UC Davis
UC Davis Previously Published Works

Title
Bioengineered non-coding RNA agent (BERA) in action

Permalink

Ihttps://escholarship.org/uc/item/9cm3v526|

Journal

Bioengineered, 7(6)

ISSN
2165-5979

Authors

Duan, Zhijian
Yu, Ai-Ming

Publication Date
2016-11-01

DOI
10.1080/21655979.2016.1207011

Peer reviewed

eScholarship.org Powered by the California Digital Library

University of California


https://escholarship.org/uc/item/9cm3v5z6
https://escholarship.org
http://www.cdlib.org/

BIOENGINEERED
2016, VOL. 7, NO. 6, 411-417
http://dx.doi.org/10.1080/21655979.2016.1207011

Taylor & Francis
Taylor & Francis Group

MINI-REVIEW

Bioengineered non-coding RNA agent (BERA) in action

Zhijian Duan and Ai-Ming Yu

Department of Biochemistry & Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA, USA

ABSTRACT

Non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) are
important players in the control of gene regulation and represent novel promising therapeutic targets or
agents for the treatment of various diseases. While synthetic ncRNAs are predominately utilized, the
effects of excessive artificial modifications on higher-order structures, activities and toxicities of ncRNAs
remain uncertain. Inspired by recombinant protein technology allowing large-scale bioengineering of
proteins for research and therapy, efforts have been made to develop practical and effective means to
bioengineer ncRNA agents. The fermentation-based approaches shall offer biological ncRNA agents with
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natural modifications and proper folding critical for ncRNA structure, function and safety. In this article,
we will summarize current recombinant RNA platforms to the production of ncRNA agents including
siRNAs and miRNAs. The applications of bioengineered ncRNA agents for basic research and potential

therapeutics are also discussed.

Introduction

Non-coding RNA (ncRNA) is a term for RNA molecule
that is derived from genome while not translated into a
protein." Indeed over 95% of human genome is com-
posed of non-coding DNA sequences which may be tran-
scribed into various categories of ncRNAs including
small interfering RNAs (siRNAs), microRNAs (miR-
NAs), and long non-coding RNAs (IncRNAs)."> With
the rapid development of molecular and cellular technol-
ogies, ncRNAs are revealed to have far more important
functions than previously recognized. Much attention
has been drawn onto these small RNAs (sSRNAs) due to
their important roles in the regulation of gene expression
and potentials for the development of novel therapies.
There is accumulating evidence supporting that siRNAs
and miRNAs are promising targets for the treatment of
different diseases including cancers and infections, and
many siRNA/miRNA therapeutics are under clinical
investigation.*® As an example, MRX34, a liposome for-
mulated miR-34a mimic, exhibits antiproliferative activi-
ties against various types of human carcinoma cells via
repressing multiple oncogenes, and MRX34 has entered
into Phase 1 clinical trials to treat unresectable primary
liver tumor.” Patisiran, a lipid nanoparticle (LNP)-formul
ated 25-bp siRNA agent targeting Transthyretin (TTR)

mRNA, is in Phase 3 clinical trial for the treatment of
TTR-mediated amyloidosis.” The siRNAs and miRNAs
can be designed and/or employed to control virtually the
expression of any gene of interest, and thus they have the
advantage of acting on targets inaccessible by conven-
tional small-molecule therapeutics.

Large quantities of pure homogeneous RNA agents
are essential for delineation of RNA functions in vivo
and development of RNA-based therapies. Currently,
RNA agents are commonly produced through chemi-
cal synthesis or in vitro transcription with recombi-
nant T7 RNA polymerase.” The major limitation of
those RNA agents is the addition of excessive artificial
modifications and/or the lack of necessary posttran-
scriptional modifications occurring in natural RNAs,
which may lead to different folding properties, biolog-
ical activities, and safety profiles. Another approach to
introduce target ncRNAs into mammalian cells is the
use of DNA materials such as viral or non-viral vec-
tor-based ncRNA expression plasmids. However, such
DNA agents need extra processes to produce func-
tional ncRNAs in cells which makes the process rather
more complicated. In addition, ncRNA expression

plasmids often offer a rather low and even

CONTACT Ai-Ming Yu @ aimyu@ucdavis.edu e Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, 2700 Stockton Blvd.,

Rm 2132, Sacramento, CA 95817.
© 2016 Taylor & Francis


http://dx.doi.org/10.1080/21655979.2016.1207011

412 (&) ZDUANAND A-M.YU

unpredictable level of target ncRNAs in human cells.
It is also noteworthy that protein therapeutics are
mainly produced via bioengineering approaches'®'?
or isolated directly from plants or animals since the
bioengineering of human insulin almost 40 y ago.'>"?
Therefore, the use of natural ncRNA molecules and
the development of ncRNA bioengineering
approaches are highly demanded for RNA research
and development.*'* In vivo fermentation approaches
are expected to provide large quantities of biological
ncRNA agent with proper folding and natural modifi-
cations that are critical for RNA higher-order struc-
ture, stability, activity and safety. In this article, we
provide an overview of newly-developed in vivo
approaches to the production of ncRNAs agents. The
applications of bioengineered ncRNA agents (BERAs)

to basic and translational research are also discussed.

