
UCLA
UCLA Electronic Theses and Dissertations

Title
Novel Applications of Neural Networks in Physics-Based Simulations

Permalink
https://escholarship.org/uc/item/9ck5t9pf

Author
Akar, Osman

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9ck5t9pf
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Novel Applications of Neural Networks in Physics-Based Simulations

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Osman Akar

2024

© Copyright by

Osman Akar

2024

ABSTRACT OF THE DISSERTATION

Novel Applications of Neural Networks in Physics-Based Simulations

by

Osman Akar

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2024

Professor Joseph Michael Teran, Co-Chair

Professor Chenfanfu Jiang, Co-Chair

Machine learning, particularly deep neural networks, has become a powerful tool in scientific

research. In this thesis, we demonstrate how neural networks can enhance performance and

reduce memory requirements in physics-based simulation applications for computer graph-

ics. In the first part of the thesis we present a novel deep learning approach to approximate

the solution of large, sparse, symmetric, positive-definite linear systems of equations. These

systems arise from many problems in applied science, e.g., in numerical methods for partial

differential equations. Algorithms for approximating the solution to these systems are often

the bottleneck in problems that require their solution, particularly for modern applications

that require many millions of unknowns. Indeed, numerical linear algebra techniques have

been investigated for many decades to alleviate this computational burden. Recently, data-

driven techniques have also shown promise for these problems. Motivated by the conjugate

gradients algorithm that iteratively selects search directions for minimizing the matrix norm

of the approximation error, we design an approach that utilizes a deep neural network to

accelerate convergence via data-driven improvement of the search direction at each iteration.

ii

Our method leverages a carefully chosen convolutional network to approximate the action of

the inverse of the linear operator up to an arbitrary constant. We train the network using

self-supervised learning with a loss function equal to the L2 difference between an input and

the system matrix times the network evaluation, where the unspecified constant in the ap-

proximate inverse is accounted for. We demonstrate the efficacy of our approach on spatially

discretized Poisson equations, which arise in computational fluid dynamics applications, with

millions of degrees of freedom. Unlike state-of-the-art learning approaches, our algorithm

is capable of reducing the linear system residual to a given tolerance in a small number of

iterations, independent of the problem size. Moreover, our method generalizes effectively to

various systems beyond those encountered during training.

In the second part we present learning-based implicit shape representations designed for

real-time avatar collision queries arising in the simulation of clothing. Signed distance func-

tions (SDFs) have been used for such queries for many years due to their computational

efficiency. Recently deep neural networks have been used for implicit shape representations

(DeepSDFs) due to their ability to represent multiple shapes with modest memory require-

ments compared to traditional representations over dense grids. However, the computational

expense of DeepSDFs prevents their use in real-time clothing simulation applications. We

design a learning-based representation of SDFs for human avatars whose bodies change shape

kinematically due to joint-based skinning. Rather than using a single DeepSDF for the entire

avatar, we use a collection of extremely computationally efficient (shallow) neural networks

that represent localized deformations arising from changes in body shape induced by the

variation of a single joint. This requires a stitching process to combine each shallow SDF in

the collection together into one SDF representing the signed closest distance to the bound-

ary of the entire body. To achieve this we augment each shallow SDF with an additional

output that resolves whether or not the individual shallow SDF value is referring to a closest

point on the boundary of the body, or to a point on the interior of the body (but on the

boundary of the individual shallow SDF). Our model is extremely fast and accurate and

iii

we demonstrate its applicability with real-time simulation of garments driven by animated

characters.

iv

The dissertation of Osman Akar is approved.

Guido Francisco Montufar Cuartas

Christopher R. Anderson

Stanley J. Osher

Chenfanfu Jiang, Committee Co-Chair

Joseph Michael Teran, Committee Co-Chair

University of California, Los Angeles

2024

v

To my beautiful wife Sena Nur,

my loving parents Serpil and Nail,

my beloved sisters Ceren and Asya Nehir,

and my kind-hearted grandmas Emine and Havva

To my precious family . . .

vi

TABLE OF CONTENTS

1 Introduction of Linear Systems . 1

1.1 Linear Systems . 1

1.1.1 Overview Of Iterative Line Search Methods 2

1.1.2 Conjugate Gradients (CG) Algorithm 3

1.1.3 Preconditioned Conjugate Gradients Algorithm 7

2 A Deep Conjugate Direction Method for Iteratively Solving Linear Sys-

tems . 9

2.1 Introduction . 9

2.2 Related Work . 12

2.3 Motivation: Incompressible Flow . 16

2.4 Deep Conjugate Direction Method . 18

2.5 Model Architecture, Datasets, and Training 20

2.5.1 Loss Function and Self-supervised Learning 22

2.5.2 Model Architecture . 25

2.5.3 Training . 27

2.6 Results and Analysis . 28

2.7 Conclusions . 32

2.8 Additional Results and Model Architecture Discussion 33

2.8.1 Additional Convergence Results . 33

2.8.2 Ablation Study and Runtime Analysis 34

2.8.3 Model training . 36

vii

3 MLLevelSets, or Shallow Signed Distance Functions for Kinematic Colli-

sion Bodies . 39

3.1 Introduction and Related Work . 40

3.2 Character Kinematics . 44

3.3 Signed Distance Function . 45

3.4 Shallow Joint Signed Distance Functions . 47

3.4.1 Model Architecture and Joint Depended Weights 48

3.5 Training and Dataset Creation . 52

3.6 Results and Examples . 61

3.7 Discussion and Future Work . 61

References . 65

viii

LIST OF FIGURES

1.1 Visualization of Line Search Method. Starting from initial guess x0, the iterate is

being updated towards the direction dk with step size αk until the approximated

solution is close enough to the exact solution x∗. 2

2.1 (a) We illustrate a sample flow domain Ω ⊂ (0, 1)2 (in 2D for ease of illustration)

with internal boundaries (blue lines). (b) We voxelize the domain with a reg-

ular grid: white cells represent interior/fluid, and blue cells represent boundary

conditions. (c) We train using the matrix Atrain from a discretized domain with

no interior boundary conditions, where d is the dimension. This creates linear

system with n = (nc+1)d unknowns, where nc is the number of grid cells on each

direction. (d) We illustrate the non-zero entries in an example matrix AΩ from

the voxelized and labeled (white vs. blue) grid for three example interior cells

(green, magenta, and brown). Each case illustrates the non-zero entries in the

row associated with the example cell. All entries of AΩ in rows corresponding to

boundary/blue cells are zero. The numbers shown are for the 2D case, in 3D case

a box with 6 neighboring white cells has one 6 and six −1s in its corresponding

row. 15

2.2 Visualization of DCDM and regular Line Search Methods. The blue arrows rep-

resents the neural network outputs for the search direction at the current iterate (

ML(rk) = f(c, rk)). Search directions generated by the network results in faster

convergence compared to CG method. 21

2.3 Architecture for training with Atrain on a 1283 grid. 25

ix

2.4 DCDM for simulating a variety of incompressible flow examples. Left: smoke

plume at t = 6.67, 13.33, 20 seconds. Middle: smoke passing a bunny at t =

5, 10, 15 seconds. Right: smoke passing a spinning box (time-dependent Neumann

boundary conditions) at t = 2.67, 6, 9.33 seconds. 27

2.5 Convergence data for the bunny example (see also Table 2.1). (a) Mean and std.

dev. (over all 400 frames in the simulation) of residual reduction during linear

solves (with 1283 and 2563 grids) using FluidNet (FN) and DCDM. (b) Residual

plots with ICPCG, CG, FN, DCDM, and Deflated CG at frame 150. Dashed

and solid lines represent results for 1283 and 2563, respectively. (c) Decrease

in residuals with varying degrees of A-orthogonalization (is = istart) in the 1283

case. (d) Reduction in residuals when the network is trained with a 643 or 1283

grid for the 2563 grid simulation shown in 2.4 Middle. 29

2.6 Convergence of different methods on the 3D bunny example for N = 64, 128, 256;

summary results, as well as timings, are reported in 2.1. DCDM-{64,128} calls a

model whose parameters are trained over a {643, 1283} grid. 34

2.7 Residual plot for the bunny example at N = 64 with each trained model. The

dashed line represents a four-orders-of-magnitude reduction in residual, which is

the convergence criterion we use throughout our examples. 35

2.8 Training and validation loss for the networks used in DCDM at resolutions N =

64 and N = 128. 37

2.9 Network architectures considered for our ablation study. 38

x

3.1 Overview. (a) Learning based SDFs are used in cloth simulations in real time.

(b) Our method partitions the character domain into subregions, and each region

is represented by very fast shallow generalized Multi Layer Perceptron (MLP)

neural networks. (c) Combining multiple SDFs requires additional information if

the queried point is closer to interior boundary or the correct boundary. (c1,c2)

highlights the region for the knee and the thigh in which the points inside are

closer to the interior boundary than the avatars’ boundary. The regions are also

determined by a separate neural network. 39

3.2 Example of combining SDF of two subregions into one. The rectangle body

Ω = ABCD is divided into two subregions Ω1 = AEFD and Ω2 = BHGC.

(a) Point X is closer to the interior boundary than the true boundary for both

subregions. Hence the local signed distance at point X of subregion Ω1 is not

true signed distance value. φ1(X) = −|XP | 6= −|XR| = φ(X). (b) Red colored

regions JFE and HIG highlights the points with incorrect boundary information

for AEFD and BHGC. This partition leads to undesired region (intersection of

the triangles) where the correct SDF cannot be computed. (c) The subregions

selected farther enough so that the incorrect boundary regions (red) do not inter-

sect, therefore SDF can be computed for all interior points. In other words, for

each interior point, there exist a subregion with true boundary information (the

closest boundary point is on the true boundary). 46

3.3 The canonical space (bounding box) of SSDF for the joint knee is determined by

thigh, the parent of knee in the skeletal hierarchy. The canonical spaces moves

with the parent joint as shown in the right example. 48

3.4 Basic MLP architecture with three hidden layers. Inputs are location of the

query point wrt canonical space X,Y,Z, and joint state in terms of rotational

degrees θiX , θiY , θiZ . Note that in this example Di = 3. Weights and biases

W0, b0,W1, b1, ...,W3, b3 are trained and kept fixed during inference. 49

xi

3.5 Model Architecture: The illustrated model assumes Di = 3 degrees of free-

dom. Model trains the weight matricesWX
n ,W

Y
n ,W

Z
n ,W

C
n and biases bXn , b

Y
n , b

Z
n , b

C
n .

At inference, model first updates its weights according to the linear equation pre-

sented (Equation 3.3), then model becomes classical MLP (as in Figure 3.4 with-

out rotational degree input). The figure illustrates the architecture for NJ = 5

(3 hidden layers) and each hidden layer has NH = 8 neurons. The hidden layers

have rectified linear unit (ReLU) activation function, the output layer has linear

activation function. 50

3.6 Subregion selection in the reference pose. First entire body is tetrahedralized.

Each subregion is initialized as a subset of tetrahedrons that are closest to the

joint of interest. The each subset is eagerly grows to their neighboors until two

subregion intersect. Above figures shows inital step, step 1, step 2, and step 7. 53

3.7 Left: Example of deformation of knee surrounded by the training grid. Knee in

the upper figure is the in the reference pose (joint rotation angles are (0,0,0)), and

the knee in the below image rotated 90 degrees in negative Z direction (joint ro-

tation angles are (0,0,-90)). Middle: Training data generation illustration. Color

of the point represents the distance to the boundary (red: close, green: distant).

Note that almost all points near the isocounter are selected. Right: Blue points

have correct signed distance as the closest point lies on the origional boundary,

the purple points have incorrect signed distance values. 54

3.8 Training and validation losses for the Shallow SDF networks for various subre-

gions. y − axis is log scaled. 57

3.9 Zero-levelsets of the trained SDFs after 1K, 10K, 50K and 100K epochs. 58

xii

3.10 Example of SSDFs with different network structures trained for the right knee.

Top to bottom 0-levelset of the deformed object for three different joints states

are illustrated. From left to right the following network structures are used:

(NL = 5, NH = 4), (NL = 5, NH = 8), (NL = 5, NH = 16), (NL = 7, NH = 2)

and (NL = 7, NH = 32). All networks are trained for 100K epochs. We choose

the network structure in yellow for the balance between speed and performance. 59

3.11 Zero-levelset derived from learned SDF with 4-SSDFs in 3 different joint states.

From left to right: learned SDF, learned SDF and Ground Truth combined, and

Ground Truth are presented. 62

3.12 Cloth simulation using our network-based SDFs. The character runs in real time

with different garments on. Simulation is performed using Unreal Engine 5. . . . 63

xiii

LIST OF TABLES

2.1 Timing and iteration comparison for different methods on the bunny example.

tr, nr and tpr represents time, iteration and time per iteration. DCDM-{64,128}
calls a model whose parameters are trained over a {643, 1283} grid. All com-

putations are done using only CPUs; model inference does not use GPUs. All

implementation is done in Python. See Appendix 2.8.1 for convergence plots. . . 30

2.2 Number of parameters for each network architecture considered in the ablation

study. 34

3.1 Training and Evaluation Loss. 60

3.2 PT = Number of Parameters of the network for training. PI = Number of para-

maters of the network for inference. LT = Training loss after 100K epochs. LV =

Validation loss after 100K epochs. Ttrain = Time it takes to train for 100K epochs.

The results shown are for the SSDF of the right knee decribed in Figure 3.10.

The degrees of freedom for the knee is Di = 2. 60

3.3 Simulation Timing . 64

3.4 NP = Number of particles on the garment cloth. Tsim = Simulation time per

frame. TSDF = Total time for SDF computation. PerSDF is the percentage of

the time used for collision detection using our learned SDF in total simulation. . 64

xiv

ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my advisor, Professor

Joseph Teran, for his constant support and insightful guidance. His mentorship has been

invaluable in my journey. I would also like to extend my thanks to my doctoral commit-

tee members, Professor Chenfanfu Jiang, Professor Stanley Osher, Professor Christopher

Anderson, and Professor Guido Montufar for their invaluable feedback and inspiration for

improving my work.

I am very thankful to my fellow lab members: Yizhou Chen, Yushan Han, Victoria Kala,

Ayano Kaneda, Jingyu Chen, and Elias Gueidon-for their collaboration, and discussions

which made my research journey more enjoyable and fulfilling. Additionally, I owe a special

thanks to Professor David Hyde, whose guidance and generosity in granting me access to his

supercomputer and GPU resources were instrumental to my research.

I am deeply grateful to my mentors at Epic Games, Benn Gallagher and Michael Lentine,

for sharing their expertise and providing invaluable guidance. Benn’s support was especially

critical in helping me integrate my project into Unreal Engine. I would also love to thank

Epic Games for sponsoring my research.

Finally, I would like to express my endless gratitude to my friends and family for their

unconditional love and encouragement throughout these years. A special acknowledgment

goes to my father, whose hard work, unwavering dedication and work ethics have always

been a source of inspiration to me.

xv

VITA

2019 BS in Mathematics of Computation, UCLA

2019 MA in Mathematics, UCLA

2019-2024 Teaching Assistant, UCLA Mathematics Department

2023 Spring Instructor, UCLA Mathematics Department

2022-2024 Research Intern, Epic Games, Inc.

PUBLICATIONS

Hallee E Wong, Osman Akar, Emmanuel Antonio Cuevas, Iuliana Tabian, Divyaa Ravichan-

dran, Iris Fu, Cambron Carter. 2018. Markerless Augmented Advertising for Sports Videos.

