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Abstract

Objective: Schizophrenia is associated with increased risk of cardiovascular disease (CVD), 

although there is variation in risk among individuals. There are indications of shared genetic 

etiology between schizophrenia and CVD, but the nature of the overlap remains unclear. The aim 

of this study was to fill this gap in knowledge.

Methods: Overlapping genetic architectures between schizophrenia and CVD risk factors were 

assessed by analyzing recent genome-wide association study (GWAS) results. The bivariate 

causal mixture model (MiXeR) was applied to estimate the number of shared variants and the 

conjunctional false discovery rate (conjFDR) approach was used to pinpoint specific shared loci.

Results: Extensive genetic overlap was found between schizophrenia and CVD risk factors, 

particularly smoking initiation (N=8.6K variants) and body mass index (BMI) (N=8.1K variants). 

Several specific shared loci were detected between schizophrenia and BMI (N=304), waist-to-

hip ratio (N=193), smoking initiation (N=293), systolic (N=294) and diastolic (N=259) blood 

pressure, type 2 diabetes (N=147), lipids (N=471), and coronary artery disease (N=35). The 

schizophrenia risk loci shared with smoking initiation had mainly concordant effect directions, and 

the risk loci shared with BMI had mainly opposite effect directions. The overlapping loci with 

lipids, blood pressure, waist-to-hip ratio, type 2 diabetes, and coronary artery disease had mixed 

effect directions. Functional analyses implicated mapped genes that are expressed in brain tissue 

and immune cells.
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Conclusions: These findings indicate a genetic propensity to smoking and a reduced genetic 

risk of obesity among individuals with schizophrenia. The bidirectional effects of the shared 

loci with the other CVD risk factors may imply differences in genetic liability to CVD across 

schizophrenia subgroups, possibly underlying the variation in CVD comorbidity.

Schizophrenia is associated with a two- to threefold greater risk of cardiovascular disease 

(CVD) compared with risk in the general population, contributing to a 10- to 20-year 

reduced life expectancy (1, 2). Despite increasing awareness of this comorbidity over recent 

decades, the level of CVD risk does not appear to have decreased for individuals with 

schizophrenia (3), and there has been little or no progress in decreasing the mortality 

gap (2, 4, 5). The causes of the excess CVD risk remain unclear, but they are associated 

with lifestyle factors, antipsychotic use, inadequate somatic health care, and psychosocial 

challenges (6–8). In addition, a genetic susceptibility to CVD may play a role, as 

indicated by glucose disturbances in first-episode drug-naive patients with schizophrenia 

and increased CVD risk in first-degree relatives of individuals with schizophrenia (9, 10). 

However, low body mass index (BMI) has been implicated as a risk factor for schizophrenia 

(11). Moreover, there is considerable individual variation in other CVD risk factors, 

including hypertension, type 2 diabetes (T2D), and dyslipidemia (3, 8, 12), which might 

suggest increased genetic liability to CVD in subgroups of patients with schizophrenia.

Schizophrenia is a complex polygenic disorder with an estimated heritability of 60%–

80% (13, 14). The largest genome-wide association study (GWAS) of schizophrenia to 

date identified 287 loci associated with the disorder (15). GWASs have also detected 

several loci associated with coronary artery disease (CAD) (16) and CVD risk factors, 

including BMI (17), waist-to-hip ratio (WHR) (18), T2D (19), total cholesterol (TC) (20), 

low-density lipoprotein (LDL) (20), high-density lipoprotein (HDL) (20), triglycerides 

(TG) (20), systolic blood pressure (SBP) (21), and diastolic blood pressure (DBP) (21). 

Increasing evidence suggests genetic overlap between schizophrenia and CVD risk factors 

(22–26). For instance, genetic variants jointly associated with increased risk of T2D and 

schizophrenia have been identified (23, 24). Studies have also revealed overlapping loci 

between schizophrenia and BMI, WHR, lipids, and SBP (22, 25, 27). Interestingly, the 

majority of the shared loci between schizophrenia and BMI had opposite effect directions 

(25), in line with a negative genetic correlation estimate (rg=−0.11) (25). However, there was 

an even distribution of concordant and opposite effect directions among the schizophrenia 

loci shared with lipids and SBP (22). Similarly, we recently discovered shared variants 

between bipolar disorder and CVD risk factors that had a mixture of effect directions (28). 

The pattern of mixed effects may indicate variation in genetic susceptibility to CVD across 

subgroups of patients (28, 29).

Tobacco smoking is highly prevalent among individuals with schizophrenia and is a major 

risk factor for CVD (3, 8). Recent data suggest a positive genetic correlation between 

schizophrenia and smoking (rg=0.15) (30, 31). However, genetic correlations provide an 

incomplete understanding of the overlapping genetic architecture between two phenotypes 

(14). A genetic correlation provides a summary measure between −1 and 1 of the correlation 

of effect sizes across all single-nucleotide polymorphisms (SNPs) (14). Thus, shared variants 

with a mixture of concordant and discordant effect directions cancel each other out, which 
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may result in negligible genetic correlations (28, 32). Accordingly, genetic correlation 

analyses should be complemented with methods that can detect genetic overlap irrespective 

of effect directions (14) to identify the underlying molecular underpinnings.

