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February 6, 2005

Abstract: We study experimentally a two-stage compensation mechanism for promoting
cooperation in prisoner’s dilemma games.  In stage 1, players simultaneously choose binding
non-negative amounts to pay their counterparts for cooperating in a given prisoner’s dilemma
game, and then play the prisoner’s dilemma game in stage 2 with knowledge of these amounts.
For the asymmetric prisoner’s dilemma games we consider, all payment pairs consistent with
mutual cooperation in subgame-perfect equilibrium transform these prisoner’s dilemma games
into coordination games, with both mutual cooperation and mutual defection as Nash equilibria
in the stage-2 game.  We find considerable empirical support for the mechanism, as cooperation
is much more common when these endogenous transfer payments are feasible.  We identify
patterns among transfer pairs that affect the likelihood of cooperation.  Mutual cooperation is
most likely when the payments are identical; it is also substantially more likely with payment
pairs that bring the payoffs from mutual cooperation closer together than with payment pairs that
cause them to diverge.  There is substantial scope for this compensation mechanism to achieve
beneficial social outcomes in commerce and in international affairs, and reason to be concerned
about the ability of firms to design collusive agreements.
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1.  Introduction

The prisoner’s dilemma is by far the most famous example of a game with a unique

Pareto-inefficient Nash equilibrium.  The chief characteristic of this game is that while there are

substantial gains that could be attained through cooperation, non-cooperation (defection) is

dominant for each player.  The theoretical result is that all players defect, even though joint

defection leaves each player with less than he or she could have obtained through mutual

cooperation.  A multitude of experiments have been conducted on the prisoners’ dilemma (see

Rapaport and Chammah 1965, Dawes 1980, and Roth 1988 for surveys of these experiments).

The central finding in these studies is that mutual cooperation is indeed rather rare in the

prisoner’s dilemma.  Since players always do better with respect to their individual payoffs by

defecting, few people elect to cooperate in this environment, leading to poor social outcomes.  It

is thus desirable to design mechanisms that will implement the efficient outcome.

Coase (1960) presents an example involving a rancher and a farmer, in which the

rancher’s cattle stray onto the farmer’s property and damage the crops beyond the benefit to the

rancher.  Coase argues that even if the rancher’s cattle are legally allowed to trespass, the

efficient outcome, as in the case where the rancher’s cattle are legally prohibited from

trespassing, will still result because the farmer would then have an incentive to pay the rancher to

cooperate (reducing the number of straying cattle).  That is, with well-defined property rights, no

transaction costs, and fully symmetric information, efficiency is neutral to the assignment of

responsibilities for damages; this result has come to be called the Coase theorem.

Varian (1994) presents a general two-stage compensation mechanism that can be seen as

being complementary to the Coasian approach.  It implements efficient outcomes through

subgame-perfect equilibria in a wide range of environments with externalities, including



2

prisoner’s dilemma games with certain specifications of the payoffs.1  The mechanism provides a

formalization of bargaining involved in the Coase theorem, and it does not involve a regulator or

central planner mandating taxes or transfer payments; instead it relies upon the parties to design

transfer payments that leads to the efficient outcome.  In essence, the prisoner’s dilemma can be

seen as an environment with a two-sided externality.

Applying this mechanism to a prisoner’s dilemma game, each party would make a

binding pre-play offer to pay the other for cooperating in stage 1; upon observing these offers,

each party then chooses to cooperate or to defect in the prisoner’s dilemma game in stage 2.  A

natural solution concept is subgame-perfect equilibrium (henceforth SPE); while one wishes to

offer enough to induce the other to cooperate, it is best to offer the minimum amount that is

required to achieve this goal.2  Qin (2002) characterizes the conditions on payment pairs that are

necessary and sufficient to “induce the players to cooperate” (to be defined shortly).3

To illustrate the mechanism, consider this example:

Figure 1: A prisoner’s dilemma game

Player 2

C D

C 10, 13 2, 15

Player 1
D 13, 2 7, 6

                                                  
1 Moore and Repullo (1988) show that, given certain assumptions, almost all choice rules can be implemented by
subgame-perfect equilibria.  The compensation mechanism seems to be considerably simpler than the examples
provided in Moore and Repullo (1988).
2 See also Ziss (1997) where it is shown that the efficient outcome is not among the set of possible SPE outcomes
for certain prisoner’s dilemma games.
3 Jackson and Wilkie (2003) consider more general strategy-dependent transfer payments that players may offer to
each other before playing a game in strategic form.  For example, with a prisoner's dilemma game, players can offer
among permissible transfer payments those that will be carried out only when both players defect or only when
player 1 defects while player 2 cooperates, and so on.  The main result of their paper is a complete characterization
of supportable equilibrium payoffs rather than transfer payments.
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 Suppose player i (i=1,2) offers to pay an amount Hi to player j on the condition that player j

cooperates.  Then, if the payments H1 and H2 are large enough, mutual cooperation will follow in

the subsequent play of the prisoner’s dilemma game.  For example, if H1 = H2 = 10, then players’

payoffs in the subsequent play will be:

Figure 2: Transformation of the game in Figure 1 by payment pair (10,10)

Player 2

C D

C 10, 13 12, 5

Player 1
D 3, 12 7, 6

In this case, (C,C) is the unique Nash equilibrium.  However, the strategy of choosing a payment

of 10 and then subsequently cooperating cannot survive subgame-perfection.  To see this,

suppose that player 2 chooses payment 10.  Then, cooperating is dominant for each player in the

subsequent play of the prisoner’s dilemma game as long as player 1 chooses a payment greater

than 4.  Consequently,  player 1 can increase her payoff by lowering her payment to, say 5.

We test the compensation mechanism experimentally, using three parameterizations of

the prisoner’s dilemma, and find substantial success: We observe cooperation rates of 43% -

68% when transfer payments are permitted, compared to 11% - 18% when transfer payments are

not feasible (almost a fourfold decrease).  We also find distinct patterns in cooperation rates;

factors include whether mutual cooperation is a (strict) Nash equilibrium in the subgame induced

by the chosen transfer payments and whether transfer payments make the payoffs from mutual

cooperation closer together or further apart than without the transfers.  Cooperation rates are

highest when qualifying transfer payment pairs are identical, while transfer payments that cause
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the gap in the mutual-cooperation payoffs to grow are less effective than transfer payments that

cause the gap to shrink.

Our study has bearing on issues such as contractual performance and breach, where each

party posts a reward for the other party’s performance (or deposits a bond) in an escrow held by

a neutral third party.4   In the field, this is observed in real estate and construction matters, where

performance bonds and escrows are the rule.  Side payments can be seen in international fishing

and international pollution ‘contracts’.  Alternatively, this could also be relevant for the

provision of public goods, if the parties make pledges conditional on completion of the project.

