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ABSTRACT OF THE DISSERTATION
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by
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Professor Robert E. Weiss, Co-chair

Professor Catherine A. Sugar, Co-chair

The UCLA Neurocognitive Family Study (NFS) collected multiple measurements on

schizophrenia (SZ) patients and their relatives, as well as control subjects and their

relatives, to study heritable vulnerability factors for schizophrenia. Each family has

several members enrolled in the study and the same multiple outcomes were measured

on each person. The relationship structure is complicated because not only observations

on individuals from the same family are correlated, but the multiple outcome measures

on the same individuals are also correlated. Traditional familial data analyses model

outcomes separately and thus do not provide information about the interrelationships

among them. I propose a Bayesian Family Factor Model (BFFM), which extends the

classical confirmatory factor analysis (CFA) model to explain the correlations among

observed variables using a combination of family-member factors and outcome fac-

tors. Traditional methods for fitting CFA models, such as full information maximum

likelihood (FIML) estimation using quasi-Newton optimization (QNO) can have con-

vergence problems and Heywood cases caused by empirical under-identification. In

contrast, modern Bayesian Markov chain Monte Carlo (MCMC) handles these infer-

ence problems easily. Simulations compare the BFFM to FIML-QNO in settings where

the true covariance matrix is identified, close to not identified and not identified. For

these settings, FIML-QNO fails to fit the data in 85%, 57% and 13% of the cases, re-

ii



spectively, due to non-convergence or invalid estimates, while MCMC provides stable

estimates. When both methods successfully fit the data, estimates from the BFFM have

smaller variances and comparable mean squared errors. BFFM can test hypotheses of

interest easily using Bayes factors computed as the Savage-Dickey ratios. I illustrate

the BFFM by analyzing the UCLA NFS data and test hypotheses about differences in

means between SZ and control families. Tests of the group mean differences using

posterior probabilities suggest that SZ probands perform worse in all 17 neurocogitive

measures than control probands, while mothers of SZ subjects do worse than control

mothers.

iii



The dissertation of Qiaolin Chen is approved.

Keith H. Nuechterlein

Donatello Telesca

Catherine A. Sugar, Committee Co-chair

Robert E. Weiss, Committee Co-chair

University of California, Los Angeles

2014

iv



This doctoral dissertation is dedicated to my always encouraging parents, Yuwang

Chen and Guanlian Zhu, and my sweet little girl, Eunice Gao, with whom I could have

spent more time during the past three years. I would like to acknowledge the

inspirational instruction and guidance of my advisors, Dr. Robert E. Weiss and Dr.

Catherine A. Sugar, who understood and helped me during hard times in my life.

Finally, I would like to thank my mathematics and statistics tutor Dr. Wenhua Gao. I

could not have changed my career.

v



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The UCLA Neurocognitive Family Study Data . . . . . . . . . . . . . 2

1.2 Current Approaches and Problems . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Confirmatory Factor Analysis . . . . . . . . . . . . . . . . . . 6

1.2.2 Multitrait-Multimethod (MTMM) Analysis . . . . . . . . . . . 8

1.2.3 Bayesian Factor Analysis . . . . . . . . . . . . . . . . . . . . . 9

2 The Bayesian Family Factor Model . . . . . . . . . . . . . . . . . . . . 11

2.1 Specification of the BFFM . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Conditionally Conjugate Priors for BFFM . . . . . . . . . . . . . . . . 15

2.3 Specification of Prior Hyper-parameters . . . . . . . . . . . . . . . . . 16

2.3.1 Gibbs Sampling from the Posterior Distribution . . . . . . . . . 18

2.4 Data Likelihood and the Conditional Posterior Distributions . . . . . . 19

2.4.1 Missing Data Imputation . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Regression Coefficients, β . . . . . . . . . . . . . . . . . . . . 23

2.4.3 Factor Loading Matrices, ΛA and ΛB . . . . . . . . . . . . . . 23

2.4.4 Unique Error Variances, ψk . . . . . . . . . . . . . . . . . . . 24

2.4.5 Factor Variance Matrices, ΦA and ΦB . . . . . . . . . . . . . . 25

2.4.6 Factor Scores, fAi and fBi . . . . . . . . . . . . . . . . . . . . 26

2.5 A Gibbs Sampling Algorithm . . . . . . . . . . . . . . . . . . . . . . . 26

3 Analysis of Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Generating Data Sets for Simulation Studies . . . . . . . . . . . . . . . 28

vi



3.2 Comparing BFFM and CFA: Producing Valid Solutions . . . . . . . . . 29

3.3 Comparing the Performance of BFFM and FIML-QNO When FIML-

QNO Was Successful . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Impact of Missing Data on Failure of FIML-QNO . . . . . . . . . . . . 35

4 Application of the Bayesian Family Factor Model to the UCLA Family

Study Data with Five Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 The UCLA Neurocognitive Family Study Data . . . . . . . . . . . . . 38

4.2 Prior Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Summary of Posterior Distributions . . . . . . . . . . . . . . . . . . . 49

5 Application of the Bayesian Family Factor Model to the UCLA Family

Study Data with Seventeen Outcomes . . . . . . . . . . . . . . . . . . . . . 54

5.1 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Prior Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Posterior Distribution Summary . . . . . . . . . . . . . . . . . . . . . 64

5.3.1 Regression Coefficients . . . . . . . . . . . . . . . . . . . . . . 64

5.3.2 Factor Covariance and Correlation Matrices . . . . . . . . . . . 68

5.3.3 Factor Loadings . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Hypothesis Testing using Bayes Factors . . . . . . . . . . . . . . . . . . 76

6.1 Testing Hypotheses for Familial Data with Multiple Outcomes . . . . . 78

6.2 Illustration of Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . 81

6.2.1 Comparing Different Methods Using Simulated Data Sets . . . 83

6.2.2 Results for the UCLA Neurocognitive Family Study . . . . . . 86

7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vii



APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A Values of True Parameters for Simulation Studies . . . . . . . . . . . . 89

B The Performance of BFFM and Quasi-Newton Optimization in Simulation

Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

C Summary Statistics for the UCLA Family Study Data . . . . . . . . . . 111

D Summary of Posterior Distributions for the UCLA Family Study Data with

Five Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

E Descriptive Statistics and Prior Specification for the UCLA Family Study

Data with Seventeen Outcomes . . . . . . . . . . . . . . . . . . . . . . . . 122

F Summary of Posterior Distributions for the UCLA Family Study Data with

17 Outcomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

viii



LIST OF FIGURES

1.1 A path diagram for the Bayesian Family Factor Model (BFFM) . . . . . 5

3.1 The percent of data sets for which FIML-QNO converges and gives

valid estimates, in scenarios where the true covariance matrices are

identified, close to under-identified and under-identified . . . . . . . . . 31

3.2 Comparing relative mean squared errors, relative variances and relative

squared biases for parameters estiamted by BFFM and FIML-QNO . . . 34

3.3 Percent of data sets which FIML-QNO is successful in fitting, in the

scenario where the true covariance matrix is close to not identified . . . 37

4.1 Neurocognitive performance measures collected in the UCLA Neu-

rocognitive Family Study. . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Posterior densities for means of CPT37D and differences in means of

CPT37D between SZ and control families . . . . . . . . . . . . . . . . 53

5.1 A heat map of raw pair-wise correlations among observations of the 17

outcome measures, ignoring the within family correlations . . . . . . . 59

5.2 A dendrogram corresponding to clustering of the 17 outcome measures

using VARCLUS in SAS, ignoring the family structure. . . . . . . . . . 60

5.3 A heat map of prior correlations among the 17 outcome measures . . . 63

5.4 Heat maps of relative posterior means of group means and the corre-

sponding posterior probabilities, p(θ < 0|Y ) . . . . . . . . . . . . . . 66

5.5 A heat map of posterior probabilities of the parameters being smaller

than 0, p(θ < 0|Y ), based on the BFFM. The rows and columns are

clustered and re-ordered. . . . . . . . . . . . . . . . . . . . . . . . . . 67

ix



5.6 Heat maps of posterior means of outcome factor correlations estimated

in BFFM with 17 outcomes and with 5 outcomes . . . . . . . . . . . . 70

5.7 Heat maps of the posterior means of outcome factor correlations (left)

and the corresponding posterior probabilities, p(θ < 0|Y )(right). . . . . 71

5.8 Heat map of the posterior means of outcome factor correlations (left)

and heat map of the posterior probabilities, p(θ < 0|Y ) (right). . . . . . 72

5.9 Heat map of the posterior means of family member factor loadings

(left) and heat map of the posterior probabilities, p(θ < 0|Y ) (right). . . 74

5.10 Heat map of the posterior means of outcome factor loadings (left) and

heat map of the posterior probabilities, p(θ < 0|Y ) (right). . . . . . . . 75

6.1 Scatter plots of the BFs using normal approximation method on the x-

axis against those using CDME (red) or KDE (green) on the y-axis, for

all 3 hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

D.1 Posterior density of group means for probands, siblings, fathers and

mothers in the control (solid lines) and SZ (dashed lines) families. . . . 119

D.2 Posterior density plots of family member factor loadings, ajk, for j =

1, . . . , 4 corresponding to probands, siblings, fathers and mothers and

k = 2, . . . , 5 corresponding to CPTDSD, CPT37D, SPAN10 and logTRLBA.120

D.3 Posterior density plots of outcome factor loadings, bjk, for j = 2, . . . , 4

corresponding to siblings, fathers and mothers and k = 1, . . . , 5 corre-

sponding to MANIPA, CPTDSD, CPT37D, SPAN10 and logTRLBA. . 121

F.1 Posterior densities of means for probands, fathers, mothers and siblings

in schizophrenia family (dashed lines) and control family (solid lines). 127

x



F.2 Posterior densities of means for probands, fathers, mothers and siblings

in schizophrenia family (dashed lines) and control family (solid lines),

continued. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

F.3 Posterior densities of means for probands, fathers, mothers and siblings

in schizophrenia family (dashed lines) and control family (solid lines),

continued. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

xi



LIST OF TABLES

3.1 Percent of complete and 15% missing data sets which FILM-QNO was

successful to fit. The data sets with missing are generated from com-

plete data sets by setting observations to missing at p = 0.15. . . . . . . 35

3.2 Percent of data sets which FIML-QNO did not fail, in the close to

Under-identified scenario. Invalid, not converge and converge refer to

the situations where FIML-QNO gives invalid estimates, fails to con-

verge, and neither of the above. . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Frequencies of family member types and gender by schizophrenia/control

group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Variable descriptions and transformations for five neurocognitive mea-

surements of primary interest. . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Overall means and variances for the K = 17 outcome measures, ob-

tained from Phase 1 data of the UCLA Family Study and from previous

literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Correlations across outcomes ignoring the family structure from the

Phase 1 data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 The within-outcome across-family-member correlations for the four

outcomes in Phase 1 data. . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Posterior means of factor variances, factor correlations, factor loadings

and unique error variances estimated by BFFM . . . . . . . . . . . . . 51

4.7 Posterior means of regression coefficients and differences in group means 52

5.1 Descriptions and transformations or scalings of 17 outcome measures . 56

5.2 Means and standard deviations of 17 outcomes by schizophrenia (SZ)

and control family. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xii



5.3 Grouping the 17 outcome measures into 5 clusters, based on the sets of

tests and results of variable clustering. . . . . . . . . . . . . . . . . . . 61

5.4 Posterior means of the family member factor correlations and variances

(top) and the corresponding posterior probabilities of the parameters

being smaller than 0, p(θ < 0|Y ) (bottom). . . . . . . . . . . . . . . . 69

6.1 A scale for interpretation of Bayes factors . . . . . . . . . . . . . . . . 77

6.2 True parameter values for group means of K = 5 outcomes on J = 4

family members in the control and SZ families for the 200 simulated

data sets analyzed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 Bayes factors for testing different hypotheses on the UCLA Family

Study Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.1 Values of true parameters for simulation studies. . . . . . . . . . . . . . 89

A.2 Values of true parameters for simulation studies. . . . . . . . . . . . . . 90

A.3 Values of true parameters for simulation studies. . . . . . . . . . . . . . 91

B.1 Comparison of the relative mean squared errors (MSEs), relative vari-

ances and relative squared biases in the scenario where the true covari-

ance matrix is identified . . . . . . . . . . . . . . . . . . . . . . . . . . 93

B.2 Comparison of the relative mean squared errors (MSEs), relative vari-

ances and relative squared biases in the scenario where the true covari-

ance matrix is identified, continued . . . . . . . . . . . . . . . . . . . . 94

B.3 Comparison of the relative mean squared errors (MSEs), relative vari-

ances and relative squared biases in the scenario where the true covari-

ance matrix is identified, continued . . . . . . . . . . . . . . . . . . . . 95

xiii



B.4 Comparison of the relative mean squared errors (MSEs), relative vari-

ances and relative squared biases in the scenario where the true covari-

ance matrix is identified, continued . . . . . . . . . . . . . . . . . . . . 96

B.5 Comparison of the relative mean squared errors (MSEs), relative vari-

ances and relative squared biases in the scenario where the true covari-

ance matrix is identified, continued . . . . . . . . . . . . . . . . . . . . 97

B.6 Comparison of the relative mean squared errors (MSEs), relative vari-

ances and relative squared biases in the scenario where the true covari-

ance matrix is identified, continued . . . . . . . . . . . . . . . . . . . . 98

B.7 Comparison of the relative mean squared errors (MSEs), relative vari-

ances and relative squared biases in the scenario where the true covari-

ance matrix is close to not identified, continued . . . . . . . . . . . . . 99

B.8 Comparison of the relative mean squared errors (MSEs), relative vari-

ances and relative squared biases in the scenario where the true covari-

ance matrix is close to not identified, continued . . . . . . . . . . . . . 100

B.9 Comparison of the relative mean squared errors (MSEs), relative vari-

ances and relative squared biases in the scenario where the true covari-

ance matrix is close to not identified, continued . . . . . . . . . . . . . 101

B.10 Comparison of the relative mean squared errors (MSEs), relative vari-

ances and relative squared biases in the scenario where the true covari-

ance matrix is close to not identified, continued . . . . . . . . . . . . . 102

B.11 Comparison of the relative mean squared errors (MSEs), relative vari-

ances and relative squared biases in the scenario where the true covari-

ance matrix is close to not identified, continued . . . . . . . . . . . . . 103

B.12 Comparison of the relative mean squared errors (MSEs), relative vari-

ances and relative squared biases in the scenario where the true covari-

ance matrix is close to not identified, continued . . . . . . . . . . . . . 104

xiv



B.13 Comparison of the relative mean squared errors (MSEs), relative vari-

ances and relative squared biases in the scenario where the true covari-

ance matrix is not identified . . . . . . . . . . . . . . . . . . . . . . . . 105

B.14 Comparison of the relative mean squared errors (MSEs), relative vari-

ances and relative squared biases in the scenario where the true covari-

ance matrix is not identified, continued . . . . . . . . . . . . . . . . . . 106

B.15 Comparison of the relative mean squared errors (MSEs), relative vari-

ances and relative squared biases in the scenario where the true covari-

ance matrix is not identified, continued . . . . . . . . . . . . . . . . . . 107

B.16 Comparison of the relative mean squared errors (MSEs), relative vari-

ances and relative squared biases in the scenario where the true covari-

ance matrix is not identified, continued . . . . . . . . . . . . . . . . . . 108

B.17 Comparison of the relative mean squared errors (MSEs), relative vari-

ances and relative squared biases in the scenario where the true covari-

ance matrix is not identified, continued . . . . . . . . . . . . . . . . . . 109

B.18 Comparison of the relative mean squared errors (MSEs), relative vari-

ances and relative squared biases in the scenario where the true covari-

ance matrix is not identified, continued . . . . . . . . . . . . . . . . . . 110

C.1 Raw group means and standard deviations of the 5 outcomes measured

on probands, siblings, fathers and mothers in the schizophrenia and

control families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

C.2 Correlation matrix of measurements of 5 outcomes on 4 family members.113

C.3 Sample correlations between measures from different family members

for the same outcome. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

D.1 Posterior means and SD of unique error vairances, ψk, family member

factor covriance matrix and family member factor loadings . . . . . . . 116

xv



D.2 Posterior means and SD of outcome factor variances and covariances,

as well as the outcome factor loadings . . . . . . . . . . . . . . . . . . 117

D.3 Posterior means and SD of regression coefficients and differences be-

tween SZ and control families . . . . . . . . . . . . . . . . . . . . . . 118

E.1 Sample correlations among observations of 17 outcomes from the UCLA

NFS data, ignoring the family structure. . . . . . . . . . . . . . . . . . 123

E.2 Means and variances of hyper-parameters . . . . . . . . . . . . . . . . 124

E.3 Prior correlation matrix of outcome factors . . . . . . . . . . . . . . . . 125

F.1 Posterior means of group means for control and schizophrenia families

and the posterior means of difference between group means . . . . . . . 130

F.2 Posterior means of outcome factor correlations. . . . . . . . . . . . . . 131

F.3 Posterior means of outcome factor variances, family member factor

loadings and outcome factor loadings. . . . . . . . . . . . . . . . . . . 132

xvi



ACKNOWLEDGMENTS

The author thanks Dr. Keith H. Nuechterlein and Dr. Robert F. Asarnow for access to

the data and for helpful discussions. The author is also deeply grateful to Dr. Weiss

and Dr. Sugar for their valuable guidance and help. This work was partially funded

by a Dissertation Year Fellowship from the Graduate Division at UCLA and by NIMH

Grants MH041953, MH049716, MH045112, MH037705 and MH066286.

xvii



VITA

2002-2006 B.S. (Biological Sciences), Peking University, Beijing, China.

2006-2009 Ph.D. Candidate (Microbiology, Immunology and Molecular Ge-

netics), UCLA, Los Angeles, California.

2009-2011 M.S. (Biostatistics), UCLA, Los Angeles, California.

2009–2010 Teaching Assistant, Department of Biostatistics, UCLA.

2010 Clinical Programmer Intern, Baxter Biosciences, Westlake Village,

CA.

2010–present Biostatistics Graduate Research Assistant, Semel Institute Bio-

statistics Core, UCLA.

PUBLICATIONS AND PRESENTATIONS

Schlosser, D.A., Jacobson, S., Chen, Q., Sugar, C.A., Niendam, T.A., Li, G., Bearden,

C.E. and Cannon, T.D. Recovery From an At-Risk State: Clinical and Functional Out-

comes of Putatively Prodromal Youth Who Do Not Develop Psychosis. Schizophrenia

Bulletin, August 2011; 38 (6): 1225-1233.

Miller, M. E., Chen, Q., Elashoff, D., Abemayor, E. and St. John, M. , Positron emis-

sion tomography and positron emission tomography-CT evaluation for recurrent pap-

illary thyroid carcinoma: Meta-analysis and literature review. Head and Neck, April

2011; 33(4): 562-565.

xviii



Miller, M.E., Palla, B., Chen, Q., Elashoff, D.A., Abemayor, E., St John, M.A. and

Lai, C.K. A novel classification system for perineural invasion in noncutaneous head

and neck squamous cell carcinoma: histologic subcategories and patient outcomes.

American Journal of Otolaryngology, 2011; 33(2): 212C215.

Miller, M.E., Palla, B., Chen, Q.., Elashoff, D.A., Abemayor, E., St John, M.A. and

Lai, C.K. A Novel Classification System for Perineural Invasion: Histologic Subcate-

gory Relates to Patient Outcome. The Laryngoscope, 120 (S3), S43-S43.

Wei, J., Sun, Z., Chen, Q., and Gu, J. Serum deprivation induced apoptosis in macrophage

is mediated by autocrine secretion of type I IFNs. Apoptosis, April 2006; 11(4): 545-

54.

Bayesian Family Factor Models for Multiple Outcomes. Q Chen*, R Weiss, C Sugar.

Joint Statistical Meetings, Montreal, Quebec, Canada. 8/3/2013 - 8/8/2013

Bayesian Family Factor Models for Multiple Outcomes. Q Chen*, R Weiss, C Sugar.

The 20th ASA/IMS Spring Research Conference (SRC 2013) on Statistics in Industry

and Technology, Los Angeles, CA. 6/20/2013 - 6/22/2013

Longitudinal Analysis of the Impact of Therapist Guidance on Time and Money Spent

Gambling. Q Chen*, R Weiss, M Campos, T Fong. Western North American Region

Meetings, Los Angeles, CA. 6/17/2013 - 6/19/2013

Bayesian Family Factor Models for Multiple Outcomes. Qiaolin Chen*, R Weiss, C

Sugar. Eastern North American Region Meetings, Orlando, FL. 3/10/2013 - 3/13/2013

Bayesian Family Factor Models for Multiple Outcomes in Familial Data. Q Chen*, R

xix



Weiss, C Sugar. Joint Statistical Meetings, San Diego, CA. 7/28/2012 - 8/2/2012

xx



CHAPTER 1

Introduction

Schizophrenia is a severe mental illness which affects a person’s ability to differentiate

between what is real and what is not, to think logically, to have normal emotional re-

sponses and to behave normally in social situations. Schizophrenia patients frequently

have strange beliefs or delusions, see or hear things that aren’t really there, speak or

think in a disorganized way and withdraw from social interactions. The illness is long

lasting and highly disabling. About 1 in 100 people will develop schizophrenia over

their lifetime (Schultz et al., 2007). Neurocognitive deficits are a key feature of the

disease and include reduced attention span, memory problems, difficulties with verbal

fluency, executive functions, and rapid perceptual processing (Asarnow et al., 2002).

Schizophrenia typically starts in late adolescence or early adulthood (Diagnostic and

Statistical Manual of Mental Disorders, DSM-IV-TR, 2000), which is called adult on-

set. However, it sometimes occurs in children prior to age 12, which is called child-

hood onset. Vulnerability factors are the non-symptomatic characteristics reflecting

an individual’s predisposition to schizophrenia. Predisposing genes can cause these

non-symptomatic abnormalities, which in turn contribute to schizophrenia. Potential

vulnerability factors include abnormalities in neurocognitive functioning and in brain

structure.

For complex diseases such as schizophrenia, there are typically multiple important

outcome domains. Since these outcomes will be correlated, it is desirable to model

them jointly. Separate analyses which ignore the within-subject-across-outcome cor-

relations, both miss important mechanistic and clinical information, and are less pow-

1



erful. Approaches for joint analysis of multivariate data include linear mixed models

(Sammel et al., 1999; McCulloch, 2006), structural equation modeling (SEM) (Bollen,

1998; Byrne, 2009; Kline, 2011) and factor analysis (Rao, 1955; Thompson, 2004;

Brown, 2006; Bartholomew et al., 2011).

As with many other psychiatric disorders, genes as well as environmental factors

are considered to play an important role in causing schizophrenia. Family studies are

often used to identify possible genetic factors involved in a disease (Donner and Koval,

1980; Karlin et al., 1981; Morris, 2009; Wang et al., 2011). In such studies, a proband

is an individual who triggers study of other members of the family. Some family studies

use a case-control sampling design, collecting data on individuals with a given disorder

and matched control subjects, as well as their relatives. Analysis of familial data is

complicated by the presence of dependence among observations from the genetically

related individuals.

1.1 The UCLA Neurocognitive Family Study Data

The UCLA Neurocognitive Family Study (NFS) (Asarnow et al., 2001, 2002; Nuechter-

lein et al., 2002) is a cross-sectional case-controlled family study. Multiple cognitive

measures were collected on schizophrenia patients and their first-degree relatives, as

well as healthy controls and their relatives. The study aimed to investigate potential

heritable predisposing or vulnerability factors for the disease, by identifying the fea-

tures or characteristics which distinguish schizophrenia patients and their families from

healthy controls and their families, and by examining how these cognitive deficits are

differentially expressed among family members. Our goal here is to find an appropriate

model which can address three main objectives: (i) to compare the degree of abnor-

mality between schizophrenia families and control families; (ii) to determine correla-

tions among measurements from first degree relatives and (iii) to identify relationships

among the multiple outcome measures.
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Modeling data such as that from the UCLA Nuerocognitive Family Study requires

a complex covariance structure. Suppose there are K outcome measures for each of

J members in a total of N families, so that the observed data for each family, yi,

is a JK vector. For example, in a nuclear family, there are K = 4 family member

types: proband, father, mother and sibling. Both the J family member types and the K

outcome types contribute to the variation in yi, which is summarized by a JK × JK

covariance matrix. I assume that the covariances are explained byK unobserved family

member factors and J unobserved outcome factors, which induce correlations on the

observed measures, both across-family-member within-measure and across-measure

within-family-member. As the measurements on individuals from the same family are

related, the J family member factors are allowed to be correlated. Similarly, so the

K outcome factors are also assumed correlated because outcome measurements within

subjects are associated.

The relationships among the JK observed variables and J +K factors can be de-

scribed using a path diagram (Bollen, 1998; Loehlin, 2004; Brown, 2006). Figure 1.1

shows an example of a path diagram for familial data with J = 4 family members and

K = 5 outcomes drawn using AMOS (Arbuckle, 2011; Blunch, 2012), an add-on to

SPSS for structural equation modeling. In a path diagram, all unobserved quantities,

including latent factors and residuals are represented by ovals, while all observed vari-

ables are represented by rectangles. Bidirectional arrows represent correlations, while

the single-headed arrows represent causal effects. In the figure, the observed variables

Yijk labeled Yjk omitting the i (rectangles in the middle), are assumed to be caused

by two sets of factors, the correlated family member factors (Proband, Sibling, Father

and Mother) and correlated outcome factors (Outcome1, . . . ,Outcome5), along with

residuals that are unique to each observed variable on each family member, err jk for

j = 1, . . . , J and k = 1, . . . , K, controlled by variances unique to each observed vari-

able, psi1, . . . , psi5. Means and variance parameters are labeled on the rectangles and

ovals/circles, before and after commas, respectively. For example, mu1, . . . ,mu5 are

3



means of Yj1, . . . ,Yj5, for j = 1, . . . , 4, and the means of all family member factors,

outcome factors and residuals are restricted to 0.
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Figure 1.1: A path diagram for the Bayesian Family Factor Model (BFFM). Responses

variables Yijk labeled Yjk omitting the i (rectangles in the middle), for j = 1, . . . , 4 and

k = 1, . . . , 5, are caused by two sets of factors, family member specific factors (circles

on the left) and outcome specific factors (ovals on the right), along with a residual error,

err jk, which is unique to each item.
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1.2 Current Approaches and Problems

Standard analyses of family studies usually model outcomes separately, which is po-

tentially less efficient and does not provide information about the relationships among

outcomes (Hamsten and de Faire, 1987; Harrap et al., 2000; Asarnow et al., 2002).

