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ABSTRACT OF THE DISSERTATION
A Bayesian Family Factor Model for Multiple Outcomes
by

Qiaolin Chen
Doctor of Philosophy in Biostatistics
University of California, Los Angeles, 2014
Professor Robert E. Weiss, Co-chair

Professor Catherine A. Sugar, Co-chair

The UCLA Neurocognitive Family Study (NFS) collected multiple measurements on
schizophrenia (SZ) patients and their relatives, as well as control subjects and their
relatives, to study heritable vulnerability factors for schizophrenia. Each family has
several members enrolled in the study and the same multiple outcomes were measured
on each person. The relationship structure is complicated because not only observations
on individuals from the same family are correlated, but the multiple outcome measures
on the same individuals are also correlated. Traditional familial data analyses model
outcomes separately and thus do not provide information about the interrelationships
among them. I propose a Bayesian Family Factor Model (BFFM), which extends the
classical confirmatory factor analysis (CFA) model to explain the correlations among
observed variables using a combination of family-member factors and outcome fac-
tors. Traditional methods for fitting CFA models, such as full information maximum
likelihood (FIML) estimation using quasi-Newton optimization (QNO) can have con-
vergence problems and Heywood cases caused by empirical under-identification. In
contrast, modern Bayesian Markov chain Monte Carlo (MCMC) handles these infer-
ence problems easily. Simulations compare the BFFM to FIML-QNO in settings where
the true covariance matrix is identified, close to not identified and not identified. For

these settings, FIML-QNO fails to fit the data in 85%, 57% and 13% of the cases, re-

i



spectively, due to non-convergence or invalid estimates, while MCMC provides stable
estimates. When both methods successfully fit the data, estimates from the BFFM have
smaller variances and comparable mean squared errors. BFFM can test hypotheses of
interest easily using Bayes factors computed as the Savage-Dickey ratios. I illustrate
the BFFM by analyzing the UCLA NFS data and test hypotheses about differences in
means between SZ and control families. Tests of the group mean differences using
posterior probabilities suggest that SZ probands perform worse in all 17 neurocogitive
measures than control probands, while mothers of SZ subjects do worse than control

mothers.
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CHAPTER 1

Introduction

Schizophrenia is a severe mental illness which affects a person’s ability to differentiate
between what is real and what is not, to think logically, to have normal emotional re-
sponses and to behave normally in social situations. Schizophrenia patients frequently
have strange beliefs or delusions, see or hear things that aren’t really there, speak or
think in a disorganized way and withdraw from social interactions. The illness is long
lasting and highly disabling. About 1 in 100 people will develop schizophrenia over
their lifetime (Schultz et al., 2007). Neurocognitive deficits are a key feature of the
disease and include reduced attention span, memory problems, difficulties with verbal
fluency, executive functions, and rapid perceptual processing (Asarnow et al., 2002).
Schizophrenia typically starts in late adolescence or early adulthood (Diagnostic and
Statistical Manual of Mental Disorders, DSM-IV-TR, 2000), which is called adult on-
set. However, it sometimes occurs in children prior to age 12, which is called child-
hood onset. Vulnerability factors are the non-symptomatic characteristics reflecting
an individual’s predisposition to schizophrenia. Predisposing genes can cause these
non-symptomatic abnormalities, which in turn contribute to schizophrenia. Potential
vulnerability factors include abnormalities in neurocognitive functioning and in brain

structure.

For complex diseases such as schizophrenia, there are typically multiple important
outcome domains. Since these outcomes will be correlated, it is desirable to model
them jointly. Separate analyses which ignore the within-subject-across-outcome cor-

relations, both miss important mechanistic and clinical information, and are less pow-



erful. Approaches for joint analysis of multivariate data include linear mixed models
(Sammel et al., 1999; McCulloch, 2006), structural equation modeling (SEM) (Bollen,
1998; Byrne, 2009; Kline, 2011) and factor analysis (Rao, 1955; Thompson, 2004;
Brown, 2006; Bartholomew et al., 2011).

As with many other psychiatric disorders, genes as well as environmental factors
are considered to play an important role in causing schizophrenia. Family studies are
often used to identify possible genetic factors involved in a disease (Donner and Koval,
1980; Karlin et al., 1981; Morris, 2009; Wang et al., 2011). In such studies, a proband
is an individual who triggers study of other members of the family. Some family studies
use a case-control sampling design, collecting data on individuals with a given disorder
and matched control subjects, as well as their relatives. Analysis of familial data is
complicated by the presence of dependence among observations from the genetically

related individuals.

1.1 The UCLA Neurocognitive Family Study Data

The UCLA Neurocognitive Family Study (NFS) (Asarnow et al., 2001, 2002; Nuechter-
lein et al., 2002) is a cross-sectional case-controlled family study. Multiple cognitive
measures were collected on schizophrenia patients and their first-degree relatives, as
well as healthy controls and their relatives. The study aimed to investigate potential
heritable predisposing or vulnerability factors for the disease, by identifying the fea-
tures or characteristics which distinguish schizophrenia patients and their families from
healthy controls and their families, and by examining how these cognitive deficits are
differentially expressed among family members. Our goal here is to find an appropriate
model which can address three main objectives: (i) to compare the degree of abnor-
mality between schizophrenia families and control families; (ii) to determine correla-
tions among measurements from first degree relatives and (iii) to identify relationships

among the multiple outcome measures.



Modeling data such as that from the UCLA Nuerocognitive Family Study requires
a complex covariance structure. Suppose there are K outcome measures for each of
J members in a total of N families, so that the observed data for each family, vy,,
is a JK vector. For example, in a nuclear family, there are X' = 4 family member
types: proband, father, mother and sibling. Both the J family member types and the K
outcome types contribute to the variation in y;, which is summarized by a JK x JK
covariance matrix. I assume that the covariances are explained by K unobserved family
member factors and J unobserved outcome factors, which induce correlations on the
observed measures, both across-family-member within-measure and across-measure
within-family-member. As the measurements on individuals from the same family are
related, the J family member factors are allowed to be correlated. Similarly, so the
K outcome factors are also assumed correlated because outcome measurements within

subjects are associated.

The relationships among the J K observed variables and J + K factors can be de-
scribed using a path diagram (Bollen, 1998; Loehlin, 2004; Brown, 2006). Figure 1.1
shows an example of a path diagram for familial data with J = 4 family members and
K = 5 outcomes drawn using AMOS (Arbuckle, 2011; Blunch, 2012), an add-on to
SPSS for structural equation modeling. In a path diagram, all unobserved quantities,
including latent factors and residuals are represented by ovals, while all observed vari-
ables are represented by rectangles. Bidirectional arrows represent correlations, while
the single-headed arrows represent causal effects. In the figure, the observed variables
Yijr labeled Yjk omitting the ¢ (rectangles in the middle), are assumed to be caused
by two sets of factors, the correlated family member factors (Proband, Sibling, Father
and Mother) and correlated outcome factors (Outcomel, ..., OutcomeS), along with
residuals that are unique to each observed variable on each family member, err_jk for
7=1,...,Jand k = 1,..., K, controlled by variances unique to each observed vari-
able, psil, ..., psi5. Means and variance parameters are labeled on the rectangles and

ovals/circles, before and after commas, respectively. For example, mul, ..., muS are



means of Yjl,...,Y]j5, for 5 = 1,...,4, and the means of all family member factors,

outcome factors and residuals are restricted to 0.
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Confimatory factor analysis using SPSS AMOS,
for a model with 4 family relationship factors and 5 outcomes

Figure 1.1: A path diagram for the Bayesian Family Factor Model (BFFM). Responses
variables Y;;;, labeled Yjk omitting the ¢ (rectangles in the middle), for j = 1,...,4 and
k=1,...,5, are caused by two sets of factors, family member specific factors (circles
on the left) and outcome specific factors (ovals on the right), along with a residual error,

err_jk, which is unique to each item.



1.2 Current Approaches and Problems

Standard analyses of family studies usually model outcomes separately, which is po-
tentially less efficient and does not provide information about the relationships among
outcomes (Hamsten and de Faire, 1987; Harrap et al., 2000; Asarnow et al., 2002).
Classical analysis techniques for multiple outcomes are not designed to take into ac-
count associations among family members, which is equivalent to omitting the family

member factors in Figure 1.1 and only considering the right half of the diagram.

Direct product models (Browne, 1984; Cudeck, 1989; Wothke and Browne, 1990;
Naik and Rao, 2001; Srivastava et al., 2008) provide a potential method for analyzing
familial data with multiple outcomes, which assume that family member factors interact

with outcome factors in a multiplicative manner,

Var(yi) = 2member ® Youtcome:

where and Xqutcome are J x J and K x K covariance matrices for the

member
two groups of effects, respectively. However, these models are rigid as they assume all

outcomes have identical correlation matrices and ratios of variances.

1.2.1 Confirmatory Factor Analysis

Factor analysis (FA) models correlated observed variables using a smaller number of
unobservable variables, called latent factors (Rao, 1955; Harman, 1960; Brown, 2006).
It is used either for dimension reduction or to improve understanding of the pattern
of associations among variables (Rowe, 1998). Variances in the observed variables
are explained by both common factors and unique error variances. If some factors
are assumed to be independent, the corresponding factor covariances are fixed to zero

(Brown, 2006).

The basic structure for a factor model is described below. Suppose K outcome



measures are collected on each of N subjects. The relationship among the K outcomes

maybe characterized by a factor analysis model with p factors

Yy =p+Af;+e, (1.1)

where y, is a K x 1 outcome vector for subject i, = 1,..., N; u = E(y;) is a vector
of overall means; A is a K x p matrix of factor loadings; f; is a p x 1 vector of factor
scores with mean 0 and a p X p covariance matrix ®

iid

fi~N(0,®);

and g; is a K x 1 vector of unique errors independent of factor scores, with a diagonal
variance matrix ¥ = diag(¢q, . .., ¥k)
iid
E; (0, \Il)
The marginal variance-covariance matrix of ¢, can be decomposed as the sum of vari-

ance and covariances due to the factors and variance due to the unique errors

var(y,) = A®A' + .

Confirmatory factor analysis (CFA) is used to test hypothesized relationships be-
tween observed variables and factors (Joreskog, 1969). Researchers specify the number
of factors beforehand and make a priori assumptions about which observed variables
are related to which factors based on past evidence and theory. The factor loadings
specify the pattern of relationships between the observed variables and the factors.
Only loadings corresponding to hypothesized relationships between specific observed
variables and factors are allowed to be nonzero. All the others, called cross-loadings,

are fixed to zero. The scale of the factors can be defined by fixing factor variances to



1, or by setting the scale of a factor to be the same as one of the observed variable
to which it contributes. For standard CFA, parameters are estimated using maximum
likelihood, EM maximum likelihood or the method of moments (Rao, 1955; Rubin and
Thayer, 1982; Basilevsky, 2009; Bartholomew et al., 2011). For standard CFA, param-
eters are estimated using maximum likelihood, EM maximum likelihood or the method
of moments (Rao, 1955; Rubin and Thayer, 1982). Software programs used for per-
forming confirmatory factor analysis include SPSS AMOS (Arbuckle, 2011), LISREL
(Joreskog and Sorbom, 2012), EQS (Byrne, 2013), Mplus (Muthén and Muthén, 1998—
2012), SAS CALIS procedue (Hunter, 2005), and sem (Fox, 2006) and lavaan (Rosseel,
2012) packages in R. See Byrne (2001) and Albright and Park (2009) for reviews.

1.2.2 Multitrait-Multimethod (MTMM) Analysis

The structure of familial data with multiple outcomes is similar to that of the multitrait-
multimethod (MTMM) data used for studying construct validity: the ability of psycho-
logical tests to actually measure the concept being studied (Campbell and Fiske, 1959;
Marsh, 1989; Eid et al., 2006; Madans et al., 2011). For MTMM analysis, a certain
number of traits (J) are each assessed by several methods (K) for each of IV subjects,
resulting in a JK X JK correlation matrix. The path diagram for an MTMM model is

similar to Figure 1.1, replacing family members with traits and outcomes with methods.

Despite the similarity in data structure, the focus of MTMM analyses is quite differ-
ent from analyses of familial data. MTMM analyses only model the correlation matrix
not the mean structure, and mainly focuses on estimation and tests of parameters with
specific meanings for construct validity. In contrast, in familial data analysis, mean
structures may depend on covariates and hypotheses about regression coefficients are
of interest. Incomplete data is a significant issue in familial data, as a family may not
have all J member types and individual measures may also be missing for a particular

subject.



The most popular technique for fitting an MTMM model is confirmatory factor
analysis (CFA) using the correlated-trait correlated-method (CTCM) structure, which
assumes the inter-related trait factors are independent of the inter-related method fac-
tors (Marsh and Hocevar, 1988; Kenny and Kashy, 1992). This model requires at least
a total of J + K > 6 trait and method factors with at least J > 2 method and K > 2
trait factors to be identified, and it is not empirically identified when the loading ma-
trix has deficient column rank (Grayson and Marsh, 1994), or when all trait or method
factor correlations are equal (Brannick and Spector, 1990). Wothke (1984), Brannick
and Spector (1990) and Lance et al. (2002) analyzed 21, 14 and 19 published MTMM
matrices, respectively, and reported that in 100%, 94% and 100% of the cases, the al-
gorithm for CFA model failed to converge or gave invalid solutions, such as negative
variances or non-positive definite covariance matrices, which are called Heywood cases
(Grayson and Marsh, 1994). The algorithm for fitting CFA models to familial data can
have the same identification problems, resulting in non-convergence, fits with invalid
solutions, improper estimates such as negative loadings, or unstable estimates with ex-

treme standard errors.

1.2.3 Bayesian Factor Analysis

Bayesian factor analysis (BFA) (Press and Shigemasu, 1989; West, 2003; Lopes and
West, 2004; Quinn, 2004; Ghosh and Dunson, 2009; Press, 2012) can help to mitigate
the identification problem by incorporating available knowledge about parameters in
the form of prior distributions based on either expert opinions or previous experiments.
Markov chain Monte Carlo (MCMC) methodology has been applied previously in BFA
to sample from posterior distributions (Geweke and Zhou, 1996; Press and Shigemasu,

1997; Rowe, 1998; Aguilar and West, 2000; Rowe, 2003).

BFA often makes normality assumptions for the distribution of unique errors. Con-
ditionally conjugate priors for model parameters facilitate straightforward posterior

computation by Gibbs sampling (Geman and Geman, 1984). For example, normal



priors are often used for means. Bayesian inference using inverse-gamma priors for
unique error variances and inverse-Wishart priors for the covariance matrices avoid the
problem of Heywood cases (negative variances and non-positive definite covariance
matrices) that occur with maximum likelihood approaches. Normal priors are usually
specified for factor loadings. Bayesian methods have not been previously applied to
CFA for analyzing familial data with multiple outcomes or for fitting the MTMM mod-
els. By incorporating Bayesian techniques, it is possible to solve most problems of

standard CFA.

