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Consistent Tangent Operators for Rate-Independent Elasto-
Plasticity.

J. C. SIMO
and

R. L. TAYLOR

Division of Structural Engineering and Structural Mechanics,
Department of Civil Engineering, University of California, Berkeley.

Abstract

It is shown that for problems involving rate constitutive equations, such
as rate-independent elastoplasticity, the notion of consistency between the
tangent (stiffness) operator and the integration algorithm employed in the solu-
tion of the incremental problem, plays a crucial role in preserving the quadratic
rate of asymptotic convergence of iterative solution schemes based upon
Newton’s method. Within the framework of closest-point-projection algo-
rithms, a methodology is presented whereby tangent operators consistent with
this class of algorithms may be systematically developed. To wit, associative J
flow rules with general non-linear kinematic and isotropic hardening rules, as
well as a simple class of non-associative flow rule are considered. The resulting
iterative solution scheme preserves the asymptotic quadratic convergence
characteristic of Newton’s method, whereas use of the so-called elasto—plastic
tangent in conjunction with a radial return integration algorithm, a procedure
often employed, results in Newton type of algorithms with suboptimal rate of
convergence. Application is made to a set of numerical examples which include
saturation hardening laws of exponential type.

Contents

1. Introduction
2. Associative J, Plasticity with Nonlinear Hardening Rules;
3. Integration Scheme: Return Mapping algorithms
4. Variational Problem: Consistent Tangent Operator
5. Non-Associative Plastic Flow Rules: Tangent Operitor.
6. Numerical Examples. o
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Consistent Tangent Operators for Rate-Independent Elasto-
Plasticity.

J. C. SIMO
and

R. L. TAYLOR

Division of Structural Engineering and Structural Mechanics,
Department of Civil Engineering, University of California, Berkeley.

1. Introduction.

In the context of the finite element method, the formulation and numerical solution of
nonlinear problems in continuum mechanics relies crucially on the weak form of the momen-
tum balance equation (virtual work}. If the material is elastic, one has directly available a
response function for the stress tensor which may be introduced into the virtual work equatien
tc obtain a nenlinear variational equation involving only displacements and displacement gra-
dients {(displacement model). Typically, the solution to this nonlinear problem is achieved by
Newton’s method in which a sequence of linear problem are solved. If the linear problem is
obtained by consistently linearizing the nonlinear problem, one has quadratic rate of (asymp-
totic) convergence.

In contrast with elastic behavior, inelastic response, such as rate-independent plasticity, is
an incremental process which must necessarily be characterized by rare constitutive equations.
Accordingly, the application to inelasticity of the procedure outlined for elasticity requires the
numerical integration of the rate constitutive equations over a discrete sequence of time steps.
The result of the integration algorithm is a nonlinear (incremental) response function which
defines the stress tensor as a function of the strain history up to the current time siep. Thus,
the integration algorithm enables one to formally treat the elastoplastic problem over a typical
time step as an equivalent elastic problem. The crucial point we wish to emphasize is that the
tangent moduli that appear in the linearized problem must be obtained by consistent linearization
of the response function resuliing from the integration algorithm in order to preserve the qua-
dratic rate of asymptotic convergence. A complete account of consistent linearization procedures
relevant to nonlinear continuum mechanics can be found in Marsden and Hughes [1983], Chap.
4,

For rate independent plasticity the so-called return maopping algorithms provide an
effective and robust integration scheme of the rate constitutive equations. This procedure
amounts to a "discrete” enforcement of the consistency condition and appears to have heen sug-
gested first by Wilkins [1964], Geometrically, the return mapping algorithm amounts to finding
the closest distance of a point to a (convex) set. Within the framework of this class of algo-
rithms we present a systematic procedure whereby for rate independent plasticity with arbitrary
(nonlinear) laws of isotropic and kinematic hardening, an explicit expression for the tangent
moduli consistent with the integration algorithm is derived. We note that radial return algo-
rithms have been often employed in conjunction with the so-called elastoplastic tangent (Pinsky,
Pister & Taylor [1981], Hinton & Owen [1980]). These elastoplastic moduli are obtained from
the "continuum” rate constitutive model by enforcement of the consistency condition. Such a
procedure, however, resulis in loss of the quadratic rate of asymptotic convergence particularly
important for large time steps. This fact was recognized by Nagtegaal {1982] in the context of
linear isotropic hardening.
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In addition to classical plasticity models, although with arbitrary (nonlinear} hardening
laws, we also consider an example of non-associative plasticity of interest in the modeling of
geological materials. The ideas presented herein are iliustrated through a set of numerical
exampies.