Classical analysis techniques for multiple outcomes are not designed to take into ac-

count associations among family members, which is equivalent to omitting the family

member factors in Figure 1.1 and only considering the right half of the diagram.

Direct product models (Browne, 1984; Cudeck, 1989; Wothke and Browne, 1990;

Naik and Rao, 2001; Srivastava et al., 2008) provide a potential method for analyzing

familial data with multiple outcomes, which assume that family member factors interact

with outcome factors in a multiplicative manner,

var(yi) = Σmember ⊗Σoutcome,

where Σmember and Σoutcome are J × J and K × K covariance matrices for the

two groups of effects, respectively. However, these models are rigid as they assume all

outcomes have identical correlation matrices and ratios of variances.

1.2.1 Confirmatory Factor Analysis

Factor analysis (FA) models correlated observed variables using a smaller number of

unobservable variables, called latent factors (Rao, 1955; Harman, 1960; Brown, 2006).

It is used either for dimension reduction or to improve understanding of the pattern

of associations among variables (Rowe, 1998). Variances in the observed variables

are explained by both common factors and unique error variances. If some factors

are assumed to be independent, the corresponding factor covariances are fixed to zero

(Brown, 2006).

The basic structure for a factor model is described below. Suppose K outcome
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measures are collected on each of N subjects. The relationship among the K outcomes

maybe characterized by a factor analysis model with p factors

yi = µ+ Λf i + εi, (1.1)

where yi is a K × 1 outcome vector for subject i, i = 1, . . . , N ; µ = E(yi) is a vector

of overall means; Λ is a K × p matrix of factor loadings; f i is a p× 1 vector of factor

scores with mean 0 and a p× p covariance matrix Φ

f i
iid∼ N (0,Φ);

and εi is a K × 1 vector of unique errors independent of factor scores, with a diagonal

variance matrix Ψ = diag(ψ1, . . . , ψK)

εi
iid∼ N (0,Ψ).

The marginal variance-covariance matrix of yi can be decomposed as the sum of vari-

ance and covariances due to the factors and variance due to the unique errors

var(yi) = ΛΦΛt + Ψ.

Confirmatory factor analysis (CFA) is used to test hypothesized relationships be-

tween observed variables and factors (Jöreskog, 1969). Researchers specify the number

of factors beforehand and make a priori assumptions about which observed variables

are related to which factors based on past evidence and theory. The factor loadings

specify the pattern of relationships between the observed variables and the factors.

Only loadings corresponding to hypothesized relationships between specific observed

variables and factors are allowed to be nonzero. All the others, called cross-loadings,

are fixed to zero. The scale of the factors can be defined by fixing factor variances to
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1, or by setting the scale of a factor to be the same as one of the observed variable

to which it contributes. For standard CFA, parameters are estimated using maximum

likelihood, EM maximum likelihood or the method of moments (Rao, 1955; Rubin and

Thayer, 1982; Basilevsky, 2009; Bartholomew et al., 2011). For standard CFA, param-

eters are estimated using maximum likelihood, EM maximum likelihood or the method

of moments (Rao, 1955; Rubin and Thayer, 1982). Software programs used for per-

forming confirmatory factor analysis include SPSS AMOS (Arbuckle, 2011), LISREL

(Jöreskog and Sörbom, 2012), EQS (Byrne, 2013), Mplus (Muthén and Muthén, 1998–

2012), SAS CALIS procedue (Hunter, 2005), and sem (Fox, 2006) and lavaan (Rosseel,

2012) packages in R. See Byrne (2001) and Albright and Park (2009) for reviews.

1.2.2 Multitrait-Multimethod (MTMM) Analysis

The structure of familial data with multiple outcomes is similar to that of the multitrait-

multimethod (MTMM) data used for studying construct validity: the ability of psycho-

logical tests to actually measure the concept being studied (Campbell and Fiske, 1959;

Marsh, 1989; Eid et al., 2006; Madans et al., 2011). For MTMM analysis, a certain

number of traits (J) are each assessed by several methods (K) for each of N subjects,

resulting in a JK × JK correlation matrix. The path diagram for an MTMM model is

similar to Figure 1.1, replacing family members with traits and outcomes with methods.

Despite the similarity in data structure, the focus of MTMM analyses is quite differ-

ent from analyses of familial data. MTMM analyses only model the correlation matrix

not the mean structure, and mainly focuses on estimation and tests of parameters with

specific meanings for construct validity. In contrast, in familial data analysis, mean

structures may depend on covariates and hypotheses about regression coefficients are

of interest. Incomplete data is a significant issue in familial data, as a family may not

have all J member types and individual measures may also be missing for a particular

subject.
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The most popular technique for fitting an MTMM model is confirmatory factor

analysis (CFA) using the correlated-trait correlated-method (CTCM) structure, which

assumes the inter-related trait factors are independent of the inter-related method fac-

tors (Marsh and Hocevar, 1988; Kenny and Kashy, 1992). This model requires at least

a total of J +K ≥ 6 trait and method factors with at least J ≥ 2 method and K ≥ 2

trait factors to be identified, and it is not empirically identified when the loading ma-

trix has deficient column rank (Grayson and Marsh, 1994), or when all trait or method

factor correlations are equal (Brannick and Spector, 1990). Wothke (1984), Brannick

and Spector (1990) and Lance et al. (2002) analyzed 21, 14 and 19 published MTMM

matrices, respectively, and reported that in 100%, 94% and 100% of the cases, the al-

gorithm for CFA model failed to converge or gave invalid solutions, such as negative

variances or non-positive definite covariance matrices, which are called Heywood cases

(Grayson and Marsh, 1994). The algorithm for fitting CFA models to familial data can

have the same identification problems, resulting in non-convergence, fits with invalid

solutions, improper estimates such as negative loadings, or unstable estimates with ex-

treme standard errors.

1.2.3 Bayesian Factor Analysis

Bayesian factor analysis (BFA) (Press and Shigemasu, 1989; West, 2003; Lopes and

West, 2004; Quinn, 2004; Ghosh and Dunson, 2009; Press, 2012) can help to mitigate

the identification problem by incorporating available knowledge about parameters in

the form of prior distributions based on either expert opinions or previous experiments.

Markov chain Monte Carlo (MCMC) methodology has been applied previously in BFA

to sample from posterior distributions (Geweke and Zhou, 1996; Press and Shigemasu,

1997; Rowe, 1998; Aguilar and West, 2000; Rowe, 2003).

BFA often makes normality assumptions for the distribution of unique errors. Con-

ditionally conjugate priors for model parameters facilitate straightforward posterior

computation by Gibbs sampling (Geman and Geman, 1984). For example, normal
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priors are often used for means. Bayesian inference using inverse-gamma priors for

unique error variances and inverse-Wishart priors for the covariance matrices avoid the

problem of Heywood cases (negative variances and non-positive definite covariance

matrices) that occur with maximum likelihood approaches. Normal priors are usually

specified for factor loadings. Bayesian methods have not been previously applied to

CFA for analyzing familial data with multiple outcomes or for fitting the MTMM mod-

els. By incorporating Bayesian techniques, it is possible to solve most problems of

standard CFA.

The rest of the paper proceeds as follows: Chapter 2 describes the proposed Bayesian

Family Factor Model (BFFM), including the basic model structure, prior specification,

a Gibbs algorithm to impute missing data and sample from the posterior distributions.

Chapter 3 discusses simulation studies comparing BFFM with the full information max-

imum likelihood estimation of CFA using quasi-Newton optimization (FIML-QNO) al-

gorithm by the lavaan package in R. In Chapter 4 and 5 I fit BFFM to the motivating

UCLA Neurocognitive Family Study (NFS) data. Methods of testing hypotheses and

their application to the UCLA NFS data are described in Chapter 6. Implications and

possible extensions are discussed in Chapter 7.
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CHAPTER 2

The Bayesian Family Factor Model

I propose a Bayesian Family Factor Model (BFFM), which extends the classical con-

firmatory factor analysis (CFA) model to explain the correlations among observed vari-

ables using a combination of family-member factors and outcome factors. This chapter

describes the basic structure for a BFFM, the specification of conditionally conjugate

priors and a Gibbs sampling algorithm.

2.1 Specification of the BFFM

I propose the following basic structure for a BFFM. Suppose K normally distributed

outcomes are collected on each of J members in N families. Let i, j and k index

family, member type and outcome, respectively, with i = 1, . . . , N , j = 1, . . . , J and

k = 1, . . . , K. Then yijk is the kth outcome for the jth member in the ith family,

yij = (yij1, . . . , yijK)
T is the K × 1 vector of K outcomes for the jth member in

the ith family and yi = (yi11, . . . , yi1K , . . . , yiJ1, . . . , yiJK)
T is the JK × 1 vector of

observations for all J members in the ith family. The relationships among the JK

observed variables are characterized by a factor analysis model

yi = X iβ + ΛAfAi + ΛBfBi + εi, (2.1)

where X i(JK×P ) is a matrix of known covariates for family i; βP×1 = (β1, . . . ,βP )

is a vector of regression coefficients; fAi(J×1) and fBi(K×1) are independent vectors of

family member factors and outcome factors, respectively, with corresponding variance

11



matrices ΦA(J×J) and ΦB(K×K)

fAi
iid∼ N (0,ΦA),

fBi
iid∼ N (0,ΦB);

εi is a JK × 1 vector of unique errors independent of fAi and fBi with diagonal error

variance matrix Ψ(JK×JK) = diag(ψ11, . . . , ψJK)

εi
iid∼ N (0,Ψ);

ΛA(JK×J) = blockdiag(α1, . . . ,αJ) is a family member factor loading matrix with di-

agonal blocks ofK×1 vectorsαj = (1, aj2, . . . , ajK); and ΛB(JK×K) = [B1,B2, . . . ,

BK ]
T is an outcome factor loading matrix, whereB1 = IK , Bj = diag(bj1, . . . , bjK),

for j = 2, . . . , J . Hereαj is a vector of non-zero family factor loadings for the jth fam-

ily member specific effects and ΛBj is a diagonal matrix of outcome factor loadings for

the jth family member.

The variance-covariance matrix of the observed variables, yi, for the ith family un-

conditional on the factors is

Σ = var(yi|β) = ΛAΦAΛT
A + ΛBΦBΛT

B + Ψ,

while the variance of observed variable yijk is

var(yijk|β) = a2
jkφAjj + b2

jkφBkk + ψjk,

where φAjj is the jth diagonal element of ΦA and φBkk is the kth diagonal element of

ΦB, ajk is the kth element of αj and bjk is the kth diagonal element ofBj .
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The factor loading matrices ΛA and ΛB can be expressed as

[ΛA|ΛB] =


α1 · · · 0 | B1

0 · · · 0 | B2

... . . . ... | ...

0 · · · αJ | BJ

 =



1 0 0 0 1 0 . . . 0

a12 0 0 0 0 1 . . . 0
...

...
...

...
...

... . . . ...

a1K 0 0 0 0 0 . . . 1

0 1 0 0 b21 0 . . . 0

0 a22 0 0 0 b22 . . . 0
...

...
...

...
...

... . . . ...

0 a2K 0 0 0 0 . . . b2K

...
...

...
...

...
... . . . ...

0 0 0 1 bJ1 0 . . . 0

0 0 0 aJ2 0 bJ2 . . . 0
...

...
...

...
...

... . . . ...

0 0 0 aJK 0 0 . . . bJK



.

(2.2)

The model for all K outcomes on K members of all N families is

Y = Z(β ⊗ IJK) + F AΛT
A + FBΛT

B +E,

where Y = (y1, . . . ,yN)
T is an N × JK matrix of all observed data for N families,

Z = [vec(X1), . . . , vec(XN)]
T is an N × JKP matrix of known covariates, β is a

P × 1 vector of regression coefficients, F A = (fA1, . . . ,fAN)
T is an N × J matrix of

family member factor scores, FB = (fB1, . . . ,fBN)
T is an N ×K matrix of outcome

factor scores, and E = (ε1, . . . , εN)
T is an N × JK matrix of residual errors.

For the kth outcome measured on the first family member (proband, j = 1), as

13



a1k = 1, the overall variance var(yi1k) can be decomposed as

var(yi1k) = 1φA11 + b2
1kφBkk + ψ1k,

which indicates that the factor variance for probands, φA11, must be smaller than any

of the overall variances for probands, var(yi1k). This information helps in setting priors

of factor loadings and factor covariance matrix. Therefore, it is better to scale the

observed variables to make the overall variances similar, so that φA11 will not be forced

to be small, which can cause precision problem in computing such as very small values

being rounded to 0.

Next, scales for factors and factor loadings are specified. Here scale for observed

variables is a combination of both size/magnitude and dispersion. For factor loadings

and factor variance matrices, scale is more related to variation or dispersion, as these

parameters are used to model the variance-covariance matrix. The scales of all family

member factors, fAij , for j = 1, . . . , J , are set to be the same as the observed variables

for the first outcome, yij1, by fixing the first nonzero loading in each column of ΛA to

1, aj1 = 1. The scale of a family member factor loading, ajk, is the ratio of the scale of

the kth outcome to that of the first outcome, for k = 2, . . . , K. Factor loading ajk is the

amount of change in yijk associated with a 1 unit increase in fAij with all else fixed. In

addition, because ajk/aj1 = ajk/1 = ajk, loading ajk is also the ratio of the effect of

fAij on yijk to its effect on yij1.

Similarly, the scale for an outcome factor, fBik, is specified to be the same as that

of the observed variable for the first family member (proband), yi1k, by fixing the first

nonzero loading in each column of ΛB to 1, b1k = 1. Therefore, the scale of the

kth outcome is passed on to the kth outcome factor, fBik. Similarly, outcome loading

bjk is the amount of change in yijk associated with a 1 unit increase in fBik and as

bjk/b1k = bjk for j = 2, . . . , J , bjk is also the ratio of the effect of fBik on yijk to that

on yi1k.
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The total number of free hyper-parameters in the model is (3JK + J2/2+K2/2−

J/2 − K/2 + P ), as there are P regression coefficients, (J − 1)K family member

factor loadings, J(K − 1) outcome factor loadings, J(J + 1)/2 unique parameters in

the family factor variance matrix, K(K + 1)/2 unique parameters in the family factor

variance matrix, and JK unique error variance parameters. Similar to the CFA model

for MTMM data, this model requires at least a total J + K ≥ 6 family member and

outcome factors with at least J ≥ 2 family member and K ≥ 2 outcome factors to

be identified, and it is not empirically identified when the loading matrix has deficient

column rank (Grayson and Marsh, 1994), or when all family member or outcome factor

correlations are equal (Brannick and Spector, 1990).

There is a one-to-one correspondence between model parameters and lines on the

path diagram in Figure 1.1. Factor variances matrices, ΦA and ΦB, correspond to

bidirectional arrows among the J = 4 family member factors on the left and among

the K = 5 outcome factors on the right, respectively. The non-zero elements of ΛA,

namely α1, . . . ,αJ , correspond to unidirectional arrows from family member factors

on the left to the JK observed variables, yi. The non-zero elements of ΛB, namely

diagonal elements of Bj , correspond to unidirectional arrows from family member

factors on the right to yi.

2.2 Conditionally Conjugate Priors for BFFM

To complete a Bayesian specification of the model, priors need to be assigned for each

unknown parameter. In the absence of strong theoretical or empircal beliefs to the

contrary, I specify conditionally conjugate priors for all parameters. In the absence of

strong theoretical or empirical beliefs to the contrary, I specify conditionally conjugate

priors for all parameters. The prior distributions for the regression coefficients, β =

(β1, . . . , βp)
T , and free elements ajk and bjk in the factor loading matrices, ΛA and ΛB,
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are independent normal

βp
iid∼ N (β0p, σ

2
β0p), for p = 1, . . . , P,

ajk
ind∼ N (µajk , σ

2
ajk

), for j = 1, . . . , J, k = 2, . . . , K,

bjk
ind∼ N (µbjk , σ

2
bjk

), for j = 2, . . . , J, k = 1, . . . , K

The factor variance matrices, ΦA and ΦB, follow independent inverse Wishart distri-

butions
ΦA ∼ IW(W A, νA),

ΦB ∼ IW(WB, νB),

where νA and νB are the degrees of freedom parameters, W A(J×J) = (νA − J −

1)DACADA and WB(K×K) = (νB − K − 1)DBCBDB are location parameters,

CA(J×J) andCB(K×K) are prior factor correlation matrices, andDA(J×J) = diag(dA1,

. . . , dAJ) and DB(K×K) = diag(dB1, . . . , dBK) are matrices with factor variances as

diagonal elements to be specified shortly. Independent inverse-gamma priors are spec-

ified for the JK diagonal elements of Ψ

ψjk
ind∼ IG

(
αψjk

2
,
βψjk

2

)
,

for j = 1, . . . , J and k = 1, . . . , K.

2.3 Specification of Prior Hyper-parameters

This section describes an approach to eliciting prior hyper-parameters based on model

interpretation and subject matter knowledge. The basic assumptions are that the vari-

ances of the K outcomes are distinct due to scale differences and that the variances

across family members of the kth outcome are similar. The first step is to obtain esti-

mated values for the overall variances of the K outcomes, v̂ar(y1), . . . , v̂ar(yK), either

from the literature, from previous studies or from expert opinion. When no other infor-
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mation is available, 1/4 of the range of the kth outcome variable in the data set under

study is a plausible value of v̂ar(yk)1/2.

To specify priors for factor variance matrices, note that

var(yij1) = a2
jkφAjj + φB11 + ψj1,

and var(yi1k) = φA11 + b2
jkφBkk + ψ1k,

which implies v̂ar(y1) can be used as an upper bound up to sampling error of the prior

mean of φB11, d2
B1 = pφb1v̂ar(y1), and the minimum of v̂ar(y1), . . . , v̂ar(y1) can be

used an upper bound of the prior mean of φA11, d2
A1 = pφa1min(v̂ar(y1), . . . , v̂ar(yK)),

for scaling constants 0 < pφa1, pφb1 ≤ 1. As the scale of the first outcome is passed

on to all family member factors, fAij , the prior means of factor variances are set to

be equal, d2
A1 = . . . = d2

AJ . As the scale of the kth outcome is passed on to the kth

outcome factor, fBik, the prior means of outcome factor variances, φBkk, are set to be

proportional to the estimated overall variances,

d2
B1

v̂ar(y1)
= . . . =

d2
BK

v̂ar(yK)
= pψ,

where the scaling constant 0 < pψ ≤ 1.

Information on correlations within outcome across family members and among out-

comes within subjects can help to specific CA and CB, the prior factor correlation

matrices. Some information about theoretical associations among family members are

available. For example, the genetic correlations between father and mother, between

parent and children and between siblings are 0, 0.5 and 0.5, respectively. In addition,

some outcome measures are known to be more closely related than others. For exam-

ple, correlations among sub-scales from the same test will be similar and higher than

correlations coming from sub-scales of different tests, which can be reflected in the

prior factor correlation matrix CB.

Prior means of factor loadings are elicited as follows. For a particular outcome,
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effects of the different family member factors on the observed variables are likely to be

similar, so I assume that the prior means of loadings for the same outcome are equal

across members,

µa1k = µaJk
,

for k = 2, . . . , K. As the scale of ajk is the ratio of the scale of the kth outcome to the

scale of the first outcome, I set prior means of the loadings proportional to the square

root of the estimated overall variances

1

v̂ar(y1)1/2
=

µaj2
v̂ar(y2)1/2

= . . . =
µajK

v̂ar(yK)1/2
,

for j=1,. . . ,J. For outcome factor loadings, because effects of the same outcome factor

on observed variables are likely to be similar across family members, and b11 = . . . =

b1K = 1, I set prior means of all outcome factor loadings to 1

µbjk ≡ 1,

fo j = 2, . . . , J and k = 1, . . . , K. To specify prior means for the unique error variance,

ψjk, for j = 1, . . . , J and k = 1, . . . , K, v̂ar(yk) can be used as an upper bound, as the

total variance the sum of variance due to unique error and variance due to common

factors. To specify the priors for regression coefficients, it is necessary to identify

plausible values for the covariate effects on each outcome from previous studies or

expert opinion. For the special case where covariates are indicators of diagnostic or

treatment groups, the estimated means of outcomes in the general population or in

patients from earlier studies are useful guides for choosing prior means.

2.3.1 Gibbs Sampling from the Posterior Distribution

Because of the use of conjugate priors, simulation of the posterior distribution pro-

ceeds via a Gibbs sampling algorithm where each parameter is sampled from its full
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conditional distribution (Geman and Geman, 1984; Gelfand and Smith, 1990; Robert

and Casella, 2004). To reduce autocorrelation and improve efficiency, I use a blocked

Gibbs sampler to sample the regression coefficients, β and the factor scores, f i from

their joint conditional distributions, respectively. Full details of the Gibbs sampler are

given in the appendix.

Missing data are imputed at each iteration of the MCMC algorithm with a data

augmentation (DA) algorithm, assuming observations are missing at random (MAR)

(Little and Rubin, 2002). This approach has the advantage of using BFFM for both im-

putation and data analysis. Because the missing and observed data are jointly normally

distributed, the conditional distribution of the missing data given the observed data is

also normal. I implemented Schafer (1997)’s sweep operator algorithm for imputation

of multivariate normal data. For details see the appendix.

2.4 Data Likelihood and the Conditional Posterior Distributions

Bayesian inference usually involves specification of priors for model parameters, cal-

culation of data likelihood and calculation of the posterior densities. It is often not

possible to obtain the posterior distribution with straightforward analytical solutions,

so it is necessary to generate samples from the posterior distribution using sampling

methods such as Markov chain Monte Carlo (MCMC). Because of the use of conjugate

priors, simulation of the posterior distribution proceeds via a Gibbs sampling algorithm

where each parameter is sampled from its full conditional distribution (Geman and Ge-

man, 1984; Gelfand and Smith, 1990; Robert and Casella, 2004). This section describes

the computation of data likelihood and the derivation of conditional posterior densities.

Define ei(jk) = yi − XT
i β − ΛAfAi − ΛBfBi and EN×JK = Y − XB −

F AΛT
A − FBΛT

B. The complete data likelihood for all parameters in the model, Θ =

(β,F A,FB,ΛA,ΛB,Ψ), based on K outcomes and J family members for all N fam-
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ilies, Y N×JK = (y1, . . . ,yN)
T , has the following form

L(Θ|Y )

= (2π)−
NJK

2 |Ψ|−N
2 exp

{
−1

2
tr
[
Ψ−1

N∑
i=1

(ei)ei)
T

]}
= (2π)−

NJK
2 |Ψ|−N

2 exp
{
−1

2
tr
[
Ψ−1ETE

]}
.

The joint posterior distribution for all parameters is proportional to the complete

data likelihood multiplied by the prior density

p(β,F A,FB,ΛA,ΛB,Ψ|Y )

∝ p(Y |β,F A,FB,ΛA,ΛB,Ψ)

×p(β)p(ΛA)p(ΛB)p(F A|ΦA)p(FB|ΦB)p(Φ)p(Ψ).

Because it is easier to compute conditional posterior of the parameters given the

complete data, I use the data augmentation (DA) algorithm which treats missing data

as unknown parameters and impute them as a step in the MCMC algorithm (Little and

Rubin, 2002; Schafer, 1997). The rest of this section presents the computation of the

conditional posterior densities for all of the model parameters, including the missing

data, regression coefficients, factor loadings, factor scores, unique error variances and

factor variance matrices.

2.4.1 Missing Data Imputation

Missing data are handled using a data augmentation (DA) algorithm, which sequentially

imputes missing data and samples from a complete-data Bayesian model via MCMC

(Little and Rubin, 2002), assuming observations are missing at random (MAR). This

approach has the advantage of using BFFM for both imputation and data analysis. Be-

cause the missing and observed data are jointly normally distributed, the conditional

distribution of the missing data given the observed data is also normal. Let yi,o and

yi,m denote the observed and missing parts of yi by respectively. At iteration l with
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current parameter value Θ(l), sample

y
(l+1)
i,m ∼ p(yi,m|Θ(l),yi,o),

for i = 1, . . . , N , where Θ(l) does not include factors fAi nor fBi. Define the mean

vector and variance matrix of yi as µi = X iβ and Σ = var(yi|µi,Σ) = ΛAΦAΛT
A +

ΛBΦBΛT
B + Ψ. After grouping yi(JK×1) in the order of observed and missing parts,

the missing and observed data are jointly normally distributed

y∗i(JK×1) =

 yi,obs

yi,miss

 ∼ N
 µi1

µi2

 ,
 Σ11i Σ12i

ΣT
12i Σ22i

 ,

where the normal mean vector and variance matrix are obtained by permuting µi and

Σ in the order of yi,o and yi,m. Therefore conditioned on the observed data and all

parameters, the missing data are also normally distributed

yi,m|yi,o = yi,1 ∼ N
(
µi2 + Σ21iΣ

−1
11i(yi,1 − µi1),Σ22i −Σ21iΣ

−1
11iΣ12i

)
.

Then the algorithm proposed by Schafer (1997) is implemented, which organizes the

mean vector µ and the variance-covariance matrix Σ into a (JK + 1) × (JK + 1)

parameter matrix Ω,

Ω =

 −1 µT

µ Σ


The sweep operation is a function transforming an M ×M matrix Ω to an M ×M

matrixH . A sweep on position m, m = 1, . . . ,M is defined as

(1) hmm = − 1
ωmm

(2) hjm = hmj =
ωjm

ωmm
, for j 6= m

(3) hjl = hlj = ωjl − ωjmωlm

ωmm
for j 6= m and l 6= m.
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For each family, the conditional mean and variance matrix of missing data given ob-

served data can be obtained by sweeping the rows and columns of Ω on positions of the

observed variables. The missing data can then be simulated from a normal distribution

with this mean and variance.

