range of values which set the range of possible particle sizes where 1 = 15 

nm. These values specify particle radii and the distribution of sizes will be normal between 

the minimum and maximum specified values. Cluster Compactness is only relevant if 

making a cluster and not a stack. This value controls how tightly packed the cluster will be 

with large values (10) resulting in tight spherical clusters and large negative values (-10) 

resulting in long dendritic clusters. When choosing where to place a new particle in a 

cluster, first an existing particle is chosen to “grow off of”. After this choice is made, a 

proposal particle is generated and tested against necking constraints, if it fails a new 

selection is made. This continues until the desired number of particles has been added and 

Cluster Compactness controls the weighting of the choice for a particle to grow off. More 

specifically, the choice for the growing particle is weighted by X^(-Cluster Compactness) 

where X is the particle number (order of addition to the cluster). In this way, large values of 

Cluster Compactness favor growing off the oldest particles in the surface while large 

negative values favor growing off the most recently added particles. 

The Surface Builder 

One of the biggest changes in the code between Mathematica and Python versions is 

that Python supports objects and other structures. So instead of organizing all the 

information about the surface in a table full of tables is it organized on a Surface object. 

This has many relevant fields stored on the object including heightMax, heightMin, 

thickness, name, totalSites, numParticles, and particles.  Most of these are fairly self 

explanatory and correspond to the values calculated and stored in the stack file by the 
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Mathematica surface builder. The particles field is an array of Particle objects. Each of these 

Particle objects has many relevant fields including center, radius, numPositions, particleNNs 

(Particle Nearest Neighbors), particleArea (used for electron scaling functions), 

particleRegions (used for electron spreading functions), and molecules. The molecules field 

is, in turn, an array of Molecule objects with the relevant fields: radii (van Der Waals), XYZ 

(array of 3D coordinates), inclinationAngle (used for polarization effects), 

anisotropyContribution, OxState, typeOf, NNs (Nearest Neighbors), NNdists (distances to 

each Nearest Neighbor), HopRates (hopping rates to each nearest neighbor which may vary 

if distance dependent hopping is enabled), RecombRate, and percolationZone (a zone 

number assigned to sets of mutually connected molecules). By making use of structures the 

stored parameters can be accessed much more simply and in a self documenting way. For 

example, if you wanted to determine the type of the molecule at position 5 on the 3rd 

particle the Mathematica model requires you to write stackInfo[[3]][[5]][[1]] and simply 

know that the first entry in each molecule’s stack info table is the type. In Python you 

would write SURF.particles[3].molecules[5].typeOf. While this is overall longer, is very 

clear what is being accessed which makes troubleshooting much easier.  

On the whole, the general procedure follows the same pattern. First the designated 

number of particles are added to the surface one at a time. Once the particles are set, an 

array of positions for that particle is generated such that the positions are close to equally 

spaced out of over the particle’s surface. Once positions have been established, particles 

neighboring each other are determined followed by the determination of molecular 

neighbors. Once neighbors are set global statistics, such at the number of molecules per 
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surface and the height max and height min are determined and stored. The surface is 

exported as a binary data stream as a “SURF” filetype. 

The Full Model 

The full model begins by importing the surface from the specified SURF file and then 

proceeds very similarly to the Mathematica version. One of the main syntactic differences is 

that Python allows for the iteration over any sorts of arrays and not just a series of numeric 

values. There are a number of cases where this is made use of an instead of iterating over 

the number of particles on a surface, for example, an iteration is carried out over the 

particles themselves. For example, “For x in SURF.particles” starts a loop where x is, at each 

iteration of the loop, a particle object from SURF.particles, not merely a counter counting 

out the nth particle. This helps keep things concise and somewhat easier to read. 

Other than syntactic changes, the simulation proceeds very similarly as in the 

Mathematica version and so for further detail please see that model’s description. The 

order of some functions is different but the logical flow is still all the same. 
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APPENDIX D.  Model in Python 
The GUI 

import matplotlib 
matplotlib.use("TkAgg") 
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, 
NavigationToolbar2TkAgg 
from matplotlib.figure import Figure 
import random as rand 
import matplotlib.pyplot as plt 
import math 
import statistics 
import glob 
import numpy as np 
from mpl_toolkits.mplot3d import Axes3D 
import os 
import pickle 
import csv 
import surfaceBuilder as SB #this needs to be in the same folder 
import RunModel as RM #this needs to be in the same folder 
import tkinter as tk 
from tkinter import ttk 
 
FONT= ("Verdana", 12, "bold") 
labelFont = ("Verdana", 12) 
 
#loads a selected surface to create a visual preview. The aspect ratio will be wrong be 
connectivity will be correct 
def loadSurface(self,name): 
    filepath = os.getcwd() 
    with open(filepath+"/Surfaces/"+name+".SURF", "rb") as fileIn: 
        unpickler = pickle.Unpickler(fileIn) 
        SURF = unpickler.load() 
    SB.plotSurface(SURF) 
    doneText = tk.Text(self,height = 1, width = 40, font = FONT,wrap = "word") 
    doneText.insert(1.0,"Done Importing "+name+"!") 
    doneText.place(relx=0.51,rely=0.55,anchor='nw') 
    print("Done Importing "+name+"!") 
 
#runs the model with all input parameters after loading specified surface with pickle 
def 
RunFullModel(self,name,AnisTF,DDHTF,electSpreadTF,electScaleTF,timeRecTF,AnisRecTF,
TurnoverRecTF,hoppingPathTF,CWModeTF,maxTimeNum,sunsNum,BLTF,fractTransNum,
excitePCTTF,catPCTTF,DSPCTTF,excitePartTF,catPartTF,DSPartTF,exciteNum,catNum,DSN
um,trialsNum,hops,recombs,catMaxNum): 
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    filepath = os.getcwd() 
    with open(filepath+"/Surfaces/"+name+".SURF", "rb") as fileIn: 
        unpickler = pickle.Unpickler(fileIn) 
        SURF = unpickler.load() 
    
RM.RunModel(SURF,name,bool(AnisTF),bool(DDHTF),bool(electSpreadTF),bool(electScale
TF),bool(timeRecTF),bool(AnisRecTF),bool(TurnoverRecTF),bool(hoppingPathTF),bool(C
WModeTF),int(maxTimeNum),float(sunsNum),bool(BLTF),float(fractTransNum),bool(exci
tePCTTF),bool(catPCTTF),bool(DSPCTTF),bool(excitePartTF),bool(catPartTF),bool(DSPart
TF),float(exciteNum),float(catNum),float(DSNum),int(trialsNum),hops,recombs,int(catMax
Num)) 
 
#runs the surfacebuilder with all input parameters 
def 
runSurfaceGeneration(self,name,r1Pos,molRad,molReach,neckMin,neckMax,sizeMin,sizeM
ax,numPart,stack,compactness): 
    
SB.buildSurface(str(name),int(r1Pos),float(molRad),float(neckMin),float(neckMax),float(si
zeMin),float(sizeMax),int(numPart),bool(stack),float(compactness),float(molReach)) 
    doneText = tk.Text(self,height = 1, width = 40, font = FONT,wrap = "word") 
    doneText.insert(1.0,name+" Created Successfully!") 
    doneText.place(relx=0.51,rely=0.55,anchor='nw') 
     
#creates a textbox describing the input setting for proofreading before running surface 
generation     
def 
previewSurfaceGeneration(self,name,r1Pos,molRad,molReach,neckMin,neckMax,sizeMin,si
zeMax,numPart,stack,compactness): 
    if stack == True: 
        stackString = "Stack" 
    else: 
        stackString = "Cluster" 
    outString = "A "+stackString+" called "+name+" will be created out of "+str(numPart)+" 
particles whose size ranges from "+str(sizeMin)+" to "+str(sizeMax)+" and which will neck 
between "+str(neckMin)+" and "+str(neckMax)+" % of their radius. There will be 
"+str(r1Pos)+" positions on a size 1 particle with a reach of "+str(molReach)+" and a radius 
of "+str(molRad)+"." 
    modelDescription = tk.Text(self, height = 8, width = 40, font =FONT,wrap="word") 
    modelDescription.insert(1.0,outString) 
    modelDescription.place(relx=0.01,rely=0.55,anchor='nw') 
 
 
class Model(tk.Tk): #mostly black magic that makes the GUI work. Don't mess with it. 
    def __init__(self, *args, **kwargs): 
        tk.Tk.__init__(self, *args, **kwargs) 
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        tk.Tk.wm_title(self, "Stochastic Photoexcitation Accumulation Model") #controls title at 
the top of the window 
 
        container = tk.Frame(self) 
        container.pack(side="top", fill="both", expand = False) 
        container.grid_rowconfigure(0, weight=1) 
        container.grid_columnconfigure(0, weight=1) 
        self.frames = {} 
        for F in (SurfaceGenerator, FullModel): 
            frame = F(container, self) 
            self.frames[F] = frame 
            frame.grid(row=0, column=0, sticky="nsew") 
        self.resizable(False,False) 
        self.show_frame(FullModel) #starts the GUI on the Full Model tab 
    def show_frame(self, cont): 
        frame = self.frames[cont] 
        frame.tkraise() 
 
         
class SurfaceGenerator(tk.Frame): #controls the surface generation tab 
 
    def __init__(self, parent, controller):#black magic 
        tk.Frame.__init__(self,parent) #some more black magic 
        #adds title to tab 
        label = tk.Label(self, text="Surface Generator", font=FONT)  
        label.pack() 
        #controls window size 
        modelWindowSize = tk.Text(self,height = 40,width = 120,bg = "gray75") 
        modelWindowSize.pack() 
        #adds Full model button 
        button2 = ttk.Button(self, text="Full Model",command=lambda: 
controller.show_frame(FullModel)) 
        button2.place(relx=.34,rely=0.05,anchor='nw') 
        #adds Go button 
        button4 = ttk.Button(self, 
text="Go",command=lambda:runSurfaceGeneration(self,surfaceName.get(),r1Num.get(),m
olradNum.get(),molreachNum.get(),neckingMinNum.get(),neckingMaxNum.get(),sizeMinN
um.get(),sizeMaxNum.get(),partNum.get(),stackedTF.get(),compactNum.get())) 
        button4.place(relx=.67,rely=0.05,anchor='nw') 
        #adds preview Button 
        button5 = ttk.Button(self, 
text="Preview",command=lambda:previewSurfaceGeneration(self,surfaceName.get(),r1Nu
m.get(),molradNum.get(),molreachNum.get(),neckingMinNum.get(),neckingMaxNum.get(),
sizeMinNum.get(),sizeMaxNum.get(),partNum.get(),stackedTF.get(),compactNum.get())) 
        button5.place(relx=.77,rely=0.05,anchor='nw') 
        #adds Surface Name Section 
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        surfaceNameLabel = tk.Text(self,height=1,width=35,background = 'red', font=FONT) 
        surfaceNameLabel.insert(1.0,"Surface Name") 
        surfaceNameLabel.place(relx=0.01,rely=0.09,anchor='nw') 
        surfaceName = tk.Entry(self,width=25) 
        surfaceName.insert(0,"(Enter Surface Name)") 
        surfaceName.place(relx=0.01,rely=0.13,anchor='nw') 
        #adds Stack? section 
        stackedLabel = tk.Text(self,height=1,width=35,background = 'red', font=FONT) 
        stackedLabel.insert(1.0,"Stack?") 
        stackedLabel.place(relx=0.99,rely=0.09,anchor='ne') 
        stackedTF = tk.BooleanVar() 
        s = tk.Checkbutton(self,text = "Stack?",variable = stackedTF) 
        s.place(relx=0.99,rely=0.13,anchor='ne') 
        s.select() 
        #adds Number of Particles section 
        partLabel = tk.Text(self,height=1,width=35,background = 'red', font=FONT) 
        partLabel.insert(1.0,"Number of Particles") 
        partLabel.place(relx=0.01,rely=0.17,anchor='nw') 
        partNum = tk.Spinbox(self,from_=1, to=200,width=10) 
        partNum.delete(0,'end') 
        partNum.insert(1,100) 
        partNum.place(relx=0.01,rely=0.21,anchor='nw') 
        #adds the Necking section 
        neckingLabel = tk.Text(self,height=1,width=35,background = 'red', font=FONT) 
        neckingLabel.insert(1.0,"Necking") 
        neckingLabel.place(relx=0.99,rely=0.17,anchor='ne') 
        neckingMinLabel = tk.Text(self,height=1,width=6,background = 'red', font=FONT) 
        neckingMinLabel.insert(1.0,"Min") 
        neckingMinLabel.place(relx=0.69,rely=0.21,anchor='ne') 
        neckingMaxLabel = tk.Text(self,height=1,width=6,background = 'red', font=FONT) 
        neckingMaxLabel.insert(1.0,"Max") 
        neckingMaxLabel.place(relx=0.87,rely=0.21,anchor='ne') 
         
        neckingMinNum = tk.Spinbox(self,from_=-1, to=2,width=10,increment = 0.25,format = 
"%.2f") 
        neckingMinNum.delete(0,'end') 
        neckingMinNum.insert(1,-1) 
        neckingMinNum.place(relx=0.78,rely=0.21,anchor='ne') 
         
        neckingMaxNum = tk.Spinbox(self,from_=-1, to=2,width=10,increment = 0.25,format = 
"%.2f") 
        neckingMaxNum.delete(0,'end') 
        neckingMaxNum.insert(1,-1) 
        neckingMaxNum.place(relx=0.96,rely=0.21,anchor='ne') 
        #adds the Particle Size section 
        sizeLabel = tk.Text(self,height=1,width=35,background = 'red', font=FONT) 
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        sizeLabel.insert(1.0,"Particle Size (1 = 15 nm)") 
        sizeLabel.place(relx=0.99,rely=0.25,anchor='ne') 
        sizeMinLabel = tk.Text(self,height=1,width=6,background = 'red', font=FONT) 
        sizeMinLabel.insert(1.0,"Min") 
        sizeMinLabel.place(relx=0.69,rely=0.29,anchor='ne') 
        sizeMaxLabel = tk.Text(self,height=1,width=6,background = 'red', font=FONT) 
        sizeMaxLabel.insert(1.0,"Max") 
        sizeMaxLabel.place(relx=0.87,rely=0.29,anchor='ne') 
         