The rest of the paper proceeds as follows: Chapter 2 describes the proposed Bayesian
Family Factor Model (BFFM), including the basic model structure, prior specification,
a Gibbs algorithm to impute missing data and sample from the posterior distributions.
Chapter 3 discusses simulation studies comparing BFFM with the full information max-
imum likelihood estimation of CFA using quasi-Newton optimization (FIML-QNO) al-
gorithm by the lavaan package in R. In Chapter 4 and 5 I fit BFFM to the motivating
UCLA Neurocognitive Family Study (NFS) data. Methods of testing hypotheses and
their application to the UCLA NFS data are described in Chapter 6. Implications and

possible extensions are discussed in Chapter 7.

10



CHAPTER 2

The Bayesian Family Factor Model

I propose a Bayesian Family Factor Model (BFFM), which extends the classical con-
firmatory factor analysis (CFA) model to explain the correlations among observed vari-
ables using a combination of family-member factors and outcome factors. This chapter
describes the basic structure for a BFFM, the specification of conditionally conjugate

priors and a Gibbs sampling algorithm.

2.1 Specification of the BFFM

I propose the following basic structure for a BFFM. Suppose K normally distributed

outcomes are collected on each of J members in N families. Let ¢, j and k index

family, member type and outcome, respectively, with =1,... N, j =1,...,J and
k = 1,...,K. Then y;j is the k" outcome for the j* member in the i family,
Yi; = (Wij1,---,Yijx)" is the K x 1 vector of K outcomes for the j member in

the i family and y;, = (Yi11,-- -, Yitks-- - Yis1s - - Yisx )" is the JK x 1 vector of
observations for all J members in the i family. The relationships among the JK

observed variables are characterized by a factor analysis model

yi = Xi/3+AAfAi+A-BfBi+€i7 (21)

where X ;(jxxp) is a matrix of known covariates for family i; B, = (B,,...,8p)
is a vector of regression coefficients; f 4,1y and f p;(x 1) are independent vectors of

family member factors and outcome factors, respectively, with corresponding variance

11



matrices ® 4.,y and @ gk i)
iid
fAi NN<O7 ¢A>7

fBi %N(Q ‘I’B)§

g;isa JK x 1 vector of unique errors independent of f ,, and f 5, with diagonal error

variance matrix W ;x . i) = diag(¢11, ..., %k)

A u(skx.) = blockdiag(av, . . ., ay) is a family member factor loading matrix with di-
agonal blocks of K x 1 vectors o; = (1, a;0,...,ajk); and Agyxxk) = [B1,Ba, ...,
Bg]" is an outcome factor loading matrix, where By = I, B; = diag(bj1, ..., bjk),
forj = 2,...,J. Here a; is a vector of non-zero family factor loadings for the ;%" fam-
ily member specific effects and A g, is a diagonal matrix of outcome factor loadings for

the ;' family member.

The variance-covariance matrix of the observed variables, y;, for the ith family un-

conditional on the factors is
Y = var(y,|8) = A PAAY + Ap®pAL + 0,
while the variance of observed variable ;. is
var(yi;i|B) = @§k¢Ajj + b§k¢Bkk + Yk,

where ¢ 4;; is the j diagonal element of ® 4 and ¢y is the k' diagonal element of

b3, aji. is the k' element of a; and bjy, is the k' diagonal element of B;.

12



The factor loading matrices A 4 and A g can be expressed as

[ 1 0 0 0 1 0 0 |
a12 0 0 0 0 1 0
agk 0 0 0 0 0 ... 1
_ - 0 1 0 0 by O 0
oy - 0| B1
0 929 0 0 0 bgg 0
0O --- 0| B,
[AalApl=| o =
T 0 ax 0 0 0 0 ... bog
i 0 aJ‘ BJ_
0O 0 0 1 by O 0
0 0 0 ap 0 by 0
| 0 0 0 ajK 0 0 bJK_
(2.2)

The model for all X outcomes on K members of all N families is

Y =Z(BRI,x)+ FiA + FgAL + E,

where Y = (yy,...,yy)" isan N x JK matrix of all observed data for N families,
Z = [vec(X),...,vec(X y)]T is an N x JK P matrix of known covariates, 3 is a

) is an N x .J matrix of

P x 1 vector of regression coefficients, F'a = (f 41, -, fan

family member factor scores, Fg = (fg;,..., fpn)’ isan N x K matrix of outcome

factor scores, and E = (g1,...,ey)” isan N x JK matrix of residual errors.

For the k™" outcome measured on the first family member (proband, j = 1), as

13



ay = 1, the overall variance var(y;;) can be decomposed as

var(yar) = loan + b3dprk + Yk,

which indicates that the factor variance for probands, ¢ 411, must be smaller than any
of the overall variances for probands, var(y;1x). This information helps in setting priors
of factor loadings and factor covariance matrix. Therefore, it is better to scale the
observed variables to make the overall variances similar, so that ¢ 41, will not be forced
to be small, which can cause precision problem in computing such as very small values

being rounded to 0.

Next, scales for factors and factor loadings are specified. Here scale for observed
variables is a combination of both size/magnitude and dispersion. For factor loadings
and factor variance matrices, scale is more related to variation or dispersion, as these
parameters are used to model the variance-covariance matrix. The scales of all family
member factors, fa,;, for j = 1,...,J, are set to be the same as the observed variables
for the first outcome, y;;1, by fixing the first nonzero loading in each column of A4 to
1, aj1 = 1. The scale of a family member factor loading, a;y, is the ratio of the scale of
the £ outcome to that of the first outcome, for k = 2, ..., K. Factor loading a;i, 1s the
amount of change in y;;;, associated with a 1 unit increase in f4;; with all else fixed. In
addition, because a;;/a;; = ajx/1 = aji, loading a;j, is also the ratio of the effect of

fAij on y; i, to its effect on Yij1-

Similarly, the scale for an outcome factor, fp;:, is specified to be the same as that
of the observed variable for the first family member (proband), y;1x, by fixing the first
nonzero loading in each column of Ag to 1, by, = 1. Therefore, the scale of the
k' outcome is passed on to the k' outcome factor, fz;;. Similarly, outcome loading
b, is the amount of change in y;;, associated with a 1 unit increase in fp;; and as
bik/bir, = b for j = 2,....J, bj is also the ratio of the effect of fp;; on y;;; to that

on Yiik-
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The total number of free hyper-parameters in the model is (3JK + J2/2 + K?/2 —
J/2 — K/2 + P), as there are P regression coefficients, (J — 1)K family member
factor loadings, J(K — 1) outcome factor loadings, J(J + 1)/2 unique parameters in
the family factor variance matrix, K (K + 1)/2 unique parameters in the family factor
variance matrix, and J K unique error variance parameters. Similar to the CFA model
for MTMM data, this model requires at least a total J + K > 6 family member and
outcome factors with at least J > 2 family member and KX > 2 outcome factors to
be identified, and it is not empirically identified when the loading matrix has deficient
column rank (Grayson and Marsh, 1994), or when all family member or outcome factor

correlations are equal (Brannick and Spector, 1990).

There is a one-to-one correspondence between model parameters and lines on the
path diagram in Figure 1.1. Factor variances matrices, ® 4 and ® g, correspond to
bidirectional arrows among the ./ = 4 family member factors on the left and among
the K = 5 outcome factors on the right, respectively. The non-zero elements of A 4,
namely o, ..., oy, correspond to unidirectional arrows from family member factors
on the left to the JK observed variables, y,. The non-zero elements of Ap, namely
diagonal elements of Bj, correspond to unidirectional arrows from family member

factors on the right to y,.

2.2 Conditionally Conjugate Priors for BFFM

To complete a Bayesian specification of the model, priors need to be assigned for each
unknown parameter. In the absence of strong theoretical or empircal beliefs to the
contrary, I specify conditionally conjugate priors for all parameters. In the absence of
strong theoretical or empirical beliefs to the contrary, I specify conditionally conjugate
priors for all parameters. The prior distributions for the regression coefficients, 3 =

(B1,--.,B,)", and free elements a;j, and bjy, in the factor loading matrices, A 4 and Ap,
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are independent normal

iid
Bp ~ N(/BOI)’U%OP), fOI'pzl,...,P,
e N Ny, 02,), forj =1, J k=2 K,

b~ Ny, 08,), forj=2,.. Jk=1. K

The factor variance matrices, ® 4 and ® g, follow independent inverse Wishart distri-

butions
q)A ~ IW(WA,I/A),
@B ~ IW(WB,I/B),
where v and vp are the degrees of freedom parameters, W 4(jx) = (va —J —

1)D,CuD 4 and Wigkiiy = (vp — K — 1)DgCpDp are location parameters,
C u(sxs) and C'p(k x iy are prior factor correlation matrices, and D 4.7y = diag(daz,
...,day) and Dpxxk) = diag(dpi,...,dpx) are matrices with factor variances as
diagonal elements to be specified shortly. Independent inverse-gamma priors are spec-
ified for the J K diagonal elements of W

ind Ao, 5wk
w]k g ( 9 ’ 9 ) 9

foryj=1,...,Jandk=1,... K.

2.3 Specification of Prior Hyper-parameters

This section describes an approach to eliciting prior hyper-parameters based on model
interpretation and subject matter knowledge. The basic assumptions are that the vari-
ances of the K outcomes are distinct due to scale differences and that the variances
across family members of the k'* outcome are similar. The first step is to obtain esti-
mated values for the overall variances of the K outcomes, var(y; ), . . ., var(yx), either

from the literature, from previous studies or from expert opinion. When no other infor-
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mation is available, 1/4 of the range of the k" outcome variable in the data set under

study is a plausible value of var(y;,)/2.

To specify priors for factor variance matrices, note that

var(yi1) = a5.0az; + dpin 4+ Ui,
and var(yar) = Gan + b30pek + Yk,

which implies var(y;) can be used as an upper bound up to sampling error of the prior

mean of ¢p11, dg; = pgrivar(y;), and the minimum of var(y,), ..., var(y;) can be
used an upper bound of the prior mean of ¢ 411, d4; = pgamin(var(y,), . .., var(yx)),

for scaling constants 0 < pgq1,pee1 < 1. As the scale of the first outcome is passed
on to all family member factors, f4,;, the prior means of factor variances are set to
be equal, d%, = ... = d?,. As the scale of the k' outcome is passed on to the k'
outcome factor, fp;x, the prior means of outcome factor variances, ¢y, are set to be

proportional to the estimated overall variances,

B e
var(y1) var(yx) ’

where the scaling constant 0 < p,, < 1.

Information on correlations within outcome across family members and among out-
comes within subjects can help to specific C' 4 and C'g, the prior factor correlation
matrices. Some information about theoretical associations among family members are
available. For example, the genetic correlations between father and mother, between
parent and children and between siblings are 0, 0.5 and 0.5, respectively. In addition,
some outcome measures are known to be more closely related than others. For exam-
ple, correlations among sub-scales from the same test will be similar and higher than
correlations coming from sub-scales of different tests, which can be reflected in the

prior factor correlation matrix C'g.

Prior means of factor loadings are elicited as follows. For a particular outcome,
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effects of the different family member factors on the observed variables are likely to be
similar, so I assume that the prior means of loadings for the same outcome are equal

across members,

:ualk = ua]k’

for k = 2,..., K. As the scale of a;y, is the ratio of the scale of the k™" outcome to the
scale of the first outcome, I set prior means of the loadings proportional to the square

root of the estimated overall variances

]- :uajz /’[’a‘jK

@(91)1/2 B @(92)1/2 T @QJK)UQ’

for j=1,...,J. For outcome factor loadings, because effects of the same outcome factor
on observed variables are likely to be similar across family members, and by, = ... =

bix = 1, I set prior means of all outcome factor loadings to 1

lubjk = 1,
foj=2,...,Jandk =1,..., K. To specify prior means for the unique error variance,
Y. forj=1,..., Jandk =1,... K, V@) can be used as an upper bound, as the

total variance the sum of variance due to unique error and variance due to common
factors. To specify the priors for regression coefficients, it is necessary to identify
plausible values for the covariate effects on each outcome from previous studies or
expert opinion. For the special case where covariates are indicators of diagnostic or
treatment groups, the estimated means of outcomes in the general population or in

patients from earlier studies are useful guides for choosing prior means.

2.3.1 Gibbs Sampling from the Posterior Distribution

Because of the use of conjugate priors, simulation of the posterior distribution pro-

ceeds via a Gibbs sampling algorithm where each parameter is sampled from its full
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conditional distribution (Geman and Geman, 1984; Gelfand and Smith, 1990; Robert
and Casella, 2004). To reduce autocorrelation and improve efficiency, I use a blocked
Gibbs sampler to sample the regression coefficients, 3 and the factor scores, f, from
their joint conditional distributions, respectively. Full details of the Gibbs sampler are

given in the appendix.

Missing data are imputed at each iteration of the MCMC algorithm with a data
augmentation (DA) algorithm, assuming observations are missing at random (MAR)
(Little and Rubin, 2002). This approach has the advantage of using BFFM for both im-
putation and data analysis. Because the missing and observed data are jointly normally
distributed, the conditional distribution of the missing data given the observed data is
also normal. I implemented Schafer (1997)’s sweep operator algorithm for imputation

of multivariate normal data. For details see the appendix.

2.4 Data Likelihood and the Conditional Posterior Distributions

Bayesian inference usually involves specification of priors for model parameters, cal-
culation of data likelihood and calculation of the posterior densities. It is often not
possible to obtain the posterior distribution with straightforward analytical solutions,
so it is necessary to generate samples from the posterior distribution using sampling
methods such as Markov chain Monte Carlo (MCMC). Because of the use of conjugate
priors, simulation of the posterior distribution proceeds via a Gibbs sampling algorithm
where each parameter is sampled from its full conditional distribution (Geman and Ge-
man, 1984; Gelfand and Smith, 1990; Robert and Casella, 2004). This section describes

the computation of data likelihood and the derivation of conditional posterior densities.

Define e;jxy = y; — X8 — Ayfa — Apfp and Exy e =Y — XB —
F AAZ - F BAE. The complete data likelihood for all parameters in the model, ® =

(B, F4,Fp, Ay, Ap, ¥), based on K outcomes and .J family members for all N fam-
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ilies, Y nxsx = (Yy,--.,yn)T, has the following form

L(ely)

N

= (20) Y exp {—%tr {\Irl i(ei)ei)T] }

=1
_NJK

= @2n) P T exp {~Liu [PT'ETE]}.

The joint posterior distribution for all parameters is proportional to the complete

data likelihood multiplied by the prior density

p(/gv FAyFBaAAyABv‘II|Y)
X p(Y|/6, FA, FB, AA, AB, ‘I’)
xp(B)p(Aa)p(Ap)p(F a|®4)p(Fp|®5)p(P)p(P).

Because it is easier to compute conditional posterior of the parameters given the
complete data, I use the data augmentation (DA) algorithm which treats missing data
as unknown parameters and impute them as a step in the MCMC algorithm (Little and
Rubin, 2002; Schafer, 1997). The rest of this section presents the computation of the
conditional posterior densities for all of the model parameters, including the missing
data, regression coefficients, factor loadings, factor scores, unique error variances and

factor variance matrices.