For example, if yi(JK×1) is permuted so that the first p1 elements are observed and

the rest p2 = JK − p1 elements are missing, y∗i = (yi,o,yi,m), then sweeping

Ω =


−1 µTi1 µTi2

µi1 Σ11i Σ12i

µi2 ΣT
12i Σ22i


on positions of observed values, 2, . . . , p1 + 1, would yield


−1− µTi1Σ −1

11iµi1 µTi1Σ
−1
11i (µi2 −Σ21iΣ

−1
11iΣ12i)

T

(µTi1Σ
−1
11i)

T Σ −1
11i (Σ21iΣ

−1
11i)

T

µi2 −Σ21iΣ
−1
11iΣ12i Σ21iΣ

−1
11i Σ22i −Σ21iΣ

−1
11iΣ12i

 ,

where

E(yi,o|µi,Σ,yi,m = yi,1) = µi2 −Σ21iΣ
−1
11iΣ12i + Σ21iΣ

−1
11iyi,1

and

var(yi,o|µi,Σ,yi,m = yi,1) = Σ22i −Σ21iΣ
−1
11iΣ12i.

Unlike Schafer (1997) which assumed equal means for all families, for this analysis the

mean, µi = X iβ can be different for different families. Therefore, the observed data

are not grouped by the missing pattern and for each new i it start from Ω.
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2.4.2 Regression Coefficients, β

As the prior distribution of the regression coefficients, β, is multivariate normal

β ∼ N (µβ0,Σβ0),

where µβ0 = (β01, . . . , β0P )
T and Σβ0 = diag(σ2

β01, . . . , σ
2
β0P ), conditional on all data

Y and variance matrix Σ, the posterior distribution of β is also multivariate normal

(β|Σ,Y ) ∼ N (βp,Σβp),

where

Σβp = (Σ−1
β0 +

N∑
i=1

XT
i Σ−1X i)

−1,

βp = Σβp(Σ
−1
β0µβ0 +

N∑
i=1

XT
i Σ−1yi).

(2.3)

2.4.3 Factor Loading Matrices, ΛA and ΛB

Factor loadings ΛA and ΛB represent the effects of factors fAi and fBi for predict-

ing observed variables, yi. Define the N -vector of the kth outcome on the jth family

member for all N families as yjk(N×1) = (y1jk, . . . , yNjk), the family member factor

loading scores of the jth member for all N families as fAj(N×1) = (fA1j, . . . , fANj)
T ,

the outcome factor loading scores of the kth outcome for all N families as fBk(N×1) =

(fB1k, . . . , fBNk)
T , and the covariates for the kth outcome and the jth family member

for family i as xijk(P×1) = (x1ijk, . . . , xPijk)
T .

For the family member factor loadings, when k = 1, ajk ≡ 1 for j = 1, . . . , J ;

when k 6= 1, the conditional posterior distribution of a non-zero element, ajk, in the

family member factor loading matrix, ΛA, is normal

(ajk|fAj, ψk,β, bjk,yjk) ∼ N (µajkp, σ
2
ajkp

)
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with

σ2
ajkp

=

(
1

σ2
ajk

+
f T

AjfAj

ψk

)−1

,

µajkp = σ2
ajkp

[
µajk
σ2
ajk

+ 1
ψk
fTAj(yjk − xijkβ − bjkfBk)

]
.

For the outcome factor loadings, when j = 1, bjk ≡ 1 for k = 1, . . . , K; when j 6= 1,

the conditional posterior density of a non-zero elements, bjk, in the outcome factor

loading matrix, ΛB, is normal

(bjk|fBk, ψk,β, ajk,yjk) ∼ N (µbjkp, σ
2
bjkp

),

where

σ2
bjkp

=

(
1

σ2
bjk

+
f T

BkfBk

ψk

)−1

,

µbjkp = σ2
bjkp

[
µbjk
σ2
bjk

+ 1
ψk
fTBk(yjk −Xβjk − ajkfAj)

]
.

2.4.4 Unique Error Variances, ψk

For the kth outcome measure, denote the complete data on this outcome for all N

families as

Y ..k(N×J) =


y11k . . . y1Jk

... . . . ...

yN1k . . . yNJk

 ,
the covariates for this outcome for family i as

X i.k(J×P ) =


xi1k1 . . . xi1kP

... . . . ...

xiJk1 . . . xiJkP

 ,

and the covariates of this outcome for all N families as

Z ..k(N×JP ) = [vec(X1.k), . . . , vec(XN.k)]
T ,
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the kth outcome factor scores for all N families as

fBk(N×1) = (fB1k, . . . , fBNk)
T ,

the family member factor loading corresponding to the kth outcome as

Ak(J×J) = diag(a1k, . . . , aJk),

and the non-zero outcome factor loading corresponding to the kth outcome as

bk(J×1) = (b1k, . . . , bJk)
T .

Given the complete data only depends on Y ..k and also given the other parameters,

F A, fBk,Ak, bk, the conditional posterior distribution of ψk is inverse-gamma

(ψk|F A,fBk,Ak, bk,Y ..k) ∼ IG
(
αψkp

2
,
βψkp

2

)
,

where

αψkp
= αψk

+NJ

and βψkp
= βψk

+ tr[(Y ..k −XB.k − F AA
T
k − fBkbTk )T

(Y ..k −XB.k − F AA
T
k − fBkbTk )].

(2.4)

2.4.5 Factor Variance Matrices, ΦA and ΦB

Conditional on the data and F A(N×J) = (fTA1, . . . ,f
T
AN)

T , the posterior distribution of

ΦA(J×J) is an inverse Wishart distribution

(ΦA| ·) ∼ IW(W A + F AF
T
A, νA +N).
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Similarly, conditional on the data and FB(K×K) = (fTB1, . . . ,f
T
BN)

T , the posterior

distribution of ΦB(K×K) is an inverse Wishart distribution

(ΦB| ·) ∼ IW(WB + FBF
T
B, νB +N).

2.4.6 Factor Scores, fAi and fBi

Conditional on complete dataY and all other parameters, ΩA = (ΦA,ΛA,ΛB,Ψ,β,fBi),

the posterior distribution of fAi is a multivariate normal distribution

fAi|ΩA,Y ∼ N (µfAi,ΣfA)

where ΣfA(J×J) = (Φ−1
A + ΛT

AΨ−1ΛA)
−1

and µfAi(J×1) = ΣfAΛT
AΨ−1(yi −X iβ −ΛBfBi).

Similarly, Conditional on complete dataY and all other parameters, ΩB = ΦB,ΛB,

ΛA,Ψ,β,fAi), the posterior distribution of fAi is a multivariate normal distribution

fBi|ΩB,Y ∼ N (µfBi,ΣfB)

where ΣfB(K×K) = (Φ−1
B + ΛT

BΨ−1ΛB)
−1

and µfBi(J×1) = ΣfBΛT
BΨ−1(yi −X iβ −ΛAfAi).

2.5 A Gibbs Sampling Algorithm

To reduce autocorrelation and improve efficiency, I use a blocked Gibbs sampler to

sample the regression coefficients, β and the factor scores, f i from their joint con-

ditional distributions. Denote all missing observations as Y miss, denote the matri-

ces of all family member factor scores and all outcome factor scores as F A(N×J) =

[fA1, . . . ,fAN ]
T and FB(N×K) = [fB1, . . . ,fBN ]

T , then MCMC samples from the

joint posterior density p(Y miss,F A,FB,β,ΛA,ΛB,ΦA,ΦB,Ψε|Y obs) proceeds as
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follows: At the (l + 1)th iteration with current values of (Y (l)
miss,F

(l)
A ,F

(l)
B ,β

(l),

Λ
(l)
A ,Λ

(l)
B ,Φ

(l)
A ,Φ

(l)
B ,Ψ

(l)
ε ),

1. Simulate Y (l+1)
miss from

p(Y miss|Σ(l),β(l),Y Obs),

where Σ(l) = Λ(l)Φ(l)Λ(l)T + Ψ(l);

2. Simulate β(l+1) from p(β|Σ(l),Y
(l+1)
miss ,Y obs);

3. Simulate F (l+1)
A from p(F A|Φ(l)

A ,Λ
(l),Ψ(l),β(l+1),Y

(l+1)
miss ,Y obs);

4. Simulate F (l+1)
B from p(FB|Φ(l)

B ,Λ
(l),Ψ(l),B(l+1),Y

(l+1)
miss ,Y obs);

5. Simulate Φ
(l+1)
A from p(ΦA|F (l+1)

A );

6. Simulate Φ
(l+1)
B from p(ΦB|F (l+1)

B );

7. Simulate Λ(l+1) from p(Λ|Ψ(l),F (l+1),β(l+1),Y
(l+1)
miss ,Y obs);

8. Simulate Ψ(l+1) from p(Ψ|F (l+1),β(l+1),Λ(l+1),Y
(l+1)
miss ,Y obs).
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CHAPTER 3

Analysis of Simulated Data

To assess the performance of the Bayesian Family Factor Model (BFFM) in different

scenarios, simulation studies are used to compare BFFM with CFA estimated by full

information maximum likelihood (FIML) using quasi-Newton optimization (QNO), on

the basis of ability to fit the data, as well as examining mean squared errors (MSE),

squared biases and variances of parameters estimated by the two methods.

3.1 Generating Data Sets for Simulation Studies

Grayson and Marsh (1994) proved that a CFA model is not identified when the true

factor loading matrix, Λ, is not full rank. One sufficient condition for deficient column

rank is Λ = [C ⊗ a0|d ⊗ B0], where C(J×J) and B0(K×K) are diagonal full rank

matrices, and a0 and d are K × 1 and J × 1 vectors, respectively (Grayson and Marsh,

1994). I generated 3 scenarios where the true covariance matrices are identified, close

to not identified and not identified, by specifying different true factor loading matrices,

Λ, which were far from equal to, almost equal to, and equal to [C ⊗ a0|d⊗B0].

Two hundred data sets were simulated from each scenario. Each data set has N =

200 families, K = 5 outcomes and J = 4 members: proband, sibling, father and

mother. True regression coefficients as well as true unique error variances are set to be

equal for 3 scenarios. True parameters are specified as follows: unique error variances

of the same outcomes are assumed equal across family members, so K distinct unique

error variances are φk = φ1k = . . . = φJk, for k = 1, . . . , K. For the UCLA NFS, I am
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interest in differences of mean outcome measures between control and schizophrenia

(SZ) families and across family members, so the matrix of covariates is specified as

X i(JK×2JK) =
[
diIJK (1− di)IJK

]
,

where di = 0, 1 for control and SZ families respectively, and IJK is a JK × JK iden-

tity matrix. The corresponding regression coefficient vector is β(2JK×1) = (β1,β2)
T ,

where β1 and β2 are JK × 1 vectors of means of all K outcomes on the J family

members in the control and SZ families. For J = 4 and K = 5, the total number of

parameters is 101. The observations are set to be missing completely at random with

probability p = 0.15 and the missingness pattern is the same across all 200 data sets

in each scenario. As psychological measures usually have different ranges and scales,

I assumed that there were different scales associated with different outcomes, and the

ratio was 1 : 2 : 5 : 8 : 10. Family member factor loadings for for different outcomes

had about the same ratio, with some random variation added in. The ratio of true error

variances for different outcomes and the ratio of outcome factor variances were also

1 : 4 : 25 : 64 : 100. The variance-covariance matrix of family member factors were

chosen to be close to 1. True values for all true parameters are listed in Tables A.1, A.2

and A.3 in the Appendix.

3.2 Comparing BFFM and CFA: Producing Valid Solutions

Standard non-Bayesian CFA models are fit to simulated data using the lavaan package

in R (Rosseel, 2012), which uses full information maximum likelihood (FIML) estima-

tion to handle missing data and uses a quasi-Newton optimization algorithm to estimate

parameters. FIML estimation maximizes the likelihood function for each family based

on the observed variables yijk that are not missing so that all the available data are

used. Full information maximum likelihood estimation with quasi-Newton optimiza-

tion (FIML-QNO) is defined as successful in fitting the data if the algorithm converges
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and provides valid solutions (e.g. having positive-definite covariance matrices and posi-

tive variances). In many cases, FIML-QNO fails to find a fit to the data due to empirical

under-identification. The percentages of data sets for which FIML-QNO was success-

ful in fitting in the 3 scenarios are 85%, 57% and 13%, respectively (Figure 3.1). When

CFA model using FIML-QNO was fit to the same simulated data but with no missing

observation, the percentages increase slightly to 21%, 50.5% and 92.5%, respectively,

suggesting that the missing data was not the major cause of the failure of FIML-QNO.

Next, a BFFM is fit to 200 data sets in each scenario, with 10, 000 iterations after

an initial burn-in of 1000 iterations. Priors are chosen to be partially informative and

centered at true values with large dispersions. The trace plots, density plots and au-

tocorrelation plots show no obvious evidence of bad mixing, non-convergence or high

autocorrelations. BFFM successfully fit all 600 data sets and the resulting posterior

means were always valid solutions (i.e. positive variances and positive definite covari-

ance matrices).

3.3 Comparing the Performance of BFFM and FIML-QNO When

FIML-QNO Was Successful

Besides the ability to fit data, I also want to compare the performance characteristics of

BFFM and FIML-QNO, when FIML-QNO was successful in fitting the data sets. The

mean squared error (MSE) of an estimator θ̂ for a parameter θ, MSEθ̂ = E(θ̂−θ)2, mea-

sures the average squared distance between the estimator θ̂ and the true parameter value

θ. The MSE can be decomposed as the sum of the variance of the estimator, Var(θ̂),

which measures the uncertainty of θ̂, and the squared bias, [E(θ̂) − θ]2, which mea-

sures accuracy. Denote θ̂l as the posterior mean of θ from the MCMC outputs of the lth

data set, for l = 1, . . . , 200, then v̂ar(θ̂) = 1
200

∑200
l=1

(
θ̂l − 1

200

200∑
l=1

θ̂l

)2

. The relative
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Figure 3.1: The percent of data sets for which Full Information Maximum Likelihood
(FIML) estimation with quasi-Newton optimization (QNO) converges and gives valid
estimates, in scenarios where the true covariance matrices are identified, close to un-
der-identified and under-identified.

MSE, relative variance and relative squared bias are estimated as 1
200

200∑
l=1

[
(̂θl − θ)/θ

]2

,

v̂ar(θ̂)/θ2 and

[
1

200

200∑
l=1

θ̂l − θ

]2

, respectively.

In the scenario where the true covariance matrix is close to not identified, I compare

relative mean squared errors (RMSE), relative variances and relative squared biases of

all parameters estimated by fitting BFFM and FIML-QNO to the 43% of the data sets

which FIML-QNO was successful in fitting (Tables B.7, B.2, B.9, B.10, B.11 and B.12

in Appendix B). Overall, parameter estimates from BFFM and FIML-QNO are similar

and are close to the true values. Figure 3.2(a) plots on a log-log scale the relative
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MSEs of parameters estimated by BFFM vs. those of parameters estimated by FIML-

QNO. There are 101 dots representing all parameters. Different symbols represent

different groups of parameters (factor loadings, factor variance-covariance parameters,

regression coefficients and unique error variances). For a given parameter, if RMSEs

estimated by two models are the same, the dot will lie on a diagonal line with slope 1;

when the RMSE estimated by BFFM is smaller, the dot will lie above the diagonal line;

and when the RMSE estimated by FIML-QNO is smaller, the dot will lie below the

diagonal line. For more than 60% of the parameters, the RMSEs estimated by BFFM

are smaller. For most parameters, the RMSEs estimated by both methods are small

(RMSE < 0.1, dots in the lower left corner). However, for some factor loadings and

factor variance-covariances, the RMSEs estimated by FIML-QNO are much larger than

those estimated by BFFM (dots in the upper half).

Figure 3.2(b) plots relative variances of parameters estimated by BFFM vs. those

estimated by FIML-QNO. Almost all dots lie above the diagonal line, where BFFM has

smaller relative variances for almost all parameters. Similarly, Figure 3.2(c) plots the

relative squared biases ([E(θ̂) − θ]2/θ2) of parameters estimate by BFFM and FIML-

QNO. For about 40% of the parameters, the relative squared biases estimated by BFFM

are smaller, but the FIML-QNO has smaller relative squared biases when both methods

perform well (relative squared biases < 0.1). However, as with the relative MSEs, for

some factor variance-covariances and factor loadings, the squared biases estimated by

FIML-QNO are much larger than those estimated by BFFM.

It is important to check whether BFFM will also perform worse when the FIML-

QNO failed. In the scenario where the true covariance matrix is close to not identified,

I compare the MSEs, squared biases and variances for BFFM on the 43% of the data

sets for which FIML-QNO did not fail to those on the 57% data sets for which FIML-

QNO failed to converge or provide admissible solutions. The plot of the relative MSEs

in Figure 3.2(d) shows that almost all dots are close to the diagonal line with slope

1, indicating that BFFM works equally well for both kinds of data sets. The plots of
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relative squared biases and relative variances are very similar.

The relative mean squared errors (MSEs), relative variances and relative squared

biases from FIML-QNO when it is successful, from the BFFM when FIML-QNO is

successful, and from the BFFM when FIML-QNO fails, in 3 scenarios where the true

covariance matrix is identified, close to not identified and not identified are summarized

in tables in Appendix B).

In summary, simulation studies show that FIML-QNO failed to fit the CFA model

to the data in many cases, especially when the true covariance matrix is not identified or

close to not identified, due to non-convergence or invalid solutions, while BFFM fit all

600 data sets in the 3 scenarios and gives estimates of similar consistency. When FIML-

QNO is successful, variances estimated by BFFM are smaller for almost all parameters

and is competitive in MSE. Although FIML-QNO produces smaller squared biases in

some cases, the MSEs and variances from some parameters are very large, suggesting

these estimates are unstable. The BFFM is overall superior, providing stability and

much broader applicability, in exchange for (in some cases) a small bias.
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Figure 3.2: Plots of relative mean squared errors (RMSE, a), relative variances (b) and

relative squared biases (c) for parameters estimated by BFFM against those estimated

by FIML-QNO, and plot of the relative mean squared errors by BFFM for the 43% of

the data sets which FIML-QN failed vs for the 57% of the data sets which FIML-QN

was successful (d), in the scenario where the true covariance matrix is close to not

identified, on a log-log scale.
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3.4 Impact of Missing Data on Failure of FIML-QNO

In the previous section, I described simulation studies for comparing BFFM and FIML-

QNO using data sets generated under 3 scenarios with different degrees of identifi-

cation problem. Here I want to further identify potential causes for the failure of

FIML-QNO to fit some data sets. I examine whether the missing data contributes to

non-convergence and invalid estimates of FIML-QNO. Missing data in the previous

analyses were generated by randomly setting observations of the 200 data sets in each

scenario to missing, at a target missing rate r = 15%. In this analysis, I examine the

ability FIML-QNO to fit the corresponding complete data sets. Table 3.1 presents the

percentages of complete and 15%-missing data sets which FIML-QNO is successful in

fitting, in 3 scenariors. For the identified, close to under-identified and under-identified

scenarios, the percentages of data sets for which FIML-QNO did not fail increases from

87%, 41% and 14% for data with 15% missing, to 92.5%, 50.5% and 21% for com-

plete data, respectively, suggesting that missing data contributes partly to the failure of

FIML-QNO.

Scenario Complete Data 15% Missing

Identified 92.5 87

Close to Under-identified 50.5 41

Under-identified 21 14

Table 3.1: Percent of complete and 15% missing data sets which FILM-QNO was
successful to fit. The data sets with missing are generated from complete data sets
by setting observations to missing at p = 0.15.

To further evaluate effects of missing data on the ability of FIML-QNO to fit data

sets, I generated new data sets by setting 5%, 30% and 40% of the observations to

missing for the 200 data sets, in the scenario where the true covariance matrix is close

to not identified. The percent of data sets which FIML-QNO is successful in fitting are

compared in Table 3.2 and plotted in Figure 3.3. As missingness percentage increases
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from 0% to 40%, the percentages of data sets which FIML-QNO can fit decreases from

52.5% to 16.5%, while the proportions of data sets with non-convergence and invalid

estimates increase.

Missing Rate 0% 5% 15% 30% 40%

Converge 52.5 48 41.5 26 16.5

Invalid 34.5 38 38 51.5 56.5

Not converge 13 14 20.5 22.5 27

Table 3.2: Percent of data sets which FIML-QNO did not fail, in the close to Under-
-identified scenario. Invalid, not converge and converge refer to the situations where
FIML-QNO gives invalid estimates, fails to converge, and neither of the above.
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Figure 3.3: Percent of data sets which FIML-QNO is successful in fitting, in the sce-

nario where the true covariance matrix is close to not identified. Invalid Est, non–

convergence and convergence refer to the situations where FIML-QNO gives invalid

estimates, fails to converge, and neither of the above.
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CHAPTER 4

Application of the Bayesian Family Factor Model to the

UCLA Family Study Data with Five Outcomes

In this Chapter, I illustrate the Bayesian Family Factor Model (BFFM) by analyzing

the data on K = 5 primary outcome variables from the UCLA Neurocognitive Family

Study (NFS). I compute descriptive statistics, elicit prior hyper-parameters, implement

the Gibbs sampling algorithm using R and summarize the posterior distributions.

These five measures are analyzed because they are the most representative mea-

sures of each major cognitive domain of interest, and have been successfully used in

assessing schizophrenia related cognitive deficits. Furthermore, it is reasonable to start

constructing the model with a smaller number of outcomes, so that the algorithm runs

faster and interpretation of results is easier, as the total number of parameters is smaller.

This data structure with K = 5 outcomes and J = 4 family member types was used

as a template for designing simulation studies in Section 3 to test the algorithm and to

assess the performance of the model for all parameters.

4.1 The UCLA Neurocognitive Family Study Data

The UCLA Neurocognitive Family Study (NFS) is a cross-sectional case-control study

collecting multiple outcomes on schizophrenia subjects and their relatives, as well as

community control subjects and their relatives. There are two parallel studies, one for

adult onset and one for childhood onset, for which the data were collected by Dr. K.H.

Nuechterlein and Dr. R.F. Asarnow. The J = 4 family member types, proband, sibling,
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father and mother are indexed by j = 1, . . . , 4, respectively. Table 4.1 presents presents

counts of families and individuals. There are a total of 210 families and 635 subjects

in the study, about half in the adult onset arm and half in the childhood onset arm.

The number of schizophrenia probands and their relatives are roughly the same as the

number of community control probands and families. Fifty two percent of the subjects

are male. To study most cognitive measures, age is a critical factor. The mean age for

all subjects is 33 (Std Dev = 7), with a minimum of 7 and a maximum of 85. The

average age of subjects in the adult onset group is older than that of the childhood onset

group, as expected. For now, age is not included in the current analyses as I want to

keep the model as simple as possible to begin with. In future analyses, I can include

age in the mean structure to adjust for age effects.

The various batteries of cognitive tests assessed include the Wechsler Abbreviated

Scale of Intelligence (WASI), the Test of Memory and Learning (TOMAL), the digital

span subset from Wechsler Memory Scale (WMS-III), the Maintenance and Manipula-

tion Test (MNM), the Minnesota Multiphasic Personality Inventory (MMPI), the Cali-

fornia Verbal Learning Test C Children’s Version (CVLT-C) and the California Verbal

Learning Test C Second Edition (CVLTCII). Figure 4.1 organized the major neurocog-

nitive outcome measures by these tests.

The seven cognitive tests of primary interest are described in details below.

1. Memory-Load Continuous Performance Test (3-7 CPT):

In the conventional continuous performance test (CPT), a random series of single

numbers or letters are presented on a computer monitor. Subjects are asked to

indicate that they have detected a target event by pressing a response button and

to avoid responding to distracting stimuli. Outcome measures of this test include

the level of signal/noise discrimination, d prime (CPT37D), the hit rate (Hitr37)

and the false alarm rate (Falr37).

2. Degraded Stimulus Continuous Performance Test (DS CPT):
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In this version of the CPT, the image of numerals presented to the subject are

degraded, that is, the numerals appear extremely blurred and indistinct. Similar

to 3-7 CPT, subjects are asked to indicate that they have detected a target event.

Outcome variables of this test include the level of signal/noise discrimination, d

prime (CPTDSD), the hit rate (HitrDS) and the false alarm rate (FalrDS);

3. Forced choice Span of Apprehension (SPAN):

In this test, either a T or F will be flashed briefly on the computer screen along

with other irrelevant letters in an array of 1, 5, and l0 letters. The subjects were

instructed to press one button when a T was present and another button when an

F was present. The primary dependent variables are the number of correct target

detections for 1-letter, 5-letter, and l0-letter arrays (SPAN1, SPAN5 and SPAN10,

repectively).

4. Trail making test (TRAILS):

The Trail Making Test from the Halstead-Reitan Neuropsychological Battery

(Springate and Fein, 2013) requires subjects to connect numbers (1-25) in part

A or alternating numbers (1-13) and letters (A-L) in part B (i.e., 1-A-2-B-3-C,

etc.) in sequence as rapidly as possible. The subject’s scores are the number of

seconds required to complete Part A (logTRLAA) and Part B (logTRLBA).

5. Facial Recognition:

The Benton test of Facial Recognition (BFRT), which consists of a short form

requiring 27 responses and a long form requiring 54 responses. On each item,

subjects are presented with a target face above six test faces, and they are asked

to indicate which of the six images match the target face (Benton, 1994). An

outcome measure of interest is short form score (NCFRSFSC).

6. Verbal Fluency:

In the Controlled Oral Word Association Test for verbal fluency, participants were

asked to generate as many words as possible beginning with the letters “F,” “A,”
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and “S”, each for 60 seconds. The combined score of “F,” “A,” and “S” (VFFAS)

is the outcome variable of interest.

7. Maintenance and Manipulation (MNM):

In the Maintenance and Manipulation test, an array of 4 objects first appeared on

the computer screen for 2 seconds. In the maintenance only condition, subjects

were then asked to decide whether the new array was the same as the previous

one. In the maintenance plus manipulation conditions, there was a delay period

when the subjects are told to reorganize the array held in memory. Outcome

measures of this test include the main (hold) trials mean accuracy (MAINacc) and

reaction time (MAINrt), as well as the manipulate (flip) trials accuracy (Manipa)

and reaction time (MANIPrt).

The K = 5 primary outcomes analyzed in this Chapter are Maintenance and Ma-

nipulation Test (MnM Test) manipulation accuracy, degraded stimulus CPT (DS-CPT)

block sum d prime, memory-load CPT (3-7 CPT) block sum d prime, forced-choice

Span of Apprehension (Span) 10-letter accuracy and Trail Making Test b time in sec-

onds, corresponding to k = 1, . . . , 5, respectively. In the next chapter, I will include 12

additional variables in the model, develop a way to incorporate knowledge on cluster-

ing structure of outcomes into the priors and compare consistency of posterior across

the five- and seventeen-outcome models.