        sizeMinNum = tk.Spinbox(self,from_=0.0, to=10,width=10,increment = 0.5,format = 
"%.1f") 
        sizeMinNum.delete(0,'end') 
        sizeMinNum.insert(1,1) 
        sizeMinNum.place(relx=0.78,rely=0.29,anchor='ne') 
 
        sizeMaxNum = tk.Spinbox(self,from_=0.0, to=10,width=10,increment = 0.5,format = 
"%.1f") 
        sizeMaxNum.delete(0,'end') 
        sizeMaxNum.insert(1,1) 
        sizeMaxNum.place(relx=0.96,rely=0.29,anchor='ne') 
        #adds the Particle Radius Section 
        r1Label = tk.Text(self,height=1,width=35,background = 'red', font=FONT) 
        r1Label.insert(1.0,"Number of Positions for Radius 1 Particle") 
        r1Label.place(relx=0.01,rely=0.25,anchor='nw') 
        r1Num = tk.Spinbox(self,from_=1, to=2000,width=10) 
        r1Num.delete(0,'end') 
        r1Num.insert(1,250) 
        r1Num.place(relx=0.01,rely=0.29,anchor='nw') 
        #adds the molecule radius section 
        molradLabel = tk.Text(self,height=1,width=35,background = 'red', font=FONT) 
        molradLabel.insert(1.0,"Molecular Radius (1=15 nm)") 
        molradLabel.place(relx=0.01,rely=0.33,anchor='nw') 
        molradNum = tk.Spinbox(self,from_=0.01, to=0.1,width=10,increment =0.005) 
        molradNum.delete(0,'end') 
        molradNum.insert(1,0.05) 
        molradNum.place(relx=0.01,rely=0.37,anchor='nw') 
        #adds the molecule reach section 
        molreachLabel = tk.Text(self,height=1,width=35,background = 'red', font=FONT) 
        molreachLabel.insert(1.0,"Molecular Reach (Multiplier of Radius)") 
        molreachLabel.place(relx=0.01,rely=0.41,anchor='nw') 
        molreachNum = tk.Spinbox(self,from_=1, to=20,width=10) 
        molreachNum.delete(0,'end') 
        molreachNum.insert(1,7.0) 
        molreachNum.place(relx=0.01,rely=0.45,anchor='nw') 
        #adds the cluster compactness section 
        compactLabel = tk.Text(self,height=1,width=35,background = 'red', font=FONT) 



161 
 

        compactLabel.insert(1.0,"Cluster Compactness") 
        compactLabel.place(relx=0.99,rely=0.33,anchor='ne') 
        compactNum = tk.Spinbox(self,from_=-10, to=10,width=10) 
        compactNum.delete(0,'end') 
        compactNum.insert(1,0) 
        compactNum.place(relx=0.99,rely=0.37,anchor='ne')         
     
 
         
class FullModel(tk.Frame): #controls the Full Model tab 
    def __init__(self, parent, controller): #black magic 
        tk.Frame.__init__(self, parent)#more black magic 
        #adds title to tab 
        label = tk.Label(self, text="Full Model", font=FONT)  
        label.pack() 
        labelBGColor = "Blue" 
        labelTextColor = "Yellow" 
        files = glob.glob('Surfaces/*.SURF')#scans current directory for files of ".SURF" type 
using glob 
        surfaceNames = [name[9:-5] for name in files] #creates a list of the Names of the 
surfaces from files 
 
        hopList = importHops() #imports lists of previously saved hopping rates 
        recombList = importRecombs()#imports lists of previously saved recombination rates 
        #controls  windows size 
        modelWindowSize = tk.Text(self,height = 40,width = 120,bg = "gray40") 
        modelWindowSize.pack() 
        #adds the Surface Generation Button 
        button = ttk.Button(self, text="Surface Generator",command=lambda: 
controller.show_frame(SurfaceGenerator)) 
        button.place(relx=.01,rely=0.05,anchor='nw') 
        #adds the Go button 
        button4 = ttk.Button(self, 
text="Go",command=lambda:RunFullModel(self,surface.get(),AnisTF.get(),DDHTF.get(),ele
ctSpreadTF.get(),electScaleTF.get(),timeRecTF.get(),AnisRecTF.get(),TurnoverRecTF.get(),
hoppingPathTF.get(),CWModeTF.get(),maxTimeNum.get(),sunsNum.get(),BLTF.get(),fract
TransNum.get(),excitePCTTF.get(),catPCTTF.get(),DSPCTTF.get(),excitePartTF.get(),catPar
tTF.get(),DSPartTF.get(),exciteNum.get(),catNum.get(),DSNum.get(),trialsNum.get(),hops.g
et(),recombs.get(),catMaxNum.get())) 
        button4.place(relx=.67,rely=0.05,anchor='nw') 
        #adds the Load Button 
        button5 = ttk.Button(self, 
text="Load",command=lambda:loadSurface(self,surface.get())) 
        button5.place(relx=.77,rely=0.05,anchor='nw') 
        #adds the Run Options Section 
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        heading1 = tk.Text(self,height=1,width=20,background = labelBGColor, font=FONT,fg = 
labelTextColor) 
        heading1.insert(1.0,"Run Options") 
        heading1.place(relx=0.01,rely=0.1,anchor='nw') 
 
        AnisTF=tk.BooleanVar() 
        Anischeck = tk.Checkbutton(self,text= "Polarized Excitation", variable = AnisTF) 
        Anischeck.place(relx=0.01,rely=0.14,anchor='nw') 
        DDHTF=tk.BooleanVar() 
        DDHcheck = tk.Checkbutton(self,text= "Distant Dependant Hopping", variable = 
DDHTF) 
        DDHcheck.place(relx=0.01,rely=0.18,anchor='nw') 
        electSpreadTF=tk.BooleanVar() 
        electrSpreadcheck = tk.Checkbutton(self,text= "Electron Spreading", variable = 
electSpreadTF) 
        electrSpreadcheck.place(relx=0.01,rely=0.22,anchor='nw') 
        electScaleTF=tk.BooleanVar() 
        electScalecheck = tk.Checkbutton(self,text= "Electron Area Scaling", variable = 
electScaleTF) 
        electScalecheck.place(relx=0.01,rely=0.26,anchor='nw') 
        #adds the Recording Options Section 
        heading2 = tk.Text(self,height=1,width=20,background = labelBGColor, font=FONT,fg = 
labelTextColor) 
        heading2.insert(1.0,"Recording Options") 
        heading2.place(relx=0.01,rely=0.34,anchor='nw') 
        timeRecTF=tk.BooleanVar() 
        timeReccheck = tk.Checkbutton(self,text= "Behavior Over Time", variable = timeRecTF) 
        timeReccheck.place(relx=0.01,rely=0.38,anchor='nw') 
        AnisRecTF=tk.BooleanVar() 
        AnisReccheck = tk.Checkbutton(self,text= "Anisotropy", variable = AnisRecTF) 
        AnisReccheck.place(relx=0.01,rely=0.42,anchor='nw') 
        TurnoverRecTF=tk.BooleanVar() 
        TurnoverReccheck = tk.Checkbutton(self,text= "Turnover Yields", variable = 
TurnoverRecTF) 
        TurnoverReccheck.place(relx=0.01,rely=0.46,anchor='nw') 
        hoppingPathTF=tk.BooleanVar() 
        hoppingPathcheck = tk.Checkbutton(self,text= "Hopping Paths", variable = 
hoppingPathTF) 
        hoppingPathcheck.place(relx=0.01,rely=0.50,anchor='nw') 
        #adds the Continuous Illumination section 
        heading3 = tk.Text(self,height=1,width=20,background = labelBGColor, font=FONT,fg = 
labelTextColor) 
        heading3.insert(1.0,"Continuous Illumination") 
        heading3.place(relx=0.01,rely=0.78,anchor='nw') 
        CWModeTF=tk.BooleanVar() 
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        CWModecheck = tk.Checkbutton(self,text= "Continuous Illumination Mode", variable = 
CWModeTF, command=lambda: toggleCWStates(maxTimeNum,sunsNum)) 
        CWModecheck.place(relx=0.01,rely=0.82,anchor='nw') 
 
        maxTimeLabel = tk.Text(self,height=1,width=13,background = labelBGColor, 
font=labelFont,fg = labelTextColor) 
        maxTimeLabel.insert(1.0,"Max Timesteps") 
        maxTimeLabel.place(relx=0.01,rely=0.86,anchor='nw') 
        maxTimeNum = tk.Spinbox(self,from_=0, to=20000,width=10) 
        maxTimeNum.delete(0,'end') 
        maxTimeNum.insert(1,2000) 
        maxTimeNum.place(relx=0.16,rely=0.86,anchor='nw') 
        maxTimeNum['state']='disabled' 
 
        sunsLabel = tk.Text(self,height=1,width=13,background = labelBGColor, 
font=labelFont,fg = labelTextColor) 
        sunsLabel.insert(1.0,"Suns ") 
        sunsLabel.place(relx=0.01,rely=0.90,anchor='nw') 
        sunsNum = tk.Spinbox(self,from_=0, to=1000,width=10) 
        sunsNum.delete(0,'end') 
        sunsNum.insert(1,1) 
        sunsNum.place(relx=0.16,rely=0.90,anchor='nw') 
        sunsNum['state']='disabled' 
 
        #Adds the Beer's Law section 
        heading5 = tk.Text(self,height=1,width=20,background = labelBGColor, font=FONT,fg = 
labelTextColor) 
        heading5.insert(1.0,"Beer-Lambert Law") 
        heading5.place(relx=0.01,rely=0.58,anchor='nw') 
        BLTF=tk.BooleanVar() 
        BLcheck = tk.Checkbutton(self,text= " Use Beer-Lambert Law", variable = BLTF, 
command=lambda: toggleBLStates(fractTransNum,absNum)) 
        BLcheck.place(relx=0.01,rely=0.62,anchor='nw') 
 
        fractTransLabel = tk.Text(self,height=1,width=13,background = labelBGColor, 
font=labelFont,fg = labelTextColor) 
        fractTransLabel.insert(1.0,"Fract. Transmit") 
        fractTransLabel.place(relx=0.01,rely=0.66,anchor='nw') 
        fractTransNum = tk.Spinbox(self,from_=0.000001, 
to=1,width=10,increment=0.000001,command= 
lambda:updateAbs(absNum,fractTransNum)) 
        fractTransNum.delete(0,'end') 
        fractTransNum.insert(1,0.05) 
        fractTransNum.place(relx=0.16,rely=0.66,anchor='nw') 
        fractTransNum['state']='disabled' 
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        absLabel = tk.Text(self,height=1,width=13,background = labelBGColor, 
font=labelFont,fg = labelTextColor) 
        absLabel.insert(1.0,"Absorbance") 
        absLabel.place(relx=0.01,rely=0.70,anchor='nw') 
        absNum = tk.Spinbox(self,from_=0, to=6,width=10,increment=0.1,command= 
lambda:updatefractTrans(absNum,fractTransNum)) 
        absNum.delete(0,'end') 
        absNum.insert(1,0.5) 
        absNum.place(relx=0.16,rely=0.70,anchor='nw') 
        absNum['state']='disabled' 
        #adds the molecule distribution section 
        heading4 = tk.Text(self,height=1,width=31,background = labelBGColor, font=FONT,fg = 
labelTextColor) 
        heading4.insert(1.0,"Molecular Distributions") 
        heading4.place(relx=0.29,rely=0.1,anchor='nw') 
        exciteLabel = tk.Text(self,height=1,width=10,background = labelBGColor, 
font=labelFont,fg = labelTextColor) 
        exciteLabel.insert(1.0,"Excitations ") 
        exciteLabel.place(relx=0.29,rely=0.18,anchor='nw') 
        catLabel = tk.Text(self,height=1,width=10,background = labelBGColor, 
font=labelFont,fg = labelTextColor) 
        catLabel.insert(1.0,"Catalysts ") 
        catLabel.place(relx=0.29,rely=0.22,anchor='nw')        
        DSLabel = tk.Text(self,height=1,width=10,background = labelBGColor, 
font=labelFont,fg = labelTextColor) 
        DSLabel.insert(1.0,"Dead Spots ") 
        DSLabel.place(relx=0.29,rely=0.26,anchor='nw') 
        PCTLabel = tk.Text(self,height=1,width=9,background = labelBGColor, 
font=labelFont,fg = labelTextColor) 
        PCTLabel.insert(1.0,"By Percent ") 
        PCTLabel.place(relx=0.40,rely=0.14,anchor='nw') 
        partLabel = tk.Text(self,height=1,width=9,background = labelBGColor, 
font=labelFont,fg = labelTextColor) 
        partLabel.insert(1.0,"By Particle ") 
        partLabel.place(relx=0.50,rely=0.14,anchor='nw') 
        valueLabel = tk.Text(self,height=1,width=4,background = labelBGColor, 
font=labelFont,fg = labelTextColor) 
        valueLabel.insert(1.0,"#/%") 
        valueLabel.place(relx=0.60,rely=0.14,anchor='nw') 
        excitePCTTF=tk.BooleanVar() 
        excitePCTcheck = tk.Checkbutton(self, variable = excitePCTTF) 
         
        excitePCTcheck.place(relx=0.44,rely=0.18,anchor='nw') 
        excitePCTcheck.select() 
        catPCTTF=tk.BooleanVar() 
        catPCTcheck = tk.Checkbutton(self, variable = catPCTTF) 
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        catPCTcheck.place(relx=0.44,rely=0.22,anchor='nw') 
        catPCTcheck.select() 
         
