
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Resistive Content Addressable Memory Design for Decision Tree Acceleration

Permalink
https://escholarship.org/uc/item/9cp0b9wz

Author
Rakka, Mariam

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9cp0b9wz
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Resistive Content Addressable Memory Design for Decision Tree Acceleration

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF ENGINEERING

in Electrical and Computer Engineering

by

Mariam Rakka

Thesis Committee:
Professor Fadi J. Kurdahi, Chair

Professor Mohammad Abdullah Al Faruque
Professor Rainer Dömer

2022

Chapter 4 © 2020 IEEE Publishing
All other materials © 2022 Mariam Rakka

DEDICATION

To my parents, Mustafa Rakka and Zainab Haragli.
To my grandmas, my siblings, the love of my life, my friends, and my mentors.
This would not have been possible without their support, prayers, and blessings.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

LIST OF ALGORITHMS viii

ACKNOWLEDGMENTS ix

ABSTRACT OF THE THESIS x

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Organization . 4

2 In-Memory Computing 5
2.1 Resistive Memories . 6
2.2 Content Addressable Memories . 6

2.2.1 The 2T-2R Cell: A Typical Building Block of Resistive-based CAMs . 7
2.2.2 Operation of TCAMs . 8
2.2.3 Sensing Schemes . 9

2.3 Associative Processors . 10
2.3.1 Architecture . 10
2.3.2 Supported Operations . 13

3 Decision Trees 15
3.1 Training Algorithms . 16

3.1.1 ID3 . 17
3.1.2 C4.5 . 17
3.1.3 C5.0 . 17
3.1.4 CART . 18

3.2 Hardware Accelerators . 18
3.2.1 ML-based Hardware Accelerators . 18
3.2.2 DT-based Hardware Accelerators . 19

iii

4 MTCAM Designs and Mathematical Formulations 20
4.1 Capacitive Sensing MTCAMs . 20
4.2 Resistive Sensing MTCAMs . 21
4.3 Mathematical Formulations . 22

4.3.1 MTCAM Row Modeling . 22
4.3.2 Figure of Merit . 24
4.3.3 Design Specific Considerations . 25

4.4 Analysis and Results . 28
4.4.1 Transient Simulations . 28
4.4.2 Design Space Exploration: Figure of Merit Analysis 29

4.5 In-memory Adder Example . 32
4.5.1 Design Space Exploration . 33
4.5.2 Energy Saving . 34

4.6 Summary . 36

5 Proposed DT2CAM Framework 37
5.1 DT-HW Compiler . 37

5.1.1 Decision Tree Graph Generation . 38
5.1.2 Tree Parsing . 38
5.1.3 Column Reduction . 38
5.1.4 Ternary Adaptive Encoding . 39

5.2 DT-HW Sample Example based on Iris Dataset 41
5.3 ReCAM Functional Synthesizer . 44

5.3.1 Mapping . 44
5.3.2 Simulation . 50

5.4 Implementation Details . 55

6 Results and Comparison 56
6.1 Energy/Throughput/EDP Analysis . 56
6.2 Analysis with Hardware Non-idealities . 57
6.3 Comparison with Other Hardware Accelerators 59

7 Conclusion and Future Work 63

Bibliography 65

iv

LIST OF FIGURES

Page

2.1 ReRAM structure. 7
2.2 A typical 2T-2R structure. SA= Sense amplifier. 8
2.3 A typical content addressable memory structure. 9
2.4 Associative Processor Architecture. 12
2.5 LUTs of (a) addition (in-place and out-of-place), (b) subtraction (in-place and

out-of-place), (c) xor, and (d) or operations. 14

3.1 A classification DT example. Internal nodes represent the decision rules. Each
decision rule has an attribute (feature) and a threshold value. Leaf nodes
represent classes . 16

4.1 2T-2R TCAM structure. 21
4.2 Sensing techniques with the equivalent circuits of MTCAM and comparator,

represented in Req and Cin, respectively; a) capacitive sensing circuit and b)
resistive sensing circuit, shown in the dashed box. 22

4.3 SPICE/MATLAB validation of a TCAM row voltage and current for the fmm,
fm, and 1mm states. For the capacitive sensing waveforms (a) and (b), P and
E represent the precharge and evaluate phases, respectively. Resistive sensing
waveforms, noticeably transitioning faster, are presented over the same time
scale for illustration purposes in (c) and (d). 23

4.4 (a) FOM comparison between the capacitive and resistive sensing techniques
for differentN values. (b) Energy ratio, (c) evaluation time ratio and (d) FOM
ratio for different N values with constrained dynamic range to DR > 75mV . 30

4.5 (a) FOM ratio vs. α (fitted curve plotted), (b) DR vs. α: swept alpha and
applied same alpha to all memristors in the TCAM row (fitted curve plotted),
and (c) DRR and DRC based on random variations in HRS similar to [1]. . . 32

4.6 FOM versus sensing time; a) for N = 3 in capacitive sensing MTCAM, b) for
N = 3 in resistive sensing MTCAM. 35

5.1 An example of encoded ranges based on four unique thresholds (highlighted
in yellow): 0.8, 1.5, 1.65, and 1.75. Unary codes in normal form are used for
exclusive intervals comprising the unique thresholds. For inclusive intervals
(union of multiple exclusive intervals), ”don’t care” bits (denotes as ”x”) are
used to maintain the correctness of the codes of these ranges. 42

v

5.2 Decision Tree Hardware (DT-HW) Compiler: Translates a decision tree graph
to a structured lookup table. In particular (from left to right), it first parses
the decision tree and creates a table, then reduces the columns of the table,
and finally, it uses a ”ternary adaptive encoding” scheme to create the look-up
table. 43

5.3 ReCAM Functional Synthesizer: Maps the look-up table from the encoding
step into ReCAM arrays and runs energy, latency, and accuracy evaluations.
In other words, it breaks up, if needed, the table from the encoding step into
multiple tables that can be mapped into Resistive TCAMs of regular size
”S × S”. For purposes of energy efficiency, the column-wise TCAM tiles are
separated by row-enable bits that deactivate the rows in the following tiles if
the respective rows in the previous tiles mismatch. 45

5.4 Timing Diagram: Tilex1 and Tilex2 represent the row-wise tiles of the first
and second column-wise TCAM tiles. P and E are short for Precharge and
Evaluate respectively. Vin is the voltage measured across Cin. First, data is
loaded into the TCAM tiles. During precharge cycles, tiles are precharged,
and during evaluate, the data is searched across the tiles. Column-wise TCAM
tiles operate sequentially while row-wise tiles operate in parallel. 49

5.5 Selective Precharge Circuit. 50

6.1 Per inference decision: (a) Energy vs throughput for the different datasets.
The shape size determine the target size of the TCAM(s). From small to large
shapes: 16× 16, 32× 32, 64× 64, and 128× 128. (b) Energy-Delay-Product,
and (c) Reduction in EDP when SP is used compared to when it is not used. 59

6.2 Percent Accuracy loss due to different hardware non-idealities (input noise,
sense amplifier manufacturing variability and stuck-at-fault problem) for five
datasets: (a) Diabetes, (b) Covid, and (c) Cancer. SA′b′ = x is equivalent to
SA0 = SA1 = x%. 60

6.3 Energy vs. Throughput for our proposed DT2CAM and other SOTA hardware
accelerators. 62

vi

LIST OF TABLES

Page

4.1 Summary of the model parameters for the capacitive and resistive sensing
circuits. 26

4.2 Energy and latency of points with the highest FOM Ratio with DR > 75mV
for each N. 31

4.3 Summary of the preferred sensing scheme based on the performance of the
desired metrics for the specific applications for DR > 75mV . R:C represents
the ratio of the key metric for the resistive sensing scheme to the capacitive
sensing scheme . 31

4.4 Addition look-up table. 33

5.1 16nm predictive technology models parameters used for the ReCAM arrays. 51
5.2 Dcap values and the chosen target TCAM size S. 51
5.3 TCAM induced bit flips due to SAF. 54
5.4 Description of the utilized datasets. 55

6.1 Number of TCAM tiles for the different datasets. 58
6.2 Comparison with SOTA hardware accelerators. P refers to pipelined acceler-

ators. 62

vii

LIST OF ALGORITHMS

Page
1 Addition B=B+A per row of AP . 33

viii

ACKNOWLEDGMENTS

One step closer...

This thesis would not have been possible without the help of Allah and so many people. It
is the fruit of my academic efforts and my discussions with my advisors and mentors.

I would like to express my utmost gratitude to Professor Fadi J. Kurdahi, my advisor and
mentor, who has been supporting my research at UC Irvine since Summer 2019 and up-til
now. His rich experience in the field, suggestions, and guidance were pivotal in my learning
journey. His constant support throughout the ups and downs motivated me to keep pushing
further.

I would also like to thank my undergraduate advisor and my all time mentor, friend, and
idol, Professor Rouwaida Kanj for her constant support and encouragement. It was under
her mentorship that I first discovered my passion for research, and for that I will always be
grateful. This thesis would not have been possible without her academic and non-academic
support.

I would also like to acknowledge Dr. Mohammed Fouda for his invaluable feedback on my
research work and for his insights on many of the projects I participated in. His guidance
was significant in helping me become a better researcher.

I would like to thank Professors Rainer Dömer and Al Faruque for being on my committee.
Their invaluable feedback on this Thesis was of great help and benefit. Even though I did
not conduct research with them, my observations of their contributions will be a good guide
in my academic life.

I would also like to thank all my other colleagues and friends, especially Naji Tarabay and
Rachid Karami for making my experience at UC, Irvine more enjoyable.

I would also like to acknowledge the use of materials in this work in Chapter 4 is a reprint of
the material as it appears in IEEE Transactions on Circuits and Systems II: Express Briefs.
The co-authors Fadi Kurdahi and Mohammed Fouda listed in this publication directed and
supervised research which forms the basis for the thesis.

I would also like to acknowledge Mr. Samer Sleem, my high school teacher that believed in
my abilities and suggested I should pursue this degree from the start.

I would like to express my gratitude to Mahmoud Ajami. I would like to thank him for being
there for me, for never giving up on me, and for baring with me. This would not have been
possible without him being in my life.

Finally, and most importantly, I would like to thank my family, who encouraged me and
supported me to pursue this dream of mine. They have been the constant pushing force
throughout all the hard times, and for that I can never be grateful enough.

ix

ABSTRACT OF THE THESIS

Resistive Content Addressable Memory Design for Decision Tree Acceleration

By

Mariam Rakka

Master of Engineering in Electrical and Computer Engineering

University of California, Irvine, 2022

Professor Fadi J. Kurdahi, Chair

In-Memory Computing (IMC) is considered a great candidate to replace the von-Neumann

computing architecture to overcome the memory wall. Content Addressable Memories

(CAMs) are the main building blocks in IMC-based architectures, such as the associative

processors, and they are being used to accelerate machine learning tasks such as inference on

Decision Trees (DTs). Decision trees are popular and powerful tools for data classification.

Accelerating the decision tree search is crucial for on-the-edge applications that have lim-

ited power and latency budget. In this paper, we first present a juxtaposition between the

capacitive and resistive sensing schemes in 2 Transistor-2 Resistive (2T-2R) Ternary CAMs

(TCAMs). A Figure of Merit (FOM), function of the dynamic range, latency, and energy,

is defined to have a fair comparison between the two sensing techniques. A mathematical

model for the transient behavior of both sensing schemes is derived and verified through

SPICE simulations. We then study the performance of the two schemes with an in-memory

addition application and the results reveal that resistive sensing has an edge in that context.

In addition, we propose a CAM Compiler for DT inference acceleration. In particular, we

propose a novel ”adaptive-precision” scheme that results in a compact implementation and

enables an efficient bijective mapping to TCAMs while maintaining high inference accura-

cies. Also, a Resistive-CAM (ReCAM) functional synthesizer is developed for mapping the

decision tree to the ReCAM arrays with the capacitive sensing scheme and performing func-

x

tional simulations for energy, latency, and accuracy evaluations. We study the decision tree

accuracy under hardware non-idealities including device defects, manufacturing variability,

and input encoding noise. We test our framework on various DT datasets including Give Me

Some Credit, Titanic, and COVID-19. Our results reveal up to 42.4% energy savings and up

to 17.8x better energy-delay-area product compared to the state-of-art hardware accelerators

and up to 333 million decisions per sec for the pipelined implementation.

xi

Chapter 1

Introduction

1.1 Motivation

We live in an era where Machine Learning (ML) is becoming a pivotal part of nearly every

domain including cyber-security [2], medicine [3], biology [4], chemistry [5], astronomy [6],

and many others. Decision Trees (DTs) are a family of supervised ML models that enable

classification and regression, in a simple, interpretable, and comprehensible manner [7]. DT

graphs that are used for classification consist of paths (i.e., routes) that describe some rules

on features and that terminate by leaf nodes storing class values. To perform inference on

DTs, the incoming data should ”match” one single complete path to associate it with some

output class [8]. While one DT is able to produce highly accurate classifications, a collection

or ensembles of DTs can produce best performing classifications [9]. Random forests and

boosting are two popular ensemble DT techniques [8].

While we witness the end of Moore’s law, continuous efforts are needed to enhance the

full software-hardware stack in order to accommodate for the abundant deployment of ML

algorithms in the most efficient, cost-friendly, yet effective manner [10]. Von Neumann ar-

1

chitectures physically seperate between computation and storage: data are fetched from the

memory unit, sent to the computing unit(s) and then sent back to the memory unit for stor-

age. The memory wall is a limitation of classical computers due to the communication rate

between the memory and computing units [11]. In-Memory Computing (IMC) architectures

are gaining momentum for ML applications for they eliminate the memory wall problem that

prevails in von Neumann architectures [12]. Their ability to perform the computation and

storage in one place (the memory) eliminates most of the data communication overhead and

saves the energy once needed for the data movement [11]. Content Addressable Memories

(CAMs) perform massively parallel in-memory searching which boosts the performance in

terms of energy and latency [13–17]. The Associative Processor (AP) is an IMC architecture

based on CAMs that can perform computations in memory. APs can be used to perform

both logical and arithmetic computations inside memory units of the CAM [18]. APs and

CAMs are utilized for IP routing [19], databases [20], and accelerating matrix-vector-like

operations [21]. As such, they present themselves as attractive candidates for accelerating

various ML inference workloads.

Motivated by 1-) the fact that CAMs are flourishing for search purposes, 2-) the fact that

each route in a DT can be logically mapped to a CAM row (where the route’s feature rules

are stored), and 3-) the high search throughput offered by CAMs, we propose DT2CAM: a

Decision Tree to Content Addressable Memory framework. DT2CAM simulates the infer-

ence of decision trees on CAMs in general and resistive-based Ternary CAMs (TCAMs) in

particular. We conduct a study on sensing techniques for CAMs preparatory to introducing

DT2CAM, and demonstrate our results on an adder application simulated on an AP. Our

contributions are summarized in the following section.