Here, we aimed to further elucidate the genetic underpinnings of schizophrenia and 

comorbid CVD (22) by analyzing data from unprecedentedly large GWAS samples (15–

21, 30), including the most recent schizophrenia GWAS (15). We applied the bivariate 

causal mixture model (MiXeR) (33), which estimates the total number of unique and shared 

genetic variants between pairs of phenotypes. We next used conditional and conjunctional 

false discovery rate (condFDR and conjFDR) approaches, which leverage genetic overlap 

between two phenotypes to boost statistical power to identify novel loci associated with a 

single phenotype (condFDR) and loci jointly associated with two phenotypes (conjFDR) 

(32). While MiXeR estimates the number of genetic variants influencing a phenotype, 

condFDR and conjFDR approaches discover specific genetic loci, which is crucial to obtain 

biological insights (22, 32). MiXeR and the conjFDR approach are able to identify genetic 

overlap regardless of the effect directions (32, 33).

METHODS

Participant Samples

We obtained GWAS summary statistics from independent samples of schizophrenia and 

CVD phenotypes. GWAS results for schizophrenia were retrieved from the Psychiatric 

Genomics Consortium, consisting of 53,386 patients with schizophrenia and 77,258 control 

participants of European descent (15). We used GWAS data on CVD phenotypes, including 

the CVD risk factors BMI (N=795,640) (17), WHR adjusted for BMI (N=694,649) (18), 

T2D (N=231,426) (19), lipids (including TG, HDL, LDL, and TC) (N=1,320,016) (20), 

SBP and DBP (N=745,820) (21), smoking initiation (indicating whether a person has 

ever smoked regularly) (N=1,232,091), cigarettes per day (N=337,334) (30), and CAD 

(N=332,477) (16) from samples of European ancestry. All GWASs investigated in this 

study were approved by local ethics committees, and all participants provided written 

informed consent. The Regional Committee for Medical Research Ethics–South East 

Norway evaluated this protocol and found that no additional institutional review board 

approval was necessary because no individual data were used. Further details are available in 

the Methods section in the online supplement and the original GWAS publications (15–21, 

30).

Statistical Analysis

We used the statistical tool MiXeR (33) to quantify polygenic overlap between 

schizophrenia and CVD phenotypes using GWAS summary statistics. MiXeR estimates the 

total number of shared and unique trait-influencing variants, and the results are represented 

with Venn diagrams (33). Additionally, MiXeR calculates the genome-wide correlations 

across all SNPs (rg) and the correlation of effect sizes within the shared genetic component 

(rgs). We also performed univariate MiXeR analyses for each phenotype, estimating the 

SNP-based heritability (h2
SNP) and polygenicity, which is presented as the number of 

variants accounting for 90% of SNP heritability. Moreover, we constructed univariate 
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quantile-quantile (Q-Q) plots for observed versus predicted GWAS p values, as well as 

Q-Q plots partitioned by minor allele frequency and linkage disequilibrium (LD) for 

each trait. These figures help inform whether the GWASs were sufficiently powered. We 

evaluated model fit both for univariate and bivariate analyses; that is, we evaluated the 

ability of the MiXeR model to predict the actual GWAS data, based on modeled versus 

actual conditional Q-Q plots, negative log-likelihood plots, and Akaike information criterion 

(AIC). In addition, we provided the Bayesian information criterion (BIC), a more stringent 

measure of model fit. For details, see the Methods section in the online supplement and 

Frei et al. (33). The MiXeR model is sensitive to LD structure estimates. In this study, LD 

structure was estimated using the 1000 Genomes Phase 3 genotype reference panel (34).

We constructed conditional Q-Q plots to visualize cross-trait enrichment, which is present 

when the proportion of SNPs associated with a phenotype (e.g., schizophrenia) increases as 

a function of the strength of the association with a secondary phenotype (e.g., BMI) (32). 

In the conditional Q-Q plots, this cross-trait enrichment is visualized as successive leftward 

shifts from the null distribution and can be directly interpreted in terms of the true discovery 

rate (1–FDR) (22, 32).

The condFDR approach was used to increase discovery of specific genetic loci associated 

with schizophrenia and CVD phenotypes at condFDR<0.01 (22, 32). This method uses 

cross-trait enrichment observed in the conditional Q-Q plots to re-rank the test statistics of 

a primary phenotype (e.g., schizophrenia) based on a conditional variable (e.g., BMI) (22, 

32). To identify shared genetic loci, we applied a threshold of conjFDR<0.05. The conjFDR 

statistic is defined as the maximum of two condFDR values, providing a conservative 

estimate of the FDR for association with both phenotypes (32) (see the Methods section in 

the online supplement).

Schizophrenia and some CVD phenotypes are strongly associated with the major 

histocompatibility complex (MHC), a genomic region with a complex LD pattern (14, 35). 

In addition, the chromosomal region 8p23.1 comprises highly correlated SNPs within a 

long-range LD region, and it is also associated with schizophrenia (36). Thus, we excluded 

the MHC and 8p23.1 regions before fitting the FDR model to avoid inflating FDR estimates, 

in line with previous studies (25, 28, 32). Although the conditional Q-Q plots and the FDR 

model are computed after excluding SNPs in these regions, we allowed for detection of 

SNPs within these regions because the shared genetic signal may be of high biological 

importance (32). For MiXeR analyses, we also excluded the MHC region as recommended 

(33). For additional details, see the Methods section in the online supplement.