Computer Vision–ACCV 2018 Workshops: 14th Asian Conference on Computer Vision,

Perth, Australia, December 2–6, 2018, Revised Selected Papers 14

Ayano Kaneda, Osman Akar, Jingyu Chen, Victoria A. T. Kala, David Hyde, Joseph Teran.

2023. A Deep Conjugate Direction Method for Iteratively Solving Linear Systems. Proceed-

ings of the 40th International Conference on Machine Learning, in Proceedings of Machine

Learning Research 202:15720-15736

Osman Akar, Yushan Han, Yizhou Chen, Weixian Lan, Benn Gallagher, Ronald Fedkiw,

Joseph Teran. 2024. Shallow Signed Distance Functions for Kinematic Collision Bodies.

xvi

arXiv preprint. arXiv:2411.06719

xvii

CHAPTER 1

Introduction of Linear Systems

1.1 Linear Systems

Large sparse linear systems often arises in many problems in applied mathematics, especially

physics based simulations. These systems can be simply written as

Ax = b (1.1)

where A ∈ Rn×n, b ∈ Rn and n corresponds to the spatial fidelity of the computational

domain, which can be millions depending on the application. One particular example comes

from incompressible flow applications (see 2.3). In general it is very costly (if possible) to

find exact solutions of the linear systems with many unknowns, instead, it is leveraged with

iterative methods for an approximate solution. Such methods include but not limited to

gradient descent method, conjugate gradients (CG) methods, and preconditioned conjugate

gradient (PCG) methods. These methods are examples of the line search method.

1

Figure 1.1: Visualization of Line Search Method. Starting from initial guess x0, the iterate

is being updated towards the direction dk with step size αk until the approximated solution

is close enough to the exact solution x∗.

1.1.1 Overview Of Iterative Line Search Methods

Line search method is an iterative optimization technique to find the global minima of an

objective (e.g. energy) function h(x). At each step, the current approximation xk−1 is

refined towards to the direction dk with step size αk. In other words, the kth iterate is

chosen as

xk = xk−1 + αkdk

The choice of direction dk and the step size αk defines the algorithm. One desires a step size

αk that yields h(xk) < h(xk−1). More specifically, the optimal choice is

αk = arg min
α

h(xk−1 + αdk)

For the linear systems of interest Equation 1.1, we define

h(x) =
1

2
xTAx− xTb

2

The global minima of h(x) satisfies ∇h(x) = Ax− b = 0. Since the hessian matrix of h is

A which positive definite, the global minimum of h solves the equation 1.1.

Natural choice of the search direction is the negative gradient of the objective function

dk = −∇h(xk−1) = b −Axk−1 which is when the steepest descent occurs. This results in

gradient descent algorithm.

Lemma: αk can be calculated directly as follows:

αk = arg min
α

h(xk−1 + αdk) =
rTk−1dk

dTkAdk
,

where rk−1 = b−Axk−1 is the (k − 1)th residual.

Proof: Define the another objective function g(α) : R→ R

g(α) = h(xk−1 + αdk)

=
1

2
(xk−1 + αdk)

TA(xk−1 + αdk)− bT (xk−1 + αdk)

=
1

2
α2dTkAdk + α(dTkAxk−1 − dTk b) +

(
1

2
xTk−1Axk−1 + xTk−1b

)
=

1

2
α2dTkAdk − αdTk rk−1︸︷︷︸

b−Axk−1

+ (constant terms).

Taking the derivative with respect to α, we have g′(α) = αdTkAdk − dTk rk−1 = 0 and

g′′(α) = dTkAdk >= 0 following from semi positive definiteness of the the matrix A. This

yields α =
rTk−1dk

dTk Adk
is a minimizer of g(α).

1.1.2 Conjugate Gradients (CG) Algorithm

Definition: Two vectors v,w ∈ Rn are called A− orthogonal if vTAw = 0.

Definition: A− norm of a vector is defined as

||v||A =
√
vTAv

The conjugate gradients method is a special case of the line search method when the A is

3

symmetric positive definite matrix. In this method the search directions are chosen to be

A-orthogonal to each other. It can also be viewed as a modification of gradient descent

(GD) where the search direction is chosen as the component of the residual (equivalently,

the negative gradient of the matrix norm of the error) that is A-orthogonal to all previous

search directions:

dk = rk−1 −
k−1∑
i=1

hikdi, hik =
dTi Ark−1

dTi Adi
.

Indeed, the choice of hik guarantees the new search direction is dk is A − orthogonal to

all the remaining search direction. With this choice, the search directions form a basis for

Rn so that the initial error can be written as e0 = x∗ − x0 =
∑n

i=1 eidi, where ei are the

components of the initial error written in the basis, and x∗ is the exact solution to the

equation 1.1. Furthermore, since the search directions are A-orthogonal, the optimal step

sizes αk at each iteration satisfy

αk =
rTk−1dk

dTkAdk

=
dTk (b−Axk−1)

dTkAdk

=
dTk (Ax∗ −Axk−1)

dTkAdk

=
dTkA (x∗ − xk−1)

dTkAdk

=
dTkA (x∗ − xk−1)

dTkAdk

=
dTkA

(∑n
i=1 eidi −

∑k−1
j=1 αjdj

)
dTkAdk

= ek

That is, the optimal step sizes are chosen to precisely eliminate the components of the error

on the basis defined by the search directions. Thus, convergence is determined by the (at

most n) non-zero components ei in the initial error. Although rounding errors prevent this

from happening exactly in practice, this property greatly reduces the number of required

4

iterations [GL12], e.g., compared to gradient descent algorithm. Furthermore, hik = 0 for

i < k− 1, and thus iteration can be performed without the need to store all previous search

directions di and without the need for computing all previous hik. To see this, it is sufficient

to show dTi Ark−1 = 0.

Lemma: Residuals in the CG method are orthogonal, i.e., rTk rj = 0 for all j < k.

Proof:

rTk rj = (rk−1 − αkAdk)Trj

= rTk−1rj − αkdTkArj

= rTk−1rj − αkdTkA

(
dj+1 +

j∑
i=1

hi(j+1)di

)

For j < k− 1, rTk−1rj = 0 follows from induction. dTkA(dj+1 +
∑j

i=1 hi(j+1)di) = dTkAdj+1 +∑j
i=1 hi(j+1)d

T
kAdi=0 because dis are A-orthogonal by their definition. For j = k − 1,

rTk rk−1 = rTk−1rk−1 − αkdTkArk−1

= rTk−1rk−1 −
rTk−1dk

dTkAdk
dTkArk−1

= rTk−1rk−1 −
rTk−1dk

dTkAdk
dTkA

(
dk +

k−1∑
i=1

hidk

)
= rTk−1rk−1 − rTk−1dk (by A-orthogonality of dk)

= rTk−1(rk−1 − dk)

= rTk−1

(
k−1∑
i=1

hikdi

)

=
k−1∑
i=1

hikr
T
k−1di

So proving rTk−1di = 0 for i < k would finish the proof. However, by the definition of

di = ri−1 −
∑i−1

j=1 hijdk, induction proves di ∈ span(r1, r2, . . . , ri−1). Hence, rTk−1di = 0 for

all i ≤ k − 1, which proves the lemma.

5

Claim: In the CG method, search directions are A-orthogonal to all previous residuals,

i.e., dTi Ark−1 = 0 for all i < k − 1.

Proof: rTi rk−1 = (rTi−1 − αiAdi)Trk−1, hence diArk−1 = rTi−1rk−1 − rTi rk−1 = 0 for all

i < k − 1, using the lemma above. This proves the sparsity of the hik. Hence CG method

has ”memoryless” property in a sense that at any iterate only previous two search directions

has to be stored in the memory. This ”memoryless” idea has also been inherited by DCDM

algorithm in the second chapter, and enables the efficiency of the method (Figure 2.5-(c)

shows enforcing search directions A− orhogonal to previous directions result in faster con-

vergence). Finally, the CG algorithm can be summarized as follows. The algorithm iterates

until the residual is less than ε.

Algorithm 1 Conjugate Gradients Algorithm [TB97]

r0 = b−Ax0

d1 = r0 (Initial Search Direction)

k = 1

while ‖rk−1‖ ≥ ε do

αk =
rTk−1rk−1

dTk Adk
(Step Length)

xk = xk−1 + αkdk (Solution Update)

rk = b−Axk (Residual Update)

βk =
rTk rk

rTk−1rk−1
(Search Direction Correction)

dk+1 = rk + βkdk (Search Direction Update)

k = k + 1

end while

Definition: Condition number for positive definite matrix A is defined as

κ(A) =
λmax(A)

λmin(A)

6

where λmin and λmax represents the maximum and minimum eigenvalues.

The error norm after k iterations satisfies [TB97]

||x∗ − xk||A ≤ 2

(√
κ(A)− 1√
κ(A)− 1

)k

||x∗ − x0||A (1.2)

This inequality shows that, although CG performs better than GD, the convergence is slow

for matrices with a large condition number. To overcome this, preconditioners are used to

reduce the condition number.

1.1.3 Preconditioned Conjugate Gradients Algorithm

For any invertible matrix F , the solution of the following linear system

F TAFy = F Tb

also solves 1.1 with x = Fy. Note that the matrix F TAF in the new linear system is also

positive definite. In PCG algorithm, F is chosen to reduce the condition number of this

new equivalent linear system (κ(F TAF) < κ(A)), making the CG method converge faster

in theory and practice. One would like to choose the matrix F that satisfies F TF ≈ A−1.

Although F is present in the linear system, one does not need to have define F explicitly.

PCG algorithm only uses the F TF = M ≈ A−1 in the calculation of the search direction,

making the algorithm convenient to use. Hence preconditioners can be taught as approximate

inverses (implicit or explicit). Some of the well know preconditioners are diagonal (Jacobi)

preconditioner, incomplete cholesky, or multigrid preconditioners.

7

Algorithm 2 Preconditioned Conjugate Gradient Algorithm (Wikipedia)

r0 = b−Ax0

z0 = Mr0

d1 = z0

k = 1

while ‖rk−1‖ > ε do

αk = (rTk−1zk−1)/(dTkAdk)

xk = xk−1 + αkdk

rk = rk−1 − αkdk (= b−Axk)

zk = M−1rk

βn = (rTk zk)/(r
T
k−1rk−1)

dk+1 = rk + βkdk

k = k + 1

end while

8

CHAPTER 2

A Deep Conjugate Direction Method for Iteratively

Solving Linear Systems

2.1 Introduction

The solution of large, sparse systems of linear equations is ubiquitous when partial differential

equations (PDEs) are discretized to computationally simulate complex natural phenomena

such as fluid flow [LFO06], thermodynamics [CKM21], or mechanical fracture [PZ11]. In

this work, we consider sparse linear systems that arise from discrete Poisson equations in

incompressible flow applications [Cho67, FSJ01, Bri08]. For linear systems arising from these

diverse applications, we use the notation

Ax = b, (2.1)

where the dimension n of the matrix A ∈ Rn×n and the vector b ∈ Rn correlates with spatial

fidelity of the computational domain. Quality and realism of a simulation are proportional

to this spatial fidelity; typical modern applications of numerical PDEs require solving linear

systems with millions of unknowns. In such applications, numerical approximation to the

solution of these linear systems is typically the bottleneck in overall performance; accordingly,

practitioners have spent decades devising specialized algorithms for their efficient solution

[GL12, Saa03].

The appropriate numerical linear algebra technique depends on the nature of the prob-

lem. Direct solvers that utilize matrix factorizations (QR, Cholesky, etc. [TB97]) have op-

9

timal approximation error, but their computational cost is O(n3), and they typically re-

quire dense storage, even for sparse A. Although Fast Fourier Transforms [Nus81] can be

used in limited instances (periodic boundary conditions, etc.), iterative techniques are most

commonly adopted for sparse systems, which are typical for discretized PDEs. Many ap-

plications with strict performance constraints (e.g., real-time fluid simulation) utilize basic

iterations (Jacobi, Gauss-Seidel, successive over relaxation (SOR), etc.) given limited com-

putational budget [Saa03]. However, large approximation errors must be tolerated since

iteration counts are limited by the performance constraints. This is particularly problematic

since the wide elliptic spectrum of these matrices (a condition that worsens with increased

spatial fidelity/matrix dimension) leads to poor conditioning and iteration counts. Itera-

tive techniques can achieve sub-quadratic convergence if their iteration count does not grow

excessively with problem size n since each iteration generally requires O(n) floating point

operations for sparse matrices. Discrete elliptic operators are typically symmetric positive

(semi) definite, which means that the preconditioned conjugate gradients method (PCG)

can be used to minimize iteration counts [Saa03, HS52, Sti52].

In the present work, we consider sparse linear systems that arise from discrete Poisson

equations in incompressible flow applications [Cho67, FSJ01, Bri08]. These equations yield

discrete elliptic operators, so PCG is the algorithm of choice for the associated linear systems;

yet there is a subsequent question of which preconditioner to use. Preconditioners P for PCG

must simultaneously: be symmetric positive definite (SPD) (and therefore admit factoriza-

tion P = F 2), improve the condition number of the preconditioned system FAFy = Fb,

and be computationally cheap to construct and apply; accordingly, designing specialized pre-

conditioners for particular classes of problems is somewhat of an art. Incomplete Cholesky

preconditioners (ICPCG) [Ker78] use a sparse approximation to the Cholesky factorization

and significantly reduce iteration counts; however, their inherent data dependency prevents

efficient parallel implementation. Nonetheless, these are very commonly adopted for Pois-

son equations arising in incompressible flow [FSJ01, Bri08]. Multigrid [Bra77] and domain

10

decomposition [Saa03] preconditioners greatly reduce iterations counts, but they must be

updated (with non-trivial cost) each time the problem changes (e.g., in computational do-

mains with time-varying boundaries) and/or for different hardware platforms. In general,

choice of an optimal preconditioner for discrete elliptic operators is an open area of research.

Recently, data-driven approaches that leverage deep learning techniques have shown

promise for solving linear systems. Various researchers have investigated machine learn-

ing estimation of multigrid parameters [GGB19, GSK16, LGM20]. Others have developed

machine learning methods to estimate preconditioners [GA18, Sta20, IFH20] and initial

guesses for iterative methods [LKB21, UBF20, ADP20]. [TSS17] and [YYX16] develop non-

iterative machine learning approximations of the inverse of discrete Poisson equations from

incompressible flow.

This chapter develops a novel conjugate gradients-style iterative method, enabled by

deep learning, for approximating the solution of SPD linear systems, which we call the deep

conjugate direction method (DCDM). CG iteratively adds A-conjugate search directions

while minimizing the matrix norm of the error. We instead use a convolutional neural

network (CNN) as an approximation of the inverse of the matrix in order to generate more

efficient search directions. We only ask that our network approximate the inverse up to an

unknown scaling since this decreases the degree of nonlinearity and since it does not affect

the quality of the search direction (which is scale independent). The network is similar

to a preconditioner, but it is not a linear function, and our DCDM method is designed to

accommodate this nonlinearity. We use self-supervised learning to train our network with

a loss function equal to the L2 difference between an input vector and a scaling of A times

the output of our network. To account for this unknown scaling during training, we choose

the scale of the output of the network by minimizing the matrix norm of the error. Our

approach allows for efficient training and generalization to problems unseen (new matrices

A and new right-hand sides b). We benchmark our algorithm using the ubiquitous pressure

Poisson equation (discretized on regular voxelized domains) and compare against FluidNet

11

[TSS17], which is the state-of-the-art learning-based method for these types of problems.