Agreements to make contributions contingent upon other contributions are seen in many forms

of fundraising, including public television and radio.

In addition, our results have clear legal implications for both positive and negative

interpretations of the prisoner’s dilemma.  By positive interpretations, we mean situations where

the prisoner’s dilemma is a reduced form for cooperation being socially-beneficial, such as in

public-goods games.  The success of the mechanism suggests that it may not be necessary for the

legislative authority to attempt to directly implement mutual cooperation.  By negative

interpretations, we mean situations where the prisoner’s dilemma is a reduced form for a case

where cooperation hurts society, such as with collusion in Cournot quantity competition.  In this

case, our results suggest that the legislative authority should be quite careful to ensure that side

contracts are illegal.

2. Background and Theory

There have been several laboratory tests of the Coase theorem, beginning with Hoffman

and Spitzer (1982) and Harrison and McKee (1985).  In these studies, there is an optimal choice

                                                  
4 Williamson (1983) discusses the merits of crafting ex ante incentive structures for the prisoner’s dilemma.
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of lotteries, in terms of total (expected) social payoffs.  However, one agent, who has an

individual incentive not to choose the optimal lottery, controls the lottery chosen after the parties

can contract over side payments.  These studies generally find that the parties are able to contract

effectively.5  Nevertheless, as the contracting problem in our case is much more difficult, given

its two-sided nature, in some sense the prisoner’s dilemma is a more challenging test.

Andreoni and Varian (1999) were the first to experimentally test the performance of the

compensation mechanism in the prisoner’s dilemma.  The cooperation rate nearly doubles with

feasible transfers in their game, from 26% to 50%, showing considerable effectiveness for the

mechanism.  To some degree, our study follows in their footsteps; nevertheless our design

permits us to go beyond their study in at least two important respects.  First, we consider games

where there is a substantial range of payment pairs that induce the players to cooperate in SPE.

While mutual cooperation is predicted with all qualifying payment pairs, it may be that we can

identify factors that behaviorally enhance or inhibit mutual cooperation.  In contrast, with integer

payments there is a unique SPE in the game considered in Andreoni and Varian (1999), making

it difficult to discover any such patterns.

Second, the SPE payments in Andreoni and Varian lead to a solution in dominant

strategies, facilitating cooperation given that sufficient transfer values have been chosen.  In

comparison, payment pairs required for inducing cooperation transform the experimental

prisoner’s dilemma games in the present paper into coordination games between the players, in

which there are two distinct Nash equilibria, (C,C) and (D,D).  In our games, mutual defection

can typically be ruled out as part of an equilibrium strategy, as is explained later in the paper.

Nevertheless, this analysis requires fairly sophisticated reasoning unlikely to manifest in an

                                                  
5 However, Kahneman et al. (1990) find substantially less trading of consumption goods than the level predicted by
the Coase theorem, attributing the gap to the endowment effect.
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experimental game.  This would seem to be a substantially more difficult task than selecting

mutual cooperation when it is the unique Nash equilibrium in the second stage of the game, as in

Andreoni and Varian (1999).  Thus, ceterus paribus, one might expect cooperation rates to be

lower in our case.

To describe the compensation mechanism more formally, consider a situation that is

captured by a prisoner’s dilemma game in Figure 3 below:

Figure 3: The generic prisoner’s dilemma game

Player 2

C D

C R1, R2 S1, T2

Player 1
D T1, S2 P1, P2

Sk < Pk < Rk < Tk, k = 1, 2.

The compensation mechanism converts the prisoner’s dilemma into a two-stage game.  In the

first stage, each player chooses (simultaneously) how much to pay his or her counterpart for

cooperating.  After learning the payments offered in the first stage, the players then choose

between action C and action D in the prisoner’s dilemma game.  A payment pair (H1,H2) changes

players’ payoffs associated with the various action pairs to:

Figure 4: The transformed generic game

Player 2

C D

C R1 - H1+ H2, R2 + H1 - H2 S1 + H2, T2 - H2

Player 1
D T1 - H1, S2 + H1 P1, P2
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How might one interpret this mechanism in a field context?  Suppose that two firms agree

to participate in a joint venture, and each firm can either contribute minimum effort (D) or full

effort (C), which is more costly.  If both firms choose minimum effort, the resulting payoffs are

(P1, P2).  However, each firm can pledge to pay a performance reward, perhaps by depositing

money (to be paid upon observing full effort) in an escrow.  With suitable endogenous reward

payments, we should expect better performance in the joint venture.6

We now provide a formal definition regarding when a payment pair induces the players

to cooperate:

Definition: A payment pair H* induces the players to cooperate if there is a SPE that involves
players offering payments in H* in stage 1 and cooperating in stage 2 conditional on payment
pair H*.

In Qin (2002) it is shown that a payment pair H* induces the players to cooperate if and

only if, for i ≠ j,

Ti – Ri £ Hj* £ Rj – Sj, (1)

    Hj* - Hi* £ Rj – Pj, (2)

Hj* £ Ti – Ri whenever Pi – Si £ Ti – Ri, (3)

and

 Hi* £ Pj – Sj and Hj* £ Pi – Si whenever Pi – Si > Ti– Ri. (4)

                                                  
6 In real joint ventures, of course one may not know ex ante  the precise values of the exogenous parameters.
However, these values can be considered in expected terms, if we assume that the firms are risk neutral.  Similarly,
it may not be feasible to perfectly monitor effort, but we might well be able to observe factors that are correlated
with this effort, such as specific investments or elements of the firm’s performance.
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The set containing all such payment pairs H* often describes a rectangle.7  For example,

consider our Game 1, where (S1, P1, R1, T1) = (8, 28, 40, 52) and (S2, P2, R2, T2) = (8, 24, 52, 60).

Applying conditions (1) - (4), we see that 8 £ H1* £ 16 and 12 £ H2* £ 20.  Consider the transfer

pair (H1*, H2*) = (12, 16).8  Figure 5 illustrates how one such payment pair transforms Game 1:

Figure 5: Game 1 transformation by (H1,H2) = (12,16)

Game 1 with no transfers
Player 2

C D

C 40, 52 8, 60

Player 1
D 52, 8 28, 24

Game 1 after (H1,H2) = (12,16)
Player 2

C D

C 44, 48 24, 44

Player 1
D 40, 20 28, 24

Both (C,C) and (D,D) are Nash equilibria in the subgame in the transformed game.  In

fact, simple calculations shows that (C,C) and (D,D) are Nash equilibria in any subgame

resulting from a payment pair satisfying (1) – (4) for Game 1.  Nevertheless, in SPE, mutual

defection cannot be an action pair in stage 2 conditional on the payment pair satisfying (1) – (4).