Genomic Loci Definition

We defined independent genomic loci with FUMA, an online tool for functional mapping of 

genetic variants (http://fuma.ctglab.nl/) (37). Independent significant SNPs were defined as 

SNPs with condFDR<0.01 or conjFDR<0.05 that were independent from each other at LD 

r2<0.6. A subset of these that were independent from each other at r2<0.1 were considered 

lead SNPs. Distinct genomic loci were defined by identifying all SNPs in LD (r2≥0.6) with 

one of the independent significant SNPs in the locus (32). We merged all loci <250 kb apart 

and selected the SNP with the lowest p value as lead SNP of the merged locus. A locus 
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was considered novel to schizophrenia if it was not physically overlapping with loci in the 

original GWAS (15), GWAS catalog, or other relevant studies (see the Methods section in 

the online supplement).

Effect Directions and Genetic Correlations

We evaluated the directional effects of the shared loci between schizophrenia and CVD 

phenotypes by comparing their z scores. Genetic correlations were estimated using MiXeR 

and LD score regression and were corrected for multiple testing (38).

Validation of conjFDR Results

To test the validity of the findings, we assessed the consistency in allelic effect directions 

of shared lead SNPs between the discovery data sets and independent data sets (i.e., sign 

concordance), in line with previous studies (39, 40). Since the probability of replicating 

individual loci at genome-wide significance is low in smaller samples because of weak 

genetic effects, we identified lead SNPs (or the next most significant candidate SNPs if 

the lead SNP was not present in the replication sample) that were nominally significant at 

p<0.05 in each replication sample. This approach has been applied previously, including 

in several high-profile GWASs, such as GWASs of educational attainment and intelligence 

(41, 42), and in condFDR and conjFDR studies (39, 40, 43, 44). The replication data 

for schizophrenia (15) and CVD phenotypes (20, 45–48) were retrieved from East Asian 

samples (see the Methods section in the online supplement).

Functional Annotation

Using FUMA (37), we functionally annotated candidate SNPs within the genomic loci, 

defined as any SNP with a condFDR or conjFDR value<0.10 and an r2≥0.6 with one 

of the independent significant SNPs. SNPs were annotated with the combined annotation-

dependent depletion score (49), a method that predicts the deleteriousness of SNPs on 

protein structure or function; RegulomeDB scores (50), which predict regulatory functions; 

and chromatin states that indicate the transcription or regulation effects at the SNP 

locus (51, 52). Next, candidate SNPs were mapped to putative causal genes, using three 

strategies: positional mapping (physical proximity), expression quantitative trait locus 

(eQTL) mapping, and chromatin interaction mapping (37). This three-strategy approach has 

high sensitivity but is liable to false positives that influence gene-set enrichment analyses. 

Thus, to reduce false positives, we performed gene-set and pathway analyses of genes 

nearest to lead SNPs (37). Studies suggest that the nearest gene is often the causal gene (53), 

although this is not always the case (54).

We also conducted supplementary gene-set analyses of the genes mapped to candidate SNPs 

using the same three strategies (37). We excluded mapped genes in MHC and 8p23.1 before 

these enrichment analyses to limit the inflation that may result from the high LD patterns 

characterizing these regions. As several correlated SNPs reside in these regions, single 

associations in these clusters can drive the apparent enrichment of entire gene sets. However, 

we also performed gene-set and pathway analyses of mapped genes included in MHC and 

8p23.1 to check whether there were considerable differences in findings from analyses with 
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versus those without these genomic regions. For details, see the Methods section in the 

online supplement.

Genetic Overlap Between CVD Phenotypes and Genomic Structural Equation Modeling

We also used LD score regression and MiXeR analyses to assess genetic overlap between 

the CVD phenotypes to aid in the interpretation of the schizophrenia and CVD results (see 

the Methods section in the online supplement). In addition, we investigated the influence 

of CVD risk factors on the relationship between schizophrenia and CAD by performing 

genomic structural equation modeling analyses that included multiple regression (partial 

correlation) and mediation analyses (55, 56).

The data from the condFDR, conjFDR, replication, and functional analyses are presented in 

Tables S1–S98, the genetic correlations between CVD traits are presented in Table S99, and 

the MiXeR data are presented in Tables S100–S102 in the online supplement.

RESULTS

Genetic Overlap Between Schizophrenia and CVD Phenotypes

The univariate MiXeR results are presented in Table S100 in the online supplement. 

The analyses revealed large differences in the number of variants accounting for 90% 

of SNP heritability across phenotypes: smoking initiation (N=11.1K), BMI (N=11.0K), 

and schizophrenia (N=9.6K) demonstrated the highest polygenicity, whereas SBP and 

DBP (N=4.4K and 3.9K), T2D (N=2.3K), lipids (N=0.8K to 1.8K), WHR (N=1.7K), and 

CAD (N=1.3K) showed lower polygenicity (Figure 1; see also Table S100 in the online 

supplement). SNP-based heritability, univariate Q-Q plots for observed versus predicted 

GWAS p values, and Q-Q plots partitioned by minor allele frequency and LD for each 

trait are presented in Figures S1–S2 and described in the Results section in the online 

supplement. The univariate AIC and BIC values were all highly positive (see Table S100 in 

the online supplement), indicating sufficient model fit.