It is desirable for the ease of interpretation to have higher scores mean better test

performance for all outcomes. Therefore, the sign of Trail Making Test b has been

reversed. In addition, the factor variance for probands, φA11, must be smaller than any

of the overall variances for probands, var(yi1k), as described in Section 2.1, therefore,

it is useful to scale the observed variables to make the overall variances similar, so

that φA11 will not be forced to be small, which causes precision problem, as small

values may be rounded to zero in computation. Scaling and transformation of these five

outcomes are described in Table 4.2.
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Variable Value Control Sz Total

(n = 321) (n = 314) (n = 635)

Proband 84 116 200

Family Sibling 115 79 194

member Father 45 38 83

Mother 77 81 158

Gender Female 163 152 315

Male 158 162 320

Table 4.1: Frequency tables of family member and gender by schizophrenia and control
families.

Figure 4.1: Neurocognitive performance measures collected in the UCLA Neurocogni-

tive Family Study.
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k Variable Description Transformation

1 MANIPA Maintenance and Manipulation (MnM) test 100 ∗ y

accuracy during manipulation

2 CPTDSD Degraded Stimulus Continuous Performance Test 10 ∗ y

(DS-CPT) block sum d prime

3 CPT37D Memory-load Continuous Performance Test 10 ∗ y

(37-CPT) block sum d prime

4 SPAN10 the Forced-choice Span of Apprehension test 100 ∗ y

10-letter accuracy

5 logTRLBA The trail making test b time in seconds −100 ∗ log10(y)

Table 4.2: Variable descriptions and transformations for five neurocognitive measure-
ments of primary interest. The first four outcomes are scaled while the logTRLBA
with a skewed distribution and negatively correlated with other outcomes are log-trans-
formed and has its sign reversed.

Descriptive statistics are used to summarize the data. Table C.1 in Appendix C

presents the raw group means and standard deviations of the K = 5 outcomes mea-

sured on probands, siblings, fathers and mothers for the schizophrenia (SZ) and con-

trol families. Table C.2 presents the complete correlation matrix of all 20 combina-

tions of 4 family member and 5 outcomes. In particular, the block diagonal matrices

are within-family-member across outcome correlations, which range from 0.2 to 0.4.

The across-member within-outcome correlations of are the diagonal elements of off-

diagonal blocks in Table C.2, which extracted and summarized in Table C.3. For all

five outcomes, the correlation between observed variables measured on proband and on

sibling is the highest (about 0.2).
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4.2 Prior Specification

To fit the BFFM, partially informative priors are specified using priors described in Sec-

tion 2.2 and methods from Section 2.3. First, estimated values for the overall variances

of the K outcomes, v̂ar(y1), . . . , v̂ar(yK) are obtained from a previous study and from

the literature. Phase 1 of the UCLA Family Study (Asarnow et al., 2002; Nuechter-

lein et al., 2002) collected four of these five outcomes (CPTDSD, CPT37D, SPAN10

and logTRLBA); furthermore, these measures have been analyzed in previous studies

(Kim et al., 2004; Nuechterlein et al., 2011; Koide et al., 2012). For outcomes for

which which phase 1 data are not available, estimates from the literature are used. The

estimates of overall means and variances from all those various sources for all 17 out-

come measures are summarized in Table 4.3. Summaries of correlations are given in

Tables 4.4 and 4.5. For now, only prior information of the 5 primary outcome measures

(highlighted in bold) are used.

Using the informtion in Tables 4.3, 4.4 and 4.5, prior hyper-parameters for factor

loadings, factor variance matrix, unique error variances and regression coefficients can

be specified using the methods described in Section 2.3. What follows illustrate this

process by selecting specific values appropriate to this data.

First, information from the Phase 1 study can help to specify prior correlation ma-

trices DA and DB, for outcome factors and family member factors, respectively. For

Phase 1 study data, correlations across four outcomes (CPTDSD, CPT37D, SPAN10

and logTRLBA) ignoring the family structure are all between 0.30 and 0.48 (Table 4.4).

Therefore, I choose a compound symmetric correlation structure forDB, by setting all

the prior factor correlations to be 0.35. The within-outcome across-family-member cor-

relations in the Phase 1 data are summarized in Table 4.5. Most of these correlations are

positive, as observations on individuals from the same family are expected to be pos-

itively associated; there are some negative correlations, though none are significantly

different from 0. Furthermore, the correlations between observations from all pairs of
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family members due to pure genetic effects are all 0.5, except the 0 correlation between

father and mother. In practice, due to various kinds of noise and environmental factors

outside of the family, the real correlations can be lower than 0.5. Based on the Phase 1

correlations and the theoretical correlations among family members, the prior means of

correlations among family members are set to be 0.15 between father and mother and

0.2 otherwise, as father and mother are not genetically associated.

For prior specification of factor variances, it is necessary to choose the degree of

freedom parameterfor the inverse Wishart priors, νA and νA, which are inversely pro-

portional to dispersions of the factor variance matrices. The priors are less informative

when νA and νB are smaller. Furthermore, it is necessary to have νA > J + 1 and

νB > K + 1 for the inverse Wishart distributions to center at W A/(νA −K − 1) and

WB/(νB −K − 1), respectively. The degrees of freedom were set to be νA = 9 and

νA = 10.

Next, the covariate of primary interest for the UCLA NSF is the indicator of whether

the person is in a SZ or control family, so the regression coefficients are the means of

each outcome by family member type in two groups, referred to as group means later.

Without strong belief to the contrary, priors for group means of a particular outcome

are assumed to be the same for both groups across family members, that is, there are 5

distinct priors for group means, one for each outcome. In this case, any differences in

posterior means across family members or between groups will be driven by the data,

not the prior. Means and variances of independent normal priors are set to values in

Table 4.3.

The total variance for the observed variable of the 1st outcome (MANIPA) measured

on the 1st family member (proband) can be decomposed as

var(yi11) = φA11 + φB11 + ψ11,

so v̂ar(yk) can be used as an upper bound for these 3 components. To estimate the
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fraction of total variance contributed by each component, it would be natural to fit the

CFA model using the FIML-QNO to the Phase 1 data. However, it failed to converge

when the model includes both J = 4 family member factors and K = 4 outcome

factors. When “half-models” with only family member factors or with only outcome

factors are fit to the Phase 1 data, about 40% of the total variance is explained by family

member factors, or by outcome factors, respectively. Therefore, the prior means of

both φA11 and φB11, are set the be 40% of the estimated overall variance for the first

outcome, v̂ar(y1), as listed in Table 4.3. Specification of other factor variances and the

overall factor variance matrix proceeds as described in Section 2.3. Finally, the prior

mean of the unique error variance of the kth outcome, ψk, are set to be 20% of v̂ar(y1),

while the degrees of freedom for these inverse gamma prior distributions are all set to

be 15.
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Mean SD Variance SD ratio

CPTDSD 28 11 121 1.00

DShitr 63 23 529 2.09

DSfalr 7 15 225 1.36

SPAN10 50 5 25 0.46

SPAN1 60 4.50 20.3 0.41

SPAN5 60 7.70 59.3 0.70

CPT37D 41 9 81 0.82

Hitr37 95 19 361 1.73

Falr37 0.6 4 16 0.36

logTRLBA -140 20 40 1.82

logTRLAA -140 17 289 1.55

VFFAS 38 10 100 0.91

NCFRSFSC 23 4.20 17.6 0.38

Manipa 70 13 169 1.18

MAINacc 70 13 169 1.18

MANIPrt 12 3 9 0.27

MAINrt 12 3 9 0.27

Table 4.3: Summary of estimates of overall means and variances for the K = 17

outcome measures, obtained from Phase 1 data of the UCLA Family Study and from

previous literature (Kim et al., 2004; Nuechterlein et al., 2011; Koide et al., 2012). SD

denotes standard deviation. SD ratio is the ratio of SD of an outcome to the SD of the

first outcome.
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CPTDSD CPT37D SPAN10 logTRLBA

CPTDSD 1.00

CPT37D 0.48 1.00

SPAN10 0.30 0.33 1.00

logTRLBA 0.34 0.45 0.41 1.00

Table 4.4: Correlations across outcomes ignoring the family structure from the Phase 1

data.

Proband Sibling Father Mother

Proband 1.00

CPTDSD Sibling 0.22 1.00

Father 0.20 0.14 1.00

Mother 0.25 0.21 0.26 1.00

Proband 1.00

CPT37D Sibling 0.25 1.00

Father 0.04 0.02 1.00

Mother 0.15 -0.09 0.15 1.00

Proband 1.00

SPAN10 Sibling 0.13 1.00

Father 0.21 -0.04 1.00

Mother 0.14 0.14 0.13 1.00

Proband 1.00

logTRLBA Sibling 0.46 1.00

Father 0.14 -0.11 1.00

Mother 0.17 -0.01 0.27 1.00

Table 4.5: The within-outcome across-family-member correlations for the four out-

comes in Phase 1 data.
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4.3 Summary of Posterior Distributions

When the classic CFA model using full information likelihood estimation and the full

information maximum likelihood estimation using quasi-Newton optimization (FIML-

QNO) is fit to the UCLA Neurocognitve Family Study data using the lavaan package

in R, the algorithm fails to converge.

The BFFM estimation procedure using a Gibbs sampling algorithm is implemented

in R, with a total of 100, 000 iterations after excluding 10, 000 initial burn-in iterations.

Trace plots, density plots and autocorrelation plots show no obvious evidence of bad

mixing, non-convergence or high autocorrelation.

Tables D.3, D.1 and D.2 in Appendix D present summaries of the posterior dis-

tributions for all 101 parameter estimates, which include means, standard deviations

(SD), and posterior probabilities p(θ < 0|Y ). The posterior means are summarized

and organized in separate tables as discussed below.

Table 4.6 presents posterior means of factor variances, factor correlations and factor

loadings for family member and outcome factors. The posterior means of all family

member factor correlations are positive and vary from a low of 0.034 between mother

and sibling to a high of 0.390 between proband and sibling. Similarly, the posterior

means of all outcome factor correlations are positive and range from 0.29 to 0.61. In

addition, The posterior means of all factor loadings are all positive, suggesting the

observed variables are positively associated with the factors they load on.

Table 4.7 lists the 2JK = 40 posterior means of regression coefficients, βpjk (top),

which are the means of the kth outcomes for the jth family member in the control fam-

ilies (p = 1) and the SZ families (p = 2), for j = 1, . . . 4 corresponding to prbands,

siblings, fathers and mothers, and k = 1, . . . , 5 corresponding to MANIPA, CPTDSD,

CPT37D, SPAN10 and logTRLBA, and posterior means of difference in group means,

control minus SZ, β1jk − β2jk (bottom). These results suggest that SZ probands per-

formed worse than the control probands for all five outcomes, while the sign of the
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differences in mean outcomes between siblings of the two groups are not well deter-

mined by looking at the posterior probabilities p(θ < 0|Y ). Parents of schizophrenia

probands did worse in span of apprehension and trails B than control parents.

Besides posterior means, posterior distributions of model parameters are also of

interest. Figure 4.2 plots the posterior distribution of group means of CPT37D for

probands, siblings, fathers and mothers in the control and SZ families (left) and the

differences between two groups. These plots show that the means of CPT37D for SZ

probands are much smaller than those for control probands, while there are no obvious

differences in means between the two groups for fathers and siblings. Mothers in the

control families have larger means CPT37D than all others, including the SZ moth-

ers. Additional plots of posterior distributions for group means and factor loadings are

provided in Appendix D.
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Family Member Proband Sibling Father Mother

Factor Variance 50.57 50.81 33.31 37.14

Proband 1.000

Factor Sibling 0.390 ∗ 1.000

Correlations Father 0.173 0.070 1.000

Mother 0.081 0.034 0.104 1.000

MANIPA 1 1 1 1

Factor CPTDSD 0.88 ∗ 0.61 ∗ 0.92 ∗ 0.77 ∗

Loadings CPT37D 1.01 ∗ 0.99 ∗ 0.73 ∗ 0.90 ∗

SPAN10 0.61 ∗ 0.46 ∗ 0.47 ∗ 0.52 ∗

logTRLBA 2.13 ∗ 2.05 ∗ 1.77 ∗ 2.36 ∗

Outcome MANIPA CPTDSD CPT37D SPAN10 logTRLBA

Factor Variance 50.20 24.07 16.70 4.67 97.69

MANIPA 1.000

Factor CPTDSD 0.594 ∗ 1.000

Correlations CPT37D 0.493 ∗ 0.609 ∗ 1.000

SPAN10 0.349 ∗ 0.354 ∗ 0.291 1.000

logTRLBA 0.590 0.526 0.529 0.470 1.000

Proband 1 1 1 1 1

Factor Sibling 1.18 ∗ 1.23 ∗ 0.84 ∗ 1.52 ∗ 0.81 ∗

Loadings Father 0.18 0.66 ∗ 0.60 ∗ 1.08 ∗ 0.84 ∗

Mother 0.54 ∗ 0.65 ∗ 0.65 ∗ 0.98 ∗ 0.76 ∗

Unique Error MANIPA CPTDSD CPT37D SPAN10 logTRLBA

Variances 150.17 65.41 28.57 15.77 229.25

Table 4.6: Posterior means of factor variances, factor correlations, factor loadings and
unique error variances estimated by BFFM. For a parameter with ∗, the posterior prob-
ability being smaller than zero, is smaller than 0.05, p(θ < 0|Y ) < 0.05.
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Group Control SZ

Outcome Proband Sibling Father Mother Proband Sibling Father Mother

MANIPA 76.01 70.25 77.00 74.39 66.56 72.37 75.59 71.84

CPTDSD 25.27 22.85 20.83 26.07 21.38 23.44 24.02 23.25

CPT37D 44.63 43.36 45.01 48.55 38.44 43.77 44.36 42.90

SPAN10 56.05 54.79 53.88 53.75 53.32 55.33 51.13 51.68

logTRLBA -139.4 -143.0 -139.5 -140.8 -151.1 -145.1 -150.0 -151.8

Difference (Control− SZ)

Outcome Proband Sibling Father Mother

MANIPA 9.46 ∗ -2.12 1.41 2.55

CPTDSD 3.89 ∗ -0.59 -3.19 2.82 ∗

CPT37D 6.19 ∗ -0.42 0.65 5.65 ∗

SPAN10 2.73 ∗ -0.54 2.75 ∗ 2.06 ∗

logTRLBA 11.8 ∗ 2.1 10.5 ∗ 11.0 ∗

Table 4.7: Posterior means of regression coefficients for J = 4 family members and K = 5 outcomes per family in the control and
schizophrenia (SZ) families (top), and the differences between groups (bottom). For a parameter with ∗, the posterior probability
being smaller than zero, is smaller than 0.05, p(θ < 0|Y ) < 0.05.
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Figure 4.2: (a) Posterior density of means of CPT37D for probands, siblings, fathers
and mothers in the control (black) and SZ (grey) families. The 8 1-dimensional den-
sity plots at the bottom represent locations of posterior samples for probands, siblings,
fathers and mothers in control and SZ families, from top to bottom. (b) Posterior den-
sities for differences in means of CPT37D between two groups, control minus SZ. The
4 1-dimensional density plots at the bottom represent locations of posterior samples for
probands, siblings, fathers and mothers, from top to bottom.
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CHAPTER 5

Application of the Bayesian Family Factor Model to the

UCLA Family Study Data with Seventeen Outcomes

In Chapter 4, I illustrated the Bayesian Family Factor Model by analyzing the UCLA

Neurocognitive Family Study (NSF) data with 5 primary outcomes. Twelve additional

measures in the same domains are also collected as secondary outcomes. When more

outcomes are considered, the relational structure becomes more complex and the com-

pound symmetric prior correlation model for outcome factors used in Chapter 4 may

be too restrictive. Moreover, there may be substantive prior information about the rela-

tionships among outcome measures. For example, associations among sub-scales from

the same test will be similar and higher than correlations between sub-scales from dif-

ferent tests. Furthermore, outcomes which are designed to measure similar concepts

will be more highly correlated than those from different domains. It is desirable to

accommodate this substantive information about the clustering of the outcomes in the

prior specification for the BFFM.

This chapter describes a way to elicit priors for correlations among outcome fac-

tors in familial data with a large number of outcomes, and illustrates the approach by

fitting the BFFM to the UCLA NSF data with 17 outcomes. These outcomes are listed

in Table 5.1, along with the transformations to make the scales similar and all corre-

lations positive. Except for two stand-alone tests, facial recgnition (NCFRSFSC) and

verbal fluency (VFFAS), all of the outcome measures belong to five tests: the Main-

tenance and Manipulation (MNM), the Degraded Stimulus-Continuous Performance

Test (DS-CPT), the memory-load Continuous Performance Test (3-7 CPT), the Forced-
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Choiced Span of Apprehension (SPAN) and the Trail Making Test Adolescent Version

(TRAILS). Each of these tests include one of the 5 primary outcomes analyzed in Chap-

ter 4, highlighted in bold.
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Outcome Description Transformation

CPTDSD Degraded Stimulus(DS)-CPT: block sum d prime ×10

HitrDS DS-CPT: block sum hit rate ×100%

FalrDS DS-CPT: negative block sum false alarm rate ×(−100%)

SPAN10 Span of apprehension: number correct matrix size 10

SPAN1 Span of apprehension: number correct matrix size 1

SPAN5 Span of apprehension: number correct matrix size 5

CPT37D Memory load 3-7 CPT block sum d prime ×10

Hitr37 3-7 CPT block sum hit rate ×100%

Falr37 Negative 3-7 CPT block sum false alarm rate ×(−100%)

logTRLBA Trail making test B, Adolescent Version: time (sec) −100 log10(y)

logTRLAA Trail making test A, Adolescent Version: time (sec) −100 log10(y)

VFFAS Verbal Fluency: sum of f, a and s total scores

NCFRSFSC Facial recognition: short form score

MANIPA MNM (Maintenance and Manipulation Test): ×100%

manipulate (flip) trials mean accuracy

MAINacc MNM: main (hold) trials mean accuracy ×100%

MANIPrt MNM: manipulate trials mean reaction time (sec) /100

MAINrt MNM: main trials mean reaction time /100

Table 5.1: Descriptions and transformations or scalings of 17 outcome measures. The

signs of variables DS-CPT block sum false alarm rate, 3-7 CPT block sum false alarm

rate, Trails A Adolescent Version time and Trails B Adolescent Version time are re-

versed so that for all outcome measures, a larger value means better performance.
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5.1 Descriptive Statistics

In this section, descriptive statistics are calculated to investigate the raw means and

variance-covariance structure of the 17 outcomes from the UCLA NFS. Table 5.2 sum-

marizes these values, by schizophrenia (SZ) and control families.

Sample correlations among the 17 outcomes, ignoring the family structure, are

listed in Table E.1 in Appendix E and the corresponding heat map is presented in Fig-

ure 5.1. A heat map is a scale colour image for representing values in two dimensions.

Overall, correlations among measures from the same test are higher than those of mea-

sures from different tests.

To further explore relationships among outcome measures, I perform a cluster anal-

ysis on the 17 outcomes using the VARCLUS procedure (Nelson, 2001) in SAS. The

resulting dendrogram in Figure 5.2 shows that the measures from the same test are

tightly grouped as expected. Based on the test domains and the results of the cluster-

ing, these 17 outcomes are organized into 5 groups, as listed in Table 5.3.
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Mean StdDev

Control SZ Control SZ

CPTDSD 24.2 22.7 9.9 11.1

HitrDS 73.6 70.0 18.8 21.6

FalrDS -6.8 -8.4 6.1 8.5

SPAN10 54.80 52.94 5.47 6.36

SPAN1 63.12 62.71 1.36 2.21

SPAN5 61.57 59.75 2.83 4.93

CPT37D 45.4 41.6 8.2 9.8

Hitr37 94.5 89.8 7.7 12.8

Falr37 -0.59 -0.89 1.43 1.75

logTRLBA -141 -150 22 23

logTRLAA -112 -119 18 19

VFFAS 39.71 33.79 12.65 12.54

NCFRSFSC 22.99 22.62 2.15 2.58

MANIPA 74.1 70.9 13.5 16.7

MAINacc 80.5 75.9 12.0 16.7

MANIPrt 12.8 12.4 2.3 2.3

MAINrt 11.6 11.3 2.4 2.3

Table 5.2: Means and standard deviations of 17 outcomes by schizophrenia (SZ) and

control family.
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Figure 5.1: A heat map of raw pair-wise correlations among observations of the 17

outcome measures, ignoring the within family correlations. Cyan and pink represent

positive and negative values.
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Figure 5.2: A dendrogram corresponding to clustering of the 17 outcome measures

using VARCLUS in SAS, ignoring the family structure.
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Cluster Outcomes

Degraded Stimulus-CPT CPTDSD, HitrDS, FalrDS

Memory-Load CPT CPT37D, Hitr37, Falr37

Span of Apprehension (SPAN) SPAN10, SPAN1, SPAN5

Trail making test (TRAILS) and others logTRLBA, logTRLAA, VFFAS,

NCFRSFSC

Maintenance and Manipulation (MNM) MAINrt, MANIPrt, MAINacc, Manipa

Table 5.3: Grouping the 17 outcome measures into 5 clusters, based on the sets of tests

and results of variable clustering.

5.2 Prior Specification

To elicit hyper-parameters for all priors, I obtain estimated values for the overall vari-

ances of the K = 17 outcomes, v̂ar(y1), . . . , v̂ar(yK) from (i) Phase 1 of the UCLA

Family Study (4 measures) and (ii) the means and standard deviations reported in pre-

vious literature (13 measures) (Kim et al., 2004; Kopelowicz et al., 2005; Nuechterlein

et al., 2011; Koide et al., 2012). The estimated values are listed in Table 4.3. The priors

for other parameters, including regression coefficients, β, factor loadings, ΛA and ΛB,

family factor variance matrix, ΦA, and unique error variance matrix, Ψ, can be speci-

fied using methods described in Section 2.3. Tables E.2 and E.3 in the appendix list all

prior hyper-parameters specified for fitting the BFFM.

For outcome factor variances,

ΦB ∼ IW(WB, νB),

whereWB(K×K) = (νB−K−1)DBCBDB, νB andCB(K×K) = diag(dB1, . . . , dBK)
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are specified according to Section 2.3. When the number of outcomes, K, is larger,

more meaningful prior outcome factor correlations,DB, can be specified, as follows.

First, the K outcome measures are grouped into a smaller number (s) of clusters,

based on the nature of the tests. Sub-scales from the same test are grouped together.

Measures designed to assess similar concepts are also assigned to the same cluster.

Computation of sample correlations and variable clustering are useful for confirming

that the theoretically selected groups are cohesive and for assigning outcome measures

that do not belong a priori to a particular group. Without strong belief to the contrary,

the within-cluster prior correlations are set to be all equal and higher than the cross-

cluster prior correlations, which are also set to be all equal.

For the UCLA NFS, the K = 17 outcomes are grouped into s = 5 clusters (Ta-

ble 5.3), as discussed in Section 5.1. For the outcome factors, all with-in cluster prior

correlations are set to be 0.4, while all across-cluster correlations are set to be 0.2, be-

cause correlations among the four outcomes from the Phase 1 Study range from 0.3 to

0.5. Table E.3 in Appendix E presents the prior correlation matrix for outcome factors

and Figure 5.3 shows the corresponding heat map. The prior mean of the covariance

matrix can be calculated from the variances and the correlation matrix. Parallelling Sec-

tion 4.2, I choose νA = 9 and νB = 20 (Note that it is necessary to have νA > J+1 = 5

and νB > K+1 = 18 for the inverse Wishart distributions to center atW A/(νA−J−1)

andWB/(νB −K − 1)).
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Figure 5.3: A heat map of prior correlations among the 17 outcome measures. Cyan

and pink represent positive and negative values, respectively. All diagonal elements

are 1, while prior correlations in the diagonal blocks equal to 0.4 and all other prior

correlations are set to be 0.2.
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5.3 Posterior Distribution Summary

This section provides the summary of fitting the BFFM to 17 outcomes from the UCLA

NSF. It is desirable to compare parameters estimated by BFFM and FIML-QNO. How-

ever, when the CFA model with both family member factors and outcome factors were

fit to the data, the FIML-QNO algorithm fail to converge, as the covariance matrix is

not positive definite.

The BFFM is successfully fit to the familial data with 17 outcomes using 20, 000

primary iterations after an initial burn-in of 2000 iterations. Assuming K = 17 distinct

error variances ψ1, . . . , ψ17, the total number of free parameters is (2JK + J2/2 +

K2/2 − J/2 + K/2 + P ) = 431. As this number is large, I summarize the posterior

distributions by visualizing the posterior means and posterior probability p(θ < 0|Y )

for testing whether the parameter estimates are equal to zero.

5.3.1 Regression Coefficients

First, I look at the posterior densities of the regression coefficients, βpjk, which are

group means of the K = 17 outcomes measured on J = 4 types of family members:

probands, siblings, fathers and mothers, where p = 1, 2 correspond to the control and

SZ families. Figures F.1, F.2 and F.3 in Appendix F show the posterior density plots for

these P = 2JK = 136 parameters, grouped by the K outcomes. The corresponding

posterior means are listed in Table F.1. Overall, members of SZ families perform worse

than members of control families. For all outcomes, the posterior means of βpjk for

the SZ probands are lower than those for the control probands. Fathers and mothers of

SZ probands (green and blue dashed lines) also have smaller posterior means in some

outcome measures than the control parents (green and blue solid lines). There are no

obvious differences in posterior means between SZ siblings and control siblings for

the group means. Furthermore, the CPT37D, hitr37, MAINacc and MANIPrt measures

show a similar pattern in which the SZ probands (black dashed lines) have much smaller
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means than all others.

To visualize the patterns across family members and between groups, these P =

136 posterior means of group means are standardized as follows: for each outcome, I

compute the average of 8 group means and calculate the relative posterior group means

Relative Group Means =
(Group Mean− Average)

|Average|
.