                                                  
7 However, when the cost of cooperation (P – S) is greater than the gain from defecting (T– R)  for each player, the
set of such pairs is determined by conditions (1), (2), and (4) only.  In this case, the set may be a hexagon, as with
our Game 3.
8 One might ask why the SPE of (H1*,H2*) = (12, 16) isn’t undermined for player 1 by (11,16).  The answer is that
player 1 could (correctly) believe that player 2 would choose to defect if H1 < 12.  This can be explained as follows:
The payment pair H* in SPE can reflect players’ demands for payments to cooperate (as embodied in their
contingent actions in the second stage), so that if a player’s demand is not fulfilled, he can credibly refuse to
cooperate.  So, for instance, player 1 would prefer to offer 11 instead of 12 to player 2 for cooperating.  However,
that is not acceptable to player 2 because he can say no to player 1 by planning to defect (in a credible way).  The
SPE here implies a certain degree of bargaining between the two players.
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To see this, suppose on the contrary that a payment pair satisfying (1) – (4), or

equivalently satisfying 8 £ H1* £ 16 and 12 £ H2* £ 20, induces (D, D).  Then, player 1 receives

28 and player 2 receives 24 from the corresponding SPE.  However, from Game 1 together with

Figure 4, it follows that C is strictly dominant for player 1 in the subgame led by payment pair

(H1*, H2) with H2 > 20.  Given that player 1 plays his or her SPE strategy, by offering to pay H2

> 20 and by cooperating in the second stage conditional on payment pair (H1*, H2), player 2’s

payoff would become 52 - H2 + H1* ≥ 60 - H2.  But this means that by choosing 20 < H2 < 28 and

inducing player 1 to choose C, player 2 could have received a payoff bigger than 24, since 60 -

H2 > 24.  Consequently, given player 1’s strategy in that SPE with payment 8 £ H1* £ 16, player

2 would wish to change his transfer from 12 £ H2* £ 20 to 20 < H2 < 28.  This contradicts the

supposition that a pair (H1*, H2*) satisfying (1) – (4) for Game 1 induces (D, D) in equilibrium.

For some parameterizations, there is a unique transfer pair that, in combination with

mutual cooperation, is consistent with subgame perfection (i.e., on the equilibrium path).

Andreoni and Varian (1999) test a prisoner’s dilemma with (S1,P1,R1,T1) = (0,3,6,9) and

(S2,P2,R2,T2) = (0,4,7,11).  Conditions (1) – (4) imply that H1* = 4 and H2* = 3; Andreoni and

Varian point out that this is the unique SPE when the side payments can be any real number, but

that there is an additional SPE when the side payments are restricted to be integers.  In this

equilibrium, supported by pessimistic expectations when the other player is indifferent between

cooperation and defection, both players add one unit to the side payments, leading to the transfer

pair (5,4) and this induced subgame:
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Figure 6: The transformed Andreoni and Varian (1999) game

Player 2

C D

C 5, 8 4, 7

Player 1
D 4, 5 3, 4

Here cooperation is the strictly-dominant strategy for each player and so (C,C) is the only Nash

equilibrium in the subgame.9

3. Experimental Design and Hypotheses

We wished to not only test the general effectiveness of endogenous payments for

cooperation in achieving cooperation and efficiency, but to also investigate the determinants of

cooperation given that mutual cooperation is a Nash equilibrium in the induced subgame or is

part of a SPE with the contingent payments chosen.   In other words, are there particular patterns

in (qualifying) payment pairs that are particularly effective in affecting cooperation?  This is not

likely to be an issue where these payment pairs make cooperation the dominant strategy for each

player, but may well affect equilibrium-selection in a coordination game.

We therefore chose three games where the payment pairs inducing cooperation transform

the game into coordination games.  Further, in order to test for the effect of possible determinants

on cooperation, we chose games in which the region of payment pairs inducing the players to
                                                  
9 We note that the transfer pair (4,3) induces the subgame:

Player 2
C D

C 5, 8 3, 8
Player 1

D 5, 4 3, 4

Here each player receives the same payoff regardless of his or her own choice and so each and every combination of
pure or mixed strategies is a Nash equilibrium in this subgame.
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cooperate was substantial and included points completely in its interior. While in theory any

payment is allowed, only integer values are permitted in the experiment; we chose larger

nominal payoffs, in order to have many payment pairs that are completely inside the SPE-region.

Figure 7: Our experimental games

Game 1

Player 2

C D

C 40, 52 8, 60

Player 1
D 52, 8 28, 24

Game 2

Player 2

C D

C 32, 52 4, 60

Player 1
D 40, 8 20, 24

Game 3

Player 2

C D

C 44, 36 8, 44

Player 1
D 52, 0 32, 28

Appendix B illustrates, for each of these games, the bounds of the SPE-transfer pairs

consistent with mutual cooperation being a subgame-perfect action pair.  We noted earlier that

mutual cooperation is the unique action pair consistent with SPE in Game 1.  Given the
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conditions mentioned above, we can see that this is also the case for Game 2.  However, matters

are more complex for Game 3, as the conditions ruling out mutual defection are only satisfied for

some SPE payment pairs.  It turns out that (C,C) is the only SPE action pair when either H1 > 16

or H2 > 16, but the action pair (D,D) is also consistent with subgame-perfection for other values

in the SPE-region.10,11

For purposes of statistical analysis, there is a multiple-observation problem, since each

person plays in 25 periods and interacts with other players during the session.  While we account

for this in regression analysis, we also perform non-parametric statistical tests across conditions.

To facilitate these tests, we partitioned the 16 participants in each session into four separate

groups, with the four people in each group interacting only with each other over the course of the

session.  In this way, we obtain four completely independent observations in each session.12

The Experiment

We conducted a series of experiments in nine separate sessions at the University of

California at Santa Barbara.  We had three sessions for each of three different prisoner’s-

dilemma games.  For each game, endogenous transfers were permitted in two of these sessions,

while the third session served as a control.  There were 16 participants in each session, with

                                                  
10 The reasoning goes as follows: Assume (D, D) is played after a payment pair H* in the SPE region, in which case
player 1 gets 32.   Notice that player 1 can make C strictly dominant for player 2 in the action subgame by choosing
any H1 > 28.  If she does so, then player 2 plays C and player 1 can thus guarantee herself payoff 44 - H1 + H2*.
This payoff is greater than 32 if and only if H1 < 12 + H2*.  Thus player 1 would have an incentive to change her
payment in the pair H* if there exists a payment that simultaneously satisfy 28 < H1 < 12 + H2*.  Such a payment
exists if and only if H2* > 16.  Thus H2* > 16 is incompatible with the assumption that (D, D) is induced by payment
pair H*.  This shows that (D, D) cannot be induced by a payment pair H* in the SPE region if H2* > 16.  Similar
reasoning shows that (D, D) cannot be induced by a payment pair in the SPE region if H1* > 16.  In summary, (D,
D) cannot be induced by a payment pair H* in the SPE region if either H1* > 16 or H2* > 16.
11 In this case the mechanism has two subgame-perfect equilibria; we are not aware of any study that investigates
what might be expected as an outcome, depending on structural characteristics of the situation, when there are
multiple equilibria for a mechanism.
12 Subjects were told that they were randomly re-matched, but not that this was done in subgroups.
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average earnings of about $15 (including a $5 show-up payment) for a one-hour session.