The bivariate analyses indicated substantial genetic overlap between schizophrenia and some 

CVD phenotypes (Figure 1). In particular, MiXeR estimated that of the 9.6K schizophrenia-

influencing variants, 8.6K and 8.1K also influence smoking initiation and BMI, respectively 

(Figure 1A–B). This corresponds to approximately 90% and 84% of schizophrenia-

influencing variants overlapping with smoking initiation and BMI, respectively (Table 1). 

Schizophrenia shared fewer variants with SBP (N=2.4K); DBP (N=1.7K); T2D (N=1.6K); 

lipids such as HDL (N=1.4K) (Figure 1C–F), TG (N=1.2K), LDL (N=0.3K), and TC 

(N=0.3K); WHR (N=1.2K); and CAD (N=0.5K). These findings were in part because 

of lower polygenicity of these CVD phenotypes (see Figures S3–S10 in the online 

supplement). Bivariate MiXeR was deemed to model the data adequately, as indicated 

by Q-Q plots, log-likelihood curves (see Figures S3–S10 in the online supplement), and 

AIC values (see Table S101 in the online supplement). The BIC values, which provide a 

stricter index of model fit than AIC values, were lower, but generally positive, indicating 

adequate model fit (see Table S101 in the online supplement). MiXeR was not able to model 
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cigarettes per day adequately, as shown in the log-likelihood curve in Figure S11 in the 

online supplement. See the Results section in the online supplement for further details.

The genetic correlations within the shared component (green areas in the Venn diagrams, 

Figure 1) are presented in Table 1. MiXeR estimated moderate positive genetic correlations 

within the shared component for schizophrenia and smoking initiation (rgs=0.20), cigarettes 

per day (rgs=0.36), LDL (rgs=0.30), TC (rgs=0.40), HDL (rgs=0.15), CAD (rgs=0.17), and 

WHR (rgs=0.29), whereas negative genetic correlations were estimated within the shared 

component between schizophrenia and BMI (rgs=−0.17) and T2D (rgs=−0.13); the remaining 

correlations were close to zero (Table 1). The genome-wide correlations (Table 2) largely 

mirrored the correlations within the shared components (Table 1), yet they were lower and 

nonsignificant for lipids, CAD, T2D, and WHR after correction for multiple testing.

Loci Shared Between Schizophrenia and CVD Phenotypes

After observing cross-trait enrichment in conditional Q-Q plots (see Figures S12–S13 

in the online supplement), we applied a condFDR approach that identified several loci 

associated with schizophrenia conditional on CVD phenotypes (see Tables S1–S12 in the 

online supplement), including smoking initiation (N=362), SBP (N=325), DBP (N=317), 

TG (N=332), HDL (N=331), TC (N=272), LDL (N=279), cigarettes per day (N=307), 

WHR (N=303), and BMI (N=299). Next, we discovered multiple loci associated with CVD 

phenotypes conditional on schizophrenia (see Tables S13–S24 in the online supplement).

A total of 825 distinct loci were jointly associated with schizophrenia and CVD phenotypes 

at conjFDR<0.05 (Figure 2 and Table 2; see also Tables S25–S36 in the online supplement). 

Schizophrenia shared 304 loci with BMI, 193 with WHR, 293 loci with smoking initiation, 

129 loci with cigarettes per day, 307 with TG, 304 with HDL, 176 with TC, 158 with LDL, 

294 with SBP, 259 with DBP, 147 with T2D, and 35 with CAD (Figure 2 and Table 2; 

see also Tables S25–S36 in the online supplement). In addition, 357 loci were common for 

schizophrenia and more than one CVD phenotype (see Table S37 and Figure S14 in the 

online supplement).

Of the loci associated with schizophrenia at condFDR<0.01, 104 are novel schizophrenia 

loci (see Table S38 in the online supplement). Of the shared loci at conjFDR<0.05, 348 are 

novel for schizophrenia (see Table S39 in the online supplement). This yielded a total of 

366 novel schizophrenia loci with a condFDR<0.01 or conjFDR<0.05 (see Table S40 in the 

online supplement).

We determined the directionality of effects of lead SNPs within shared loci (Table 2; see 

also Tables S25–S36 in the online supplement): 35% were concordant for schizophrenia 

and BMI, 69% were concordant for schizophrenia and smoking initiation, and 63% were 

concordant for schizophrenia and cigarettes per day. Approximately half of the loci shared 

between schizophrenia and lipids, SBP, DBP, T2D, WHR, and CAD possessed concordant 

effect directions (Table 2; see also Tables S25–S36 in the online supplement). The effect 

directions broadly reflected the directions observed using genetic correlations (Table 1 and 

Table 2).
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Validation: Consistency of Genetic Effects in Independent Samples

Validation analyses demonstrated a high degree of sign concordance (~78%) between the 

independent discovery and replication data sets for the shared loci at conjFDR<0.05 (see 

Tables S41–S47 in the online supplement). For exact binomial values, see the Results 

section in the online supplement. The replication GWASs were considerably smaller than the 

discovery samples, which reduced the power to detect significant lead SNPs. Nevertheless, 

the consistency of associations in the replication data sets was comparable to that of other 

GWASs of complex traits (39, 40), supporting the validity of these findings. Of the 304 lead 

SNPs in loci shared between schizophrenia and BMI, 73 and 74 had p values <0.05 in the 

replication samples for schizophrenia and BMI, respectively. Of the 294 lead SNPs in loci 

shared between schizophrenia and SBP, 58 and 91 had p values <0.05 in the replication 

samples, respectively. Of the 293 lead SNPs in loci shared between schizophrenia and 

smoking initiation, 44 and 40 had p values <0.05 in the replication samples, respectively. 