2

1.2 Contributions

In this paper, we first start by studying two sensing schemes for 2 Transistor-2 Resistive (2T-

2R) TCAM, (1) a capacitive sensing scheme with optimal dynamic range considerations,

and (2) a resistive sensing scheme that eliminates the precharge phase. Then, motivated

by the fact that each route in a DT can be mapped to a TCAM row and by the high

search throughput offered by TCAMs, we propose DT2CAM: a Decision Tree to Content

Addressable Memory framework. DT2CAM simulates the inference of decision trees on

CAMs in general and resistive-based TCAMs with capacitive sensing schemes in particular.

Our contributions can be summarized as follows.

1. We explore, for the two sensing schemes, improvements in performance metrics in terms

of dynamic sensing range, energy, and latency.

2. We develop a mathematical model for the Memristive TCAM (MTCAM) operation for

both sensing schemes and validate the proposed model against SPICE simulations.

3. We study the two sensing schemes in the context of an n-bit adder application.

4. We propose DT2CAM, a framework that bijectively maps any decision tree into TCAM

units relying on a novel adaptive precision encoding scheme. DT2CAM comprises two

components:

(a) A decision tree to CAM-based hardware architecture compiler (DT-HW compiler).

The DT-HW compiler translates a decision tree graph to a structured Look-Up

Table (LUT) comprising 0, 1, and ”don’t care” bits. The LUT rows represent

encoded DT paths, and they can be mapped into any Ternary CAM architecture.

(b) A Resistive-CAM functional synthesizer which maps the encoded LUT entries

to resistive TCAM cells with capacitive sensing while taking into consideration

3

design requirements and specifications. It also performs simulations to evaluate

energy, latency, and accuracy.

5. We study the robustness of the proposed DT2CAM framework given hardware non-

idealities: manufacturing variability, device defects, and noise in the input dataset.

Results prove high robustness characterized by a low accuracy drop compared to recog-

nition accuracy.

6. We demonstrate for our proposed framework up to 42.4% reduction in energy dissipa-

tion compared to the similar state-of-the-art hardware accelerator on analog CAMs [22],

high throughput, and low area overhead. Moreover, we define a Figure of Merit (FOM)

that further shows that our proposed framework performs the best compared to the

other frameworks. We also validate that the DT2CAM functional accuracy matches

that of Python-based DT inference.

1.3 Organization

The rest of this paper is organized as follows. Chapter 2 provides an overview on in-memory

computing. Then, chapter 3 elaborates on decision trees and the ways to accelerate their

inference. In chapter 4, capacitive sensing and resistive sensing designs are presented along

with their mathematical formulations. In addition, MATLAB and SPICE validation and

simulation results are presented, along with an adder application. In chapter 5, we explain

the proposed DT2CAM framework with the implementation details, and chapter 6 elaborates

on the results and compares the framework against other hardware accelerators. Finally,

chapter 7 concludes the work and presents the future work.

4

Chapter 2

In-Memory Computing

In von-Neumann architectures, processing data requires retrieving the data first from the

memory units to compute units. This creates huge communication overhead across the

system, hence degrading performance. With the rise of data intensive ML workloads, this

degradation in performance has become more prominent. One solution to tackle that prob-

lem is to shift towards a data-centric computing paradigm by enabling IMC. IMC archi-

tectures eliminate the data transfer bottleneck by directly performing some of the desired

computation inside memory, hence they eradicate the ”memory-wall” problem [12]. IMC

architectures that rely on CMOS-based Static Random Access Memories (SRAMs) for log-

ical and arithmetic computations have been explored in various research works [23, 24].

CMOS-based memory technologies are suitable candidates for performing Boolean and low-

precision arithmetic computations. However, they suffer from scaling trends and limited den-

sity, which motivated the exploration of IMC architectures based on emerging Non-Volatile

Memories (NVMs) [25]. Some examples of NVMs include Resistive Memories (ReRAMS or

RRAMs) [26], Phase-Change Memories (PCMs) [27], and Spintronics (STT-MRAM) [28].

In this chapter, we focus on ReRAMs and some IMC architectures based on ReRAMs as

these form the foundation of our work in this thesis.

5

2.1 Resistive Memories

ReRAMs are 2-port devices that have a Metal-Insulator-Metal (MIM) structure, as depicted

in Fig. 2.1. By changing the applied voltage across the ReRAM device, a soft breakdown

of the dielectric occurs whereby conducting filaments are created/destroyed. This results

in generating multi-level conductance levels [29]. ReRAMs can provide ON/OFF resistance

ratios and high density, and they have been used in 128x128 crossbars [30]. ReRAMs, on the

other side, suffer from low endurance, high write energy, and high latency [25]. We note that

in this thesis, we assume the memristor-based ReRAM device (unless mentioned otherwise),

but the concepts can be easily applied for other MIM device based ReRAM designs. The

memristor is a two-terminal element, where the magnetic flux between its terminals is a

function of the amount of electric charge passing. The memristance has the Ohm unit, same

as resistance. The memristor switches between two stable states when an external voltage

is applied across its terminals. If a positive voltage above a specific threshold is applied, the

memristor switches into the ”OFF state” with high resistance (this is known as the RESET

operation). If a negative voltage of the same magnitude is applied, the memristor switches

into the ”ON state” with low resistance (this is known as the SET operation) [31, 32]. It is

worth noting that low resistance state and high resistance state are referred to as LRS and

HRS respectively.

2.2 Content Addressable Memories

Content Addressable Memories, CAMs, are considered one realization of IMC architectures

that have proven to boost performance in terms of energy and latency by performing mas-

sively parallel search operations [13–17]. A CAM, typically depicted in Fig. 2.3, is capable

of performing search on a large number of words in a single shot (i.e. in one cycle) [33].

6

Figure 2.1: ReRAM structure.

CAM memories search the content (i.e. the data word) stored inside the memory to decide

on its existence and location (address). This is unlike traditional memories which search for

the stored data by their address. Due to the potential of CAMs, different implementations

have been explored utilizing either SRAM or emerging devices such as resistive or phase

change memories [34,35]. SRAM-based CAMs suffer from high power consumption and low-

density [34], and to address these concerns, memristor-based CAMs were introduced in [35].

We will elaborate on the memristor-based (or resistive-based) CAM next.

2.2.1 The 2T-2R Cell: A Typical Building Block of Resistive-

based CAMs

Each row of the CAM is composed of several CAM cells (see Fig. 2.3). A typical mem-

ristive (resistive)-based CAM cell structure consists of two memristors (resistive elements),

two transistors, bitlines, and a matchline [36, 37]. Since it has 2 resistive elements and 2

transistors, it is known as 2T-2R cell. The 2T-2R cell is illustrated in Fig. 2.2. As the

resistive elements in this case are assumed to be memristors, a CAM cell can store one of

two bits: ”0” or ”1”. By convention, a ”0” bit is stored in the cell when the memristors

7

Figure 2.2: A typical 2T-2R structure. SA= Sense amplifier.

are LRS-HRS, while a ”1” bit is stored when the memristors are in HRS-LRS. The cell

can store an additional ”don’t care” state, whereby both memristors are in high resistance

state. CAMs that allow the cells to have the ”don’t care” state are known as Ternary Con-

tent Addressable Memories (TCAMs). In TCAMs, partial searches are feasible by enabling

”don’t care” conditions on potions of the searched data word [37]. We next elaborate on the

operation of TCAMs.

2.2.2 Operation of TCAMs

As depicted in Fig. 2.3, at the end of each ”typical” (we introduce another type in chapter 4)

CAM row, a capacitor (not shown in figure), a Sense Amplifier (SA), and a tag are connected

to the match line as to allow the search operation to take place. The whole N ×M TCAM

structure is searched against one input in one clock cycle. In particular, the search operation

comprises two stages that span a clock cycle: 1-) precharge and 2-) evaluate.

1. During precharge, all the N capacitors are charged to the supply voltage VDD.

2. During evaluate, the M -bit data stored in the search data register are passed to the

bitlines of the M TCAM cells of all rows in parallel. The voltage drops across the

capacitors are measured by the SAs. Voltage drops that are below the SAs’ sensing

8

Figure 2.3: A typical content addressable memory structure.

voltage produce a logic-’0’ at the output of the respective SAs (indicating the respective

TCAM rows are mismatched). On the other hand, voltage drops that exceed the

sensing voltage of the SAs yield a logic-’1’ at the output of those SAs (indicating the

respective TCAM rows are matched). SA outputs are latched into the tag in order to

indicate the match/mismatch status of the TCAM rows.

The detailed operations of a 2T-2R cell and TCAMs are further elaborated in chapter 4.

2.2.3 Sensing Schemes

Several sensing schemes have been proposed to reduce the power or enhance the latency of the

search operation of CAM designs [34,38–41]. In conventional schemes, the match line (ML)

is typically precharged high. During the evaluate phase, only the fully matched rows remain

high [38]. The authors in [39] proposed a clocked self-referenced sensing scheme for 2T-2R

PCM-based TCAM designs. The scheme dynamically modulates the precharge ML levels

to intermediate values that enable power savings while maintaining good noise margins.

9

A selective hit-ML precharge sensing scheme was proposed for 2T-2R TCAM in [38]. In

this scheme, the ML discharges only when there is a full match while the mismatched rows

remain high; hence, there is only a need to selectively precharge the fully matched MLs. The

authors in [34] proposed a capacitive sensing scheme for 2T-2R with optimal dynamic range

considerations. More recently, [41] proposed an evaluate only sensing scheme suitable for

nand-type SRAM-based TCAM. This scheme eliminates the precharge phase and performs

search in half-cycle compared to other approaches.

2.3 Associative Processors

2.3.1 Architecture

Associative Processors, APs, are IMC architectures proposed back in the seventies, and they

utilize associative memories to carry out massively parallel computations [42]. The general

architecture of an associative processor is shown in Fig. 2.4. The architecture comprises

the following components: 1-) a two-dimensional (2-D) CAM, 2-) an instruction cache, 3-)

a controller, 4-) a key register, 5-) a mask register, 6-) an interconnection circuit, and a 7-)

tag register. We summarize the functionality of the seven components below [17].

1. 2-D CAM: stores the data that is to be searched or computed. The CAM cell can have

different implementations as we have mentioned earlier.

2. Instruction Cache: stores the instructions that will be executed by the AP.

3. Controller: generates a sequence of required mask and key bits for each instruction.

The sequence follows the look-up table of the operation being performed. It is worth

noting that the LUT of some operation is usually generated automatically by relying

on a uni-directional state diagram with no cycles [43]. The sequence issued by the

10

controller avoids having any cycles that would overwrite the outcome of the earlier

sequence pass.

4. Key register: stores the input bits that would be compared to the bits stored in the

CAM cells.

5. Mask register: stores bits that dictate which bits (i.e. which CAM cells) are activated

during comparison or write. Masked CAM cells are said to be inactive.

6. Interconnection circuit: a switching matrix that facilitates either bitwise or wordwise

parallel communication between the AP rows (i.e. CAM rows).

7. Tag register: Each CAM row has an associated tag register, which stores the result of

the performed comparison between the bits stored in the CAM rows and those passed

by the key.

Completing an operation on the AP can be broken down into two phases: 1-) compare and

2-) write. We summarize both phases below [17,18].

1. Compare: In this phase, the unmasked values in the key are compared against the

values stored in the CAM rows (all CAM rows are compared in one cycle or shot),

and the matched rows are selected via the tag. That means the tag will store logic-’1’

for matching rows. The compare phase itself comprises two stages: a precharge stage

where the matchline capacitor is precharged to the supply voltage, and an evaluate

stage where the inputs to be searched are applied to the columns across the rows in

parallel. During evaluate and if the stored data does not match the input data, a

low resistive path to ground is created through which the precharged capacitor leaks

charges. The voltage difference across the capacitor sensed by the sense amplifier

installed at the end of each CAM row eventually determines a match from a mismatch.

Only rows that have matched invoke the tag to store logic-’1’.

11

2. Write: During this phase, key values (according to the LUT) are written into tagged

CAM words. Some operations performed on the AP do ”in-place” writing while others

do ”out-of-place” writing. In-place writing means that the CAM cells of matched rows

that are used to store the data during the compare phase are overwritten (by bits

dictated by the LUT) in the write phase. Out-of-place writing, on the other hand,

indicates that the bits dictated by the LUT will be written in the matched rows, but

in cells dedicated for ”results” only rather than the cells that were used for comparison

purposes.

Figure 2.4: Associative Processor Architecture.

12

We will next elaborate on the supported arithmetic and logical operations that can be

performed on the AP.

2.3.2 Supported Operations

The AP can implement arithmetic and logic operations. Assuming that A and B are n-

bit vectors, the supported arithmetic operations are in-place (IP) addition (B[i] <= A[i] +

B[i], i ∈ {1, ..., n}), out-of-place (OOP) (R[i] <= A[i]+B[i], i ∈ {1, ..., n}) addition, in-place

subtraction (B[i] <= B[i]−A[i], i ∈ {1, ..., n}), out-of-place subtraction, two’s complement,

multiplication (B[i] <= B[i] × A[i], i ∈ {0, ..., 3}), and absolute value. As for the logic

operations, the following are supported: and, or, xor and not.

These operations are implemented by relying on their respective LUTs. Example LUTs for

addition, subtraction, xor, and or operations are presented in Fig. 2.5. Note that Cr, Br,

and R represent the carry, borrow and output (in OOP operations) respectively. To perform

any operation, the AP first compares the i = 1 input bits (across all rows; i.e. across all

vector entries) to the 1st pass in the LUT (in the compare cycle), and in case of a match,

some results could be written either to one of the cells storing input bits or to a separate cell

that stores the output according to the LUT (write cycle). The AP repeats this process for

all LUT passes and for all remaining i = {2, ...n} bits of the input vectors. More detailed

explanations and examples can be found in [18].

13

(a) (b)

(c) (d)

Figure 2.5: LUTs of (a) addition (in-place and out-of-place), (b) subtraction (in-place and
out-of-place), (c) xor, and (d) or operations.