Participants were recruited by e-mail from the general student population.13

We provided instructions on paper, which were discussed at the beginning of the session;

a sample of these instructions is presented in Appendix A.  Our computerized experiment was

programmed using the z-Tree software (Fischbacher 1999).  After a practice period, participants

played 25 periods; each person was a Row player in some periods and a Column player in others,

with one’s role being drawn at random from period to period, and the person with whom one was

matched also being determined at random from the other members of the subgroup.

Players first learned their roles for the period and then (if cooperation-rewards were

feasible) chose amounts to transfer to their counterparts in the event of their cooperation.  After

learning the amounts chosen, both players in a pair then simultaneously chose whether to

cooperate or defect in the subgame, and were then informed of the outcome.

Hypotheses

In this section, we formulate several hypotheses based on the predictions of the theory.

We also explore some of the tensions that may stop these predictions from being realized. First,

given that cooperation is a SPE of the game with transfers, but not of the standard prisoner’s

dilemma, we have:

Hypothesis 1: There will be more cooperation in the sessions where players can choose
transfer payments.

                                                  
13 Since part of what we wish to study are decisions conditional on transfers making cooperation a SPE, to improve
our chances of observing SPE transfers potential subjects were told (in a mass e-mail) that we were particularly
interested in students who either had high grade-point averages or who were majoring in mathematics or the
sciences.  We then screened the applicants using these criteria; participants typically were either graduate students or
had GPAs above 3.70.  As discussed in Section 5, our results in the standard prisoner’s dilemma are similar to those
in other experiments.
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Since cooperation is a Nash equilibrium in the induced subgame for only some transfer

pairs, we have:

Hypothesis 2: There will be more cooperation when mutual cooperation is a Nash
equilibrium in the subsequent subgame led by the chosen transfer payments.

We next consider whether, given transfer pairs consistent with mutual cooperation being

an equilibrium, there are certain characteristics of transfer pairs that are particularly effective in

leading to mutual cooperation.  In principle, the theoretical arguments hold regardless of the

location of a point within the mutual-cooperation Nash or SPE regions.  Thus, the hypothesis that

emerges from the theory on this point is:

Hypothesis 3: Given that a transfer induces cooperation, the cooperation rate will not
differ according to any characteristics of the transfer pair.

While the standard arguments predict no differences in behavior for qualifying transfer

pairs, the fact that there are multiple equilibria in the subgame leads us to suspect that secondary

factors will influence the choice of play in the subgame, thereby falsifying Hypothesis 3.  For

example, reward pairs that are on the Nash ‘border’ seem less likely to lead to cooperation.

Consider Game 1, with 8 £ H1* and 12 £ H2*.  Suppose the transfer pair is (H1*,H2*) = (12,12),

on the southern border of the Nash or SPE regions.  The induced subgame, where both (C,C) and

(D,D) are Nash equilibria, is:
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Figure 8: Game 1 transformed by (H1,H2) = (12,12)

Player 2

C D

C 40, 52 20, 48

Player 1
D 40, 20 28, 24

If Player 1 thinks Player 2 is going to cooperate, he stands to get 40 with either C or D; however,

C for Player 1 is weakly-dominated by D in the subgame.  Furthermore, Player 2 stands to gain a

lot (32) by Player 1 choosing C over D.  In this case, Player 1 may feel unhappy that Player 2 has

chosen to give no incremental reward for cooperative play, while hoping or expecting to reap

large rewards from mutual cooperation.  In this sense, a border reward is like a zero offer in the

ultimatum game – a rejection doesn’t really cost the rejector anything, but punishes the selfish

party.  Thus, border reward pairs may be less effective in achieving cooperation.

All else equal, we might also expect players to be more likely to cooperate when transfer

payments (and thus the rewards for cooperation) are higher, even when all transfer pairs

considered are within the Nash or SPE regions.  Here risk-dominance considerations (which

choice does better if the other person randomly chooses whether or not to cooperate) might serve

to help select the equilibrium in the induced coordination game.

Finally, it is possible that social preferences come into play, even for ‘qualifying’ reward

pairs.  Since rewards are simply transfers and do not change the total social payoff contingent

upon the players’ actions in the subgame, there is no role for ‘efficiency’ per se.  However, the

reward pairs chosen affect the difference between the players’ payoffs (or alternatively, the

minimum payoff) that result from mutual cooperation.  We might expect the likelihood of

cooperation to increase as the difference in the net payoffs from mutual cooperation decreases, in
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line with the Fehr and Schmidt (1999), Bolton and Ockenfels (2000), and Charness and Rabin

(2002) utility models.

Our final hypothesis concerns whether behavior is sensitive to identifiable characteristics

of the three different games we test.  In principle, since it is possible in each of these games to

choose reward pairs leading to cooperation in equilibrium, we should see mutual cooperation in

every case that such reward pairs are chosen.  Even if this is not the case, we should still see no

difference in the effectiveness of transfer payments in achieving cooperation across these games:

Hypothesis 4: Given that a transfer pair is consistent with mutual cooperation either in
the subgame or as part of a SPE, the cooperation rate will not differ across the three
experimental games.  Furthermore, the effectiveness of transfer payments in enhancing
cooperation will not vary across games.

On the other hand, we might intuitively expect to see a relationship between risk and

reward.  Rapoport and Chammah (1965) presents some ideas on how the relationships between

the entries in the payoff matrix of the prisoner’s dilemma might be expected to influence

cooperation rates (without transfers); however, they only consider a ‘symmetric’ prisoner’s

dilemma, where players have identical payoffs in each cell of the 2x2 game.  Nevertheless, the

concept of risk and reward may well influence decisions.  One simple idea is to compare the size

of the joint (or individual) payoffs with mutual cooperation to those with mutual defection;

bigger gains from mutual cooperation should translate into more cooperation.

4. Experimental Results and Hypothesis Tests

In this section, we first present a summary of our experimental data.  We then provide a

regression analysis of the data. Throughout, we relate the data analysis to the hypotheses

elaborated in Section 3.
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Data Summary

Figure 9 shows the average cooperation rates by game and treatment:

0%

25%

50%

75%

100%

Game 1 Game 2 Game 3

Figure 9 - Cooperation rates, by game

No transfers possible
Transfers possible

Cooperation rates are clearly higher in treatments where transfers are allowed; the

comparisons are 15.8% vs. 53.9% for Game 1, 17.5% vs. 68.1% for Game 2, and 10.8% vs.