DCDM can be viewed as an improved version of [TSS17], because unlike the non-iterative

approaches of [TSS17] and [YYX16], our method can reduce the linear system residuals

arbitrarily. We showcase our approach with examples that have over 16 million degrees of

freedom.

2.2 Related Work

Deep learning has been applied in various ways to physical simulation and the numerical

solution of PDEs (see, e.g., the reviews in [BHJ20, GHF19, KKL21]). From learning how to

discretize PDEs [BHH19] to upsampling the results of low-resolution simulations [JGG20,

TKC21], practitioners have sought to incorporate learning into most aspects of numerical

PDE pipelines.

A number of recent works have sought to eschew the numerical solution of PDEs by

using neural networks and appropriate representations of physical quantities [UPT20, SGP20,

WBT19], often taking into account PDEs or physics while training. Many other works

have hybridized traditional techniques and governing equations with neural networks in

order to improve the accuracy and/or efficiency of solving PDEs, without replacing PDEs

wholesale (e.g., [LLK19, HKU20, SMF20]). We note the popular physics-informed neural

network framework of Karniadakis and colleagues [CMW22, RPK19], which uses automatic

differentiation to represent all PDE operators and incorporates physical constraints like

conservation laws into the network’s loss function. While all of these approaches may produce

visually plausible results (e.g., when solving the Poisson equation for a fluid flow simulation),

they may not be computationally efficient (e.g., slower than a traditional CFD code), they are

inherently limited by their generalizability, and they may not converge to the true solution

that would be obtained with a classical algorithm like CG.

Several papers have focused on enhancing the solution of linear systems (arising from

12

discretized PDEs) using learning. For instance, [GA18] generate sparsity patterns for block-

Jacobi preconditioners using convolutional neural networks, and [Sta20] use a CNN to predict

non-zero patterns for ILU-type preconditioners for the Navier-Stokes equations (though nei-

ther work designs fundamentally new preconditioners). [IFH20] develop a neural-network

based preconditioner where the network is used to predict approximate Green’s functions

(which arise in the analytical solution of certain PDEs) that in turn yield an approximate

inverse of the linear system. [HZE19] learn an iterator that solves linear systems, per-

forming competitively with classical solvers like multigrid-preconditioned MINRES [PS75].

[LGM20] and [GGB19] use machine learning to estimate algebraic multigrid (AMG) pa-

rameters. They note that AMG approaches rely most fundamentally on effectively chosen

(problem-dependent) prolongation sparse matrices and that numerous methods have at-

tempted to automatically create them from the matrix A. They train a graph neural network

to learn (in an unsupervised fashion) a mapping from matrices A to prolongation operators.

[GSK16] note that geometric multigrid solver parameters can be difficult to choose to guar-

antee parallel performance on different hardware platforms. They use machine learning to

create a code generator to help achieve this.

Several works consider accelerating the solution of linear systems by learning an initial

guess that is close to the true solution or otherwise helpful to descent algorithms for finding

the true solution. In order to solve the discretized Poisson equation, [LKB21] accelerate

the convergence of GMRES [SS86] with an initial guess that is learned in real-time (i.e.,

as a simulation code runs) with no prior data. [UBF20] train a network (incorporating

differentiable physics, based on the underlying PDEs) in order to produce high-quality initial

guesses for a CG solver. In a somewhat similar vein, [ADP20] use a simple feedforward neural

network to predict pointwise solution components, which accelerates the conjugate residual

method used to solve a relatively simple shallow-water model (a more sophisticated network

and loss function are needed to handle more general PDEs and larger-scale problems).

At least two papers [RGT18, SSH19] have sought to learn a mapping between a matrix

13

and an associated sparse approximate inverse. In their investigation, [RGT18] propose train-

ing a neural network using matrix-inverse pairs as training data. Although straightforward to

implement, the cost of generating training data, let alone training the network, is prohibitive

for large-scale 3D problems. [SSH19] seek to learn a mapping between linear system matrices

and sparse (banded) approximate inverses. Their loss function is the condition number of

the product of the system matrix and the approximate inverse; the minimum value of the

condition number is one. Although this framework is quite simple, evaluating the condition

number of a matrix is asymptotically costly (O(n3)), and in general, the inverse of a sparse

matrix can be quite dense. Accordingly, the method is not efficient or accurate enough for

the large-scale 3D problems that arise in real-world engineering problems.

DCDM can also be viewed as a novel learning to optimize (L2O) method. L2O methods

use learning to devise continuous optimization algorithms; for example, [ADG16] learn a

gradient descent algorithm, [LM16] provide a general reinforcement learning framework for

learning optimization algorithms, [SCH19] apply L2O to minimax problems, and [LDF22]

perform online meta-learning of quasi-Newton optimization methods. We refer the reader to

[CCC22] for a recent review of L2O techniques.

Most relevant to the present work is FluidNet [TSS17]. FluidNet uses a highly-tailored

CNN architecture to predict the solution of a linear projection operation (specifically, for

the discrete Poisson equation) given a matrix and right-hand side. The authors demonstrate

fluid simulations where the linear solve is replaced by evaluating their network. Because their

network is relatively lightweight and is only evaluated once per time step, their simulations

run efficiently. However, their design allows the network only one opportunity to reduce

the residual for the linear solve; in practice, we observe that FluidNet is able to reduce the

residual by no more than about one order of magnitude. However, in computer graphics

applications, at least four orders of magnitude in residual reduction are usually required for

visual fidelity, while in scientific and engineering applications, practitioners prefer solutions

that reduce the residual by eight or more orders of magnitude (i.e., to within machine

14

 -1

 -1 4 -1

 -1

 -1

 2 -1 -1

 -1 3 -1𝑨! 𝑨"#$%&

𝒂 𝒃 𝒄 𝒅

object

boundary

Figure 2.1: (a) We illustrate a sample flow domain Ω ⊂ (0, 1)2 (in 2D for ease of illustration)

with internal boundaries (blue lines). (b) We voxelize the domain with a regular grid: white

cells represent interior/fluid, and blue cells represent boundary conditions. (c) We train using

the matrix Atrain from a discretized domain with no interior boundary conditions, where d

is the dimension. This creates linear system with n = (nc + 1)d unknowns, where nc is the

number of grid cells on each direction. (d) We illustrate the non-zero entries in an example

matrix AΩ from the voxelized and labeled (white vs. blue) grid for three example interior

cells (green, magenta, and brown). Each case illustrates the non-zero entries in the row

associated with the example cell. All entries of AΩ in rows corresponding to boundary/blue

cells are zero. The numbers shown are for the 2D case, in 3D case a box with 6 neighboring

white cells has one 6 and six −1s in its corresponding row.

precision). Accordingly, FluidNet’s lack of convergence stands in stark contrast to classical,

convergent methods like CG. Our method resolves this gap.

2.3 Motivation: Incompressible Flow

We demonstrate the efficacy of our approach with the linear systems that arise in incom-

pressible flow applications. Specifically, we use our algorithm to solve the Poisson equation

discretized on a regular grid, following the pressure projection equations that arise in Chorin’s

splitting technique [Cho67] for the inviscid, incompressible Euler equations. These equations

15

are

ρ

(
∂u

∂t
+
∂u

∂x
u

)
+∇p = f ext, ∇ · u = 0 (2.2)

where u is fluid velocity, p is pressure, ρ is density, and f ext accounts for external forces like

gravity. The equations are assumed at all positions x in the spatial fluid flow domain Ω and

for time t > 0. The first equation in Equation 2.2 enforces conservation of momentum in

the absence of viscosity, and the second enforces incompressibility and conservation of mass.

These equations are subject to initial conditions ρ(x, 0) = ρ0 and u(x, 0) = u0(x), as well

as boundary conditions u(x, t) · n(x) = u∂Ω(x, t) on the boundary of the domain x ∈ ∂Ω

(where n is the unit outward pointing normal at position x on the boundary). Equation 2.2

is discretized in both time and space. Temporally, we split the advection

∂u

∂t
+
∂u

∂x
u = 0

and body forces terms

ρ
∂u

∂t
= f ext,

and finally enforce incompressibility via the pressure projection

∂u

∂t
+

1

ρ
∇p = 0

such that ∇ · u = 0; this is the standard advection-projection scheme proposed by [Cho67].

Using finite differences in time, we can summarize this as

ρ0

(
u∗ − un

∆t
+
∂un

∂x
un
)

= f ext (2.3)

−∇ · 1

ρ0
∇pn+1 = −∇ · u∗ (2.4)

− 1

ρ0
∇pn+1 · n =

1

∆t

(
u∂Ω − u∗ · n

)
. (2.5)

For the spatial discretization, we use a regular marker-and-cell (MAC) grid [HW65] with

cubic voxels whereby velocity components are stored on the face of voxel cells, and scalar

16

quantities (e.g., pressure p or density ρ) are stored at voxel centers. We use backward semi-

Lagrangian advection [FSJ01, GHM20] for Equation 2.3. All spatial partial derivatives are

approximated using finite differences. Equations 2.4 and 2.5 describe the pressure Poisson

equation with Neumann conditions on the boundary of the flow domain. We discretize the

left-hand side of Equation 2.4 using a standard 7-point finite difference stencil. The right-

hand side is discretized using the MAC grid discrete divergence finite difference stencils as

well as contributions from the boundary condition terms in Equation 2.5. We refer the

reader to [Bri08] for more in-depth implementation details. Equation 2.5 is discretized by

modifying the Poisson stencil to enforce Neumann boundary conditions. We do this using

a simple labeling of the voxels in the domain. For simplicity, we assume Ω ⊂ (0, 1)3 is a

subset of the unit cube, potentially with internal boundaries. We label cells in the domain as

either liquid or boundary. This simple classification is enough to define the discrete Poisson

operators (with appropriate Neumann boundary conditions at domain boundaries) that we

focus on in the present work; we illustrate the details in 2.1.

We use the following notation to denote the discrete Poisson equations associated with

Equations 2.4–2.5:

AΩx = b∇·u
∗

+ bu
∂Ω

, (2.6)

where AΩ is the discrete Poisson matrix associated with the voxelized domain, x is the vector

of unknown pressure, and b∇·u
∗

and bu
∂Ω

are the right-hand side terms from Equations 2.4

and 2.5, respectively. AΩ in Equation 2.6, is a large, sparse, SPD linear system. These

linear system require many number of iterations to solve with traditional iterative solvers to

produce an adequately small residual. The computational complexity of solving Equation

2.6 strongly depends on data (e.g., internal boundary conditions in the flow domain, see 2.1).

We define a special case of the matrix involved in this discretization to be the Poisson

matrixAtrain associated with Ω = (0, 1)3, i.e., a full fluid domain with no internal boundaries.

We use this matrix for training, yet demonstrate that our network generalizes to all other

matrices arising from more complicated flow domains. To be clear, the implication of this

17

is that by training DCDM one time—which we have already done, and we release our pre-

trained models and source code along with this paper—practitioners can immediately apply

DCDM to any Poisson system (regardless of internal boundary conditions, etc.). Although

there is a clear limitation that we only train our network to solve Poisson problems, this

is a major advantage over state-of-the-art methods like FluidNet [TSS17], which require

highly diverse training data (matrices from many fluid simulations, all with different types of

obstacles and boundary conditions) in order to train a network with sufficient generalization;

we only ever leverage a single training matrix (i.e., a single set of boundary conditions)Atrain.

2.4 Deep Conjugate Direction Method

We present our method for the deep learning acceleration of iterative approximations to the

solution of linear systems of the form seen in Equation 2.6. We first briefly discuss relevant

details of search direction methods, particularly the choice of line search directions1. We

then present a deep learning technique for improving the quality of these search directions

that ultimately reduces iteration counts required to achieve satisfactory residual reduction.

Lastly, we outline the training procedures for our deep CNN.

Our approach iteratively improves approximations to the solution x of Equation 2.6. We

build on the method of CG, which requires the matrix AΩ in Equation 2.6 to be SPD. SPD

matrices AΩ give rise to the matrix norm ‖y‖AΩ =
√
yTAΩy. CG can be derived in terms

of iterative line search improvement based on optimality in this norm. That is, an iterate

xk−1 ≈ x is updated along search direction dk by a step size αk that is chosen to minimize

the matrix norm of the error between the updated iterate and x:

αk = arg min
α

1

2
‖x− (xk−1 + αdk)‖2

AΩ

=
rTk−1dk

dTkAΩdk
, (2.7)

1For a comprehensive background on CG, see Section 1.1.2.

18

where rk−1 = b−AΩxk−1 is the (k − 1)th residual (see section 1.1.1 for details). Note that

this objective function is equivalent to the one defined in 1.1.1. Different search directions

dk result in different algorithms. A natural choice is the negative gradient of the matrix

norm of the error (evaluated at the current iterate), dk = −1
2
∇‖xk−1‖2

AΩ = rk−1, since

this will point in the direction of steepest decrease. This is the gradient descent method

(GD). Unfortunately, this approach requires many iterations in practice. CG modifies GD

into a more effective strategy by instead choosing directions that are A-orthogonal (i.e.,

dTi AΩdj = 0 for i 6= j). More precisely, the search direction dk is chosen as follows:

dk = rk−1 −
k−1∑
i=1

hikdi, hik =
dTi AΩrk−1

dTi AΩdi
,

which guarantees A-orthogonality. The magic of CG is that hik = 0 for i < k− 1, hence this

iteration can be performed without the need to store all previous search directions di and

without the need for computing all previous hik.

While the residual is a natural choice for generating A-orthogonal search directions (since

it points in the direction of the steepest local decrease), it is not the optimal search direction.

Optimality is achieved when dk is parallel to (AΩ)−1rk−1, whereby xk will be equal to x

since αk (computed from Equation 2.7) will step directly to the solution. We can see this by

considering the residual and its relation to the search direction:

rk = b−AΩxk

= b−AΩxk−1 − αkAΩdk

= rk−1 − αkAΩdk.

In light of this, we use deep learning to create an approximation f(c, r) to (AΩ)−1r, where

c denotes the network weights and biases. This is analogous to using a preconditioner in

PCG; however, our network is not SPD (nor even a linear function). We simply use this

data-driven approach as our means of generating better search directions dk. Furthermore,

we only need to approximate a vector parallel to (AΩ)−1r since the step size αk will account

19

Figure 2.2: Visualization of DCDM and regular Line Search Methods. The blue arrows

represents the neural network outputs for the search direction at the current iterate (

ML(rk) = f(c, rk)). Search directions generated by the network results in faster con-

vergence compared to CG method.

for any scaling in practice. In other words, f(c, r) ≈ sr(A
Ω)−1r, where the scalar sr is not

defined globally; it only depends on r, and the model does not learn it. Lastly, as with CG,

we enforce A-orthogonality, yielding search directions

dk = f(c, rk−1)−
k−1∑
i=1

hikdi

hik =
f(c, rk−1)TAΩdi

dTi AΩdi
.

We summarize our approach in Algorithm 3. Note that we introduce the variable istart. To

guarantee A-orthogonality between all search directions, we must have istart = 1. However,

this requires storing all prior search directions, which can be costly. We found that using

istart = k−2 worked nearly as well as istart = 1 in practice (in terms of our ability to iteratively

20

reduce the residual of the system). We demonstrate this in 2.5c. This choice significantly

reduces the required number of search directions to be stored, making our algorithms memory

requirement comparable to the CG.