        DSPCTTF=tk.BooleanVar() 
        DSPCTcheck = tk.Checkbutton(self, variable = DSPCTTF) 
        DSPCTcheck.place(relx=0.44,rely=0.26,anchor='nw') 
        DSPCTcheck.select() 
         
        excitePartTF=tk.BooleanVar() 
        excitePartcheck = tk.Checkbutton(self, variable = excitePartTF) 
        excitePartcheck.place(relx=0.54,rely=0.18,anchor='nw') 
        catPartTF=tk.BooleanVar() 
        catPartcheck = tk.Checkbutton(self, variable = catPartTF) 
        catPartcheck.place(relx=0.54,rely=0.22,anchor='nw') 
        DSPartTF=tk.BooleanVar() 
        DSPartcheck = tk.Checkbutton(self, variable = DSPartTF) 
        DSPartcheck.place(relx=0.54,rely=0.26,anchor='nw') 
        exciteNum = tk.Spinbox(self,from_=0, to=2000,width=4) 
        exciteNum.delete(0,'end') 
        exciteNum.insert(1,1) 
        exciteNum.place(relx=0.605,rely=0.18,anchor='nw') 
        catNum = tk.Spinbox(self,from_=0, to=2000,width=4) 
        catNum.delete(0,'end') 
        catNum.insert(1,1) 
        catNum.place(relx=0.605,rely=0.22,anchor='nw') 
        DSNum = tk.Spinbox(self,from_=0, to=2000,width=4) 
        DSNum.delete(0,'end') 
        DSNum.insert(1,0) 
        DSNum.place(relx=0.605,rely=0.26,anchor='nw') 
        #adds the repetition/looping section 
        heading5 = tk.Text(self,height=1,width=31,background = labelBGColor, font=FONT,fg = 
labelTextColor) 
        heading5.insert(1.0,"Repetitions") 
        heading5.place(relx=0.29,rely=0.34,anchor='nw') 
        trialsLabel = tk.Text(self,height=1,width=14,background = labelBGColor, 
font=labelFont,fg = labelTextColor) 
        trialsLabel.insert(1.0,"Trials") 
        trialsLabel.place(relx=0.29,rely=0.38,anchor='nw') 
        trialsNum = tk.Spinbox(self,from_=0, to=1000,width=10) 
        trialsNum.delete(0,'end') 
        trialsNum.insert(1,25) 
        trialsNum.place(relx=0.445,rely=0.38,anchor='nw') 
         
        tauHopLabel = tk.Text(self,height=1,width=14,background = labelBGColor, 
font=labelFont,fg = labelTextColor) 
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        tauHopLabel.insert(1.0,"Hopping Taus") 
        tauHopLabel.place(relx=0.29,rely=0.42,anchor='nw') 
        hops = tk.StringVar() 
        hopEntry = ttk.Combobox(self,textvariable = hops,width = 32) 
        hopEntry.place(relx=0.445,rely=0.42,anchor='nw') 
        hopEntry.insert(0,"Enter Comma-Separated Values (ns)") 
        hopEntry['values']=hopList 
        SvHopButton = ttk.Button(self, text="Save Values",command=lambda: 
saveHops(hops.get(),hopList)) 
        SvHopButton.place(relx=.67,rely=0.42,anchor='nw') 
         
        tauRecombLabel = tk.Text(self,height=1,width=14,background = labelBGColor, 
font=labelFont,fg = labelTextColor) 
        tauRecombLabel.insert(1.0,"Recombine Taus") 
        tauRecombLabel.place(relx=0.29,rely=0.46,anchor='nw') 
        recombs = tk.StringVar() 
        recombEntry = ttk.Combobox(self,textvariable = recombs,width = 32) 
        recombEntry.place(relx=0.445,rely=0.46,anchor='nw') 
        recombEntry['values']=recombList 
        recombEntry.insert(0,"Enter Comma-Separated Values (ns)") 
        SvRecombButton = ttk.Button(self, text="Save Values",command=lambda: 
saveRecombs(recombs.get(),recombList)) 
        SvRecombButton.place(relx=.67,rely=0.46,anchor='nw') 
        #adds the surface selection section 
        heading6 = tk.Text(self,height=1,width=25,background = labelBGColor, font=FONT,fg = 
labelTextColor) 
        heading6.insert(1.0,"Surface") 
        heading6.place(relx=0.7,rely=0.1,anchor='nw') 
        surface = tk.StringVar() 
        surfaceBox = ttk.Combobox(self,textvariable = surface) 
        surfaceBox.place(relx=0.7,rely = 0.14,anchor = 'nw') 
        surfaceBox['values']=surfaceNames 
 
        catMaxLabel = tk.Text(self,height=1,width=12,background = labelBGColor, 
font=labelFont,fg = labelTextColor) 
        catMaxLabel.insert(1.0,"Catalyst Max ") 
        catMaxLabel.place(relx=0.7,rely=0.18,anchor='nw') 
 
        catMaxNum = tk.Spinbox(self,from_=1, to=10,width=10) 
        catMaxNum.delete(0,'end') 
        catMaxNum.insert(1,2) 
        catMaxNum.place(relx=0.85,rely=0.18,anchor='nw') 
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def saveHops(hops,hopList): #saves the currently input list of hopping constants to a 
permanent list 
    hopList = hopList+ [hops] 
    exportCSV("hops.csv",hopList) 
 
def importHops(): #scans the list of stored hopping constants and adds them to the drop 
down menu 
    filepath = os.getcwd() 
    hopList = [] 
    csv.register_dialect('myDialect',quoting=csv.QUOTE_ALL,skipinitialspace=True) 
    with open("SavedSettings/hops.csv", 'r') as csvFile: 
        hopreader = csv.reader(csvFile, delimiter=',',dialect ='myDialect') 
        for row in hopreader: 
            hopList.append(row) 
    return hopList[0] 
 
def saveRecombs(recombs,recombList): #saves the currently input list of recombination 
constants to a permanent list 
    recombList = recombList+ [recombs] 
    exportCSV("recombs.csv",recombList) 
 
def importRecombs():#scans the list of stored recombination constants and adds them to 
the drop down menu 
    filepath = os.getcwd() 
    recombList = [] 
    csv.register_dialect('myDialect',quoting=csv.QUOTE_ALL,skipinitialspace=True) 
    with open("SavedSettings/recombs.csv", 'r') as csvFile: 
        recombreader = csv.reader(csvFile, delimiter=',',dialect ='myDialect') 
        for row in recombreader: 
            recombList.append(row) 
    return recombList[0] 
 
def exportCSV(filename,dataCSV): #exports a CSV file 
    csv.register_dialect('myDialect',quoting=csv.QUOTE_ALL,skipinitialspace=True) 
    with open("SavedSettings/"+filename, 'w') as csvFile: 
        writer = csv.writer(csvFile,delimiter=',',dialect ='myDialect',lineterminator = '\n' )             
        writer.writerow(dataCSV) 
    csvFile.close() 
        
 
def toggleCWStates(maxTimeNum,sunsNum): #checks whether Continuous Illumination 
mode is enabled and grays out options if it not 
    if maxTimeNum['state'] == 'normal': 
        maxTimeNum['state'] = 'disabled' 
        sunsNum['state'] = 'disabled' 
    else: 
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        maxTimeNum['state'] = 'normal' 
        sunsNum['state'] = 'normal' 
 
 
def toggleBLStates(fractTransNum,absNum): #checks whether Beer's Law is enabled and 
grays out options if it not 
    if fractTransNum['state'] == 'normal': 
        fractTransNum['state'] = 'disabled' 
        absNum['state'] = 'disabled' 
    else: 
        fractTransNum['state'] = 'normal' 
        absNum['state'] = 'normal' 
 
def updateAbs(absNum,fractTransNum): #each time a fractional transmission value is 
changed, updates to the corresponding absorbance value 
    absorb = -math.log10(float(fractTransNum.get())) 
    absNum.delete(0,'end') 
    absNum.insert(1,absorb) 
 
def updatefractTrans(absNum,fractTransNum): #each time an absorbance value is 
changed, updates to the corresponding fractional transmission value 
    ft = 10**(-(float(absNum.get()))) 
    fractTransNum.delete(0,'end') 
    fractTransNum.insert(1,ft) 
 
 
app = Model()#black magic 
app.mainloop() #black magic  
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The Surface Generator 
 
import random as rand 
import math 
import numpy as np 
from mpl_toolkits.mplot3d import Axes3D 
import matplotlib.pyplot as plt 
import pickle 
import os 
 
def dist(p1,p2): # Pythagorean theorem in 3D assuming real coordinates 
    return math.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2+(p1[2]-p2[2])**2) 
 
def weighted_choice(weights): # given a list of n weights, returns an integer 1-n weighted 
by weights 
    rnd = rand.random() * sum(weights) 
    for i, w in enumerate(weights): 
        rnd -= w 
        if rnd < 0: 
            return i 
def plotSurface(SURF): # displays a 3D plot of the molecular surface 
    X = flatten([[i.XYZ[0] for i in j.molecules] for j in SURF.particles]) 
    Y = flatten([[i.XYZ[1] for i in j.molecules] for j in SURF.particles]) 
    Z = flatten([[i.XYZ[2] for i in j.molecules] for j in SURF.particles]) 
    fig = plt.figure() 
    ax = fig.add_subplot(111, projection='3d') 
    Axes3D.scatter(ax,xs=X,ys=Y,zs=Z) 
    plt.show() 
 
def flatten(list):# analogous to flatten function in Mathematica. Condenses 
multidimensional array 
    return [item for sublist in list for item in sublist] 
 
 
class Particle(): # defines a Particle class to store all necessary information 
    def  __init__(self): 
        self.center = [0,0,0] 
        self.radius= 1.0 # nm 
        self.numPositions = 100 
        self.molecules = [] 
        self.particleNNs = [] #Lists all neighboring particles in contact with this particle 
        self.particleArea = self.radius**2 
        self.particleRegions = 0 
 
class Molecule():# defines a Molecule class to store all necessary information 
    def  __init__(self): 
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        self.radii = 0.5 #nm 
        self.XYZ = [0,0,0] 
        self.inclinationAngle = 0 # in degrees 
        self.anisotropyContribution = 0 
        self.OxState = 0 
        self.typeOf = 1 #0 is DeadSpot, 1 is Dye, 2 is Catalyst 
        self.NNs = []    #Will be initialized to an array of Nearest Neighbors 
        self.NNdists = [] 
        self.HopRates = []  # Will be initialized to an array of hop rates to (Dye,Cat-
0,Cat1,Cat2...) 
        self.RecombRate = 0 #Will be initialized to rate constant based on being in the 
fast/slow population 
        self.percolationZone = 0 
 
class Surface(): # defines a Surface class to store all necessary information 
 
    def  __init__(self): 
        self.particles = [] 
        self.heightMax = 0 
        self.heightMin = 0 
        self.thickness = 0 
        self.name = "name" 
        self.totalSites = 0 
        self.numParticles = 0 
 
def 
buildSurface(surfaceName,r1Pos,molRad,neckMin,neckMax,partRadMin,partRadMax,numP
art,stack,compactness,reach): 
    #Determining the Particle Positions and sizes 
    SURF = Surface() 
    SURF.name = surfaceName 
    SURF.particles.append(Particle()) #starts the Surface out with a single particle 
    SURF.particles[0].radius =rand.random()*(partRadMax-partRadMin)+partRadMin # 
gives that particle a random size 
 
    for i in range(1,numPart): # adds particles to the surface until the specified number are 
added 
        validChoice = False #assumes the proposed particle is going to be invalid before trying 
to find one that is valid 
        while validChoice==False: #continuously proposes the next particle until a valid one is 
selected 
            size = rand.random()*(partRadMax-partRadMin)+partRadMin # chooses a random 
size for proposal 
            neck = size *(rand.random()*(neckMax-neckMin)+neckMin)#chooses a necking 
fraction for proposal 
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            weights = [(j+1)**compactness for j in range(len(SURF.particles),0,-1)] # weights the 
choice for particle to grow off of 
            choice = weighted_choice(weights)#chooses a particle to grow off of 
            currentCenter = SURF.particles[choice].center 
            theta = rand.random()*math.pi*2 #chooses a pair of random angles to determine 
how to attach proposed particle to particle being grown off of 
            phi = math.acos(2*rand.random()-1) 
            x = math.cos(theta)*math.sin(phi) 
            y = math.sin(theta)*math.sin(phi) 
            z = math.cos(phi) 
            unit = [x,y,z] 
            if stack==True: unit=[0,0,1] # if stack is true, ignores chosen angles and instead 
always attaches along the z-axis 
            offset = max((1-
neck)*size+SURF.particles[choice].radius,size+SURF.particles[choice].radius*(1-neck)) # 
based on necking determines where proposed particle will be relative to the particle being 
grown off of 
            newCenter = np.add(currentCenter, [l*offset for l in unit])# determines where the 
proposed particle will be 
            validChoice=True # assumes that new particle will be valid before trying to prove it 
is not 
            for m in range(len(SURF.particles)): # iterates over every other particle in the 
surface 
                distance = math.sqrt((newCenter[0]-
SURF.particles[m].center[0])**2+(newCenter[1]-
SURF.particles[m].center[1])**2+(newCenter[2]-SURF.particles[m].center[2])**2) # finds 
the distance to that particle 
                minC2Cdist = max(size*(1-
neckMax)+SURF.particles[m].radius,size+SURF.particles[m].radius*(1-neckMax))# based 
on both particle sizes and necking maximums, determines how close the proposed particle 
can be to that particle 
                if distance<minC2Cdist: #if the particle is too close, reject it 
                    validChoice=False 
         
        SURF.particles.append(Particle()) # adds the now validated proposed particle (along 
with its size and center) to the surface  
        SURF.particles[i].center = newCenter.tolist()  
        SURF.particles[i].radius = size 
    print("Done Finding Particle Positions and Sizes!") 
     