A heat map of the relative posterior group means is shown in the left part of Figure 5.4,

in which pink indicates worse performance in cognitive tests, while cyan indicates

better performance. This plot is consistent with the posterior density plots, showing

smaller posterior group means for SZ families (the right half of the plot) in general.

The JK = 68 differences in group means, (control minus SZ, or β2jk − β1jk), are

summarized in the right half of Table F.1 in Appendix F. I visualize the correspond-

ing posterior probability, p(θ < 0|Y ) for testing whether these posterior means are

equal to 0, p(β2jk − β1jk > 0), using a heat map in the right part of Figure 5.4. This

heat map suggests that the SZ probands perform worse in all measures than the control

probands. There are no obvious differences in group means between siblings in SZ and

control families. The differences in group means show similar patterns within clusters

of outcomes for parents: no significant differences in the Maintenance and Manipula-

tion cluster; only mothers show significant differences in the Degraded Stimulus-CPT

and the Span of Apprehension clusters; and both parents show significant differences

for most of the Memory-Load CPT and Trail making test clusters. To further identify

the pattern of significant differences in group means, Figure 5.5 plots the heat map

of p(θ < 0|Y ) with dendrograms added to the left side and to the top; the rows and

columns are re-ordered according to row and column means. This plot suggests that

among the relatives of probands, the SZ mothers have significantly smaller group means

on most outcomes than the control mothers, while the differences in group means be-

tween siblings are the smallest. The dendrogram in Figure 5.2 based on the Bayesian

65



Family Factor Model retains some of the same clusters as the dendrogram for the clus-

ters based on the raw data, from top to bottom, I can see the Degraded Stimulus-CPT

cluster (HitrDS, CPTDSD and FalrDS), some of the Maintenance and Manipulation

cluster (MAINrt, MANIPrt, MAnipa), some of the Memory-Load CPT cluster (Falr37

and CPT37), and the last two clusters mixed together. New information is obtained

after accounting for family structure.

Figure 5.4: Heat maps of relative posterior means of group means by family member

type and control or SZ families (left) and of the corresponding posterior probabilities

of the parameters being smaller than 0, p(θ < 0|Y ) (right).

66



Figure 5.5: A heat map of posterior probabilities of the parameters being smaller than 0,

p(θ < 0|Y ), based on the BFFM. The rows and columns are clustered and re-ordered.
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5.3.2 Factor Covariance and Correlation Matrices

The posterior means of family member factor variances and covariances, as well as the

corresponding probabilities of the parameters being smaller than 0, p(θ < 0|Y ), are

listed in Table 5.4. The corresponding heat maps are shown in the top left and top right

of Figure 5.6. All family member factor covariances are significantly greater than 0.

Furthermore, all family member factor correlations are positive, but only the covariance

between probands and siblings and that between probands and mothers are significantly

greater than 0 with p(θ < 0|Y ) < 0.05. The same heat maps for the analyses of the

data with 5 outcomes are presented in the bottom left and bottom right of Figure 5.6

for comparison. Posterior means of family member factor correlations are consistent in

the two analysis, except that the correlation between fathers and probands are slightly

higher in the analysis of data with 17 outcomes. Compared with the analysis whenK =

5, the posterior probabilities, p(θ < 0|Y ), are smaller when K = 17, suggesting that

combining strength across more outcomes improves estimation of model parameters.

Similarly, posterior means of outcome factor correlations and variances are sum-

marized in Tables F.2 and F.3, respectively, in Appendix F. Figure 5.7 shows a heat

map visualizing these posterior means (left), as well as a heat map of the corresponding

posterior probabilities, p(θ < 0|Y ) (right). This figure suggests that the within-cluster

posterior factor correlations are higher than the across-cluster posterior factor correla-

tions. The heat map of posterior probabilities, p(θ < 0|Y ), indicate that almost all of

these posterior correlations are significantly greater than zero. Although the posterior

correlations between certain outcomes and MAINrt or MANIPrt are negative, none of

these negative correlations are significantly different from 0.
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Factor Correlations Factor

Proband Sibling Father Mother Variance

Proband 1.000 55.89

Sibling 0.321 1.000 21.26

Father 0.194 0.082 1.000 18.90

Mother 0.183 0.141 0.174 1.000 20.93

p(θ < 0|Y )

Proband Sibling Father Mother

Proband

Sibling <0.001

Father 0.05 0.23

Mother 0.02 0.10 0.09

Table 5.4: Posterior means of the family member factor correlations and variances (top)
and the corresponding posterior probabilities of the parameters being smaller than 0,
p(θ < 0|Y ) (bottom).
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Figure 5.6: Heat maps of posterior means of outcome factor correlations estimated in
BFFM with 17 outcomes (top left) and 5 outcomes (bottom left), and the corresponding
posterior probabilities of parameters being smaller than 0, p(θ < 0|Y ) (bottom left and
bottom right), for the 17 and 5 outcome-models, respectively.
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Figure 5.7: Heat maps of the posterior means of outcome factor correlations (left) and the corresponding posterior probabilities,

p(θ < 0|Y )(right).
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Figure 5.8: Heat map of the posterior means of outcome factor correlations (left) and

heat map of the posterior probabilities, p(θ < 0|Y ) (right).

5.3.3 Factor Loadings

This section presents a summary of the posterior distributions for the factor loadings.

In general, factor loadings are interpreted as regression slopes for predicting the ob-

served variables from the factors. Table F.3 in Appendix F presents the posterior means

of both family member and outcome factor loadings. Note that the family member

factor loadings for the first outcome (CPTDSD), a1k, are fixed to 1, as this outcome

72



is chosen as a reference. A family member factor loading, ajk, for J = 1, . . . , J and

k = 2, . . . , K, is interpreted as the amount of change in the kth outcome on the jth

subject, yijk associated with 1 unit increase in fAij with all else fixed. In addition, as

ajk/aj1 = ajk/1 = ajk, this parameter is also the ratio of the effect of fAij on yijk

to the effect of fAij on yij1. Figure 5.9 includes the heat map of posterior means of

family member factor loadings (left) and the heat map of the corresponding posterior

probabilities, p(θ < 0|Y ) (right). For each outcome the posterior means of family

member factor loadings have similar scales across family members. Almost all of these

posterior means are greater than 0 with p(θ < 0|Y ) < 0.05, except for the loadings of

MAINrt and MANIPrt for probands and mothers.

An outcome factor loading, bjk, for J = 1, . . . , J and k = 1, . . . , K, can be inter-

preted as the amount of change in yjk associated with 1 unit increase in fBik. Further-

more, as bjk/b1k = bjk/1 = bjk for j = 2, . . . , J , bjk is also the ratio of the effect of fBik

on yijk to that on yi1k. Again, the outcome factor loadings for the first family member

(proband), b1k, are fixed to 1, as the proband is chosen as the reference. The posterior

means of family member factor loadings and the corresponding posterior probabilities,

p(θ < 0|Y ) are visualized in Figure 5.10 using heat maps. All of these posterior means

are positive, ranging from 0.03 to 1.35 and most are significantly greater than 0. Fur-

thermore, factor loadings for siblings are in general larger than those for fathers and

mothers.
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Figure 5.9: Heat map of the posterior means of family member factor loadings (left)

and heat map of the posterior probabilities, p(θ < 0|Y ) (right).
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Figure 5.10: Heat map of the posterior means of outcome factor loadings (left) and heat

map of the posterior probabilities, p(θ < 0|Y ) (right).
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CHAPTER 6

Hypothesis Testing using Bayes Factors

Besides estimating model parameters, it is of interest to test various hypotheses about

these parameters. In Bayesian inference, testing a null hypothesis against an alternative

can be regarded as comparing two corresponding models,M0 andM1. A Bayes factor

(Berger, 1985; Kass and Raftery, 1995; Chib, 1995) is a summary of evidence provided

by the data in favor ofM0 as opposed toM1

B01 =
p(Y |M0)

p(Y |M1)
=

p(M0|Y )

p(|M1|Y )
/
p(M0)

p(M1)
, (6.1)

where p(Y |M`) =
∫
p(y|Θ`)p(Θ`)dΘ` for ` = 0, 1 is the marginal likelihood of the

data Y given the model M`, p(M0|Y )/p(|M1|Y ) is the posterior odds of M0 to

M1, and p(M0)/p(M1) is the prior odds ofM0 toM1. The Bayes factor is the ratio

of two marginal likelihoods.A scale for interpretation of Bayes factors (BF) (Kass and

Raftery, 1995) is given in Table 6.1. A value of BF > 1 means thatM0 is more strongly

supported by the data under consideration thanM1.

LetM1 denote a general model indexed by Θ = (ωT ,ΥT )T , where ω denotes the

vector of parameters of interest, Υ denotes the vector of all the remaining “nuisance

parameters”, p(Θ|M1) denotes the prior density underM1 and p(Y |Θ,M1) denote

the sampling density underM1. A nested model, denotedM0, is constructed by setting

ω = ω0, while leaving Υ unconstrained: p(Y |M0) = p(Y |ω = ω0,M1). The prior

density underM0 satisfies p(Υ|M0) = p(Υ|ω = ω0,M1) and the sampling density
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Bayes Factor Strength of Evidence

−∞ < BF ≤ 0.01 Very strong againstM0

0.01 < BF ≤ 0.1 Strong againstM0

0.1 < BF ≤ 1
3

Moderate againstM0

1
3
< BF ≤ 1 Barely worth mentioning againstM0

1 < BF ≤ 3 Barely worth mentioning forM0

3 < BF ≤ 10 Moderate forM0

10 < BF < 100 Strong forM0

100 < BF <∞ Very strong forM0

Table 6.1: A scale for interpretation of Bayes factors (Kass and Raftery, 1995).

underM0 is p(Y |Υ,M0). From Bayes Theorem,

p(Y |ω = ω0,M1) =
p(ω = ω0|Y ,M1)p(Y |M1)

p(ω = ω0|M1)
, (6.2)

so the Bayes factor can be expressed as the Savage-Dickey density ratio (Dickey and

Lientz, 1970; Verdinelli and Wasserman, 1995; Morey et al., 2011)

B01 =
p(Y |M0)

p(Y |M1)
=
p(Y |ω = ω0,M1)

p(Y |M1)
=
p(ω = ω0|Y ,M1)

p(ω = ω0|M1)
. (6.3)

The marginal prior density p(ω = ω0|M1) can be easily calculated from the prior.

The marginal posterior, p(ω = ω0|Y ,M1), can be estimated using MCMC outputs

from the unrestricted model, which provide approximate samples from the marginal

posterior p(ω|Y ,M1). Different methods to calculate the marginal posteriors include

1. The Normal approximation:

As the marginal posterior p(ω|Y ) is often approximately normal, p(ω|Y ) can

be approximated using a multivariate normal distribution with mean and vari-

ance equal to the posterior mean and variance of ω estimated from the MCMC

output and thus an estimate of p(ω|Y )|ω=ω0 can be obtained. Deviations of the
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posterior from normality can lead to problems in estimating the Savage-Dickey

density ratio.

2. Conditional marginal density estimation (CMDE):

When the full conditional posterior distribution p(ω|Υ,Y ) is known completely,

the marginal posterior density at ω = ω0 can be approximated by an average of

the full conditional posterior density of ω at ω = ω0 over all iterations

p(ω|Y )|ω=ω0 =
∫

Υ
p(ω|Υ,Y )|ω=ω0p(Υ|Y )dΥ

= EΥ|y[p(ω|Υ,Y )|ω=ω0 ]

≈ 1
T

T∑
t=1

p(ω|Υ(t),Y )|ω=ω0 ,

(6.4)

where Υ(t) is the component of Υ from the tth MCMC sample, out of a total of

T MCMC iterations (Morey et al., 2011).

3. Multivariate kernel density estimation (KDE):

Using the MCMC outputs, one can obtain a kernel density estimate of p(ω|Y )

evaluating at ω = ω0. This can be implemented using nonparametric kernel

smoothing package np in R. KDE always over-estimates the variance (Morey

et al., 2011).

6.1 Testing Hypotheses for Familial Data with Multiple Outcomes

In the UCLA Family Study, hypotheses of interest include whether group means are

equal (1) between schizophrenia and control families and (2) across family member

types within schizophrenia families. Both scenarios are equivalent to testing whether

particular linear combinations of the regression coefficients are simultaneously equal

to zero

ω(l×1) = L(l×P )β(P×1) = 0(l×1),
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where L is a full rank matrix. Let M denote any (P − l) × P full rank matrix so

that rank([LT ,MT ]) = P and let ω⊥ = Mβ. LetM1 denote a general model where

β is freely estimated, which has parameters Θ = (β,ΛA,ΛB,ΦA,ΦB,F A,FB,Ψ)

and let Υ = (ω⊥,ΛA,ΛB,ΦA,ΦB,F A,FB,Ψ). Then Θ can be reparametrized as

Θ∗ = (ω,Υ). A nested model, denotedM0, is constructed by setting ω = Lβ = 0.

As

β ∼ N (µβ0,Σβ0),

the prior distribution of ω = Lβ is

ω|M1 ∼ N (Lµβ0,LΣβ0L
T ),

so we can obtain the denominator of the Savage-Dickey density ratio, p(ω|M1)|ω=0.

Let µ̂β and Σ̂β denote the posterior mean and variance of β estimated from the

MCMC output. The marginal posterior distribution can be approximated as

ω|Y ,M1
approx.∼ N (Lµ̂β,LΣ̂βL

T ),

which gives an approximation to p(ω|Y ,M1)|ω=0.

The conditional marginal density estimator (CMDE) approximates p(ω|Y ,M1)|ω=0

using an average of the full conditional posterior density of ω evaluated at ω = 0 over

all T MCMC iterations

p(ω = 0|Y ,M1) ≈ 1
T

T∑
t=1

p(ω|Υ,Y )|
ω=0,Υ=Υ(t) , (6.5)

where Υ(t) is value of Υ from the tth MCMC sample. The full conditional posterior

density of ω is

p(ω|Υ,Y ) = p(ω|Mβ,Σ,Y ),

where Σ = var(yi|β) = ΛAΦAΛT
A + ΛBΦBΛT

B + Ψ is the variance of yi given β.
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The full conditional posterior distribution of β given Σ is multivariate normal

β|Σ,Y ∼ N (µβp,Σβp),

where

Σβp = (Σ−1
β0 +

N∑
i=1

XT
i Σ−1X i)

−1,

and

µβp = Σβp(Σ
−1
β0µβ0 +

N∑
i=1

XT
i Σ−1yi),

as described in Equation 2.4.2 in Section 2.4. The joint posterior distribution of ω =

Lβ and ω⊥ =Mβ conditional on Σ and Y is multivariate normal

 Lβ

Mβ

 |Σ,Y ∼MVN
 Lµβp

Mµβp

 ,
 LΣβpL

T LΣβpM
T

MΣβpL
T MΣβpL

T

 .

Therefore the full conditional posterior distribution of ω given ω⊥, Σ and Y is

ω|ω⊥ =Mβ,Σ,Y ∼ N
(
µLβ,ΣLβ

)
where

µLβ = Lµβp +LΣβpM
T (MΣβpM

T )−1M (β − µβp),

ΣLβ = LΣβpL
T −LΣβpM

T (MΣβpM
T )−1MΣβpL

T ,
(6.6)

.

Therefore, the conditional marginal density estimator of ω is

p(ω = 0|Y ,M1) ≈ 1
T

T∑
t=1

p(ω|ω⊥,Σ,Y )|
ω=0,ω⊥=Mβ(t)

,Σ=Σ(t) , (6.7)

where β(t) is the component of β from the tth iteration of MCMC output, Σ(t) =

Λ
(t)
A Φ

(t)
A Λ

(t)T
A + Λ

(t)
B Φ

(t)
B Λ

(t)T
B + Ψ(t) is calculated from the tth iteration of the MCMC
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output.

6.2 Illustration of Hypothesis Testing

For the UCLA Neurocognitive Family Study, researchers are interested in differences in

cognitive measurements both between the control and SZ families and among different

members in the SZ family. I illustrate this with 3 prototypical examples

1. Testing whether the means of all outcomes for SZ and control probands are equal

(the number of contraints, NC = K = 5). The linear combination of interest is

L1(K×2JK) =
[
IK×K 0K×K 0K×K 0K×K −IK×K 0K×K 0K×K 0K×K

]
,

where 0K×K is a K × K matrix of 0’s. A full rank matrix, M 1((2J−1)K×2JK), so that

rank([LT1 ,M
T
1 ]) = 2JK is

M 1 =



IK×K IK×K

IK×K

IK×K

IK×K

IK×K

IK×K

IK×K


,

where all the rest of the elements in the matrix are 0.

2. Testing whether the means of SZ probands are equal to the means of the average

of siblings, fathers and mothers of SZ probands (NC = K = 5). The linear combination

of interest is

L1(K×2JK) =
[

0K×K 0K×K 0K×K 0K×K IK −1
3
IK −1

3
IK −1

3
IK

]
,
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where 0K×K is a K ×K matrix of 0’s;

A full rank matrix,M 2((2J−1)K×2JK), so that rank([LT2 ,M
T
2 ]) = 2JK is

M 2 =



IK×K

IK×K

IK×K

IK×K

IK×K 3IK×K

IK×K 3IK×K

IK×K 3IK×K


,

3. Testing whether for a particular variable, say CPT37D (k = 3), the means of SZ

and control families are equal across all members (NC = J = 4). Let d = (0, 0, 1, 0, 0)

be a 1× 5 row vector, then the linear combination of interest is

L3 =
[
IJ ⊗ d −IJ ⊗ d

]
.

Let

m3((K−1)×K) =


1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

 .

A full rank matrix,M 3((2K−1)J×2JK), so that rank([LT3 ,M
T
3 ]) = 2JK is

M 3 =


IJ ⊗ d IJ ⊗ d

IJ ⊗m3 0J(K−1)×JK

0J(K−1)×JK IJ ⊗m3

 .
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6.2.1 Comparing Different Methods Using Simulated Data Sets

First, I analyze simulated data sets to evaluate the performance of the normal approx-

imation estimator, the conditional marginal density estimator (CMDE) and the kernel

density estimator (KDE) for Bayes factors (BF) corresponding to matrices L1, L2 and

L3. As Bayes factors for a single data set can be affected greatly by random errors, I

calculate the BFs for each method using the same 200 data sets with K = 5 outcomes

and J = 4 family members simulated in the scenario where the true covariate matrix

is close to non-positive definite, as described and analyzed in Section 3.2. I choose the

scenario in which the true covariance matrix is close to non-positive definite, so that

I can examine the potential differences in the estimates of BFs between the data sets

which the quasi-Newton optimization (QNO) fails and those which the QNO does not

fail to fit.

The true parameters values for the group means of the K = 5 outcomes on J = 4

family members are listed in Table 6.2.1, reflecting more severe neurocognitive deficits

in SZ probands and SZ siblings compared with other family members in the control

and SZ families. Therefore, I will expect the BFs corresponding to all 3 matrices to be

strongly against the null hypotheses of no difference, Lβ = 0.

Figure 6.1 shows scatter plots of the BFs using the normal approximation method

on the x-axis against those using the CDME (red) or the KDE (green) on the y-axis, for

all 3 hypotheses. If the points are close to the diagonal line with slope 1, the CDME or

KDE estimates are close to the normal approximation estimates. Circles represent data

sets which the FIML-QNO was successful in fitting, while crosses represent data sets

which the FIML-QNO failed to fit

In general, the BFs calculated using the normal approximation and the CDME are

very similar, as the red points are mostly along the diagonal, while the KDE sometimes

produces much smaller BFs (green points below the diagonal line). For hypotheses 1

and 2, all BF are < 10−2, which is consistent with the setting of true parameters having
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Group Member Outcome 1 Outcome 2 Outcome 3 Outcome 4 Outcome 5

Proband 1 2 5 8 10

Control Sibling 1 2 5 8 10

Father 1 2 5 8 10

Mother 1 2 5 8 10

Proband 0.5 1 2.5 4 5

SZ Sibling 0.75 1.5 4 6 8

Father 1 2 5 8 10

Mother 1 2 5 8 10

Table 6.2: True parameter values for group means of K = 5 outcomes on J = 4 family
members in the control and SZ families for the 200 simulated data sets analyzed.

SZ probands different from their relatives and also different from control probands. For

hypothesis 3, testing equality in means of the 3rd outcome between the SZ and control

families across all family members, BFs for some data sets are greater than 1, which is

possible because the means of the 3rd outcome for parents are set to be equal in both SZ

and control families. Looking at Figure 6.1, there are no obvious differences between

the data sets on which the FIML-QNO was successful or not.
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Figure 6.1: Scatter plots of BFs using normal approximation method on the x-axis

against those using the CDME (red) and the KDE (green) on the y-axis, for all 3 hy-

potheses. If the points are close to the diagonal line, the CDME or KDE estimates

are close to the normal approximation estimates. Circles represent data sets which the

FIML-QNO was successful in fitting, while crosses represent data sets which the FIM-

L-QNO failed to fit.
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Hypothesis df Bayes Factor Strength of Evidence

L1 5 8.97 Barely worth mentioning for

L2 5 0.00014 Strong against

L3 4 0.0010 Strong against

Table 6.3: Bayes factors for testing different hypotheses on the UCLA Family Study
Data. The hypothesis associated with L1 tests whether for the probands, the means
of all outcomes in the schizophrenia and control probands are equal (NC = 5). The
hypothesis associated with L2 tests whether the means of schizophrenia probands are
equal to the means of the average of siblings, fathers and mothers of schizophrenia
probands (the number of constraints, NC = 5). The hypothesis associated withL3 tests
whether for the memory load CPT, the means of the schizophrenia and control families
are equal across all members (NC = 4).

6.2.2 Results for the UCLA Neurocognitive Family Study

Similar Bayes factors (BF) are obtained using the three methods, (the normal approx-

imation, KDE and CMDE), for estimating p(ω|Y ,M0)|ω=0, so only the results us-

ing the normal approximation are presented in Table 6.2.2. The BF corresponding to

L1 is 8.97, which suggests that the differences in the 5 × 1 vectors of means of the

probands between the two groups are “barely worth mentioning” (Kass and Raftery,

1995), even if it points slightly towards the hypothesis of equal means. The BF cor-

responding to L2 (NC=5) is 0.0014, suggesting that the means of probands are quite

different from those of their relatives for schizophrenia families. The BF correspond-

ing to L3 (NC=4) is 0.0010, suggesting strong evidence against equality in means of

CPT37D between SZ and control families, which is consistent with the 1-sided p-

values, p(β113 − β213 > 0|Y ), for testing the difference in means between the two

groups.

This hypothesis testing approach can be generalized to test equality constraints

across family members on the following parameters: the family factor loadings aj ,

the outcome factor loadingsBj , the error variances Ψj and the mean parameters µj .
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CHAPTER 7

Discussion

I propose the Bayesian Family Factor Model (BFFM), which extends the classical con-

firmatory factor analysis (CFA) to jointly model multiple outcomes in familial data.

This model explains the covariances among observed variables using a combination of

family-member factors and outcome factors. Bayesian methods incorporating infor-

mative priors mitigate the problem of empirical under-identification, non-convergence

and invalid solutions. The choice of conditionally conjugate priors enable the sampling

from the posterior distributions using a Gibbs algorithm. The proposed framework has

the advantage of being able to handle missing data, incorporate mean structure and test

hypotheses easily.

I performed simulations to compare the BFFM to the full information likelihood

(FIML) estimation using quasi-Newton algorithm, in settings that the true covariance

matrix is not identified, close to not identified and identified. For these settings, the

quasi-Newton algorithm fails to find a fit to the data in 85%, 57% and 13% of the cases,

respectively, due to non-convergence or invalid estimates, while the BFFM provides

stable estimates. Moreover, when both methods successfully fit the data, the BFFM

estimates have smaller variances, as well as comparable mean squared errors and bias

squared. The BFFM is used to analyze the UCLA Neurocognitive Family Study data to

compare the degree of abnormality between schizophrenia families and control families

and to determine correlations among measurements from relatives using hypothesis

testing.

In the current analyses, factors are assumed positively correlated to the observed
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variables. Choosing positive truncated normal priors can solve the problem of improper

solutions where factor loading estimates are negative. In the current study, I use nor-

mal priors which are conditionally conjugate priors for the ease of computation. The

Bayesian model can be modified to use positive truncated normal priors in the future.