Algorithm 3 DCDM

r0 = b−AΩx0

k = 1

while ‖rk−1‖ ≥ ε do

dk = f(c, rk−1

‖rk−1‖
)

for istart ≤ i < k do

hik =
dTk AΩdi
dTi AΩdi

dk-=hikdi

end for

αk =
rTk−1dk

dTk AΩdk

xk = xk−1 + αkdk

rk = b−AΩxk

k = k + 1

end while

2.5 Model Architecture, Datasets, and Training

Efficient performance of our method requires effective training of our deep convolutional

network for weights and biases c such that

f(c, r) ≈ sr(A
Ω)−1r

(for arbitrary scalar sr). We design a model architecture, loss function, and self-supervised

training approach to achieve this. Our approach has modest training requirements and allows

for effective residual reduction while generalizing well to problems not seen in the training

data.

21

2.5.1 Loss Function and Self-supervised Learning

Although we generalize to arbitrary matrices AΩ from Equation 2.6 that correspond to

domains Ω ⊂ (0, 1)3 that have internal boundaries (see 2.1), we train using just the matrix

Atrain from the full cube domain (0, 1)3. “the full cube domain (0, 1)3” is just the unit cube

discretized on regular intervals, see e.g. 2.1(c).

In contrast, other similar approaches [TSS17, YYX16] train using matrices AΩ and right-

hand sides b∇·u
∗

+ bu
∂Ω

that arise from flow in many domains with internal boundaries. We

train our network by minimizing the L2 difference ‖r − αAtrainf(c, r)‖2, where

α =
rTf(c, r)

f(c, r)TAtrainf(c, r)

from Equation 2.7. This choice of α accounts for the unknown scaling in the approximation of

f(c, r) to
(
Atrain

)−1
r. We use a self-supervised approach and train the model by minimizing

Loss(f , c,D) = 1
|D|
∑
r∈D ‖r − rT f(c,r)

f(c,r)TAtrainf(c,r)
Atrainf(c, r)‖2

for a given dataset D consisting of training vectors bi. In Algorithm 3, the normalized

residuals rk
‖rk‖

are passed as inputs to the model. Unlike in e.g. FluidNet [TSS17], only the first

residual r0

‖r0‖ is directly related to the problem-dependent original right-hand side b. Hence

we consider a broader range of training vectors than those expected in a given problem of

interest, e.g., incompressible flows. We observe that generally the residuals rk in Algorithm 3

are skewed to the lower end of the spectrum of the matrix AΩ. Since AΩ is a discretized

elliptic operator, lower end modes are of lower frequency of spatial oscillation. We create our

training vectors bi ∈ D using m� n approximate eigenvectors of the training matrix Atrain.

We use the Rayleigh-Ritz method to create approximate eigenvectors qi, 0 ≤ i < m. This

approach allows us to effectively approximate the full spectrum of Atrain without computing

the full eigendecomposition, which can be expensive (O(n3)) at high resolution. Note that

generating the dataset has O(m2N) complexity, N being the resolution (e.g., 643 or 1283),

due to reorthogonalization of Lanczos vectors (see Appendix 2.8.2). Hence we tried values

22

like m = 1K, 5K, 10K, and 20K, and chose the smallest value (m = 10,000) that gave a

viable model after training.

The Rayleigh-Ritz vectors are orthonormal and satisfy QT
mA

trainQm = Λm, where Λm is

a diagonal matrix with nondecreasing diagonal entries λi referred to as Ritz values (approx-

imate eigenvalues) and Qm = [q0, q1, . . . , qm−1] ∈ Rn×m. We pick

bi =

∑m−1
j=0 cijqj∥∥∥∑m−1
j=0 cijqj

∥∥∥
where the coefficients cij are picked from a standard normal distribution

cij =

9 · N (0, 1) if j̃ ≤ j ≤ m

2
+ θ

N (0, 1) otherwise

where θ is a small number (we used θ = 500), and j̃ is the first index that λj̃ > 0. This

choice creates 90% of bi from the lower end of the spectrum, with the remaining 10% from

the higher end. The Riemann-Lebesgue Lemma states the Fourier spectrum of a continuous

function will decay at infinity, so this specific choice of bi’s is reasonable for the training

set. In practice, we also observed that the right-hand sides of the pressure system that arose

in flow problems (in the empty domain) tended to be at the lower end of the spectrum.

Notably, even though this dataset only uses Rayleigh-Ritz vectors from the training matrix

Atrain, our network can be effectively generalized to flows in irregular domains, e.g., smoke

flowing past a rotating box and flow past a bunny (see Figure 2.4).

We generate the Rayleigh-Ritz vectors by first tridiagonalizing the training matrix Atrain

with m Lanczos iterations [Lan50] to form Tm = QL
m
T
AtrainQL

m ∈ Rm×m. We then diagonal-

ize Tm = Q̂TΛmQ̂. While asymptotically costly, we note that this algorithm is performed on

the comparably small m×m matrix Tm (rather than on the Atrain ∈ Rn×n). This yields the

Rayleigh-Ritz vectors as the columns of Qm = QL
mQ̂. The Lanczos vectors are the columns

of the matrix QL
m and satisfy a three-term recurrence whereby the next Lanczos vector can

23

be iteratively computed from previous two as

βjq
L
j+1 = AtrainqLj − βj−1q

L
j−1 − αjqLj ,

where αj and βj are diagonal and subdiagonal entries of T k. βj is computed so that qLj+1

is a unit vector, and αj+1 = qTj+1A
trainqj+1. We initialize the iteration with a random

qL0 ∈ span(Atrain). The Lanczos algorithm can be viewed as a modified Gram-Schmidt

technique to create an orthonormal basis for the Krylov space associated with qL0 and Atrain,

and it therefore suffers from rounding error sensitivities manifested as loss of orthonormality

with vectors that do not appear in the recurrence. We found that the simple strategy

described in [Pai71] of orthogonalizing each iterate with respect to all previous Lanczos

vectors to be sufficient for our training purposes. Dataset creation takes 5–7 hours for a 643

computational grid, and 2–2.5 days for a 1283 grid (see Appendix 2.8.2 for more detail).

We reiterate that since DCDM generalizes to various Poisson systems (see Sections 2.5.2

and 2.6) despite only using data corresponding to an empty fluid domain, practitioners

do not need to generate new data in order to apply our method. Moreover, we show in

the examples that it is possible to use trained model weights from a lower-resolution grid

for higher-resolution problems, so practitioners may not need to generate new data even if

running problems at different resolutions than what we consider.

2.5.2 Model Architecture

The internal structure of our CNN architecture for a 1283 grid is shown in 2.3. It consists of

a series of convolutional layers with residual connections. The upper left of 2.3 (K Residual

Blocks) shows our use of multiple blocks of residually connected layers. Notably, within

each block, the first layer directly affects the last layer with an addition operator. All non-

input or output convolutions use a 3× 3× 3 filter, and all layers consist of 16 feature maps.

In the middle of the first level, a layer is downsampled (via the average pooling operator

with (2 × 2 × 2) pool size) and another set of convolutional layers is applied with residual

24

16 x 1283 16 x 1283 16 x 1283 16 x 128316 x 1283

1 Residual Block

2K+1 Conv Layers

K Residual Blocks (K-RB)

16 x 1283 16 x 1283

1 x 1283
16 x 1283 16 x 1283

2-RB

16 x 1283 16 x 1283

5-RB

16 x 643 16 x 643

2x2x2 AveragePooling 2x2x2 UpScale

3-RB

16 x 1283 16 x 1283 1 x 1283

: 3x3x3 Conv, ReLU
: Addition
: 3x3x3 Conv, Linear
: Dense, Linear

Figure 2.3: Architecture for training with Atrain on a 1283 grid.

connection blocks. The last layer in the second level is upscaled and added to the layer

that is downsampled. The last layer in the network is dense with a identity function. The

activation functions in all convolutional layers are ReLU, except for the first convolution,

which uses a linear activation function.

Initially we tried a simple deep feedforward convolutional network with residual con-

nections (motivated by [HZR16]). Although such a simple model works well for DCDM,

it requires a high number of layers, which results in higher training and inference times.

We found that creating parallel layers of CNNs with downsampling reduced the number of

layers required. In summary, our goal was to first identify the simplest network architecture

that provided adequate accuracy for our target problems, and subsequently, we sought to

make architectural changes to minimize training and inference time. We are interested in

a more thorough investigation of potential network architectures, filter sizes, etc., to better

characterize the tradeoff curves between accuracy and efficiency; as a first step in this direc-

25

tion, we included a brief ablation study in Appendix 2.8.2. Differing resolutions use differing

numbers of convolutions, but the fundamental structure remains the same. More precisely,

the number of residual connections is changed for different resolutions. For example, a 643

grid uses one residual block on the left, two on the right on the upper level, and three on

the lower level. Furthermore, the weights trained on a lower resolution grid can be used

effectively with higher resolutions. 2.5d shows convergence results for a 2563 grid, using a

model trained for a 643 grid and a 1283 grid. The model that we use for 2563 grids in our

final examples was trained on a 1283 grid; however, as the shown in the figure, even training

with a 643 grid allows for efficient residual reduction. 2.1 shows results for three different

resolutions, where DCDM uses 643 and 1283 trained models. Since we can use the same

weights trained over a 64d domain and/or 128d domain, the number of parameters does not

depend on the spatial fidelity. It depends on d for the kernel size.

2.5.3 Training

Using the procedure explained in Section 2.5.1, we create the training datasetD ∈ span(Atrain)∩
Sn−1 of size 20,000 generated from 10,000 Rayleigh-Ritz vectors. Sn−1 is the unit sphere, i.e.,

all training vectors are scaled to have unit length. Hence input of the model is regularized,

and note that the DCDM algorithm also normalizes all residual inputs. We train our model

with TensorFlow [AAB15] on a single NVIDIA RTX A6000 GPU with 48GB memory. Train-

ing is done with standard deep learning techniques—more precisely, with back-propagation

and the ADAM optimizer [KB15] (with starting learning rate 0.0001). Training takes ap-

proximately 10 minutes and 1 hour per epoch for grid resolutions 643 and 1283, respectively.

We trained our model for 50 epochs; however, the model from the thirty-first epoch was

optimal for 643, and the model from the third epoch was optimal for 1283.

26

Figure 2.4: DCDM for simulating a variety of incompressible flow examples. Left: smoke

plume at t = 6.67, 13.33, 20 seconds. Middle: smoke passing a bunny at t = 5, 10, 15 seconds.

Right: smoke passing a spinning box (time-dependent Neumann boundary conditions) at

t = 2.67, 6, 9.33 seconds.

2.6 Results and Analysis

We demonstrate DCDM on three increasingly difficult examples and provide numerical evi-

dence for the efficient convergence of our method. All examples were run on a workstation

with dual stock AMD EPYC 75F3 processors, and an NVIDIA RTX A6000 GPU with

48GB memory. The grid resolutions we evaluate are the same as used in e.g. [TSS17] and

are common for graphics papers.

Figure 2.4 showcases DCDM for incompressible smoke simulations. In each simulation,

inlet boundary conditions are set in a circular portion of the bottom of the cubic domain,

whereby smoke flows around potential obstacles and fills the domain. We show a smoke

plume (no obstacles), flow past a complex static geometry (the Stanford bunny), and flow

past a dynamic geometry (a rotating cube). Visually plausible and highly-detailed results

27

are achieved for each simulation (see supplementary material for larger videos). The plume

example uses a computational grid with resolution 1283, while the other two uses grids

with resolution 2563 (representing over 16 million unknowns). For each linear solve, DCDM

was run until the residual was reduced by four orders of magnitude2. In our experience,

production-grade solvers (e.g., 3D smoke simulators for movie visual effects) use resolutions

of 1283 or more, and as computing resources improve we are seeing more problems solved at

huge scales like 5123 and above, where a learning-enhanced method like DCDM will have a

more dramatic impact.

iterations

lo
g

10
(k

rk
=k

r 0
k)

0 5 10 15 20 25 30 35 40
-4

-3

-2

-1

0
DCDM 128
FN 128
DCDM 256
FN 256

0 100 200 300 400 500 600 700
-4

-3

-2

-1

0
ICPCG
CG
FN
DCDM
De.atedCG

0 5 10 15 20 25 30 35
-4

-3

-2

-1

0
is = k
is = k ! 1
is = k ! 2
is = k ! 10
is = 1

0 20 40 60 80 100
-4

-3

-2

-1

0
64 trained
128 trained

Figure 2.5: Convergence data for the bunny example (see also Table 2.1). (a) Mean and std.

dev. (over all 400 frames in the simulation) of residual reduction during linear solves (with

1283 and 2563 grids) using FluidNet (FN) and DCDM. (b) Residual plots with ICPCG, CG,

FN, DCDM, and Deflated CG at frame 150. Dashed and solid lines represent results for 1283

and 2563, respectively. (c) Decrease in residuals with varying degrees of A-orthogonalization

(is = istart) in the 1283 case. (d) Reduction in residuals when the network is trained with a

643 or 1283 grid for the 2563 grid simulation shown in 2.4 Middle.

For the bunny example, Figures 2.5a–b demonstrate how residuals decrease over the

2Computer graphics experts have found that solving Poisson equations until a four orders-of-magnitude
reduction in residual is achieved is enough for visual realism (any further computational effort does not yield
easily perceptible differences) [MST10, PGG23].

28

643 Grid 1283 Grid 2563 Grid

Method tr nr tpr tr nr tpr tr nr tpr

DCDM-64 2.71s 16 0.169s 22s 27 0.814 s 261s 58 4.50s

DCDM-128 5.37s 19 0.283 s 26s 25 1.083s 267s 44 6.07s

CG 1.77s 168 0.0105s 26s 465 0.0559s 1548s 1046 1.479s

Deflated CG 771.6s 117 6.594s 3700s 277 13.357s 21030s 489 43.00s

ICPCG 164s 43 3.813s 2877s 94 30.60s 54714s 218 250.98s

Table 2.1: Timing and iteration comparison for different methods on the bunny example. tr,

nr and tpr represents time, iteration and time per iteration. DCDM-{64,128} calls a model

whose parameters are trained over a {643, 1283} grid. All computations are done using only

CPUs; model inference does not use GPUs. All implementation is done in Python. See

Appendix 2.8.1 for convergence plots.

course of a linear solve, comparing DCDM with other methods. Figure 2.5a shows the mean

results (with standard deviations) over the course of 400 simulation frames, while in Figure

2.5b, we illustrate behavior on a particular frame (frame 150). For FluidNet, we use the opti-

mized implementation provided by [flu22]. This implementation includes pre-trained models

that we use without modification. In both subfigures, it is evident that the FluidNet residual

never changes, since the method is not iterative; FluidNet reduces the initial residual by no

more than one order of magnitude. On the other hand, with DCDM, we can continually

reduce the residual (e.g., by four orders of magnitude) as we apply more iterations of our

method, just as with classical CG. In 2.5b, we also visualize the convergence of three other

classical methods, CG, Deflated CG [SYE00], and incomplete Cholesky preconditioned CG

(ICPCG); clearly, DCDM reduces the residual in the fewest number of iterations (e.g., ap-

proximately one order of magnitude fewer iterations than ICPCG). Since FluidNet is not

iterative and lacks a notion of residual reduction, we treat r0 for FluidNet as though an

29

initial guess of zero is used (as is done in our solver).