2.4.1 Missing Data Imputation

Missing data are handled using a data augmentation (DA) algorithm, which sequentially
imputes missing data and samples from a complete-data Bayesian model via MCMC
(Little and Rubin, 2002), assuming observations are missing at random (MAR). This
approach has the advantage of using BFFM for both imputation and data analysis. Be-
cause the missing and observed data are jointly normally distributed, the conditional
distribution of the missing data given the observed data is also normal. Let y, , and

Y, denote the observed and missing parts of y, by respectively. At iteration [ with
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current parameter value e, sample

I+1
Yo~ P(Yi©, 45,),
fori = 1,..., N, where ©®) does not include factors f ,; nor f ;. Define the mean
vector and variance matrix of y, as p; = X ;8 and & = var(y;|p;, Z) = AP 4AT +
Ap®pAL 4 W. After grouping Yi(sKx1) In the order of observed and missing parts,

the missing and observed data are jointly normally distributed

N Y obs 1% Mt Y Yo
Yigrx1) = ~ ) T )
Yi miss Hio 39 oz

where the normal mean vector and variance matrix are obtained by permuting g, and
3} in the order of y, , and y,,,,. Therefore conditioned on the observed data and all

parameters, the missing data are also normally distributed

YimlYio = Yi1 ™~ N (NiQ + Emzﬁli(yi,l — 1), X — E21¢2f11izl2i) :

Then the algorithm proposed by Schafer (1997) is implemented, which organizes the
mean vector p and the variance-covariance matrix 3 into a (JK + 1) x (JK + 1)
parameter matrix €2,

-1 ,uT

[TRDY

Q:

The sweep operation is a function transforming an M x M matrix €2 to an M x M

matrix H. A sweep on position m, m = 1,..., M is defined as
(1) g = _ﬁ
(2) hjm = hm]’ = :),J,::L, forj 7é m
(3) hy = hy=wy— L= for j # mandl # m.
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For each family, the conditional mean and variance matrix of missing data given ob-
served data can be obtained by sweeping the rows and columns of {2 on positions of the
observed variables. The missing data can then be simulated from a normal distribution

with this mean and variance.

For example, if y; ;1) is permuted so that the first p; elements are observed and

the rest p; = JK — p; elements are missing, y; = (Y, ,.Y; ), then sweeping

-1 ph p
Q=1 py; S Xy

Hio Eszz‘ 3o9i
on positions of observed values, 2, ..., p; + 1, would yield
Rl 10 YRTr TR T YRvr R (VD MSE ippd R R

(Bh2 )" > (B0, Z0)T 5
Mo — meilizm meili o9 — 2212‘2171122121'

where

E(yi,o|/1'i7 3, Yim = yi,l) = Mo — 2211‘21_11z‘212i + 221121_111'%,1
and

Var(yi,o’u‘ia 3, Yim = yi,l) = X9 — 221121_111-2121'-

Unlike Schafer (1997) which assumed equal means for all families, for this analysis the
mean, p; = X ;3 can be different for different families. Therefore, the observed data

are not grouped by the missing pattern and for each new ¢ it start from (2.
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2.4.2 Regression Coefficients, 3

As the prior distribution of the regression coefficients, 3, is multivariate normal

B~ N(Nﬁm Ys0),

where pigy = (o1, .-, fop)" and Xgo = diag(c5¢;, - - -, 03p) conditional on all data

Y and variance matrix X, the posterior distribution of 3 is also multivariate normal

(/6‘27 Y) ~ N(ﬁp? Eﬁp)a

where N
Se = (Zp + 2 XXX
= 2.3)
B, = Eﬂp(zgt)lllfm*';sz_lyi)

2.4.3 Factor Loading Matrices, A 4 and Ap

Factor loadings A 4 and Ap represent the effects of factors f 4, and fp, for predict-
ing observed variables, y,. Define the N-vector of the k" outcome on the j** family
member for all NV families as Yy, (vx1) = (Y1jk, - - - » Ynjk), the family member factor
loading scores of the j** member for all N families as Fajvxry = (fargs -, fang)T,s

the outcome factor loading scores of the k' outcome for all N families as f BE(Nx1) =

(fBik,---, fenk)T, and the covariates for the k" outcome and the j** family member
for family ¢ as @;jxpx1) = (T1ijk, - - - TPijk)” -
For the family member factor loadings, when k = 1, aj;, = 1 forj = 1,...,J;

when k£ # 1, the conditional posterior distribution of a non-zero element, a;x, in the

family member factor loading matrix, A 4, is normal
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with

T —1
0.2 _ 1 + fAijj
ajxkp o2, s ’

Jjk

Ha ;
s = P[54 S F B b )
J
For the outcome factor loadings, when j = 1, b;, = 1 fork = 1,..., K; when j # 1,

the conditional posterior density of a non-zero elements, b, in the outcome factor

loading matrix, A g, is normal

(bjk|ka7 wlw /67 Qjk, y]k) ~ N(,ubjkpa Ugjkp)7

where )
- _
gg = (+ T fB’:ZZ:Bk) ’

jkP o
J bjk

Mo ; T
Hbjpp = Ugjkp [ﬁ + ﬁka(yjk - X/Bjk - a’jkaj)
J
2.4.4 Unique Error Variances, vy,

For the k' outcome measure, denote the complete data on this outcome for all NV

families as
Yk -+ Yijk

Y wovxn) = R ;
YNk --- YNJk

the covariates for this outcome for family 7 as

Litkl --- TLikP
Xik(xp) = : : ;

Tigklr -+ TiJkP

and the covariates of this outcome for all N families as

Z p(NxJP) = [vec(X 1 k), .- 7VeC(XN.k)]T7
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the k" outcome factor scores for all NV families as

ka(an = (fBllm ) fBNk)T7

the family member factor loading corresponding to the £ outcome as

A<y = diag(ay, ..., an),

and the non-zero outcome factor loading corresponding to the k" outcome as
T
brrx1) = (b, -, b))

Given the complete data only depends on Y _; and also given the other parameters,

F 4, i, Ak, by, the conditional posterior distribution of v, is inverse-gamma

vy,
(¢k|FA,ka,Ak,bk7 ) ~ TG ( gkp’%> ’

where

and Biwy = By +1l(Y o — XBy— FaAL — fpbi)” (2.4)
(Yo — XBy — FaAy — friby))-

2.4.5 Factor Variance Matrices, ® 4 and ®p

Conditional on the data and F' 4.y = ( Fhi ..., fiy)7, the posterior distribution of

® 4(7x.) 1s an inverse Wishart distribution

(4l ) ~IW(W 4+ FuF s+ N).
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Similarly, conditional on the data and Fpxxx) = ( fgl, e fg ~) T, the posterior

distribution of ® p(x k) is an inverse Wishart distribution

(®p| ) ~IW(Wp+ FgFL vp+ N).

2.4.6 Factor Scores, f ,; and f 5,

Conditional on complete data Y™ and all other parameters, 24 = (P4, A4, A, ¥, 8, f5),

the posterior distribution of f 4; is a multivariate normal distribution

fAz"QA7 Y ~ N(/'l’fAia EfA)

where Siagxy = (@5 +ALTTTA,)
and HBraiox1y — EfAAE‘I’_l(yi —XiB—Apfp)

Similarly, Conditional on complete data Y and all other parameters, 25 = ®5, Ap,

A4, W, B, f 4;), the posterior distribution of f ,; is a multivariate normal distribution

fBi|QB’ Y ~ N(IJ’fBi’ EfB)

where EfB(KXK) = (@El + Ag‘IJ_lAB)_l
and HRyBigx1) = EfBAg‘I’_l(yi — X8 — Aaf )

2.5 A Gibbs Sampling Algorithm

To reduce autocorrelation and improve efficiency, I use a blocked Gibbs sampler to
sample the regression coefficients, 3 and the factor scores, f, from their joint con-
ditional distributions. Denote all missing observations as Y ,,;ss, denote the matri-
ces of all family member factor scores and all outcome factor scores as F y(nx.) =
(fats-- o, Fan)t and Fpnwry = [Fp1,---5 Fy)t, then MCMC samples from the

joint posterior density p(Y miss; F'a, F'p, 3, Aa, Ap, @4, Pp, U [Y os) proceeds as
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follows: At the (I + 1) iteration with current values of (Y,En)zss, F(A ,Fg ,B8Y,
AL AR, @Y, @ ),

1. Simulate Y( )from

miss

p(Ymisslz(l), ,B(l), YObs),
where 0 = AOOAOT 1 pO.

2. Simulate B/+Y fromp(ﬁ\E(l) y () Y obs)s

miss ’

3. Simulate FI™ from p(F 4| AD @O g+ y ) 5y .

mass ?

4. Simulate F%H) from p(FB@g),A(l), v gy y!Hh Y o5s);

5. Simulate <I>(fi+1) from p(q)A]FXH));
6. Simulate ®''™" from p(® 5| FL™):;
7. Simulate AUtV from p(A|® D, FED gD y ) iy,

miss ?

8. Simulate THY from p(¥|FHD, gD A y U+ iy

maass ?
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CHAPTER 3

Analysis of Simulated Data

To assess the performance of the Bayesian Family Factor Model (BFFM) in different
scenarios, simulation studies are used to compare BFFM with CFA estimated by full
information maximum likelihood (FIML) using quasi-Newton optimization (QNO), on
the basis of ability to fit the data, as well as examining mean squared errors (MSE),

squared biases and variances of parameters estimated by the two methods.

3.1 Generating Data Sets for Simulation Studies

Grayson and Marsh (1994) proved that a CFA model is not identified when the true
factor loading matrix, A, is not full rank. One sufficient condition for deficient column
rank is A = [C ® ao|d ® By|, where C ;.5 and Bk k) are diagonal full rank
matrices, and ay and d are K x 1 and J X 1 vectors, respectively (Grayson and Marsh,
1994). I generated 3 scenarios where the true covariance matrices are identified, close
to not identified and not identified, by specifying different true factor loading matrices,

A, which were far from equal to, almost equal to, and equal to [C ® ay|d @ By).

Two hundred data sets were simulated from each scenario. Each data set has N =
200 families, K = 5 outcomes and J = 4 members: proband, sibling, father and
mother. True regression coefficients as well as true unique error variances are set to be
equal for 3 scenarios. True parameters are specified as follows: unique error variances
of the same outcomes are assumed equal across family members, so K distinct unique

error variances are ¢p = ¢1p = ... = ¢y, fork =1,..., K. For the UCLA NFS, I am
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interest in differences of mean outcome measures between control and schizophrenia

(S§Z) families and across family members, so the matrix of covariates is specified as
Xz'(JK><2JK) = diIJK (1 — di)IJK )

where d; = 0, 1 for control and SZ families respectively, and I ;5 isa JK x JK iden-
tity matrix. The corresponding regression coefficient vector is 85«1y = (B4, By)7,
where 3, and 3, are JK x 1 vectors of means of all K outcomes on the J family
members in the control and SZ families. For J = 4 and K = 5, the total number of
parameters is 101. The observations are set to be missing completely at random with
probability p = 0.15 and the missingness pattern is the same across all 200 data sets
in each scenario. As psychological measures usually have different ranges and scales,
I assumed that there were different scales associated with different outcomes, and the
ratiowas 1 : 2 : 5 : 8 : 10. Family member factor loadings for for different outcomes
had about the same ratio, with some random variation added in. The ratio of true error
variances for different outcomes and the ratio of outcome factor variances were also
1:4:25:64 :100. The variance-covariance matrix of family member factors were
chosen to be close to 1. True values for all true parameters are listed in Tables A.1, A.2

and A.3 in the Appendix.

3.2 Comparing BFFM and CFA: Producing Valid Solutions

Standard non-Bayesian CFA models are fit to simulated data using the lavaan package
in R (Rosseel, 2012), which uses full information maximum likelihood (FIML) estima-
tion to handle missing data and uses a quasi-Newton optimization algorithm to estimate
parameters. FIML estimation maximizes the likelihood function for each family based
on the observed variables y;;;. that are not missing so that all the available data are
used. Full information maximum likelihood estimation with quasi-Newton optimiza-

tion (FIML-QNO) is defined as successful in fitting the data if the algorithm converges
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and provides valid solutions (e.g. having positive-definite covariance matrices and posi-
tive variances). In many cases, FIML-QNO fails to find a fit to the data due to empirical
under-identification. The percentages of data sets for which FIML-QNO was success-
ful in fitting in the 3 scenarios are 85%, 57% and 13%, respectively (Figure 3.1). When
CFA model using FIML-QNO was fit to the same simulated data but with no missing
observation, the percentages increase slightly to 21%, 50.5% and 92.5%, respectively,

suggesting that the missing data was not the major cause of the failure of FIML-QNO.

Next, a BFFM is fit to 200 data sets in each scenario, with 10, 000 iterations after
an initial burn-in of 1000 iterations. Priors are chosen to be partially informative and
centered at true values with large dispersions. The trace plots, density plots and au-
tocorrelation plots show no obvious evidence of bad mixing, non-convergence or high
autocorrelations. BFFM successfully fit all 600 data sets and the resulting posterior
means were always valid solutions (i.e. positive variances and positive definite covari-

ance matrices).

3.3 Comparing the Performance of BFFM and FIML-QNO When
FIML-QNO Was Successful

Besides the ability to fit data, I also want to compare the performance characteristics of
BFFM and FIML-QNO, when FIML-QNO was successful in fitting the data sets. The
mean squared error (MSE) of an estimator ffora parameter ¢, MSE; = E(@\ —0)?, mea-
sures the average squared distance between the estimator 0 and the true parameter value
6. The MSE can be decomposed as the sum of the variance of the estimator, Var(@\),
which measures the uncertainty of 6, and the squared bias, [E((z)\) — 6]?, which mea-

sures accuracy. Denote @ as the posterior mean of 6 from the MCMC outputs of the [

200 £i=1

200 2
data set, for [ = 1,...,200, then \7a\r(5) = Sy <é\l - WIO Z 51) . The relative
=1
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True Covariance Approach % of Data Sets
Matrix the Approach
Was Successful

BFFM —— 100%
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ano 8%
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J
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Figure 3.1: The percent of data sets for which Full Information Maximum Likelihood
(FIML) estimation with quasi-Newton optimization (QNO) converges and gives valid
estimates, in scenarios where the true covariance matrices are identified, close to un-
der-identified and under-identified.

200
~ 2
MSE, relative variance and relative squared bias are estimated as 55 Z [(91 —0)/ (9] ,

=1

200 2

var() /62 and [ﬁ > 6 -
=1
In the scenario where the true covariance matrix is close to not identified, I compare

, respectively.

relative mean squared errors (RMSE), relative variances and relative squared biases of
all parameters estimated by fitting BFFM and FIML-QNO to the 43% of the data sets
which FIML-QNO was successful in fitting (Tables B.7, B.2, B.9, B.10, B.11 and B.12
in Appendix B). Overall, parameter estimates from BFFM and FIML-QNO are similar

and are close to the true values. Figure 3.2(a) plots on a log-log scale the relative
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MSEs of parameters estimated by BFFM vs. those of parameters estimated by FIML-
QNO. There are 101 dots representing all parameters. Different symbols represent
different groups of parameters (factor loadings, factor variance-covariance parameters,
regression coefficients and unique error variances). For a given parameter, if RMSEs
estimated by two models are the same, the dot will lie on a diagonal line with slope 1;
when the RMSE estimated by BFFM is smaller, the dot will lie above the diagonal line;
and when the RMSE estimated by FIML-QNO is smaller, the dot will lie below the
diagonal line. For more than 60% of the parameters, the RMSEs estimated by BFFM
are smaller. For most parameters, the RMSEs estimated by both methods are small
(RMSE < 0.1, dots in the lower left corner). However, for some factor loadings and
factor variance-covariances, the RMSEs estimated by FIML-QNO are much larger than

those estimated by BFFM (dots in the upper half).