    #DETERMINING ALL POSITIONS 
    goldenAngle = math.pi*(3-math.sqrt(5)) # stores the golden angle for reference in 
making golden spirals 
    for p in range(len(SURF.particles)): # iterates over all particles to set their molecules 
        rad=SURF.particles[p].radius 
        c = SURF.particles[p].center 
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        n = round(r1Pos*rad**2) #calculates the number of positions to be on each particle 
based on its size and the number specified for a radius=1 particle 
        rho = [goldenAngle*i for i in range(n)] # calculates XYZ coordinates based on 
golden/Fibonacci spirals to evenly distribute them over a particle's surface 
        z = [((1-1.0/n)-(2.0/n)*i) for i in range(n)] 
        r = [ math.sqrt(1-z[i]**2) for i in range(n)] 
        x = [(r[i]*math.cos(rho[i])) for i in range(n)] 
        y = [(r[i]*math.sin(rho[i])) for i in range(n)] 
 
        theta = rand.random()*math.pi*2 # chooses 2 random angles to rotate the particle by 
so the spiral is oriented randomly 
        phi = rand.random()*math.pi 
 
        pos = np.array([x,y,z])# makes the XYZ coorinates into a matrix capable of rotating 
        pos = pos.transpose() 
        rot = [[math.cos(phi),math.sin(phi),0],[-
math.cos(theta)*math.sin(phi),math.cos(theta)*math.cos(phi),math.sin(theta)],[math.sin(t
heta)*math.sin(phi),-math.sin(theta)*math.cos(phi),math.cos(theta)]] # creates a rotation 
matrix using phi and theta to rotate a particle both azimuthally and longitudinally  
        rotpos = (np.matmul(pos,rot))*rad+c #multiplies the coordinates of the position 
matrix by the rotation matrix 
 
        SURF.particles[p].molecules = [Molecule() for m in range(n)] # creates an array of 
molecules objects on the particle object 
        for m in range(n): #iterates over all molecules and specifies their coordinates, 
inclination angle and anisotropy contribution 
            SURF.particles[p].molecules[m].XYZ = rotpos[m] 
            SURF.particles[p].molecules[m].inclinationAngle = math.acos((np.dot((rotpos[m]-
c),[0,1,0]))/np.linalg.norm(rotpos[m]-c)) 
            SURF.particles[p].molecules[m].anisotropyContribution = 
1.5*(math.cos(SURF.particles[p].molecules[m].inclinationAngle)**2 - 0.5) 
    print("Done Assigning Rotated Positions!") 
 
 
    neighbors = [[] for i in range(len(SURF.particles))] # creates an array that will 
temporarily store particle neighbors 
    validpositions = [[] for i in range(len(SURF.particles))] # creates an array that will store 
all validated positions of molecules 
    # this next section does two things. 1. It determines which particles neighboring each 
other. 2. It checks to see which molecular positions are invalidated from either being inside 
another particle or else overlapping with another molecule in necking regions 
    for k in range(len(SURF.particles)): # iterates over all particles, particle k 
        for l in range(len(SURF.particles)):# iterates over all particles again 
             if (k!=l) and 
dist(SURF.particles[k].center,SURF.particles[l].center)<=SURF.particles[k].radius+SURF.pa
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rticles[l].radius: # if two distinct particles are within their combined radii of each other, 
they are neighbors 
                       neighbors[k].append(l) 
        for j in range(len(SURF.particles[k].molecules)): # iterates over all molecules on 
Particle k 
            valid = True 
            for m in range(len(neighbors[k])): # iterates over all particles neighboring Particle K, 
particle m  
                if 
dist(SURF.particles[neighbors[k][m]].center,SURF.particles[k].molecules[j].XYZ)<=SURF.pa
rticles[neighbors[k][m]].radius+molRad: 
                    valid = False # if the molecule on particle m is within particle k, it is not a valid 
position 
                else: 
                    for n in range(len(SURF.particles[neighbors[k][m]].molecules)):#iterates over 
all molecules on particle m 
                        if 
dist(SURF.particles[neighbors[k][m]].molecules[n].XYZ,SURF.particles[k].molecules[j].XYZ)
<2*molRad: 
                            valid = False# if one of the molecules on particle m is too close to one of the 
molecules on particle m, is not a valid position 
            if valid==True: 
                validpositions[k].append(j) # if a molecule passed these test and was validated, 
add it to the list of valid positions 
        SURF.particles[k].molecules = [SURF.particles[k].molecules[i] for i in 
range(len(SURF.particles[k].molecules)) if i in validpositions[k]] # store the valid positions 
on the Surface 
        neighbors[k].append(k) # store the particle k as one of its own neighbors to make the 
next step easier 
        SURF.particles[k].particleNNs = neighbors[k] # store the particle neighbors on the 
Surface 
    print("Done Validating molecule positions!") 
 
 
    #Finding Molecule Distances 
    xDistances = [[[] for j in range(len(SURF.particles[i].molecules))] for i in 
range(len(SURF.particles))] 
    #this next section creates a cross-distance (xDistance) table to store the distance 
between every molecule with every molecule it could potentially 
    # be a neighbor of. Potential neighbors include all molecules on its own particle as well as 
all molecules on every particle that is a neighboring 
    #particle. The table is stored as [particle #k,position #m,distance to particle #i, position 
#j] for all i and j and it is sorted by the last entry 
    for i in range(len(SURF.particles)): #i is a particle index 
        for j in range(len(SURF.particles[i].molecules)): # j is a molecule index on particle #i 
            xDist = [] 
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            for k in SURF.particles[i].particleNNs: # k is a particle index 
                for m in range(len(SURF.particles[k].molecules)): # m is a molecule index on 
particle #k 
                    
xDist.append([k,m,dist(SURF.particles[i].molecules[j].XYZ,SURF.particles[k].molecules[m].
XYZ)]) 
            xDist.sort(key = lambda x: x[2]) # sorts the x-distance table by distance 
            xDistances[i][j] =xDist #stores the x-distance table in the x-distances table 
 
 
    #Finding molecule neighbors 
    for i in range(len(SURF.particles)): #iterates over all the particles 
        for j in range(len(SURF.particles[i].molecules)): #iterates over all molecules  
            maxNN = 1 #assumes that every molecule will have at least one nearest neighbor 
            NN = [] #creates an empty list to store molecular neighbors 
            dists = [] # creates an empty list to store the inter-neighbor distances  
            while xDistances[i][j][maxNN][2]<=reach*molRad: #until a potential neighbor too 
far, continuously add more neighbors to a molecules NN list 
                NN.append([xDistances[i][j][maxNN][0],xDistances[i][j][maxNN][1]]) # store the 
particle#, position # of the neighbor 
                dists.append(xDistances[i][j][maxNN][2]) # store the distance to the new neighbor 
                maxNN+=1 #move on to the next neighbor 
            SURF.particles[i].molecules[j].NNs = NN #store the list of nearest neighbors on the 
Molecule object 
            SURF.particles[i].molecules[j].NNdists = dists #store the list of neighbor distances on 
the Molecule object 
    print("Done Setting Neighbors!") 
     
    Zs = flatten([[i.XYZ[2] for i in j.molecules] for j in SURF.particles]) # separates out all the 
z coordinates in the entire surface 
    SURF.heightMax = max(Zs) #stores the top of the surface 
    SURF.heightMin = min(Zs) #stores the bottom of the surface 
    SURF.thickness = SURF.heightMax-SURF.heightMin # stores the thickness of the surface 
    SURF.totalSites = len(Zs) #stores the number of molecules on the surface 
    SURF.numParticles = len(SURF.particles)#stores the number of particles on the surface 
 
 
 
    filepath = os.getcwd() #determines what directory the file is being run from 
    with open(filepath+"/Surfaces/"+surfaceName+".SURF", "wb") as fileOut: # opens a file 
to store the surface in 
        pickle.dump(SURF, fileOut)# converts the surface to a datastream through Pickle and 
exports it into the opened file 
    print("Done Exporting!") 
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The Full Model 
 
import random 
import numpy as np 
import math 
import os 
import pickle 
import datetime 
import statistics 
import csv 
 
def flatten(list): # analogous to flatten function in Mathematica. Condenses 
multidimensional array 
    return [item for sublist in list for item in sublist] 
 
def weighted_choice(weights): # given a list of n weights, returns an integer 1-n weighted 
by weights 
    rnd = random.random() * sum(weights) 
    for i, w in enumerate(weights): 
        rnd -= w 
        if rnd < 0: 
            return i 
 
def exportCSV(filename,dataCSV): # takes a dataset and exports a CSV with a given 
filename 
    csv.register_dialect('myDialect',quoting=csv.QUOTE_NONE,skipinitialspace=True) 
    with open("Data/"+filename, 'w') as csvFile: 
        writer = csv.writer(csvFile,dialect ='myDialect',lineterminator = '\n' )             
        writer.writerows(dataCSV) 
    csvFile.close() 
 
def FloodFill(startPoint,zoneCount,surface): #uses a FloodFill algorithm to identify all 
mutually connected molecules in a percolation network 
    if (surface.particles[startPoint[0]].molecules[startPoint[1]].typeOf != 0) and 
(surface.particles[startPoint[0]].molecules[startPoint[1]].percolationZone == -1): 
        surface.particles[startPoint[0]].molecules[startPoint[1]].percolationZone = zoneCount 
        if len(surface.particles[startPoint[0]].molecules[startPoint[1]].NNs)>=1: 
            
FloodFill(surface.particles[startPoint[0]].molecules[startPoint[1]].NNs[0],zoneCount,surfa
ce) 
            if len(surface.particles[startPoint[0]].molecules[startPoint[1]].NNs)>=2: 
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FloodFill(surface.particles[startPoint[0]].molecules[startPoint[1]].NNs[1],zoneCount,surfa
ce) 
                if len(surface.particles[startPoint[0]].molecules[startPoint[1]].NNs)>=3: 
                    
FloodFill(surface.particles[startPoint[0]].molecules[startPoint[1]].NNs[2],zoneCount,surfa
ce) 
                    if len(surface.particles[startPoint[0]].molecules[startPoint[1]].NNs)>=4: 
                        
FloodFill(surface.particles[startPoint[0]].molecules[startPoint[1]].NNs[3],zoneCount,surfa
ce) 
                        if len(surface.particles[startPoint[0]].molecules[startPoint[1]].NNs)>=5: 
                            
FloodFill(surface.particles[startPoint[0]].molecules[startPoint[1]].NNs[4],zoneCount,surfa
ce) 
                            if len(surface.particles[startPoint[0]].molecules[startPoint[1]].NNs)>=6: 
                                
FloodFill(surface.particles[startPoint[0]].molecules[startPoint[1]].NNs[5],zoneCount,surfa
ce) 
                                if len(surface.particles[startPoint[0]].molecules[startPoint[1]].NNs)>=7: 
                                    
FloodFill(surface.particles[startPoint[0]].molecules[startPoint[1]].NNs[6],zoneCount,surfa
ce) 
                                    if len(surface.particles[startPoint[0]].molecules[startPoint[1]].NNs)>=8: 
                                        
FloodFill(surface.particles[startPoint[0]].molecules[startPoint[1]].NNs[7],zoneCount,surfa
ce) 
             
         
     
#RunModel takes many parameters from the GUI 
def 
RunModel(surface,name,AnisTF,DDHTF,electSpreadTF,electScaleTF,timeRecTF,AnisRecTF,
TurnoverRecTF,hoppingPathTF,CWModeTF,maxTimeSteps,suns,BLTF,fracTrans,excitePCT
TF,catPCTTF,DSPCTTF,excitePartTF,catPartTF,DSPartTF,exciteNum,catNum,DSNum,trials,h
ops,recombs,maxOxState): 
    now = datetime.datetime.now() 
    date = now.strftime("%y%m%d")#creates a datestring to use in filenames 
 
    if excitePCTTF == True: #depending on distribution choices, appropriately interprets the 
excitation number input as a percent or a raw number 
        numInitiallyExcitedDyes = exciteNum/100*surface.totalSites 
    elif excitePartTF == True: 
        numInitiallyExcitedDyes = exciteNum*len(surface.particles) 
    else: 
        numInitiallyExcitedDyes = exciteNum 
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    if catPCTTF == True: #depending on distribution choices, appropriately interprets the 
excitation number input as a percent or a raw number 
        numCatalysts = catNum/100*surface.totalSites 
    elif catPartTF == True: 
        numCatalysts = catNum*len(surface.particles) 
    else: 
        numCatalysts = catNum 
         
    #Filenames 
    turnoverFilename = 
date+"_Turn_"+str(maxOxState)+"X"+str(int(numInitiallyExcitedDyes))+"_Excitations_"+na
me 
    timeFilename = 
date+"_Time_"+str(maxOxState)+"X"+str(int(numInitiallyExcitedDyes))+"_Excitations_"+na
me 
    hopFilename = 
date+"_Hop_"+str(maxOxState)+"X"+str(int(numInitiallyExcitedDyes))+"_Excitations"+na
me 
    anisotropyFilename = 
date+"_Anis_"+str(maxOxState)+"X"+str(int(numInitiallyExcitedDyes))+"_Excitations_"+na
me 
    #sets filenames according to the date and whether Beer's Law is being used  
    if BLTF==True: 
        turnoverFilename = turnoverFilename+"_BL.CSV" 
        timeFilename=timeFilename+"_BL.CSV" 
        hopFilename=hopFilename+"_BL.CSV" 
        anisotropyFilename=anisotropyFilename+"_BL.CSV" 
    else: 
        turnoverFilename = turnoverFilename+".CSV" 
        timeFilename=timeFilename+".CSV" 
        hopFilename=hopFilename+".CSV" 
        anisotropyFilename=anisotropyFilename+".CSV" 
 