To clarify these results, Table 2.1 reports convergence statistics for DCDM compared to

standard iterative techniques, namely, CG, Deflated CG, and ICPCG. For all 643, 1283, and

2563 grids with the bunny example, we measure the time tr and the number of iterations

nr required to reduce the initial residual on a particular time step of the simulation by four

orders of magnitude. DCDM achieves the desired results in by far the fewest number of

iterations at all resolutions. At 2563, DCDM performs approximately 6 times faster than

CG, suggesting a potentially even wider performance advantage at higher resolutions. Infer-

ence is the dominant cost in an iteration of DCDM; the other linear algebra computations

in an iteration of DCDM are comparable to those in CG. The nice result of our method is

that despite the increased time per iteration, the number of required iterations is reduced so

drastically that DCDM materially outperforms classical methods like CG. Although ICPCG

successfully reduces number of iterations (2.5b), we found the runtime to scale prohibitively

with grid resolution. We used SciPy’s [VGO20] sparse.linalg.spsolve triangular func-

tion for forward and back substitution in our ICPCG implementation, and we also used a

precomputed L that is not accounted for in the table results (though this took no more than

4 seconds at the highest resolution); Appendix 2.8.1 includes further details on ICPCG.

Notably, even though Deflated CG and DCDM are based on approximate Ritz vectors,

DCDM performs far better, indicating the value of using a neural network.

We performed three additional sets of tests. First, we tried low resolutions, 163 and 323,

which are such small problems that we would expect CG to win due to the relatively high

overhead of evaluating a neural network: indeed, DCDM and CG take 0.377sec/15iter and

0.008sec/48iter at 163, respectively, and 0.717sec/16iter and 0.063sec/53iter at 323. Note

that we used the model (and parameters) tailored for 643 resolution to obtain these results;

a lighter model, trained specifically for 163 and 323 resolutions, would give better timings,

though likely still behind CG. Second, we tested cases where d = 2, at resolutions 2562 and

5122. For this setup, running the smoke plume test (2D analogue of 2.4 Left) at 2562, DCDM

30

and CG take 2.18sec/64iter and 0.59sec/536iter, respectively. Again, since the system for

this resolution is much smaller than those reported in Table 2.1, we expect CG to be more

efficient. However, at 5122, the system is big enough where we actually do outperform CG

in time as well: 3.87sec/126iter for DCDM vs. 5.60sec/1146iter for CG. Third, we performed

comparisons between DCDM and a more recent work, [SSH19]. Since [SSH19] requires

many asymptotically expensive computations (see Section 2.2), we expected a significant

performance advantage with DCDM. For the 2562 smoke plume example, using matrices

from frame 10 of the simulation, [SSH19] requires 1024 iterations for convergence (15.41s),

vs. only 50 for DCDM (1.50s).

2.7 Conclusions

We presented DCDM, incorporating CNNs into a CG-style algorithm that yields efficient,

convergent behavior for solving linear systems. Our method effectively acts as a precon-

ditioner, albeit a nonlinear one3. Our method is evaluated on linear systems with over 16

million degrees of freedom and converges to a desired tolerance in merely tens of iterations.

Furthermore, despite training the underlying network on a single domain (per resolution)

without obstacles, our network is able to successfully predict search directions that enable

efficient linear solves on domains with complex and dynamic geometries. Moreover, the

training data for our network does not require running fluid simulations or solving linear

systems ahead of time; our Rayleigh-Ritz vector approach enables us to quickly generate

very large training datasets, unlike other works. We release our code, data, and pre-trained

models so users can immediately apply DCDM to Poisson systems without further dataset

generation or training, especially due to the feasibility of pre-trained weights for inference

3Algebraically, any preconditioner P is attempting to learn an inverse of AΩ, which is equivalent to
what DCDM achieves for purposes of CG (learning the action of the inverse of the matrix on a vector x).
We initially tried learning a low-rank linear preconditioner, but our explorations were not successful; the
approach was not efficient for higher resolutions because it required a large k.

31

at different grid resolutions: https://github.com/ayano721/2023_DCDM.

Our network was designed for and trained exclusively using data related to the discrete

Poisson matrix, which likely limits the generalizability of our present model. However, we

believe our method is readily applicable to other classes of PDEs (or general problems with

graph structure) that give rise to large, sparse, symmetric linear systems. To that end, we

briefly applied DCDM to matrices arising from discretized heat equations (a similar class

of large, sparse matrices; hence expected to work well with DCDM). We found that we can

achieve convergence (reducing the initial residual by four orders of magnitude) using DCDM

trained only on Poisson matrices—even though our test heat equation used Dirichlet bound-

ary conditions, unlike the Neumann boundary conditions used with the Poisson equation

systems we solved before. For a heat equation matrix at N = 64, DCDM can converge

in only 14 iterations. Future work will extend this analysis. We note that our method is

unlikely to work well for matrices that have high computational cost to evaluate A ∗ x (e.g.,

dense matrices), since training relies on efficient A ∗ x evaluations. An interesting question

is how well our method and current models would apply to discrete Poisson matrices arising

from non-uniform grids, e.g., quadtrees or octrees [LGF04].

2.8 Additional Results and Model Architecture Discussion

2.8.1 Additional Convergence Results

We include additional convergence results, similar to those shown in Figure 2.5b, in Figure

2.6. Specifically, these plots show the convergence of all the methods reported in Table 2.1

at each of the resolutions reported there. The figure visually demonstrates the significant

reduction in iteration count achieved by DCDM.

We remark on ICPCG since it is a popular preconditioner and closest in performance

to DCDM. When using ICPCG with matrices that arise in a domain with moving internal

boundaries (such as our bunny examples), the approximate factorization of A must be re-

32

https://github.com/ayano721/2023_DCDM

0 50 100 150 200
iterations

-4

-3

-2

-1

0

lo
g

10
(k

rk
=k

r 0
k)

ICPCG
CG
De.atedCG
DCDM-64
DCDM-128

(a) N = 64

0 50 100 150 200 250 300 350 400
iterations

-4

-3

-2

-1

0

lo
g

10
(k

rk
=k

r 0
k)

ICPCG
CG
De.atedCG
DCDM-64
DCDM-128

(b) N = 128

0 100 200 300 400 500 600 700
iterations

-4

-3

-2

-1

0

lo
g

10
(k

rk
=k

r 0
k)

ICPCG
CG
De.atedCG
DCDM-64
DCDM-128

(c) N = 256

Figure 2.6: Convergence of different methods on the 3D bunny example for N = 64, 128,

256; summary results, as well as timings, are reported in 2.1. DCDM-{64,128} calls a model

whose parameters are trained over a {643, 1283} grid.

computed. Recomputation is also required in the approach of [TSS17] in examples like these.

Moreover, as 2.5d shows, DCDM does not require full A-orthogonality. Hence the algorithm

only stores two previous vectors, just like CG, and unlike the much more significant memory

requirements of ICPCG. For example, the L and D matrices for 1283 take about 18.7MB in

scipy.sparse format, while our network can be stored in less than 500KB.

2.8.2 Ablation Study and Runtime Analysis

Method DCDM Model 1 Model 2 Model 3 Model 4 U-Net

meters 97,457 97,457 97,457 97,457 24,537 3,527,505

Table 2.2: Number of parameters for each network architecture considered in the ablation

study.

Here, we provide results of a small ablation study on network architecture in order to

justify some of the architectural choices we made in constructing the DCDM network. We

considered a few different models (2.9a to 2.9e), several of which are modifications of the

33

0 5 10 15 20
iterations

-4

-3

-2

-1

0

lo
g

1
0
(k

rk
=
kr

0
k)

4 orders of magnitude

DCDM
Model 1
Model 2
Model 3
Model 4
U-net

Figure 2.7: Residual plot for the bunny example at N = 64 with each trained model. The

dashed line represents a four-orders-of-magnitude reduction in residual, which is the conver-

gence criterion we use throughout our examples.

model we ultimately used to generate our results (2.9a). The models we considered include

one without ResNet connections (2.9b), one with simple downsampling and upsampling (a

U-Net-like structure) (2.9c), a minimal CNN (2.9d), and a model with different filter sizes

of the blocks (2.9e). We compared how these models perform on the same bunny example

considered in the main part of the paper (at resolution 643). 2.7 shows that the architecture

we ultimately selected for DCDM yields the best results.

Each model’s parameter count is listed in 2.2. Compared to a basic CNN or U-Net

architecture (like the one used in [TSS17]), our DCDM network is actually quite light. For

example, the U-Net architecture in [TSS17] uses 3,527,505 parameters (at N = 64 in 3D),

while our network (at the same resolution) requires only 97,457 parameters (a 36x reduction).

In addition, one advantage of our method is that DCDM only needs to be trained once (and

data only generated once) per problem class (and possibly size). So if a user desired to

solve Poisson systems (which are quite common in computer graphics and engineering), they

could use our pre-trained models off the shelf; though we readily concede that new classes

of matrices or new resolutions could require new data generation or retraining.

Dataset generation is a key step in using the DCDM model we selected. We found that we

34

needed to include orthogonalization to previous vectors in the Lanczos problem in practice

(a well-known limitation of the method). This causes the creation of a dataset (cf. Section

2.5.1) to take O(n3m2) time, where m is the number of Lanczos vectors to be created and

n is the resolution. Hence increasing resolution from 643 to 1283 increases the time by a

factor of 8, which scales 5–7 hours to 2–2.5 days. (However, since we can use low resolution

models on higher resolution problems, this scaling can be mitigated, cf. Section 2.5.2.) In

addition, the orthogonalization step makes dataset generation have complexity O(n3m2),

instead of the O(n3m) complexity of classical Lanczos processes. If we can find any other

solution for the numerical problems of classical Lanczos iteration besides orthogonalization,

we can drastically reduce the time to generate the dataset (such a task is outside the scope

of the present work). We note that storing the training dataset has asymptotic cost O(kn3);

for instance, the dataset of k = 20,000 synthetic data takes 23GB and 159GB of storage for

resolutions 643 and 1283, respectively.

2.8.3 Model training

Figure 2.8 shows the decrease in training and validation losses observed when training the

neural network used for DCDM. As mentioned in Section 2.5.3, for DCDM, we selected the

model after epoch 31 for N = 64 and epoch 3 for N = 128. The plots clearly demonstrate

that training and validation loss seem to decrease after these epochs. However, we found that

our epoch selections yielded the best performance on our test data, namely, the examples we

showed in Section 2.6. Accordingly, we conjecture that our model overfit relatively quickly

to both training and validation data, and that perhaps training and validation data were

much more similar to each other compared to the test data. We are interested in exploring

this further in future work. Of course, philosophically, choosing a model by comparing its

performance from different epochs on test data essentially makes that test data part of the

validation data, but this is a broader discussion for the learning community.

35

0 10 20 30 40 50
Epoch

2

4

6

8

10

12

14

L
os

s

#10-3

Training Loss
Validation Loss

(a) N = 64

0 10 20 30 40 50
Epoch

0.02

0.04

0.06

0.08

0.1

L
os

s

Training Loss
Validation Loss

(b) N = 128

Figure 2.8: Training and validation loss for the networks used in DCDM at resolutions N =

64 and N = 128.

36

Input

Average pooling 3×3×3

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Up sampling 3×3×3

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Output

+

+

+

+

+

+

+

+ : adding

+

(a) DCDM (our model)

Input

Average pooling 3×3×3

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Up sampling 3×3×3

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Output

+

+ : adding

(b) Model 1

Input

Average pooling 3×3×3

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Up sampling 3×3×3

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Output

(c) Model 2

Input

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Conv 3×3×3 (16) relu

Output

(d) Model 3

Input

Average pooling 3×3×3

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Up sampling 3×3×3

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Conv 3×3×3 (8) relu

Output

+

+

+

+

+

+

+

+

+ : adding

(e) Model 4

Figure 2.9: Network architectures considered for our ablation study.

37

CHAPTER 3

MLLevelSets, or Shallow Signed Distance Functions for

Kinematic Collision Bodies

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Ω0

Ω1Ω2

Ω3

(a)

(c1)

(c2)

(b) (c)

Fig. 1. (a): Partition of the lower body: Left knee (Ω0), left thigh (Ω1), right thigh (Ω2), and right knee (Ω3). Note that neighboring parts intersect. (b): Points
in the red regions are closer to the interior boundary, resulting incorrect SDFs. Note that red regions do not intersect, allowing that at least one subregion with
𝑏𝑖 (x) = 1 exist for all x.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.

Figure 3.1: Overview. (a) Learning based SDFs are used in cloth simulations in real

time. (b) Our method partitions the character domain into subregions, and each region is

represented by very fast shallow generalized Multi Layer Perceptron (MLP) neural networks.

(c) Combining multiple SDFs requires additional information if the queried point is closer

to interior boundary or the correct boundary. (c1,c2) highlights the region for the knee and

the thigh in which the points inside are closer to the interior boundary than the avatars’

boundary. The regions are also determined by a separate neural network.

38

3.1 Introduction and Related Work

Simulation of deformable objects is ubiquitous in modern computer graphics applications.

Whether it is the intricate stretching and folding of cloth, or the squash, stretch and con-

traction of soft tissues in virtual characters, elastic deformation is essential for creating

satisfactory visual realism in modern visual effects and video games. Simulation of this

type is complex and computationally expensive in general. The most challenging aspects

are generally self-collision detection/resolution [BFA02, BW98, Wan14, WWY20] and the

rapid solution of large systems of nonlinear equations [TWT16, WLF18, WY16]. However,

another important aspect is detection and resolution of collision constraints with kinematic

geometric objects in the scene. These kinematic objects are not influenced by the deformable

objects in the scene (e.g. due to large mass ratios), however their motion often determines

the deformation of the elastic objects of interest. Clothing draping and interacting with a

kinematic body shape is perhaps the most important example of this, and it is the focus of

our approach. An example of this is a walking human avatar with garments on such as pants

or skirt (See Figure 3.1-a and 3.12).

In most simulation techniques, elastic object collision with kinematic collision bodies is

imposed as a constraint on the governing equations. These constraints are detected and

enforced using a variety of geometric descriptions of the collision body. We focus on the

use of machine learning techniques for accelerating this process. Although many recent

methods have investigated the use of these techniques in clothing simulation, most replace

the simulation process altogether with a neural network. While fast, learning techniques

are still limited in accuracy compared to simulation, particularly in the case of free flowing

cloth with significant inertia. Our aim is to avoid these limitations by replacing just the

kinematic body collision portion of a typical cloth simulation pipeline with machine learning

enhancement. Our proposed approach is unique in this way, however we briefly discuss a

number or recent techniques that utilize machine learning in relevant ways. Romero et al.

39

[RCC23] use a neural network to learn a displacement mapping for resolving elastic object

collisions against kinematic rigid bodies with reduced models for deformable objects. Tan

et al. [TZW22] note that purely-learning based cloth techniques suffer greatly from self and

kinematic body collision artifacts. Santesteban et al. [STO21] also address this problem by

adding a repulsion term into their loss function so that trained cloth will be less likely to

penetrate the body. Betiche et al. [BME20, BMT21] also add body-collision based loss terms

into training to discourage cloth/body penetration. Gundogdu et al. [GCS19] do this as well.

Signed distance functions (SDFs) generally have constant query time (e.g. when pre-computed

and stored over dense grids) and are very useful when rapidly detecting and resolving col-

lisions between a kinematic animated body and simulated clothing [OF03]. However, SDF

calculation (e.g. over dense grid nodes) is expensive and is therefore usually done as an

offline/pre-computation. Furthermore, while pre-computed SDFs over regular grids are effec-

tive, there are some notable drawbacks. First, SDFs are usually pre-computed at frame-rate

time intervals since sub-frame time steps would require even more excessive computation

of the SDFs (even as a pre-computation). Temporal interpolation of SDFs can be used for

sub-frame time queries [SLF08]. Dynamic time step sizes (e.g. resulting from CFL condi-

tions with explicit or semi-implicit time stepping) cannot be known a priori and require this

sub-frame interpolation of precomputed SDFs (or excessive non-pre-computation of SDFs

on the fly). Also, the storage cost of SDFs at each frame in an animation for each character

in the scene quickly becomes excessive, especially for denser grids. Lastly, the motion of the

character must be known completely before the simulation is carried out if pre-computation

is to be used. While this is a reasonable assumption for some applications (e.g. offline visual

effects), it is not possible in real-time simulation environments where the user is actively

redefining the character motion on the fly.