Figure 3.2(b) plots relative variances of parameters estimated by BFFM vs. those
estimated by FIML-QNO. Almost all dots lie above the diagonal line, where BFFM has
smaller relative variances for almost all parameters. Similarly, Figure 3.2(c) plots the
relative squared biases ([E(@) — 0)%/6?) of parameters estimate by BFFM and FIML-
QNO. For about 40% of the parameters, the relative squared biases estimated by BFFM
are smaller, but the FIML-QNO has smaller relative squared biases when both methods
perform well (relative squared biases < 0.1). However, as with the relative MSEs, for

some factor variance-covariances and factor loadings, the squared biases estimated by

FIML-QNO are much larger than those estimated by BFFM.

It is important to check whether BFFM will also perform worse when the FIML-
QNO failed. In the scenario where the true covariance matrix is close to not identified,
I compare the MSEs, squared biases and variances for BFFM on the 43% of the data
sets for which FIML-QNO did not fail to those on the 57% data sets for which FIML-
QNO failed to converge or provide admissible solutions. The plot of the relative MSEs
in Figure 3.2(d) shows that almost all dots are close to the diagonal line with slope

1, indicating that BFFM works equally well for both kinds of data sets. The plots of
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relative squared biases and relative variances are very similar.

The relative mean squared errors (MSEs), relative variances and relative squared
biases from FIML-QNO when it is successful, from the BFFM when FIML-QNO is
successful, and from the BFFM when FIML-QNO fails, in 3 scenarios where the true
covariance matrix is identified, close to not identified and not identified are summarized

in tables in Appendix B).

In summary, simulation studies show that FIML-QNO failed to fit the CFA model
to the data in many cases, especially when the true covariance matrix is not identified or
close to not identified, due to non-convergence or invalid solutions, while BFFM fit all
600 data sets in the 3 scenarios and gives estimates of similar consistency. When FIML-
QNO is successful, variances estimated by BFFM are smaller for almost all parameters
and is competitive in MSE. Although FIML-QNO produces smaller squared biases in
some cases, the MSEs and variances from some parameters are very large, suggesting
these estimates are unstable. The BFFM is overall superior, providing stability and

much broader applicability, in exchange for (in some cases) a small bias.
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Figure 3.2: Plots of relative mean squared errors (RMSE, a), relative variances (b) and
relative squared biases (c) for parameters estimated by BFFM against those estimated
by FIML-QNO, and plot of the relative mean squared errors by BFFM for the 43% of
the data sets which FIML-QN failed vs for the 57% of the data sets which FIML-QN
was successful (d), in the scenario where the true covariance matrix is close to not

identified, on a log-log scale.
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3.4 Impact of Missing Data on Failure of FIML-QNO

In the previous section, I described simulation studies for comparing BFFM and FIML-
QNO using data sets generated under 3 scenarios with different degrees of identifi-
cation problem. Here I want to further identify potential causes for the failure of
FIML-QNO to fit some data sets. I examine whether the missing data contributes to
non-convergence and invalid estimates of FIML-QNO. Missing data in the previous
analyses were generated by randomly setting observations of the 200 data sets in each
scenario to missing, at a target missing rate » = 15%. In this analysis, I examine the
ability FIML-QNO to fit the corresponding complete data sets. Table 3.1 presents the
percentages of complete and 15%-missing data sets which FIML-QNO is successful in
fitting, in 3 scenariors. For the identified, close to under-identified and under-identified
scenarios, the percentages of data sets for which FIML-QNO did not fail increases from
87%,41% and 14% for data with 15% missing, to 92.5%, 50.5% and 21% for com-
plete data, respectively, suggesting that missing data contributes partly to the failure of

FIML-QNO.

Scenario Complete Data  15% Missing
Identified 92.5 87
Close to Under-identified 50.5 41
Under-identified 21 14

Table 3.1: Percent of complete and 15% missing data sets which FILM-QNO was
successful to fit. The data sets with missing are generated from complete data sets
by setting observations to missing at p = 0.15.

To further evaluate effects of missing data on the ability of FIML-QNO to fit data
sets, I generated new data sets by setting 5%, 30% and 40% of the observations to
missing for the 200 data sets, in the scenario where the true covariance matrix is close
to not identified. The percent of data sets which FIML-QNO is successful in fitting are

compared in Table 3.2 and plotted in Figure 3.3. As missingness percentage increases
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from 0% to 40%, the percentages of data sets which FIML-QNO can fit decreases from
52.5% to 16.5%, while the proportions of data sets with non-convergence and invalid

estimates increase.

Missing Rate 0% 5% 15% 30% 40%
Converge 525 48 415 26 16.5
Invalid 345 38 38 515 565
Not converge 13 14 205 225 27

Table 3.2: Percent of data sets which FIML-QNO did not fail, in the close to Under-
-identified scenario. Invalid, not converge and converge refer to the situations where
FIML-QNO gives invalid estimates, fails to converge, and neither of the above.
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Ability of QNO to Fit Data with Various Rates of Missingness
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Figure 3.3: Percent of data sets which FIML-QNO is successful in fitting, in the sce-
nario where the true covariance matrix is close to not identified. Invalid Est, non—
convergence and convergence refer to the situations where FIML-QNO gives invalid

estimates, fails to converge, and neither of the above.
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CHAPTER 4

Application of the Bayesian Family Factor Model to the
UCLA Family Study Data with Five Qutcomes

In this Chapter, I illustrate the Bayesian Family Factor Model (BFFM) by analyzing
the data on ' = 5 primary outcome variables from the UCLA Neurocognitive Family
Study (NES). I compute descriptive statistics, elicit prior hyper-parameters, implement

the Gibbs sampling algorithm using R and summarize the posterior distributions.

These five measures are analyzed because they are the most representative mea-
sures of each major cognitive domain of interest, and have been successfully used in
assessing schizophrenia related cognitive deficits. Furthermore, it is reasonable to start
constructing the model with a smaller number of outcomes, so that the algorithm runs
faster and interpretation of results is easier, as the total number of parameters is smaller.
This data structure with X' = 5 outcomes and J = 4 family member types was used
as a template for designing simulation studies in Section 3 to test the algorithm and to

assess the performance of the model for all parameters.

4.1 The UCLA Neurocognitive Family Study Data

The UCLA Neurocognitive Family Study (NFS) is a cross-sectional case-control study
collecting multiple outcomes on schizophrenia subjects and their relatives, as well as
community control subjects and their relatives. There are two parallel studies, one for
adult onset and one for childhood onset, for which the data were collected by Dr. K.H.

Nuechterlein and Dr. R.F. Asarnow. The J = 4 family member types, proband, sibling,
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father and mother are indexed by 7 = 1,.. ., 4, respectively. Table 4.1 presents presents
counts of families and individuals. There are a total of 210 families and 635 subjects
in the study, about half in the adult onset arm and half in the childhood onset arm.
The number of schizophrenia probands and their relatives are roughly the same as the
number of community control probands and families. Fifty two percent of the subjects
are male. To study most cognitive measures, age is a critical factor. The mean age for
all subjects is 33 (Std Dev = 7), with a minimum of 7 and a maximum of 85. The
average age of subjects in the adult onset group is older than that of the childhood onset
group, as expected. For now, age is not included in the current analyses as I want to
keep the model as simple as possible to begin with. In future analyses, I can include

age in the mean structure to adjust for age effects.

The various batteries of cognitive tests assessed include the Wechsler Abbreviated
Scale of Intelligence (WASI), the Test of Memory and Learning (TOMAL), the digital
span subset from Wechsler Memory Scale (WMS-III), the Maintenance and Manipula-
tion Test (MNM), the Minnesota Multiphasic Personality Inventory (MMPI), the Cali-
fornia Verbal Learning Test C Children’s Version (CVLT-C) and the California Verbal
Learning Test C Second Edition (CVLTCII). Figure 4.1 organized the major neurocog-

nitive outcome measures by these tests.

The seven cognitive tests of primary interest are described in details below.

1. Memory-Load Continuous Performance Test (3-7 CPT):
In the conventional continuous performance test (CPT), a random series of single
numbers or letters are presented on a computer monitor. Subjects are asked to
indicate that they have detected a target event by pressing a response button and
to avoid responding to distracting stimuli. Outcome measures of this test include
the level of signal/noise discrimination, d prime (CPT37D), the hit rate (Hitr37)

and the false alarm rate (Falr37).

2. Degraded Stimulus Continuous Performance Test (DS CPT):
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In this version of the CPT, the image of numerals presented to the subject are
degraded, that is, the numerals appear extremely blurred and indistinct. Similar
to 3-7 CPT, subjects are asked to indicate that they have detected a target event.
Outcome variables of this test include the level of signal/noise discrimination, d

prime (CPTDSD), the hit rate (HitrDS) and the false alarm rate (FalrDS);

. Forced choice Span of Apprehension (SPAN):

In this test, either a T or F will be flashed briefly on the computer screen along
with other irrelevant letters in an array of 1, 5, and 10 letters. The subjects were
instructed to press one button when a T was present and another button when an
F was present. The primary dependent variables are the number of correct target
detections for 1-letter, 5-letter, and 10-letter arrays (SPAN1, SPANS and SPAN10,

repectively).

. Trail making test (TRAILS):

The Trail Making Test from the Halstead-Reitan Neuropsychological Battery
(Springate and Fein, 2013) requires subjects to connect numbers (1-25) in part
A or alternating numbers (1-13) and letters (A-L) in part B (i.e., 1-A-2-B-3-C,
etc.) in sequence as rapidly as possible. The subject’s scores are the number of

seconds required to complete Part A (logTRLAA) and Part B (logTRLBA).

. Facial Recognition:

The Benton test of Facial Recognition (BFRT), which consists of a short form
requiring 27 responses and a long form requiring 54 responses. On each item,
subjects are presented with a target face above six test faces, and they are asked
to indicate which of the six images match the target face (Benton, 1994). An

outcome measure of interest is short form score (NCFRSFSC).

. Verbal Fluency:
In the Controlled Oral Word Association Test for verbal fluency, participants were

asked to generate as many words as possible beginning with the letters “F,” “A,”
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and “S”, each for 60 seconds. The combined score of “F,” “A,” and “S” (VFFAS)

1s the outcome variable of interest.

7. Maintenance and Manipulation (MNM):
In the Maintenance and Manipulation test, an array of 4 objects first appeared on
the computer screen for 2 seconds. In the maintenance only condition, subjects
were then asked to decide whether the new array was the same as the previous
one. In the maintenance plus manipulation conditions, there was a delay period
when the subjects are told to reorganize the array held in memory. Outcome
measures of this test include the main (hold) trials mean accuracy (MAINacc) and
reaction time (MAINTt), as well as the manipulate (flip) trials accuracy (Manipa)

and reaction time (MANIPrt).

The K = 5 primary outcomes analyzed in this Chapter are Maintenance and Ma-
nipulation Test (MnM Test) manipulation accuracy, degraded stimulus CPT (DS-CPT)
block sum d prime, memory-load CPT (3-7 CPT) block sum d prime, forced-choice
Span of Apprehension (Span) 10-letter accuracy and Trail Making Test b time in sec-
onds, corresponding to k = 1, ..., 5, respectively. In the next chapter, I will include 12
additional variables in the model, develop a way to incorporate knowledge on cluster-
ing structure of outcomes into the priors and compare consistency of posterior across

the five- and seventeen-outcome models.

It is desirable for the ease of interpretation to have higher scores mean better test
performance for all outcomes. Therefore, the sign of Trail Making Test b has been
reversed. In addition, the factor variance for probands, ¢ 411, must be smaller than any
of the overall variances for probands, var(y;1), as described in Section 2.1, therefore,
it is useful to scale the observed variables to make the overall variances similar, so
that ¢ 41; will not be forced to be small, which causes precision problem, as small
values may be rounded to zero in computation. Scaling and transformation of these five

outcomes are described in Table 4.2.
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Variable Value Control Sz Total
(n=321) (n=314) (n =635H)

Proband 84 116 200
Family  Sibling 115 79 194
member Father 45 38 83

Mother 77 81 158
Gender Female 163 152 315

Male 158 162 320

Table 4.1: Frequency tables of family member and gender by schizophrenia and control
families.

Nuerocogntivie Outcome
Measures in the UCLA NFS

Span of Degraded Memory Maintenance Trail Making Facial Verbal
Apprehen- Stimulus Load (3-7) and Test Recognition Fluency
sion (DS) -CPT CPT Manipulation
Test |_ |_
logTRLBA NCFRSFSC VFFAS
- Span10 — CPTDSD — CPT37D
—{ MANIPA
logTRLAA
— Span5 | HitrDS — Hitr37
— MAINacc
1 Spanl | FalrDS — Falr37
— MANIPrt
— MAINrt

Figure 4.1: Neurocognitive performance measures collected in the UCLA Neurocogni-

tive Family Study.
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k Variable Description Transformation

1 MANIPA  Maintenance and Manipulation (MnM) test 100 x y
accuracy during manipulation

2 CPTDSD  Degraded Stimulus Continuous Performance Test 10 * y
(DS-CPT) block sum d prime

3 CPT37D Memory-load Continuous Performance Test 10 *x gy
(37-CPT) block sum d prime

4 SPANIO the Forced-choice Span of Apprehension test 100 x y
10-letter accuracy

5 1ogTRLBA The trail making test b time in seconds —100 * logyo(y)

Table 4.2: Variable descriptions and transformations for five neurocognitive measure-
ments of primary interest. The first four outcomes are scaled while the logTRLBA
with a skewed distribution and negatively correlated with other outcomes are log-trans-
formed and has its sign reversed.

Descriptive statistics are used to summarize the data. Table C.1 in Appendix C
presents the raw group means and standard deviations of the X = 5 outcomes mea-
sured on probands, siblings, fathers and mothers for the schizophrenia (SZ) and con-
trol families. Table C.2 presents the complete correlation matrix of all 20 combina-
tions of 4 family member and 5 outcomes. In particular, the block diagonal matrices
are within-family-member across outcome correlations, which range from 0.2 to 0.4.
The across-member within-outcome correlations of are the diagonal elements of off-
diagonal blocks in Table C.2, which extracted and summarized in Table C.3. For all
five outcomes, the correlation between observed variables measured on proband and on

sibling is the highest (about 0.2).
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4.2 Prior Specification

To fit the BFFM, partially informative priors are specified using priors described in Sec-
tion 2.2 and methods from Section 2.3. First, estimated values for the overall variances
of the K outcomes, var(y;), ..., var(yx) are obtained from a previous study and from
the literature. Phase 1 of the UCLA Family Study (Asarnow et al., 2002; Nuechter-
lein et al., 2002) collected four of these five outcomes (CPTDSD, CPT37D, SPAN10
and logTRLBA); furthermore, these measures have been analyzed in previous studies
(Kim et al., 2004; Nuechterlein et al., 2011; Koide et al., 2012). For outcomes for
which which phase 1 data are not available, estimates from the literature are used. The
estimates of overall means and variances from all those various sources for all 17 out-
come measures are summarized in Table 4.3. Summaries of correlations are given in
Tables 4.4 and 4.5. For now, only prior information of the 5 primary outcome measures

(highlighted in bold) are used.