14

Chapter 3

Decision Trees

Machine learning continues to play a crucial role in performing complex tasks that are

characterized by ”learnable” properties. While brain-inspired Deep Neural Networks (DNN)

are nowadays thriving in several fields including computer vision, autonomous driving, the

Internet of Things (IoT), and smart industries, they are not applicable where interpretability

and domain knowledge are required [44–49]. Some applications that require integrating hand-

crafted solutions (and hence domain expertise and explainability) as part of the learning

process include predictive maintenance, risk management, anomaly detection and image

recognition for purposes of medical diagnosis [50–53]. In particular, Decision trees, DTs, are

popular to perform explainable ML [7,54], this is known as DT-based ML. DTs are supervised

ML models that can be utilized for classification and regression tasks [55]. Classification DTs

(an example DT is depicted in Fig. 3.1) combine a group of simple tests sequentially, where

each test juxtaposes a numeric (nominal) attribute and a threshold value (set of candidate

values) [56]. Attributes are also known as features. As such, classification DTs formulate a

set of decision rules by relying on a labeled training dataset. After being constructed, the

classification DTs are used to classify unseen data points from the test dataset [8]. In the

next section we highlight popular DT training algorithms used for classification/regression.

15

Figure 3.1: A classification DT example. Internal nodes represent the decision rules. Each
decision rule has an attribute (feature) and a threshold value. Leaf nodes represent classes

3.1 Training Algorithms

Decision trees can predict very accurately, given the fact that they are trained on high quality

data [8]. We discuss hereon some popular DT training algorithms used for classification. A

DT algorithm can have either a serial or a parallel implementation depending on the data size,

available memory resources, and the scalability of the algorithm itself [57]. We summarize

the following DT algorithms in the below subsections: ID3, C4.5, C5.0 and CART.

16

3.1.1 ID3

Also known as Iterative Dichotomiser 3, the ID3 algorithm is a simple DT algorithm proposed

by Quinlan Ross back in 1986. ID3 is implemented in a serial fashion based on Hunt’s

algorithm, whereby the DT is constructed by relying on a greedy search. In particular,

the search is conducted on the training dataset samples in order to test each attribute

(categorical) at each tree node. The splitting attribute is chosen based on the information

gain measure. Data is usually preprocessed before building the DT model with ID3 since

this algorithm is not robust against noise in the dataset [57].

3.1.2 C4.5

Developed by Quilan Ross in the 1990s, C4.5 is a successor of ID3. Similar to ID3, it

is serially implemented based on Hunt’s algorithm. C4.5 reduces the error rate since it

replaces internal nodes with leaf nodes. In addition to categorical attributes, this algorithm

also supports continuous attributes. The splitting attribute is chosen based on the gain ratio

impurity method [57,58].

3.1.3 C5.0

C5.0 is also developed by Quinlan Ross, and it is a successor of C4.5. C5.0 utilizes less

memory, and it constructs smaller sets of rules compared to C4.5. Moreover, C5.0 is more

accurate than C4.5 [59].

17

3.1.4 CART

Short for Classification and Regression Trees, CART is developed by Breiman in 1984. It

is based on Hunt’s algorithm, and it is capable of constructing trees for purposes of classifi-

cation and regression. To construct a classification DT, CART relies on binary splitting of

attributes. The splitting attribute is chosen based on the gini index splitting measure [57,60].

It is worth noting that scikit-learn (the Python library we rely on for extracting the DT in our

proposed DT2CAM in chapter 5) relies on an optimized version of the CART algorithm [59].

3.2 Hardware Accelerators

3.2.1 ML-based Hardware Accelerators

The need for hardware accelerators, also known as special purpose engines [61], is increasing

with the surge of ML applications deployed with strict hardware constraints and the end of

Moore’s law, Denard’s scaling law, and Koomey’s law [62,63]. Hardware accelerator designs

trade-off performance and flexibility [64]. Several works in literature have explored ML pro-

cessors and accelerators for accelerating training, inference, or both [65, 66]. More recently,

many ML hardware accelerators rely on neuromorphic architectures, memory-based analog

acceleration, and/or computing with light [64]. We summarize some hardware accelerators

below.

1. FPGA-based accelerators: Bittware/Achronix VectorPath S7t-VG6 accelerator is an

ML accelerator that relies on int8 Multiply-Accumulate Units (MAC) [64, 67]. Mi-

crosoft Brainwave project is an Intel Stratix 10 280 FPGA that is implemented as part

of the Catapult project. It is used for accelerating inference [64,68,69].

18

2. GPU-based accelerators: The Volta architecture V100 and the Ampere architecture

A100 are two NVIDIA computation cards that can accelerate inference and training

[64, 70–72]. MI8 and MI60 GPUs are two AMD/ATI computation cards that support

acceleration for both inference and training workloads [64,73,74].

3. Neuromorphic-based accelerators: Programmable Ultra-efficient Memristor-based Ac-

celerator (PUMA) is a simulator that enables acceleration of a wide variety of ML

inference workloads, and it is based on in-memory computing and analog circuitry [75].

Brainchip’s Akida Spiking Neural Network (SNN) processor (to be released) is a ”single

hardware platform that can perform as an inference engine for the Convolutional Neu-

ral Networks (CNNs) of today and support SNNs of tomorrow with its unique on-chip

learning algorithms” [76]. It supports 1024 neurons per chip like the IBM TrueNorth

research chip [64].

For more details about the different state-of-the-art hardware accelerators in literature, we

invite the readers to refer to [64].

3.2.2 DT-based Hardware Accelerators

Several hardware accelerators for DT-based ML are proposed in [22,77–81]. Most of these are

CPU (e.g., Intel X5560), GPU (e.g., Nvidia Tesla M2050), FPGA (e.g., Xilinx Virtex-6), or

ASIC-based accelerators. More recently, hardware accelerators based on emerging memories

like IMC architectures have been proposed for DT-based ML [22,82,83].

19

Chapter 4

MTCAM Designs and Mathematical

Formulations

A CAM cell can be implemented in a variety of forms. One popular implementation consists

of two transistors and two memristors, which is referred to as 2T-2R [36]. A Memristor-

based TCAM (MTCAM) row consists of several of such cells, and each row is equipped with

a sensing circuit to distinguish between the full match and the mismatch states as illustrated

in Fig. 4.1. The MTCAM row either evaluates to a full match state (fm) where all of its

cells are matched with the input bits or to a mismatch state otherwise. Hereon, we refer to

the full mismatch/one mismatch state (fmm/1mm) as the state where all/one cell(s) are/is

mismatched.

4.1 Capacitive Sensing MTCAMs

In the capacitive sensing scheme, a capacitor is used to distinguish between the fm, and

the different mismatch states. During the precharge phase, the capacitor C is charged, and

20

Vref
Sensing

Circuit

TCAM Cell

Figure 4.1: 2T-2R TCAM structure.

then in the evaluation phase, it discharges through a resistor equivalent to the effective

resistance of the MTCAM row of cells shown in Fig. 4.2a. The voltage across Cin is used

to determine evaluation into a fm or mismatch. In the case of fm, the capacitor discharges

slowly, and in case of fmm, it discharges quickly to ground. Figs. 4.3a and 4.3b (in blue)

show the simulated voltage and current waveforms across the capacitor of the capacitive

sensing MTCAM row. Three cycles are presented corresponding to the fmm, fm, and 1mm

states. Each cycle consists of a precharge phase and an evaluation phase.

4.2 Resistive Sensing MTCAMs

Another sensing approach uses a resistor as a voltage divider for the 2T-2R CAM, as shown

in Fig. 4.2b. Hence, the voltage that distinguishes the mismatch states from the fm state

is depicted as a voltage divider across the equivalent resistor of the MTCAM cells. In this

design, there is no need for a precharge phase, and only an evaluation phase is necessary to

assess among the different states. Fig. 4.2b shows the MTCAM row based on this design

during the evaluation phase. Figs. 4.3c and 4.3d (in blue) demonstrate the output voltage

and current of the transient analysis carried out on the resistive sensing MTCAM row. Three

cycles are considered: fmm, fm, and 1mm. In this design, each cycle consists of an evaluation

phase only. Clearly, this design evaluates much faster while maintaining a good voltage drop

21

difference between the fm and 1mm states. For more information about the setup of the

transient analysis, we refer the reader to chapter 3.

Vpre

Vrow Vin

CReq

Cin

(a)

Vrow V

R

Req

in

Cin

(b)

Figure 4.2: Sensing techniques with the equivalent circuits of MTCAM and comparator,
represented in Req and Cin, respectively; a) capacitive sensing circuit and b) resistive sensing
circuit, shown in the dashed box.

4.3 Mathematical Formulations

4.3.1 MTCAM Row Modeling

We define the equivalent resistance of a row of MTCAM cells as:

Req(Nmm) = Rmm//Rm//Rx (4.1)

where Nmm represents the number of mismatched cells. Rmm, Rm and Rx represent the

equivalent resistances of the mismatched, matched and ’don’t care’ cells within the row,

respectively, and they are defined as follows.

22

(a) (b)

(c) (d)

Figure 4.3: SPICE/MATLAB validation of a TCAM row voltage and current for the fmm,
fm, and 1mm states. For the capacitive sensing waveforms (a) and (b), P and E represent
the precharge and evaluate phases, respectively. Resistive sensing waveforms, noticeably
transitioning faster, are presented over the same time scale for illustration purposes in (c)
and (d).

Rmm =
(Ron +RLRS)(Roff +RHRS)

Nmm(Ron +Roff +RLRS +RHRS)
(4.2a)

Rm =
(Ron +RHRS)(Roff +RLRS)

Nm(Ron +Roff +RLRS +RHRS)
(4.2b)

Rx =
(Ron +RHRS)(Roff +RHRS)

NxRHRS +Nx0Roff +Nx1Ron

(4.2c)

23

where Nmm, Nm and Nx are the numbers of mismatched, matched and ’don’t care’ cells,

respectively. The total number of cells includes the number of matches, mismatches and

’don’t cares’. Nx0 and Nx1 are the numbers of transistors that are OFF and ON of the don’t

care cells respectively. For computing applications, such as the adder application considered

in this paper, Nx is usually set to zero. RLRS represents state ’1’, RHRS represents state ’0’.

Moreover, Ron and Roff represent the effective resistance of the transistors depicted in Fig.

4.1 as indicated in [34].

For the computing applications, such as the adder, which we considered in this paper, we

assume no ’don’t care’ scenarios.

4.3.2 Figure of Merit

In order to have a fair comparison between the two sensing techniques, we define a Figure

of Merit (FOM), which is a function of the following three important metrics.

• Sensing Dynamic Range, DR, which is the voltage range between the match voltage

and the closest mismatch voltage (i.e., one mismatch state). It is defined as follows.

DR(t) = Vfm(t)− V1mm(t) (4.3)

• Latency, TL, which is the time needed to distinguish between the fm and mismatch

states to establish a maximum or desired dynamic range DR. This time determines

the maximum operating frequency of the MTCAM.

• Energy Consumption, E, which is the energy consumed during the search operation

by the MTCAM row.

24

Thus, the Figure of Merit (FOM) is defined as follows.

FOM =
DR(TL)

TL ∗ E
(4.4)

As one can inspect, the design with the higher FOM presents itself as the better design as

it would be more efficient in terms of energy and time, and it would have a relatively high

voltage difference suitable for sensing purposes. Generally, the energy can be defined for the

circuits in Fig. 4.2 based on Eqns. (4.5) and (4.6).

E =

∫ ti+∆t

ti

Vdd ∗ (Vdd − Vin)

R0

dt (4.5)

Vin(t) = Vf + (Vin(t
i)− Vf) exp(

−(t− ti)

τ
) (4.6)

Assuming a time shift where t > ti, Vf is the final voltage, τ is the corresponding time con-

stant of the RC circuit, and R0 is the pull-up resistance as defined in Table 4.1. Substituting

Vin and integrating the previous equation yields the following.

E=
τVdd

R0

(
(Vdd − Vf)

∆t

τ
+
(
Vin(t

i)− Vf

) (
e

−∆t
τ −1

))
(4.7)

For the precharge phase, ∆t is selected to be nτ . For purposes of our simulations, we set

n = 3 throughout the paper, which gives 95% of the steady-state value.

4.3.3 Design Specific Considerations

Three metrics were used for evaluating the performance of the two designs: TL, Energy, and

DR. We herein formulate the corresponding design specific parameters.

25

Capacitive Sensing Design

(a) Latency: For this design, the optimal evaluation time is derived as TEC = (C ln
(

Rfm

R1mm

)
×

Rfm∗R1mm

Rfm−R1mm
) with Rfm = Req(Nmm = 0) and R1mm = Req(Nmm = 1) [34]. As such, the

latency, TCL can be determined by the worst-case precharge time and TEC as follows.

TCL = n ∗ τCP + TEC (4.8)

τCP is the precharge time constant defined in Table 4.1.

(b) Energy: During the ith cycle, the dissipated energy is the sum of energies dissipated

during the precharge and evaluate phases: Ei
C = Ei

CE + Ei
CP . The energy for each

phase is derived according to (4.5) while relying on the parameters listed in Table 4.1.

Note that the initial conditions for the precharge energy calculations in the ith cycle

are obtained from the outcomes of the evaluate phase of the (i− 1)th cycle.

(c) Sensing Dynamic Range: The maximum voltage difference between the fm and 1mm

states measured at the optimal time TEC can be defined as [34]:

DRC(TEC) = Vdd ∗ θ(
θ

1−θ) ∗ (1− θ) (4.9)

Table 4.1: Summary of the model parameters for the capacitive and resistive sensing circuits.

Capacitive Sensing Resistive Sensing

Precharge Phase Evaluation Phase

τ τCP = Ron ∗ (C + Cin) τCE = (Roff ||Req) ∗ (C + Cin) τR = (R||Req) ∗ Cin

R0 Ron Roff R

Vin(t
i) Vin(t

i−1 + TECL) Vdd Vin(t
i−1 + TERL)

Vf Vdd 0 Vdd
Req(Nmm)

Req(Nmm)+R

∆t nτCP TECL TERL

26

with θ = R1mm/Rfm.

Resistive Sensing Design

(a) Latency: This design is evaluate-based only. The latency, TERL is determined by the

worst-case evaluate time as

TERL = n ∗ τWC,R (4.10)

τWC,R is the worst case evaluate time constant for the fm state derived from τR in Table

4.1 with Req(Nmm = 0).

(b) Energy: During the ith cycle, the dissipated energy, Ei
R, is equal to the evaluate energy,

Ei
RE, derived according to (4.5) while relying on the parameters listed in Table 4.1 for

the resistive scheme. Specifically, for the ith cycle, Vin(t
i) is obtained from the outcomes

of the previous cycle, and we expect Vin(t
i+TERL

) to reach the final voltage value, Vf ,

derived according to the voltage divider equation based on the corresponding cycle’s

Nmm.

(c) Sensing Dynamic Range: It can be derived from (4.3) as

DRR(TERL) = Vdd
R(Rfm −R1mm)

(R +Rfm)(R +R1mm)
(4.11)

The maximum dynamic range can be achieved by taking the first derivative with respect

to R and equating it to zero. The optimal R value is as follows.