Recently, a variety of neural network models for SDFs have been proposed. [OCD22, KFB23]

40

use neural networks to approximate signed distance functions for scene reconstruction for

robotics in real time.[GCV19] learn a general shape template from data. [SCT20] use meta-

learning to perform the same task as [PFS19], representing multiple 3D shapes. [LWY23] use

unsigned distance function for shape construction for volume rendering. Ma et al. [BZY21]

use neural networks to learn SDF representations of point clouds. Chabra et al. [CLI20]

utilize local shape patches to increase the variety of shapes representable with neural SDFs.

The Deep SDF approach of Park et al. [PFS19] is particularly powerful. In this case, a net-

work is trained to represent a discrete collection of shapes by training over their individual

SDFs (sampled over regular grids). By using encoder-decoder network architecture, encoded

with a representative shape vector for each object is learned in the process. These functions

can represent a wide range of shapes and utilize dramatically less memory than a collection

of SDFs defined over regular grids. For example, Deep SDF can store shape information of

thousands of 3D chair shapes in a neural network model that use only 7.4 MB (megabytes),

whereas each chair requires 16.8 MB (the grid size of the uncompressed 3D bitmap of a SDF

of a single shape is 5123). In the context of representing the body shape of a kinematic

animated character, DeepSDFs could be used to model the SDF of the skin surface rigged

with joint-based skinning (e.g. linear blend skinning) over a discrete collection of joint states.

However, real-time simulation in this context requires collision queries against the shape of

the kinematic avatar skin at continuous samples of the joint state since animation states

cannot be discretely sample a priori.

To enable application of learning-based SDF techniques in real-time clothing simulation,

we design a neural network SDF that depends continuously on both the collision query point

and the kinematic joint-state vector. Rather than using a single DeepSDF defined over the

entire body, we use a collection of extremely shallow and computationally efficient networks

that represent the skin surface very accurately near individual joints. Figure 3.1-(b) shows

an example of partitioning of the lower body into four subregions corresponding to the fol-

41

lowing joints :left knee, left thigh, right thigh and right knee. This joint-local approach

efficiently focuses network degrees of freedom where they are needed and allows for additive

scaling complexity of training data burden (in the number of joints). That is, each joint

network can be trained separately without the need to couple the effect of distant joints.

However, by decoupling into joint-centric shallow SDFs we lose some information about the

signed distance to the surface of the complete skinned character since each joint SDF refers

to only a portion of the character. This means that the joint-centric SDF zero-isocontours

may coincide with the true boundary or may coincide with an internal boundary specific to

the joint (see Figure 3.2). We correct for this by training our networks to know whether or

not the signed-distance value is associated with a true boundary or an internal boundary.

More precisely, each joint is associated with two neural networks, one approximates SDF

for the local subregion, and the other flags if the computed signed distance is true signed

distance of the entire body. This knowledge allows us to blend the join-centric SDFs into an

efficient and accurate SDF for the skin of the character.

Linear blend skinning (LBS) [MLT89] is an effective and widely-used means for defining

the skin surface of animated characters from a kinematic joint state. However, the LBS

surface is not guaranteed to be self-intersection free which complicates the definition of a

SDF representation (e.g. near joints with large ranges of motion like the elbow and knee).

We compensate for this by training on surfaces that have had LBS self-collisions resolved

in a simulation post-process. We demonstrate the accuracy and efficiency of our approach

with real-time simulation of clothing colliding against representative animated skin surfaces

of human avatars. In summary, our contributions can be listed as:

• Learning-based SDFs that vary continuously with the kinematic joint state of animated

characters.

• Shallow joint-centric neural networks trained to represent local skin deformation.

42

• A boolean variable returned by each joint-centric shallow SDF that indicates whether

a query point is associated with a fictitious joint-internal surface or the global skin

boundary.

• A blending mechanism for computing the SDF to the union of the regions defined by

each joints shallow SDF.

• Resolution of self-collision artifacts in the SDF of LBS surfaces.

3.2 Character Kinematics

We assume that the kinematics of the animated character are define by a joint-state vector

θ ∈ RN̂J where N̂J denotes the number of joint degrees of freedom in the animation rig.

We use θi ∈ RDi , 1 ≤ i ≤ NJ to denote the individual the joint-state vector components

where 1 ≤ Di ≤ 3 depending on the type of joint. NJ is the total number of joints in the

character. For simple pin joints (e.g. knee), Di = 1 but for a general revolute joint Di = 3.

Our neural network model is able to capture all three degrees of freedom, but that requires

deeper models which increases the inference time. Note that we did not consider the fully-

general case of a 6-degree of freedom rigid joint in this work, and note that we assumed that

the distance between joints do not change over time (e.g. there is no transformation). With

this convention we have the joint state vector of the entire body

θ = (θ1,θ2, . . . ,θNJ
)T ∈ RN̂J

where N̂J =
∑NJ

i=1Di ≤ 3NJ . We further assume that the kinematics of the character motion

are defined in terms of a deformation mapping φ : Ω× RN̂J → R3 where Ω ⊂ R3 is the three

dimensional domain of the interior of the character in a reference pose. We use

Ωθ =
{
x ∈ R3|∃X ∈ Ω such that φ(X,θ) = x

}
to denote the interior region of the animated state of the body (given joint state θ). In our

examples we define φ(X,θ) = φC(X,φLBS(X,θ)) where φLBS(X,θ) : Ω × RN̂J → R3 is the

43

standard linear blend skinning and φC : Ω × R3 → R3 is a collision corrective that resolves

collision/pinching in φLBS so that φ(·,θ) : Ω → Ωθ is always bijective. The φC corrective

on LBS is defined in Section 3.5 and assures that the SDF of the animated state has ample

room for clothing to surround the character body.

We partition the reference character domain Ω ⊂ R3 into subregions Ωi ⊂ Ω associated

with each joint 0 ≤ i < NJ such that Ω = ∪NJ
i=1Ωi. Each subregion Ωi is the portion of

the interior of the character (in the reference pose) that is most deformed by changes in the

joint state. Generally, each Ωi is determined based on proximity to the joint transformation

center. Note that these subsets are not intersection free in general Ωi ∩ Ωj 6= 0 as nearby

joints will influence similar regions. We use

Ωθi =
{
x ∈ R3|∃X ∈ Ωi such that φ(X,θ) = x

}
to denote the animated state of the joint sub-region.

3.3 Signed Distance Function

We define the signed distance to the surface of the animated character as φ : R3×RN̂J → R.

Here |φ(x,θ)| denotes the distance from a point x ∈ R3 to the closest point on the skin

surface of the character in the animated state defined by the joint state vector θ. The sign

of φ(x,θ) indicates whether the point x is inside the skin surface or outside. The closest

point on the skin surface to the point x is determined as

x− φ(x,θ)∇xφ(x,θ)

where ∇xφ(x,θ) is the gradient of φ(x,θ) with respect to x. Our idea is to approximate

signed distance function φ(x,θ) in terms of a collection of joint-wise augmented local signed

distance functions

φi : R3 × RDi → R

44

Figure 3.2: Example of combining SDF of two subregions into one. The rectangle body

Ω = ABCD is divided into two subregions Ω1 = AEFD and Ω2 = BHGC. (a) Point

X is closer to the interior boundary than the true boundary for both subregions. Hence

the local signed distance at point X of subregion Ω1 is not true signed distance value.

φ1(X) = −|XP | 6= −|XR| = φ(X). (b) Red colored regions JFE and HIG highlights the

points with incorrect boundary information for AEFD and BHGC. This partition leads to

undesired region (intersection of the triangles) where the correct SDF cannot be computed.

(c) The subregions selected farther enough so that the incorrect boundary regions (red) do

not intersect, therefore SDF can be computed for all interior points. In other words, for each

interior point, there exist a subregion with true boundary information (the closest boundary

point is on the true boundary).

Note that the only components of the ith joint is given as an input the signed distance

function. In reality, subregion Ωθi depends on the total joint state θ = (θ1, . . . ,θNJ
)T ∈ RN̂J ,

although the only θi has a major affect on the shape of Ωi. Hence we disregard the other

joints for the sake of performance, and fix their joint states to the reference pose. In this

sense, we define

Ωθii =
{
x ∈ R3|∃X ∈ Ωi such that φi(X,θi) = x

}
as an approximation of Ωθi . Furthermore, for each joint i is equipped with another boolean

function

b : R3 × RDi → B

45

that indicates whether the closest point to x on the boundary of Ωθii is on the true boundary

of animated character Ωθ (bi(x,θi) = 1) or whether it is on the interior of Ωθ (bi(x,θi) = 0).

Here B = {0, 1}. In the example depicted in Figure 3.2-(a), the closest point on the boundary

of the subregion Ω1 = AEFD from the query point X lies on the edge GH, which is in the

interior of the entire body Ω = ABCD (hence bi(x,θi) = 0). A portion of the boundary of

Ωθii coincides with the boundary of Ωθ and another portion is interior to Ωθ and this boolean

is used to resolve the true signed distance when a point x is in multiple joint subregions.

See Figure 3.2-(b,c) for an illustration of the boolean values and choice of the subregions to

avoid undesired cases. We use the notation φi(X, θi) = (φi(X, θi),bi(X, θi)) to represent our

augmented signed distance convention. With this formalism, the signed distance function is

defined as

φ(x,θ) = min
i∈S(x,θ)

φi(x,θi) (3.1)

where S(x,θ) ⊂ {1, 2, . . . , NJ} is the collection of joint indices i such that bi(x,θi) = 1.

Note that S(x,θ) 6= ∅, for any x there is at least one subregion so that closest point from x

to Ωi is on the true boundary. We enforce this by defining the subregions to be analogous

to Figure 3.2(c) so that for any x the set S(x,θ) is nonempty when we create them.

3.4 Shallow Joint Signed Distance Functions

We define each joint-wise signed distance function φi : R3 × RDi → R× B in terms of a pair

of shallow neural networks that can be evaluated efficiently in real-time and are accurate

enough to represent the deformed shape of the animated joint region Ωθii . We named our

models shallow to emphasize its simplicity and compactness. To enhance the ability of our

neural network parameters to capture the signed distance values over a range of animated

states, we find it helpful to define each signed distance in the canonical space associated with

each joint. We define this space in terms of joint-wise rigid transforms

Ti(x,θ) = Ri(θ)x+ ti(θ)

46

Figure 3.3: The canonical space (bounding box) of SSDF for the joint knee is determined

by thigh, the parent of knee in the skeletal hierarchy. The canonical spaces moves with the

parent joint as shown in the right example.

for rotations Ri(θ) and translations ti(θ) as well as a Multi Layer Perceptron (MLP, [Hay94])

neural network SSDF : R3 × RNW × RNB × RDi → R where NW is the number of weights

and NB is the number of biases as

φi(x,θ) = SSDFi(Ti(x,θ),Wi,Bi,θi). (3.2)

Here Wi and Bi represents the weights and biases of the model. The transform Ti(x,θ) is

chosen according to the parent transform joint in the hierarchy so that deformation near the

joint is isolated from rigid motion in the rig. See Figure 3.3 for illustration.

3.4.1 Model Architecture and Joint Depended Weights

In this section we discuss the design of our neural network model SSDFi(Ti(x,θ),Wi,Bi,θi)

for the subregion Ωi. For simplicity, we use notation Xi = Ti(x,θ) for the location input

47

B
Z

ReLu ReLu ReLu

Linear

Input

Y

X

Figure 3.4: Basic MLP architecture with three hidden layers. Inputs are location of the query

point wrt canonical space X,Y,Z, and joint state in terms of rotational degrees θiX , θiY , θiZ .

Note that in this example Di = 3. Weights and biases W0, b0,W1, b1, ...,W3, b3 are trained

and kept fixed during inference.

for the model in the canonical space. The most basic MLP architecture concatenates the

location input Xi ∈ R3 with the joint state input θi ∈ RDi to create an input layer and

then the input later is connected with the next hidden layer (See Figure 3.4). This network

architecture is indeed successful for approximating SDFs, however, it does not use the fact

that the joint state inputs remains the same at inference – only the location input varies.

More precisely, at fixed joint state (e.g. stationary timestep in the simulation), multiple cloth

particles at different locations are queried against the body to resolve collision. Hence, we

propose another type of MLP architecture which takes account the this practical information.

More precisely, we find that allowing the effective weights and biases in each layer to depend

48

B
Z

ReLu ReLu ReLu

Linear

Input

Y

X

Figure 3.5: Model Architecture: The illustrated model assumes Di = 3 degrees of

freedom. Model trains the weight matrices WX
n ,W

Y
n ,W

Z
n ,W

C
n and biases bXn , b

Y
n , b

Z
n , b

C
n .

At inference, model first updates its weights according to the linear equation presented

(Equation 3.3), then model becomes classical MLP (as in Figure 3.4 without rotational

degree input). The figure illustrates the architecture for NJ = 5 (3 hidden layers) and each

hidden layer has NH = 8 neurons. The hidden layers have rectified linear unit (ReLU)

activation function, the output layer has linear activation function.

49

linearly on the joint degrees of freedom θi = (θi1, . . . , θiDi
)T as

ŵn
ij(θi) =

Di∑
α=1

wn
ijαθiα + wn

ij0, (3.3)

b̂nij(θi) =

Di∑
α=1

bnijαθiα + bnij0 (3.4)

improved expressivity across ranges of joint rotations and inference performance. Here n

indicates that the weight connects layers n and n + 1 in the MLP (where 1 ≤ n ≤ NL − 1)

and j refers to the neuron in the layer n+ 1. NL refers to the total number of layers in the

MLP with the convention that all but the first (input) and the last (output) are the so called

hidden layers. NH refers to the number of neurons in the hidden layers. In general MLP

models can have different number of neuron in different layers, but in our case all hidden

layers have the same number of neurons. These feed into that activation functions σ : R→ R

to define SSDF (X,Wi,Ci,θi) in terms of the per-layer neuron outputs yn+1
j as

yn+1
j = σ(ŵn

ij(θi)
Tyn + b̂nij(θi)), 0 ≤ n < NL (3.5)

where y1 = (y1
1, y

1
2, y

1
3)T = Xi = Ti(x, θ) ∈ R3 and yn = (yn1 , y

n
2 , ..., y

n
NH

) for 2 ≤ n ≤ NL− 1.

The model outputs

SSDF (X,Wi,Bi,θi) = yNL
1

See Figure 3.5 an illustration of this network structure. Note that with this convention, the

weights relating the input and second (first hidden) layers have ŵ1
ij(θi) ∈ R3, 1 ≤ j ≤ NH .

For all other choices of 1 < n < NL, ŵn
ij(θi) ∈ RNH . Furthermore for 1 ≤ n < NL, the neuron

index has 1 ≤ j ≤ NH however in the weights and biases connecting the last hidden layer with

the output layer (n = NL−1), there is only one output neuron and the index is simply j = 1.