Acknowliedgements. Support for this work was provided by joint project sponsored by
Shell Development Co., Gulf Research Co., Amoco Production Co. and Arco Oil & Gas
Co, administered by Prof. M.M. Carroll at UCB. This support is gratefully acknowledged.
We wish to thank Dr. G.L. Goudreau and Dr. J.O. Hallquist at LLNL, and Prof. T.J.R.
Hughes at Stanford U. for their encouragement and helpful discussions.

2. Associative J, Plasticity: Nonlinear Hardening Rules.

In this section we consider the formulation of the basic equations of our model problem
for associative plasticity. Emphasis is placed on the numerical characterization of plasticity and
thus attention is restricted to linear isotropic elastic behavior. The model includes nonlinear
isotropic and kinematic hardening rules which are specified by a hardening parameter and a
plastic modulus for the back stress. These parameters are assumed to be arbitrary functions of
the "equivalent" plastic strain. Classical linear isotropic and kinematic hardening (e.g. the
Prager- Ziegler rule) as well as saturation type of hardening rules such as that proposed by Voce
{1955], are included in the model discussed.

The following notation will be employed. We denote by s and e the deviatoric stress and
strain {ensors, so that

s=0—1{rall, e=e—1(rel. 2.1)
where 1 is the second order unit tensor and # ( ) designates the trace operator. The linear

vector spaces of deviatoric stress and devigioric strain tensors will be equipped with the natural
(Euclidean} inner product induced by the trace of the product of two tensors; that is

s:3=rlses]= 5,5, ee=rlesel=¢g5,, (2.2)

where ( » )’ denotes the transposed operator. The norms associated with these inner product

are
Is] = [s:s]* = /2 1,(s), lel = le:el* = /2 J5(e) (2.3)

where J5( « ) designates the second invariant.

Model Problem: For present purposes it suffices to consider rate independent plasticity
with von-Mises pressure insensitive yvield condition and associative flow rule. Pressure sensitive
yield conditions with non associative flow rule will be considered in section 5. Accordingly, the
yield criterion is formulated as:

SEax) = Jel - /Tx(@) =0,

@ =

\/% la7 (7} | dr 2.4

= § - a

Sy

where a is the back—stress (the center of the yield surface), d” is the plastic strain rate, and
&” — k(@”) is the hardening rule. The evolution equations for the present problem are given as
follows:
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p=tiro=Kiue

§=2G (e — d%)

a = %Hu'(?‘”} d’ (2.5)
9f = =

[ S I

d yag Zyhn

where ¢’ — H,'(¢”) is the plastic modulus (a superposed "prime" indicates differentiation with
respect to the indicated argument), and & = &/1£| is the unit vector normal to the vield sur-
face. We emphasize that both «{(2”) and H,(e”) are arbitrary functions, which are nor neces-
sarily linear.

Equations (2.5) are further reduced by enforcing the consistency condition that upon
yielding the stress point must remain in the yield surface if no unloading occurs. A standard
computation then leads to the following rate constitutive equation™:

§=2G{I - yi®n]:é
1
= Pl —
y - Id i K"‘I" Hui L) (2-6)
3G

where 1 is the fourth order umit tensor with components {8, 8, + 8,8,]. Upon combining
equation (2.5); for the hydrostatic pressure with (2.6); we may relate the stress rate & 10 the
fotal strain rate € through an evolution equation of the form

o=c7 (o) € A (2.7a)

where ¢ (o) is a fourth order tensor, often referred to as the elasto—plastic (tangent) moduli,
which has the explicit expression

c?lo) = K181 + 2G {1 - 1181] - 2G y a®i . (2.7b)

We shall refer to (2.7b) as the continvum elastoplastic tangent operator in order to make the
distinction, crucial to the development that follows, with its discrete version to be derived in
section 4,

3. Integration Scheme: Return Mapping Algorithm.

From a computational standpoint the elastoplastic problem is treated as strain controled in
the sense that the stress history is obtained from the swain history by means of an integration
algorithm. An effective procedure for numerically integrating the elastoplastic problem is to
employ the so-called remurn mapping algorithms. The basic idea is illustrated in Fig. 1 for the
case of pressure insensitive perfect plasticity. From the converged solution at fime = ¢, one
computes an elastic trial stress s’ ,,¢. If the resulting state defined by s7,,; lies outside of the
elastic region enclosed by the yield surface §C, one defines the final state as the closest-point-
projection of s7 | onto the yield surface. Thus, we have the two-step algorithm:

", =s,+2GAe,., (3.1a)
Spe1 = P(sT 00), (3.1b)

where P {R*— 8 C denotes the (orthogonal) projection onto the elastic region C, a compact set
with boundary 9 C {(the yield surface). From a geometric standpoint this procedures amounts to

TFollowing standard practice we shall indicate by ® the fensor product of two tensors. In components
[A®A] 4y = Ry Ay, where n; are the components of f.
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Figure 1. Return Mapping Algorithm. Perfect Plasticity.

enforcing the consistency condition at the end of each time step and appears to have been first
proposed by Wilkins [1964]. Error analyses for several return schemes have been considered in
detail by Krieg and Krieg [1977], and by Schreyer, Kulak & Kramer [1979]. For a recent sur-
vey discussion see Hughes [1983]. From a mathematical standpoint it can be shown that closest
point projection algorithms define a contraction mapping in a suitable Hilbert space, and thus
produce unconditionally stable algorithms (Ortiz [19811).

For an arbitrary convex yield function, the numerical integration of the elastoplastic prob-
lem is thus reduced to the standard minimization problem of finding the minimum distance of a
point to a convex set. In the particular case of the von-Mises yield condition, and isotropic har-
dening the closest-point-projection is trivially defined and leads to the so-called radial return
algorithm. The superiority of this procedure over several other proposed projection schemes is
now well established (Schreyer, Kuiak & Kramer [1979], Hughes [1983]). In what follows we
summarize the basic integration scheme, modified to account for kinematic hardening, essen-
tially as presented in Krieg & Key [1976]. It should be noted, however, that since this work is
in the context of explicit algorithms, no reference to the need of tangent operators is made.

Radial Return Algorithm. Nonlinear Isotropic and Kinematic Hardening. Let fi denote
the unit vector field normal to the yield surface at the end of a typical time step [z,, 1,.,]. We
then have:

IM!-*}a—fL = Lo RER)

where £,.; = §,,.; — a,4;. 1he stress s, at the end of the step is then computed from the
trial elastic stress s’ according to

Spel = srn-é—‘.-'— yAr2Gn
s, =5, +2GAe,,, (3.3)

To enforce the consistency condition at 1,.; it is necessary to define the yield surface at the end
of the time step and hence to determine the hardening parameter and back stress at #,,;. These
variables depend in turn on the equivalent plastic strain which, upon evaluating (2.4), with the
mid-point rule, becomes

Tt}

Fn =7, + [ JIlwDldr =2, + JIlyadl (3.4)
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The evolution equation (2.5); may now be integrated to obtain, with the aid of (3.4), the result
App) = Qy, + %HQ!(E’—F”-‘}-%) {‘Y‘At] ﬁ

=a, + -\/%{Ha(é-pn-i-]) ~ Ha(-é_pn)} ﬁ {3.5}
Introducing the notation AH, = H,{(¢” ;) — H.(e”,), from (3.3) and (3.5) we obtain
i1 = Spar—@pe1 = £ — [2GTAI + J%AHG] n (3.6)

where &7 = s7,.1— a,+1. Since by (3.2) we have £,.;= &, 8, it follows from (3.6) that
the unit normal fi is determined in terms of the trial elastic stress £, according to

. & G.7)
T e '

From equations (3.6) and (3.7) it then follows that the enforcement of the consistency condi-
tion reduces to the scalar equation

glyar) = “.\/-%K(Epn+1) + &1 - [2G-yAI + .\/'%AH‘,] =0 (3.8)

Since €7 441 = €7, + V2/3y A¢, for prescribed functions « (¢7) and H,(¢”) (3.8) yields an equa-
tion (generally nonlinear) from which the value of [y At] is determined. The solution of equa-
tion (3.8) may be effectively accomplished by the simple /local Newton iteration procedure sum-
marized in Table 1.

TABLE 1.
Consistency condition: determination of ly At].

() A=kl I

H), +x
3G

(k)

(i) DeG* N =-2611+

(A %))
Gi) A Getld o 3 ) g
Dg (x %

() If g0 )| >TOL then k~k+1 and goto () O

For convenience, a step-by-step description of the algorithm discussed in this section has
been summarized in Table 2. We notice that for linear isotropic and kinematic hardening rules
it reduces to that proposed by Krieg & Key [1976]. The same algorithm restricted to linear iso-
tropic hardening also has been employed by Nagtegaal [1982]. The geometric interpretation of
the algorithm is contained in Fig. 2.

Remarks. (i) Variables at time fr=t,4; in Table 2, ( «),.;, are understood to
correspond to the ith-iteration within the time step [t,,ty41]; ie, { » )iy

(ii) Notice that according to the algorithm in Table I the values ( « )),; are calculated
based solely on the converged values ( ¢}, at the beginning of the time step 7 =¢,. The
(non-converged) values ( » )7} at the previous iteration play no explicit role in this stress cal-
culation.