R∗ =
√
R1mmRfm (4.12)

It is worth noting that R∗ is optimized to maximize the dynamic range not to maximize

FOM, which is a monotonically increasing function of R.

27

4.4 Analysis and Results

4.4.1 Transient Simulations

Fig. 4.3 presents precharge and evaluate waveforms for the fm, fmm, and 1mm states for

the following parameter combinations: N = 128 (number of cells per row), (RLRS, RHRS) =

(1kΩ, α∗RLRS) where α = 1000 (representing low and high memristance values), (Ron, Roff)

= (9kΩ, 10MΩ) to model the precharge transistor in Fig. 4.2a, and R = 5kΩ. Cin = 10fF

and C +Cin = 100fF . For the capacitive scheme, a load of at least 100fF is needed for the

comparator to properly latch Vin and distinguish between the fm and 1mm states due to fast

discharge. The simulated SPICE voltage and current waveforms (in blue) are concurrent

with the corresponding MATLAB simulated waveforms (in red) (based on (4.6)). Hence, the

theoretical results that will be presented in the next section in terms of FOM and design

metrics are consistent with the SPICE simulations.

As apparent in Fig. 4.3, the time taken by the resistive sensing design to evaluate all three

states is in the order of picoseconds compared to nanoseconds for the capacitive sensing.

Moreover, the corresponding energy needed for the resistive sensing design to evaluate dur-

ing that time is obviously less because of the absence of the need to fully precharge which is

required for the capacitive design. Note that the resistive scheme waveforms are presented

over the same timescale as the capacitive one for illustration purposes only. While the dy-

namic range is larger in the capacitive sensing model, the resistive sensing scheme maintains

a good dynamic range. This proves that the resistive sensing design has an edge when energy

and latency are key concerns. The resistive sensing design is therefore ideal for inference

applications where there are consecutive evaluations with no hold intervals. Particularly,

the memristive array can be powered off when inference is completed, and hence no static

energy will be dissipated in the resistive sensing approach.

28

4.4.2 Design Space Exploration: Figure of Merit Analysis

We rely on MATLAB numerical simulations to perform comparative FOM analysis for

the two designs. We rely on the following design space parameter combinations to con-

sider different memristor device values for our study [84]: N ∈ {128, 256, 512}, RLRS ∈

{1K, 10K, 50K, 100K, 1M}Ω, R ∈ {1K, 5K, 25K, 125K, 625K, 1M}Ω, Ron = 9KΩ, Roff =

10MΩ, Vdd = 1V , Cin = 10fF , RHRS = α ∗ RLRS where α = 1000 and C + Cin = 100fF .

We rely on these combinations to compare the two designs over different device types and

ranges. In fact, some device LRS can go as low as 100Ω, and α can be as high as 1000 or

more [84,85]. While large α values may have implications on the device endurance [85], some

metal Oxide RRAMs exhibit good endurance for α = 1000 [84]. We also note that these

ratios can drop due to variability [1, 85], particularly in HRS, and hence, our assumption

for α = 1000 represents a median window ratio.

Fig. 4.4a shows 3D plots for FOMs (when considering worst-case energy of the full mismatch

case) of the two designs corresponding to the different combinations. One can see that the

resistive sensing design shows higher FOM values compared to the capacitive sensing design

for all LRS, R, and N values. Furthermore, the energy and latency results of the resistive

sensing scheme outperform that of the capacitive sensing one over the design space. Figs.

4.4b, 4.4c and 4.4d present the energy, latency and FOM ratios respectively plotted with

the additional constraint on the dynamic range: DR > 75mV to maintain that a sense

amplifier can differentiate between the fm and 1mm states. Table 4.2 lists the maximum

FOM ratio along with the corresponding energy and latency measures for both designs when

DR > 75mV . We note upto 260× FOM improvement for the resistive sensing scheme

compared to the capacitive sensing scheme for N = 256.

While the FOM is a good overall comparator for both designs, some of the metrics may be

more significant than others depending on the specific application. For example, for error-

tolerant neuromorphic computing applications, energy matters most. For AP applications,

29

(a) (b)

(c) (d)

Figure 4.4: (a) FOM comparison between the capacitive and resistive sensing techniques
for different N values. (b) Energy ratio, (c) evaluation time ratio and (d) FOM ratio for
different N values with constrained dynamic range to DR > 75mV .

with dense TCAM structures, energy as well as accuracy in terms of the DR matter, and

latency could be traded-off in favor of energy and/orDR. For IP routing applications, energy

is not a concern. Since the achieved search times for both the capacitive and resistive sensing

schemes are fast, one may consider DR as the key metric for IP routing. If utmost search

speed is under consideration, both latency and DR can be considered as key metrics for IP

routing applications. As such, we present in Table 4.3, a summary of the preferred sensing

scheme based on the performance of the desired metrics for the specific applications when

DR > 75mV . It is evident that the resistive sensing scheme is preferred when the energy is

a concern.

30

We further swept α values and conducted Monte Carlo simulations to mimic variability in

HRS similar to the strong programming values in [1], where we set α~N(µ = 500, σlower =

133 and σupper = 83) where α = µ + ((z > 0)?σupper ∗ z : σlower ∗ z) and z ~N(0, 1).

RLRS = 5KΩ, R = 10KΩ, N = 128. The results are illustrated in Fig. 4.5. Fig. 4.5a

presents the FOM ratio vs. α (fitted curve plotted). We note that FOM ratio increases

as α decreases, with some advantage in terms of the DR for the capacitive sensing scheme

as illustrated in Fig. 4.5b (DR vs. α fitted curve plotted). Hence the capacitive sensing

scheme sustains a DR > 75mV , needed for accurate sensing, at lower alpha values compared

to resistive sensing. Fig. 4.5c presents DRR and DRC based on random variations in HRS

similar to [1]. The two schemes have similar lower tails for their respective DR distributions.

As such, in the presence of process variations in HRS, the two schemes are mostly suited

for error tolerant applications, with the resistive scheme offering energy/latency savings

compared to the capacitive one.

Table 4.2: Energy and latency of points with the highest FOM Ratio with DR > 75mV for
each N.

N Max FOM Ratio ER(fJ) EC(fJ) TERL(ns) TCL(ns)
128 177.9 24 99 3.1E-2 3.2
256 259.7 17 99 4.7E-2 3.0
512 222.1 18 99 5.1E-2 3.1

Table 4.3: Summary of the preferred sensing scheme based on the performance of the desired
metrics for the specific applications for DR > 75mV . R:C represents the ratio of the key
metric for the resistive sensing scheme to the capacitive sensing scheme

Application Key Metrics R:C Preferred Sensing Scheme
N=128 N=256 N=512

Associative Processors DR/Energy 28.7 14.0 8.4 Resistive
Neuromorphic Computing 1/Energy 41.0 20.0 12.0 Resistive

IP Routing DR 0.7 0.7 0.7 Capacitive
IP Routing (Fast Search) DR/Latency 73.4 61.5 46.9 Resistive

31

(a) (b)

(c)

Figure 4.5: (a) FOM ratio vs. α (fitted curve plotted), (b) DR vs. α: swept alpha and
applied same alpha to all memristors in the TCAM row (fitted curve plotted), and (c) DRR

and DRC based on random variations in HRS similar to [1].

4.5 In-memory Adder Example

We studied the two design alternatives in the context of n-bit adder application in a 2n ×

(2n + 1)-bit TCAM array for n ∈ {16, 32, 64}. We implemented the LUT-based approach

in [86]. At its core, the algorithm relies on four passes of 3-bit comparisons each as indicated

in Table 4.4, operates on the different rows in parallel and consecutively computes addition

from the least significant bit (LSB) to the most significant bit (MSB). Since the procedure

overwrites one of the inputs, it is necessary to follow the order of the passes as specified in

32

Table 4.4: Addition look-up table.

Compare Write
Cr B A Cr B Comments
0 0 0 0 0 NC
0 0 1 0 1 2nd Pass
0 1 0 0 1 NC
0 1 1 1 0 1st Pass
1 0 0 0 1 3rd Pass
1 0 1 1 0 NC
1 1 0 1 0 4th Pass
1 1 1 1 1 NC

Algorithm 1 Addition B=B+A per row of AP

0: procedure Add(Abit, Bbit, Carrybit, P reviousstate, Nbit) {Returns
NewCarrybit, NextState, T otalEnergy}

1: for i = 1 to nbits do
2: for pass = 1 to 4 do
3: Determine next state
4: Calculate Es1−>s2 for resistive sensing or Es for the capacitive sensing
5: end for
6: end for

Table 4.4. The adder function pseudo-code is presented in Algorithm 1. We explored the

design space to identify and compare the best resistive and capacitive sensing design points.

4.5.1 Design Space Exploration

We conducted a design space exploration with a MATLAB setup similar to that in section

4.4.2, but with: (i) N = 3, (ii) RLRS ∈ {500, 1K, 10K}Ω. Since the adder’s functionality

comprises a 3-bit comparison per row, we note that one can achieve a reasonable DRC , with

a time interval that is less than the optimal TEC . As such, (iii) we swept TE as a parameter

for the capacitive sensing design over the range [0.0298-5]ns. This range is obtained based

on the resistive sensing evaluate latency corresponding to the different R combinations for a

given RLRS. Hence for consistency, we use this TE range as our reference sensing time axis for

our study. Note that for the capacitive sensing design, we still need to include the precharge

33

time in the FOM analysis. From Fig. 4.6, it is evident that the resistive sensing design offers

enhanced FOM values compared to the capacitive sensing design for the space under study.

Despite the similarity in the range of the sensing time TE for both designs, 3τCP is significant

and contributes to the FOM degradation for the capacitive sensing approach. As shown in

Fig. 4.6b, we identify the best resistive sensing design point PR to correspond to (RLRS,

TERL) = (500Ω, 0.02ns (i.e., R = 1KΩ)). Note that while R value in (4.12) provides the

best dynamic range, it does not correspond to the best FOM. PR yielded DRR = 100mV ,

TERL = 0.02ns, ER = 6fJ and FOMR = 493. For the capacitive sensing design, the best

FOM was achieved at the point PC corresponding to (RLRS, TEC) = (1kΩ, 1.3ns) as shown

in Fig. 4.6a. DRC was around 700mV , latency TCL = 4ns, EC = 97fJ and FOMC = 1.78

for this design point. This point offered a good trade-off between the different metrics. The

FOM ratio at the best operating points is around 277.

4.5.2 Energy Saving

Herein, we focus on the energy savings at the design points PR and PC . For the capaci-

tive sensing, we assumed the current evaluate will incur known energy, Es in the following

precharge, where s ∈ {fm, 1mm, 2mm, 3mm}. These states correspond to the full match,

one, two, and full mismatch energies, respectively. For example, if the LSBs of integers A

and B and the carry, A0B0C = 000, then the 1st pass of the LUT-based algorithm will com-

pare ′000′ to ′110′. This will result in an energy dissipation equivalent to E2mm during the

following precharge phase. For the resistive sensing design, on the other hand, there is no

precharge phase, as indicated earlier, and the evaluation leads to a charge or discharge based

on the previous state. For the jth bit, the previous state is saved from either the previous

pass or the last pass of (j − 1)th bit addition. So, it depends on a number of transitional

energies of interest of the form: Es1−s2 , where s1,2 ∈ {fm, 1mm, 2mm, 3mm}. Hence, if

A0B0C = 000, the 2nd pass will compare ′000′ against ′100′ and will dissipate an energy

34

equal to E2mm−>1mm. In both designs, the energy for a given bit per row is computed based

on the energy consumed in the four passes of the lookup table [86]. The total energy repre-

sents the sum of energies consumed due to the addition of the n-bit integers across all rows.

For a word size of 16, 32, and 64 bits, we ran 1000 add operations. The resulting average

(a)

(b)

Figure 4.6: FOM versus sensing time; a) for N = 3 in capacitive sensing MTCAM, b) for
N = 3 in resistive sensing MTCAM.

35

energy ratios demonstrated around 14× energy savings for the resistive sensing TCAM when

compared to the capacitive sensing TCAM for all n.

4.6 Summary

Up-til now, we presented a comparative study between two sensing designs of 2T-2R TCAMs.

Our comparison was carried out theoretically and using SPICE simulations, where the resis-

tive sensing MTCAM proved to have the edge over its capacitive sensing counterpart design

based on the adopted figure of merit, which incorporates the dynamic range, latency, and

energy as the design performance metrics. This was particularly true for applications where

energy and latency are key concerns. In this context, resistive design showed up-to 260×

FOM improvements over the capacitive design, while taking DR constraints into considera-

tion. We also note that for N = 128, the resistive sensing design, which is characterized by

low energy and latency, satisfied the DR constraints over a wide range of the design param-

eter space. Finally, we presented an adder application that maintained our theoretical and

SPICE results. As such, we have demonstrated that the resistive sensing of MTCAM cell

serves as an efficient building block of AP designs and their subsequent applications. In the

next chapters, we adapt the capacitive sensing scheme due to its popularity with the current

TCAM designs. We will explore the proposed DT2CAM framework with resistive sensing in

future work.

36

Chapter 5

Proposed DT2CAM Framework

Our proposed framework comprises two components: A decision tree to CAM-based hard-

ware architecture compiler (DT-HW compiler), and a Resisitve-CAM functional synthesizer

(ReCAM functional synthesizer). The DT-HW compiler translates a decision tree graph to

a structured lookup table. The ReCAM functional synthesizer first maps the look-up table

into ReCAM arrays and then evaluates energy, latency, and accuracy via simulations.

5.1 DT-HW Compiler

To map a decision tree graph into a structured look-up table, the DT-HW compiler comprises

four main steps: decision tree graph generation, tree parsing, column reduction, and ternary

adaptive encoding step. We next elaborate on each of these steps.

37

5.1.1 Decision Tree Graph Generation

In this step and for a given dataset, a supervised decision tree model capable of performing

multi-class classification is trained by relying on the Classification and Regression Trees

(CART) algorithm [87]. The decision tree model can be represented by a decision tree

graph. The internal nodes of the graph represent rules on the attributes or features, the

branches represent the decisions for the rules, and leaf nodes represent outcome classes.

5.1.2 Tree Parsing

Starting with a decision tree, the DT-HW compiler parses it into its equivalent table of

conditions; each row in the table represents a path in the decision tree from root to leaf,

and the number of rows is equal to the number of paths of the tree. Subsequently, each row

consists of condition(s) applied to at least one feature.