    TauHop = [int(e) for e in hops.split(",")] # interprets the hopping constant string and 
stores an array of hopping constants 
    TauRecomb =[int(e) for e in recombs.split(",")] #interprets the recombinations constant 
string and stores an array of recombination constants 
    numParamPoints = len(TauHop)*len(TauRecomb)#calculates the number of parameter 
points in the experiments based on the number of different time constants 
 
    allTimes = [[] for i in range(numParamPoints)]# sets up a table to store time data 
throughout the whole simulation 
    allAnis = [[] for i in range(numParamPoints)]# sets up a table to store anisotropy data 
throughout the whole simulation 
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    allHops = [[] for i in range(numParamPoints)]# sets up a table to store hopping path data 
throughout the whole simulation 
 
    turnoverTable= [[] for i in range(numParamPoints+1)] #sets up a table to store turnover 
data throughout the whole simulation 
    turnoverTable[0] = ["TauRecomb (ns)", "TauHop (ns)", "TauRatio", "Percent Turnovers", 
"Number Turnovers"] #creates a header for the turnover table 
 
    parameterPoint = -1#starting off at parameter point -1 so the loop can increment to 0 in 
the beginning 
 
    for R in TauRecomb: # starts a loop to repeat the experiment with every recombination 
constant 
        R = R*(10**(-9)) #changes units of the recombination constant  
        for H in TauHop: # starts a loop to repeat the experiment with every hopping constant 
            H = H*(10**(-9)) #changes units of the hopping constant  
            parameterPoint+=1 #steps forward to the next parameter point 
            tauRatio = round(R/H,2) #calculates the ratio between the time constants 
            timeDecays = [] # creates an array to store time data for this parameter point 
            timeHeader = ["Timestep", "Time", "Dyes Remaining", "Charges", "Turnovers", "Dye 
Recombinations", "Catalyst Recombinations", "Catalysts Remaining", "Excitations"] 
            timeTable = [[]for i in range(trials)]# creates an array to store time data for this 
parameter point 
            anisTable = [[]for i in range(trials)]# creates an array to store anisotropy data for 
this parameter point 
            anisHeader = ["Timestep", "Time", "Excited Molecules", "Anisotropy"] #creates a 
header to the anisotropy table 
            turnoverTotals = 0 #initializes the turnover counter 
            noCatRecombinations = 0 #initializes the no catalyst recombination counter 
            loneChargeRecombinations = 0 #initializes the lone charge recombination counter 
            autoRecombinations = 0 #initializes the autorecombination counter 
            shortestTrial = 10**10 #uses a very large value to initialize the shortest trial length 
             
            for trial in range(trials): #starts a loop to repeat a certain number of trials for 
statistical averaging 
                endCondition = False 
                print("---------------------------------NEW TRIAL---------------------------------") 
                print("Hop Rate: "+str(round(H*10**9))+ " ns"+ "\nRecomb Rate: 
"+str(round(R*10**9))+ " ns"+ "\nParameter Point: "+ str(parameterPoint)+ "\nTrial: 
"+str(trial)) 
                turnovers = 0 #initializes the turnover counter 
                numDyes = numInitiallyExcitedDyes 
                effectiveAnisTau = H*3.75 #scales hopping time constant based on an experiment 
done long ago. Kind of arbitrary 
                minTau = min(effectiveAnisTau,R)#determines the smallest time constant 
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                timestepSize = round(minTau/350,12)# sets the time step size much smaller than 
the smallest time constant 
                tauExcite = (14.8*(10**-6))/suns #calculates the time constant for generation 
based on the number of suns of illumination 
 
                tauHopCattoDye = H*1000000000 # sets the catalyst to dye hopping rate 
 
                #creates a table of dye to catalysts hopping rates based on catalyst oxidation state 
                tauHopDyetoCat = [H for i in range(4)] 
                tauHopDyetoCat[0] = H/27 
                tauHopDyetoCat[1] = H/27 
                tauHopDyetoCat[2] = H/27 
                tauHopDyetoCat[3] = H/27 
 
                #creates a table of catalyst to catalyst hopping rates based on target catalysts 
oxidation states 
                tauHopCattoCat = [H for i in range(4)] 
                tauHopCattoCat[0] = H 
                tauHopCattoCat[1] = H 
                tauHopCattoCat[2] = H 
                tauHopCattoCat[3] = H 
 
                #creates a table of fast and slow recombination rates for catalysts of oxidation 
state 1-4 
                tauRecombCat = [[R,R] for i in range(4)] 
 
                popFracts = [0.5 for i in range(4)] # creates a table of population fractions so that 
each catalyst oxidation state can be assigned to 1 of 2 recombination rates 
 
                #converts time constants to probabilities by dividing them by the timestep size 
                probExcite = timestepSize/tauExcite 
                probHopDyetoDye = timestepSize/H 
                probHopCattoDye = timestepSize/tauHopCattoDye 
                probHopDyetoCat = [timestepSize/i for i in tauHopDyetoCat] 
                probHopCattoCat = [timestepSize/i for i in tauHopCattoCat] 
                probRecombCat = [[timestepSize/i[0],timestepSize/i[1]] for i in tauRecombCat] 
                probRecombDye = timestepSize/R 
 
                #initialize all the relevant counters 
                dyeRecombinations = 0 
                excitations = 0 
                catalystRecombinations = [0 for i in range(maxOxState)] 
                catalystSpecies = [0 for i in range(maxOxState)] 
                anisotropy = 0 
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                #Assigning Dye and Catalyst Positions (and dead spots) 
                 
                for i in surface.particles: # resetting oxidation state of every molecule on the 
surface and its type 
                   for j in i.molecules: 
                       j.OxState = 0 
                       j.typeOf = 1 
                       j.percolationZone =-1 
 
                openPositions = surface.totalSites #keeps track of how many spots are remaining 
to choose from 
                choiceWeighting = [[1 for  i in range(len(surface.particles[j].molecules))]for j in 
range(surface.numParticles)]#creates a table containing weights for all molecular positions 
                possiblePositions = [[[j,i] for  i in range(len(surface.particles[j].molecules))]for j in 
range(surface.numParticles)]#creates a table containing coordinates for all molecular 
positions 
                flattenedPositions = flatten(possiblePositions)# creates a flattened version of the 
molecular positions table 
 
                #assigning dead spots  
                DSArray = [] #creates a table to store all dead spot positions 
                if DSPartTF ==True:# if dead spots are to be chosen on a particle by particle basis 
                    for particle in range(surface.numParticles): # iterates over all particles 
                        if DSPCTTF == True: #if dead spots are chosen as a percent rather than a fixed 
value 
                            n = round((DSNum/100)*len(surface.particles[particle].molecules))# 
calculates the number of dead spots to be chosen 
                        else: 
                            n = DSNum #uses the provided dead spot number as the number to be 
chosen 
                        DSArray.append(random.sample(possiblePositions[particle],n))#makes 
choices for the current particle and adds them to the dead spot array 
                    DSArray = flatten(DSArray) #flattens out all the separate particle choices so that 
the final array is 1D not 2D 
                else: #if dead spots are to be chosen over the whole film 
                    if DSPCTTF == True: #if dead spots are chosen as a percent rather than a fixed 
value 
                        n = round((DSNum/100)*openPositions) # calculates the number of dead 
spots to be chosen 
                    else: 
                        n = DSNum #uses the provided dead spot number as the number to be chosen 
                    DSArray = random.sample(flattenedPositions,n) #chooses all the dead spots for 
the entire film 
                     
                for d in DSArray: #sets the properties of the chosen dead spots  
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                    choiceWeighting[d[0]][d[1]] = 0# sets the value to 0 in the weighting table so 
that these positions cannot be chosen again 
                    surface.particles[d[0]].molecules[d[1]].typeOf = 3 #sets the type on the 
molecules so they will be skipped over from here on out 
                openPositions -=len(DSArray)#subtracts the number of dead spots from the 
number of open positions to account for the fact that they are now unavailable 
                 
                #assigning Catalyst positions     
                catArray = [] #creates a table to store all catalyst positions 
                if catPartTF ==True: #if catalysts are to be chosen on a particle by particle basis 
                    for particle in range(surface.numParticles): # iterates over all particles 
                        if catPCTTF == True: #if catalysts are chosen as a percent rather than a fixed 
value 
                            n = round((catNum/100)*len(surface.particles[particle].molecules)) # 
calculates the number of catalysts to be chosen 
                        else: 
                            n = catNum #uses the provided catalysts number as the number to be chosen 
                        totalWeight = sum(choiceWeighting[particle]) #calculates the total weight of 
all potential catalyst choices 
                        weights = [i/totalWeight for i in choiceWeighting[particle]] #calculates 
weights for all possible choices 
                        cArray = 
np.random.choice(range(len(possiblePositions[particle])),size=n,replace=False, 
p=weights)#chooses the catalysts for the current particle 
                        catArray.append([possiblePositions[particle][c] for c in cArray]) #uses the 
choices made to select positions for the catalyst array 
                    catArray = flatten(catArray) #flattens out all the separate particle choices so that 
the final array is 1D not 2D 
                else:#if catalysts are to be chosen over the whole film 
                    if catPCTTF == True: #if catalysts are chosen as a percent rather than a fixed 
value 
                        n = round((catNum/100)*openPositions) # calculates the number of catalysts 
to be chosen 
                    else: 
                        n = catNum #uses the provided catalysts number as the number to be chosen 
                    totalWeight = sum(flatten(choiceWeighting)) #calculates the total weight of all 
potential catalyst choices 
                    weights =  [i/totalWeight for i in flatten(choiceWeighting)] #calculates weights 
for all possible choices 
                    catArray = 
np.random.choice(range(len(flattenedPositions)),size=n,replace=False, p=weights) 
#chooses all the catalysts for the entire film 
                    catArray = [flattenedPositions[c] for c in catArray] #uses the choices made to 
select positions for the catalyst array 
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                for c in catArray: #applies all catalyst properties to molecules chosen to be in the 
catalyst array 
                    choiceWeighting[c[0]][c[1]] = 0 #sets the choice weighting to be 0 so this 
position cannot be chosen again 
                    surface.particles[c[0]].molecules[c[1]].typeOf = 2 #sets the type to be catalyst 
                    recomb1 = np.random.choice(probRecombCat[0],size=1,p = [popFracts[0], 1 - 
popFracts[0]])  
                    recomb2 = np.random.choice(probRecombCat[1],size=1,p = [popFracts[1], 1 - 
popFracts[1]]) 
                    recomb3 = np.random.choice(probRecombCat[2],size=1,p = [popFracts[2], 1 - 
popFracts[2]]) 
                    recomb4 = np.random.choice(probRecombCat[3],size=1,p = [popFracts[3], 1 - 
popFracts[3]]) 
                    surface.particles[c[0]].molecules[c[1]].RecombRate = 
[recomb1,recomb2,recomb3,recomb4] #stores recombination rates for four oxidation 
states 
                openPositions -=len(catArray)    #removes the number of open positions now 
occupied by catalysts 
 
                #calculating BL weights if needed 
                if BLTF == True: #if beers law is used modifies the weighting used for dye 
excitation according to molecular depth and film thickness 
                    moleculeDepthFraction = [[(m.XYZ[2]-surface.heightMin)/surface.thickness for 
m in p.molecules] for p in surface.particles] #calculates relative depth of all molecules in 
the film 
                    T = np.log10(1/fracTrans) #transmission coefficient 
                    BLweighting = [[10**(-T*m) for m in p]for p in 
moleculeDepthFraction]#calculates beers law weighting 
                    choiceWeighting = np.multiply(choiceWeighting,BLweighting) #applies Beer's 
law weighting to weight matrix 
 
                #calculating anisotropy weights if needed 
                if AnisTF == True: #if polarized light is to be used, modifies the weighting used for 
dye excitation based on dye inclination angle 
                    AnisWeighting = [[(math.cos(m.inclinationAngle))**2 for m in p.molecules]for p 
in surface.particles] #calculates anisotropy weighting 
                    choiceWeighting = np.multiply(choiceWeighting,AnisWeighting)#applies 
anisotropy weighting to weight matrix 
 
                #assigning excitation positions     
                exciteArray = [] #creates a table to store all initial excitation positions 
                if excitePartTF ==True: #if excitations are to be chosen on a particle by particle 
basis 
                    for particle in range(surface.numParticles): #iterates over all particles 
                        if excitePCTTF == True:  #if excitations are chosen as a percent rather than a 
fixed value 
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                            n = round((exciteNum/100)*len(surface.particles[particle].molecules)) # 
calculates the number of excitation to be chosen 
                        else: 
                            n = exciteNum #uses the provided excitation number as the number to be 
chosen 
                        totalWeight = sum(choiceWeighting[particle]) #calculates the total weight of 
all potential excitation choices 
                        weights = [i/totalWeight for i in choiceWeighting[particle]]#calculates weights 
for all possible choices 
                        eArray = 
np.random.choice(range(len(possiblePositions[particle])),size=n,replace=False, 
p=weights) #chooses the excitations for the current particle 
                        exciteArray.append([possiblePositions[particle][e] for e in eArray]) #uses the 
choices made to select positions for the excitation array 
                    exciteArray = flatten(exciteArray) #flattens out all the separate particle choices 
so that the final array is 1D not 2D 
                else: #if excitations are to be chosen over the whole film 
                    if excitePCTTF == True: #if excitations are chosen as a percent rather than a 
fixed value 
                        n = round((exciteNum/100)*openPositions) # calculates the number of 
excitations to be chosen 
                    else: 
                        n = exciteNum #uses the provided excitation number as the number to be 
chosen 
                    totalWeight = sum(flatten(choiceWeighting)) #calculates the total weight of all 
potential excitation choices 
                    weights =  [i/totalWeight for i in flatten(choiceWeighting)] #calculates weights 
for all possible choices 
                    exciteArray = 
np.random.choice(range(len(flattenedPositions)),size=n,replace=False, p=weights) 
#chooses all the excitations for the entire film 
                    exciteArray = [flattenedPositions[e] for e in exciteArray] #uses the choices made 
to select positions for the excitation array 
                     
                for e in exciteArray: #sets the oxidation state of all excited dyes to 1 
                    surface.particles[e[0]].molecules[e[1]].OxState = 1 
                openPositions -=len(exciteArray) #removes the chosen positions from the open 
position counter 
 