(iii) If the elastic trial stress s’,., at the ith~reration were computed from the
non—converged stresses s,1} at the previous iteration (rather than from converged stress s, as in
Table 2), then the "continuum" elastoplastic tangent (2.7b) becomes the consistent tangent for
this particular algorithm. However, use of an iteration scheme based on intermediate non-
converged values appears to be questionable for a problem which, physically, is "path depen-
dent”. In addition, if "unloading” within the iteration process occurs, a new iteration starting
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Figure 2. Nonlinesr Kinematic Hardening. Radial Return Algorithm.

TABLE 2:
Radial Return Algorithm.
Nonlinear Kinematic/Isotropic Hardening.

(i} Compute trial elastic stress:
sTor1= 8, + 2G Aeyyy
fnTH = ST;:H — g

(ii) Compute unit normal field f

£

lg nT-i—I]

{iii) Find [y At] by local iteration, Table 1. Compute
the equivalent plastic strain at f,.43.

& = 8, + 1y Al]
(iv) Compute back-stress and deviatoric stress
app=a,+ [IAH )R
Sp+1 = @ni1 T [Ik(E ) B
(v} Add Elastic volume change
a1 =S, + Krdel O

il =

from the converged stresses s, is necessary. O

4, Variational Problem: Consistent Tangent Operator.

In this section we shall develop the tangent operator consistent with the algorithm sum-
marized in Table 2. above. The crucial point is to realize that we no longer have a "continuum"”
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problem described by constitutive equations (2.5). Since we may assume that (o ,,2”,.€,) are
known at a time ¢ = ¢,, as a result of the radial return algorithm in Table 2., we now have a
non-linegar "incremental” model governed by constitutive equations

Ae =¢—~¢€,—dlo, e ,€,,6—€,) (4.1)

Given an increment of strain Ae we compute a uniguely defined stress through the radial return
algorithm symbolically represented by (4.1}. Although (4.1) is asymprotically consistent with
the elastoplastic model (2.5) the distinction between both models is essential.

In addition to (4.1} we have the momentum balance equation the weak form of which
(virtual work) may be formuiated as follows. Let b(x) the body force and further let t{x) be
the tractign vector specified on the part 8,0 of the boundary 8€). Let u(x) be specified on
348} as uTaug = 1, where we require that 8,2 N3,0 = @ and 8,2 V3,0 = dQ. For specified

initial data at r = ¢, the momentum balance equation reads .
Gy = fpii pdQ +ft'r(s,,,e,,,e,,,\“.7u-e,,) IndQ
0 O

—[beman - [ Tepas=o, (4.2)
) 8,0

for any admissible variation n€ H'(Q2) such that 1}]3“0 = 0. Since the treatment of the tran-
sient dynamic problem plays no role in the development of the consistent tangent operator that
follows, we shall ignore inertia effects and confine our attention to the static case.

The solution of problem (4.1)-(4.2) within the context of the finite element method is
accomplished by an iterative scheme based on Newton's method. Accordingly, one solves a
sequence of (consistently) linearized problems given by

DG (a)v1,m) sAuj = f Vyilep: VA, )1dQ = —-Glajim), (4.3)
0

until the residual G(u,4,m) vanishes (to within a prescribed tolerance). In (4.3) subscripts
refer to the time step and superscripts to iteration within the time step. We now come to the
essential point of our discussion: the derivation of an expression for the "tangent moduli" ¢}
consistent with the radial return algorithm summarized in Table 2.

Consistent Tangent Operator. From steps (iv) and (v) in Table 2. the incremental
response function o {o ,,€,,6” ,,e —¢,) in (4.1) has the following explicit form

&(O’,,,E,,,Epn,ﬁ“é,,) = K{rde, )1+ ay1+ Ron, (4.4)
where R, = V2/3k (€7 .41 is the radius of the yield surface at ¢ = 1,41 The tangent moduli
¢q+1 in {4.3) is then defined as

86 (o ,,€,,87 6 —€,)

86 =€, 41 ’

(4.5)

Cpt1 =

In what follows explicit indication of the arguments in & as well as superscripts referring to
iteration will be omited. In order to carry out the computation of (4.5) use will be made of the
following resuit.