An interesting extension to the current model would be to perform Bayesian model

selection and Bayesian model averaging on different sub-models. For example, sub-

models with different equality constraints across family members on regression co-

efficients, factor loadings, and unique errors variances. Other extensions include in-

corporating covariates in the factor loading parameters and the residual variances, to

examine covariate effects on variance structure. This model can also be modified to

fit other kinds of data with similar structure, like the multitrait-multimethod (MTMM)

data used to examine construct validity in psychology. Finally, the current model is

developed under the assumption that all outcomes are normally distributed. It will be

useful to extend the current model to analyze mixed types of outcomes, for example

normal, Poisson, exponential, gamma and binomial, which are all within the exponen-

tial family, by modeling the canonical parameters.
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APPENDIX A

Values of True Parameters for Simulation Studies

Group Means

Outcome 1 Outcome 2 Outcome 3 Outcome 4 Outcome 5

Member 1 1 2 5 8 10

Ctrl Member 2 1 2 5 8 10

Member 3 1 2 5 8 10

Member 4 1 2 5 8 10

Member 1 0.5 1 2.5 4 5

SZ Member 2 0.75 1.5 4 6 8

Member 3 1 2 5 8 10

Member 4 1 2 5 8 10

Measurement Error Variance

Outcome 1 Outcome 2 Outcome 3 Outcome 4 Outcome 5

0.1 0.4 2.5 6.4 10

Table A.1: Values of true parameters for simulation studies.
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Factor Varaince Close to

and Covariance Identified Under-identified Under-identified

φA11 1.959 1.271 1.076

φA12 0.488 0.563 0.549

φA22 0.651 1.284 1.002

φA13 0.585 0.483 0.583

φA23 0.484 0.550 0.430

φA33 1.422 1.275 1.238

φA14 0.520 0.601 0.510

φA24 0.670 0.631 0.634

φA34 0.553 0.581 0.389

φA44 0.832 0.880 1.144

φB11 1.523 1.221 1.172

φB12 0.206 0.316 0.373

φB22 0.961 1.008 1.174

φB13 0.129 0.227 0.306

φB23 0.327 0.243 0.218

φB33 0.615 1.544 0.504

φB14 0.254 0.471 0.310

φB24 0.339 0.139 0.341

φB34 0.211 0.219 0.167

φB44 1.422 1.002 0.961

φB15 0.309 0.258 0.319

φB25 0.098 0.240 0.283

φB35 0.138 0.298 0.251

φB45 0.298 0.342 0.361

φB55 1.960 0.795 0.883

Table A.2: Values of true parameters for simulation studies.
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Factor Close to

Loading Identified Under-identified Under-identified

a12 2.235 2.517 2

a13 2.848 2.691 3

a14 5.229 3.515 4

a15 3.775 5.856 5

a22 2.409 1.407 2

a23 3.978 4.634 3

a24 4.162 6.214 4

a25 6.126 3.265 5

a32 1.401 1.345 2

a33 1.307 2.835 3

a34 2.839 2.038 4

a35 4.344 5.303 5

a42 2.599 1.484 2

a43 3.029 3.869 3

a44 3.110 3.509 4

a45 6.461 3.563 5

b21 1.230 1.215 1.1

b22 1.664 1.492 1.1

b23 0.670 1.655 1.1

b24 -0.060 0.604 1.1

b25 1.384 0.985 1.1

b31 1.790 1.361 1.2

b32 0.793 1.673 1.2

b33 1.682 0.876 1.2

b34 1.832 1.077 1.2

b35 1.589 1.418 1.2

b41 1.436 1.796 1.3

b42 1.545 2.199 1.3

b43 1.250 1.977 1.3

b44 1.661 1.054 1.3

b45 2.356 2.057 1.3

Table A.3: Values of true parameters for simulation studies.
91



APPENDIX B

The Performance of BFFM and Quasi-Newton

Optimization in Simulation Studies

The relative mean squared errors (MSEs), relative variances and relative squared biases

from FIML-QNO when it is successful, from the BFFM when FIML-QNO is success-

ful, and from the BFFM when FIML-QNO fails, in 3 scenarios where the true covari-

ance matrix is identified, close to not identified and not identified are summarized in

tables below.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias

ψ1 1.20E+00 1.17E+00 3.58E-02 4.56E-02 1.42E-02 3.15E-02 3.12E-02 9.83E-03 2.18E-02

ψ2 9.52E-02 8.85E-02 7.14E-03 1.63E-02 1.33E-02 3.13E-03 1.59E-02 1.41E-02 2.35E-03

ψ3 1.18E-03 1.10E-03 8.86E-05 6.63E-03 6.08E-03 5.85E-04 6.15E-03 6.39E-03 2.30E-06

ψ4 2.02E-04 1.44E-04 5.88E-05 1.01E-02 6.04E-03 4.14E-03 1.44E-02 5.17E-03 9.39E-03

ψ5 7.52E-05 6.55E-05 1.01E-05 9.46E-03 7.10E-03 2.41E-03 9.54E-03 6.25E-03 3.53E-03

φA11 7.35E-03 7.34E-03 5.55E-05 6.11E-02 1.72E-02 4.39E-02 6.18E-02 1.60E-02 4.64E-02

φA12 1.47E-01 1.47E-01 1.08E-03 1.20E-01 1.21E-02 1.08E-01 1.11E-01 1.23E-02 9.93E-02

φA22 1.56E-02 1.56E-02 1.36E-04 3.91E-02 1.48E-03 3.76E-02 3.55E-02 1.73E-03 3.38E-02

φA13 2.75E-01 2.73E-01 3.72E-03 3.08E-01 3.36E-02 2.75E-01 2.19E-01 2.69E-02 1.93E-01

φA23 1.32E-01 1.33E-01 2.50E-04 2.17E-01 6.16E-03 2.11E-01 1.99E-01 5.16E-03 1.94E-01

φA33 1.07E-02 1.07E-02 1.01E-04 1.94E-01 1.09E-02 1.84E-01 1.59E-01 7.78E-03 1.51E-01

φA14 1.39E-01 1.40E-01 5.06E-04 1.26E-01 1.32E-02 1.12E-01 1.32E-01 1.28E-02 1.20E-01

φA24 6.17E-02 6.17E-02 4.23E-04 1.83E-01 6.82E-03 1.77E-01 1.80E-01 8.38E-03 1.72E-01

φA34 1.16E-01 1.16E-01 1.50E-05 2.39E-01 6.82E-03 2.33E-01 2.31E-01 7.43E-03 2.24E-01

φA44 2.98E-02 2.98E-02 2.06E-04 1.30E-01 5.46E-03 1.24E-01 1.36E-01 6.35E-03 1.30E-01

Table B.1: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is identified. The parameters compared are unique error variances, ψk and family factor vairances
and covariances, φAlm, for l = 1, . . . , 4 and m = 1, . . . , l.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias

φB11 1.03E-02 1.03E-02 2.31E-05 5.89E-02 2.19E-02 3.71E-02 4.53E-02 2.29E-02 2.33E-02

φB12 3.21E+00 3.23E+00 8.48E-04 8.33E-01 1.75E-01 6.59E-01 7.00E-01 1.85E-01 5.22E-01

φB22 6.40E-02 6.42E-02 1.37E-04 4.72E-01 4.90E-02 4.23E-01 4.26E-01 3.53E-02 3.92E-01

φB13 2.14E+01 2.15E+01 1.25E-02 1.26E+00 4.05E-01 8.60E-01 7.67E-01 2.38E-01 5.38E-01

φB23 5.53E+00 5.56E+00 6.21E-03 4.60E+00 6.46E-01 3.96E+00 3.65E+00 4.16E-01 3.25E+00

φB33 1.57E-01 1.56E-01 2.21E-03 5.70E-02 1.52E-02 4.19E-02 4.48E-02 1.01E-02 3.51E-02

φB14 2.81E+00 2.81E+00 1.72E-02 5.73E-01 1.86E-01 3.89E-01 3.60E-01 1.34E-01 2.31E-01

φB24 3.07E+01 3.05E+01 3.00E-01 2.36E+01 3.43E+00 2.02E+01 2.04E+01 3.24E+00 1.73E+01

φB34 3.58E+01 3.58E+01 1.26E-01 4.65E+00 1.09E+00 3.57E+00 3.45E+00 6.32E-01 2.84E+00

φB44 4.88E-01 4.76E-01 1.43E-02 3.15E-01 1.35E-01 1.80E-01 1.11E-01 7.98E-02 3.44E-02

φB15 8.76E+00 8.65E+00 1.54E-01 3.02E+00 1.14E+00 1.89E+00 2.23E+00 9.58E-01 1.31E+00

φB25 1.09E+02 1.10E+02 6.75E-02 8.95E+00 2.40E+00 6.57E+00 8.58E+00 2.32E+00 6.35E+00

φB35 4.62E+01 4.64E+01 1.86E-02 2.00E+00 1.07E+00 9.31E-01 1.82E+00 1.03E+00 8.33E-01

φB45 1.42E+01 1.43E+01 1.05E-04 2.31E+00 1.54E+00 7.76E-01 2.22E+00 1.52E+00 7.64E-01

φB55 4.60E-01 4.62E-01 8.26E-04 1.91E+00 7.31E-01 1.19E+00 2.28E+00 1.02E+00 1.30E+00

Table B.2: Comparison of the relative mean square errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is identified. The parameters compared are outcome factor variances and covariances, φBlm, for
l = 1, . . . , 5 and m = 1, . . . , l.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)
Parameter RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias
β111 3.90E-02 3.89E-02 3.74E-04 2.05E-02 2.05E-02 1.91E-04 8.59E-03 7.94E-03 9.60E-04
β112 5.98E-03 5.96E-03 6.06E-05 1.20E-02 1.20E-02 8.19E-05 1.74E-02 1.80E-02 4.77E-05
β113 2.38E-04 2.36E-04 2.46E-06 3.16E-03 3.16E-03 2.32E-05 5.91E-03 6.11E-03 3.68E-05
β114 1.35E-04 1.33E-04 3.40E-06 4.57E-03 4.45E-03 1.38E-04 6.38E-03 6.62E-03 8.36E-06
β115 4.08E-05 4.04E-05 6.74E-07 2.49E-03 2.47E-03 3.34E-05 3.37E-03 3.50E-03 3.34E-06
β121 3.81E-02 3.83E-02 3.18E-05 2.31E-02 2.32E-02 5.55E-05 1.29E-02 1.22E-02 1.18E-03
β122 3.97E-03 3.97E-03 1.60E-05 1.02E-02 1.02E-02 6.28E-05 1.73E-02 1.80E-02 1.35E-05
β123 2.08E-04 2.09E-04 1.19E-07 3.49E-03 3.51E-03 3.16E-07 2.89E-03 3.00E-03 6.16E-07
β124 4.23E-05 4.23E-05 2.04E-07 1.91E-03 1.91E-03 6.45E-06 2.30E-03 2.36E-03 3.73E-05
β125 3.55E-05 3.57E-05 2.78E-08 2.21E-03 2.22E-03 8.13E-07 2.70E-03 2.77E-03 3.60E-05
β131 7.42E-02 7.39E-02 6.78E-04 4.54E-02 4.53E-02 4.16E-04 5.40E-02 5.31E-02 3.01E-03
β132 2.28E-03 2.23E-03 5.84E-05 6.56E-03 6.45E-03 1.44E-04 7.82E-03 7.92E-03 2.00E-04
β133 1.32E-04 1.32E-04 1.04E-06 2.73E-03 2.73E-03 1.75E-05 2.29E-03 2.28E-03 9.50E-05
β134 4.68E-05 4.60E-05 1.04E-06 2.33E-03 2.30E-03 3.60E-05 2.31E-03 2.38E-03 1.79E-05
β135 4.14E-05 4.07E-05 8.56E-07 2.98E-03 2.96E-03 3.96E-05 3.66E-03 3.79E-03 1.34E-05
β141 4.95E-02 4.97E-02 8.57E-05 2.97E-02 2.97E-02 1.14E-04 2.34E-02 1.95E-02 4.64E-03
β142 4.52E-03 4.52E-03 2.78E-05 1.12E-02 1.11E-02 1.50E-04 1.33E-02 1.36E-02 2.47E-04
β143 1.31E-04 1.31E-04 1.63E-07 2.18E-03 2.19E-03 7.49E-06 3.15E-03 3.27E-03 6.79E-07
β144 3.81E-05 3.84E-05 9.48E-12 1.73E-03 1.74E-03 3.48E-07 2.02E-03 2.00E-03 9.35E-05
β145 5.42E-05 5.45E-05 1.58E-08 3.42E-03 3.44E-03 3.85E-06 3.43E-03 3.51E-03 5.95E-05

Table B.3: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is identified. The parameters compared are regression coefficients for the control families, βpjk, for
j = 1, . . . , 4, k = 1, . . . , K and p = 1.

959595



QNO BFFM (QNO Converges) BFFM (QNO Fails)
Parameter RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias
β211 5.23E-01 5.18E-01 8.07E-03 2.99E-01 6.69E-02 2.32E-01 2.42E-01 6.87E-02 1.76E-01
β212 1.15E-01 1.15E-01 1.10E-03 3.33E-01 5.76E-02 2.76E-01 2.51E-01 4.80E-02 2.05E-01
β213 5.36E-03 5.34E-03 4.59E-05 9.73E-02 1.77E-02 7.97E-02 5.49E-02 1.21E-02 4.33E-02
β214 2.43E-03 2.44E-03 3.22E-06 1.20E-01 2.02E-02 9.97E-02 9.32E-02 2.04E-02 7.36E-02
β215 6.37E-04 6.41E-04 1.24E-10 4.82E-02 9.57E-03 3.87E-02 4.07E-02 1.22E-02 2.89E-02
β221 1.14E-01 1.13E-01 1.62E-03 5.33E-02 3.75E-02 1.61E-02 3.21E-02 2.36E-02 9.42E-03
β222 1.66E-02 1.64E-02 2.98E-04 3.98E-02 2.20E-02 1.79E-02 1.70E-02 6.64E-03 1.06E-02
β223 5.93E-04 5.93E-04 2.77E-06 1.11E-02 5.40E-03 5.72E-03 1.02E-02 5.15E-03 5.20E-03
β224 2.02E-04 2.03E-04 5.39E-09 7.85E-03 4.59E-03 3.28E-03 9.89E-03 4.02E-03 6.02E-03
β225 1.03E-04 1.03E-04 1.46E-07 7.80E-03 3.76E-03 4.06E-03 6.91E-03 4.07E-03 3.00E-03
β231 6.84E-02 6.72E-02 1.61E-03 5.14E-02 3.98E-02 1.19E-02 4.92E-02 4.52E-02 5.76E-03
β232 3.02E-03 2.99E-03 5.41E-05 1.10E-02 7.66E-03 3.37E-03 7.67E-03 7.14E-03 8.02E-04
β233 1.24E-04 1.25E-04 4.23E-07 2.88E-03 2.40E-03 5.01E-04 2.40E-03 2.44E-03 5.47E-05
β234 8.18E-05 8.10E-05 1.23E-06 4.66E-03 3.64E-03 1.04E-03 4.09E-03 3.94E-03 3.08E-04
β235 5.52E-05 5.54E-05 1.85E-07 4.72E-03 3.79E-03 9.57E-04 2.83E-03 2.19E-03 7.22E-04
β241 4.47E-02 4.38E-02 1.16E-03 3.66E-02 2.50E-02 1.18E-02 2.05E-02 1.78E-02 3.41E-03
β242 6.99E-03 6.92E-03 1.05E-04 2.66E-02 1.58E-02 1.10E-02 1.27E-02 7.00E-03 5.96E-03
β243 2.17E-04 2.15E-04 3.84E-06 5.89E-03 3.20E-03 2.71E-03 3.27E-03 2.40E-03 9.62E-04
β244 6.06E-05 6.06E-05 3.62E-07 3.78E-03 2.46E-03 1.33E-03 3.29E-03 3.13E-03 2.77E-04
β245 6.69E-05 6.71E-05 1.31E-07 6.40E-03 3.81E-03 2.61E-03 5.30E-03 3.59E-03 1.85E-03

Table B.4: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is identified. The parameters compared are regression coefficients for the SZ families, βpjk, for
j = 1, . . . , 4, k = 1, . . . , K and p = 2.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)
Parameter RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias
a12 1.20E-04 1.20E-04 1.66E-07 1.38E-03 5.34E-04 8.50E-04 1.70E-03 1.04E-03 7.04E-04
a13 2.50E-04 2.49E-04 2.26E-06 1.26E-02 2.13E-03 1.05E-02 1.31E-02 1.28E-03 1.19E-02
a14 1.18E-04 1.19E-04 1.06E-07 2.35E-02 3.40E-03 2.02E-02 2.39E-02 2.73E-03 2.13E-02
a15 9.07E-05 9.06E-05 5.46E-07 9.23E-03 1.58E-03 7.65E-03 1.07E-02 1.52E-03 9.22E-03
a22 2.13E-03 2.14E-03 1.12E-06 5.85E-03 4.64E-03 1.24E-03 6.70E-03 6.49E-03 4.58E-04
a23 2.71E-04 2.72E-04 8.01E-07 4.51E-02 2.58E-03 4.25E-02 4.49E-02 3.96E-03 4.10E-02
a24 2.20E-04 2.21E-04 2.93E-09 5.27E-02 4.13E-03 4.86E-02 4.21E-02 2.66E-03 3.96E-02
a25 6.76E-04 6.77E-04 2.69E-06 4.58E-01 1.83E-02 4.40E-01 4.06E-01 2.78E-02 3.79E-01
a32 1.54E-03 1.55E-03 1.42E-06 5.61E-02 5.47E-03 5.07E-02 4.32E-02 2.36E-03 4.09E-02
a33 1.75E-03 1.76E-03 2.90E-07 5.93E-02 6.24E-03 5.31E-02 5.25E-02 2.44E-03 5.01E-02
a34 1.79E-03 1.80E-03 2.86E-06 4.61E-01 3.37E-02 4.27E-01 4.25E-01 2.06E-02 4.05E-01
a35 1.90E-04 1.90E-04 3.64E-07 1.14E-01 8.30E-03 1.06E-01 9.27E-02 5.41E-03 8.75E-02
a42 1.17E-03 1.17E-03 3.67E-07 3.16E-03 2.84E-03 3.33E-04 3.43E-03 3.44E-03 1.20E-04
a43 3.37E-04 3.32E-04 6.82E-06 5.01E-02 2.57E-03 4.75E-02 5.51E-02 4.17E-03 5.11E-02
a44 7.21E-04 7.18E-04 6.73E-06 1.51E-01 7.77E-03 1.43E-01 1.72E-01 1.22E-02 1.60E-01
a45 5.94E-04 5.93E-04 4.91E-06 4.66E-01 1.89E-02 4.47E-01 5.00E-01 2.48E-02 4.76E-01

Table B.5: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is identified. The parameters compared are family member factor loadings, ajk, for j = 1, . . . , 4
and k = 2, . . . , 5.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias

b21 7.08E-04 7.12E-04 1.60E-07 2.81E-03 5.81E-04 2.23E-03 3.37E-03 8.39E-04 2.56E-03

b22 5.20E-03 5.14E-03 8.45E-05 2.73E-02 9.59E-04 2.64E-02 3.12E-02 1.21E-03 3.00E-02

b23 3.57E-01 3.53E-01 5.49E-03 6.42E-02 5.37E-04 6.37E-02 6.75E-02 6.07E-04 6.70E-02

b24 2.10E+02 2.11E+02 3.83E-01 2.83E+00 6.78E-03 2.82E+00 2.99E+00 5.11E-03 2.99E+00

b25 8.78E-01 8.37E-01 4.59E-02 9.18E-02 1.05E-03 9.08E-02 9.42E-02 1.10E-03 9.31E-02

b31 5.64E-04 5.66E-04 1.48E-06 6.23E-03 9.74E-04 5.26E-03 5.73E-03 1.08E-03 4.69E-03

b32 5.42E-03 5.44E-03 8.64E-06 1.65E-03 7.07E-04 9.47E-04 1.50E-03 6.35E-04 8.84E-04

b33 2.27E+00 2.18E+00 9.78E-02 2.64E-01 3.15E-03 2.61E-01 2.71E-01 4.33E-03 2.67E-01

b34 3.32E-01 3.12E-01 2.20E-02 2.62E-01 1.82E-03 2.60E-01 2.90E-01 1.48E-03 2.89E-01

b35 4.72E-01 4.50E-01 2.44E-02 6.97E-02 8.94E-04 6.89E-02 5.96E-02 6.22E-04 5.90E-02

b41 2.86E-04 2.87E-04 1.10E-06 1.86E-03 3.24E-04 1.54E-03 1.40E-03 3.98E-04 1.02E-03

b42 2.34E-03 2.35E-03 9.32E-06 2.68E-03 6.20E-04 2.07E-03 1.56E-03 5.02E-04 1.08E-03

b43 2.68E-01 2.64E-01 5.31E-03 1.27E-03 5.58E-04 7.12E-04 1.13E-03 5.09E-04 6.38E-04

b44 4.00E-01 3.77E-01 2.58E-02 1.05E-01 1.86E-03 1.03E-01 1.21E-01 1.59E-03 1.19E-01

b45 1.66E-01 1.56E-01 1.08E-02 2.22E-01 5.50E-04 2.21E-01 2.25E-01 4.18E-04 2.25E-01

Table B.6: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is identified. The parameters compared are outcome factor loadings, bjk, for j = 1, . . . , 4 and
k = 2, . . . , 5.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias

ψ1 8.90E-01 7.49E-01 1.50E-01 1.09E-02 8.56E-03 2.46E-03 1.69E-02 1.31E-02 3.90E-03

ψ2 5.12E-02 4.52E-02 6.58E-03 1.11E-02 7.55E-03 3.65E-03 1.30E-02 9.19E-03 3.88E-03

ψ3 1.24E-03 1.12E-03 1.33E-04 9.94E-03 7.12E-03 2.91E-03 1.26E-02 8.18E-03 4.48E-03

ψ4 2.09E-04 1.72E-04 3.88E-05 5.44E-03 5.12E-03 3.77E-04 7.77E-03 5.69E-03 2.12E-03

ψ5 7.26E-05 5.87E-05 1.46E-05 5.04E-03 4.90E-03 1.90E-04 4.85E-03 4.61E-03 2.83E-04

φA11 6.86E-03 6.74E-03 1.99E-04 1.41E-02 7.70E-03 6.49E-03 1.48E-02 8.85E-03 6.04E-03

φA12 1.20E-01 1.14E-01 7.40E-03 4.17E-02 2.24E-02 1.95E-02 4.24E-02 2.83E-02 1.44E-02

φA22 9.79E-03 8.81E-03 1.09E-03 2.53E-02 1.04E-02 1.51E-02 1.95E-02 7.97E-03 1.16E-02

φA13 1.99E-01 1.92E-01 8.40E-03 5.25E-02 2.68E-02 2.61E-02 5.26E-02 2.57E-02 2.71E-02

φA23 1.65E-01 1.58E-01 8.88E-03 5.56E-02 2.73E-02 2.86E-02 4.93E-02 2.32E-02 2.63E-02

φA33 8.81E-03 8.70E-03 2.19E-04 2.33E-02 9.17E-03 1.43E-02 2.59E-02 1.10E-02 1.50E-02

φA14 8.42E-02 8.29E-02 2.32E-03 4.63E-02 1.49E-02 3.16E-02 5.30E-02 1.74E-02 3.57E-02

φA24 9.76E-02 9.24E-02 6.32E-03 5.59E-02 1.80E-02 3.81E-02 5.28E-02 1.52E-02 3.78E-02

φA34 1.34E-01 1.27E-01 9.39E-03 6.56E-02 1.94E-02 4.65E-02 6.42E-02 1.93E-02 4.51E-02

φA44 3.98E-02 3.70E-02 3.20E-03 6.37E-02 1.31E-02 5.07E-02 5.99E-02 1.02E-02 4.98E-02

Table B.7: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is close to not identified. The parameters compared are unique error variances, ψk and family factor
vairances and covariances, φAlm, for l = 1, . . . , 4 and m = 1, . . . , l.

999999



QNO BFFM (QNO Converges) BFFM (QNO Fails)
Parameter RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias
φB11 1.19E-02 1.21E-02 1.16E-08 1.45E-02 1.29E-02 1.78E-03 1.23E-02 9.13E-03 3.23E-03
φB12 1.74E+00 1.73E+00 2.84E-02 1.44E-01 9.14E-02 5.35E-02 1.73E-01 8.61E-02 8.76E-02
φB22 8.66E-02 8.45E-02 3.10E-03 1.12E-01 1.79E-02 9.42E-02 1.17E-01 1.98E-02 9.75E-02
φB13 1.36E+01 1.28E+01 9.77E-01 5.13E-01 3.73E-01 1.44E-01 6.42E-01 4.37E-01 2.09E-01
φB23 1.50E+01 1.42E+01 1.04E+00 5.40E-01 3.49E-01 1.95E-01 6.08E-01 3.41E-01 2.71E-01
φB33 5.58E-02 5.41E-02 2.38E-03 8.36E-02 3.96E-02 4.45E-02 8.72E-02 4.03E-02 4.73E-02
φB14 1.61E+00 1.61E+00 1.98E-02 6.59E-02 6.50E-02 1.70E-03 5.59E-02 5.51E-02 1.22E-03
φB24 2.98E+02 2.76E+02 2.47E+01 1.49E+00 1.09E+00 4.10E-01 1.35E+00 7.81E-01 5.74E-01
φB34 1.07E+02 8.82E+01 2.02E+01 5.87E-01 5.41E-01 5.25E-02 6.20E-01 5.85E-01 4.05E-02
φB44 1.04E+00 8.49E-01 2.01E-01 2.23E-02 2.01E-02 2.44E-03 2.14E-02 1.11E-02 1.04E-02
φB15 3.29E+01 3.04E+01 2.92E+00 4.79E-01 3.02E-01 1.81E-01 4.09E-01 2.19E-01 1.92E-01
φB25 6.97E+01 6.41E+01 6.32E+00 7.94E-01 3.81E-01 4.17E-01 9.07E-01 3.43E-01 5.68E-01
φB35 4.66E+01 3.90E+01 8.10E+00 3.56E-01 3.53E-01 7.51E-03 3.69E-01 3.42E-01 2.95E-02
φB45 5.39E+01 4.40E+01 1.04E+01 2.39E-01 1.96E-01 4.48E-02 1.36E-01 1.20E-01 1.75E-02
φB55 6.78E+00 5.32E+00 1.52E+00 6.08E-02 3.94E-02 2.18E-02 5.16E-02 4.04E-02 1.15E-02

Table B.8: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is close to not identified. The parameters compared are outcome factor variances and covariances,
φBlm, for l = 1, . . . , 5 and m = 1, . . . , l.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)
Parameter RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias
β111 2.58E-02 2.55E-02 6.32E-04 1.87E-02 1.86E-02 3.44E-04 1.88E-02 1.89E-02 1.03E-04
β112 6.42E-03 6.43E-03 6.41E-05 1.87E-02 1.88E-02 1.07E-04 1.78E-02 1.79E-02 1.17E-04
β113 2.14E-04 2.16E-04 9.53E-07 4.12E-03 4.17E-03 4.31E-06 3.76E-03 3.78E-03 1.53E-05
β114 6.28E-05 6.07E-05 2.84E-06 3.10E-03 3.01E-03 1.28E-04 3.37E-03 3.39E-03 1.69E-05
β115 5.65E-05 5.64E-05 7.99E-07 4.19E-03 4.21E-03 3.61E-05 4.38E-03 4.42E-03 1.58E-06
β121 2.93E-02 2.85E-02 1.11E-03 2.13E-02 2.08E-02 6.96E-04 2.56E-02 2.53E-02 4.72E-04
β122 3.38E-03 3.36E-03 6.24E-05 1.02E-02 1.02E-02 1.33E-04 1.11E-02 1.11E-02 1.12E-05
β123 5.68E-04 5.54E-04 2.06E-05 1.02E-02 9.97E-03 3.05E-04 9.97E-03 9.95E-03 1.05E-04
β124 1.11E-04 1.04E-04 8.78E-06 4.96E-03 4.64E-03 3.76E-04 6.49E-03 6.19E-03 3.55E-04
β125 2.37E-05 2.32E-05 7.37E-07 1.86E-03 1.83E-03 4.93E-05 2.12E-03 2.11E-03 3.31E-05
β131 3.33E-02 3.30E-02 7.08E-04 2.49E-02 2.48E-02 4.29E-04 2.73E-02 2.71E-02 3.68E-04
β132 3.99E-03 4.03E-03 8.37E-06 1.27E-02 1.29E-02 1.17E-05 1.38E-02 1.39E-02 3.16E-06
β133 2.40E-04 2.42E-04 3.41E-07 4.68E-03 4.73E-03 1.92E-06 3.61E-03 3.64E-03 2.16E-07
β134 3.06E-05 3.06E-05 3.43E-07 1.67E-03 1.68E-03 1.47E-05 1.89E-03 1.82E-03 7.85E-05
β135 5.04E-05 5.10E-05 1.32E-08 3.95E-03 3.99E-03 4.11E-07 2.54E-03 2.57E-03 4.69E-09
β141 4.57E-02 4.51E-02 1.10E-03 3.50E-02 3.47E-02 7.27E-04 4.20E-02 4.22E-02 2.06E-04
β142 5.21E-03 5.27E-03 8.63E-06 1.70E-02 1.72E-02 7.38E-06 1.67E-02 1.68E-02 3.37E-05
β143 2.76E-04 2.76E-04 3.53E-06 5.25E-03 5.27E-03 4.05E-05 6.33E-03 6.36E-03 2.23E-05
β144 3.88E-05 3.77E-05 1.56E-06 2.06E-03 2.02E-03 6.46E-05 2.24E-03 2.21E-03 4.32E-05
β145 3.23E-05 3.24E-05 3.28E-07 2.72E-03 2.74E-03 1.71E-05 2.21E-03 2.23E-03 8.69E-07