5.1.3 Column Reduction

After the tree parsing step, the DT-HW compiler reduces the conditions on each feature

to one single condition (or rule) per row. The incoming input features can then be easily

compared against their respective features’ rules. The single rule for some feature fi in row

j, ruleij, specifies the range for fi. We note that by construct, the decision tree enforces a

continuous range for the rule definition in a given path (row). The rule can be defined using

a three-state comparator ∈ { ’0’ , ’1’ , ’2’, ’NaN’} and two thresholds: (Th1ij) and (Th2ij).

The comparator states ’0’, ’1’, ’2’, and ’NaN’ represent a-) less than or equal, b-) greater

than, c-) in-between and d-) no rule for this feature in this row, respectively. In particular,

if the comparator is ′0′ in a row for some feature fi, an incoming input feature, fini
, should

be less than or equal to Th1ij (equivalently, fini
∈ (−Inf, Th1ij]) in order to match fi’s rule

38

in row j. When the comparator is ′1′, fini
should be greater than Th1ij to match the rule

on fi. In these two cases, Th2ij is ignored, and hence represented as ”NaN” in the reduced

table. When the comparator is ′2′, fini
should belong to (Th1ij, Th2ij] in order to match the

rule.

5.1.4 Ternary Adaptive Encoding

In the final step, the DT-HW compiler encodes each feature rule relying on an ”adaptive-

precision” unary encoding scheme suitable for TCAM implementations. We note that the

scheme exploits the ”don’t care” feature of the TCAM as will be explained next. The

”adaptive-precision” technique optimizes the area by setting a feature-dependent encoded

string length. Thus, the number of bits varies for the different features but remains constant

for a specific feature across all rows. This ensures that the encoding scheme is compact and

efficient. Hence, it is referred to as Ternary Adaptive Encoding.

The number of encoding bits for a specific feature is determined by the number of respective

unique threshold values identified in the preceding column reduction step. In particular, for

a given feature fi out of N features (i ∈ 1, 2, ..., N), the number of bits, ni, needed to encode

fi depends on the number of unique thresholds over the m rows, Ti = | ∪m
j=1 {Th1ij, Th2ij}|,

as follows:

ni = Ti + 1 (5.1)

Hence, for N features, the total number of bits (ntotal) that are eventually needed to encode

the whole decision tree (excluding the leaf nodes that store the class labels) is as follows.

ntotal = Nbranches ∗
∑
i

(ni) (5.2)

39

where Nbranches = m is the number of branches or paths from the root to leaf nodes in the

decision tree (or the number of leaf nodes).

The encoding scheme employs unary codes in the ’normal’ form [88]. The encoded bits

belong to the basis {0, 1, x}; x represents a ”don’t care”. This encoding facilitates bijective

mapping of the rules into TCAM(s). The encoding can be best explained as follows for a

given feature fi.

1. Sort the elements of Thfi = ∪m
j=1{Th1ij, Th2ij} in ascending order.

2. Construct ni =
′ Ti + 1′ exclusive ranges defined in the set

Ri = {r1 = (−Inf,min(Thfi)], ..., rn =]max(Thfi),+Inf)}.

3. Map the ranges in Ri to ascending unique normal unary codes, ufi
r1
, ..., ufi

rni
, each com-

prising ni bits starting with the code ′00...01′ and ending with 11...11.

We note that the input features also rely on the same scheme to be encoded, and each will

be represented by one of the unique feature codes based on the exclusive ranges they satisfy.

We rely on the above encoding to construct a LUT. Recall that the rule range is continuous

for a given path and thus can be interpreted in terms of the union of a set of multiple

consecutive exclusive ranges. In order to accommodate for cases where a feature spans

multiple exclusive ranges, we rely on ”don’t care” bits denoted as ”x” to encode the new

union range. With this scheme, inputs that belong to the different exclusive ranges that

construct the rule will result in a match in the TCAM. As such, for each rule ruleij of fi in

row j, we perform the following steps.

1. Find the set of exclusive ranges, {rLB, rUB}, spanned by ruleij. LB,UB ∈ {1, .., n}.

40

2. Encode ruleij as follows.

Idx = Findidx(XOR(urLB
, urUB

) == 1) (5.3)

uruleij = Replace(urLB
, Idx, ”x”) (5.4)

Findidx(.) returns a list of indices satisfying a certain condition. Replace(u, Idx, ”c”)

replaces all the characters of string u in positions Idx by the character ”c”.

Fig. 5.1 presents an example that illustrates the encoding scheme for some feature fi. With-

out loss of generality, we assume that Ti = 4 and Thfi = {0.8, 1.5, 1.65, 1.75} as highlighted

in yellow in Fig. 5.1. Accordingly, we construct the unary codes, {00001, ..., 11111}, for the

five exclusive ranges. We note again that we use five bits to encode each range since there

are four unique thresholds. So, if in the column reduction step, ruleij = ”′0′, 0.8, NaN”,

i.e., fi ≤ 0.8, its range spans the first range (−Inf, 0.8]. Accordingly, uruleij = 00001.

If ruleij = ”′2′, 1.65, 1.75”, i.e., requiring fi ∈]1.65, 1.75], and hence it will be encoded as

uruleij = 01111. To find the encoding of the new range]0.8, 1.65], which spans the second

and third ranges (Fig. 5.1), we find XOR(00011, 00111). This results in the string 00100.

uruleij = Replace(00011, {′3′},′ x′) = 00x11. In a similar manner, a range of]1.5,+Inf [,

which spans the last three exclusive ranges in the table of Fig. 5.1, is encoded as xx111.

5.2 DT-HW Sample Example based on Iris Dataset

Henceforth, we rely on Fig. 5.2 to elaborate on the four steps described above. Starting

with a given decision tree, adapted from part of the Iris dataset [89] decision tree, DT-HW

parses it into its equivalent table of rules in the tree parsing step. The left most and right

most paths in the decision tree graph are parsed into the first and second rows of the table

as follows: if ”Petal Width”, PW , of the input is less than or equal to 0.8, the class output

41

Figure 5.1: An example of encoded ranges based on four unique thresholds (highlighted in
yellow): 0.8, 1.5, 1.65, and 1.75. Unary codes in normal form are used for exclusive intervals
comprising the unique thresholds. For inclusive intervals (union of multiple exclusive inter-
vals), ”don’t care” bits (denotes as ”x”) are used to maintain the correctness of the codes of
these ranges.

at the leaf is ”Setosa” (row1). Otherwise, if the input ”Petal Width” is greater than 0.8 and

greater than 1.75, then the class at the leaf is ”Virginica” (row2).

Then, in the column reduction step, the second row (PW > 0.8 and PW > 1.75 Virginica)

is reduced into one rule on PW , PW > 1.75 (i.e. comparator is ′1′, Th1 = 1.75, and

Th2 = NaN). Moreover, in the column reduction step, each unique class in the original

decision tree is assigned a natural number.

By inspecting the columns of PW in the column reduction step, one can notice that PW has

two unique thresholds so it should be encoded using three bits in the final ternary adaptive

encoding step. The actual encoding follows step3 explained above. The same steps are

repeated for all other rows and features. When all rules are encoded, binary encoding is

further used to represent the class (decision tree leaf nodes).

42

F
ig
u
re

5.
2:

D
ec
is
io
n
T
re
e
H
ar
d
w
ar
e
(D

T
-H

W
)
C
om

p
il
er
:
T
ra
n
sl
at
es

a
d
ec
is
io
n
tr
ee

gr
ap

h
to

a
st
ru
ct
u
re
d
lo
ok

u
p
ta
b
le
.
In

p
ar
ti
cu
la
r
(f
ro
m

le
ft

to
ri
gh

t)
,
it

fi
rs
t
p
ar
se
s
th
e
d
ec
is
io
n
tr
ee

an
d
cr
ea
te
s
a
ta
b
le
,
th
en

re
d
u
ce
s
th
e
co
lu
m
n
s
of

th
e
ta
b
le
,
an

d
fi
n
al
ly
,
it
u
se
s
a
”t
er
n
ar
y
ad

ap
ti
ve

en
co
d
in
g”

sc
h
em

e
to

cr
ea
te

th
e
lo
ok

-u
p
ta
b
le
.

43

5.3 ReCAM Functional Synthesizer

The ReCAM functional synthesizer comprises two steps:

• Mapping step: maps the look-up table, provided by the DT-HW compiler, into Ternary

Resistive-CAM arrays. It takes into consideration hardware and functional limitations.

• Simulation step: After that, the synthesizer then evaluates energy, latency, and accu-

racy via simulations while maintaining certain specifications or limitations.

5.3.1 Mapping

A bit of ”0”, ”1”, or ”x” in the look-up table is mapped to a ”01”, ”10”, or ”11”, respectively,

in the two resistive elements of a TCAM cell as shown in Fig. 5.3. Ideally, one TCAM array

is used, and the total number of TCAM cells needed is equal to ntotal. However, in practice,

the number of TCAM cells depends on the design requirements and limitations in terms of

energy efficiency, latency, and dynamic range.

44

F
ig
u
re

5.
3:

R
eC

A
M

F
u
n
ct
io
n
al

S
y
n
th
es
iz
er
:
M
ap

s
th
e
lo
ok

-u
p
ta
b
le

fr
om

th
e
en
co
d
in
g
st
ep

in
to

R
eC

A
M

ar
ra
y
s
an

d
ru
n
s

en
er
gy
,
la
te
n
cy
,
an

d
ac
cu
ra
cy

ev
al
u
at
io
n
s.

In
ot
h
er

w
or
d
s,
it
b
re
ak

s
u
p
,
if
n
ee
d
ed
,
th
e
ta
b
le
fr
om

th
e
en
co
d
in
g
st
ep

in
to

m
u
lt
ip
le

ta
b
le
s
th
at

ca
n
b
e
m
ap

p
ed

in
to

R
es
is
ti
ve

T
C
A
M
s
of

re
gu

la
r
si
ze

”S
×

S
”.

F
or

p
u
rp
os
es

of
en
er
gy

effi
ci
en
cy
,
th
e
co
lu
m
n
-w

is
e

T
C
A
M

ti
le
s
ar
e
se
p
ar
at
ed

b
y
ro
w
-e
n
ab

le
b
it
s
th
at

d
ea
ct
iv
at
e
th
e
ro
w
s
in

th
e
fo
ll
ow

in
g
ti
le
s
if
th
e
re
sp
ec
ti
ve

ro
w
s
in

th
e
p
re
v
io
u
s

ti
le
s
m
is
m
at
ch
.

45

Dynamic Range: The dynamic range of the TCAM is a limitation that needs to be

satisfied to guarantee correct functionality. The dynamic range of a TCAM describes the

voltage difference between a full match voltage, Vfm, and the one mismatch voltage, V1mm,

and it needs to be a ”measurable difference” for the Sense Amplifier (SA) to detect it and

differentiate between a full matching row (fm) scenario and a one mismatching row one

(1mm). The dynamic range, D, is defined as follows.

D = Vfm − V1mm (5.5)

Furthermore, we remind the reader that the dynamic range for a capacitive sensing design,

Dcap, measured at optimal time Topt is defined as follows [37,90].

Dcap(t = Topt) = VDD ∗ γ(γ
1−γ

) ∗ (1− γ) (5.6)

where VDD is the supply voltage, and γ = R1mm

Rfm
, with R1mm and Rfm being the equivalent

resistances of the TCAM row in the cases of one mismatch and full match respectively.

The dynamic range is affected by the TCAM row size (equivalently, the size of the row of the

encoded table of Fig. 5.2) which affects the equivalent resistances. So given a certain limit

on the dynamic range, Dlimit, (to render it a ”measurable difference”), we calculate relying

on Eqn. (5.6) a target TCAM row size S beyond which Dlimit cannot be met.

Organization, Latency and Energy Efficiency: For practical purposes, we also assume

that the TCAM width (# of rows) would be S. Hence, multiple TCAMs are needed; specif-

ically, the synthesized TCAM cells of the encoded LUT rules need to be divided among

Nt = Ncwd ∗Nrwd TCAM arrays (aka tiles) each of size S × S to guarantee practical correct

operation, where Ncwd = ⌈(ntotal/#rows+1)/S⌉ and Nrwd = ⌈#rows/S⌉ represent the num-

ber of column-wise and row-wise TCAM tiles respectively. The ’+1’ in Ncwd is explained by

the reserved decoder column discussed in the scenarios below.

46

• The original size of the LUT is smaller than S × S (in that case Ncwd=Nrwd=1), and

the functional synthesizer needs to extend the table obtained from the encoding step

by padding ”don’t care” cells to render the LUT size S × S (5.2). We reserve the first

column of the TCAM array and refer to it as the decoder column to enforce mismatch

for the rows that are not part of the original LUT (denoted as rogue rows).

• Otherwise, it needs to divide that table into multiple TCAM tiles of size S × S. Tiles

that are not completely filled by the LUT are padded by ”don’t care” cells. We reserve

the first column of all TCAM arrays in the first division as decoder columns (see Fig.

5.3. For purposes of energy efficiency, the column-wise TCAM tiles are separated by

row-enable bits that deactivate the rows in the following tiles if the respective rows in

the previous tiles mismatch. Furthermore, by setting the decoder column bits to ’1’

for the rogue rows, we enable further energy savings since it forcibly mismatches the

rogue rows. Aside from the decoder column, the remaining columns in the rogue rows

are stored as ”don’t care cells”.

Each one of the S × S TCAMs has a column of S SAs that are used to determine the

match/mismatch status of each row. The class values corresponding to the rogue rows are

populated with random values from the set of possible classes. we equip the row-wise tiles of

the last column-wise division with an extra column of ReRAM cells, that are used to store

the class bits (or equivalently the encoded leaf nodes’ values of the decision tree). ReRAM

cells are made of 1T1R cells, and each binary bit used to encode the classes is saved in one

1T1R cell. So for a decision tree that has C, possible classes, ⌈log2(C)⌉ bits or 1T1R cells

are needed for each row.

Without loss of generality, we further elaborate on the latter scenario with the aid of Fig.

5.3.

47

Input Processing and TCAM Mode of Operation: A ′0′ bit is padded at the beginning

of the input. This padding along with decoder column bits enforces a mismatch in the rogue

rows. For the rows that are part of the original LUT the padded bit matches with the decoder

column bit. The original encoded input is then split across row-wise tiles of the column-wise

tiles. Input pins that exceed the size of the encoded input may be assigned random inputs

or may be masked. For the latter, the extended columns of the last column-wise division are

”masked”, and the ”masked don’t care” cells have a pair of OFF-OFF transistors and do not

dissipate energy. To exploit the parallel processing property of TCAMs whereby an input

is processed in one shot across all TCAM rows, the row-wise tiles are allowed to operate in

parallel. Moreover, to save precharge and evaluate energy we force a sequential operation

on the column-wise TCAM tiles where no energy is dissipated in the following tiles upon

mismatch in the previous tiles. The mode of operation is depicted in Fig. 5.4. Eventually,

each encoded input must have one matching row in the row tiles of the last column division.