Lemma: The derivative of the unit normal field #a(¢) = —é-? is given by the formula
an 1 ~on s
— = 7 [ — a®] (4.6)
ag ~ gl -~ ™"

Proof: The result easily follows with the aid of the directional derivative. First we note
that for an arbitrary vector h¢ R® we have

__CZ. ___é;}l:"
T anoff*ﬁ-ahi €] =n:h
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By the chain rule it then follows that

d . _h-(:bh

IH

I - i®h
‘h
{ fel }
so that (4.6) holds. O

In addition we recall the following two formulae which result from a straightforward appli-
cation of the chain rule:

g€,
aen-i-]

lere .l=1, =1- 1181 (4.7

O€ 141

Thus, with the aid (4.6} and (4.7}, we obtain from (4.4) and (4.5) the following expression for
Cn+l

R, Rovi ..
Cori= K 181 + 2G ——— (I — 11®1] ~ 2G —F a®h
§§n+l ]En-i-l
Rn n
+ pgdRnet | Sar (4.8)
€41 0€ 41

Next, we note that the last two terms in (4.8) may be explicitly computed from the algorithm

as follows.

(a) Computation of W®9R ,+/8€ ,+1. Taking derivatives with respect to € ,4, of the scalar con-
sistency condition (3.8), we may solve for At 8v/8€,4, to obtain:

dy  _ 1 N
at 0€ 541 1+ k' + Ha'lns " “.9
3G

Hence, since R, = V2/3x (&7 ,41), taking the derivative with respect to €,41, noting that
2”pe1= €, + ~2/3y Ar and using (4.9) we obtain the expression:

aRrH-l

’
K n+i

i = 1 non 4.10
ne aen+t 3 1+ {K,'é" Ha,}n+1 neh ( )
3G

(b} Computation of Ot ,41/9€ .41 Since a 41 is explicitly given by step (iv) in Table 2, taking
derivative with respect to €,4; and using (4.6} together with (4.9) we arrive at

a4t AH, ) )
— = — L1®1 — A®R] + L H ' py Al RQ—2L—
Be ., Ve E7ul I - {1i®1 - a®f] + 2 1 tn®a€n+l
AH& Ha’n-(»-l
= [l [~ 1181~ 0a®a] + 1 - - fi®h (4.11)
\/—3! !fg:‘"ii ’ ’ 1+ '+ Hu]n+1
3G

By substitution of (4.10) and (4.11) into (4.8} we obtain the final expression for the
"tangent moduli" consistent with the radial return algorithm for nonlinear isotropic/kinemalic
hardening summarized in Table 2:

crs1= K181 + 2GR I - 11811 - 2G ¥ i®h (4.12)

where 2 and y are given by
k.:1+ AHL 1
ﬁgﬂmjmruwuﬁ._, - -
]frﬂ-ll fx +H¢l]n+l
3G

- (1-8 (4.13)

2
i
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Remarks (i) Expression {4.12) should be compared with equation {2.7b) for the "contin-
uum" elastoplastic tangent. We observe that as a result of the radial return algorithm the shear
modulus G enters in the "consistent” tangent (4.12) scaled down by a factor 8 defined by
(4.13)1. In addition, the factor 2G y appearing in (2.7b), is replaced in (4.12) by 2G ¥, where
v is defined by (4.13),.

(ii) Notice that 8 < 1, and that for large time steps s’ 4| may lay far out of the yield sur-
face so that 8 may become significantly less than unity. In addition, since 7 =y + 8 — 1,
where y is defined by (2.6);, we have the bound y — 1 < % € y. Therefore, for large time
steps, the consistent tangent moduli (4.12) may differ significantly from the "continuum” elasto-
plastic tangent (2.7b).

{iii} As a result of (i) use of the "continuum” elastoplastic tangent (2.7b) in conjunction
with the radial return algorithm summarized in Table 2. leads to loss of the quadratic rate of
asymptotic convergence which characterizes Newton’s method. O

5. Non-Associative Plastic Flow: An Example.

In this section we show that the procedure discussed above in the context of classical
associative plasticity applies equally to non-classical models with a non associative flow rule.
Again we wish to emphasize that once an algorithm has been employed to numerically integrate
a given rate constitutive equation, the tangent moduli which appear naturally in the formulation
of the linearized incremental problem (in the present context non—symmetric) must be derived
from the integrated constitutive equation; the original rate constitutive equation no longer plays
a role.