Mechanistic actions and therapeutic potentials
of siRNAs and miRNAs

Both siRNA and miRNA are short ncRNA duplexes.
The actions of miRNAs and siRNAs may be unified as
RNA interference (RNAIi) process that silences target
gene expression in a sequence dependent manner in

dsRNA siRNA

Pre-miRNA

Pri-miRNA
g

miRNA gene

cells,”"” yet their specific mechanisms may differ

(Fig. 1). After processed by Dicer from transcribed- or
artificially introduced-dsRNA, siRNA is loaded into
the RISC (siRNA- or miRNA-induced silencing com-
plex). While the passenger strand of siRNA is cleaved
by AGO2 (Argonaute 2), a component of RISC, the
guide strand within the active RISC binds to the target
mRNA and leads to the cleavage of mRNA.” The
miRNA gene is transcribed by RNA polymerase II in
the nucleus to pri-miRNA, which is then cleaved by
Drosha to form pre-miRNA. The pre-miRNA is trans-
ported by Exportin-5 to the cytoplasm and then proc-
essed by Dicer into mature miRNA, which is loaded
into the RISC. The RISC removes the passenger strand
and then the remaining strand guides the RISC to tar-
get the mRNA through partially complementary bind-
ing, leading to translational repression, or target
mRNA degradation or cleavage.”'®

Because siRNAs and miRNAs can downregulate the
expression of virtually any genes in human genome and
overcome the limitation of classic small-molecule drugs
that target only certain classes of proteins, the sSRNAs
have huge potentials as therapeutic agents. Several siRNA
or miRNA-based therapeutic approaches have been
developed.® For siRNA, a synthetic siRNA that targets a
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Figure 1. The mechanistic actions of siRNA and miRNA derived from genome. siRNA: Dicer processes dsRNA (either transcribed or artifi-
cially introduced) into siRNA, which is then loaded into the RISC. AGO2, a component of RISC, cleaves the passenger strand of siRNA. The
guide strand guides the active RISC to the target mRNA and binds to the target mRNA completely, leading to the cleavage of mRNA.
miRNA: miRNA gene is transcribed by RNA polymerase Il in the nucleus to pri-miRNA, which is then cleaved by Drosha to form pre-miRNA.
The pre-miRNA is transported by Exportin-5 to the cytoplasm and then processed by Dicer to miRNA, which is loaded into the RISC. The
passenger strand is removed and the remaining strand guides the RISC to the target mRNA through partially complementary binding to
the miRNA response elements within 3'UTR, leading to translational repression, degradation or cleavage of the target mRNA.



specific mRNA (mRNA) can be introduced into cells to
elicit RNAi, which is expected to inhibit the expression of
target mRNA, produce a gene silencing effect, and thus
manage disease progression."” By contrast, miRNA-
based therapies consist of miRNA inhibition and miRNA
replacement strategies.”**' The former approach delivers
single stranded, synthetic RNA into cells, which targets
particular miRNA to produce miRNA antagonism. Simi-
lar to the mechanism of siRNAs, miRNA inhibitor is
anticipated to suppress the function of target miRNA
and thus control disease progression. Conversely, the
miRNA replacement approach reintroduces miRNAs
into the cells which may reactivate miRNA pathways and
thus lead to target mRNA degradation or translation
inhibition, and produce a gene silencing effect to combat
disease.