Of the 129 lead SNPs in loci shared between schizophrenia and cigarettes per day, 26 and 

16 had p values <0.05 in the replication samples, respectively. Of the 307 lead SNPs in 

loci shared between schizophrenia and TG, 57 and 41 had p values <0.05 in the replication 

samples, respectively. Of the 304 lead SNPs in loci shared between schizophrenia and HDL, 

50 and 41 had p values <0.05 in the replication samples, respectively. Of the 35 lead SNPs 

in loci shared between schizophrenia and CAD, nine and three had p values <0.05 in the 

replication samples, respectively. See the Results section and Tables S41–S47 in the online 

supplement for more information.

Functional Annotation

Functional annotation of candidate SNPs shared between schizophrenia and CVD 

phenotypes demonstrated that they were mostly intronic and intergenic (see Tables S48–

S59 in the online supplement). Next, we mapped candidate SNPs to genes using three gene-

mapping strategies and discovered thousands of protein-coding genes (see Tables S60–S71 

in the online supplement). Several SNPs were mapped to genes with chromatin interaction 

and eQTL associations in human brain tissue (e.g., fetal and adult cortex) and cells of the 

immune system (e.g., monocytes and CD4 T cells) (see the Results section and Tables S60–

S71 in the online supplement).

The gene-set analysis of genes nearest to lead SNPs shared between schizophrenia and BMI 

implicated enrichment in several Gene Ontology (GO) terms, the most strongly associated 

terms being “regulation of transmembrane transport,” “regulation of synaptic plasticity,” 

and several neuronal gene sets (see Table S72 in the online supplement). There were no 

significant GO terms enriched among the genes nearest to lead SNPs shared with WHR, 

except a significant pathway termed “KEGG Alzheimer’s disease” (see Table S73 in the 

online supplement). Gene-set analysis of the genes nearest to the lead SNPs shared between 

schizophrenia and smoking initiation indicated GO terms with a predominance of gene sets 

related to neurodevelopment, including “central nervous system development” (see Table 

S74 in the online supplement). There were also overrepresented pathways among these 

genes, including “pathways affected in adenoid cystic carcinoma” (see Table S74 in the 

online supplement). The enriched gene sets associated with schizophrenia and lipids, SBP, 

and DBP involved neuronal, synaptic, and immunological gene sets (see Tables S75–S79 in 
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the online supplement). In addition, there were significantly enriched gene sets associated 

with DNA-binding and cellular processes (see Tables S75–S79 in the online supplement). 

Pathway analysis of the genes mapped to schizophrenia and TG, SBP, and DBP indicated 

“MAPK signaling pathway,” “brain-derived neurotrophic factor signaling pathway,” and 

“energy metabolism” (see Tables S75, S78, and S79 in the online supplement). Moreover, 

the enrichment analyses including genes in MHC and 8p23.1 yielded results similar to 

those excluding these genomic regions (see Tables S72–S79 in the online supplement). This 

indicates that these genomic regions do not have a substantial impact on the results.

We also performed gene-set and pathway analyses with genes mapped to all candidate SNPs. 

The results agreed broadly with the results based on genes nearest to lead SNPs, yet were 

less specific and included several intra- and intercellular gene sets (see the Results section 

and Tables S80–S98 in the online supplement).

Genetic Overlap Between CVD Phenotypes

The genetic correlations between the CVD phenotypes ranged from low to high, with the 

strongest correlations between TC and LDL (rg=0.946, p=3.35×10−12) and between SBP 

and DBP (rg=0.808, p<1.00×10−20) and the weakest between lipids and blood pressure 

(rg=−0.01 to −0.12, p=0.62 to 1.54×10−9) (see Figure S15 and Table S99 in the online 

supplement). MiXeR analyses demonstrated different levels of genetic overlap, with the 

most overlap between SBP and TG, BMI and CAD, BMI and TG, and BMI and T2D (see 

Figure S16 in the online supplement). Adequate MiXeR model fit, however, was restricted 

to BMI and smoking initiation, CAD and TG, SBP and TG, CAD and SBP, SBP and 

smoking initiation, SBP and T2D, and BMI and SBP (see Figure S16 and Table S102 in the 

online supplement). The other bivariate estimates were uncertain, as indicated by no clear 

minimum on the log-likelihood curves, Q-Q plots (the observed Q-Q plots did not closely 

follow the model predictions), and negative AIC and BIC values (see Figure S16 and Table 

S102 in the online supplement).

Genomic Structural Equation Modeling Results

We further explored the genetic relationship between schizophrenia and CAD controlling for 

the effect of risk factors (smoking initiation, BMI, HDL, SBP, and T2D). The multiple 

regression analyses demonstrated no statistically significant impact of these CVD risk 

factors, except for a minor effect of smoking initiation on the relationship between 

schizophrenia and CAD, resulting in a slightly modified genetic correlation between 

schizophrenia and CAD (rg=−0.055, p=0.041) (see Figure S17 in the online supplement). 