42.9% for Game 3.  All of these differences are highly statistically significant (p-value < 0.01,

one-sided Mann-Whitney test),14 and are also of significant magnitude.  Thus, there is clear

support for Hypothesis 1.

Hypothesis 4 on the other hand finds mixed support.  In the conditions without transfer,

the rates of cooperation are not statistically different (p-values of two-sided Mann-Whitney test >

0.1 in all pair-wise comparisons).15  This is different from previous results ( Rapoport and

Chammah 1965) and might indicate that the differences in the entries of the prisoner’s dilemma

                                                  
14 When performing hypothesis tests of this sort, we will do it for both subject averages and group averages to
eliminate correlation across time. If results are sensitive to the unit of observation, it will be noted. Otherwise, as in
this particular case, the result holds in both cases.
15 The p-value of the Kruskal-Wallis test which examines the hypothesis that the samples are from the same
population is also greater than 0.1.
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game are not big enough, that these effects are not stable, or that these effects do not generalize

to non-symmetric games.  But when transfers are allowed, we do observe differences.  All pair-

wise comparisons of rates of cooperation are statistically different (p-values of two-sided Mann-

Whitney test < 0.1 in all cases).16

In Figure 10, we consider only those sessions in which transfers were possible, and

display cooperation rates as a function of whether mutual cooperation was a Nash equilibrium in

the subgame induced by the transfer pair chosen:

0%

25%

50%

75%

100%

Game 1 Game 2 Game 3

Figure 10 - Cooperation rates, by reward-pair 
consistency with equilibrium

Not NE
NE-border
NE-interior

In games where transfers are allowed, cooperation rates are lowest if the reward pairs

chosen are not consistent with mutual cooperation being a Nash equilibrium in the subgame.

These differences are statistically significant in all treatments (two-sided p-values of Sign test <

0.01 in all treatments) thus lending support to Hypothesis 2.  Cooperation rates are substantially

(10 to 25 percentage points) higher for reward pairs on the ‘border’ of the NE-region, with a

further substantial (18 to 38 percentage points) increase for reward pairs in the interior of the

                                                  
16 The p-value of the Kruskal-Wallis test is less than 0.01.
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NE-region.  This difference between the border and the interior is statistically significant (one-

sided p-values of Sign test < 0.05 in all treatments).  This is the first observation against

Hypothesis 3.  Namely, some SPE-consistent reward pairs are less likely than others to lead to

cooperation.

In Figure 11 we show the proportions of the reward pairs that were variously consistent

with mutual cooperation in a SPE, were such that mutual cooperation was a Nash equilibrium in

the subgame, or were in the region where the transfer pairs make mutual cooperation the unique

Nash equilibrium:
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75%

100%

Game 1 Game 2 Game 3

Figure 11 - Proportion of reward-pairs such that 
cooperation is consistent with NE and SPE

NE
SPE
Unique NE

The proportion of joint transfers that make mutual cooperation a Nash equilibrium is

rather high, about 68% across the three games, with a lower proportion in Game 1.  Further,

more than half of all endogenous reward pairs were consistent with a SPE involving mutual

cooperation.

We now consider how the likelihood of mutual cooperation is affected by how a reward

pair, consistent with a SPE involving mutual cooperation, affects the difference in net payoffs
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with mutual cooperation:  Table 1 reports the rates of mutual cooperation as a function of

whether transfers make final payoffs closer, further or if they remain the same.  This is done for

SPE transfers and SPE transfers excluding the NE border (by border we mean the cases where at

least one of the two subjects is indifferent between cooperation and defection given that the other

person cooperates):

Table 1: Percentages of Mutual Cooperation, by Net Transfer Category

Transfers make MC payoffs: Diverge Equal Closer Total

All SPE Transfers
Game 1 40% (20) 77% (22) 52% (127) 54% (169)
Game 2 47% (30) 67% (45) 61% (122) 60% (197)
Game 3 23% (120) 35% (37) 32% (109) 29% (266)

SPE Transfers, excluding NE Border
Game 1 60% (10) 94% (17) 65% (101) 69% (128)
Game 2 55% (22) 73% (41) 71% (86) 64% (159)
Game 3 25% (81) 40% (25) 40% (86) 33% (192)

(Number of Observations in Parentheses)

We can see the rate of mutual cooperation for SPE-consistent reward pairs is highest (or

tied for highest) in all cases when these transfers are exactly equal.  In four of the six cases,

mutual cooperation is nearly as likely when the reward pair brings the players’ mutual-

cooperation payoffs closer together, while in two cases it is substantially less likely.  We also see

that mutual cooperation is always least likely when the qualifying reward pair makes the mutual-

cooperation payoffs further apart.  This is a second observation against Hypothesis 3, and also

doesn’t exactly square with what one might have expected; that is, given the evidence on social

preferences (Fehr and Schmidt 1999, Bolton and Ockenfels 2000, and Charness and Rabin 2002)

one might have expected that cooperation is highest when transfers make final payoffs closer.
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However, this is not the case.  Overall, there were many more qualifying reward pairs chosen

that reduce the difference in mutual-cooperation payoffs than the opposite direction (631 to 283).

Regression analysis

Table 2 reports random-effects probit estimates of the determinants of cooperation where

the regressors are what the subject offers to pay (Would Pay), what the subject is offered (Would

Receive) again interacted with a dummy variable for the case where cooperation should result in

equilibrium, a dummy variable taking value 1 if the transfers are such that they are on the border

of the NE region and 0 otherwise, and an indicator variable for when transfers are equal and one

for when they make final payoffs closer.  This is estimated on all transfers such that cooperation

is a NE.  The data are separated in two cases: closer is better (CB), meaning all the cases where

having transfers that make final payoffs closer imply that the subjects’ own payoffs are higher

(type 1 in Games 1 and 2, and Type 2 in Game 3) and closer is worse (CW), which is the

opposite (Type 2 in Games 1 and 2, and Type 1 in Game 3).17  The table also reports the

marginal effects for the average subject at the sample mean of the regressors, except for

dichotomous ones where it gives the difference in probabilities when the variable equals 1 and

when it equals 0.