Non Associative Model Problem. As in Section 2. we shall assume isotropy for the elas-
tic part of the model. However, instead of the yield criterion (2.4) we now consider a pressure
sensitive yield condition of the form

FG,p)=lsl—xp) =0, p=1tre. (5.1)

We confine ourselves to the case in which the flow rule is pressure insensitive, and consider
the simplest case in which the flow potential is of the form g{o) = |s|. Thus, the flow rule is
then given as in the associative case by

~

" =vh, n

(5.2)

il

S
BE

Remarks. (i) Well known pressure sensitive vield criterions (e.g. Drucker-Prager) are
characterized by equations of the form (5.1). '

(it} The choice of an exponential form for the pressure dependent function «{p} in (5.1)
leads to a saturation type of yield condition illustrated in Fig. 3, which together with the flow
rule (5.2) produces a simple non associative rate-independent plasticity model of some interest
in the modeling of the behavior of some geological materials. The reason for this is that the
flow rule (5.2) tends to correct the often excessive dilatancy predicted by the normality rule in
conjunction with, say, Drucker-Prager vield condition.

In addition to (5.1) and (5.2), we have the evolution equation
§=2G{e—~d”), (5.3)

which completes the formulation of the model. Enforcement of the consistency condition leads
to the following expression for the (non—symmetric) elastoplastic tangent

¢?(o) = [K - 361181 + 2G [I - a®h] ~ K \/I«'(p) BB, (5.4)

so that (5.3) may be written as § = ¢ (o) : &.
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fF(s.p0) = sl = [coe— (oo — c) expl—p/r)]

Figure 3. Saturation type of yield condition.

Refurn Mapping Algorithm. Because of the particular form (5.2) of the flow rule
chosen, the return mapping algorithm takes an extremely simpie form. The key observation is
that if the trial elastic stress s’ lies outside of the yield surface, the projection onto the yield
surface consistent with the flow rule (5.2) must leave the elastic trial hydrostatic pressure
unchanged. This idea is illustrated geometrically in Fig. 3. Accordingly, one first computes the
elastic .trig! stress in the standard manner as

i =p,+ Kitrhe ., (5.5a)
SP1=s, +2GAens. (5.5b)

If the trial state is outside of the yield surface; ie., f(s/i,pls1) >0, then the
closest—point—projection onto the yield surface consistent with (5.2), is given simply by

Pril = Pasl (5.6a)
S T+1

Sae1= 3xlpoe)ft, A= ls’; i (5.6b)
n+i

Equations (5.5) and (5.6) define a monlinear incremental constitutive equation of the form
(4.1). The tangent moduli consistent with this model, thus asymptotically consistent with (5.4),
are defined by (4.5) and may be obtained as follows.

Consistent Tangent Moduli. Making use of Lemma (4.6) in conjunction with formulae
(4.7) we obtain the following expression for the tangent moduli ¢,41 = 00 44/ 0€ nu1

cor1= K 181 + 2G Bl — 1181] - 2G B 8®h ~ K \[Ix'(pn+1) i1 (5.7

f= 1) (5.8)
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Comparison of (5.7) with expression (5.4} for the elastoplastic tangent shows that as a result of
the return mapping algorithm the shear modulus G appears scaled down in the consistent
tangent (5.7) by the factor 8 defined in (5.8). Since for large time steps one expects 8 to
become significantly less than wnity, use of the elastoplastic tangent defined by (5.4} in the
solution of the linearized problem {(4.3) would result in loss the quadratic rate of asymptotic
convergence.

6. Numerical Examples

In this section we present three examples that illustrate the practical importance of con-
sistent tangent operators in a Newton solution procedure., Qur objective is to exhibit the
significant loss in rate of convergence that occurs when the elastoplastic "continuum" tangent is
used in place of the tangent consistently derived from the integration algorithm. In all the
examples we use a 4-node bilinear isoparametric quadrilateral element combined with a con-
stant pressure field. Accordingly, our approach is analogous to a mixed formulation typically
employed in the treatment of the incompressibility constraint (e.g., see Taylor and Zienkiewicz
{1982]). In the context of plasticity, the importance of an appropriate treatment of the pressure
field was first recognized by Nagtegaal, Parks and Rice [1974]. Although the 4-node bilinear
element with constant pressure interpolation does not satisfy the LBB condition (e.g., see Carey
& Oden [1983], Sec. 3.2}, a sufficient condition for convergence in the incompressible regimen,
it performs satisfactorily in practical situations f(e.g., see Zienkiewicz, Taylor & Baynham
[1983]). Indeed this element forms the basis for many widely used computer programs (e.g.,
Goudreau & Hallguist [1982]).