We use Wi = {wn
ijα} ∈ RNW and Bi = {bnijα} ∈ RNB Equation equation 3.2 to repre-

sent the collection of all learnable weights and biases in the MLP network and note that

the effective weights and biases in Equation equation 3.3 are chosen in terms of them in

50

this way to suit cloth simulation and collision against dynamic avatars. In particular, the

SSDF is evaluated at each particle in the simulation mesh at each time step, but the depen-

dence of the model on the joint state θ happens only once over the time step. The formula

in Equation equation 3.3 updates the weights whenever the joint state changes and once

complete inference only with recomputes based on the positional inputs (with the effective

weights held fixed). This allows the network to have (Di + 1) times more parameters in

training, compared to what it is required at the inference. In practice we used 3 hidden

layers (NL = 5) and 8 channels per hidden layer (NH = 8).

We use the same network structure with NL = 4 hidden layers and NH = 8 neurons per

hidden layer for the joint-wise boolean function

bi(x,θ) = bool(SSDF (Ti(x,θ),Wbool
i ,Bbool

i ,θi)) (3.6)

and also evaluate it through the joint-local transform Xi = Ti(x,θ). Note that this network

has its own learnable weights Wbool
i and biases Bbool

i . Also note that bool(·) in Equation equa-

tion 3.6 returns false for negative values of the neural network and true for positive values.

3.5 Training and Dataset Creation

To train the joint-wise neural networks we first partition the reference pose of the body Ω

(which we take to be an A-pose with the characters arms at their side) into the joint-based

regions Ωi. We assume that the character skin surface vertices have weights associated with

each transform in the rig so that LBS can be applied. We then tetrahedralize the interior of

the skin surface and generate skinning weights on newly created interior tetrahedron vertices

by solving a Poisson equation. Dirichlet boundary conditions are applied on the surface of

the tetrahedron mesh and set to the values of the LBS weights. We then associate all vertices

with weight values above a threshold with the parent transform of each joint to define the

seed region for the Ωi (see top left image in Figure 3.6). We then assign vertices that did

51

Figure 3.6: Subregion selection in the reference pose. First entire body is tetrahedralized.

Each subregion is initialized as a subset of tetrahedrons that are closest to the joint of

interest. The each subset is eagerly grows to their neighboors until two subregion intersect.

Above figures shows inital step, step 1, step 2, and step 7.

52

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.7: Left: Example of deformation of knee surrounded by the training grid. Knee

in the upper figure is the in the reference pose (joint rotation angles are (0,0,0)), and the

knee in the below image rotated 90 degrees in negative Z direction (joint rotation angles are

(0,0,-90)). Middle: Training data generation illustration. Color of the point represents the

distance to the boundary (red: close, green: distant). Note that almost all points near the

isocounter are selected. Right: Blue points have correct signed distance as the closest point

lies on the origional boundary, the purple points have incorrect signed distance values.

53

not have a weight above a threshold for any Ωi greedily to regions associated with vertices

connected in the tetrahedron mesh. This region growing is continued until all vertices are

assigned to a region Ωi. We then grow each region slightly to make sure that there is suf-

ficient overlap to apply the logic of Figure 3.2(c). Figure 3.6 illustrates this process in a

representative example. Figure 3.1-(a) illustrates the final partition.

To train the SSDF for each Ωi, grid based SDFs are generated for a range of joint poses.

For a particular joint pose θi, Ωi is deformed to Ωθ̂ii (where θ̂i ∈ RNJ has all joint variables

except θi set to the A-pose) where the mesh-based elastic material point method (MPM) of

Jiang et al. [JSS15] is used to prevent any collisions associated with LBS. Specifically, the

vertices of the tetrahedron mesh overlapping bones in the rig are tracked with Dirichlet dis-

placement boundary conditions in a quasistatic elasticity solve using mesh-based MPM. This

defines the LBS collision correction mapping in φC in Section 3.2. Once this collision-free

version of the LBS mapping is defined, we define SDF values over a regular grid using exact

geometric distances on cut grid cells which are swept to the remaining grid nodes using the

Fast Marching Method [Set96].

For the joint i with Di degrees of freedom, we create training range as a product space

of evenly spaced values. More precisely, the training range for joint i is the product space

Di⊗
α=1

[θiα;min : θiα;inc : θiα;max]

where

[θiα;min : θiα;inc : θiα;max] = {θiα;min + k ∗ θiα;inc|0 ≤ k ≤ θiα;max − θiα;min

θiα;inc

}

All values are in euler angles. For the examles we provide, the following range of motion are

used:

54

• Knees: 2 degrees of freedom with product space [−20 : 10 : 20]
⊗

[−150 : 10 : 30]. Note

that we are not using the rotation input that associates with twisting, which does not

make much difference for the clothing other than very tight clothes.

• Thighs: 2 degrees of freedom with product space [−80 : 10 : 10]
⊗

[−90 : 10 : 90].

We use 100× 100× 100 uniform grid and compute signed distance values for all 1003 nodes

for each pose and use them to generate the training data. The grid can be thought as a

bounding box that covers subregion Ωi for all deformations of θi in the training range. Note

that the points near the 0-isocontour are the most important points to determing the 0-

levelset [PFS19]. We devise a probabilistic selection method to create the training data from

the grid based SDFs (so that we do not use all 1003 points). Point x is selected to appear

in the dataset for joint i if either

|SDF [θi](x)| < ε

or

|SDF [θi](x)| · I < β

Here I is a uniform random variable distributed over interval [0,1], ε is the boundary selection

bound, and β is the randomized selection bound.

For our training data, we choose ε = 0.025 ∗ Li and β = 0.001 ∗ Li where Li is the side

length of the bounding box associated with the ith joint. Figure 3.7-(b,e) shows an example of

chosen grid points. This probabilistic process selects about 30000 grid nodes among 100000.

As it can be seen from the Figure 3.7, all points near boundary are selected, whereas the

points further away from boundary have less chance to be chosen. Furthermore we use the

same point cloud to generate the training data for the boolean network. For each selected

point, we assign a float value 1 if the closest point is on the correct boundary and -1 if on

55

0 20000 40000 60000 80000 100000
Number of epochs

10−4

10−3

10−2

Lo
ss

Training and Validation Loses for SSDFs
VL of Right Knee
TL of Right Knee
VL of Right �igh
TL of Right �igh
VL of Le� Knee
TL of Le� Knee
VL of Le� �igh
TL of Le� �igh

Figure 3.8: Training and validation losses for the Shallow SDF networks for various subre-

gions. y − axis is log scaled.

the interior boundary. Figure 3.7(c,f) shows boolean labeling for knee. Purple points are

closer to the interior boundary, and the blue points are closer to the true boundary.

We use a modified version of clamped loss function as suggested in [PFS19].

L(φi(x,θi), s) = |clamp((φi(x,θi), δ))− clamp(s, δ)|2

where s is the ground truth signed distance value and clamping function is defined as

clamp(s, δ) = min{δ,max{−δ, s}}. Smaller clamping values allows network to focus on

the boundary. In our experiments we saw that L2 error creates visually better results com-

pared to L1. We choose δ = 0.2 ∗ LG. We train our model with TensorFlow [AAB15] on

a single NVIDIA RTX A6000 GPU with 48GB memory. We use 3GB of a shared memory,

allowing us to train multiple models at once. Training is done with back-propagation and the

ADAM [KB15] optimizer with learning rate 0.0001. We train our network for 100K epochs.

Figure 3.9 shows how 0-levelset of the SSDFs evolve after 1K, 10K, 50K and 100K epochs.

Training takes approximately 4 hours for 100K epochs for our network with NL = 5 layers

56

Figure 3.9: Zero-levelsets of the trained SDFs after 1K, 10K, 50K and 100K epochs.

57

Table 3.1: Training and Evaluation Loss.

Network Choices PT PI LT LV Ttrain

NL = 5, NH = 4 183 61 2.227× 10−4 2.222× 10−4 3 hours

NL = 5, NH = 8 555 185 4.117× 10−5 4.119× 10−5 4 hours

NL = 5, NH = 16 1875 625 2.793× 10−5 2.812× 10−5 5 hours

NL = 5, NH = 32 6819 2273 5.518× 10−6 5.751× 10−6 7 hours

NL = 7, NH = 32 13155 4385 3.517× 10−6 3.505× 10−6 10 hours

Table 3.2: PT = Number of Parameters of the network for training. PI = Number of

paramaters of the network for inference. LT = Training loss after 100K epochs. LV =

Validation loss after 100K epochs. Ttrain = Time it takes to train for 100K epochs. The

results shown are for the SSDF of the right knee decribed in Figure 3.10. The degrees of

freedom for the knee is Di = 2.

and NH = 5 neurons at each hidden later.

3.6 Results and Examples

We demonstrate the efficacy of our approach in practical cloth simulation examples over

different types of garments. These are show in Figures 3.1-(a) and 3.12. We use the SDF

in a standard way to resolve collisions during simulation. Specifically, the SDF is queried

to determine if a cloth particle is inside of the body and push it outwards in negative gra-

dient direction if it is inside. We use finite forward differencing to compute the gradient

normal, which requires 3 more queries (one per direction) per particle inside the body. For

optimization we batch queries whenever possible, because increasing the batch size for the

58

Figure 3.10: Example of SSDFs with different network structures trained for the right knee.

Top to bottom 0-levelset of the deformed object for three different joints states are illustrated.

From left to right the following network structures are used: (NL = 5, NH = 4), (NL =

5, NH = 8), (NL = 5, NH = 16), (NL = 7, NH = 2) and (NL = 7, NH = 32). All networks are

trained for 100K epochs. We choose the network structure in yellow for the balance between

speed and performance.

59

Table 3.3: Simulation Timing

Example NP Tsim TSDF PerSDF

Green Pants 4305 13.7ms 2.55ms 19%

Yellow Pants 4169 14.2ms 3.2ms 22.5%

Skirt 6056 37.2ms 3.78ms 10%

Table 3.4: NP = Number of particles on the garment cloth. Tsim = Simulation time per

frame. TSDF = Total time for SDF computation. PerSDF is the percentage of the time used

for collision detection using our learned SDF in total simulation.

model inference reduces average time cost per particle. We achieve real-time performance

with clothing meshes consisting of 4 − 6K particles. Collision detection/resolution takes

between 10 to 25 percent of the total simulation time (See Table 3.3).

We also explicitly illustrate that our learning-based SDFs successfully predict the avatar

skin boundary geometry for the any pose in a continuous motion. Figure 3.11 shows the

0-levelset of the learned SDFs in a jogging sequence. The result is remarkably comparable

to the ground truth. Figure 3.9 illustrates the effect of training convergence. Improved

geometric detail clearly arises with increased training epochs.

60

Figure 3.11: Zero-levelset derived from learned SDF with 4-SSDFs in 3 different joint states.

From left to right: learned SDF, learned SDF and Ground Truth combined, and Ground

Truth are presented.

61

Figure 3.12: Cloth simulation using our network-based SDFs. The character runs in real

time with different garments on. Simulation is performed using Unreal Engine 5.

62

3.7 Discussion and Future Work

Our method allows for real-time SDF queries in practical simulation of clothing collision

against deformable avatar skin surfaces. The use of shallow networks is crucial for ensur-

ing efficient evaluation times, as their localized structure minimizes input queries, thereby

significantly reducing the network size. While we show that this can be done accurately

in the context of pants and dress collisions with the lower torso, there is still room for im-

provement. Increasing the number of weights and biases greatly enhances the expressivity

of the network, as shown in Figure 3.10. Due to performance constraints, we focus on using

very shallow networks. However, increasing the model size allows for capturing additional

details. In future work, we would like to achieve higher accuracy for a given performance

constraint. This can be done with the investigation of novel network architectures, or using

methods such as knowledge distillation where a smaller (student) network is trained to learn

a larger (teacher) network’s output (or the last hidden layer). Lastly, we assume that joint

degrees of freedom θi will not deform the skin too dramatically as in regions Ωj far from the

joint. This will not always be the case and our method could be adjusted to better resolve

these cases. More precisely, with the current design, neighboring subregions may not align

perfectly with each other, leading to discontinuities near their intersections. This can be

seen in the knee-tight intersection in upper rightmost image in Figure 3.9. We also would

like to investigate models that accepts the neighboring joint states as input.

63

REFERENCES

[AAB15] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. “Ten-
sorFlow: Large-Scale Machine Learning on Heterogeneous Systems.”, 2015. Soft-
ware available from tensorflow.org.

[ADG16] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul,
B. Shillingford, and Nando de Freitas. “Learning to learn by gradient descent by
gradient descent.” Advances in Neural Information Processing Systems, p. 29,
2016.

[ADP20] J. Ackmann, P. D. Düben, T. N. Palmer, and P. K. Smolarkiewicz. “Machine-
learned preconditioners for linear solvers in geophysical fluid flows.” arXiv
preprint arXiv:2010.02866, 2020.

[BFA02] R. Bridson, R. Fedkiw, and J. Anderson. “Robust Treatment of Collisions, Con-
tact and Friction for Cloth Animation.” ACM Trans Graph, 21(3):594–603, 2002.

[BHH19] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner. “Learning data-driven
discretizations for partial differential equations.” Proceedings of the National
Academy of Sciences, 116(31):15344–15349, 2019.

[BHJ20] C. Beck, M. Hutzenthaler, A. Jentzen, and B. Kuckuck. “An overview on deep
learning-based approximation methods for partial differential equations.”, 2020.

[BME20] H. Bertiche, M. Madadi, and S. Escalera. “Cloth3d: clothed 3d humans.” In
European Conf Comp Vision (ECCV), pp. 344–359. Springer, 2020.

[BMT21] H. Bertiche, M. Madadi, E. Tylson, and S. Escalera. “DeePSD: Automatic
deep skinning and pose space deformation for 3D garment animation.” In Proc
EEE/CVF International Conference on Computer Vision, pp. 5471–5480, 2021.

[Bra77] A. Brandt. “Multi-level adaptive solutions to boundary-value problems.” Math
Comp, 31(138):333–390, 1977.

[Bri08] R. Bridson. Fluid simulation for computer graphics. Taylor & Francis, 2008.

[BW98] D. Baraff and A. Witkin. “Large Steps in Cloth Simulation.” In Proc ACM
SIGGRAPH, SIGGRAPH ’98, pp. 43–54, 1998.

64

[BZY21] M. Baorui, H. Zhizhong, L. Yu-Shen, and Z. Matthias. “Neural-Pull: Learning
Signed Distance Functions from Point Clouds by Learning to Pull Space onto
Surfaces.” In International Conference on Machine Learning (ICML), 2021.

[CCC22] T. Chen, X. Chen, W. Chen, H. Heaton, J. Liu, Z. Wang, and W. Yin. “Learning
to optimize: a primer and a benchmark.” Journal of Machine Learning Research
23, pp. 8562–8620, 2022.

[Cho67] A. Chorin. “A numerical method for solving incompressible viscous flow prob-
lems.” J Comp Phys, 2(1):12–26, 1967.

[CKM21] J. Chen, V. Kala, A. Marquez-Razon, E. Gueidon, D. A. B. Hyde, and J. Teran.
“A Momentum-Conserving Implicit Material Point Method for Surface Tension
with Contact Angles and Spatial Gradients.” ACM Trans. Graph., 40(4), jul
2021.

[CLI20] R. Chabra, J. Lenssen, E. Ilg, T. Schmidt, J. Straub, S. Lovegrove, and R. New-
combe. “Deep local shapes: Learning local sdf priors for detailed 3d reconstruc-
tion.” In Computer Vision–ECCV 2020, pp. 608–625. Springer, 2020.

[CMW22] S. Cai, Z. Mao, Z. Wang, M. Yin, and G. E. Karniadakis. “Physics-informed
neural networks (PINNs) for fluid mechanics: A review.” Acta Mechanica Sinica,
pp. 1–12, 2022.