                                                  
17 Appendix C provides results by game and role (row or column). Results are similar but two observations should
be made. First, the NE border effect is not as strong, meaning that although it has a negative impact in all games for
both roles, it is statistically significant in only half of them. Second, the effect of equal transfers is statistically
significant in half the cases, and it has the opposite sign in one of the cases where it is not.
    We have also tested to see if controlling for periods affected the results.  We have done this by including the
period and the period squared as regressors or by including indicator variables for blocks of five periods.  In neither
case did it have any qualitative impact on the results.  Furthermore, the majority of coefficient estimates of the effect
of period (for both specifications) were statistically insignificant. In the interest of space these are not included but
are available from the authors on request.
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Table 2: Determinants of Cooperation
Random-effects probit and marginal-effects estimates in NE region

Closer is Better Closer is Worse

RE Probit
Marginal
Effects RE Probit

Marginal
Effects

Would Pay 0.001 0.000 -0.013 -0.004

(0.011) (0.004) (0.019) (0.006)

Would Receive 0.093*** 0.031*** 0.136*** 0.042***

(0.018) (0.006) (0.023) (0.008)

NE Border§ -0.637*** -0.231*** -0.746*** -0.255***

(0.166) (0.063) (0.186) (0.067)

Equal Transfers§ 0.535*** 0.157*** 0.496** 0.131***

(0.194) (0.050) (0.219) (0.051)

Final Payments are Closer§ 0.603*** 0.206*** 0.077 0.023

(0.156) (0.055) (0.172) (0.053)

Constant -1.054*** -0.729

(0.346) (0.485)

Observations 820 820 820 820

Number of Subjects 94 94 96 96
Standard errors in parentheses     * significant at 10%; ** significant at 5%; *** significant at 1%
§ Marginal effects report the change in probability when the regressor goes from 0 to 1.

Clearly the amount one is offered matters.  That regressor is always positive and

statistically significant.  This is a third observation that is not in line with Hypothesis 3.

However, how much one would pay never has a statistically-significant impact.  If the transfers

are exactly on the NE border, then cooperation is less likely, confirming what we had already

noticed from the summary statistics.  If the transfers are exactly the same, then cooperation is

more likely.  Finally, cooperation is more likely if transfers narrow the payoff difference from

mutual cooperation, but only when the difference of transfers is in the player’s favor.  These last

observations also do not square with Hypothesis 3, nor with what one might expect given the

current models of social preferences.  That is, since the only condition where equality seems to

matter is when it is self-advantageous, people do not seem willing to forego pecuniary benefits in

favor of greater equality of distributions.  On the other hand, they do not necessarily prefer to

increase inequality even if it favors them.
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The marginal effects inform us of each factor’s relative importance.18  Would receive

averages 14 and 13 in CB and CW respectively (with standard deviations of 5 and 7).  Thus, in

the case of CB, increasing the amount a subject is offered by one standard deviation has the same

impact as making the transfers equal, increasing the probability of cooperation by 15 percentage

points.  Making the transfers such that final payoffs are closer increases cooperation by 21

percentage points while being on the NE border reduces cooperation by 23 percentage points.

The effects are similar in CW except that the effect of what one is offered is greater, while the

effect of having equal transfers is slightly less; having closer final payoffs has no impact.

Thus far we have analyzed determinants of individual behavior. Such behavior has

implications for the groups, and we now turn to a more detailed analysis of the factors affecting

mutual cooperation. We estimate a random-effects probit model of the determinants of mutual

cooperation, reported in Table 3.19  Besides indicator variables for equal transfers and transfers

that make final payoffs closer, these include a dummy for the NE border, and a dummy for the

sum of transfers.  The same specification is estimated pooling all games, with indicator variables

for game 1 and game 2 included and marginal effects reported.  The analysis will focus on the

pooled results.

                                                  
18 For binary regressors this reports the change in probability when the regressor goes from 0 to 1 (keeping all other
regressors at their sample mean).
19 Of course these possibly imply complicated correlation structures across observations since they are a single
observation for a pair of subjects. The estimates reported use the pair as the random effects. Estimates where
individuals are taken as the random effect are provided in Appendix D.  All results are qualitatively unchanged.
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Table 3: Determinants of mutual cooperation
Random-effects probit and marginal-effects estimates in SPNE region

Being on the NE border statistically hurts mutual cooperation, decreasing its probability

by 32 percentage points and making it one of the most important effects in magnitude.  The sum

of the transfers also has a statistically-significant effect on the probability of mutual cooperation.

On average, the transfers sum to 24, with a range of 16 to 42.  Hence going from lowest to

largest would affect cooperation by 68 percentage points and a movement of one standard

deviation (which is 5) would affect the probability by 13 percentage points.  Having equal

transfers make cooperation more likely than transfers that make final payoffs further apart by 21

percentage points while making them closer only increase by 13 percentage points.  Game 2 has

a higher probability of mutual cooperation, other things equal than all other games and Game 1

has a higher probability of mutual cooperation than Game 3.  The significant coefficients for the

Game 1 Game 2 Game 3 All Games
All Games:
Marginal

NE Border§ -2.224*** -1.294*** -0.080 -0.943*** -0.321***

(0.527) (0.350) (0.353) (0.210) (0.060)

Sum of Transfers 0.053 -0.001 0.102*** 0.067*** 0.026***

(0.053) (0.041) (0.030) (0.021) (0.008)

Equal Transfers§ 0.895 0.170 0.682* 0.543** 0.213**

(0.637) (0.390) (0.356) (0.236) (0.092)

Final Payments are Closer§ -0.296 0.401 0.609** 0.350** 0.132**

(0.465) (0.316) (0.297) (0.188) (0.070)

Game 1§ 0.666*** 0.259***

(0.237) (0.090)

Game 2§ 1.268*** 0.474***

(0.247) (0.081)

Constant -0.782 0.350 -3.808*** -2.526***

(1.598) (0.995) (0.928) (0.634)

Observations 169 197 266 632 632

Number of Group 69 66 85 220 220
Standard errors in parentheses                * significant at 10%; ** significant at 5%; *** significant at 1%
§ Marginal effects report the change in probability when the regressor goes from 0 to 1.
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Game 1 and Game 2 dummies in the rightmost columns are evidence against Hypothesis 4, as

cooperation rates do vary across our games when transfers are permitted.

5. Discussion

We find a much higher rate of cooperation when players can choose contingent rewards

for cooperation than when they cannot, in three different asymmetric variants of the prisoner’s

dilemma.  The increased cooperation rate occurs not simply because transfers are feasible, but

also depends substantially on the values of the reward pairs.  In all of our transfer games,

cooperation rates are at least double for reward pairs in the interior of the NE transfer region than

for reward pairs that lead to mutual cooperation not being a Nash equilibrium.  Furthermore,

reward pairs on the border of the NE-region lead to intermediate levels of cooperation that are

significantly different from both the low levels with no transfers permitted or the higher levels in

the interior of the transfer region.

An innovative feature of our design is that the endogenous SPE reward pairs induce

coordination games in which mutual cooperation and mutual defection are both Nash equilibria.

While mutual defection can be ruled out as a SPE action pair for all SPE reward pairs in Games

1 and 2 (and nearly half of the feasible SPE reward pairs in Game 3), doing so requires

somewhat sophisticated arguments.  Nevertheless, we see fairly high cooperation rates, with a

range of between 42.9% and 68.1% in the three games; this compares to the 50.5% cooperation

rate for the game in Andreoni and Varian (1999), which features cooperation being a dominant

strategy for the unique (in integers) SPE-consistent reward pair.