Mediation analyses, however, found statistically significant effects for all CVD risk factors 

except SBP (see Figure S18 in the online supplement), although the indirect effect between 

schizophrenia and CAD remained close to zero (rg=−0.035 to 0.036), indicating minor 

effects. For further details, see the Results section and Figures S17–S18 in the online 

supplement.
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DISCUSSION

In this study, we found that a considerable proportion of genetic variants underlying 

schizophrenia also influence CVD phenotypes, particularly the risk factors smoking 

initiation and BMI, using MiXeR. Next, we detected more than 800 distinct loci jointly 

associated with schizophrenia and CVD risk factors and CAD at conjFDR<0.05. Most 

of the loci shared between schizophrenia and smoking initiation and cigarettes per day 

possessed concordant effect directions, in line with positive genetic correlations. The 

overlapping loci with BMI had mainly opposite effect directions, consistent with negative 

genetic correlations. There was a pattern of mixed effect directions among loci jointly 

associated with schizophrenia and the other CVD phenotypes, including lipids, SBP, DBP, 

T2D, WHR, and CAD. The high degree of sign concordance between the discovery and 

replication samples supports the validity of the findings. Furthermore, functional analyses 

of the shared loci implicated genes associated with neurodevelopment and the immune 

system. These results shed light on putative biological functions and pathways associated 

with the comorbidity between CVD and schizophrenia that warrant further investigation and 

experimental validation.

The MiXeR analyses indicated differences in the level of genetic overlap across various 

CVD risk factors and CAD. In particular, MiXeR estimated that the majority of the SNPs 

influencing schizophrenia also affect smoking initiation (~90%) and BMI (~84%), whereas 

less genetic overlap was observed with the other CVD risk factors. Smoking and BMI seem 

to be more polygenic than the other CVD phenotypes. The causes of the differences in 

polygenicity are unclear but may be related to smoking and BMI being more influenced by 

behavior that is regulated by the brain than the other CVD phenotypes. Other analyses have 

also revealed that behavioral phenotypes have higher polygenicity than somatic diseases 

and traits (57). Lower polygenicity of the other CVD phenotypes compared with BMI and 

smoking initiation limits the genetic overlap with schizophrenia.

Our conjFDR analyses detected several genetic loci jointly associated with schizophrenia 

and CVD risk factors, especially BMI, smoking initiation, blood pressure, and TG. Larger 

GWAS samples of these CVD phenotypes compared with the GWASs of T2D and CAD 

are likely to contribute to the greater number of identified loci. A total of 366 of the 

identified loci are novel to schizophrenia. The results illustrate the increased SNP discovery 

by leveraging pleiotropy with CVD by using the condFDR and conjFDR approaches (22, 

32). The allelic effect directions of the shared loci identified by conjFDR were mainly in line 

with the genome-wide correlation and genetic correlations within the shared components 

obtained from MiXeR. Note, however, that the identified loci at conjFDR<0.05 represent 

only a small fraction of the genetic architecture, and the concordance in allelic effects 

among these shared loci may not necessarily align with the measures of genetic correlation 

at the genome-wide level or within the shared components.

Furthermore, the majority of the shared loci have opposite allelic effect directions in 

schizophrenia and BMI. The results indicate that people with schizophrenia are genetically 

predisposed to lower BMI, at the group level. This is in line with previous genetic findings 

(25) and clinical evidence of low BMI being a risk factor for schizophrenia (11) and being 
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more prevalent among individuals with schizophrenia than in the general population (58, 

59). However, obesity is also more common in individuals with schizophrenia compared 

with those in the general population (3, 58). The present findings indicate that factors other 

than common genetic variants play an important role in weight gain in schizophrenia (25). 

In particular, adverse effects of antipsychotics and unhealthy lifestyle related to negative 

symptoms, depression, and socioeconomic challenges are likely to be major causes (6–8, 

60, 61). However, genetic factors appear to play an important role in antipsychotic-induced 

weight gain as well, with a heritability estimate of 60%–80% (62). Taken together, the 

evidence indicates interactions between genetic liability to antipsychotic-induced weight 

gain, lifestyle factors, and psychosocial challenges as underlying mechanisms of weight 

gain.

Despite the negative genetic correlation between BMI and schizophrenia, a trend toward 

a positive association was observed for WHR (rg=0.039). Although this may seem 

inconsistent with the inverse schizophrenia-BMI association, WHR correlates weakly with 

BMI clinically (63), and WHR adjusted for BMI demonstrated no significant genetic 

correlation with BMI in our study (see Table S99 in the online supplement). Moreover, 

the genetic correlation between schizophrenia and WHR was not significant after correction 

for multiple testing, in line with previous studies (27, 64), although one study found a 

statistically significant, yet low, negative genetic correlation between schizophrenia and 

waist circumference (rg=−0.07) (65). Furthermore, the results indicate that the higher WHR 

seen in antipsychotic-naive patients with schizophrenia (66) is not due mainly to genetic 

factors, but rather to lifestyle factors.

We discovered extensive genetic overlap between schizophrenia and smoking behavior. 

The effect directions of the shared SNPs are in line with the moderate positive genetic 

correlation estimated here and in previous studies (30, 31). The results indicate an increased 

genetic propensity for smoking associated with schizophrenia. The addictive properties of 

nicotine may have a larger influence in people with schizophrenia, in line with evidence 

of greater nicotine dependence among individuals with schizophrenia than in the general 

population (67). In particular, patients with schizophrenia experience greater reinforcing 

effects of nicotine and more severe withdrawal symptoms during abstinence (67, 68). 