We call this row the surviving row because it is the one that has matched in all corresponding

previous row and column-wise tiles.

48

C
L
K

T
im

e

E
P

L
oa
d

T
il
e x

1
..
.

V
M

L

D
1

E
P

.
..

T
il
e x

2

..
.

..
.

E
P

T
il
e x

n
..
.

O
/P

T
il
e x

1
..
.

T
il
e x

n
−
1

..
.

T
il
e x

n
..
.

D
2

..
.

F
ig
u
re

5.
4:

T
im

in
g
D
ia
gr
am

:
T
il
e x

1
an

d
T
il
e x

2
re
p
re
se
n
t
th
e
ro
w
-w

is
e
ti
le
s
of

th
e
fi
rs
t
an

d
se
co
n
d
co
lu
m
n
-w

is
e
T
C
A
M

ti
le
s.

P
an

d
E

ar
e
sh
or
t
fo
r
P
re
ch
ar
ge

an
d
E
va
lu
at
e
re
sp
ec
ti
ve
ly
.
V
in

is
th
e
vo
lt
ag
e
m
ea
su
re
d
ac
ro
ss

C
in
.
F
ir
st
,
d
at
a
is

lo
ad

ed
in
to

th
e
T
C
A
M

ti
le
s.

D
u
ri
n
g
p
re
ch
ar
ge

cy
cl
es
,
ti
le
s
ar
e
p
re
ch
ar
ge
d
,
an

d
d
u
ri
n
g
ev
al
u
at
e,

th
e
d
at
a
is

se
ar
ch
ed

ac
ro
ss

th
e
ti
le
s.

C
ol
u
m
n
-w

is
e
T
C
A
M

ti
le
s
op

er
at
e
se
q
u
en
ti
al
ly

w
h
il
e
ro
w
-w

is
e
ti
le
s
op

er
at
e
in

p
ar
al
le
l.

49

Selective Precharge: In this work, we adopt sequential evaluation across multiple column-

wise TCAM tiles for each input to enable Selective Precharge (SP). By relying on the pro-

posed SP circuit presented in Fig. 5.5, a row that mismatches in the previous column-wise

tile for a given input is not precharged nor evaluated in the current tile. In particular, if

an input mismatches a given row in some Tileij (stage k-1), the SP circuit deactivates the

precharge circuitry and the SA of the corresponding row in Tileij+1 (stage k). Deactivat-

ing SAk prevents the floating capacitor voltage residue from falsely flagging a match and

activating the following tiles while S̄P preserves the charge to save energy during future

precharges of the same tile. As such, the advantage of using the SP circuit is depicted in

the reduction of the energy-delay product presented in Fig. 6.1c (see following chapter). We

note that if an input at stage k-1 matches some row, the SA and precharge circuitry of the

corresponding row in stage k are activated.

Figure 5.5: Selective Precharge Circuit.

5.3.2 Simulation

The synthesizer relies on simulations to carry out energy, latency, and accuracy evaluations

for the design with and without hardware non-idealities. Herein, we adopt the following

assumptions.

50

Technology: For energy, latency, dynamic range (Dcap), and optimal evaluation time (Topt)

calculations, the ReCAM functional simulator relies on 16nm technology parameters sum-

marized in Table 5.1.

Table 5.1: 16nm predictive technology models parameters used for the ReCAM arrays.

Parameter Definition Value
RLRS Low Resistance State 5kΩ
RHRS High Resistance State 2.5MΩ
RON ON Transistor Resistance 15kΩ
ROFF OFF Transistor Resistance 24.25MΩ
Cin Sensing Capacitance 50fF
VDD Supply Voltage 1V

Target Size: We determine the target size S values of the TCAM for

Dlimit ∈ {0.2, 0.3, 0.4, 0.5, 0.6}. For each Dlimit value, we rely on Eqn. (5.6) to determine the

maximum number of TCAM cells per row allowed to satisfy this value. Finally, we choose a

power-of-two target S value close to the maximum value found as shown in Table 5.2.

Table 5.2: Dcap values and the chosen target TCAM size S.

Dcap Upper Bound Max # of Cells/Row Chosen S
0.2 154 128
0.3 86 64
0.4 53 32
0.5 33 32
0.6 21 16

Energy: For energy calculation purposes, the total energy per an active TCAM row per an

input is calculated as follows.

Eactive
row = ETCAM + Esa (5.7)

where Esa is the energy of the SA obtained via SPICE simulations. In particular, for a

target size S, Esa is the energy dissipated in the SA for a certain reference voltage capable

of differentiating between a fully matching row and a row with one mismatch. In addition,

51

ETCAM is derived based on the closed form in chapter 4 (see section 4.3.2). We remind the

reader that the evaluation duration is Topt, where Topt is the time used to sense the match

line for evaluation purposes and is defined as follows.

Topt = Cin ∗ ln(
Rfm

R1mm

) ∗ (Rfm ∗R1mm)

(Rfm −R1mm)
(5.8)

We assume the worst-case scenario for the energy calculations, where the extended cells

in the row-wise tiles of the last column-wise division are treated like regular ”don’t care

cells”, hence dissipating energy as opposed to being masked. We note that we maintain the

sequential functionality assuming null energy dissipation in rows that have been deactivated

by the respective mismatching rows in previous tiles.

Since the energy defined above is measured per row per input, the total energy for a given

input is Etotal =
∑Na

1 Eactive
row + Emem, where Na is the number of active rows for the spe-

cific input. Emem is the energy needed to access the class label of the surviving row. We

assume that class labels are stored in 1T1R cell(s) (total number of 1T1R cells needed is

log2(#classes)) followed by a SA adapted from [91]. Accordingly, Emem is the energy dissi-

pated in the 1T1R cell(s) and the SA adapted from [91]. The average energy per input can

then be computed from all the input data points.

Latency: We define the column-wise latency, Tcwd, as the time needed to complete the

inference per input per a column-wise tile according to (5.9). The average total latency, per

input, T̄total, is then given by T̄total = Ncwd ∗ (Tcwd) + Tmem.

Tcwd = 3 ∗ (τpchg) + Topt + Tsa (5.9)

52

where Tsa (determined via SPICE simulations) is the time needed for the SA to sense a

match or a mismatch, and Tmem is the time needed to access the 1T1R cell(s) storing the

class label of the surviving row. We note that in the case of multiple 1T1R cells, these

are accessed in parallel. In addition, our simulator operates with the maximum frequency

(unless otherwise mentioned) which is given as follows.

fmax =
1

max((3 ∗ (τpchg) + Topt + Tsa), Tmem)
(5.10)

This equation is used to determine the operating frequency for any array size. For instance,

operating frequency for an array width of 128 is 1 GHz under the parameters reported in

Table 5.1.

Sense Amplifier Reference Voltage: We utilize two different reference voltages, Vref,1

and Vref,2, for the SAs. Vref,1 is used for the SAs of all TCAM tiles except the row-wise tiles

of the last column-wise division. For these tiles, Vref,2 is utilized instead to accommodate for

the presence of ”masked don’t care” cells that result in different values for Vfm and V1mm.

We note that the sense amplifier design adopted for sensing the match line is based on the

double-tail sense amplifier proposed in [92], and is implemented in the 16nm technology

node.

Device Defects We study the accuracy-wise robustness of our DT2CAM framework under

device defects. In particular, we focus on a common problem in resistive TCAM cells:

the fabrication-induced permanent Stuck-At-Fault (SAF) problem. Such fault cannot be

writable as it is stuck at either High-Resistance State (HRS) (equivalently stuck at the bit

”0” or SA0) or Low-Resistance State (LRS) (equivalently stuck at the bit ”1” or SA1) [93].

We study the SAF problem by inducing bit flips in the encoded TCAM cells as indicated

in Table 5.3 and using the following probability percentage values: SA0 = [0, 0.1, 0.5, 1, 5]%

and SA1 = [0, 0.1, 0.5, 1, 5]%.

53

Table 5.3: TCAM induced bit flips due to SAF.

Target
Encoded Bit

{R1, R2} Encoded Bit
w/ SA0

Encoded Bit
w/ SA1

0 {HRS, LRS} x or 0 0 or {LRS, LRS}
1 {LRS, HRS} x or 1 1 or {LRS, LRS}

x {HRS, HRS} x
x or 0

or 1 or {LRS, LRS}

Manufacturing Variability DT2CAM is studied (accuracy-wise) under the effect of man-

ufacturing variability in the SAs similar to [92]. We emulate this variability by apply-

ing random offsets to Vref1,2 of the individual SAs for a given TCAM division. Vref1,2 =

µVref1,2
± σsa ∗ z where σsa ∈ [0, 0.03, 0.04, 0.05, 0.1]V and z N(0, 1).

Input Encoding Noise To study the effect of input noise, we induce random noise in the

normalized input features dataset with the following variability:

σin ∈ [0, 0.001, 0.005, 0.01, 0.02, 0.05, 0.1] and observe the change in recognition accuracy.

Area We estimate the average area, A, of the proposed synthesizer design according to the

following formula.

A = Nt ∗ (S2 ∗A2T2R +S ∗ (ASA +ADFF +ASP))+S ∗ log2(Nc) ∗ (A1T1R +ASA2) (5.11)

where A2T2R, ADFF , ASP , and A1T1R are the areas of 2T2R (i.e. TCAM cell), D-flipflop

(i.e. tag), selective precharge circuit (Fig. 5.5), and 1T1R (for storing class labels for the

surviving row) respectively. Moreover, ASA and ASA2 represent the areas of the double-tail

SA (used for sensing the match line) and the SA adopted from [91] (used along with the

1T1R cell(s)). Nc is the number of class labels used for some dataset.

54

Table 5.4: Description of the utilized datasets.

Dataset # Instances # Features # Classes
Iris 150 4 3

Diabetes 768 8 2
Haberman 306 3 2

Car 1728 6 4
Cancer 569 30 2
Credit 120269 10 2
Titanic 887 6 2
Covid 33599 4 2

5.4 Implementation Details

Our framework is built in Python where we extract and parse the decision tree, then reduce

it as shown in the column reduction step (Fig. 5.2). This is followed by ReCAM functional

synthesizer to perform the mapping and hardware simulations. To test DT2CAM, we rely

on eight datasets, six of which are from the UCI Repository and Kaggle [89, 94, 95]. In

particular, we utilize the Fisher’s Iris (denoted as Iris), Haberman’s Survival (denoted as

Haberman), Car Evaluation (denoted as Car), and Breast Cancer Wisconsin (Diagnostic)

(denoted as Cancer) datasets from the UCI repository. The Give Me Some Credit (training)

(denoted as Credit) and Pima Indian Diabetes (denoted as Diabetes) datasets are taken from

Kaggle. In addition, from Stanford’s CS109 website [96], we utilize the Titanic dataset. To

evaluate our framework on a more recent dataset, we also test it on the COVID-19 (denoted

as Covid) dataset compiled by [97]. The details of the used datasets are summarized in Table

5.4.

Note that in some datasets, we omit some incomplete instances and some features that are

unique for each data instance (like ID or name etc.), and these modifications are reflected

in the table. Without loss of generality, we use the same split percentage of the data in

the aforementioned datasets to generate the decision trees: 90% and 10% for training and

testing, respectively.

55

Chapter 6

Results and Comparison

In this section, we discuss the results collected by the ReCAM functional synthesizer, and

then compare DT2CAM to other state-of-the-art hardware accelerators.

6.1 Energy/Throughput/EDP Analysis

In Fig. 6.1a, we plot the energy per decision (dec) vs throughput for all eight datasets and

with different target S value, where S × S ∈ {16× 16, 32× 32, 64× 64, 128× 128}. Larger

markers indicate larger S values. Inference on Credit, being the largest dataset, consumes

the highest energy and has the lowest throughput, while inference on Iris, being the smallest

dataset, consumes almost the lowest energy and yields the highest throughput. This is

expected as energy and throughput are dataset-size dependent. For Credit, Covid, Titanic,

and Diabetes (relatively large datasets as shown in Table 6.1), increasing S results in reducing

the per decision energy consumption (nJ/Dec) and increasing the throughput in terms of

the number of decisions per second (Dec/sec). The energy reduction is due to a decrease in

the number of switching blocks and SAs. The throughput improvement is attributed to the

56

fact that the number of TCAM tiles operating sequentially for these datasets decreases with

increasing S. Accordingly, the Energy-Delay Product (EDP) demonstrates improvement

with increasing S as illustrated for these datasets in Fig. 6.1b.

For the remaining datasets, the throughput (Dec/sec) improves with the target size demon-

strating similar behavior as the previous ones. However, the energy consumption (nJ/Dec)

increases with S. This is attributed to the fact that small datasets are represented by at most

two tiles when S = 128 thereby not benefiting from deactivated rows due to mismatching

rows in previous tiles. Nevertheless, the throughput improvement is larger than the energy

degradation (increase), and the EDP improves (decreases) with larger S values (Fig. 6.1b).

Only the Iris dataset favors smaller S values when it comes to EDP due to its extremely

small LUT size.

In addition, in Fig. 6.1c, we present the % reduction of EDP when SP circuit is used

compared to when it is not. For all datasets where at least two column-wise tiles are required

for different target size S, we see a reduction in the EDP. This shows the advantage of using

the SP circuit as it saves energy. In particular, the Credit dataset with SP circuit achieves

the highest reduction in EDP (around 90%). This is expected as it is the largest dataset

with the largest produced LUT, which in turn yields a large number of column-wise tiles.

The large number of column-wise tiles benefits from the SP circuit by evaluating only few

rows in each tile.

6.2 Analysis with Hardware Non-idealities

We study the DT2CAM framework in the context of accuracy loss for different target size

S, and under the described hardware non-idealities before. Without loss of generality, we

focus on the following datasets: Diabetes, Cancer, and Covid. We note that for all the

57

Table 6.1: Number of TCAM tiles for the different datasets.

TCAM Tiles: Nrwd ×Ncwd

Dataset LUT Size 16× 16 32× 32 64× 64 128× 128
Iris 9× 12 1× 1 1× 1 1× 1 1× 1

Diabetes 120× 123 8× 8 4× 4 2× 2 1× 1
Haberman 93× 71 6× 5 3× 3 2× 2 1× 1

Car 76× 20 5× 2 3× 1 2× 1 1× 1
Cancer 23× 52 2× 4 1× 2 1× 1 1× 1
Credit 8475× 3580 530× 224 265× 112 133× 56 67× 28
Titanic 191× 150 12× 10 6× 5 3× 3 2× 2
Covid 441× 146 28× 10 14× 5 7× 3 4× 2

datasets under study, the accuracy evaluated by the ReCAM synthesizer for ideal hardware

(without non-idealities) matches the accuracy obtained in Python (hereon denoted as golden

accuracy) when inference is performed. Hence the accuracy loss of each dataset is measured

concerning the corresponding golden accuracy. From Fig. 6.2, the target size S does not

impact the accuracy loss in the presence of non-idealities for Diabetes and Cancer. For the

Covid dataset, which has a large number of tiles, a smaller S is more robust against non-

idealities as the drop in accuracy is lower. This is clear for the case when SA′b′ = 0.1%

and S = 64 (yellow plane) and S = 128 (dark blue plane). The same holds for the case

of SA′b′ = 0%. Note that the cases for SA′b′ = 0.5% are truncated for better illustration.