Our cooperation rates when transfers were not permitted ranged from 11% to 18%; this is

in line with rates of cooperation observed in previous studies - Roth and Murnigham (1978),
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Cooper, DeJong, Forsythe, and Ross (1996) and Andreoni and Miller (1993) observed 10%,

25%, and 18% cooperation rates, respectively.  As the individual cooperation rate in the no-

transfer game in Andreoni and Varian (1999) was 26% and so higher than our base rates, it

appears that endogenous transfers were at least as effective, relative to the no-transfer case, in

enhancing cooperation via induced coordination games as when mutual cooperation is the unique

Nash equilibrium in the subgame.

We find that cooperation is substantially more likely when it happens that the sufficient

rewards chosen are equal.  In a sense, this effect of the equality of payoffs on cooperation seems

intuitive and focal, but it is nevertheless completely outside the current economic models of

social preferences.  This effect could possibly be seen as a mutual recognition of the problem, or

as a simplification in the process that makes it seem more likely that the other player will

cooperate.  Perhaps there is something attractive about reaching the original targets of the

payoffs from mutual cooperation.  This could be similar to firms that collude or have mutually

beneficial arrangements in which they try to control market shares.20

A more standard form of social preference appears to also influence behavior, as we see a

player is more likely to cooperate when the reward pair decreases the difference between the

players’ payoffs with mutual cooperation.  However, this only has a significant effect when

equality favors the chooser, so that one can perhaps view this as a form of self-serving bias.

Reward pairs that reduce the difference in the payoffs from mutual cooperation are more than

twice as common as reward pairs that cause this difference to increase.

Looking across our three experimental games, we see some substantial differences in

rates when contingent rewards are feasible.  The size of the gains from mutual cooperation

                                                  
20 “In the case of the JEC [Joint Executive Committee], the cartel took the form of market share allotments rather
than absolute amounts of quantities shipped” (Porter 1983).
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relative to the size of the mutual defection payoffs does seem to correspond to the cooperation

rates in our games.  These gains are 40 in both Games 1 and 2, compared to 20 in Game 3, and

the ratio of these gains to the sum of the payoffs from mutual defection is 0.77, 0.91, and 0.33,

respectively; the corresponding cooperation rates without contingent rewards are 15.8%, 17.5%,

and 10.8%.  There is also considerable differentiation among these games when transfers are

allowed, with overall cooperation rates of 53.9%, 68.1%, and 42.9% in Games 1, 2, and 3,

respectively.  Perhaps one explanation for this stems from the symmetry of the SPE-region in

Game 2, as seen in Appendix B.  In our experiments, players are frequently changing roles;

perhaps the symmetry makes it easier to use the same transfer choice or to identify it.21

There is an additional dimension that differentiates Game 3 from the other two games.

Recall that mutual cooperation is the only action pair consistent with SPE transfers in Games 1

and 2, but that mutual defection is also consistent with SPE transfers in Game 3 whenever

neither H1 nor H2 is larger than 16 (as is true for more than 75% of the chosen transfer pairs in

the SPE-region).  In any event, it seems plausible that the increased uncertainty with lower

transfers acts as a damper on the attraction toward mutual cooperation in Game 3, helping to

explain the lower rate of mutual cooperation seen in Table 1.

The success of the reward mechanism in our induced coordination games is achieved

with contingent rewards that are much smaller than in games where there is a unique SPE reward

pair that leads to mutual cooperation being the only Nash equilibrium in the induced subgame.

For example, in Andreoni and Varian (1999), the transfer payments required for SPE in integers

is nine, compared to total payoffs of seven with mutual defection (78%).  In contrast, in Game 1

                                                  
21 In fact, there were 27 instances where the reward pair in Game 2 was (9,9), the minimum point inside the SPE
region (of which 23 resulted in mutual cooperation); the corresponding minimum point in Game 1, (9,13), is less
‘focal’ and is never observed.
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the equivalent total transfer required is 22, compared to the mutual-defection total payoffs of 52

(42%).  In Game 2, the comparison is 18 to 44 (41%); in Game 3, the comparison is 18 to 60

(30%).  In this sense, perhaps the players could be said to achieving success with less exposure.

Nevertheless, we hesitate to draw any strong conclusion in this regard, as the populations are

different and there may well be other uncontrolled sources of variation as well.

6. Conclusion

Achieving cooperation in the Prisoner’s Dilemma has challenged theorists for decades.

Most previous studies have focused on repetitions for solutions: either finite (see Bereby-Meyer

and Roth 2003) or infinite (see Aoyagi and Fréchette 2004, Dal Bo 2002, and Duffy and Ochs

2003).  We test experimentally an endogenous reward mechanism described in Varian (1994)

and further elaborated in Qin (2002), where ‘gifts’ are contingent upon cooperation in a one-shot

environment.  Typically, the contracting parties bind themselves in a way that usually leads to

the efficient outcome in Games 1 and 2, with cooperation rates roughly quadrupled in all three

experimental games.  This increase in efficiency occurs despite the fact that the reward pairs

consistent with mutual cooperation being a subgame-perfect action pair induce a coordination

game rather than a subgame in which mutual cooperation is the unique Nash equilibrium, as with

the game in Andreoni and Varian (1999).   Our results provide support for the Coase theorem in

a very difficult environment with a two-sided externality.

Our games have a substantial range of integer transfer pairs consistent with mutual

cooperation being part of a SPE, and so we can examine patterns within this region to see which

ones tend to be beneficial in fostering mutual cooperation and efficiency.  Our analysis suggests

at least two main prescriptions: First, sufficient transfers that make cooperation a strict best
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response to expected cooperation are considerably more effective than transfers that lead to

indifference with expected cooperation.  Second, sufficient transfers that are identical are

particularly effective, followed by transfers that narrow the gap between the players’ payoffs in

the event of mutual cooperation; avoid reward pairs that make these payoffs diverge.

Despite the difficulties inherent with asymmetric payoffs and sophisticated inferences,

we observe a reasonably high degree of cooperation in our games, achieved with rewards for

cooperation that are modest in size relative to the payoffs in the game.  This seems a hopeful sign

for efficiency in contracting, as the choice of play in a coordination game is not as obvious as

when one has a dominant strategy.  There is substantial scope for this compensation mechanism

to achieve beneficial social outcomes in commerce and in international affairs, and reason to be

concerned about the ability of firms to design collusive agreements.
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APPENDIX A

INSTRUCTIONS

Thank you for participating in our experiment.  You will receive $5 for showing up on
time, plus you will receive your earnings from the choices made in the session.