The higher nicotine dependence in schizophrenia may be partly genetically driven, as 

indicated by a positive genetic correlation (69). Moreover, studies have linked both nicotine 

dependence and schizophrenia to variants in the nicotinic acetylcholine receptor (nAChR) 

gene cluster (CHRNA3-CHRNA5-CHRNB4) (15, 69). Here, we corroborated associations 

of variants in the nAChR gene cluster with schizophrenia and cigarettes per day (see 

Table S51 in the online supplement). In addition, smoking may represent a form of self-

medication. Nicotine activates nAChRs, which stimulates release of dopamine, serotonin, 

and glutamate (68). Thus, tobacco smoking in people with schizophrenia may involve, to 

some extent, an attempt to compensate for genetically determined dysfunction of nAChRs, 

implicating monoaminergic and glutamatergic signaling (14, 68), although this requires 

further investigation.

We identified several shared loci with mixed effect directions in schizophrenia and lipids, 

SBP, DBP, WHR, T2D, and CAD. The results validate earlier findings of bidirectional 
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effects among overlapping loci between schizophrenia and CVD risk factors (22, 26, 27) and 

between bipolar disorder and CVD risk factors (28). Moreover, the present study extends 

previous results (22) by providing a more detailed characterization of the shared genetic 

architecture and specific overlapping loci. Nevertheless, the common SNPs identified here 

and previously (22, 26–28) have small effects, explaining a small portion of the overall 

disease risk. The remaining variance is likely to be explained by multiple undetected SNPs, 

rare variants, interactions between genes, and interactions between genes and environmental 

factors, especially antipsychotics and unhealthy lifestyle (6, 60).

Although the average level of CVD risk is higher in schizophrenia compared with the 

general population, there is considerable individual variation in CVD risk (3, 8, 12). 

Our findings of shared loci with mixed effect directions may reflect variation in genetic 

susceptibility to CVD across subgroups of schizophrenia. Thus, there may be subsets of 

patients with a higher genetic liability to CVD, as indicated by previous studies (29, 70). 

This possibility can help explain reports of cardiometabolic disturbances in drug-naive 

patients with schizophrenia at illness onset and among their relatives compared with healthy 

control participants (9, 10, 71). Moreover, a recent study provided evidence of genetic 

contribution to T2D in schizophrenia (24), although findings have been inconsistent (15, 72). 

Patients with more negative symptoms may represent a subgroup who are at greater risk 

for CVD, consistent with findings suggesting that patients with more severe and enduring 

negative symptoms have a higher CVD risk, whereas positive psychotic symptoms seem to 

be less associated with CVD (73, 74). Larger GWAS samples with phenotypic refinement 

are required to identify potential subgroups of schizophrenia patients with differential 

liability to CVD.

Both overweight and smoking are risk factors for CAD, in line with their positive genetic 

correlation with CAD shown here. We investigated whether BMI and smoking initiation, 

which have a negative and positive genetic correlation with schizophrenia, respectively, 

influence the genetic relationship between schizophrenia and CAD. We hypothesized that 

controlling for these CVD risk factors would modify the association between schizophrenia 

and CAD. The results from the genomic structural equation modeling suggested minimal 

effect on the relationship between schizophrenia and CAD, indicating that there are other 

factors explaining the nonsignificant correlation between them. Furthermore, we did not find 

support for a systematic change in the direction of the association between schizophrenia 

and CAD by controlling for the other CVD risk factors. These findings support a mixture 

of effect directions across the different CVD risk factors. Thus, it does not appear as though 

controlling for the effect of a CVD factor (e.g., smoking) affects a subgroup of variants that 

are shared with schizophrenia and CAD. However, the statistical power for finding such a 

pattern may have been inadequate.

Functional analyses of the shared loci implicated genes associated with neurodevelopment, 

synaptic function, immune system, intra- and intercellular processes, and metabolic 

mechanisms. The results are in line with the neurodevelopmental hypothesis and with the 

immune system being implicated in the pathogenesis of schizophrenia (14). In addition, 

brain function regulates behavior, which plays a key role in lifestyle habits influencing 

CVD. The immune system also plays a crucial role in the development of CVD (75). 
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The findings from the functional analyses align with recent studies of genetic overlap 

between schizophrenia, bipolar disorder, and CVD risk factors (25, 28, 64). However, the 

results should be considered with caution given the limitations of functional annotation 

methods (37) and the complex mechanisms underlying schizophrenia and comorbid CVD. 

The methods used in the present study are limited by uncertainties in translating genetic 

loci to causal variants, which restricts the biological interpretation of the shared genetic 

variants (14). Some additional methodological limitations should be noted. The model 

underlying MiXeR is sensitive to LD structure estimates. Discrepancies between the LD 

structure of the samples used for the GWAS and that of the reference panel may have 

biased the model’s estimates. Additionally, implementation of the MiXeR model assumes 

similar LD structure in the analyzed GWAS, which hinders the analysis of GWASs based on 

genetically dissimilar populations, including transancestry analyses. Thus, we are working 

on implementation that supports transancestry analyses, permitting transferability of results 

across ethnicities.

In summary, we revealed polygenic overlap between schizophrenia and CVD risk factors, 

particularly BMI and smoking. The results indicate an inherent propensity to smoking in 

individuals with schizophrenia. In contrast, several schizophrenia risk loci appear to be 

protective against obesity. The findings highlight the importance of environmental factors in 

the development of obesity and other CVD comorbidities. In addition, the mixed effect 

directions of the shared loci between schizophrenia and lipids, blood pressure, T2D, 

and CAD may suggest variation in genetic vulnerability to CVD across schizophrenia 

subgroups, which may underlie some of the observed heterogeneity in CVD comorbidity. 