Using the informtion in Tables 4.3, 4.4 and 4.5, prior hyper-parameters for factor
loadings, factor variance matrix, unique error variances and regression coefficients can
be specified using the methods described in Section 2.3. What follows illustrate this

process by selecting specific values appropriate to this data.

First, information from the Phase 1 study can help to specify prior correlation ma-
trices D 4 and D g, for outcome factors and family member factors, respectively. For
Phase 1 study data, correlations across four outcomes (CPTDSD, CPT37D, SPAN10
and logTRLBA) ignoring the family structure are all between 0.30 and 0.48 (Table 4.4).
Therefore, I choose a compound symmetric correlation structure for D g, by setting all
the prior factor correlations to be 0.35. The within-outcome across-family-member cor-
relations in the Phase 1 data are summarized in Table 4.5. Most of these correlations are
positive, as observations on individuals from the same family are expected to be pos-
itively associated; there are some negative correlations, though none are significantly

different from 0. Furthermore, the correlations between observations from all pairs of
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family members due to pure genetic effects are all 0.5, except the 0 correlation between
father and mother. In practice, due to various kinds of noise and environmental factors
outside of the family, the real correlations can be lower than 0.5. Based on the Phase 1
correlations and the theoretical correlations among family members, the prior means of
correlations among family members are set to be 0.15 between father and mother and

0.2 otherwise, as father and mother are not genetically associated.

For prior specification of factor variances, it is necessary to choose the degree of
freedom parameterfor the inverse Wishart priors, v4 and v4, which are inversely pro-
portional to dispersions of the factor variance matrices. The priors are less informative
when v, and vp are smaller. Furthermore, it is necessary to have v, > J + 1 and
vp > K + 1 for the inverse Wishart distributions to center at W 4 /(v4 — K — 1) and
Wg/(vp — K — 1), respectively. The degrees of freedom were set to be v4 = 9 and

Vp = 10.

Next, the covariate of primary interest for the UCLA NSF is the indicator of whether
the person is in a SZ or control family, so the regression coefficients are the means of
each outcome by family member type in two groups, referred to as group means later.
Without strong belief to the contrary, priors for group means of a particular outcome
are assumed to be the same for both groups across family members, that is, there are 5
distinct priors for group means, one for each outcome. In this case, any differences in
posterior means across family members or between groups will be driven by the data,
not the prior. Means and variances of independent normal priors are set to values in

Table 4.3.

The total variance for the observed variable of the 15! outcome (MANIPA) measured

on the 1% family member (proband) can be decomposed as

var(ya1) = ¢an + 11 + i1,

so var(y;) can be used as an upper bound for these 3 components. To estimate the
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fraction of total variance contributed by each component, it would be natural to fit the
CFA model using the FIML-QNO to the Phase 1 data. However, it failed to converge
when the model includes both J = 4 family member factors and X = 4 outcome
factors. When “half-models” with only family member factors or with only outcome
factors are fit to the Phase 1 data, about 40% of the total variance is explained by family
member factors, or by outcome factors, respectively. Therefore, the prior means of
both ¢ 411 and ¢pq1, are set the be 40% of the estimated overall variance for the first
outcome, var(y; ), as listed in Table 4.3. Specification of other factor variances and the
overall factor variance matrix proceeds as described in Section 2.3. Finally, the prior
mean of the unique error variance of the k" outcome, v, are set to be 20% of \7a\r(y1),

while the degrees of freedom for these inverse gamma prior distributions are all set to

be 15.
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Mean SD  Variance SD ratio

CPTDSD 28 11 121 1.00
DShitr 63 23 529 2.09
DSfalr 7 15 225 1.36
SPAN10 50 5 25 0.46
SPAN1 60 450 20.3 0.41
SPANS 60 7.70 59.3 0.70
CPT37D 41 9 81 0.82
Hitr37 95 19 361 1.73
Falr37 0.6 4 16 0.36
logTRLBA -140 20 40 1.82
logTRLAA  -140 17 289 1.55
VFFAS 38 10 100 0.91

NCFRSFSC 23 420 17.6 0.38

Manipa 70 13 169 1.18
MAINacc 70 13 169 1.18
MANIPrt 12 3 9 0.27
MAINTrt 12 3 9 0.27
Table 4.3: Summary of estimates of overall means and variances for the K = 17

outcome measures, obtained from Phase 1 data of the UCLA Family Study and from
previous literature (Kim et al., 2004; Nuechterlein et al., 2011; Koide et al., 2012). SD
denotes standard deviation. SD ratio is the ratio of SD of an outcome to the SD of the

first outcome.
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CPTDSD CPT37D SPANIO logTRLBA
CPTDSD 1.00
CPT37D 0.48 1.00
SPANI10 0.30 0.33 1.00
logTRLBA 0.34 0.45 0.41 1.00

Table 4.4: Correlations across outcomes ignoring the family structure from the Phase 1

data.

Proband Sibling Father Mother
Proband 1.00
CPTDSD  Sibling 0.22 1.00
Father  0.20 0.14 1.00
Mother  0.25 0.21 0.26 1.00
Proband 1.00
CPT37D Sibling  0.25 1.00
Father 0.04 0.02 1.00
Mother  0.15 -0.09  0.15 1.00
Proband 1.00
SPAN10 Sibling  0.13 1.00
Father  0.21 -0.04 1.00
Mother 0.14 0.14 0.13 1.00
Proband 1.00
logTRLBA Sibling 0.46 1.00
Father  0.14 -0.11 1.00
Mother  0.17 -0.01 0.27 1.00

Table 4.5: The within-outcome across-family-member correlations for the four out-

comes in Phase 1 data.
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4.3 Summary of Posterior Distributions

When the classic CFA model using full information likelihood estimation and the full
information maximum likelihood estimation using quasi-Newton optimization (FIML-
QNO) is fit to the UCLA Neurocognitve Family Study data using the lavaan package

in R, the algorithm fails to converge.

The BFFM estimation procedure using a Gibbs sampling algorithm is implemented
in R, with a total of 100, 000 iterations after excluding 10, 000 initial burn-in iterations.
Trace plots, density plots and autocorrelation plots show no obvious evidence of bad

mixing, non-convergence or high autocorrelation.

Tables D.3, D.1 and D.2 in Appendix D present summaries of the posterior dis-
tributions for all 101 parameter estimates, which include means, standard deviations
(SD), and posterior probabilities p(f < 0|Y’). The posterior means are summarized

and organized in separate tables as discussed below.

Table 4.6 presents posterior means of factor variances, factor correlations and factor
loadings for family member and outcome factors. The posterior means of all family
member factor correlations are positive and vary from a low of 0.034 between mother
and sibling to a high of 0.390 between proband and sibling. Similarly, the posterior
means of all outcome factor correlations are positive and range from 0.29 to 0.61. In
addition, The posterior means of all factor loadings are all positive, suggesting the

observed variables are positively associated with the factors they load on.

Table 4.7 lists the 2J K = 40 posterior means of regression coefficients, 3, (top),
which are the means of the k" outcomes for the j** family member in the control fam-
ilies (p = 1) and the SZ families (p = 2), for 7 = 1,...4 corresponding to prbands,
siblings, fathers and mothers, and £ = 1,...,5 corresponding to MANIPA, CPTDSD,
CPT37D, SPAN10 and logTRLBA, and posterior means of difference in group means,
control minus SZ, (i — B2ji (bottom). These results suggest that SZ probands per-

formed worse than the control probands for all five outcomes, while the sign of the

49



differences in mean outcomes between siblings of the two groups are not well deter-
mined by looking at the posterior probabilities p(@ < 0]Y"). Parents of schizophrenia

probands did worse in span of apprehension and trails B than control parents.

Besides posterior means, posterior distributions of model parameters are also of
interest. Figure 4.2 plots the posterior distribution of group means of CPT37D for
probands, siblings, fathers and mothers in the control and SZ families (left) and the
differences between two groups. These plots show that the means of CPT37D for SZ
probands are much smaller than those for control probands, while there are no obvious
differences in means between the two groups for fathers and siblings. Mothers in the
control families have larger means CPT37D than all others, including the SZ moth-
ers. Additional plots of posterior distributions for group means and factor loadings are

provided in Appendix D.
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Family Member Proband  Sibling Father Mother
Factor Variance 50.57 50.81 33.31 37.14
Proband 1.000
Factor Sibling 0.390 * 1.000
Correlations Father 0.173 0.070 1.000
Mother 0.081 0.034 0.104 1.000
MANIPA 1 1 1 1
Factor CPTDSD  0.88 * 0.61* 0.92 * 0.77 *
Loadings CPT37D 1.01* 0.99 * 0.73 * 0.90 *
SPAN10 0.61* 0.46 * 0.47* 0.52*
logTRLBA 2.13* 2.05* 1.77 * 2.36 *
Outcome MANIPA CPTDSD CPT37D SPANIO logTRLBA
Factor Variance 50.20 24.07 16.70 4.67 97.69
MANIPA  1.000
Factor CPTDSD  0.594* 1.000
Correlations CPT37D 0.493 * 0.609 * 1.000
SPAN10 0.349 * 0.354 * 0.291 1.000
logTRLBA 0.590 0.526 0.529 0.470 1.000
Proband 1 1 1 1 1
Factor Sibling 1.18* 1.23* 0.84 * 1.52* 0.81*
Loadings Father 0.18 0.66 * 0.60 * 1.08 * 0.84
Mother 0.54 0.65* 0.65* 0.98 * 0.76 *
Unique Error MANIPA CPTDSD CPT37D SPANIO logTRLBA
Variances 150.17 65.41 28.57 15.77 229.25

Table 4.6: Posterior means of factor variances, factor correlations, factor loadings and
unique error variances estimated by BFFM. For a parameter with *, the posterior prob-
ability being smaller than zero, is smaller than 0.05, p(6 < 0|Y") < 0.05.
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Group Control SZ
Outcome Proband Sibling Father = Mother Proband Sibling Father = Mother

MANIPA 76.01 70.25  77.00  74.39 66.56 7237 7559  T71.84
CPTDSD 25.27 2285  20.83  26.07 21.38 2344 2402  23.25
CPT37D 44.63 4336  45.01 48.55 38.44 4377 4436 4290
SPANI10 56.05 5479  53.88  53.75 53.32 5533 51.13  51.68
logTRLBA -1394  -143.0 -139.5 -140.8 -151.1 -145.1  -150.0 -151.8

Difference (Control — SZ)
Outcome Proband Sibling Father = Mother
MANIPA 946 -2.12 1.41 2.55
CPTDSD 3.89* -0.59 -3.19 282
CPT37D 6.19* -042 0.65 5.65*
SPAN10 273*  -0.54 275% 2.06*
logTRLBA 11.8* 2.1 105 110~

Table 4.7: Posterior means of regression coefficients for ./ = 4 family members and K = 5 outcomes per family in the control and
schizophrenia (SZ) families (top), and the differences between groups (bottom). For a parameter with *, the posterior probability
being smaller than zero, is smaller than 0.05, p(f < 0]Y") < 0.05.
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Posterior Density Plots of CPT37D by Family Member

Means of CPT37D for SZ and Control Families Difference in Means, Control Minus SZ
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Figure 4.2: (a) Posterior density of means of CPT37D for probands, siblings, fathers
and mothers in the control (black) and SZ (grey) families. The 8 1-dimensional den-
sity plots at the bottom represent locations of posterior samples for probands, siblings,
fathers and mothers in control and SZ families, from top to bottom. (b) Posterior den-
sities for differences in means of CPT37D between two groups, control minus SZ. The
4 1-dimensional density plots at the bottom represent locations of posterior samples for
probands, siblings, fathers and mothers, from top to bottom.
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CHAPTER 5

Application of the Bayesian Family Factor Model to the

UCLA Family Study Data with Seventeen Outcomes

In Chapter 4, I illustrated the Bayesian Family Factor Model by analyzing the UCLA
Neurocognitive Family Study (NSF) data with 5 primary outcomes. Twelve additional
measures in the same domains are also collected as secondary outcomes. When more
outcomes are considered, the relational structure becomes more complex and the com-
pound symmetric prior correlation model for outcome factors used in Chapter 4 may
be too restrictive. Moreover, there may be substantive prior information about the rela-
tionships among outcome measures. For example, associations among sub-scales from
the same test will be similar and higher than correlations between sub-scales from dif-
ferent tests. Furthermore, outcomes which are designed to measure similar concepts
will be more highly correlated than those from different domains. It is desirable to
accommodate this substantive information about the clustering of the outcomes in the

prior specification for the BFFM.

This chapter describes a way to elicit priors for correlations among outcome fac-
tors in familial data with a large number of outcomes, and illustrates the approach by
fitting the BFFM to the UCLA NSF data with 17 outcomes. These outcomes are listed
in Table 5.1, along with the transformations to make the scales similar and all corre-
lations positive. Except for two stand-alone tests, facial recgnition (NCFRSFSC) and
verbal fluency (VFFAS), all of the outcome measures belong to five tests: the Main-
tenance and Manipulation (MNM), the Degraded Stimulus-Continuous Performance

Test (DS-CPT), the memory-load Continuous Performance Test (3-7 CPT), the Forced-
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Choiced Span of Apprehension (SPAN) and the Trail Making Test Adolescent Version
(TRAILS). Each of these tests include one of the 5 primary outcomes analyzed in Chap-
ter 4, highlighted in bold.
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Outcome Description Transformation

CPTDSD Degraded Stimulus(DS)-CPT: block sum d prime x 10

HitrDS DS-CPT: block sum hit rate x100%

FalrDS DS-CPT: negative block sum false alarm rate X (—100%)

SPAN10 Span of apprehension: number correct matrix size 10

SPAN1 Span of apprehension: number correct matrix size 1

SPANS Span of apprehension: number correct matrix size 5

CPT37D Memory load 3-7 CPT block sum d prime x 10

Hitr37 3-7 CPT block sum hit rate x100%

Falr37 Negative 3-7 CPT block sum false alarm rate X (—100%)

logTRLBA  Trail making test B, Adolescent Version: time (sec) ~ —100log,,(y)

logTRLAA  Trail making test A, Adolescent Version: time (sec)  —1001log,,(y)

VFFAS Verbal Fluency: sum of f, a and s total scores

NCFRSFSC  Facial recognition: short form score

MANIPA MNM (Maintenance and Manipulation Test): x 100%
manipulate (flip) trials mean accuracy

MAINacc MNM: main (hold) trials mean accuracy x 100%

MANIPrt MNM: manipulate trials mean reaction time (sec) /100

MAINTt MNM: main trials mean reaction time /100

Table 5.1: Descriptions and transformations or scalings of 17 outcome measures. The

signs of variables DS-CPT block sum false alarm rate, 3-7 CPT block sum false alarm

rate, Trails A Adolescent Version time and Trails B Adolescent Version time are re-

versed so that for all outcome measures, a larger value means better performance.
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5.1 Descriptive Statistics

In this section, descriptive statistics are calculated to investigate the raw means and
variance-covariance structure of the 17 outcomes from the UCLA NFS. Table 5.2 sum-

marizes these values, by schizophrenia (SZ) and control families.