There will be 25 periods.  In each period, each person will be matched with one other
person.  The person with whom you are matched will be randomly re-drawn after every period.
You are paired anonymously, which means that you will never learn the identity of the other
person in any of the periods.

One person will have the role of ROW and the other person will have the role of
COLUMN.  Your role will also be randomly re-drawn in each period, so that sometimes you will
have the role ROW and sometimes you will have the role of COLUMN.

Here is the basic game:

COLUMN
Left Right

Up 40, 52 8, 60ROW
Down 52, 8 28, 24

The ROW and COLUMN players make choices simultaneously.  The ROW player chooses Up
or Down; the COLUMN player chooses Left or Right.

The 1st number in each cell refers to the payoff (in cents) for the ROW player, while the 2nd

number in each cell refers to the payoff (in cents) for the COLUMN player.  Thus, for
example, if ROW chooses Up and COLUMN chooses Left, the ROW player would receive 40
and the COLUMN player would receive 52.

However, before these game choices are made, ROW may choose a binding amount to be paid
(transferred) by him or her to COLUMN if and only if COLUMN chooses Left.  COLUMN (at
the same time) may offer a binding amount to be transferred to ROW if and only if ROW
chooses Up.  These amounts must be non-negative integers.

The amounts that you each choose will be communicated to each of you prior to your choices in
the game above.  You will then make your game choice (Up or Down if you are ROW, or Left or
Right if you are COLUMN).  You will then learn your payoff for the period, from which you can
infer the game choice made by the person with whom you are paired.

This completes one period of play.  We’ll do 25 periods and pay people individually and
privately.
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FURTHER EXPLANATION

Offers to pay money contingent on the other person choosing Up (or Left, if the other person is a
COLUMN player) have the effect of changing the payoff matrix.  Note that whatever amount
you state will be transferred to the other person if he or she plays Up as a ROW player or Left as
a COLUMN player; this money will be transferred regardless of your game choice.

Suppose, for example, that ROW offers to pay $x to COLUMN if COLUMN plays Left and
COLUMN offers (independently and simultaneously) to pay $y to ROW if ROW plays Up.
Then the payoff matrix becomes:

COLUMN
Left Right

Up 40 + y - x, 52 + x - y 8 + y, 60 - yROW
Down 52 – x, 8 + x 28, 24

We explain the 4 possible outcomes below.  Remember, the values of x and y  are always
determined by the ROW and COLUMN players, respectively, before making game choices.

1) If ROW chooses Up and COLUMN chooses Left, then ROW must pay x units to
COLUMN and COLUMN must pay y units to ROW.  Thus, ROW would receive 40 + y –
x and COLUMN would receive 52 + x – y.

2) If ROW chooses Up and COLUMN chooses Right, then COLUMN must pay y units to
ROW, but ROW pays nothing to COLUMN (because COLUMN did not choose Left).
Thus, ROW would receive 8 + y and COLUMN would receive 60 – y.

3) If ROW chooses Down and COLUMN chooses Left, then ROW must pay x units to
ROW, but COLUMN pays nothing to ROW (because ROW did not choose Up).  Thus,
ROW would receive 52 – x and COLUMN would receive 8 + x.

4) If ROW chooses Down and COLUMN chooses Right, then neither player pays the other
anything.  Thus, ROW would receive 28 and COLUMN would receive 24.

We don’t wish to illustrate this with an example with realistic numbers, as this could bias your
behavior.  However, we can use an example where x = 999 and y = 1000.  (We don’t expect
anyone to choose these values for x and y.)  In this case, the payoff matrix becomes:

COLUMN
Left Right

Up 41, 51 1008, -940ROW
Down -947, 1007 28, 24

We encourage people to work out scenarios on paper, drawing a game matrix for each
possibility.

Are there any questions?  Please feel free to ask, by raising your hand.
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APPENDIX B

Transfer-pair regions consistent with (C,C) being a subgame-perfect action pair

Game 1
(8,20)        (16,20)

                                                   H2

      (8,12)                      (16,12)

       H1

Game 2
(8,16)        (16,16)

                                                   H2

      (8,8)                      (16,8)
  

       H1

Game 3
                                                                    (16,24)               (28,24)

             

H2
           (8,16)          (28,16)

       
  

       (8,8)             (20,8)

     H1
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APPENDIX C

Determinants of cooperation
Random-effects probit estimates in NE region

Game 1:
Row

Game 1:
Column

Game 2:
Row

Game 2:
Column

Game 3:
Row

Game 3:
Column

Would Pay -0.03 -0.013 0.056 -0.011 -0.013 0.029

(0.019) (0.049) (0.056) (0.036) (0.029) (0.026)

Would Receive 0.102* 0.151*** 0.113** 0.012 0.172*** 0.076***

(0.054) (0.055) (0.050) (0.051) (0.033) (0.022)

NE Border -0.562 -1.359*** -0.990*** -1.087*** -0.067 -0.45

(0.371) (0.386) (0.344) (0.326) (0.280) (0.288)

Equal Transfers 0.935* 0.054 0.432 -0.435 0.711** 0.522*

(0.535) (0.556) (0.362) (0.486) (0.315) (0.301)

Final Payments are Closer -0.262 -0.368 1.129*** -1.060** 0.425* 0.725***

(0.353) (0.372) (0.393) (0.438) (0.249) (0.247)

Constant -0.185 -0.349 -1.702* 2.055** -2.085*** -1.671***

(0.939) (1.304) (0.946) (0.986) (0.636) (0.578)

Observations 228 228 298 298 294 294

Number of Subjects 31 32 31 32 32 32

Standard errors in parentheses       * significant at 10%; ** significant at 5%; *** significant at 1%
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APPENDIX D

Determinants of mutual cooperation
Random-effects probit with one way subject error terms

and marginal-effects estimates in SPE region

Game 1 Game 2 Game 3 All Games
All Games:
Marginal

NE Border -2.138*** -1.275*** -0.113 -0.936*** -0.321***

(0.460) (0.328) (0.286) (0.183) (0.053)

Sum of Transfers 0.035 0.035 0.076*** 0.057*** 0.022***

(0.045) (0.050) (0.024) (0.018) (0.007)

Equal Transfers 0.875 0.183 0.512* 0.487** 0.191**

(0.561) (0.363) (0.281) (0.199) (0.078)

Final Payments are Closer -0.179 0.357 0.468** 0.340** 0.129**

(0.411) (0.297) (0.219) (0.157) (0.058)

Game 1 0.608*** 0.237***

(0.214) (0.082)

Game 2 1.008*** 0.385***

(0.212) (0.075)

Constant -0.401 -0.535 -2.858*** -2.146***

(1.387) (1.198) (0.721) (0.543)

Observations 169 197 266 632 632

Number of Groups 28 28 32 88 88

Standard errors in parentheses                * significant at 10%; ** significant at 5%; *** significant at 1%