Note that the probability of a defect falling in a division decreases with S. The variability

induced in SAs affects the accuracy more severely compared to the noise in the input test

datasets, and this applies to all datasets under study. In fact, for some cases, the input

noise reduces the accuracy loss, and this is due to the test dataset itself, and how it changes

with the induced input noise. We finally note that the stuck-at-fault problem affects the

accuracy the most, as it can increase the % accuracy loss up to 50% (in the absence of other

non-idealities), especially for large S.

58

(a) (b)

(c)

Figure 6.1: Per inference decision: (a) Energy vs throughput for the different datasets. The
shape size determine the target size of the TCAM(s). From small to large shapes: 16× 16,
32×32, 64×64, and 128×128. (b) Energy-Delay-Product, and (c) Reduction in EDP when
SP is used compared to when it is not used.

6.3 Comparison with Other Hardware Accelerators

In Table 6.2, we summarize the per decision throughput and energy for our framework and

other hardware accelerators for decision tree inference ([22, 80, 83, 98]). Fig. 6.3 shows the

the per decision energy versus throughput for the IMC-based frameworks. For DT2CAM,

we assume a 2000x2048 original TCAM size, divided into 128x128 (S = 128) tiles to mimic

59

(a) (b)

(c)

Figure 6.2: Percent Accuracy loss due to different hardware non-idealities (input noise,
sense amplifier manufacturing variability and stuck-at-fault problem) for five datasets: (a)
Diabetes, (b) Covid, and (c) Cancer. SA′b′ = x is equivalent to SA0 = SA1 = x%.

60

inference on the traffic dataset problem. In particular, we take into consideration the 2000

rows by 256 features reported for the traffic dataset in [22], and further assume that each

feature will require eight bits of storage (overestimation). We report the values for the

sequential case (column-wise tiles operate sequentially) and pipelined case (column-wise tiles

are pipelined). Compared to the ASIC accelerators ([80, 98]) and IMC based accelerators

(ASIC IMC [83], ACAM [22]), our proposed DT2CAM achieves the highest throughput

(58.8E6 Dec/s) and consumes the lowest energy (0.17nJ/Dec). Furthermore, our proposed

pipelined design has the same throughput while consuming 1.73x lower energy than the

pipelined ACAM design [22].

Furthermore, we report the average area of DT2CAM (based on Eqn. (5.11)), and we

report the average area per bit (i.e. A/#TCAMCells) in Table 6.2. Compared to the area

reported for the analog CAM framework [22], we achieve about 3.8x and 17.5x reduction in

area overhead and area/bit respectively.

We define a figure of merit, FOM, to better compare the accelerators’ performances as

follows.

FOM = EDP ∗ A (6.1)

Accordingly, the lower the FOM (i.e., smaller energy-delay product and area), the better

the performance. Our sequential/parallel DT2CAM framework has 17.8x /6.3x better FOM

compared to the ACAM realization.

61

Table 6.2: Comparison with SOTA hardware accelerators. P refers to pipelined accelerators.

Accelerator
Technology

(nm)
fclk

(GHz)
Throughput
(Dec/s)

Energy
(nJ/dec)

Area
(mm2)

Area/bit
(µm2/bit)

FOM
(J.sec.mm2)

ASIC [80] 65 0.2 30 186.7E3 - - -
ASIC [98] 65 0.25 60 460E3 - - -

ASIC IMC [83] 65 1 364.4E3 19.4 - - -
ACAM [22] 16 1 20.8E6 0.17 0.266 0.299 2.17E-18
P-ACAM [22] 16 1 333E6 0.17 0.266 0.299 1.36E-19
DT2CAM 128 16 1 58.8E6 0.098 0.07 0.017 1.22E-19
P-DT2CAM 128 16 1 333E6 0.098 0.07 0.017 2.15E-20

Figure 6.3: Energy vs. Throughput for our proposed DT2CAM and other SOTA hardware
accelerators.

62

Chapter 7

Conclusion and Future Work

In conclusion, we first presented a comparative study between the capacitive and resistive

sensing schemes of 2T-2R TCAMs relying on mathematical formulations. The resistive de-

sign showed up-to 260× FOM improvements over the capacitive design, while taking dynamic

range constraints into consideration. We also presented an adder application that maintained

our theoretical and SPICE results. After that, we proposed DT2CAM, a decision tree to the

ReCAM framework which is capable of evaluating the energy, latency, and accuracy of per-

forming decision tree inference using TCAMs (resistive in particular, with capacitive sensing

schemes) with and without hardware non-idealities. The proposed framework comprises two

main phases: the DT-HW compiler which maps a decision tree graph into a look-up table

and the ReCAM functional synthesizer which maps the look-up table into ReCAM arrays

(with capacitive sensing scheme) and performs simulations. Experiments on various datasets

with varying the number of features and complexity show that the ternary adaptive encoding

scheme adopted by the DT-HW compiler is robust against noise and efficient in terms of

energy and latency. Compared to other SOTA hardware accelerators, DT2CAM achieves

the lowest energy, highest throughput, lowest area overhead, and lowest FOM (preferred).

63

For the future work, we have been planning to extend our research on the following topics:

1. Extending the DT2CAM framework: We will extend our DT2CAM framework, in-

cluding selective precharge, to accommodate other ReRAM cell typologies, including

ACAM [99], potentially resulting in better performance.

2. Exploring DT2CAM with resistive sensing scheme: Motivated by the performance

enhancements noted for the resistive sensing scheme compared to the capacitive sensing

scheme, we will explore the DT2CAM framework with TCAM designs that rely on the

resistive sensing scheme.

3. Enhancing DT2CAM’s compiler: Moreover, we plan to include software optimizations

(including pruning and quantization) to the compiler of DT2CAM, whereby the deci-

sion tree can be optimized for better overall performance when mapped to the ReCAM

arrays.

64

Bibliography

[1] D. R. B. Ly et al., “In-depth characterization of resistive memory-based ternary content
addressable memories,” in 2018 IEEE IEDM, 2018.

[2] S. Dua and X. Du, Data mining and machine learning in cybersecurity. CRC press,
2016.

[3] R. C. Deo, “Machine learning in medicine,” Circulation, vol. 132, no. 20, pp. 1920–1930,
2015.

[4] A. L. Tarca, V. J. Carey, X.-w. Chen, R. Romero, and S. Drăghici, “Machine learning
and its applications to biology,” PLoS computational biology, vol. 3, no. 6, p. e116, 2007.

[5] N. Artrith, K. T. Butler, F.-X. Coudert, S. Han, O. Isayev, A. Jain, and A. Walsh,
“Best practices in machine learning for chemistry,” Nature chemistry, vol. 13, no. 6, pp.
505–508, 2021.

[6] N. M. Ball and R. J. Brunner, “Data mining and machine learning in astronomy,”
International Journal of Modern Physics D, vol. 19, no. 07, pp. 1049–1106, 2010.

[7] J. Franklin, “The elements of statistical learning: data mining, inference and predic-
tion,” The Mathematical Intelligencer, vol. 27, no. 2, pp. 83–85, 2005.

[8] C. Kingsford and S. L. Salzberg, “What are decision trees?” Nature biotechnology,
vol. 26, no. 9, pp. 1011–1013, 2008.

[9] R. Caruana and A. Niculescu-Mizil, “An empirical comparison of supervised learning
algorithms,” in Proceedings of the 23rd international conference on Machine learning,
2006, pp. 161–168.

[10] R. S. Williams, “What’s next?[the end of moore’s law],” Computing in Science & En-
gineering, vol. 19, no. 2, pp. 7–13, 2017.

[11] D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive switching devices,”
Nature electronics, vol. 1, no. 6, pp. 333–343, 2018.

[12] C. C. Foster, Content addressable parallel processors. John Wiley & Sons, Inc., 1976.

65

[13] Q. Guo, X. Guo, Y. Bai, and E. Ipek, “A resistive tcam accelerator for data-intensive
computing,” in 2011 44th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 2011, pp. 339–350.

[14] C. E. Graves, C. Li, X. Sheng, D. Miller, J. Ignowski, L. Kiyama, and J. P. Stra-
chan, “In-memory computing with memristor content addressable memories for pattern
matching,” Advanced Materials, vol. 32, no. 37, p. 2003437, 2020.

[15] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman, “Ac-dimm: associative com-
puting with stt-mram,” in Proceedings of the 40th Annual International Symposium on
Computer Architecture, 2013, pp. 189–200.

[16] I. Arsovski, T. Chandler, and A. Sheikholeslami, “A ternary content-addressable mem-
ory (tcam) based on 4t static storage and including a current-race sensing scheme,”
IEEE Journal of Solid-State Circuits, vol. 38, no. 1, pp. 155–158, 2003.

[17] M. E. Fouda, H. E. Yantir, A. M. Eltawil, and F. Kurdahi, “In-memory associative
processors: Tutorial, potential, and challenges,” arXiv preprint arXiv:2203.00662, 2022.

[18] H. E. Yantir, Efficient acceleration of computation using associative in-memory process-
ing. University of California, Irvine, 2018.

[19] S. K. Maurya and L. T. Clark, “A dynamic longest prefix matching content addressable
memory for ip routing,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 19, no. 6, pp. 963–972, 2010.

[20] S. A. Schuster, H. Nguyen, E. A. Ozkarahan, and K. C. Smith, “Rap.2 - an associative
processor for databases and its applications,” IEEE Trans. Computers, vol. 28, no. 6,
pp. 446–458, 1979.

[21] O. Castañeda, M. Bobbett, A. Gallyas-Sanhueza, and C. Studer, “Ppac: A versatile
in-memory accelerator for matrix-vector-product-like operations,” in 2019 IEEE 30th
International Conference on Application-specific Systems, Architectures and Processors
(ASAP), vol. 2160. IEEE, 2019, pp. 149–156.

[22] G. Pedretti, C. E. Graves, S. Serebryakov, R. Mao, X. Sheng, M. Foltin, C. Li, and J. P.
Strachan, “Tree-based machine learning performed in-memory with memristive analog
cam,” Nature communications, vol. 12, no. 1, pp. 1–10, 2021.

[23] A. Biswas and A. P. Chandrakasan, “Conv-ram: An energy-efficient sram with embed-
ded convolution computation for low-power cnn-based machine learning applications,”
in 2018 IEEE International Solid-State Circuits Conference-(ISSCC). IEEE, 2018, pp.
488–490.

[24] A. Jaiswal, I. Chakraborty, A. Agrawal, and K. Roy, “8t sram cell as a multibit dot-
product engine for beyond von neumann computing,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2556–2567, 2019.

66

[25] K. Roy, I. Chakraborty, M. Ali, A. Ankit, and A. Agrawal, “In-memory computing
in emerging memory technologies for machine learning: An overview,” in 2020 57th
ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.

[26] H.-S. P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F. T. Chen,
and M.-J. Tsai, “Metal–oxide rram,” Proceedings of the IEEE, vol. 100, no. 6, pp.
1951–1970, 2012.

[27] H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi,
and K. E. Goodson, “Phase change memory,” Proceedings of the IEEE, vol. 98, no. 12,
pp. 2201–2227, 2010.

[28] X. Fong, Y. Kim, K. Yogendra, D. Fan, A. Sengupta, A. Raghunathan, and K. Roy,
“Spin-transfer torque devices for logic and memory: Prospects and perspectives,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 1, pp. 1–22, 2015.

[29] S.-Y. Wang, C.-W. Huang, D.-Y. Lee, T.-Y. Tseng, and T.-C. Chang, “Multilevel re-
sistive switching in ti/cu x o/pt memory devices,” Journal of Applied Physics, vol. 108,
no. 11, p. 114110, 2010.

[30] C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. Dávila,
C. E. Graves et al., “Analogue signal and image processing with large memristor cross-
bars,” Nature electronics, vol. 1, no. 1, pp. 52–59, 2018.

[31] D. Niu, Y. Xiao, and Y. Xie, “Low power memristor-based reram design with error
correcting code,” in 17th Asia and South Pacific Design Automation Conference. IEEE,
2012, pp. 79–84.

[32] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on circuit theory,
vol. 18, no. 5, pp. 507–519, 1971.

[33] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory (cam) circuits and
architectures: A tutorial and survey,” IEEE journal of solid-state circuits, vol. 41, no. 3,
pp. 712–727, 2006.

[34] M. A. Bahloul et al., “Design and analysis of 2t-2m ternary content addressable mem-
ories,” in IEEE MWSCAS, Aug 2017, pp. 1430–1433.

[35] K. Eshraghian et al., “Memristor mos content addressable memory (mcam): Hybrid
architecture for future high performance search engines,” IEEE TVLSI, vol. 19, no. 8,
p. 1407–1417, 2011.

[36] Yang et al., “Memristive devices for computing,” Nature nanotechnology, vol. 8, no. 1,
p. 13, 2013.

[37] M. A. Bahloul, M. E. Fouda, R. Naous, M. A. Zidan, A. M. Eltawil, F. Kurdahi, and
K. N. Salama, “Design and analysis of 2t-2m ternary content addressable memories,”
in 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWS-
CAS). IEEE, 2017, pp. 1430–1433.

67

[38] M. Imani et al., “Masc: Ultra-low energy multiple-access single-charge tcam for approx-
imate computing,” in 2016 Design, Automation Test in Europe Conference Exhibition
(DATE), 2016, pp. 373–378.

[39] J. Li et al., “1 mb 0.41 µm² 2t-2r cell nonvolatile tcam with two-bit encoding and clocked
self-referenced sensing,” IEEE JSSC, 2014.

[40] M. Imani et al., “Remam: Low energy resistive multi-stage associative memory for
energy efficient computing,” in IEEE ISQED, 2016.

[41] T. V. Mahendra et al., “Energy-efficient precharge-free ternary content addressable
memory (tcam) for high search rate applications,” IEEE TCAS I: Regular Papers, pp.
1–13, 2020.

[42] K. J. Thurber and L. D. Wald, “Associative and parallel processors,” ACM Computing
Surveys (CSUR), vol. 7, no. 4, pp. 215–255, 1975.