Bioengineering of RNAi agents in vivo

Currently RNAi molecules are mainly produced by
chemical synthesis or enzymatic methods in vitro.°
Although the broad applications of RNAIi have led to the
improvement of RNA chemistry and synthetic RNAs are
relatively more accessible than before, it is still costly to
obtain larger quantity (e.g., milligrams) of siRNA or
miRNA materials and the length or size of synthetic
RNA is also limited. Therefore, there are growing inter-
ests in developing more cost-effective approaches to pro-
ducing ready-to-use ncRNA agents on a large scale.
Fermentation-based approaches for in vivo produc-
tion of ncRNAs (Table 1) have attracted attentions as the
biological ncRNAs made in cells do not carry artificial
but necessary posttranscriptional modifications that are
important for ncRNA higher-order structure, stability,
and biological function. In principle, the target ncRNA
coding sequence is introduced into a vector, and the
resulting plasmid is transformed into host cells grown in
appropriate conditions. The ncRNA of interest is thus
generated by intrinsic transcription and ncRNA process-
ing machineries in host cells. However, heterogeneous
RNAs are very susceptible to cellular RNases, and
ncRNAs of interest may not be accumulated to a desir-
able level in host cells. Therefore, BERAs should be
assembled into stable RNA entities and/or protected
within steady complexes or storages. Under such condi-
tions, target BERAs are nondegradable by cellular RNases
and thus accumulated to significant levels in cytosol. Cells
are then harvested and target BERAs may be purified by
appropriate methods (e.g, fast protein liquid
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Table 1. Summary of current fermentation-based approaches to
bioengineering of ncRNAs.

Approaches for the
production of
ncRNAs Product size (nt) Applications References
The siRNA-binding ~21 Production of fully 2
protein p19 processed siRNAs
at small or median
scale for functional
study
The rRNA as scaffold < 100 Production of small 3031
RNAs including
siRNAs, shRNAs
and aptamers at
medium or large
scale for various
utilities
The tRNA as scaffold < 400 Production of a variety 3233333843

of ncRNAs at large
scale for various

studies
Optimal ncRNA 100-400  Production of various 04445
(tRNA/pre- ncRNAs at high
miRNA) as yield and large
scaffold scale for in vitro

and in vivo studies

chromatography or FPLC) and subjected to structure,
function, efficacy and safety tests (Fig. 2).

One reported approach is to use siRNA-binding
protein to stabilize and enrich target siRNA molecules
in cells** (Table 1). A 19 kD siRNA-binding protein,
p19,>> was employed to bind to recombinant siRNA
to form a siRNA-p19 complex and then purified by
nickel affinity chromatography and followed by anion
exchange high performance liquid chromatography
(HPLC).** While this method allows the production
of fully-processed, ready-to-use siRNAs or miRNAs,
the overall yield is very low and it unlikely provides a
much desired large quantity of target siRNA agents.

Expression and Structural characterization
purification of ncRNAs - of ncRNAs

Construction of N
In vitro In vivo
target plasmid -i-

Design of
target ncRNA

Figure 2. Bioengineering of ncRNA agents for research and ther-
apy. The sequence of target ncRNA is cloned into a target vector.
Overexpression of target ncRNA is verified and then purified
from total RNAs. Bioengineered ncRNA is subjected to structural
characterization, and then used for in vitro and in vivo studies
before clinical investigations.

Clinical
trials
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Utilization of stable RNA scaffold or carrier represents
a novel strategy for the production of BERAs. tRNA
(tRNA) and ribosome RNA (rRNA), the most abundant
and stable sSRNA entities in cells, have been used as scaf-
folds to achieve heterogeneous expression of some
ncRNAs of interest (Table 1). The 5S rRNA scaffold can
accommodate target ncRNA sequences under 80 nt
within its stem II, resulting in replacement of its stem III
and loops B and C by the ncRNA insert, which has been
utilized for bioengineering of several ncRNAs.***° The
5S rRNA approach has been shown to offer as much as
2.5-7.5 mg of purified RNA per gram of cells under opti-
31 while its utility awaits further evalua-
tions. The tRNA is proven as a simple scaffold for
successful production of large quantities of RNA mole-
cules in vivo, ie., milligrams of RNA from 1 litter bacte-
rial culture.”>” The tRNA-carried ncRNAs include a
number of viral RNAs, RNA aptamers, hammerhead
riboswitch RNAs, and human pre-miRNAs.*>* Never-
theless, levels of recombinant ncRNAs accumulated in

mal conditions

cells are largely variable and inevitably dependent upon
the structures and metabolic stabilities of chimeric
RNAS.34’35)40

An optimal ncRNA scaffold (OnRS) approach has
been developed toward a more general, versatile, and
robust high-yield and large-scale production of RNAi
agents*’ (Table 1). Because the yields of biological
pre-miRNAs produced by genetic engineering were
very low (unpublished data),>*"** we added a tRNA
scaffold to the pre-miRNAs to increase the yields.
However, most of target tRNA/pre-miRNA chimeras
were still not or minimally expressed. Nevertheless,
we did identify that several tRNA/pre-miRNAs includi
ng tRNA/mir-34a and tRNA/mir-1291 were able to
accumulate in bacteria to significantly high levels,***°
likely due to the intrinsic stabilities of chimeric
ncRNAs. Furthermore, chimeric tRNA/pre-miRNAs
showed good cellular stability, and were selectively
processed to mature miRNAs in various types of
human cancer cells to regulate target gene expression
and cell functions. Therefore, such high-yield express-
ing tRNA/pre-miRNA chimeras were developed as
OnRS for the production of target ncRNAs.*’ In par-
ticular, the mature miRNA duplex sequence in the
plasmid is replaced with target siRNA/miRNA
sequences. Following the construction of target plas-
mid and transformation, target ncRNA is expressed in
bacteria and purified to a high degree of homogeneity
by anion exchange FPLC method.***