 
                #this next section uses the flood fill algorithm to identify percolation zones 
                zoneCount = -1 
                for x in range(surface.numParticles): #iterates over all particles 
                    for y in range(len(surface.particles[x].molecules)):#iterates over all molecules 
on particle x 
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                        if (surface.particles[x].molecules[y].typeOf != 0) and 
(surface.particles[x].molecules[y].percolationZone == -1): 
                            zoneCount +=1 #A new Zone has been found! 
                            FloodFill([x,y],zoneCount,surface) #flood fill from the new zone and mark 
with the current zone count 
                zones = [[] for i in range(zoneCount+1)] #creates a table to store all zones 
                zoneSizes = [[i,0] for i in range(zoneCount+1)]#creates a table to store the sizes of 
all zones 
 
                for z in range(zoneCount+1): #iterates over all zones 
                    for x in range(surface.numParticles):#iterates over all particles 
                        for y in range(len(surface.particles[x].molecules)): #iterates over all molecules 
on particle x 
                            if surface.particles[x].molecules[y].percolationZone == z: # if molecule y 
belongs to zone z, add it to the zone 
                                zones[z].append([x,y])#adds molecule y to zone z 
                    zoneSizes[z][1] = len(zones[z])#calculates the size of all zones once sorting is 
complete 
             
                 
                POI = random.sample(exciteArray,len(exciteArray)) #randomly sorts the 
excitation array and creates the list which will be used to provide a turn for every 
excitation at every timestep 
 
                if DDHTF == True: #if distance dependent hopping is enabled 
                    NNdistances = flatten([j.NNdists for j in i.molecules for i in surface.particles]) 
#creates a flattened last of all nearest neighbor hopping distances 
                    NNdistancesAngstroms = [x*15*10 for x in NNdistances] #converts that list to 
angstroms 
                    moleculeRadiusAngstroms = surface.particles[0].molecules[0].radii*15*10 
#converts the molecule radius to angstroms 
                    tunnelFactor = 0.35 # sort of arbitrary number but is one people use 
 
                    expAve = -math.log10(statistics.mean([math.exp(b) for b in[(-tunnelFactor)*(x-
2*moleculeRadiusAngstroms) for x in 
NNdistancesAngstroms]]))/tunnelFactor+2*moleculeRadiusAngstroms #calculates the 
exponentially weighted average of the distance between neighbors 
                    aveFactor = math.exp((expAve - 2*moleculeRadiusAngstroms)*(-tunnelFactor)) 
#calculates the average distance factor by inverting the formula above 
                    aveFactorInverse = 1.0/aveFactor #inverts the averages distance factor 
 
                for x in surface.particles: #iterates over all particles 
                    for y in x.molecules: #iterates over all molecules on particle x 
                        if y.typeOf ==1: #Currently looking at a Dye 
                            y.RecombRate = probRecombDye #sets the dye recombination probability 
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                            hopProbs = [0 for i in range(len(y.NNs))] # creates a table to store hopping 
probabilities between neighboring molecules 
                            for z in range(len(y.NNs)): # iterates over all the neighbors of molecule y 
                                if DDHTF ==True: distFactor = aveFactorInverse*math.exp((-
tunnelFactor)*(y.NNdists[z]*15*10-2*moleculeRadiusAngstroms)) #if using distant 
dependent hopping, calculates the factor between molecule y and neighbor z 
                                else:distFactor = 1 #if not using distant dependent hopping, the default 
factor is 1 
                                if surface.particles[y.NNs[z][0]].molecules[y.NNs[z][1]].typeOf==1: 
hopProbs[z] = probHopDyetoDye*distFactor # if neighbor z is a dye applies the distance 
factor to the hopping probability between molecule y and neighbor z 
                                else: hopProbs[z] = probHopDyetoCat[0]*distFactor # if neighbor z is a 
catalyst applies the distance factor to the hopping probability between molecule y and 
neighbor z 
                        if y.typeOf ==2: #Currently looking at a Catalyst 
                            hopProbs = [0 for i in range(len(y.NNs))] # creates a table to store hopping 
probabilities between neighboring molecules 
                            for z in range(len(y.NNs)): #iterates over all neighbors of molecule y 
                                if DDHTF ==True: distFactor = aveFactorInverse*math.exp((-
tunnelFactor)*(y.NNdists[z]*15*10-2*moleculeRadiusAngstroms)) #if using distant 
dependent hopping, calculates the factor between molecule y and neighbor z 
                                else:distFactor = 1 #if not using distant dependent hopping, the default 
factor is 1 
                                if surface.particles[y.NNs[z][0]].molecules[y.NNs[z][1]].typeOf==1: 
hopProbs[z] = probHopCattoDye*distFactor # if neighbor z is a dye applies the distance 
factor to the hopping probability between molecule y and neighbor z 
                                else: hopProbs[z] = probHopCattoCat[0]*distFactor # if neighbor z is a 
catalyst applies the distance factor to the hopping probability between molecule y and 
neighbor z      
                        y.HopRates = hopProbs #stores the hopping rates for molecule y 
 
                initialChargeDistPZ = [0 for i in range(zoneCount+1)] #creates a table to store the 
number of charges per percolation zone 
                catsPerPZ = [0 for i in range(zoneCount+1)]#creates a table to store the number of 
catalysts per percolation zone 
                hopelessZones = []#creates a list to store identified hopeless zones 
                for x in POI: 
initialChargeDistPZ[surface.particles[x[0]].molecules[x[1]].percolationZone]+=1 # counts 
the number of excitations per percolation zone 
                for c in catArray: 
catsPerPZ[surface.particles[c[0]].molecules[c[1]].percolationZone]+=1#counts the number 
of catalysts per percolation zone 
                for z in range(zoneCount): #iterates over all percolation zones 
                    if (catsPerPZ[z] ==0) or (initialChargeDistPZ[z] < maxOxState):# if there are 
either no catalysts in the zone, or aren’t enough excitations to turn over a single catalyst, 
the zone is hopeless 
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                        if (catsPerPZ[z] ==0): noCatRecombinations += initialChargeDistPZ[z] #if there 
are no catalysts in zone z, record that 
                        if (initialChargeDistPZ[z] < maxOxState): 
loneChargeRecombinations+=initialChargeDistPZ[z]#if there are too few excitations in 
zone z, record that 
                        hopelessZones.append(z) #add zone z to the hopeless zones list 
 
                print("Beginning Main Loop") 
                timestep=0 #start at the beginning, a very good place to start 
                while endCondition==False: #continues until one end condition is met which 
depends on run conditions 
                    if timestep%1000==0: #checks to evaluate end condition every 1000 timesteps 
                        if numDyes<=0 and CWModeTF==False: endCondition=True #if there are no 
more excited dyes and Continuous Illumination isn't enabled, end 
                        if len(catArray) > 0: # if there were originally catalysts in the film, check to 
make sure at least 1 non-hopeless zone is occupied 
                            allHopeless = True #assume dyes only exist in hopeless zones and then 
check for the opposite 
                            for p in POI: #iterates over all currently excited molecules 
                                if surface.particles[p[0]].molecules[p[1]].typeOf == 1: # if the molecule is a 
dye 
                                    if surface.particles[p[0]].molecules[p[1]].percolationZone not in 
hopelessZones: allHopeless=False # if the molecule is in a zone not on the list of hopeless 
zones 
                            if allHopeless == True: # if no excited dyes were found in zone not on the 
hopeless zones list 
                                numDyes = 0 #reduce the number of dyes remaining to 0 (the remaining 
dyes will all eventually recombine) 
                                print("FORESAKEN!") #declare that all hope is lost 
                                x=0# start a counter for the  following while loop  
                                while x<len(POI): #iterate over the list of excited molecules in a while loop 
instead of a for loop to account for modifications of the POI 
                                    if surface.particles[POI[x][0]].molecules[POI[x][1]].typeOf==1: #was a 
dye, carry out recombination for that dye 
                                        dyeRecombinations+=1 #tally the recombination event 
                                        autoRecombinations+=1 #tally the autorecombination event 
                                        POI.pop(x)#remove the dye from the POI 
                                    else:#if the excited molecule was a catalyst, just advance the counter to 
the next molecule 
                                        x+=1  
                                 
                                endCondition=True #sets the end condition to true so that the loop will 
end after the next iteration 
                        print("Timestep: "+str(timestep)+"\nParameter Point: 
"+str(parameterPoint),"\nNumber of Dyes Left: ",numDyes) 
                    timestep+=1 #step forward in time 
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                    if AnisRecTF == True: # if anisotropy recording is enabled, record for the 
timestep 
                        anisotropy = 0 #resets the anisotropy counter 
                        for x in POI: anisotropy+= 
surface.particles[x[0]].molecules[x[1]].anisotropyContribution   #iterates over all excited 
molecules and adds their anisotropy contributions 
                        timestepStress = len(POI)#records the number of items in the POI 
                        if timestepStress> 0: anisotropy / timestepStress #scales the anisotropy to 
calculate the average 
                        else: anisotropy = 0 #sets to 0 if there are no excited molecules left 
                        anisRow = [timestep,timestep*timestepSize,timestepStress,anisotropy] # 
stores the anisotropy information for the timestep 
                        anisTable[trial].append(anisRow) #adds the current timestep row to the 
anisotropy table 
 
                    electronsPerParticle = [0 for i in range(surface.numParticles)] #resets the 
counter for number of electrons per particle 
                    electronDensityPerPart = [0 for i in range(surface.numParticles)] #resets the 
counter for amount of electron density per particle 
                    charges = 0 # resets counters for this timestep before recalculating values 
                    numDyes = 0 
                    numCatalysts = 0 
                    for x in POI: # iterates over all excited molecules 
                        charges += surface.particles[x[0]].molecules[x[1]].OxState #counts the number 
of charges total 
                        if surface.particles[x[0]].molecules[x[1]].typeOf == 1: #counts the number of 
dyes per particle 
                            numDyes+=1 
                        else: #counts the number of catalysts per particle 
                            numCatalysts +=1 
                        
electronsPerParticle[x[0]]+=surface.particles[x[0]].molecules[x[1]].OxState#counts the 
number of charges per particle 
                    if electSpreadTF == True: #if electron spreading is enabled, distribute electron 
density between neighboring particles 
                        for x in range(surface.numParticles):#iterates over all particles 
                            
electronDensityPerPart+=electronsPerParticle[x]*(2*surface.particles[x].particleArea/surf
ace.particles[x].particleRegion)#adds two shares of the electron density from particle x to 
particle x 
                            for y in range(len(surface.particles[x].particleNNs)):#iterates over all of 
particle x's neighbors 
                                neighbor = surface.particles[x].particleNNs[y] 
                                
electronDensityPerParticle[neighbor]+=electronsPerParticle[x]*(surface.particles[neighbo



188 
 

r].particleArea/surface.particles[x].particleRegion)#adds one share of the electron density 
from particle x to neighbor y 
                         
                    else: #if electron spreading isn't used 
                        electronDensityPerPart = electronsPerParticle #electrons stay totally localized 
                    if electScaleTF == True: # if electron scaling is enabled, scale density by particle 
size 
                        electronDensityPerPart = 
[electronDensityPerPart[x]/suface.particles[x].particleArea for x in 
range(surface.numParticles)]#scales the electron density by particle area (surface area) 
                         
                    if timeRecTF == True: # if time recording is enabled, record all the following 
statistics and store them in the timeTable 
                        timeRow = 
[timestep,timestep*timestepSize,numDyes,charges,turnovers,dyeRecombinations,sum(cata
lystRecombinations),numCatalysts,excitations] 
                        timeTable[trial].append(timeRow) 
 
                    mol = 0#reset the molecule counter 
                    while mol < len(POI): #iterate over the POI list giving each molecule 1 turn 
                        point = POI[mol] #identifies the current molecule for easy reference 
                        position = surface.particles[point[0]].molecules[point[1]] # retrieves the set of 
information about the current molecule for easy reference 
                        if position.typeOf == 1: #Currently looking at a dye 
                            probRecomb = position.RecombRate*electronDensityPerPart[point[0]] # 
retrieves the recombination probability for the dye 
                            choiceValid=False # we haven't made a proper choice yet 
                            while choiceValid == False: #until a proper choice has been made 
                                weights = [i for i in position.HopRates] #assembled a list of weights to be 
used for making a choice for this dye 
                                weights.append(probRecomb)#add the recombination probability to the 
weight list 
                                if probRecomb+sum(position.HopRates)<1:#if the hopping and 
recombination probabilities don’t add up to 1,  
                                    weights.append(1-probRecomb+sum(position.HopRates))#supplement 
with a probability to do nothing 
                                dyeChoice = weighted_choice(weights)#makes a weighted choice for the 
current dye 
                                if (dyeChoice >=len(position.HopRates)) or 
(surface.particles[position.NNs[dyeChoice][0]].molecules[position.NNs[dyeChoice][1]].typ
eOf==1 and 
surface.particles[position.NNs[dyeChoice][0]].molecules[position.NNs[dyeChoice][1]].OxSt
ate == 0) or 
(surface.particles[position.NNs[dyeChoice][0]].molecules[position.NNs[dyeChoice][1]].typ
eOf==2 and 
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surface.particles[position.NNs[dyeChoice][0]].molecules[position.NNs[dyeChoice][1]].OxSt
ate < maxOxState): 
                                    choiceValid = True # if the choice was validated (was checked to make 
sure not hopping to a full molecule) 
                            if dyeChoice < len(position.HopRates): #Hop to a neighboring position 
                                hopTarget = position.NNs[dyeChoice]#identifies the neighbor being 
hopped to for easy reference 
                                hopTargetInfo = 
surface.particles[hopTarget[0]].molecules[hopTarget[1]]#retrieves the info about the 
target molecule for easy reference 
                                if hopTargetInfo.typeOf == 1: #target is a dye 
                                    surface.particles[hopTarget[0]].molecules[hopTarget[1]].OxState +=1 
#moves the hole to the new dye 
                                    surface.particles[point[0]].molecules[point[1]].OxState -=1 #takes the 
hole away from the old dye 
                                    POI[mol]=hopTarget#changes the molecule listed in the POI to the new 
one 
                                else: #target is a catalyst 
                                    initialOxState = hopTargetInfo.OxState #records the initial oxidation 
state of the target catalyst 
                                    surface.particles[hopTarget[0]].molecules[hopTarget[1]].OxState +=1 
#moves the hole to the new catalyst 
                                    for z in range(len(hopTargetInfo.NNs)): #iterates through the target 
catalyst's neighbors  
                                        neighbor = hopTargetInfo.NNs[z]#identifies the catalyst neighbor for 
easy reference 
                                        targNeighborInfo = 
surface.particles[neighbor[0]].molecules[neighbor[1]]#retrieves catalyst neighbor 
information for reference 
                                        pos = targNeighborInfo.NNs.index(hopTarget) #identifies which index 
neighbor the target catalyst was of its neighbor 
                                        if targNeighborInfo.typeOf == 1: 
surface.particles[neighbor[0]].molecules[neighbor[1]].HopRates[pos] = 
probHopDyetoCat[initialOxState] #changes the neighbor's hopping rate in accordance to 
the catalysts new oxidation state and the fact that the  neighbor is a dye 
                                        if targNeighborInfo.typeOf == 2: 
surface.particles[neighbor[0]].molecules[neighbor[1]].HopRates[pos] = 
probHopCattoCat[initialOxState] #changes the neighbor's hopping rate in accordance to 
the catalysts new oxidation state and the fact that the  neighbor is a catalyst 
                                    surface.particles[point[0]].molecules[point[1]].OxState -=1#removes the 
hole from the old dye 
                                    POI[mol]=hopTarget#changes the molecule listed in the POI to the new 
one 
                                    catalystSpecies[initialOxState]+=1#records the type of the catalyst 
species changing 
                                    if initialOxState!=0:# if the catalyst was already oxidized 
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                                        catalystSpecies[initialOxState-1]-=1 #removes the catalyst species that 
is no longer present 
                                        POI.pop(mol)#removes the duplicate entry from the POI 
                                        mol-=1 #decrements the molecule counter to account for the fact that 
the POI decreased in number 
 