Sample correlations among the 17 outcomes, ignoring the family structure, are
listed in Table E.1 in Appendix E and the corresponding heat map is presented in Fig-
ure 5.1. A heat map is a scale colour image for representing values in two dimensions.
Overall, correlations among measures from the same test are higher than those of mea-

sures from different tests.

To further explore relationships among outcome measures, [ perform a cluster anal-
ysis on the 17 outcomes using the VARCLUS procedure (Nelson, 2001) in SAS. The
resulting dendrogram in Figure 5.2 shows that the measures from the same test are
tightly grouped as expected. Based on the test domains and the results of the cluster-

ing, these 17 outcomes are organized into 5 groups, as listed in Table 5.3.
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Mean StdDev

Control SZ Control SZ
CPTDSD 24.2 22.7 9.9 11.1
HitrDS 73.6 70.0 18.8 21.6
FalrDS -6.8 -8.4 6.1 8.5

SPANI10 54.80 52.94 5.47 6.36

SPAN1 63.12 62.71 1.36 221
SPANS 61.57 59.75 2.83 4.93
CPT37D 454 41.6 8.2 9.8
Hitr37 94.5 89.8 7.7 12.8
Falr37 -0.59 -0.89 1.43 1.75
logTRLBA  -141 -150 22 23
logTRLAA  -112 -119 18 19
VFFAS 39.71 33.79 12.65 12.54

NCFRSFSC  22.99 22.62 2.15 2.58

MANIPA 74.1 70.9 13.5 16.7

MAINacc 80.5 75.9 12.0 16.7

MANIPrt 12.8 12.4 23 23

MAINTt 11.6 11.3 2.4 2.3

Table 5.2: Means and standard deviations of 17 outcomes by schizophrenia (SZ) and

control family.
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Raw Correlations Among 17 Outcomes
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Figure 5.1: A heat map of raw pair-wise correlations among observations of the 17
outcome measures, ignoring the within family correlations. Cyan and pink represent

positive and negative values.
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Cluster Analysis
MnM Test Main (hold) trials mean reaction time —
Ml Test manipulate (flip) trials mean reaction time o —

ds-cpt block sum false alarm rate -

ds-cpt block sum hit rate
Cegraded Stimulus CPT Block Sum d Prime o

Forced-choice Span of Apprehension &-Letter Accuracy S

Forced-choice Span of Apprehension 1-Letter Accuracy

Forced-choice Span of Apprehension 10-Letter Accuracy S

3-Teptblock sum false alarm rate

3-Tept block sum hit rate

Memory-load CPT Block Sum d Prime
MnM Test Manipulation Accuracy - j
MnM Test Main (hold) Accuracy -

Facial recognition short form score o
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-log10ithe Trail Making Test A Time) S
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Figure 5.2: A dendrogram corresponding to clustering of the 17 outcome measures

using VARCLUS in SAS, ignoring the family structure.
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Cluster Outcomes

Degraded Stimulus-CPT CPTDSD, HitrDS, FalrDS
Memory-Load CPT CPT37D, Hitr37, Falr37
Span of Apprehension (SPAN) SPAN10, SPAN1, SPANS

Trail making test (TRAILS) and others  logTRLBA, logTRLAA, VFFAS,
NCFRSFSC

Maintenance and Manipulation (MNM) MAINrt, MANIPrt, MAINacc, Manipa

Table 5.3: Grouping the 17 outcome measures into 5 clusters, based on the sets of tests

and results of variable clustering.

5.2 Prior Specification

To elicit hyper-parameters for all priors, I obtain estimated values for the overall vari-
ances of the K = 17 outcomes, var(y; ), ..., var(yx) from (i) Phase 1 of the UCLA
Family Study (4 measures) and (ii) the means and standard deviations reported in pre-
vious literature (13 measures) (Kim et al., 2004; Kopelowicz et al., 2005; Nuechterlein
etal., 2011; Koide et al., 2012). The estimated values are listed in Table 4.3. The priors
for other parameters, including regression coefficients, 3, factor loadings, A 4 and A,
family factor variance matrix, ® 4, and unique error variance matrix, ¥, can be speci-
fied using methods described in Section 2.3. Tables E.2 and E.3 in the appendix list all
prior hyper-parameters specified for fitting the BFFM.

For outcome factor variances,

(I)B ~ IW(WB, VB>7

where WB(KXK) = (VB—K— 1)DBCBDB7 VB and CB(KXK) = diag(dBl, N ,dBK)

61



are specified according to Section 2.3. When the number of outcomes, K, is larger,

more meaningful prior outcome factor correlations, D g, can be specified, as follows.

First, the K outcome measures are grouped into a smaller number (s) of clusters,
based on the nature of the tests. Sub-scales from the same test are grouped together.
Measures designed to assess similar concepts are also assigned to the same cluster.
Computation of sample correlations and variable clustering are useful for confirming
that the theoretically selected groups are cohesive and for assigning outcome measures
that do not belong a priori to a particular group. Without strong belief to the contrary,
the within-cluster prior correlations are set to be all equal and higher than the cross-

cluster prior correlations, which are also set to be all equal.

For the UCLA NFS, the K = 17 outcomes are grouped into s = 5 clusters (Ta-
ble 5.3), as discussed in Section 5.1. For the outcome factors, all with-in cluster prior
correlations are set to be 0.4, while all across-cluster correlations are set to be 0.2, be-
cause correlations among the four outcomes from the Phase 1 Study range from 0.3 to
0.5. Table E.3 in Appendix E presents the prior correlation matrix for outcome factors
and Figure 5.3 shows the corresponding heat map. The prior mean of the covariance
matrix can be calculated from the variances and the correlation matrix. Parallelling Sec-
tion 4.2, I choose 4 = 9 and v = 20 (Note that it is necessary tohave vy > J+1 =5
and vg > K +1 = 18 for the inverse Wishart distributions to centerat W 4 /(v4—J —1)
and Wg/(vg — K —1)).
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Prior Correlations Among 17 Outcome Factors
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Figure 5.3: A heat map of prior correlations among the 17 outcome measures. Cyan
and pink represent positive and negative values, respectively. All diagonal elements
are 1, while prior correlations in the diagonal blocks equal to 0.4 and all other prior

correlations are set to be 0.2.
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5.3 Posterior Distribution Summary

This section provides the summary of fitting the BFFM to 17 outcomes from the UCLA
NSF. It is desirable to compare parameters estimated by BFFM and FIML-QNO. How-
ever, when the CFA model with both family member factors and outcome factors were
fit to the data, the FIML-QNO algorithm fail to converge, as the covariance matrix is

not positive definite.

The BFFM is successfully fit to the familial data with 17 outcomes using 20, 000
primary iterations after an initial burn-in of 2000 iterations. Assuming /X = 17 distinct
error variances v, . .., 7, the total number of free parameters is (2JK + J?/2 +
K?/2 — J/2 4+ K/2 + P) = 431. As this number is large, I summarize the posterior
distributions by visualizing the posterior means and posterior probability p(f < 0|Y")

for testing whether the parameter estimates are equal to zero.

5.3.1 Regression Coefficients

First, I look at the posterior densities of the regression coefficients, [3,;,, which are
group means of the X' = 17 outcomes measured on J = 4 types of family members:
probands, siblings, fathers and mothers, where p = 1, 2 correspond to the control and
SZ families. Figures F.1, F.2 and F.3 in Appendix F show the posterior density plots for
these P = 2JK = 136 parameters, grouped by the /K outcomes. The corresponding
posterior means are listed in Table F.1. Overall, members of SZ families perform worse
than members of control families. For all outcomes, the posterior means of 3, for
the SZ probands are lower than those for the control probands. Fathers and mothers of
SZ probands (green and blue dashed lines) also have smaller posterior means in some
outcome measures than the control parents (green and blue solid lines). There are no
obvious differences in posterior means between SZ siblings and control siblings for
the group means. Furthermore, the CPT37D, hitr37, MAINacc and MANIPrt measures

show a similar pattern in which the SZ probands (black dashed lines) have much smaller
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means than all others.

To visualize the patterns across family members and between groups, these P =
136 posterior means of group means are standardized as follows: for each outcome, I

compute the average of 8 group means and calculate the relative posterior group means

Group Mean — A
Relative Group Means = (Group Mean — Average)

| Average|

A heat map of the relative posterior group means is shown in the left part of Figure 5.4,
in which pink indicates worse performance in cognitive tests, while cyan indicates
better performance. This plot is consistent with the posterior density plots, showing

smaller posterior group means for SZ families (the right half of the plot) in general.

The JK = 68 differences in group means, (control minus SZ, or Sy, — 51x), are
summarized in the right half of Table F.1 in Appendix F. I visualize the correspond-
ing posterior probability, p(f < 0|Y") for testing whether these posterior means are
equal to 0, p(SB2jrx — Pijr > 0), using a heat map in the right part of Figure 5.4. This
heat map suggests that the SZ probands perform worse in all measures than the control
probands. There are no obvious differences in group means between siblings in SZ and
control families. The differences in group means show similar patterns within clusters
of outcomes for parents: no significant differences in the Maintenance and Manipula-
tion cluster; only mothers show significant differences in the Degraded Stimulus-CPT
and the Span of Apprehension clusters; and both parents show significant differences
for most of the Memory-Load CPT and Trail making test clusters. To further identify
the pattern of significant differences in group means, Figure 5.5 plots the heat map
of p( < 0]Y) with dendrograms added to the left side and to the top; the rows and
columns are re-ordered according to row and column means. This plot suggests that
among the relatives of probands, the SZ mothers have significantly smaller group means
on most outcomes than the control mothers, while the differences in group means be-

tween siblings are the smallest. The dendrogram in Figure 5.2 based on the Bayesian
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Family Factor Model retains some of the same clusters as the dendrogram for the clus-

ters based on the raw data, from top to bottom, I can see the Degraded Stimulus-CPT

cluster (HitrDS, CPTDSD and FalrDS), some of the Maintenance and Manipulation

cluster (MAINtt, MANIPrt, MAnipa), some of the Memory-Load CPT cluster (Falr37

and CPT37), and the last two clusters mixed together. New information is obtained

after accounting for family structure.
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Figure 5.4: Heat maps of relative posterior means of group means by family member

type and control or SZ families (left) and of the corresponding posterior probabilities

of the parameters being smaller than 0, p(6 < 0|Y") (right).
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Figure 5.5: A heat map of posterior probabilities of the parameters being smaller than 0,

p(0 < 0]Y), based on the BFFM. The rows and columns are clustered and re-ordered.
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5.3.2 Factor Covariance and Correlation Matrices

The posterior means of family member factor variances and covariances, as well as the
corresponding probabilities of the parameters being smaller than 0, p(f < 0]Y), are
listed in Table 5.4. The corresponding heat maps are shown in the top left and top right
of Figure 5.6. All family member factor covariances are significantly greater than 0.
Furthermore, all family member factor correlations are positive, but only the covariance
between probands and siblings and that between probands and mothers are significantly
greater than 0 with p(6 < 0]Y") < 0.05. The same heat maps for the analyses of the
data with 5 outcomes are presented in the bottom left and bottom right of Figure 5.6
for comparison. Posterior means of family member factor correlations are consistent in
the two analysis, except that the correlation between fathers and probands are slightly
higher in the analysis of data with 17 outcomes. Compared with the analysis when K =
5, the posterior probabilities, p( < 0]Y"), are smaller when K = 17, suggesting that

combining strength across more outcomes improves estimation of model parameters.

Similarly, posterior means of outcome factor correlations and variances are sum-
marized in Tables F.2 and F.3, respectively, in Appendix F. Figure 5.7 shows a heat
map visualizing these posterior means (left), as well as a heat map of the corresponding
posterior probabilities, p(f < 0]Y") (right). This figure suggests that the within-cluster
posterior factor correlations are higher than the across-cluster posterior factor correla-
tions. The heat map of posterior probabilities, p(f < 0|Y), indicate that almost all of
these posterior correlations are significantly greater than zero. Although the posterior
correlations between certain outcomes and MAINrt or MANIPrt are negative, none of

these negative correlations are significantly different from 0.
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Factor Correlations Factor

Proband Sibling Father Mother Variance

Proband | 1.000 55.89

Sibling | 0.321 1.000 21.26

Father | 0.194 0.082  1.000 18.90

Mother | 0.183 0.141  0.174 1.000  20.93
p(f <0[Y)

Proband Sibling Father Mother

Proband
Sibling | <0.001

Father 0.05 0.23

Mother 0.02 0.10 0.09

Table 5.4: Posterior means of the family member factor correlations and variances (top)
and the corresponding posterior probabilities of the parameters being smaller than 0,
p(0 < 0]Y) (bottom).
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Figure 5.6: Heat maps of posterior means of outcome factor correlations estimated in
BFFM with 17 outcomes (top left) and 5 outcomes (bottom left), and the corresponding
posterior probabilities of parameters being smaller than 0, p(6 < 0]Y") (bottom left and
bottom right), for the 17 and 5 outcome-models, respectively.
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Posterior Means of Outcome Factor Correlations
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Figure 5.7: Heat maps of the posterior means of outcome factor correlations (left) and the corresponding posterior probabilities,

p(6 < 0]Y )(right).
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Figure 5.8: Heat map of the posterior means of outcome factor correlations (left) and

heat map of the posterior probabilities, p(f < 0Y") (right).

5.3.3 Factor Loadings

This section presents a summary of the posterior distributions for the factor loadings.
In general, factor loadings are interpreted as regression slopes for predicting the ob-
served variables from the factors. Table F.3 in Appendix F presents the posterior means
of both family member and outcome factor loadings. Note that the family member

factor loadings for the first outcome (CPTDSD), ayy, are fixed to 1, as this outcome
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is chosen as a reference. A family member factor loading, a;i, for J = 1,...,J and
k = 2,...,K, is interpreted as the amount of change in the k' outcome on the j*
subject, y;;;, associated with 1 unit increase in f4;; with all else fixed. In addition, as
ajr/ajn = a;i/1 = a;i, this parameter is also the ratio of the effect of f4;; on v
to the effect of f4;; on y,;;;. Figure 5.9 includes the heat map of posterior means of
family member factor loadings (left) and the heat map of the corresponding posterior
probabilities, p(f < 0]Y) (right). For each outcome the posterior means of family
member factor loadings have similar scales across family members. Almost all of these
posterior means are greater than 0 with p(6 < 0]Y") < 0.05, except for the loadings of

MAINrt and MANIPrt for probands and mothers.