Our global solution algorithm may be summarized as follows. After elimination of the
pressure field at the element level, the discrete version of the variational equation (4.3) may be
written for each iteration, , within the time [z,,1,.,] as

Kr{aji) Aajy = Rlajyy), (6.1)

where a, represents the vector of nodal displacement, and K (a/,,), R{a/. ) are the tangent
stiffness matrix and the residual force vector at the configuration defined by a/.,. - The nodal
displacement vector is updated according to

4t} = a, + Aajy, (6.2)

Convergence of the discrete problem is measured in terms of the {discrete) energy norm, which
is computed from the residual and incremental displacement vectors as

AE(a).p) = {da/t} Riaj,)) (6.3)

Alternative discrete norms may be used in place of (6.3), in particular the Euclidean norm of
the residual force vector. In the numerical examples described below we shall often display the
behavior of this norm for comparison purposes. In terms of the energy norm (6.3) our termi-
nation criteria for the Newton solution strategy takes the following form

AE(a),) < 107%AE(al,). (6.4)

While this appears to be a very severe condition to achieve, it will be shown through the
numerical examples that condition (6.4) is easily attained when a consistently derived tangent
operator is used.

Thick-walled Cylinder under Internal Pressure. As our first example we consider an
infinitely long thick-walled cylinder subjected to internal pressure loading. The inner and outer
radii of the cylinder are 5m. and 15m., respectively., The properties of the material are chosen
as £ = T0MPa, v = 0.2. In addition, we consider isotropic and kinematic hardening rules of
the exponential type, defined according to the expression

3x(@) + (1 ~8)VH, = Yo — [V~ Ylev®™ + Yoo, selo,1]. (6.5)
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We note that § = { and 5 = 1 correspond fo the limiting cases of pure kinematic and pure iso-
tropic hardening rules, respectively. The values for the parameters in (6.5) are taken as

Yo=0243MPa, You=0343MPa, y=01MPa, Y =015MPa, &=0.1 (6.6

TABLE 3: Number of Iterations for Each Time Step.

Step 1 2 3 4 S
State el elpl elpi pl pl
Continuum | 2 6 9 0 6
Consistent | 2 5 7 5 3

The body is assumed to be undisturbed at time zero, and the internal pressure is increased
lingarly in time until the entire cylinder yields. The finite element mesh employed in the calcu-
lation is shown in Fig. 4a. The size of the time step was selected as to achieve vielding of the
entire transverse section in two time steps involving plastic deformation. The position of the
elastic-plastic interface in these two time steps is depicted in Fig. 4b. The calculation was per-
formed with both the "continuum” and the "consistent” elastoplastic tangent, and the results are
displayed in Table 3. Notice that in spite of the better performance exhibited by the "con-
sistent” tangent, one does not obtain a substantial reduction in the required number of itera-
tions for convergence except in the fully plastic situation. This is due to the extreme simplicity
and well poseness of the boundary value problem at hand, essentially one dimensional. The
next example will confirm this observation. We finally note that for the nonlinear vield condi-
tion (6.5) convergence with the focal algorithm described in Section 4 and summarized in Table
1, was attained in 3-4 iterations. The effectiveness of this procedure is thus demonstrated.

Perforated Sirip under Uniaxial Extension. As our second example we consider the
plane strain problem of an infinitely long rectangular strip with a circular hole in its axial direc-
tion, subjected to increasing extension in a direction perpendicular to the axis of the strip and
parallel to one of its sides. The elastic properties of the material are taken as £ = 70 MPa,
v = 0.2, and the parameters in the saturation type of hardening rule (6.5) are assumed to be
Yo=0243 MPa, Yo = Y, ¥ =0, and § = 1. Thus, in this example we assume perfectly plas-
tic behavior. Loading is perfermed by controlling the vertical displacement of the top and bot-
tom boundaries of the rectangular strip. The finite element mesh employed is shown in Fig. S.
For obvious symmetry reasons, only 1/4 of the strip needs to be considered. The evolution of
the elastic-plastic interface with increased straining of the strip is shown in Fig. 6. For the pur-
pose of plotting these results, the stresses computed at the Gauss points of a typical element
are projected onto the nodal points by means of bilinear interpolation functions. Related
"smoothing” procedures are discussed in Zienkiewicz {1977] (Sect.11.5, and references therein),
and are often used as a device for filtering spurious pressure modes (e.g., Lee, Gresho & Sani
[1979D)

TABLE 44: Number of lterations for Each Time Step.

Step i 2 3 4 5

State el elpl el-pl elpl el-pl
Continuum | 2 13 23 23 22
Consistent 2 5 5 4 5

The calculation was performed with both the "continuum” and the "consistent” tangent
operators, and the number of iteration required to attain convergence is summarized in Table
4g. The numerical values of the energy norm in a typical iteration are displayed in Table 45
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and the vaiues of the Euclidean norm of the residual for the same iteration in Table 4c.