                                 
                            if dyeChoice == len(position.HopRates): #Recombine! 
                                surface.particles[point[0]].molecules[point[1]].OxState -=1 #removes the 
hole from the dye 
                                POI.pop(mol) #removes the dye from the POI 
                                dyeRecombinations+=1 #records the recombination event 
                                 
                        if position.typeOf == 2: #Currently looking at a catalyst 
                            choiceValid=False # we haven't made a proper choice yet 
                            if position.OxState == maxOxState: #checks to see if the catalyst is full 
                                catChoice = len(position.NNs)+2#sets the catalyst choice to do nothing 
because turnover will be handled before the choice is made 
                                choiceValid = True #sets the choice is valid so the choosing process can be 
skipped 
                                turnovers+=1 #records the turnover event 
                                catalystSpecies[maxOxState-1]-=1 #reduces the number of maximally 
oxidized catalyst species 
                                surface.particles[point[0]].molecules[point[1]].OxState = 0#resets the 
oxidation state of that catalyst to 0 
                                for z in range(len(position.NNs)): #iterates over the catalysts neighbors 
                                    neighbor = position.NNs[z] #identifies the catalyst's neighbor for easy 
reference 
                                    neighborInfo = surface.particles[neighbor[0]].molecules[neighbor[1]] 
#retrieves the information about the catalyst's neighbor 
                                    pos = neighborInfo.NNs.index(point)#identifies which index neighbor 
the target catalyst was of its neighbor 
                                    if neighborInfo.typeOf == 1: 
surface.particles[neighbor[0]].molecules[neighbor[1]].HopRates[pos] = 
probHopDyetoCat[0]#changes the neighbor's hopping rate in accordance to the catalysts 
new oxidation state and the fact that the  neighbor is a dye 
                                    if neighborInfo.typeOf == 2: 
surface.particles[neighbor[0]].molecules[neighbor[1]].HopRates[pos] = 
probHopCattoCat[0]#changes the neighbor's hopping rate in accordance to the catalysts 
new oxidation state and the fact that the  neighbor is a catalyst 
                                POI.pop(mol) #removes the catalyst from the POI 
                                mol-=1#decrements the molecule counter  
                            initialOxState = surface.particles[point[0]].molecules[point[1]].OxState 
#identifies the catalysts initial oxidation state    
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                            probRecomb = position.RecombRate[position.OxState-
1]*electronDensityPerPart[point[0]]#calculates the recombination probability for the 
catalyst 
                            while choiceValid == False: #until a valid choice has been made for this 
catalyst 
                                weights = [i for i in position.HopRates] #assembled a list of weights to be 
used for making a choice for this catalyst 
                                weights.append(probRecomb)#add the recombination probability to the 
weight list 
                                if probRecomb+sum(position.HopRates)<1:#if the hopping and 
recombination probabilities don’t add up to 1,  
                                    weights.append(1-probRecomb+sum(position.HopRates))#supplement 
with a probability to do nothing 
                                catChoice = weighted_choice(weights) #makes a weighted choice for the 
current catalyst 
                                if (catChoice >=len(position.HopRates)) or 
(surface.particles[position.NNs[catChoice][0]].molecules[position.NNs[catChoice][1]].type
Of==1 and 
surface.particles[position.NNs[catChoice][0]].molecules[position.NNs[catChoice][1]].OxSta
te == 0) or 
(surface.particles[position.NNs[catChoice][0]].molecules[position.NNs[catChoice][1]].type
Of==2 and 
surface.particles[position.NNs[catChoice][0]].molecules[position.NNs[catChoice][1]].OxSta
te < maxOxState): 
                                    choiceValid = True # if the choice was validated (was checked to make 
sure not hopping to a full molecule) 
                            if catChoice < len(position.HopRates): #Hop to a neighboring position 
                                 
                                hopTarget = position.NNs[catChoice]#identifies the neighbor being 
hopped to for easy reference 
                                hopTargetInfo = 
surface.particles[hopTarget[0]].molecules[hopTarget[1]]#retrieves the information for the 
hopping target 
                                if hopTargetInfo.typeOf == 1: #target is a dye 
                                    surface.particles[hopTarget[0]].molecules[hopTarget[1]].OxState +=1 
#moves the hole to the new dye 
                                    surface.particles[point[0]].molecules[point[1]].OxState -=1#removes the 
hole from the old catalyst 
                                    for z in range(len(position.NNs)):#iterates through the neighbors of the 
old catalyst 
                                        neighbor = position.NNs[z] #identifies the catalyst's neighbor for easy 
reference 
                                        neighborInfo = 
surface.particles[neighbor[0]].molecules[neighbor[1]]#retrieves the information about the 
catalysts neighbor 
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                                        pos = neighborInfo.NNs.index(point)#identifies which index neighbor 
the target catalyst was of its neighbor 
                                        if neighborInfo.typeOf == 1: 
surface.particles[neighbor[0]].molecules[neighbor[1]].HopRates[pos] = 
probHopDyetoCat[initialOxState-1] #changes the neighbor's hopping rate in accordance to 
the catalysts new oxidation state and the fact that the  neighbor is a dye 
                                        if neighborInfo.typeOf == 2: 
surface.particles[neighbor[0]].molecules[neighbor[1]].HopRates[pos] = 
probHopCattoCat[initialOxState-1] #changes the neighbor's hopping rate in accordance to 
the catalysts new oxidation state and the fact that the  neighbor is a catalyst 
                                    catalystSpecies[initialOxState-1]-=1#removes the type of catalyst that is 
no longer present 
                                    POI.append(hopTarget)#adds the newly oxidized dye to the POI 
                                    if initialOxState == 1: #if the catalyst is now depleted 
                                        POI.pop(mol)#remove the catalyst from the POI 
                                        mol-=1#steps  the molecule counter backward 
                                    else:# if the catalyst is not empty 
                                        catalystSpecies[initialOxState-2]+=1 #adds the type of catalyst that is 
now present 
                                else: # target is a catalyst 
                                    hopTargetinitialOxState = hopTargetInfo.OxState#identifies the target's 
initial oxidation state 
                                    surface.particles[hopTarget[0]].molecules[hopTarget[1]].OxState +=1 
#moves the hole to the new catalyst 
                                    surface.particles[point[0]].molecules[point[1]].OxState -=1#removes the 
hole from the old catalyst 
                                    for z in range(len(position.NNs)): #iterates over the old catalysts 
neighbors 
                                        neighbor = position.NNs[z]#identifies the old catalyst's neighbor for 
easy reference 
                                        neighborInfo = surface.particles[neighbor[0]].molecules[neighbor[1]] 
#retrieves the information about the old catalysts neighbor 
                                        pos = neighborInfo.NNs.index(point) #identifies which index neighbor 
the old catalyst was of its neighbor 
                                        if neighborInfo.typeOf == 1: 
surface.particles[neighbor[0]].molecules[neighbor[1]].HopRates[pos] = 
probHopDyetoCat[initialOxState-1] #changes the neighbor's hopping rate in accordance to 
the old catalysts new oxidation state and the fact that the  neighbor is a dye 
                                        if neighborInfo.typeOf == 2: 
surface.particles[neighbor[0]].molecules[neighbor[1]].HopRates[pos] = 
probHopCattoCat[initialOxState-1] #changes the neighbor's hopping rate in accordance to 
the old catalysts new oxidation state and the fact that the  neighbor is a catalyst 
                                    for z in range(len(hopTargetInfo.NNs)):#iterates over the new catalysts 
neighbors 
                                        neighbor = hopTargetInfo.NNs[z]#identifies the new catalyst's 
neighbor for easy reference 
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                                        targNeighborInfo = 
surface.particles[neighbor[0]].molecules[neighbor[1]] #retrieves the information about 
the new catalysts neighbor 
                                        pos = targNeighborInfo.NNs.index(hopTarget) #identifies which index 
neighbor the new catalyst was of its neighbor 
                                        if targNeighborInfo.typeOf == 1: 
surface.particles[neighbor[0]].molecules[neighbor[1]].HopRates[pos] = 
probHopDyetoCat[hopTargetinitialOxState]#changes the neighbor's hopping rate in 
accordance to the new catalysts new oxidation state and the fact that the  neighbor is a dye 
                                        if targNeighborInfo.typeOf == 2: 
surface.particles[neighbor[0]].molecules[neighbor[1]].HopRates[pos] = 
probHopCattoCat[hopTargetinitialOxState]#changes the neighbor's hopping rate in 
accordance to the new catalysts new oxidation state and the fact that the  neighbor is a 
catalyst 
                                    catalystSpecies[initialOxState-1]-=1 #reduces the count of the catalyst 
species that is no longer present 
                                    catalystSpecies[hopTargetinitialOxState]+=1 #adds to the count of the 
catalyst species that is now present 
                                    if hopTargetinitialOxState == 0: #if the target catalyst is newly oxidized 
                                        POI.append(hopTarget)#adds the new catalyst to the POI 
                                    else:# if the catalyst was already oxidized 
                                        catalystSpecies[hopTargetinitialOxState-1]-=1#reduces the count of 
the catalyst species that has been removed 
                                    if initialOxState == 1: #if the original catalyst is now depleted 
                                        POI.pop(mol)#removes the old catalyst from the POI 
                                        mol-=1# steps the molecule counter back 
                                    else:# if the catalyst is not empty 
                                        catalystSpecies[initialOxState-2]+=1#adds the type of catalyst which 
has now been created 
                                     
                                     
                                     
                            if catChoice == len(position.HopRates): #Recombine! 
                                surface.particles[point[0]].molecules[point[1]].OxState -=1 #removes the 
hole from the catalyst 
                                catalystRecombinations[initialOxState-1]+=1 #records the recombination 
event 
                                for z in range(len(position.NNs)): #iterates over the catalysts neighbors 
                                    neighbor = position.NNs[z]#identifies the catalyst's neighbor for easy 
reference 
                                    neighborInfo = 
surface.particles[neighbor[0]].molecules[neighbor[1]]#retrieves the information about the 
catalysts neighbor 
                                    pos = neighborInfo.NNs.index(point) 
                                    if neighborInfo.typeOf == 1: 
surface.particles[neighbor[0]].molecules[neighbor[1]].HopRates[pos] = 
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probHopDyetoCat[initialOxState-1]#changes the neighbor's hopping rate in accordance to 
the catalysts new oxidation state and the fact that the  neighbor is a dye 
                                    if neighborInfo.typeOf == 2: 
surface.particles[neighbor[0]].molecules[neighbor[1]].HopRates[pos] = 
probHopCattoCat[initialOxState-1]#changes the neighbor's hopping rate in accordance to 
the catalysts new oxidation state and the fact that the  neighbor is a catalyst 
 
                                catalystSpecies[initialOxState-1]-=1#reduces the count of the catalyst 
species that is no longer present 
                                if initialOxState == 1: #if the catalyst is now depleted 
                                    POI.pop(mol) #removes the catalyst from the POI 
                                    mol-=1 #steps the molecule counter backward 
                                else:# if the catalyst is not empty 
                                    catalystSpecies[initialOxState-2]+=1#adds to the count of the catalyst 
species that is now present                              
                        mol+=1#moves on to the next molecule 
                    if CWModeTF == True: # if continuous illumination mode is enabled 
                        if timestep>maxTimeSteps: endCondition = True #if the simulation has run to 
the preset timestep, end 
                        if random.random()<= probExcite: #randomly determines whether or not to 
add an excitation this timestep 
                            excitations+=1 #adds to the counter of excitations 
                            choiceWeightingThisTime = choiceWeighting #retrieves the 
choiceWeighting table to decide where the excitation will occur 
                            for x in 
range(len(POI)):choiceWeightingThisTime[POI[x][0]][POI[x][1]]=0#iterates over all 
currently excite molecule and sets their probability of excitation to 0 
                            newDye = 
flattenedPositions[weighted_choice(flatten(choiceWeightingThisTime))]#makes a new 
excitation choice 
                            surface.particles[newDye[0]].molecules[newDye[1]].OxState=1#adds a hole 
to the chosen dye 
                            POI.append(newDye)#adds the dye to the POI 
                         