An outcome factor loading, b, for J = 1,..., Jand k = 1,..., K, can be inter-
preted as the amount of change in y;;, associated with 1 unit increase in fp;;,. Further-
more, as b;j, /by, = bjr/1 = bji for j = 2,...,J, b is also the ratio of the effect of fp;y,
on y;;;, to that on y;1;. Again, the outcome factor loadings for the first family member
(proband), by, are fixed to 1, as the proband is chosen as the reference. The posterior
means of family member factor loadings and the corresponding posterior probabilities,
p(0 < 0|Y") are visualized in Figure 5.10 using heat maps. All of these posterior means
are positive, ranging from 0.03 to 1.35 and most are significantly greater than 0. Fur-
thermore, factor loadings for siblings are in general larger than those for fathers and

mothers.
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Posterior Means of Factor Loadings
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Figure 5.9: Heat map of the posterior means of family member factor loadings (left)

and heat map of the posterior probabilities, p(6 < 0]Y") (right).
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Posterior Means of Factor Loadings
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Figure 5.10: Heat map of the posterior means of outcome factor loadings (left) and heat

map of the posterior probabilities, p(6 < 0Y") (right).
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CHAPTER 6
Hypothesis Testing using Bayes Factors

Besides estimating model parameters, it is of interest to test various hypotheses about
these parameters. In Bayesian inference, testing a null hypothesis against an alternative
can be regarded as comparing two corresponding models, M, and M;. A Bayes factor
(Berger, 1985; Kass and Raftery, 1995; Chib, 1995) is a summary of evidence provided
by the data in favor of M, as opposed to M

~ p(Y|Mo)  p(MoY) ,p(My)

Bo= 0¥ ™My = (Y pm)

6.1)

where p(Y'|M,) = [ p(y|©,)p(©,)dO, for £ = 0,1 is the marginal likelihood of the
data Y given the model M, p(M,|Y)/p(|M;]Y) is the posterior odds of M, to
My, and p(M)/p(M) is the prior odds of M to M;. The Bayes factor is the ratio
of two marginal likelihoods.A scale for interpretation of Bayes factors (BF) (Kass and
Raftery, 1995) is given in Table 6.1. A value of BF > 1 means that M, is more strongly

supported by the data under consideration than M.

Let M, denote a general model indexed by ® = (w”, YT)T, where w denotes the
vector of parameters of interest, Y denotes the vector of all the remaining “nuisance
parameters”, p(®|M;) denotes the prior density under M; and p(Y|®, M;) denote
the sampling density under M. A nested model, denoted M, is constructed by setting
w = wy, while leaving Y unconstrained: p(Y|M,) = p(Y |w = wy, M;). The prior
density under M, satisfies p(Y| M) = p(Y|w = wy, M) and the sampling density
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Bayes Factor Strength of Evidence

—00 < BF <0.01 Very strong against M
0.01 < BF <0.1  Strong against M

0.1 < BF < % Moderate against M,

% <BF <1 Barely worth mentioning against M,
1< BF <3 Barely worth mentioning for M
3< BF <10 Moderate for M

10 < BF < 100 Strong for M
100 < BF < oo Very strong for M

Table 6.1: A scale for interpretation of Bayes factors (Kass and Raftery, 1995).
under M, is p(Y'| Y, M,). From Bayes Theorem,

plw = wo|Y, My)p(Y | M)
p(w = wo| M) ’

p(Y|w = Wy, Ml) = (62)
so the Bayes factor can be expressed as the Savage-Dickey density ratio (Dickey and
Lientz, 1970; Verdinelli and Wasserman, 1995; Morey et al., 2011)

p(YIMo)  p(Y|w=wo, M) plw=wo|Y, M)

— — = . 6.3
PYIM) ~ p(Y M) P(@ = wol My) (©3)

By

The marginal prior density p(w = wy|M;) can be easily calculated from the prior.
The marginal posterior, p(w = wy|Y, M), can be estimated using MCMC outputs
from the unrestricted model, which provide approximate samples from the marginal

posterior p(w|Y ', M;). Different methods to calculate the marginal posteriors include

1. The Normal approximation:
As the marginal posterior p(w|Y) is often approximately normal, p(w|Y’) can
be approximated using a multivariate normal distribution with mean and vari-
ance equal to the posterior mean and variance of w estimated from the MCMC

output and thus an estimate of p(w|Y")|w=w, can be obtained. Deviations of the
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posterior from normality can lead to problems in estimating the Savage-Dickey

density ratio.

2. Conditional marginal density estimation (CMDE):
When the full conditional posterior distribution p(w|Y,Y") is known completely,
the marginal posterior density at w = w, can be approximated by an average of

the full conditional posterior density of w at w = w over all iterations

p(w’Y)|w:wo = pr(w|T,Y)|w:w0p(T|Y)dT
= Exylp(w|Y,Y)|w-w,]

T
%Zp w‘T(t) ‘w =Wo>
t=1

(6.4)

Q

where Y® is the component of Y from the #* MCMC sample, out of a total of
T MCMC iterations (Morey et al., 2011).

3. Multivariate kernel density estimation (KDE):
Using the MCMC outputs, one can obtain a kernel density estimate of p(w|Y")
evaluating at w = wy. This can be implemented using nonparametric kernel
smoothing package np in R. KDE always over-estimates the variance (Morey

etal., 2011).

6.1 Testing Hypotheses for Familial Data with Multiple Outcomes

In the UCLA Family Study, hypotheses of interest include whether group means are
equal (1) between schizophrenia and control families and (2) across family member
types within schizophrenia families. Both scenarios are equivalent to testing whether
particular linear combinations of the regression coefficients are simultaneously equal

to zero

w(x1) = Luxr)Bpx1y = Oux1),
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where L is a full rank matrix. Let M denote any (P — [) x P full rank matrix so
that rank([LT ,MT]) = P and let w+ = M. Let M, denote a general model where
B is freely estimated, which has parameters ® = (3,A4, Ap, P4, Pp, F4, Fp, V)
and let ¥ = (w', Ay, Ap, ®4, P, F 4, Fp, ¥). Then O can be reparametrized as
©" = (w, Y). A nested model, denoted M, is constructed by setting w = LG = 0.
As

/8 ~ N(l’l’ﬁ(b 250)7

the prior distribution of w = L3 is
w|My ~N(Lpgy, LS L"),

so we can obtain the denominator of the Savage-Dickey density ratio, p(w|M;)|,,_0-

Let ﬁﬁ and f)g denote the posterior mean and variance of 3 estimated from the

MCMC output. The marginal posterior distribution can be approximated as

approx

WY, M, PR N (Ljig, LE,L7),

which gives an approximation to p(w|Y , M1)|,_p-

The conditional marginal density estimator (CMDE) approximates p(w|Y ', M1)|,_o
using an average of the full conditional posterior density of w evaluated at w = 0 over

all 7' MCMC iterations

T
plw=0[Y, M) ~ £ p@ T, Y)|, oy yo: (6.5)

t=1

where Y is value of Y from the ¢ MCMC sample. The full conditional posterior
density of w is

p(@[Y,Y) = p(w|MB, X,Y),

where ¥ = var(y,|3) = As®P AL + Ag®pAL + W is the variance of y, given 3.
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The full conditional posterior distribution of 3 given ¥ is multivariate normal
/6‘27 Y ~ N(l"’ﬁ]ﬂ 2,3}))7

where

N
Yg = (EE&Jr;X,-TE’lXi)*l,
and

N
Mg, = Eﬁp(zgolﬂﬁo"‘;xfz_lyi),

as described in Equation 2.4.2 in Section 2.4. The joint posterior distribution of w =

L3 and w' = M conditional on 3 and Y is multivariate normal

L3 Lpg, LY L7 LYs;M"
Mp Mg, MY, LT MX,,L"

Therefore the full conditional posterior distribution of w given w*, ¥ and Y is
"“)|<""L = Mﬁ) Ea Y ~ N (I-‘I’L,Bv ZJL,B)

where
prs = Lpg, + LY s, M"(MX5,M") ' M(3 — Bsy)s

(6.6)
Y5 = LY L" — LY, M"(MX;,M")'M%,,L",

Therefore, the conditional marginal density estimator of w is
T

plw=0]Y , M) = %Zp(w|wL,E,Y)|w:0wl:M6(t)Ezz(t), (6.7)

t=1

where 3% is the component of 3 from the ' iteration of MCMC output, () =

AS)@S)AS)T + Ag)@g)Ag)T + ¥ is calculated from the ¢ iteration of the MCMC
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output.

6.2 Illustration of Hypothesis Testing

For the UCLA Neurocognitive Family Study, researchers are interested in differences in
cognitive measurements both between the control and SZ families and among different
members in the SZ family. I illustrate this with 3 prototypical examples

1. Testing whether the means of all outcomes for SZ and control probands are equal

(the number of contraints, NC = K = 5). The linear combination of interest is

Lyxxosx)y = | Ixxx Oxxix Orkxx Oxxik —Irxx Oxxik Orxk 0K><K]?

where O g is a K X K matrix of 0’s. A full rank matrix, M (2.7-1)k x27K), SO that

rank([L{, M]]) = 2JK is

IK><K IK><K
IK><K

IK><K

B
I

IKXK )
IK><K
IK><K

IK><K

where all the rest of the elements in the matrix are 0.

2. Testing whether the means of SZ probands are equal to the means of the average
of siblings, fathers and mothers of SZ probands (NC = K = 5). The linear combination

of interest is

Ll(KXZJK):[OKXK Oxxx Orxxrx Orxrx Ik _%IK —3dx —3lk |
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where Ox « x 1s a K x K matrix of 0’s;

A full rank matrix, M y((27-1)k x2JKk) SO that rank([L], M1]) = 2JK is

Tk
Ikxr
Ik
M, = Iwk )
Ik 3lkxxk

IK><K 3IK><K

Iyyk M xk

3. Testing whether for a particular variable, say CPT37D (k = 3), the means of SZ
and control families are equal across all members (NC = J = 4). Letd = (0,0, 1,0,0)

be a 1 x 5 row vector, then the linear combination of interest is

L3: IJ®d _IJ®d .

Let

m3(Kk-1)xK) =

o o O
o

o o o O
_= O
o o O

01

A full rank matrix, M 32k —1)7x27Kk), SO that rank([L, M1]) = 2K is

I,®d I;®d
M; = I;®m3  0j5x-1)xiKx

0y x-1yxsx L;j@mg3
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6.2.1 Comparing Different Methods Using Simulated Data Sets

First, I analyze simulated data sets to evaluate the performance of the normal approx-
imation estimator, the conditional marginal density estimator (CMDE) and the kernel
density estimator (KDE) for Bayes factors (BF) corresponding to matrices L, Ly and
L3. As Bayes factors for a single data set can be affected greatly by random errors, I
calculate the BFs for each method using the same 200 data sets with ' = 5 outcomes
and J = 4 family members simulated in the scenario where the true covariate matrix
is close to non-positive definite, as described and analyzed in Section 3.2. I choose the
scenario in which the true covariance matrix is close to non-positive definite, so that
I can examine the potential differences in the estimates of BFs between the data sets
which the quasi-Newton optimization (QNO) fails and those which the QNO does not

fail to fit.

The true parameters values for the group means of the X' = 5 outcomes on J = 4
family members are listed in Table 6.2.1, reflecting more severe neurocognitive deficits
in SZ probands and SZ siblings compared with other family members in the control
and SZ families. Therefore, I will expect the BFs corresponding to all 3 matrices to be

strongly against the null hypotheses of no difference, L3 = 0.

Figure 6.1 shows scatter plots of the BFs using the normal approximation method
on the x-axis against those using the CDME (red) or the KDE (green) on the y-axis, for
all 3 hypotheses. If the points are close to the diagonal line with slope 1, the CDME or
KDE estimates are close to the normal approximation estimates. Circles represent data
sets which the FIML-QNO was successful in fitting, while crosses represent data sets

which the FIML-QNO failed to fit

In general, the BFs calculated using the normal approximation and the CDME are
very similar, as the red points are mostly along the diagonal, while the KDE sometimes
produces much smaller BFs (green points below the diagonal line). For hypotheses 1

and 2, all BF are < 1072, which is consistent with the setting of true parameters having
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Group Member Outcome 1 Outcome?2 Outcome3 Outcome4 Outcome 5

Proband 1 2 5 8 10
Control Sibling 1 2 5 8 10
Father 1 2 5 8 10
Mother 1 2 5 8 10
Proband 0.5 1 2.5 4 5
SZ Sibling  0.75 1.5 4 6 8
Father 1 2 5 8 10
Mother 1 2 5 8 10

Table 6.2: True parameter values for group means of K = 5 outcomes on J = 4 family
members in the control and SZ families for the 200 simulated data sets analyzed.

SZ probands different from their relatives and also different from control probands. For
hypothesis 3, testing equality in means of the 3" outcome between the SZ and control
families across all family members, BFs for some data sets are greater than 1, which is
possible because the means of the 37 outcome for parents are set to be equal in both SZ
and control families. Looking at Figure 6.1, there are no obvious differences between

the data sets on which the FIML-QNO was successful or not.
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Figure 6.1: Scatter plots of BFs using normal approximation method on the x-axis
against those using the CDME (red) and the KDE (green) on the y-axis, for all 3 hy-
potheses. If the points are close to the diagonal line, the CDME or KDE estimates
are close to the normal approximation estimates. Circles represent data sets which the
FIML-QNO was successful in fitting, while crosses represent data sets which the FIM-
L-QNO failed to fit.
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Hypothesis df Bayes Factor Strength of Evidence

L, 5 897 Barely worth mentioning for
L, 5 0.00014 Strong against
Ls 4 0.0010 Strong against

Table 6.3: Bayes factors for testing different hypotheses on the UCLA Family Study
Data. The hypothesis associated with L; tests whether for the probands, the means
of all outcomes in the schizophrenia and control probands are equal (NC = 5). The
hypothesis associated with L, tests whether the means of schizophrenia probands are
equal to the means of the average of siblings, fathers and mothers of schizophrenia
probands (the number of constraints, NC = 5). The hypothesis associated with L tests
whether for the memory load CPT, the means of the schizophrenia and control families
are equal across all members (NC = 4).

6.2.2 Results for the UCLA Neurocognitive Family Study

Similar Bayes factors (BF) are obtained using the three methods, (the normal approx-
imation, KDE and CMDE), for estimating p(w|Y", My)|,,_0, so only the results us-
ing the normal approximation are presented in Table 6.2.2. The BF corresponding to
L, is 8.97, which suggests that the differences in the 5 x 1 vectors of means of the
probands between the two groups are “barely worth mentioning” (Kass and Raftery,
1995), even if it points slightly towards the hypothesis of equal means. The BF cor-
responding to Ly (NC=5) is 0.0014, suggesting that the means of probands are quite
different from those of their relatives for schizophrenia families. The BF correspond-
ing to L3 (NC=4) is 0.0010, suggesting strong evidence against equality in means of
CPT37D between SZ and control families, which is consistent with the 1-sided p-
values, p(f113 — f213 > 0]Y), for testing the difference in means between the two

groups.

This hypothesis testing approach can be generalized to test equality constraints
across family members on the following parameters: the family factor loadings a;,

the outcome factor loadings Bj, the error variances W; and the mean parameters p ;.
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CHAPTER 7

Discussion

I propose the Bayesian Family Factor Model (BFFM), which extends the classical con-
firmatory factor analysis (CFA) to jointly model multiple outcomes in familial data.
This model explains the covariances among observed variables using a combination of
family-member factors and outcome factors. Bayesian methods incorporating infor-
mative priors mitigate the problem of empirical under-identification, non-convergence
and invalid solutions. The choice of conditionally conjugate priors enable the sampling
from the posterior distributions using a Gibbs algorithm. The proposed framework has
the advantage of being able to handle missing data, incorporate mean structure and test

hypotheses easily.