[flu22] fluidnetsc22. “fluidnetsc22/fluidnet sc22: v0.0.1.”, April 2022. doi: 10.5281/zen-
odo.6424901, URL: https://doi.org/10.5281/zenodo.6424901.

[FSJ01] R. Fedkiw, J. Stam, and H. Jensen. “Visual simulation of smoke.” In SIG-
GRAPH, pp. 15–22. ACM, 2001.

[GA18] M. Götz and H. Anzt. “Machine learning-aided numerical linear algebra: Con-
volutional neural networks for the efficient preconditioner generation.” In 2018
IEEE/ACM 9th Workshop on Latest Advances in Scalable Algorithms for Large-
Scale Systems (scalA), pp. 49–56. IEEE, 2018.

[GCS19] E. Gundogdu, V. Constantin, A. Seifoddini, M. Dang, M. Salzmann, and P. Fua.
“Garnet: A two-stream network for fast and accurate 3d cloth draping.” In Proc
IEEE/CVF Int Conf Comp Vision, pp. 8739–8748, 2019.

[GCV19] K. Genova, F. Cole, D. Vlasic, A. Sarna, W. T. Freeman, and T. Funkhouser.
“Learning shape templates with structured implicit functions.” In Proc
IEEE/CVF ICCV, pp. 7154–7164, 2019.

[GGB19] D. Greenfeld, M. Galun, R. Basri, I. Yavneh, and R. Kimmel. “Learning to op-
timize multigrid PDE solvers.” In Int Conf Mach Learn, pp. 2415–2423. PMLR,
2019.

65

https://doi.org/10.5281/zenodo.6424901

[GHF19] F. Gibou, D. Hyde, and R. Fedkiw. “Sharp Interface Approaches and Deep
Learning Techniques for Multiphase Flows.” Journal of Computational Physics,
380:442–463, 2019.

[GHM20] S. Gagniere, D. Hyde, A. Marquez-Razon, C. Jiang, Z. Ge, X. Han, Q. Guo, and
J. Teran. “A Hybrid Lagrangian/Eulerian Collocated Velocity Advection and
Projection Method for Fluid Simulation.” Computer Graphics Forum, 39(8):1–
14, 2020.

[GL12] G. Golub and C. Van Loan. Matrix computations, volume 3. JHU Press, 2012.

[GSK16] A. Grebhahn, N. Siegmund, H. Köstler, and S. Apel. “Performance prediction of
multigrid-solver configurations.” In Software for Exascale Computing-SPPEXA
2013-2015, pp. 69–88. Springer, 2016.

[Hay94] S. Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR,
1994.

[HKU20] P. Holl, V. Koltun, K. Um, and N. Thuerey. “phiflow: A differentiable pde solving
framework for deep learning via physical simulations.” In NeurIPS Workshop,
2020.

[HS52] M. R. Hestenes and E. Stiefel. “Methods of Conjugate Gradients for Solving Lin-
ear Systems.” Journal of research of the National Bureau of Standards, 49(6):409,
1952.

[HW65] F. Harlow and E. Welch. “Numerical Calculation of Time Dependent Viscous
Flow of Fluid with a Free Surface.” Phys Fluid, 8(12):2182–2189, 1965.

[HZE19] J.-T. Hsieh, S. Zhao, S. Eismann, L. Mirabella, and S. Ermon. “Learning Neural
PDE Solvers with Convergence Guarantees.”, 2019.

[HZR16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Residual
Learning for Image Recognition.” In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 770–778, 2016.

[IFH20] T. Ichimura, K. Fujita, M. Hori, L. Maddegedara, N. Ueda, and Y. Kikuchi.
“A Fast Scalable Iterative Implicit Solver with Green’s function-based Neural
Networks.” In 2020 IEEE/ACM 11th Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems (ScalA), pp. 61–68, 2020.

[JGG20] J. Jakob, M. Gross, and T. Günther. “A fluid flow data set for machine learning
and its application to neural flow map interpolation.” IEEE Transactions on
Visualization and Computer Graphics, 27(2):1279–1289, 2020.

66

[JSS15] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. “The Affine
Particle-In-Cell Method.” ACM Trans Graph, 34(4):51:1–51:10, 2015.

[KB15] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization.”
CoRR, abs/1412.6980, 2015.

[Ker78] D. Kershaw. “The incomplete Cholesky conjugate gradient method for the iter-
ative solution of systems of linear equations.” J Comp Phys, 26(1):43–65, 1978.

[KFB23] M. Koptev, N. Figueroa, and A. Billard. “Neural Joint Space Implicit Signed
Distance Functions for Reactive Robot Manipulator Control.” IEEE Robotics
and Automation Letters, 8(2):480–487, 2023.

[KKL21] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang.
“Physics-informed machine learning.” Nature Reviews Physics, 3(6):422–440,
2021.

[Lan50] C. Lanczos. “An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators.” 1950.

[LDF22] I. Liao, Rumen R. Dangovski, Jakob N. Foerster, and M. Soljačić. “Learning to
Optimize Quasi-Newton Methods.” arXiv preprint, 2022.

[LFO06] F. Losasso, R. Fedkiw, and S. Osher. “Spatially adaptive techniques for level set
methods and incompressible flow.” Computers & Fluids, 35(10):995–1010, 2006.

[LGF04] F. Losasso, F. Gibou, and R. Fedkiw. “Simulating water and smoke with an
octree data structure.” ACM Trans. Graph., 23(3):457–462, 2004.

[LGM20] I. Luz, M. Galun, H. Maron, R. Basri, and I. Yavneh. “Learning algebraic multi-
grid using graph neural networks.” In Int Conf Mach Learn, pp. 6489–6499.
PMLR, 2020.

[LKB21] K. Luna, K. Klymko, and J. P. Blaschke. “Accelerating GMRES with Deep
Learning in Real-Time.”, 2021.

[LLK19] J. Liang, M. Lin, and V. Koltun. “Differentiable Cloth Simulation for Inverse
Problems.” In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

[LM16] K. Li and J. Malik. “Learning to Optimize.” arXiv preprint, 2016.

[LWY23] Y. Liu, L. Wang, J. Yang, W. Chen, X. Meng, Bo. Yang, and L. Gao. “NeUDF:
Leaning Neural Unsigned Distance Fields With Volume Rendering.” In Proc
IEEE/CVF CVPR, pp. 237–247, June 2023.

67

[MLT89] N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann. “Joint-Dependent
Local Deformations for Hand Animation and Object Grasping.” In ProcGraph
Int ’88, pp. 26–33. Canadian Information Processing Society, 1989.

[MST10] A. McAdams, E. Sifakis, and J. Teran. “A Parallel Multigrid Poisson Solver for
Fluids Simulation on Large Grids.” In Proc 2010 ACM SIGGRAPH/Eurograph
Symp Comp Anim, pp. 65–74. Eurographics Association, 2010.

[Nus81] H. Nussbaumer. “The fast Fourier transform.” In Fast Fourier Transform and
Convolution Algorithms, pp. 80–111. Springer, 1981.

[OCD22] J. Ortiz, A. Clegg, J. Dong, E. Sucar, D. Novotny, M. Zollhoefer, and
M. Mukadam. “iSDF: Real-Time Neural Signed Distance Fields for Robot Per-
ception.” In Robotics: Science and Systems, 2022.

[OF03] S. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces. Ap-
plied mathematical science. Springer, New York, N.Y., 2003.

[Pai71] C. C. Paige. The computation of eigenvalues and eigenvectors of very large sparse
matrices. PhD thesis, University of London, 1971.

[PFS19] J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. “DeepSDF:
Learning Continuous Signed Distance Functions for Shape Representation.” In
Proc IEEE/CVF CVPR, June 2019.

[PGG23] J. Panuelos, R. Goldade, E. Grinspun, D.I.W. Levin, and C. Batty. “PolyStokes:
A Polynomial Model Reduction Method for Viscous Fluid Simulation.” ACM
Trans Graph (TOG), 42(4), 2023.

[PS75] C. C. Paige and M. A. Saunders. “Solution of sparse indefinite systems of linear
equations.” SIAM journal on numerical analysis, 12(4):617–629, 1975.

[PZ11] A. Paluszny and R. W. Zimmerman. “Numerical simulation of multiple 3D frac-
ture propagation using arbitrary meshes.” Computer Methods in Applied Me-
chanics and Engineering, 200(9):953–966, 2011.

[RCC23] C. Romero, D. Casas, M. Chiaramonte, and M. Otaduy. “Learning Contact
Deformations with General Collider Descriptors.” In SIGGRAPH Asia 2023
Conf Papers, SA ’23. ACM, 2023.

[RGT18] H. Ruelmann, M. Geveler, and S. Turek. “On the Prospects of Using Machine
Learning for the Numerical Simulation of PDEs: Training Neural Networks to
Assemble Approximate Inverses.”, 2018.

68

[RPK19] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations.” Journal of Computational
physics, 378:686–707, 2019.

[Saa03] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, USA, 2nd edition, 2003.

[SCH19] J. Shen, X. Chen, H. Heaton, T. Chen, J. Liu, W. Yin, and Z. Wang. “Learning
a minimax optimizer: A pilot study.” International Conference on Learning
Representations, 2019.

[SCT20] V. Sitzmann, E. Chan, R. Tucker, N. Snavely, and G. Wetzstein. “MetaSDF:
Meta-Learning Signed Distance Functions.” In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pp. 10136–10147. Curran Associates, Inc., 2020.

[Set96] J. Sethian. “A fast marching level set method for monotonically advancing
fronts.” Proc Nat Acad Sci, 93(4):1591–1595, 1996.

[SGP20] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia.
“Learning to simulate complex physics with graph networks.” In International
Conference on Machine Learning, pp. 8459–8468. PMLR, 2020.

[SLF08] A. Selle, M. Lentine, and R. Fedkiw. “A Mass Spring Model for Hair Simulation.”
ACM Trans Graph, 27(3):64:1–64:11, 2008.

[SMF20] J. Sirignano, J. F. MacArt, and J. B. Freund. “DPM: A deep learning PDE
augmentation method with application to large-eddy simulation.” Journal of
Computational Physics, 423:109811, 2020.

[SS86] Y. Saad and M. Schultz. “GMRES: A generalized minimal residual algorithm
for solving nonsymmetric linear systems.” SIAM J Sci Stat Comp, 7(3):856–869,
1986.

[SSH19] J. Sappl, L. Seiler, M. Harders, and W. Rauch. “Deep Learning of Preconditioners
for Conjugate Gradient Solvers in Urban Water Related Problems.”, 2019.

[Sta20] R. Stanaityte. ILU and Machine Learning Based Preconditioning For The Dis-
cretized Incompressible Navier-Stokes Equations. PhD thesis, University of Hous-
ton, 2020.

[Sti52] E. Stiefel. “Über einige methoden der relaxationsrechnung.” Zeitschrift für ange-
wandte Mathematik und Physik ZAMP, 3(1):1–33, 1952.

69

[STO21] I. Santesteban, N. Thuerey, M. Otaduy, and D. Casas. “Self-supervised colli-
sion handling via generative 3d garment models for virtual try-on.” In Proc
IEEE/CVF Conf Comp Vision and Pattern Recognition, pp. 11763–11773, 2021.

[SYE00] Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc’h. “A Deflated Version of the Con-
jugate Gradient Algorithm.” SIAM Journal on Scientific Computing, 21:1909–
1926, 2000.

[TB97] L. Trefethen and D. Bau. Numerical Linear Algebra, volume 50. SIAM, 1997.

[TKC21] E. Tumanov, D. Korobchenko, and N. Chentanez. “Data-Driven Particle-Based
Liquid Simulation with Deep Learning Utilizing Sub-Pixel Convolution.” Proceed-
ings of the ACM on Computer Graphics and Interactive Techniques, 4(1):1–16,
2021.

[TSS17] J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin. “Accelerating Eulerian
fluid simulation with convolutional networks.” In D. Precup and Y. Teh, editors,
Proc 34th Int Conf Mach Learn, volume 70 of Proc Mach Learn Res, pp. 3424–
3433. PMLR, 06–11 Aug 2017.

[TWT16] M. Tang, H. Wang, L. Tang, R. Tong, and D. Manocha. “CAMA: Contact-
Aware Matrix Assembly with Unified Collision Handling for GPU-based Cloth
Simulation.” Comp Graph Forum, 35(2):511–521, 2016.

[TZW22] Q. Tan, Y. Zhou, T. Wang, D. Ceylan, X. Sun, and D. Manocha. “A repulsive
force unit for garment collision handling in neural networks.” In European Conf
Comp Vision (ECCV), pp. 451–467. Springer, 2022.

[UBF20] K. Um, R. Brand, Y. Fei, P. Holl, and N. Thuerey. “Solver-in-the-Loop: Learn-
ing from Differentiable Physics to Interact with Iterative PDE-Solvers.” In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems, volume 33, pp. 6111–6122.
Curran Associates, Inc., 2020.

[UPT20] B. Ummenhofer, L. Prantl, N. Thuerey, and V. Koltun. “Lagrangian Fluid Simu-
lation with Continuous Convolutions.” In International Conference on Learning
Representations, 2020.

[VGO20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,

70

Paul van Mulbregt, and SciPy 1.0 Contributors. “SciPy 1.0: Fundamental Algo-
rithms for Scientific Computing in Python.” Nature Methods, 17:261–272, 2020.

[Wan14] H. Wang. “Defending Continuous Collision Detection Against Errors.” ACM
Trans Graph, 33(4):122:1–122:10, 2014.

[WBT19] S. Wiewel, M. Becher, and N. Thuerey. “Latent space physics: Towards learning
the temporal evolution of fluid flow.” In Computer graphics forum, volume 38,
pp. 71–82. Wiley Online Library, 2019.

[WLF18] Z. Wang, L.Wu, M. Fraftarcangeli, M. Tang, and H. Wang. “Parallel Multigrid
for nonlinear cloth simulation.” Computer Graphics Forum, 37(7):131–141, 2018.

[WWY20] L. Wu, B. Wu, Y. Yang, and H. Wang. “A Safe and Fast Repulsion Method for
GPU-Based Cloth Self Collisions.” ACM Trans. Graph., 40(1), dec 2020.

[WY16] H. Wang and Y. Yang. “Descent methods for elastic body simulation on the
GPU.” ACM Trans Graph, 35(6):1–10, Nov 2016.

[YYX16] C. Yang, X. Yang, and X. Xiao. “Data-driven projection method in fluid simu-
lation.” Comp Anim Virt Worlds, 27(3-4):415–424, 2016.

71

	Introduction of Linear Systems
	Linear Systems
	Overview Of Iterative Line Search Methods
	Conjugate Gradients (CG) Algorithm
	Preconditioned Conjugate Gradients Algorithm

	A Deep Conjugate Direction Method for Iteratively Solving Linear Systems
	Introduction
	Related Work
	Motivation: Incompressible Flow
	Deep Conjugate Direction Method
	Model Architecture, Datasets, and Training
	Loss Function and Self-supervised Learning
	Model Architecture
	Training

	Results and Analysis
	Conclusions
	Additional Results and Model Architecture Discussion
	Additional Convergence Results
	Ablation Study and Runtime Analysis
	Model training

	MLLevelSets, or Shallow Signed Distance Functions for Kinematic Collision Bodies
	Introduction and Related Work
	Character Kinematics
	Signed Distance Function
	Shallow Joint Signed Distance Functions
	Model Architecture and Joint Depended Weights

	Training and Dataset Creation
	Results and Examples
	Discussion and Future Work

	References