The vastly superior performance of the "consistent” tangent is apparent from these resuits. One
should also note that the Euclidean norm of the residual lags behind the energy norm in the
iteration process. This norm gives a direct measure of how well the momentum balance condi-
tion is satisfied. With the "consistent" tangent operator, convergence in the energy norm is also
accompanied by convergence in the Euclidean norm of the residual. However, from Tabie 44
and Table 4c we observe that convergence in the energy norm to within the tolerance
prescribed in (6.4) does not imply convergence to within the same tolerance in the Euclidean
norm of the residual, if the "continuum” tangent is employed. Thus, an even more dramatic
comparison in performance could have been drawn had we employed the Euclidean norm of
the residual in the termination criteria (6.4).

TABLE 4b: Energy Norm Values for Step 4.

Iieration 1 2 3 4 5 6
Continuum | .14e+2  80e-2 .6le-3 . 18e-3  .8%e-4  47e-4
Consistent | .14e+2 .1le-1 . 77¢-4  .10e-9

lieration 7 8 9 10 11 12
Continuum 27e-4 16e-4  97e-5 . 59e-5 36e-5 .22e-5
Consistent - - - - - -

Iteration 13 14 13 16 17 8
Continuum | .13e-5 BSe-6  52e-6 . 32e-6 20e-6 .12e-6
Consistent - - - - - -

Fteration 19 20 21 22 23
Continuum T7e-7 47e-T  29e-7  .18e-7 .lle-7
Consistent - - - - -

TABLE 4¢: Residual Norm Values for Step 4.

Iteration 1 2 3 4 5 6
Continuum | .25%¢+3 . 7de+1 22e+1 .lle+1 75e+0 .55e+0
Consistent | .25e+3 . Td4e+1 8de+0  .66e-3 .35e-8

Iteration 7 8 9 10 11 12
Continuum | 4le+0 .32e+0 .25e+0  .20e+0 . 15%+0 .12e+4+0
Consistent - - - - - -

lteration 13 i4 15 16 17 18
Continuum .98e-1 .78e-1 .ble-1 48e-1 .38e-1 .30e-1
Consistent - - - - - -

Iteration 19 20 21 22 23
Continuum | .23e-1 18e-1 de-1 dle-1 9le-2
Consistent - - - - - -

We alsc note that the example at hand provides a severe test for the global performance

of the Newton solution strategy. The calculations reported here were performied with a time
step of At = 0.0125 for the properties indicated above. For twice this value of the time step
the iteration procedure diverges. However, when the Newion solution procedure was combined
with a line search procedure, as described in Matthies & Strang [1979], global convergence was
attained for a step size At = 0.1.
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Thick Hollow Sphere. As our final example we consider a thick hollow sphere with its
outer surface subjected to hydrostatic extension and its inner surface stress free. The elastic
properties of the material are taken as E = 22700. MPa, » = 0.3333. In addition, we assume
non-associative elastic-plastic behavior governed by the model described in Section 5, with a
Drucker-Prager yield condition. Thus, the pressure dependent function «{p) in (5.1) takes the
following explicit form

k(p) = c —tangp p, ¢ =270 MPa, tang = 0.879. (6.7)

The mesh employed in the finite element calculation is shown in Fig. 7. We note that the sym-
metry of the problem allows an exact solution which may be used to test the algorithm for the
non-associative case discussed in Section 5. This is done in Fig. 8, where the analytical and
finite element solutions for confining pressure field are plotted versus the porosity. It is
interesting to note that the numerical solution was found to be relatively insensitive to the size
of the time step but sensitive to the spatial discretization. In the calculation summarized in
Table 3, yielding of the entire section is achieved only in mwo time steps. Essentially the same
results are obtained with 1/5 of this time step. However, a relatively fine mesh is required to
achieve acceptable accuracy, as displayed in Fig. 8. The reasons for this are not yet clear.

The required number of iterations to attain convergence with both the "continuum" and the
"consistent” tangent operators is summarized in Table 5. Since convergence with the "contin-
uum” tangent was not achieved in the first time step after thiry iterations, no further calcula-
tion with this tangent was performed.

TABLE 5: Number of Iterations for Each Time Step.

Step 1 2 3 4

State el-pl  el-pl pl pl

Continuum | > 30 ? ? ?

Consistent 8 6 4 3
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Figure 4a. Thick-wall cylinder. Finite element mesh.

Fipure 4b. Thick-wali cylinder. Elastic-plastic interface.
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Figure 5. Perforated strip. Finite element mesh.
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Figure 8. Perforated strip. Elastic-plastic interface.



Figure 7. Thick hollow sphere. Finite element mesh.
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