[43] M. Hout, M. E. Fouda, R. Kanj, and A. M. Eltawil, “In-memory multi-valued associative
processor,” arXiv preprint arXiv:2110.09643, 2021.

[44] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp.
436–444, 2015.

[45] C. Seifert, A. Aamir, A. Balagopalan, D. Jain, A. Sharma, S. Grottel, and S. Gumhold,
“Visualizations of deep neural networks in computer vision: A survey,” in Transparent
data mining for big and small data. Springer, 2017, pp. 123–144.

[46] J. Hernavs, M. Ficko, L. Berus, R. Rudolf, and S. Klančnik, “Deep learning in industry
4.0–brief overview,” Novi Sad, vol. 21, no. 2, p. 1, 2018.

[47] Y. Bengio, Y. LeCun et al., “Scaling learning algorithms towards ai,” Large-scale kernel
machines, vol. 34, no. 5, pp. 1–41, 2007.

[48] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A
vision, architectural elements, and future directions,” Future generation computer sys-
tems, vol. 29, no. 7, pp. 1645–1660, 2013.

[49] A. B. Arrieta, N. Dı́az-Rodŕıguez, J. Del Ser, A. Bennetot, S. Tabik, A. Barbado,
S. Garćıa, S. Gil-López, D. Molina, R. Benjamins et al., “Explainable artificial intel-
ligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible
ai,” Information Fusion, vol. 58, pp. 82–115, 2020.

[50] G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and A. Beghi, “Machine learning for
predictive maintenance: A multiple classifier approach,” IEEE Transactions on Indus-
trial Informatics, vol. 11, no. 3, pp. 812–820, 2014.

[51] N. Bussmann, P. Giudici, D. Marinelli, and J. Papenbrock, “Explainable machine learn-
ing in credit risk management,” Computational Economics, vol. 57, no. 1, pp. 203–216,
2021.

68

[52] F. Song, Y. Diao, J. Read, A. Stiegler, and A. Bifet, “Exad: A system for explainable
anomaly detection on big data traces,” in 2018 IEEE International Conference on Data
Mining Workshops (ICDMW). IEEE, 2018, pp. 1435–1440.

[53] P. R. Magesh, R. D. Myloth, and R. J. Tom, “An explainable machine learning model
for early detection of parkinson’s disease using lime on datscan imagery,” Computers in
Biology and Medicine, vol. 126, p. 104041, 2020.

[54] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz,
J. Himmelfarb, N. Bansal, and S.-I. Lee, “From local explanations to global under-
standing with explainable ai for trees,” Nature machine intelligence, vol. 2, no. 1, pp.
56–67, 2020.

[55] T. Thomas, A. P Vijayaraghavan, and S. Emmanuel, “Applications of decision trees,” in
Machine learning approaches in cyber security analytics. Springer, 2020, pp. 157–184.

[56] S. B. Kotsiantis, “Decision trees: a recent overview,” Artificial Intelligence Review,
vol. 39, no. 4, pp. 261–283, 2013.

[57] A. Priyam, G. Abhijeeta, A. Rathee, and S. Srivastava, “Comparative analysis of de-
cision tree classification algorithms,” International Journal of current engineering and
technology, vol. 3, no. 2, pp. 334–337, 2013.

[58] A. Rathee and R. P. Mathur, “Survey on decision tree classification algorithms for the
evaluation of student performance,” International Journal of Computers & Technology,
vol. 4, no. 2a1, pp. 244–247, 2013.

[59] “1.10. decision trees,” https://scikit-learn.org/stable/modules/tree.html, accessed:
2022-05-19.

[60] S. A. Kumar et al., “Efficiency of decision trees in predicting student’s academic per-
formance,” 2011.

[61] T. Blank, “A survey of hardware accelerators used in computer-aided design,” IEEE
Design & Test of Computers, vol. 1, no. 3, pp. 21–39, 1984.

[62] T. N. Theis and H.-S. P. Wong, “The end of moore’s law: A new beginning for infor-
mation technology,” Computing in Science & Engineering, vol. 19, no. 2, pp. 41–50,
2017.

[63] M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),” in
2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC). IEEE, 2014, pp. 10–14.

[64] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner, “Survey of
machine learning accelerators,” in 2020 IEEE High Performance Extreme Computing
Conference (HPEC), 2020, pp. 1–12.

69

https://scikit-learn.org/stable/modules/tree.html

[65] J. L. Hennessy and D. A. Patterson, “A new golden age for computer architecture,”
Communications of the ACM, vol. 62, no. 2, pp. 48–60, 2019.

[66] W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware accelerators,” Com-
munications of the ACM, vol. 63, no. 7, pp. 48–57, 2020.

[67] G. Roos, “Fpga acceleration card delivers on bandwidth, speed, and flexibility,” 2019.

[68] T. P. Morgan, “Drilling into microsoft’s brainwave soft deep learning chip,” Retrieved
from¡¿, Aug, vol. 24, p. 8, 2017.

[69] D. Chiou, “The microsoft catapult project,” in 2017 IEEE International Symposium on
Workload Characterization (IISWC). IEEE Computer Society, 2017, pp. 124–124.

[70] “Nvidia tesla v100 tensor core gpu,” https://www.nvidia.com/en-us/data-center/
tesla-v100/, accessed: 2022-05-19.

[71] R. Krashinsky, O. Giroux, S. Jones, N. Stam, and S. Ramaswamy, “Nvidia ampere
architecture in-depth,” NVIDIA Developer Blog, 2020.

[72] R. Smith, “16gb nvidia tesla v100 gets reprieve; remains in production,” 2018.

[73] “Taking a deeper look at amd radeon instinct gpus for deep learning,” https://
blog.exxactcorp.com/taking-deeper-look-amd-radeon-instinct-gpus-deep-learning/, ac-
cessed: 2022-05-19.

[74] “Amd announces radeon instinct mi60 mi50 accelerators pow-
ered by 7nm vega,” https://www.anandtech.com/show/13562/
amd-announces-radeon-instinct-mi60-mi50-accelerators-powered-by-7nm-vega, ac-
cessed: 2022-05-19.

[75] A. Ankit, I. E. Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin, R. S. Williams, P. Fara-
boschi, W.-m. W. Hwu, J. P. Strachan, K. Roy et al., “Puma: A programmable ultra-
efficient memristor-based accelerator for machine learning inference,” in Proceedings of
the Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 715–731.

[76] “The linley group microprocessor report highlights brainchip’s
akida spiking-neural-network processor,” https://brainchip.com/
the-linley-group-microprocessor-report-highlights-brainchips-akida-spiking-neural-\
network-processor-brainchip-311019-01/, accessed: 2022-05-19.

[77] F. Saqib, A. Dutta, J. Plusquellic, P. Ortiz, and M. S. Pattichis, “Pipelined decision
tree classification accelerator implementation in fpga (dt-caif),” IEEE Transactions on
Computers, vol. 64, no. 1, pp. 280–285, 2013.

[78] A. Zoulkatni, C. Kachris, and D. Soudris, “Hardware acceleration of decision tree learn-
ing algorithm,” in 2020 9th International Conference on Modern Circuits and Systems
Technologies (MOCAST). IEEE, 2020, pp. 1–6.

70

https://www.nvidia.com/en-us/data-center/tesla-v100/
https://www.nvidia.com/en-us/data-center/tesla-v100/
https://blog.exxactcorp.com/taking-deeper-look-amd- radeon-instinct-gpus-deep-learning/
https://blog.exxactcorp.com/taking-deeper-look-amd- radeon-instinct-gpus-deep-learning/
https://www.anandtech.com/show/13562/amd-announces- radeon-instinct-mi60-mi50-accelerators-powered-by-7nm-vega
https://www.anandtech.com/show/13562/amd-announces- radeon-instinct-mi60-mi50-accelerators-powered-by-7nm-vega
https://brainchip.com/the-linley-group-microprocessor-report-highlights-brainchips-akida-spiking-neural-\network-processor-brainchip-311019-01/
https://brainchip.com/the-linley-group-microprocessor-report-highlights-brainchips-akida-spiking-neural-\network-processor-brainchip-311019-01/
https://brainchip.com/the-linley-group-microprocessor-report-highlights-brainchips-akida-spiking-neural-\network-processor-brainchip-311019-01/

[79] R. Struharik, “Decision tree ensemble hardware accelerators for embedded applica-
tions,” in 2015 IEEE 13th International Symposium on Intelligent Systems and In-
formatics (SISY). IEEE, 2015, pp. 101–106.

[80] T.-W. Chen, Y.-C. Su, K.-Y. Huang, Y.-M. Tsai, S.-Y. Chien, and L.-G. Chen, “Visual
vocabulary processor based on binary tree architecture for real-time object recognition
in full-hd resolution,” IEEE transactions on very large scale integration (VLSI) systems,
vol. 20, no. 12, pp. 2329–2332, 2011.

[81] B. Van Essen, C. Macaraeg, M. Gokhale, and R. Prenger, “Accelerating a random forest
classifier: Multi-core, gp-gpu, or fpga?” in 2012 IEEE 20th International Symposium
on Field-Programmable Custom Computing Machines. IEEE, 2012, pp. 232–239.

[82] X. Yin, F. Müller, A. F. Laguna, C. Li, W. Ye, Q. Huang, Q. Zhang, Z. Shi, M. Lederer,
N. Laleni et al., “Deep random forest with ferroelectric analog content addressable
memory,” arXiv preprint arXiv:2110.02495, 2021.

[83] M. Kang, S. K. Gonugondla, S. Lim, and N. R. Shanbhag, “A 19.4-nj/decision, 364-k
decisions/s, in-memory random forest multi-class inference accelerator,” IEEE Journal
of Solid-State Circuits, vol. 53, no. 7, pp. 2126–2135, 2018.

[84] H. Abunahla and B. Mohammad, Memristor Device Overview. Cham: Springer Inter-
national Publishing, 2018, pp. 1–29.

[85] A. Grossi et al., “Experimental investigation of 4-kb rram arrays programming condi-
tions suitable for tcam,” IEEE TVLSI Systems, 2018.

[86] H. E. Yantır et al., “A two-dimensional associative processor,” IEEE TVLSI, vol. 26,
no. 9, pp. 1659–1670, 2018.

[87] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and re-
gression trees. belmont, ca: Wadsworth,” International Group, vol. 432, pp. 151–166,
1984.

[88] S. Kak, “Generalized unary coding,” Circuits, Systems, and Signal Processing, vol. 35,
no. 4, pp. 1419–1426, 2016.

[89] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online]. Available:
http://archive.ics.uci.edu/ml

[90] M. Rakka, M. E. Fouda, R. Kanj, A. Eltawil, and F. J. Kurdahi, “Design exploration
of sensing techniques in 2t-2r resistive ternary cams,” IEEE Transactions on Circuits
and Systems II: Express Briefs, vol. 68, no. 2, pp. 762–766, 2020.

[91] X. Sun, S. Yin, X. Peng, R. Liu, J.-s. Seo, and S. Yu, “Xnor-rram: A scalable and
parallel resistive synaptic architecture for binary neural networks,” in 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2018, pp.
1423–1428.

71

http://archive.ics.uci.edu/ml

[92] P.-F. Chiu, B. Zimmer, and B. Nikolić, “A double-tail sense amplifier for low-voltage
sram in 28nm technology,” in 2016 IEEE Asian Solid-State Circuits Conference (A-
SSCC). IEEE, 2016, pp. 181–184.

[93] I. Yeo, M. Chu, S.-G. Gi, H. Hwang, and B.-G. Lee, “Stuck-at-fault tolerant schemes
for memristor crossbar array-based neural networks,” IEEE Transactions on Electron
Devices, vol. 66, no. 7, pp. 2937–2945, 2019.

[94] “Give me some credit.” [Online]. Available: https://www.kaggle.com/c/
GiveMeSomeCredit/data?select=cs-training.csv

[95] U. M. Learning, “Pima indians diabetes database,” Oct 2016. [Online]. Available:
https://www.kaggle.com/uciml/pima-indians-diabetes-database

[96] “A titanic probability.” [Online]. Available: https://web.stanford.edu/class/archive/
cs/cs109/cs109.1166/problem12.html

[97] B. Xu, B. Gutierrez, S. Mekaru, K. Sewalk, L. Goodwin, A. Loskill, E. L. Cohn,
Y. Hswen, S. C. Hill, M. M. Cobo et al., “Epidemiological data from the covid-19
outbreak, real-time case information,” Scientific data, vol. 7, no. 1, pp. 1–6, 2020.

[98] K. J. Lee, G. Kim, J. Park, and H.-J. Yoo, “A vocabulary forest object matching
processor with 2.07 m-vector/s throughput and 13.3 nj/vector per-vector energy for
full-hd 60 fps video object recognition,” IEEE Journal of Solid-State Circuits, vol. 50,
no. 4, pp. 1059–1069, 2015.

[99] J. Bazzi, J. Sweidan, M. E. Fouda, R. Kanj, and A. M. Eltawil, “Efficient analog cam
design,” arXiv preprint arXiv:2203.02500, 2022.

72

https://www.kaggle.com/c/GiveMeSomeCredit/data?select=cs-training.csv
https://www.kaggle.com/c/GiveMeSomeCredit/data?select=cs-training.csv
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/problem12.html
https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/problem12.html

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Motivation
	Contributions
	Organization

	In-Memory Computing
	Resistive Memories
	Content Addressable Memories
	The 2T-2R Cell: A Typical Building Block of Resistive-based CAMs
	Operation of TCAMs
	Sensing Schemes

	Associative Processors
	Architecture
	Supported Operations

	Decision Trees
	Training Algorithms
	ID3
	C4.5
	C5.0
	CART

	Hardware Accelerators
	ML-based Hardware Accelerators
	DT-based Hardware Accelerators

	MTCAM Designs and Mathematical Formulations
	Capacitive Sensing MTCAMs
	Resistive Sensing MTCAMs
	Mathematical Formulations
	MTCAM Row Modeling
	Figure of Merit
	Design Specific Considerations

	Analysis and Results
	Transient Simulations
	Design Space Exploration: Figure of Merit Analysis

	In-memory Adder Example
	Design Space Exploration
	Energy Saving

	Summary

	Proposed DT2CAM Framework
	DT-HW Compiler
	Decision Tree Graph Generation
	Tree Parsing
	Column Reduction
	Ternary Adaptive Encoding

	DT-HW Sample Example based on Iris Dataset
	ReCAM Functional Synthesizer
	Mapping
	Simulation

	Implementation Details

	Results and Comparison
	Energy/Throughput/EDP Analysis
	Analysis with Hardware Non-idealities
	Comparison with Other Hardware Accelerators

	Conclusion and Future Work
	Bibliography