We have further demonstrated that many chimeric
ncRNAs (e.g., OnRS/miR-27b, OnRS/miR-124 and
OnRS/GFP-siRNA, etc.) can be produced in E.coli on
large scale, and be processed to target SRNA agents
(e.g., miR-27b, miR-124 and GFP-siRNA, etc.) in
human cells and animals by both unbiased RNA
sequencing study and targeted quantitative real-time
PCR analysis.* Consequently, BERAs are able to
selectively reduce target genes expression in vitro and
in vivo while the tRNA segment within OnRS is proc-
essed to the same tRNA fragments at similar levels as
control tRNA scaffold. Therefore, this OnRS offers a
robust platform which not only offers high-yield,
large-scale and cost-effective production of BERAs
carrying various types of sSRNAs but also delivers such
functional sSRNAs into mammalian cells.**°

Applications of bioengineered RNAi agents

BERAs are derived in cells and they are more relevant to
natural and highly-structured RNAs for biological stud-
ies, which are distinguished from current synthetic RNA
and recombinant DNA materials.® Therefore, these
RNAs represent a new family of agents for functional,
diagnostic and therapeutic investigations. For instance,
chimeric RNA aptamers produced through tRNA scaf-
fold method (Table 1) have been successfully used as sen-
sors for the detection/imaging of target molecules in the
cells.’”*® In addition, recombinant ncRNAs from, such
as the siRNAs isolated from p19 complex and miRNAs/
siRNAs from OnRS platform (Table 1), are biologically
active in the regulation of target gene expression in mam-
malian cells, which have been demonstrated in many
studies.”>***>*4>* Gpecifically, bioengineered tRNA/
mir-27b was found to be processed to mature miR-27b in
human carcinoma cells, which consequently reduced
CYP3A4 protein expression and led to a lower midazo-
lam 1’-hydroxylase activity.”> The tRNA/mir-1291 was
readily processed to mature miR-1291 in breast cancer
MCE-7 cells and pancreatic cancer PANC-1 cells.** Con-
sequently, recombinant tRNA/mir-1291 reduced the
protein levels of miR-1291 target genes and increased the
sensitivity of carcinoma cells to chemotherapeutics. In
addition, BERA miRNAs/siRNAs were more effective
than synthetic miRNA/siRNA agents at same concentra-
tions in the regulation of target gene expression and cell
functions,">* indicating that natural BERA agents could
be valuable for functional and therapeutic studies.



Bioengineered tRNA/mir-34a agent indeed acted as
a prodrug in suppressing tumor growth in both subcu-
taneous A549 xenograft®® and orthotopic 143B xeno-
graft45 mouse models, while BERAs were well tolerated
in mice. Combined with DNA or protein targeting
agents, RNA targeting BERAs could have synergistic
effects to combat lethal cancer, especially those lacking
effective target therapeutics. As an example, strong syn-
ergistic effects in the suppression of osteosarcoma cell
proliferation were demonstrated for bioengineered
tRNA/mir-34a and doxorubicin, a DNA intercalator.**
Much greater degrees of late apoptosis, necrosis, and
G2 cell cycle arrest as well as suppression of miR-34a
target gene expression were also elucidated for combi-
nation therapy. In addition, systemic co-administration
of bioengineered miR-34a prodrug and doxorubicin
was revealed to be more effective than single drug
treatment to control tumor growth in an orthotopic
osteosarcoma xenograft mouse model.* These findings
support the use of biological ncRNAs as novel prodrugs
for monotherapy or combination therapy.

Conclusions and future prospects

Improved understanding of ncRNA functions has
opened new doors to development of RNA-based
therapy. There are a number of RNA-based therapeu-
tics currently in clinical use or under clinical develop-
ment. Given the limitations of synthetic RNA agents
consisting of excessive artificial modifications, it is
urgent to develop new approaches toward high-yield,
large-scale and cost-effective production of biological
RNAs. Bioengineering ncRNAs carry no or natural
posttranscriptional modifications, and these BERAs
are biological active in mammalian cells and animal
models. Therefore, BERAs represent novel RNA
agents and should be more suitable for RNA research
and development. Further research is necessary to
critically assess the utility of recombinant ncRNAs.
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