Studies with larger GWASs will uncover more of the genetic architecture of schizophrenia 

and may reveal differences in genetic liability to CVD across subsets of patients. Such 

findings could provide clinically useful discoveries that pave the way for risk stratification 

and more tailored interventions. Further work is needed to identify the causal genetic 

variants and determine their functional properties. This research is likely to provide insights 

into the mechanisms underlying the comorbidity and might facilitate the development of 

antipsychotics with lower metabolic side effects. Such progress will enable more effective 

prevention of comorbid CVD, thereby helping to mitigate a major clinical and health care 

problem.
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Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. Shared and unique polygenic components between schizophrenia and cardiovascular 
disease phenotypesa

a The Venn diagrams illustrate shared and unique trait-influencing variants, showing 

polygenic overlap (green) between schizophrenia (blue) and cardiovascular disease 

phenotypes (orange), including A) smoking initiation, B) body mass index (BMI), C) 

systolic blood pressure (BP), D) diastolic BP, E) type 2 diabetes, and F) high-density 

lipoprotein (HDL). The numbers in the Venn diagram indicate the estimated quantity 

of shared and unique trait-influencing variants (in thousands), explaining 90% of single-

nucleotide polymorphism heritability in each phenotype, and the standard error. The size of 

the circles reflects the degree of polygenicity. The genetic correlations (rg) are also provided. 

The figures are based on MiXeR analysis.
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FIGURE 2. Common genetic variants jointly associated with schizophrenia and cardiovascular 
disease phenotypesa

a The Manhattan plots show the common genetic variants jointly associated with 

schizophrenia and A) body mass index (BMI), B) waist-to-hip ratio (adjusted for BMI), 

C) smoking initiation, D) cigarettes per day, E) triglycerides, F) high-density lipoprotein 

(HDL), G) low-density lipoprotein (LDL), H) total cholesterol, I) systolic blood pressure 

(BP), J) diastolic BP, K) type 2 diabetes, and L) coronary artery disease at conjunctional 

false discovery rate (conjFDR)<0.05. Each panel shows the −log10 transformed conjFDR 

values for each single-nucleotide polymorphism (SNP) on the y-axis and chromosomal 

positions along the x-axis. SNPs with conjFDR<0.05 (i.e., −log10 FDR>1.3) are shown 

with enlarged data points. A black circle around the enlarged data points indicates the most 
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significant SNP in each linkage disequilibrium block. The figure shows the localization 

of the “conjunctional loci”; additional details are provided in the tables in the online 

supplement.
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TABLE 1.

MiXeR estimates for schizophrenia and cardiovascular disease phenotypesa

Cardiovascular Disease Trait

Schizophrenia-Related 
Variants Shared With 

Cardiovascular Disease

Cardiovascular Disease-
Related Variants Shared 

With Schizophrenia
Genetic Correlation of Shared 

Variants

% % Mean SD

Smoking initiation 89.6 77.5 0.20 0.01

BMI 83.5 73.6 −0.17 0.01

Systolic BP 24.7 54.5 −0.04 0.01

Diastolic BP 17.7 43.6 0.01 0.01

Type 2 diabetes 16.7 69.6 −0.13 0.03

HDL 14.4 77.8 0.15 0.01

Triglycerides 12.4 85.7 −0.06 0.02

LDL 3.1 37.5 0.30 0.11

Total cholesterol 3.1 33.3 0.40 0.17

Coronary heart disease 5.2 34.5 0.17 0.03

Waist-to-hip ratio 12.12 43.53 0.29 0.08

a
The table lists the proportions of schizophrenia-influencing variants shared with each cardiovascular disease phenotype and vice versa. 

Genetic correlation of shared variants: genetic correlation of effect sizes within the shared genetic component. The variants explain 90% of 
single-nucleotide polymorphism heritability of each phenotype. The waist-to-hip ratios were adjusted for BMI. BMI=body mass index; BP=blood 
pressure; HDL=high-density lipoprotein; LDL=low-density lipoprotein.
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TABLE 2.

Shared loci between schizophrenia and cardiovascular disease phenotypesa

Associated Phenotypes Shared Loci Concordant Effect Genetic Correlation

N % rg p

BMI 304 34.5 −0.112 8.04×10−13

Waist-to-hip ratio 193 52.3 0.039 0.028

Smoking initiation 293 68.9 0.158 4.36×10−13

Cigarettes per day 129 62.8 0.137 2.67×10−7

Systolic BP 294 47.6 −0.004 0.817

Diastolic BP 259 47.9 0.004 0.823

Type 2 diabetes 147 46.9 −0.053 0.007

Triglycerides 307 47.2 −0.037 0.002

HDL 304 55.6 0.058 0.003

LDL 158 51.3 0.029 0.090

Total cholesterol 176 53.5 0.034 0.042

Coronary heart disease 35 54.3 −0.021 0.471

a
The table lists the number of shared loci at conjunctional false discovery rate <0.05, percentage of loci with concordant effect directions, and 

genetic correlation (rg) estimated by linkage disequilibrium score regression. BMI=body mass index; BP=blood pressure; HDL=high-density 

lipoprotein; LDL=low-density lipoprotein.
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