                #END OF THE MAIN LOOP         
                print("-----------------------END OF RUN-------------------------")#prints out some run 
statistics 
                print("Number of initially Excited Dyes: "+str(len(exciteArray))) 
                print("Number of Dyes Remaining: "+str(numDyes)) 
                print("Number of 1st Ox Catalysts: "+str(catalystSpecies[0])) 
                if maxOxState>=2: print("Number of 2nd Ox Catalysts: "+str(catalystSpecies[1])) 
                if maxOxState>=3: print("Number of 3rd Ox Catalysts: "+str(catalystSpecies[2])) 
                if maxOxState>=4: print("Number of 4th Ox Catalysts: "+str(catalystSpecies[3])) 
                if CWModeTF==True: print("Number of Excitations: "+ str(excitations)) 
                print("Number of Dye Recombinations: "+str(dyeRecombinations)) 
                print("Number of Catalyst Recombinations: "+str(sum(catalystRecombinations))) 
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                print("Number of Turnovers: "+str(turnovers)) 
                sanityCheck = 
turnovers*maxOxState+numDyes+dyeRecombinations+sum(catalystRecombinations)+su
m([(i+1)*catalystSpecies[i] for i in range(len(catalystSpecies))]) 
                print("Sanity Check: "+str(sanityCheck)+" should equal "+ 
str(len(exciteArray)+excitations)) 
 
                if timestep<shortestTrial: shortestTrial=timestep #keeps track of which run in a 
trials loop has been the shortest 
                turnoverTotals+=turnovers#add the turnovers for this trial to the running total 
            #END OF THE TRIALS LOOP 
            if TurnoverRecTF == True: # if turnovers are being recorded 
                turnoverAverage = turnoverTotals/trials #calculates an average turnover 
                turnoverPercent = 
maxOxState*turnoverAverage/numInitiallyExcitedDyes#calculates an average percent 
turnover 
                turnoverRow = 
[round(R*10**9),round(H*10**9),tauRatio,turnoverPercent,turnoverAverage]#records the 
turnover statistics 
                turnoverTable[parameterPoint+1] = turnoverRow#adds the turnover stats for the 
current parameter point to the turnover table 
                exportCSV(turnoverFilename,turnoverTable)#exports the current turnover table 
            if AnisRecTF == True:#if anisotropy is being recorded 
                anisMean = [[sum([anisTable[i][k][j] for i in range(trials)])/(trials) for j in 
range(4)] for k in range(shortestTrial)] #calculates anisotropy average over trials which is 
truncated to the shortest trial 
                anisMean.insert(0,anisHeader)#adds a header to the anisotropy table 
                anisotropyFilenameTemp=anisotropyFilename[0:-
4]+"_"+str(parameterPoint)+"_"+anisotropyFilename[-4:len(anisotropyFilename)] #makes 
a temporary filename for this parameter point 
                exportCSV(anisotropyFilenameTemp,anisMean)#exports the anisotropy result for 
the current parameter point 
            if timeRecTF == True:#if time statistics are being recorded 
                timeMean = [[sum([timeTable[i][k][j] for i in range(trials)])/(trials) for j in 
range(9)] for k in range(shortestTrial)] #calculates time statistics average over trials which 
is truncated to the shortest trial 
                timeMean.insert(0,timeHeader)#adds a header to the time statistics table 
                timeFilenameTemp=timeFilename[0:-
4]+"_"+str(parameterPoint)+"_"+timeFilename[-4:len(timeFilename)]#makes a temporary 
filename for this parameter point 
                exportCSV(timeFilenameTemp,timeMean)#exports the time statistics for the 
current parameter point 
                 
            noCatRecombinations = noCatRecombinations/trials #calculates the average number 
of recombinations for not having catalysts 
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            loneChargeRecombinations = loneChargeRecombinations/trials #calculates the 
average number of recombinations for having too few excitations 
            autoRecombinations = autoRecombinations/trials#calculates the average number of 
recombinations made automatically for either of ther reasons above 
             
        #END OF THE HOPPING LOOP 
    #END OF THE RECOMBINATION LOOP 
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APPENDIX E.  Water from Waves Procedure  

 Water from Waves Activity 
 
Materials Needed  
1. Anion exchange membranes, cut into 1 cm x 1 cm squares (1 ea) 

2. Cation exchange membranes, cut into 1 cm x 1 cm squares (1 ea) 

3. Standard plastic cuvettes, 2.5 mL (3 ea) 

4. Teflon tape 

5. Carbon cloth, cut into 0.9 cm by 4 cm strips (2 ea) 

6. 9 volt battery (1 ea) 

7. Alligator connection wires (2 ea) 

8. Thymol blue pH indicator 

9. Aqueous 5 mM H2SO4 solution (~4 mL ea) 

10. A hand clamp (1 ea) 

11. A hand drill or drill press 

12. Scissors 

13. Tweezers  

14. Permanent marker 

 
Personal Protective Equipment 
1. Protective eyewear 

2. Gloves 

3. Long sleeves, long pants, and closed-toed shoes 

4. Lab coats or aprons, if possible 
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Water from Waves Procedure 
1) Drill 8 mm holes near bottom of plastic cuvettes. Two cuvettes should have 

holes drilled through one side while the third cuvette should have holes 

drilled through all the way. This is easiest to do by clamping a pair of 

cuvettes together and drilling one hole through one completely and 

through the first side of the other. Repeat the process for the third cuvette 

using the one with holes on both sides again as a guide. 

2) Wrap Teflon tape over cuvette holes twice around. This is to ensure a tight 

seal when the cuvettes are brought together. The layers of Teflon tape used 

may need to be adjusted if cells leak based on thickness of tape and 

strength of clamps used. 

3) Using scissors, cut holes in the Teflon tape over the drilled holes. 

4) Label one side cuvette with a ‘C’ and the other side with an ‘A’. These will 

be the cathode and anode chambers, respectively. 

5) Using tweezers, stack the cuvettes and membranes in order: the cathode 

chamber hole side up, a CEM, the central chamber, an AEM, and the anode 

chamber hole side down. Make sure the membranes fully cover the holes 

and that all the holes are aligned as much as possible. 

6) Clamp everything together while keeping it all aligned. 

7) Rinse carbon cloth electrodes with deionized water. Slide a carbon cloth 

electrode onto each of the outside walls of the outer chambers 

8) Attached alligator clip wires to carbon cloth electrodes in a way that does 

not pull them out. A good way to do this is to clamp onto both the electrode 

and the outer wall of the cuvette. 

9) Fill each chamber approximately halfway with aqueous 5 mM H2SO4. 

10) Attached the battery by connecting the alligator clip wire connected to the 

cathode to the ‘–’ terminal on the battery and the alligator clip wire 

attached to the anode to the ‘+’ terminal on the battery. 

11) Bubbles will form on the surface of the electrodes. Allow this to run for 

approximately 30 minutes. 

12) Carefully disconnect the battery. 

13) Remove the electrodes. 

14) Add a few drops of pH indicator to each chamber and notice the color 

differences. It may also help to fill another separate cuvette halfway with 

your starting acid and add a few drops of pH indicator for comparison. 
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APPENDIX F.  Z-Scheme Reactor Design and Fabrication  
 Scalable technologies for solar-energy conversion and storage must be efficient, 

robust, and inexpensive to manufacture. Recent techno-economic analyses of H2 production 

suggest that it may be cost-competitive to create solar water splitting reactors using 

suspensions of nanoparticles to drive hydrogen and oxygen evolution chemistry.1,2 These 

reactors could largely be made of flexible plastic to minimize manufacturing costs and would 

evolve hydrogen and oxygen in separate chambers to both avoid the creation of explosive 

gas mixtures and to reduce the cost of separating them later. This could be achieved by filling 

each baggie with either hydrogen or oxygen evolving nanoparticles. These nanoparticles, 

when exposed to light would evolve the desired gas while simultaneously reducing or 

oxidizing a redox shuttle species. This redox shuttle species would be able to travel between 

chambers through vias which permit the shuttle to transport through while disallowing the 

transport of produced gasses or the nanoparticles themselves. In this way, the reactor would 

separately produce each product gas while doing no net chemistry to a redox shuttle while 

it ferries electronic and ionic charges between the chambers. The Ardo Labs’ innovation on 

Figure F1. Ardo Group design concept for cost-competitive solar water splitting reactor. Oxygen and 
hydrogen are produced in separate chambers in series with each other. 
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this concept was to stack these 

chambers as shown in Figure 

F1 rather than placing them 

side-by-side. One of the major 

limitations with the side-by-

side design was that it 

required the redox shuttle to 

travel great distances past a 

reasonable diffusion length 

and so it would require forced 

convection, likely pumping, to 

mix the redox shuttle between 

chambers. This more than 

doubled the project capital 

cost of the reactor.1,2 Alternatively, the side-by-side design could make use of very many 

smaller chambers to limit diffusion requirements but this in turn greatly increased design 

and manufacturing complexity, and therefore cost. By placing the chambers on top of one 

another, they have much larger contact areas and small maximum redox shuttle transport 

distance. This does introduce additional competitive light absorption, which needs to be 

accounted for, but generally reduces projected costs by eliminating the need for active 

pumping and pipes and can result in increased efficiency due to tandem serial light abruption 

by the two sets of nanoparticles. 

Figure F2. Original proposed design schematic of plexiglass 
reactor shown assembled on the left and in an exploded view on 
the right 
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 My role in this 

project what to develop 

a laboratory-scale 

prototype reactor by 

which we could evaluate 

the reasonability of this 

proposed setup. The 

concept for the final 

field reactor was 

essentially two large 

acre-sized plastic bags, each less than 10 cm tall, that could lie on top of each other. That was 

challenging to evaluate on the small scale and so I developed a design made of plexiglass as 

shown in Figure F2. This design was rigid rather than flexible but would provide a reliable 

testing environment for the nanoparticles that our team was developing. The initial design 

was for a pair of chambers machined out of plexiglass, which could interlock with an 

intervening membrane separator. This membrane was supposed to be analogous to the vias 

in the proposed design concept. The bottom of the lower chamber also included a plunger so 

that the bottom chamber thickness could be controlled. The top chamber height could be 

controlled simply by changing the filling level of the solution. This way both chamber heights 

could be adjusted as the experimental conditions called for it.  The top lid would be made of 

glass instead of plexiglass to allow for increased light transmission in the ultraviolet region 

of the electromagnetic spectrum.  

Figure F3. a) Gasket running around the top edge of the lower chamber. b) 
Clamping added to maintain seal between chambers. 
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In the end, 

several parts of this 

design proved to be 

impractical and had to 

be adapted. One major 

adjustment was the 

base plunger. It turned 

out to be nearly 

impossible to get a 

reliable seal around 

this square plunger and so it was decided that instead the bottom of the lower chamber 

would simply be sealed on permanently and the bottom chamber height could be adjusted 

by placing plexiglass spacers into the bottom of the chamber. While not elegant, this was 

much easier to implement. 

Another design challenge turned out to be the sealing of the two chambers while 

holding a membrane between them. The initial concept was to run a gasket around the top 

rim of the bottom chamber so that when the top chamber was place in it, a water-tight seal 

would be made. However, it turns out that it takes quite a lot of pressure to engage a gasket 

with that much surface area and so extra clamping was required to hold the two chambers 

together while engaging the gasket.  

Finally, there were leakage problems around the membrane. Even though the 

chamber was now sealed effectively from the outside and able to pin a membrane material 

in place, the contact with the membrane was not water tight and therefore instead of 

Figure F4. a) Leak test showing the membrane being circumvented.  b) 
Long running leak test which showed little to no crossover 
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allowing for slow diffusion across 

a large area, water was able to 

pass from one chamber to 

another simply but going around 

the membrane. This defeats the 

purpose of having a membrane in 

the first place, so more leak 

testing had to be performed. To 

overcome this challenge, it was 

necessary to clamp down the 

membrane but not in a rough 

localized manner such as a gasket but rather with foam tape which would seal against the 

membrane without potentially tearing it. This conclusion was reached after testing a variety 

of sealing materials and using food coloring dyes as a leak indicator. These dyes were slightly 

larger that proposed redox shuttles would be but smaller than the nanoparticles we would 

be using and so should be able to slowly diffuse across a membrane. After much trial and 

error, foam tape was settled on as adequate as it made a decent seal although after leaving 

clamped for a long time would wear out and need periodic replacement. 

Figure F5. Schematic of reactor features and 
geometry 
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Once the basic chambers were 

machined and sealed, other features 

had to be added. Two gas vent ports 

were added to the top of each 

chamber such that produced gasses 

could be continually collected and 

analyzed using our inline mass 

spectrometer. Additionally, pumps 

were added to each chamber so that 

water could be flowed from near the membrane to far from the membrane in the same 

chamber with controlled flow rate. While the original design concept hoped to eliminate this 

sort of pumping altogether, being able to test how much pumping improved results was 

necessary. 

Additionally, it was decided that it might be best to bubble gases through these 

chambers both to add to convective mixing as well as help with product collection. To 

implement this, aeration hoses were added to each chamber and connected to gas inlet ports 

added to the sides. At this point the reactor essentially reached all of our experimental 

capability expectations with the features implemented in Figure F5. 

After reactor completion, a suitable membrane material had to be selected. This 

turned out to be a challenge because the membrane had to allow for the passage of both light 

and redox shuttle while excluding nanoparticles and product gasses. On top of that it had to 

Figure F6.  Absorption spectra comparing various 
membrane options 
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be physically robust and capable of operating in non-neutral pH conditions as required by 

many of the nanoparticles of interest. It also had to be inexpensive because this was 

supposed to span acres in practice. Turns out, there is no such membrane that exists today 

and thus this is a challenge for future research, which was beyond the scope of our funded 

project. 

 

 

 

 

 
Dialysis Membrane Snyder 

ultrafiltration 
Membrane 

Genpore 
Plastic 

Polyvinyl 
Membrane 

Transparent 
 

Opaque Opaque 
 

Dye Diffusion Slow 
 

No diffusion 
 

NP diffusion Some leakage – – Macroscopic 
Holes 

Physically Robust 
   

Fell apart 

Table F1.  Potential membrane materials evaluation. 