Table B.9: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is close to not identified. The parameters compared are regression coefficients for the control
families, βpjk, for j = 1, . . . , 4, k = 1, . . . , K and p = 1.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)
Parameter RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias
β211 4.02E-01 3.97E-01 9.98E-03 9.84E-02 7.04E-02 2.88E-02 1.11E-01 7.70E-02 3.50E-02
β212 1.06E-01 1.05E-01 1.81E-03 1.21E-01 7.53E-02 4.65E-02 1.37E-01 6.68E-02 7.05E-02
β213 3.65E-03 3.67E-03 1.81E-05 2.84E-02 1.73E-02 1.13E-02 3.20E-02 1.80E-02 1.42E-02
β214 1.01E-03 1.02E-03 5.20E-06 2.05E-02 1.28E-02 7.91E-03 2.15E-02 1.29E-02 8.71E-03
β215 7.66E-04 7.39E-04 3.63E-05 2.28E-02 1.36E-02 9.44E-03 3.21E-02 1.59E-02 1.64E-02
β221 1.22E-01 1.23E-01 4.44E-04 5.80E-02 4.97E-02 8.96E-03 3.93E-02 3.14E-02 8.12E-03
β222 1.35E-02 1.37E-02 2.08E-05 2.89E-02 2.26E-02 6.55E-03 2.52E-02 2.02E-02 5.12E-03
β223 1.95E-03 1.95E-03 2.72E-05 3.30E-02 2.21E-02 1.11E-02 2.11E-02 1.36E-02 7.67E-03
β224 5.65E-04 5.59E-04 1.29E-05 2.23E-02 1.34E-02 9.08E-03 1.71E-02 1.08E-02 6.38E-03
β225 7.46E-05 7.51E-05 3.93E-07 5.03E-03 3.65E-03 1.42E-03 3.58E-03 2.73E-03 8.79E-04
β231 4.26E-02 4.19E-02 1.20E-03 3.15E-02 3.13E-02 6.66E-04 2.79E-02 2.61E-02 2.11E-03
β232 3.67E-03 3.60E-03 1.15E-04 1.08E-02 1.07E-02 2.35E-04 1.19E-02 1.04E-02 1.65E-03
β233 3.35E-04 3.39E-04 4.39E-07 7.27E-03 6.87E-03 4.83E-04 5.32E-03 4.83E-03 5.35E-04
β234 4.76E-05 4.79E-05 2.25E-07 2.90E-03 2.68E-03 2.53E-04 2.13E-03 1.79E-03 3.56E-04
β235 6.95E-05 7.00E-05 2.54E-07 5.77E-03 5.52E-03 3.08E-04 4.76E-03 3.89E-03 9.06E-04
β241 5.06E-02 5.07E-02 4.86E-04 4.02E-02 3.79E-02 2.70E-03 3.57E-02 3.38E-02 2.21E-03
β242 4.78E-03 4.77E-03 6.88E-05 1.53E-02 1.44E-02 1.14E-03 1.95E-02 1.71E-02 2.47E-03
β243 4.18E-04 4.21E-04 1.18E-06 1.03E-02 7.85E-03 2.53E-03 1.02E-02 7.75E-03 2.54E-03
β244 5.59E-05 5.64E-05 1.33E-07 3.54E-03 2.82E-03 7.62E-04 3.86E-03 3.05E-03 8.43E-04
β245 2.68E-05 2.71E-05 7.70E-08 2.41E-03 2.09E-03 3.46E-04 2.78E-03 2.24E-03 5.62E-04

Table B.10: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is close to not identified. The parameters compared are regression coefficients for the SZ families,
βpjk, for j = 1, . . . , 4, k = 1, . . . , K and p = 2.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)
Parameter RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias
a12 1.97E-04 1.99E-04 8.31E-10 2.51E-03 1.12E-03 1.40E-03 2.69E-03 1.38E-03 1.32E-03
a13 3.52E-04 3.51E-04 4.90E-06 4.86E-03 2.66E-03 2.24E-03 4.44E-03 2.73E-03 1.74E-03
a14 3.20E-04 3.20E-04 4.09E-06 7.54E-03 4.00E-03 3.59E-03 7.81E-03 3.86E-03 3.99E-03
a15 6.60E-05 6.64E-05 4.20E-07 5.28E-03 2.27E-03 3.04E-03 5.37E-03 2.32E-03 3.06E-03
a22 1.39E-03 1.41E-03 2.24E-07 6.11E-03 2.85E-03 3.29E-03 4.77E-03 2.09E-03 2.70E-03
a23 1.11E-04 1.11E-04 1.11E-06 8.02E-03 2.23E-03 5.82E-03 7.54E-03 2.23E-03 5.33E-03
a24 6.86E-05 6.94E-05 4.54E-08 6.73E-03 2.45E-03 4.31E-03 6.09E-03 2.41E-03 3.70E-03
a25 6.89E-04 6.96E-04 1.40E-06 1.66E-02 7.13E-03 9.51E-03 1.70E-02 8.12E-03 8.96E-03
a32 1.96E-03 1.92E-03 6.70E-05 7.49E-03 3.70E-03 3.83E-03 7.85E-03 3.28E-03 4.60E-03
a33 3.83E-04 3.86E-04 1.88E-06 9.70E-03 3.07E-03 6.67E-03 1.03E-02 3.73E-03 6.57E-03
a34 3.15E-03 3.17E-03 2.10E-05 2.55E-02 1.33E-02 1.24E-02 2.36E-02 9.94E-03 1.37E-02
a35 1.23E-04 1.24E-04 1.97E-11 1.37E-02 4.04E-03 9.75E-03 1.19E-02 4.28E-03 7.61E-03
a42 4.16E-03 4.14E-03 7.54E-05 2.26E-02 7.94E-03 1.47E-02 2.26E-02 5.83E-03 1.68E-02
a43 5.17E-04 5.23E-04 6.68E-07 3.49E-02 6.37E-03 2.86E-02 4.13E-02 7.36E-03 3.40E-02
a44 1.46E-03 1.47E-03 1.52E-05 4.24E-02 1.37E-02 2.89E-02 3.57E-02 7.98E-03 2.78E-02
a45 1.43E-03 1.44E-03 2.49E-06 7.55E-02 1.53E-02 6.04E-02 8.25E-02 1.76E-02 6.50E-02

Table B.11: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is close to not identified. The parameters compared are family member factor loadings, ajk, for
j = 1, . . . , 4 and k = 2, . . . , 5.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)
Parameter RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias
b21 1.23E-03 1.13E-03 1.17E-04 1.12E-03 1.13E-03 4.53E-07 7.93E-04 7.73E-04 2.66E-05
b22 6.15E-03 6.23E-03 2.40E-07 1.61E-02 1.96E-03 1.41E-02 1.53E-02 1.54E-03 1.38E-02
b23 1.83E-02 1.67E-02 1.85E-03 2.74E-02 4.11E-03 2.34E-02 3.29E-02 3.63E-03 2.93E-02
b24 2.16E+01 1.96E+01 2.17E+00 6.24E-01 2.28E-02 6.02E-01 6.20E-01 1.86E-02 6.02E-01
b25 3.57E+00 3.29E+00 3.22E-01 1.51E-02 5.46E-03 9.75E-03 1.39E-02 5.78E-03 8.16E-03
b31 9.16E-04 8.70E-04 5.64E-05 1.19E-03 1.20E-03 1.62E-06 1.16E-03 1.06E-03 1.17E-04
b32 4.82E-03 4.81E-03 6.08E-05 1.86E-02 1.65E-03 1.70E-02 1.60E-02 2.23E-03 1.38E-02
b33 1.12E-01 1.09E-01 3.84E-03 1.96E-02 1.96E-02 2.21E-04 1.87E-02 1.88E-02 2.11E-05
b34 1.51E+00 1.46E+00 6.75E-02 1.65E-02 6.72E-03 9.90E-03 1.61E-02 8.16E-03 8.01E-03
b35 4.96E+00 4.99E+00 2.83E-02 2.18E-02 3.19E-03 1.86E-02 2.31E-02 4.11E-03 1.91E-02
b41 4.23E-04 4.24E-04 4.41E-06 1.05E-03 9.50E-04 1.10E-04 8.96E-04 7.25E-04 1.77E-04
b42 2.63E-03 2.66E-03 5.68E-06 1.80E-02 1.57E-03 1.65E-02 1.70E-02 1.40E-03 1.56E-02
b43 1.07E-02 1.04E-02 4.62E-04 3.22E-02 4.24E-03 2.80E-02 3.35E-02 3.57E-03 3.00E-02
b44 3.44E+00 3.20E+00 2.84E-01 4.77E-02 7.45E-03 4.04E-02 4.74E-02 1.05E-02 3.70E-02
b45 1.03E+01 1.04E+01 1.39E-04 1.11E-01 1.83E-03 1.09E-01 1.13E-01 1.61E-03 1.12E-01

Table B.12: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the sce-
nario where the true covariance matrix is close to not identified. The parameters compared are outcome factor loadings, bjk, for
j = 1, . . . , 4 and k = 2, . . . , 5.

104104104



QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias

ψ1 1.34E+00 1.13E+00 2.52E-01 6.97E-02 1.03E-02 5.98E-02 7.05E-02 1.50E-02 5.56E-02

ψ2 5.22E-02 5.31E-02 9.77E-04 1.17E-02 8.83E-03 3.19E-03 2.17E-02 1.53E-02 6.48E-03

ψ3 2.19E-03 1.46E-03 7.78E-04 9.71E-03 6.54E-03 3.39E-03 1.04E-02 5.83E-03 4.63E-03

ψ4 3.90E-04 2.26E-04 1.72E-04 1.05E-02 6.57E-03 4.11E-03 8.06E-03 4.46E-03 3.63E-03

ψ5 1.15E-04 5.68E-05 6.04E-05 5.56E-03 4.32E-03 1.38E-03 7.74E-03 5.30E-03 2.47E-03

φA11 1.82E-02 1.65E-02 2.26E-03 6.88E-02 6.48E-03 6.25E-02 6.09E-02 4.84E-03 5.61E-02

φA12 1.18E-01 1.00E-01 2.12E-02 1.34E-01 6.93E-03 1.28E-01 1.44E-01 9.50E-03 1.34E-01

φA22 1.03E-02 9.02E-03 1.63E-03 6.50E-02 3.08E-03 6.20E-02 6.73E-02 4.39E-03 6.30E-02

φA13 2.22E-01 2.07E-01 2.19E-02 1.90E-01 1.40E-02 1.77E-01 2.06E-01 2.08E-02 1.85E-01

φA23 2.32E-01 1.96E-01 4.25E-02 1.13E-01 9.95E-03 1.04E-01 1.23E-01 1.19E-02 1.11E-01

φA33 8.73E-03 7.36E-03 1.63E-03 7.89E-02 6.39E-03 7.27E-02 8.09E-02 8.07E-03 7.28E-02

φA14 2.00E-01 1.69E-01 3.73E-02 1.29E-01 6.42E-03 1.22E-01 1.29E-01 8.79E-03 1.20E-01

φA24 9.60E-02 8.07E-02 1.81E-02 1.50E-01 6.66E-03 1.44E-01 1.65E-01 7.99E-03 1.57E-01

φA34 4.38E-01 3.86E-01 6.50E-02 1.06E-01 9.32E-03 9.69E-02 1.12E-01 1.14E-02 1.01E-01

φA44 3.84E-02 3.54E-02 4.16E-03 1.85E-01 9.99E-03 1.75E-01 1.99E-01 1.08E-02 1.88E-01

Table B.13: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is not identified. The parameters compared are unique error variances, ψk and family factor
vairances and covariances, φAlm, for l = 1, . . . , 4 and m = 1, . . . , l.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias

φB11 1.65E-02 1.67E-02 3.34E-04 1.51E-02 1.38E-02 1.86E-03 1.51E-02 1.05E-02 4.65E-03

φB12 2.63E+00 2.49E+00 2.26E-01 3.24E-01 1.69E-01 1.61E-01 2.88E-01 1.27E-01 1.62E-01

φB22 1.12E-01 1.05E-01 1.08E-02 5.32E-02 3.26E-02 2.17E-02 5.47E-02 2.85E-02 2.64E-02

φB13 1.83E+01 1.77E+01 1.26E+00 6.78E-01 2.98E-01 3.90E-01 6.63E-01 2.30E-01 4.34E-01

φB23 8.07E+01 6.15E+01 2.12E+01 8.10E-01 2.85E-01 5.34E-01 7.08E-01 2.47E-01 4.62E-01

φB33 9.56E-01 6.78E-01 3.01E-01 1.70E-02 7.33E-03 9.89E-03 1.31E-02 6.48E-03 6.63E-03

φB14 9.20E+00 7.92E+00 1.55E+00 1.86E-01 6.46E-02 1.23E-01 1.85E-01 6.70E-02 1.19E-01

φB24 2.75E+02 2.09E+02 7.32E+01 2.03E+00 8.48E-01 1.21E+00 2.70E+00 9.99E-01 1.70E+00

φB34 8.47E+02 5.60E+02 3.06E+02 5.58E-01 2.71E-01 2.96E-01 4.98E-01 2.23E-01 2.76E-01

φB44 5.15E+00 3.49E+00 1.78E+00 2.02E-02 1.48E-02 5.92E-03 3.13E-02 2.58E-02 5.62E-03

φB15 3.98E+01 3.88E+01 2.36E+00 6.09E-01 2.61E-01 3.58E-01 8.37E-01 2.65E-01 5.74E-01

φB25 2.03E+02 1.65E+02 4.42E+01 9.35E-01 2.83E-01 6.62E-01 1.23E+00 4.23E-01 8.13E-01

φB35 2.89E+02 2.19E+02 7.72E+01 3.07E-01 1.04E-01 2.07E-01 3.94E-01 1.49E-01 2.45E-01

φB45 3.15E+02 2.28E+02 9.50E+01 1.34E-01 5.58E-02 8.05E-02 2.27E-01 9.93E-02 1.28E-01

φB55 2.26E+01 1.48E+01 8.33E+00 5.14E-02 3.27E-02 1.98E-02 7.19E-02 4.10E-02 3.11E-02

Table B.14: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is not identified. The parameters compared are outcome factor variances and covariances, φBlm,
for l = 1, . . . , 5 and m = 1, . . . , l.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)
Parameter RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias
β111 2.97E-02 3.08E-02 3.38E-06 1.93E-02 2.00E-02 6.51E-07 1.34E-02 1.33E-02 1.91E-04
β112 4.54E-03 4.70E-03 1.53E-07 1.08E-02 1.12E-02 1.25E-06 8.36E-03 8.27E-03 1.41E-04
β113 2.37E-04 2.45E-04 3.22E-08 3.93E-03 4.07E-03 1.97E-06 4.05E-03 4.07E-03 4.50E-06
β114 6.33E-05 6.16E-05 3.78E-06 2.69E-03 2.58E-03 2.00E-04 2.60E-03 2.60E-03 2.36E-05
β115 3.83E-05 3.95E-05 1.23E-07 2.31E-03 2.39E-03 1.59E-06 2.70E-03 2.68E-03 3.39E-05
β121 2.70E-02 2.79E-02 9.79E-05 1.79E-02 1.85E-02 4.20E-05 1.32E-02 1.32E-02 1.90E-05
β122 3.87E-03 3.97E-03 3.62E-05 1.03E-02 1.06E-02 5.93E-05 8.57E-03 8.63E-03 2.64E-08
β123 1.77E-04 1.75E-04 7.54E-06 2.97E-03 2.92E-03 1.57E-04 3.29E-03 3.31E-03 3.43E-06
β124 5.99E-05 5.91E-05 2.76E-06 2.68E-03 2.66E-03 1.08E-04 2.75E-03 2.76E-03 2.18E-06
β125 3.25E-05 3.21E-05 1.50E-06 2.06E-03 2.03E-03 9.73E-05 2.07E-03 2.08E-03 3.51E-06
β131 4.86E-02 5.03E-02 8.05E-05 3.11E-02 3.21E-02 1.59E-04 1.42E-02 1.43E-02 2.76E-07
β132 6.23E-03 6.42E-03 3.09E-05 1.49E-02 1.53E-02 1.72E-04 9.67E-03 9.68E-03 5.02E-05
β133 3.64E-04 3.74E-04 3.05E-06 5.50E-03 5.58E-03 1.14E-04 3.42E-03 3.44E-03 2.46E-06
β134 1.05E-04 1.04E-04 3.85E-06 4.09E-03 4.02E-03 2.10E-04 2.28E-03 2.28E-03 1.43E-05
β135 5.94E-05 6.06E-05 9.30E-07 3.50E-03 3.56E-03 5.53E-05 2.49E-03 2.47E-03 3.16E-05
β141 3.96E-02 4.10E-02 1.42E-05 2.82E-02 2.92E-02 3.09E-05 1.90E-02 1.91E-02 3.99E-05
β142 3.48E-03 3.59E-03 8.19E-06 9.40E-03 9.68E-03 5.65E-05 1.18E-02 1.18E-02 2.50E-05
β143 1.34E-04 1.32E-04 7.07E-06 2.15E-03 2.07E-03 1.46E-04 3.69E-03 3.70E-03 9.93E-06
β144 4.57E-05 4.72E-05 1.31E-07 2.26E-03 2.33E-03 1.11E-05 3.04E-03 3.06E-03 2.71E-06
β145 1.98E-05 2.00E-05 4.49E-07 1.40E-03 1.40E-03 5.20E-05 2.98E-03 2.98E-03 1.06E-05

Table B.15: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is not identified. The parameters compared are regression coefficients for the control families, βpjk,
for j = 1, . . . , 4, k = 1, . . . , K and p = 1.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)
Parameter RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias
β211 2.72E-01 2.62E-01 1.92E-02 1.56E-01 4.33E-02 1.14E-01 1.32E-01 6.09E-02 7.11E-02
β212 5.55E-02 5.45E-02 2.86E-03 1.39E-01 3.26E-02 1.08E-01 1.22E-01 3.62E-02 8.62E-02
β213 3.97E-03 3.63E-03 4.70E-04 6.94E-02 1.57E-02 5.43E-02 4.62E-02 1.51E-02 3.12E-02
β214 6.64E-04 6.66E-04 2.12E-05 3.90E-02 6.84E-03 3.24E-02 3.85E-02 1.26E-02 2.59E-02
β215 6.34E-04 6.48E-04 8.42E-06 4.08E-02 9.83E-03 3.13E-02 3.59E-02 1.05E-02 2.55E-02
β221 6.27E-02 6.49E-02 1.26E-05 4.19E-02 2.53E-02 1.74E-02 5.19E-02 3.34E-02 1.87E-02
β222 1.22E-02 1.25E-02 6.63E-05 3.78E-02 1.85E-02 2.00E-02 3.53E-02 1.68E-02 1.87E-02
β223 4.97E-04 5.00E-04 1.47E-05 1.39E-02 5.45E-03 8.60E-03 1.09E-02 5.59E-03 5.38E-03
β224 2.18E-04 2.26E-04 1.26E-09 1.05E-02 5.65E-03 5.04E-03 9.56E-03 4.78E-03 4.81E-03
β225 6.19E-05 6.40E-05 2.32E-08 6.95E-03 2.68E-03 4.36E-03 9.03E-03 4.15E-03 4.90E-03
β231 2.66E-02 2.67E-02 7.91E-04 2.69E-02 1.85E-02 9.02E-03 2.74E-02 2.21E-02 5.51E-03
β232 3.32E-03 2.74E-03 6.72E-04 1.98E-02 7.18E-03 1.29E-02 1.77E-02 1.29E-02 4.83E-03
β233 1.49E-04 1.40E-04 1.32E-05 5.21E-03 2.43E-03 2.86E-03 5.96E-03 4.77E-03 1.22E-03
β234 6.13E-05 5.58E-05 7.36E-06 4.97E-03 2.33E-03 2.72E-03 3.72E-03 2.82E-03 9.23E-04
β235 3.72E-05 3.53E-05 3.06E-06 4.64E-03 2.59E-03 2.14E-03 4.59E-03 3.65E-03 9.60E-04
β241 2.78E-02 2.74E-02 1.30E-03 3.03E-02 1.92E-02 1.17E-02 3.40E-02 2.76E-02 6.57E-03
β242 4.59E-03 4.58E-03 1.74E-04 1.97E-02 1.20E-02 8.11E-03 1.91E-02 1.27E-02 6.47E-03
β243 1.74E-04 1.64E-04 1.54E-05 6.13E-03 3.01E-03 3.23E-03 4.99E-03 3.47E-03 1.55E-03
β244 6.92E-05 6.88E-05 2.72E-06 4.62E-03 2.83E-03 1.89E-03 4.34E-03 3.09E-03 1.27E-03
β245 3.37E-05 3.49E-05 4.44E-08 3.19E-03 2.19E-03 1.08E-03 4.54E-03 3.12E-03 1.44E-03

Table B.16: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is not identified. The parameters compared are regression coefficients for the SZ families, βpjk, for
j = 1, . . . , 4, k = 1, . . . , K and p = 2.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)
Parameter RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias
a12 4.73E-04 4.90E-04 2.50E-07 1.13E-02 1.35E-03 9.96E-03 1.07E-02 9.27E-04 9.75E-03
a13 9.77E-04 1.01E-03 5.53E-06 6.84E-02 5.18E-03 6.34E-02 6.68E-02 4.72E-03 6.21E-02
a14 5.34E-04 5.09E-04 4.26E-05 9.27E-02 8.14E-03 8.48E-02 9.43E-02 7.33E-03 8.70E-02
a15 2.05E-04 2.10E-04 2.42E-06 5.64E-02 6.90E-03 4.97E-02 5.27E-02 4.46E-03 4.83E-02
a22 2.41E-03 2.44E-03 4.81E-05 4.23E-02 4.75E-03 3.77E-02 4.18E-02 3.07E-03 3.88E-02
a23 3.08E-04 2.94E-04 2.42E-05 2.86E-02 1.78E-03 2.69E-02 3.07E-02 1.88E-03 2.88E-02
a24 1.48E-04 1.53E-04 4.61E-07 3.63E-02 1.61E-03 3.48E-02 3.81E-02 1.77E-03 3.64E-02
a25 7.00E-04 6.95E-04 2.81E-05 2.18E-01 1.21E-02 2.06E-01 2.22E-01 1.21E-02 2.10E-01
a32 9.58E-04 9.90E-04 2.03E-06 3.75E-02 3.42E-03 3.42E-02 3.62E-02 3.87E-03 3.24E-02
a33 6.39E-04 6.17E-04 4.38E-05 6.27E-02 3.77E-03 5.91E-02 5.63E-02 4.42E-03 5.19E-02
a34 1.35E-03 1.38E-03 2.32E-05 2.75E-01 2.19E-02 2.54E-01 2.34E-01 1.59E-02 2.18E-01
a35 9.77E-05 9.54E-05 5.58E-06 6.77E-02 3.51E-03 6.43E-02 5.67E-02 4.40E-03 5.23E-02
a42 1.47E-03 1.47E-03 5.67E-05 3.49E-02 3.79E-03 3.12E-02 3.85E-02 3.31E-03 3.52E-02
a43 2.26E-04 2.24E-04 9.88E-06 4.60E-02 2.12E-03 4.39E-02 4.21E-02 2.36E-03 3.98E-02
a44 6.59E-04 6.74E-04 8.63E-06 1.15E-01 5.24E-03 1.10E-01 1.25E-01 8.88E-03 1.16E-01
a45 7.59E-04 7.79E-04 7.09E-06 1.88E-01 1.28E-02 1.76E-01 1.86E-01 9.66E-03 1.76E-01

Table B.17: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is not identified. The parameters compared are family member factor loadings, ajk, for j = 1, . . . , 4
and k = 2, . . . , 5.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)
Parameter RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias
b21 1.90E-03 1.96E-03 1.03E-06 1.17E-03 1.21E-03 9.74E-09 9.10E-04 9.14E-04 1.37E-06
b22 5.46E-03 5.40E-03 2.43E-04 1.52E-03 1.51E-03 6.71E-05 1.21E-03 1.11E-03 1.05E-04
b23 1.60E-01 1.65E-01 1.28E-03 6.04E-04 6.25E-04 9.14E-07 4.31E-04 4.14E-04 1.95E-05
b24 9.99E-01 1.03E+00 1.27E-03 2.56E-03 2.50E-03 1.45E-04 2.34E-03 2.34E-03 1.17E-05
b25 4.93E+00 5.10E+00 4.36E-03 4.25E-04 4.21E-04 1.83E-05 3.92E-04 3.91E-04 3.41E-06
b31 1.46E-03 1.51E-03 2.11E-06 1.13E-03 1.17E-03 2.25E-06 7.02E-04 7.06E-04 1.45E-09
b32 2.84E-03 2.62E-03 3.12E-04 9.06E-04 7.81E-04 1.52E-04 9.59E-04 9.46E-04 1.82E-05
b33 6.34E-01 6.56E-01 3.80E-04 2.97E-03 2.42E-03 6.39E-04 2.63E-03 2.54E-03 1.05E-04
b34 2.12E-01 2.19E-01 4.71E-05 9.17E-04 9.09E-04 4.00E-05 8.48E-04 8.36E-04 1.63E-05
b35 1.88E+00 1.95E+00 3.97E-05 5.35E-04 5.53E-04 4.31E-07 2.23E-04 2.15E-04 9.32E-06
b41 1.05E-03 1.06E-03 2.85E-05 9.61E-04 9.63E-04 3.08E-05 4.89E-04 4.89E-04 2.94E-06
b42 2.71E-03 2.56E-03 2.33E-04 1.00E-03 8.88E-04 1.45E-04 7.34E-04 7.08E-04 2.99E-05
b43 7.14E-02 7.31E-02 8.21E-04 5.58E-04 4.46E-04 1.27E-04 4.83E-04 4.66E-04 1.99E-05
b44 3.55E-01 3.52E-01 1.50E-02 1.36E-03 1.39E-03 9.72E-06 1.08E-03 1.06E-03 1.97E-05
b45 9.62E-01 9.86E-01 1.04E-02 1.85E-04 1.89E-04 3.03E-06 1.87E-04 1.85E-04 3.19E-06

Table B.18: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is not identified. The parameters compared are outcome factor loadings, bjk, for j = 1, . . . , 4 and
k = 2, . . . , 5.
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APPENDIX C

Summary Statistics for the UCLA Family Study Data
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Control Schizophrenia

Variable Prob Sib Fa Mo Prob Sib Fa Mo

MANIPA 0.76 0.70 0.76 0.74 0.68 0.71 0.76 0.72

CPTDSD 2.54 2.31 2.07 2.62 2.17 2.28 2.42 2.33

Mean CPT37D 4.47 4.35 4.49 4.86 3.87 4.3 4.48 4.29

SPAN10 56.1 54.9 53.8 53.8 53.3 54.8 51.4 51.9

logTRLBA −1.39 −1.43 −1.4 −1.41 −1.51 −1.47 −1.48 −1.52

MANIPA 0.13 0.15 0.11 0.13 0.17 0.18 0.16 0.15

CPTDSD 1.00 1.03 0.88 0.92 1.22 1.11 0.99 1.04

Std Dev CPT37D 0.82 0.94 0.74 0.63 1.09 0.95 0.59 0.90

SPAN10 4.9 6.5 5.4 4.7 7.2 5.3 5.4 5.9

logTRLBA 0.24 0.22 0.21 0.2 0.24 0.23 0.2 0.23

Table C.1: Raw group means and standard deviations of the 5 outcomes measured on probands, siblings, fathers and mothers in the
schizophrenia and control families. Please refer to Table 4.2 for description of variables.
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Pr1 Pr2 Pr3 Pr4 Pr5 Sib1 Sib2 Sib3 Sib4 Sib5 Fa1 Fa2 Fa3 Fa4 Fa5 Mo1 Mo2 Mo3 Mo4
Pr1 1.00
Pr2 .35 1.00
Pr3 .38 .50 1.00
Pr4 .35 .39 .54 1.00
Pr5 .33 .42 .54 .50 1.00
Sib1 .20 .13 .16 .12 .26 1.00
Sib2 .23 .21 .28 .07 .30 .40 1.00
Sib3 .09 .23 .28 .19 .30 .41 .39 1.00
Sib4 .10 .17 .18 .22 .24 .25 .29 .44 1.00
Sib5 .09 .18 .28 .20 .31 .47 .28 .53 .46 1.00
Fa1 .08 .02 −.02 .04 −.03 .03 .01 .09 .00 0.03 1.00
Fa2 −.01 .08 −.02 .04 .09 .08 .14 −.01 .10 -0.03 .12 1.00
Fa3 .12 .19 .10 .04 .20 .11 .13 .04 −.01 0.05 .26 .57 1.00
Fa4 .20 .20 .16 .18 .21 .09 .16 .15 .18 .04 .27 .28 .27 1.00
Fa5 .21 .14 .10 .08 .05 .01 .06 −.06 −.04 .09 .06 .18 .31 .36 1.00
Mo1 .17 .17 .09 .12 .21 .04 .03 −.01 −.01 -.13 −.13 .01 −.06 .02 .09 1.00
Mo2 .21 .08 .12 .12 .15 .09 .14 .13 .16 .09 −.02 −.03 −.07 .00 .13 .22 1.00
Mo3 .23 .16 .22 .13 .20 .00 −.04 .05 .01 .04 .01 −0.07 .03 .17 .24 .32 .32 1.00
Mo4 .15 −.03 .04 .06 .09 .03 −.02 −.05 .21 -.01 −.05 .02 −0.02 .16 .13 .21 .39 .47 1.00
Mo5 .19 .12 .08 .11 .21 .12 −0.04 .05 .09 .12 −.07 .07 .05 .11 .22 .30 .30 .61 .52

Table C.2: Correlation matrix of 4 of measurements of 5 outcomes on 4 family members. Pr, Sib, Fa and Mo refer to proband,
sibling, father and mother, respectively. Numbers 1, 2, 3, 4, 5 on variable names refers to the five outcomes MANIPA, CPTDSD,
CPT37D, SPAN10 and logTRLBA, respectively. The block diagonal matrices are correlations between the five outcomes for the
same family member.
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Proband Sibling Father Mother

Proband 1.00

MANIPA Sibling 0.20 1.00

Father 0.08 0.03 1.00

Mother 0.17 0.04 −0.13 1.00

Proband 1.00

CPTDSD Sibling 0.31 1.00

Father 0.05 0.09 1.00

Mother 0.21 0.12 0.22 1.00

Proband 1.00

CPT37D Sibling 0.22 1.00

Father 0.18 0.18 1.00

Mother 0.06 0.21 0.16 1.00

Proband 1.00

SPAN10 Sibling 0.28 1.00

Father 0.10 0.04 1.00

Mother 0.22 0.05 0.03 1.00

Proband 1.00

logTRLBA Sibling 0.21 1.00

Father 0.08 0.14 1.00

Mother 0.08 0.14 −0.03 1.00

Table C.3: Sample correlations between measurements on different family members for
the same outcome. For all five outcomes, the correlations between proband and sibling
are the highest (about 0.2). Please refer to Table 4.2 for description of variables.
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APPENDIX D

Summary of Posterior Distributions for the UCLA

Family Study Data with Five Outcomes

Tables D.1, D.2 and D.3 give summaries of the posterior distributions including mean,

SD and posterior probabilities, p(θ < 0|Y ) from fitting the BFFM to the UCLA NSF

data.

Figure D.1 plots the posterior distribution group means for all five outcomes mea-

sured on probands, fathers, mothers and siblings in schizophrenia and control families.

Figures D.2 and D.3 plot the posterior distribution of non-zero family factor loadings

and outcome factor loadings, grouped by family member and by outcome, respectively.
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Param Mean SD p(θ < 0|Y ) Param Mean SD p(θ < 0|Y )

Unique Error Variances Family Member Factor Loadings

ψ1 150.17 12.15 a12 0.88 0.16 < .0001

ψ2 65.41 5.28 a13 1.01 0.15 < .0001

ψ3 28.57 3.19 a14 0.61 0.09 < .0001

ψ4 15.77 1.65 a15 2.13 0.33 < .0001

ψ5 229.25 21.24 a22 0.61 0.17 0.0008

Famliy Member Factor Vari -Covar a23 0.99 0.17 < .0001

φA11 50.57 13.64 a24 0.46 0.09 < .0001

φA12 19.79 8.16 0.002 a25 2.05 0.34 < .0001

φA22 50.81 14.69 a32 0.92 0.23 < .0001

φA13 7.10 7.48 0.16 a33 0.73 0.18 < .0001

φA23 2.87 7.20 0.34 a34 0.47 0.12 < .0001

φA33 33.31 10.85 a35 1.77 0.51 0.0006

φA14 3.49 5.70 0.27 a42 0.77 0.18 < .0001

φA24 1.47 6.58 0.41 a43 0.90 0.14 < .0001

φA34 3.67 6.49 0.27 a44 0.52 0.09 < .0001

φA44 37.14 9.84 a45 2.36 0.36 < .0001

Table D.1: Posterior means and SD of unique error vairances, ψk, family member factor

covriance matrix, ΦA and family member factor loadings, ajk, for j = 1, . . . 4 corre-

sponding to prbands, siblings, fathers and mothers, and k = 1, . . . , 5 corresponding to

MANIPA, CPTDSD, CPT37D, SPAN10 and logTRLBA. The posterior probabilities,

p(θ < 0|Y ) are also listed.
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Param Mean SD p(θ < 0|Y ) Param Mean SD p(θ < 0|Y )

Unique Error Variances Family Member Factor Loadings

Outcome Factor Var-Covar Outcome Factor Loadings

φB11 50.20 18.02 b21 1.18 0.28 < .0001

φB12 20.66 8.51 0.0005 b22 1.23 0.28 < .0001

φB22 24.06 7.63 b23 0.84 0.37 0.01

φB13 14.26 7.05 0.008 b24 1.52 0.30 < .0001

φB23 12.21 5.11 0.0005 b25 0.81 0.28 0.002

φB33 16.70 5.92 b31 0.18 0.33 0.29

φB14 5.35 3.45 0.03 b32 0.66 0.29 0.01

φB24 3.76 2.23 0.02 b33 0.60 0.29 0.01

φB34 2.57 1.93 0.06 b34 1.08 0.36 0.0006

φB44 4.67 1.52 b35 0.84 0.36 0.007

φB15 41.26 19.52 0.002 b41 0.54 0.27 0.02

φB25 25.50 12.12 0.002 b42 0.65 0.27 0.006

φB35 21.38 10.87 0.004 b43 0.68 0.23 0.001

φB45 10.04 5.26 0.004 b44 0.98 0.27 0.0002

φB55 97.69 37.86 b45 0.76 0.26 0.001

Table D.2: Posterior means and SD of outcome factor variance-covariances, ΦB and

outcome factor loadings, bjk, for j = 1, . . . 4 corresponding to prbands, siblings, fa-

thers and mothers, and k = 1, . . . , 5 corresponding to MANIPA, CPTDSD, CPT37D,

SPAN10 and logTRLBA. The posterior probabilities, p(θ < 0|Y ) are also listed.
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Means of Control Means of SZ Diff in Means, Control-SZ

Param Mean SD Param Mean SD Param Mean SD p(θ < 0)

β111 76.01 1.89 β211 66.56 1.60 β111 − β211 9.45 2.47 0.0002

β112 25.27 1.25 β212 21.38 1.10 β112 − β212 3.89 1.67 0.01

Prob β113 44.63 1.08 β213 38.44 0.93 β113 − β213 6.19 1.42 <.0001

β114 56.05 0.68 β214 53.32 0.60 β114 − β214 2.73 0.91 0.00

β115 -139.35 2.60 β215 -151.11 2.26 β115 − β215 11.77 3.44 0.0004

β121 70.25 1.97 β221 72.37 2.26 β121 − β221 -2.12 2.99 0.77

β122 22.85 1.24 β222 23.44 1.48 β122 − β222 -0.59 1.93 0.61

Sib β123 43.36 1.06 β223 43.77 1.24 β123 − β223 -0.42 1.64 0.59

β124 54.79 0.68 β224 55.33 0.80 β124 − β224 -0.54 1.06 0.70

β125 -143.00 2.56 β225 -145.10 2.98 β125 − β225 2.10 3.95 0.30

β131 77.00 2.18 β231 75.59 2.40 β131 − β231 1.41 3.22 0.33

β132 20.83 1.51 β232 24.02 1.65 β132 − β232 -3.19 2.24 0.92

Fath β133 45.01 1.06 β233 44.36 1.20 β133 − β233 0.65 1.62 0.34

β134 53.88 0.78 β234 51.13 0.84 β134 − β234 2.75 1.15 0.01

β135 -139.48 2.92 β235 -150.00 3.32 β135 − β235 10.52 4.43 0.01

β141 74.39 1.75 β241 71.84 1.63 β141 − β241 2.55 2.38 0.14

β142 26.07 1.16 β242 23.25 1.10 β142 − β242 2.82 1.61 0.04

Moth β143 48.55 0.94 β243 42.90 0.90 β143 − β243 5.65 1.29 <.0001

β144 53.75 0.63 β244 51.68 0.61 β144 − β244 2.06 0.87 0.01

β145 -140.78 2.53 β245 -151.76 2.46 β145 − β245 10.98 3.52 <.0001

Table D.3: The left and middle panels present posterior means and SD of regression

coefficients, βpjk, which are the means of the kth outcomes for the jth family member

in the control families (p = 1) and the SZ families (p = 2), for j = 1, . . . 4 corre-

sponding to probands, siblings, fathers and mothers, and k = 1, . . . , 5 corresponding to

MANIPA, CPTDSD, CPT37D, SPAN10 and logTRLBA. The right panel presents the

posterior means, SD of difference in group means, control minus SZ, β1jk − β2jk. The

posterior probabilities, p(β1jk − β2jk < 0|Y ) are also listed.
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Figure D.1: Posterior density of group means for probands, siblings, fathers and moth-

ers in the control (solid lines) and SZ (dashed lines) families.
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Figure D.2: Posterior density plots of family member factor loadings, ajk, for

j = 1, . . . , 4 corresponding to probands, siblings, fathers and mothers and k = 2, . . . , 5

corresponding to CPTDSD, CPT37D, SPAN10 and logTRLBA.
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Figure D.3: Posterior density plots of outcome factor loadings, bjk, for j = 2, . . . , 4

corresponding to siblings, fathers and mothers and k = 1, . . . , 5 corresponding to MA-

NIPA, CPTDSD, CPT37D, SPAN10 and logTRLBA.
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APPENDIX E

Descriptive Statistics and Prior Specification for the

UCLA Family Study Data with Seventeen Outcomes

Table E.1 lists the sample correlations among observations of 17 outcomes from the

UCLA NFS data, ignoring the family structure.
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CPTDSD HitrDS FalrDS SPAN10 SPAN1 SPAN5 CPT37D Hitr37 Falr37 logTRLBA logTRLAA VFFAS NCFRSFSC Manipa MAINacc MANIPrt

CPTDSDR 1.00

HitrDS .86 1.00

FalrDS .66 .35 1.00

SPAN10 .34 .30 .32 1.00

SPAN1 .25 .23 .28 .38 1.00

SPAN5 .31 .29 .35 .74 .52 1.00

CPT37D .43 .40 .35 .43 .39 .44 1.00

Hitr37 .35 .37 .27 .40 .36 .44 .88 1.00

Falr37 .27 .24 .32 .31 .37 .40 .68 .52 1.00

logTRLBA .33 .30 .31 .47 .33 .47 .52 .45 .42 1.00

logTRLAA .27 .23 .20 .38 .21 .37 .44 .37 .38 .64 1.00

VFFAS .33 .30 .25 .32 .21 .30 .42 .37 .31 .51 .43 1.00

NCFRSFSC .27 .29 .18 .31 .19 .26 .34 .27 .34 .31 .32 .30 1.00

Manipa .29 .29 .19 .25 .22 .22 .37 .36 .24 .33 .32 .25 .18 1.00

MAINacc .32 .33 .25 .26 .26 .27 .48 .44 .34 .42 .34 .32 .26 .66 1.00

MANIPrt .00 .02 .02 -.02 .13 .04 .10 .13 .06 .05 .01 .11 .06 .10 .12 1.00

MAINrt -.07 -.05 -.04 -.08 .09 -.02 .02 .03 .03 -.05 -.05 -.02 -.02 -.03 .05 .76

Table E.1: Sample correlations among observations of 17 outcomes from the UCLA NFS data, ignoring the family structure.
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βjk ψk ajk bjk φBkk

Mean Var β α Mean Var Mean Var Mean

CPTDSD 28 121 194 10 1.000 1.000 1 1 48.4

HitrDS 63 529 846 10 2.091 4.372 1 1 211.6

FalrDS 7 225 360 10 1.364 1.860 1 1 90

SPAN10 50 25 40 10 0.455 0.207 1 1 10

SPAN1 60 20.25 32 10 0.409 0.167 1 1 8.1

SPAN5 60 59.29 95 10 0.700 0.490 1 1 23.7

CPT37D 41 81 130 10 0.818 0.669 1 1 32.4

Hitr37 95 361 578 10 1.727 2.983 1 1 144.4

Falr37 0.6 16 26 10 0.364 0.132 1 1 6.4

logTRLBA -140 400 640 10 1.818 3.306 1 1 160

logTRLAA -140 289 462 10 1.545 2.388 1 1 115.6

VFFAS 38 100 160 10 0.909 0.826 1 1 40

NCFRSFSC 23 17.64 28 10 0.382 0.146 1 1 7.056

MANIPA 70 169 270 10 1.182 1.397 1 1 67.6

MAINacc 70 169 270 10 1.182 1.397 1 1 67.6

MANIPrt 12 9 14 10 0.273 0.074 1 1 3.6

MAINrt 12 9 14 10 0.273 0.074 1 1 3.6

Table E.2: Means and variances of hyper-parameters for priors of regression coeffi-
cients/group means, µ, unique error variances, ψk, family member factor loadings,
ajk, outcome factor loadings, bjk and family member factor variances, φBkk, for
j = 1, . . . , 4.
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k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1

2 .4 1

3 .4 .4 1

4 .2 .2 .2 1

5 .2 .2 .2 .4 1

6 .2 .2 .2 .4 .4 1

7 .2 .2 .2 .2 .2 .2 1

8 .2 .2 .2 .2 .2 .2 .4 1

9 .2 .2 .2 .2 .2 .2 .4 .4 1

10 .2 .2 .2 .2 .2 .2 .2 .2 .2 1

11 .2 .2 .2 .2 .2 .2 .2 .2 .2 .4 1

12 .2 .2 .2 .2 .2 .2 .2 .2 .2 .4 .4 1

13 .2 .2 .2 .2 .2 .2 .2 .2 .2 .4 .4 .4 1

14 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 1

15 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .4 1

16 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .4 .4 1

17 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .4 .4 .4 1

Table E.3: Prior correlation matrix of outcome factors, where outcomes 1, . . . , 17
are CPTDSD, DShitr, DSfalr, SPAN10, SPAN1, SPAN5, CPT37D, hitr37, falr37,
logTRLBA, logTRLAA, VFFAS, NCFRSFSC, Manipa, MAINacc, MANIPrt and
MAINrt.
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APPENDIX F

Summary of Posterior Distributions for the UCLA

Family Study Data with 17 Outcomes

Posterior densities of group means for schizophrenia and control families for 17 out-

comes are presented in Figures F.1, F.2 and F.3. Table F.1 lists the posterior means

of group means for control (Ctrl) and schizophrenia (SZ) families (left) and the poste-

rior means of difference between group means (right). Table F.2 includes the posterior

means of outcome factor correlations, while Table F.3 presents the posterior means of

outcome factor variances, family member factor loadings and outcome factor loadings.
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Figure F.1: Posterior densities of means for probands, fathers, mothers and siblings in

schizophrenia family (dashed lines) and control family (solid lines).
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Figure F.2: Posterior densities of means for probands, fathers, mothers and siblings in

schizophrenia family (dashed lines) and control family (solid lines), continued.
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Figure F.3: Posterior densities of means for probands, fathers, mothers and siblings in

schizophrenia family (dashed lines) and control family (solid lines), continued.
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Group Means Diff between Group Means
Proband Sibling Father Mother Proband Sibling Father Mother

Outcome Ctrl SZ Ctrl SZ Ctrl SZ Ctrl SZ Control minus SZ
CPTDSD 24.78 20.86 22.47 23.32 20.61 23.96 25.84 23.18 3.92 -0.84 -3.35 2.66
HitrDS 74.26 64.09 69.13 70.63 68.05 74.74 77.05 73.94 10.18 -1.50 -6.69 3.11
FalrDS -6.72 -9.00 -6.87 -7.27 -9.54 -8.03 -6.32 -9.09 2.29 0.40 -1.51 2.77
SPAN10 55.65 53.17 54.47 55.14 53.54 50.96 53.41 51.51 2.48 -0.66 2.57 1.90
SPAN1 62.94 62.24 63.15 63.27 62.90 62.65 63.17 62.91 0.70 -0.12 0.25 0.26
SPAN5 62.12 59.74 61.30 61.54 60.92 57.98 60.66 58.96 2.38 -0.24 2.94 1.70
CPT37D 44.05 38.16 43.09 43.25 44.56 44.04 48.08 42.70 5.89 -0.16 0.52 5.38
Hitr37 93.90 85.38 92.58 91.66 93.78 94.15 95.74 91.15 8.52 0.92 -0.36 4.59
Falr37 -0.80 -1.27 -0.97 -0.70 -0.47 -0.50 -0.25 -0.82 0.47 -0.28 0.03 0.57
logTRLBA -140.6 -151.9 -143.8 -145.6 -140.3 -150.4 -141.9 -152.1 11.3 1.8 10.1 10.2
logTRLAA -114.7 -121.5 -115.3 -114.3 -110.0 -118.5 -112.1 -119.0 6.8 -1.0 8.5 6.9
VFFAS 38.16 30.28 35.05 33.22 40.97 35.12 43.20 38.87 7.88 1.82 5.85 4.33
NCFRSFSC 22.59 21.74 22.68 22.92 22.88 22.97 23.55 23.53 0.85 -0.24 -0.09 0.02
Manipa 75.52 66.17 69.86 71.93 76.46 75.20 73.69 71.60 9.35 -2.07 1.26 2.09
MAINacc 80.57 69.35 78.01 76.30 81.76 80.91 79.95 78.64 11.22 1.72 0.86 1.30
MANIPrt 12.70 11.47 12.77 12.27 12.53 12.67 13.00 12.94 1.23 0.51 -0.14 0.06
MAINrt 11.78 10.86 11.73 11.26 11.38 11.94 11.56 11.54 0.91 0.47 -0.56 0.02

Table F.1: Posterior means of group means for control (Ctrl) and schizophrenia (SZ) families (left) and the posterior means of
difference between group means (right).

130130130



Outcome Factor Correlations

CPTDSD DShitr DSfalr SPAN10 SPAN1 SPAN5 CPT37D hitr37 falr37 logTRLBA logTRLAA VFFAS NCFRSFSC Manipa MAINacc MANIPrt

CPTDSD 1.00

DShitr 0.82 1.00

DSfalr 0.67 0.58 1.00

SPAN10 0.35 0.35 0.29 1.00

SPAN1 0.20 0.18 0.28 0.40 1.00

SPAN5 0.32 0.31 0.33 0.77 0.57 1.00

CPT37D 0.44 0.36 0.34 0.38 0.30 0.40 1.00

hitr37 0.37 0.33 0.28 0.44 0.35 0.49 0.86 1.00

falr37 0.30 0.24 0.34 0.31 0.31 0.38 0.63 0.55 1.00

logTRLBA 0.38 0.36 0.32 0.58 0.34 0.52 0.45 0.43 0.37 1.00

logTRLAA 0.30 0.26 0.26 0.53 0.28 0.46 0.43 0.38 0.37 0.76 1.00

VFFAS 0.45 0.42 0.33 0.56 0.28 0.49 0.53 0.49 0.41 0.79 0.71 1.00

NCFRSFSC 0.25 0.26 0.22 0.30 0.03 0.21 0.12 0.10 0.21 0.36 0.39 0.38 1.00

Manipa 0.47 0.42 0.36 0.37 0.23 0.32 0.39 0.36 0.23 0.54 0.51 0.56 0.26 1.00

MAINacc 0.52 0.47 0.40 0.41 0.28 0.37 0.50 0.47 0.31 0.57 0.51 0.60 0.25 0.86 1.00

MANIPrt -0.13 -0.08 -0.04 -0.03 0.14 0.04 -0.11 -0.01 0.02 0.06 -0.02 0.03 0.12 0.03 0.05 1.00

MAINrt -0.19 -0.13 -0.07 -0.07 0.12 0.00 -0.17 -0.08 -0.01 -0.01 -0.07 -0.06 0.06 -0.07 -0.05 0.79

Table F.2: Posterior means of outcome factor correlations.
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Outcome Family Member Factor Loading Outcome Factor Loading

Outcome Fac Var Prob Sib Fa Mo Pro Sib Fa Mo

CPTDSD 35.07 1 1 1 1 1 1.30 0.60 0.93

DShitr 116.87 2.02 1.63 2.31 1.75 1 1.34 0.67 0.89

DSfalr 27.72 0.70 0.53 0.89 0.50 1 0.58 0.49 0.64

SPAN10 9.27 0.58 0.60 0.55 0.63 1 1.27 1.02 1.01

SPAN1 3.01 0.19 0.16 0.18 0.04 1 0.07 0.21 0.03

SPAN5 10.44 0.43 0.32 0.40 0.48 1 0.54 0.75 0.63

CPT37D 52.73 0.85 2.00 1.48 1.62 1 0.15 0.18 0.22

hitr37 97.86 0.93 2.10 1.32 1.84 1 0.06 0.08 0.15

falr37 1.92 0.15 0.28 0.10 0.18 1 0.24 0.10 0.10

logTRLBA 151.98 2.10 2.59 2.17 3.18 1 0.87 0.78 0.66

logTRLAA 95.26 1.47 1.65 0.97 2.33 1 1.01 0.32 0.64

VFFAS 42.98 0.77 1.00 0.84 0.92 1 0.87 0.96 1.14

NCFRSFSC 2.43 0.17 0.18 0.20 0.20 1 0.92 0.35 0.52

Manipa 100.61 0.89 1.45 1.23 1.45 1 0.95 0.14 0.27

MAINacc 92.92 0.98 1.71 1.31 1.28 1 0.78 0.33 0.44

MANIPrt 2.36 0.01 0.14 0.12 0.04 1 0.99 0.43 0.24

MAINrt 2.46 -0.03 0.13 0.07 -0.01 1 1.10 0.39 0.31

Table F.3: Posterior means of outcome factor variances, family member factor loadings and outcome factor loadings.
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