I performed simulations to compare the BFFM to the full information likelihood
(FIML) estimation using quasi-Newton algorithm, in settings that the true covariance
matrix is not identified, close to not identified and identified. For these settings, the
quasi-Newton algorithm fails to find a fit to the data in 85%, 57% and 13% of the cases,
respectively, due to non-convergence or invalid estimates, while the BFFM provides
stable estimates. Moreover, when both methods successfully fit the data, the BFFM
estimates have smaller variances, as well as comparable mean squared errors and bias
squared. The BFFM is used to analyze the UCLA Neurocognitive Family Study data to
compare the degree of abnormality between schizophrenia families and control families
and to determine correlations among measurements from relatives using hypothesis

testing.

In the current analyses, factors are assumed positively correlated to the observed
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variables. Choosing positive truncated normal priors can solve the problem of improper
solutions where factor loading estimates are negative. In the current study, I use nor-
mal priors which are conditionally conjugate priors for the ease of computation. The

Bayesian model can be modified to use positive truncated normal priors in the future.

An interesting extension to the current model would be to perform Bayesian model
selection and Bayesian model averaging on different sub-models. For example, sub-
models with different equality constraints across family members on regression co-
efficients, factor loadings, and unique errors variances. Other extensions include in-
corporating covariates in the factor loading parameters and the residual variances, to
examine covariate effects on variance structure. This model can also be modified to
fit other kinds of data with similar structure, like the multitrait-multimethod (MTMM)
data used to examine construct validity in psychology. Finally, the current model is
developed under the assumption that all outcomes are normally distributed. It will be
useful to extend the current model to analyze mixed types of outcomes, for example
normal, Poisson, exponential, gamma and binomial, which are all within the exponen-

tial family, by modeling the canonical parameters.
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APPENDIX A

Values of True Parameters for Simulation Studies

Group Means

Outcome 1 Outcome 2 Outcome 3 Outcome 4 Outcome 5

Ctrl

SZ

Member 1 1 2 5 8 10
Member 2 1 2 5 8 10
Member 3 1 2 5 8 10
Member 4 1 2 5 8 10
Member 1 0.5 1 2.5 4 5

Member 2 0.75 1.5 4 6 8

Member 3 1 2 5 8 10
Member 4 1 2 5 8 10

Measurement Error Variance

Outcome 1 Outcome 2 Outcome 3 Outcome 4 Outcome 5

0.1 0.4 2.5 6.4 10

Table A.1: Values of true parameters for simulation studies.
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Factor Varaince Close to

and Covariance Identified Under-identified Under-identified

Pan 1.959 1.271 1.076
Ga12 0.488 0.563 0.549
P a22 0.651 1.284 1.002
Par3 0.585 0.483 0.583
Pa23 0.484 0.550 0.430
P33 1.422 1.275 1.238
DAl 0.520 0.601 0.510
® A24 0.670 0.631 0.634
P34 0.553 0.581 0.389
¢ Ada 0.832 0.880 1.144
¢B11 1.523 1.221 1.172
PB12 0.206 0.316 0.373
PB22 0.961 1.008 1.174
?B13 0.129 0.227 0.306
P23 0.327 0.243 0.218
P33 0.615 1.544 0.504
dp14 0.254 0.471 0.310
P24 0.339 0.139 0.341
D B34 0.211 0.219 0.167
D Baa 1.422 1.002 0.961
PB15 0.309 0.258 0.319
PB25 0.098 0.240 0.283
P35 0.138 0.298 0.251
Ppas 0.298 0.342 0.361
DBss 1.960 0.795 0.883

Table A.2: Values of true parameters for simulation studies.
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Factor Close to
Loading Identified Under-identified Under-identified

a2 2.235 2.517 2
a3 2.848 2.691 3
a4 5.229 3.515 4
ais 3.775 5.856 5
22 2.409 1.407 2
23 3.978 4.634 3
24 4.162 6.214 4
a5 6.126 3.265 5
as2 1.401 1.345 2
ass 1.307 2.835 3
as4 2.839 2.038 4
ass 4.344 5.303 5
42 2.599 1.484 2
43 3.029 3.869 3
44 3.110 3.509 4
45 6.461 3.563 5
ba1 1.230 1.215 1.1
bao 1.664 1.492 1.1
bas 0.670 1.655 1.1
bay -0.060 0.604 1.1
bas 1.384 0.985 1.1
bs1 1.790 1.361 1.2
b3a 0.793 1.673 1.2
b33 1.682 0.876 1.2
b34 1.832 1.077 1.2
bss 1.589 1.418 1.2
bs 1.436 1.796 1.3
bso 1.545 2.199 1.3
bas 1.250 1.977 1.3
baa 1.661 1.054 1.3
bss 2.356 2.057 1.3

Table A.3: Values of true parameters for simulation studies.
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APPENDIX B

The Performance of BFFM and Quasi-Newton

Optimization in Simulation Studies

The relative mean squared errors (MSESs), relative variances and relative squared biases
from FIML-QNO when it is successful, from the BFFM when FIML-QNO is success-
ful, and from the BFFM when FIML-QNO fails, in 3 scenarios where the true covari-
ance matrix is identified, close to not identified and not identified are summarized in

tables below.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter | RMSE Var Sq Bias | RMSE Var Sq Bias | RMSE Var Sq Bias

Uy 1.20E+00 1.17E+00 3.58E-02 | 4.56E-02 1.42E-02 3.15E-02 | 3.12E-02 9.83E-03 2.18E-02
(2 9.52E-02 8.85E-02 7.14E-03 | 1.63E-02 1.33E-02 3.13E-03 | 1.59E-02 1.41E-02 2.35E-03
V3 1.18E-03 1.10E-03  8.86E-05 | 6.63E-03 6.08E-03 5.85E-04 | 6.15E-03 6.39E-03 2.30E-06
Uy 2.02E-04 1.44E-04 5.88E-05 | 1.01E-02 6.04E-03 4.14E-03 | 1.44E-02 5.17E-03 9.39E-03
Vs 7.52E-05 6.55E-05 1.01E-05 | 9.46E-03 7.10E-03 2.41E-03 | 9.54E-03 6.25E-03 3.53E-03
Pan 7.35E-03  7.34E-03 5.55E-05 | 6.11E-02 1.72E-02 4.39E-02 | 6.18E-02 1.60E-02 4.64E-02
P a1z 1.47E-01 1.47E-01 1.08E-03 | 1.20E-01 1.21E-02 1.08E-01 | 1.11E-01 1.23E-02 9.93E-02
P a22 1.56E-02 1.56E-02 1.36E-04 | 3.91E-02 1.48E-03 3.76E-02 | 3.55E-02 1.73E-03 3.38E-02
G a13 2.75E-01 2.73E-01 3.72E-03 | 3.08E-01 3.36E-02 2.75E-01 | 2.19E-01 2.69E-02 1.93E-01
Pa23 1.32E-01 1.33E-01 2.50E-04 | 2.17E-01 6.16E-03 2.11E-O1 | 1.99E-01 5.16E-03 1.94E-01
P a33 1.07E-02 1.07E-02 1.01E-04 | 1.94E-01 1.09E-02 1.84E-01 | 1.59E-01 7.78E-03 1.51E-01
P a4 1.39E-01 1.40E-01 5.06E-04 | 1.26E-01 1.32E-02 1.12E-01 | 1.32E-01 1.28E-02 1.20E-01
¢ a24 6.17E-02  6.17E-02 4.23E-04 | 1.83E-01 6.82E-03 1.77E-01 | 1.80E-01 8.38E-03 1.72E-01
P a3 1.16E-01 1.16E-01 1.50E-05 | 2.39E-01 6.82E-03 2.33E-0O1 | 2.31E-01 7.43E-03 2.24E-01
oy 298E-02 298E-02 2.06E-04 | 1.30E-01 5.46E-03 1.24E-01 | 1.36E-01 6.35E-03 1.30E-O1

Table B.1: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is identified. The parameters compared are unique error variances, ¢, and family factor vairances
and covariances, ¢ a;,, forl =1,... . 4andm=1,...,L.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter | RMSE Var Sq Bias | RMSE Var Sq Bias RMSE Var Sq Bias
®B11 1.03E-02 1.03E-02 2.31E-05 | 5.89E-02 2.19E-02 3.71E-02 | 4.53E-02 2.29E-02 2.33E-02
®B12 3.21E+00 3.23E+00 8.48E-04 | 8.33E-01 1.75E-01 6.59E-01 | 7.00E-01 1.85E-01 5.22E-01
®B22 6.40E-02 6.42E-02 1.37E-04 | 4.72E-01 4.90E-02 4.23E-01 | 4.26E-01 3.53E-02 3.92E-01
®B13 2.14E+01 2.15E+01 1.25E-02 | 1.26E+00 4.05E-01 8.60E-01 | 7.67E-01 2.38E-01 5.38E-01
®B23 5.53E+00 5.56E+00 6.21E-03 | 4.60E+00 6.46E-01 3.96E+00 | 3.65E+00 4.16E-01 3.25E+00
®B33 1.57E-01 1.56E-01 2.21E-03 | 5.70E-02 1.52E-02 4.19E-02 | 4.48E-02 1.01E-02 3.51E-02
®B14 2.81E+00 2.81E+00 1.72E-02 | 5.73E-01 1.86E-01 3.89E-01 | 3.60E-01 1.34E-01 2.31E-01
®B24 3.07E+01 3.05E+01 3.00E-O1 | 2.36E+01 3.43E+00 2.02E+01 | 2.04E+01 3.24E+00 1.73E+01
®B34 3.58E+01 3.58E+01 1.26E-01 | 4.65E+00 1.09E+00 3.57E+00 | 3.45E+00 6.32E-01 2.84E+00
®Bas 4.88E-01 4.76E-01 1.43E-02 | 3.15E-01 1.35E-01 1.80E-01 | 1.11E-01 7.98E-02 3.44E-02
®B15 8.76E+00 8.65E+00 1.54E-01 | 3.02E+00 1.14E+00 1.89E+00 | 2.23E+00 9.58E-01 1.31E+00
®B2s 1.09E+02 1.10E+02 6.75E-02 | 8.95E+00 2.40E+00 6.57E+00 | 8.58E+00 2.32E+00 6.35E+00
®B35 4.62E+01 4.64E+01 1.86E-02 | 2.00E+00 1.07E+00 9.31E-01 | 1.82E+00 1.03E+00 8.33E-01
PBas 1.42E+01 1.43E+01 1.05E-04 | 2.31E+00 1.54E+00 7.76E-01 | 2.22E+00 1.52E+00 7.64E-01
®Bss 4.60E-01 4.62E-01 8.26E-04 | 1.91E+00 7.31E-01 1.19E+00 | 2.28E+00 1.02E+00 1.30E+00

Table B.2: Comparison of the relative mean square errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is identified. The parameters compared are outcome factor variances and covariances, ¢p;,,, for
l=1,...;0andm=1,... [
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter | RMSE Var Sq Bias | RMSE Var Sq Bias | RMSE Var Sq Bias

P11 3.90E-02 3.89E-02 3.74E-04 | 2.05E-02 2.05E-02 1.91E-04 | 8.59E-03 7.94E-03 9.60E-04
Bi12 5.98E-03 5.96E-03 6.06E-05 | 1.20E-02 1.20E-02 8.19E-05 | 1.74E-02 1.80E-02 4.77E-05
Bz 2.38E-04 2.36E-04 2.46E-06 | 3.16E-03 3.16E-03 2.32E-05 | 5.91E-03 6.11E-03 3.68E-05
Bi1a 1.35E-04 1.33E-04 3.40E-06 | 4.57E-03 4.45E-03 1.38E-04 | 6.38E-03 6.62E-03 8.36E-06
Biis 4.08E-05 4.04E-05 6.74E-07 | 2.49E-03 2.47E-03 3.34E-05 | 3.37E-03 3.50E-03 3.34E-06
Biz 3.81E-02 3.83E-02 3.18E-05 | 2.31E-02 2.32E-02 5.55E-05 | 1.29E-02 1.22E-02 1.18E-03
B2z 3.97E-03 3.97E-03 1.60E-05 | 1.02E-02 1.02E-02 6.28E-05 | 1.73E-02 1.80E-02 1.35E-05
P23 2.08E-04 2.09E-04 1.19E-07 | 3.49E-03 3.51E-03 3.16E-07 | 2.89E-03 3.00E-03 6.16E-07
Bi24 4.23E-05 4.23E-05 2.04E-07 | 1.91E-03 1.91E-03 6.45E-06 | 2.30E-03 2.36E-03 3.73E-05
Bi2s 3.55E-05 3.57E-05 2.78E-08 | 2.21E-03 2.22E-03 8.13E-07 | 2.70E-03 2.77E-03 3.60E-05
Bia1 7.42E-02 7.39E-02 6.78E-04 | 4.54E-02 4.53E-02 4.16E-04 | 5.40E-02 5.31E-02 3.01E-03
P32 2.28E-03 2.23E-03 5.84E-05 | 6.56E-03 6.45E-03 1.44E-04 | 7.82E-03 7.92E-03 2.00E-04
B33 1.32E-04 1.32E-04 1.04E-06 | 2.73E-03 2.73E-03 1.75E-05 | 2.29E-03 2.28E-03 9.50E-05
B34 4.68E-05 4.60E-05 1.04E-06 | 2.33E-03 2.30E-03 3.60E-05 | 2.31E-03 2.38E-03 1.79E-05
Bi3s 4.14E-05 4.07E-05 8.56E-07 | 2.98E-03 2.96E-03 3.96E-05 | 3.66E-03 3.79E-03 1.34E-05
Bia 4.95E-02 4.97E-02 8.57E-05 | 2.97E-02 2.97E-02 1.14E-04 | 2.34E-02 1.95E-02 4.64E-03
Braz 4.52E-03 4.52E-03 2.78E-05 | 1.12E-02 1.11E-02 1.50E-04 | 1.33E-02 1.36E-02 2.47E-04
B1a3 1.31E-04 1.31E-04 1.63E-07 | 2.18E-03 2.19E-03 7.49E-06 | 3.15E-03 3.27E-03 6.79E-07
B1aa 3.81E-05 3.84E-05 9.48E-12 | 1.73E-03 1.74E-03 3.48E-07 | 2.02E-03 2.00E-03 9.35E-05
Buas 5.42E-05 5.45E-05 1.58E-08 | 3.42E-03 3.44E-03 3.85E-06 | 3.43E-03 3.51E-03 5.95E-05

Table B.3: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is identified. The parameters compared are regression coefficients for the control families, 3, for
j=1..., 4, k=1,...,Kandp = 1.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter | RMSE Var Sq Bias | RMSE Var Sq Bias | RMSE Var Sq Bias

Bon 5.23E-01 5.18E-01 8.07E-03 | 2.99E-01 6.69E-02 2.32E-01 | 2.42E-01 6.87E-02 1.76E-01
Ba12 1.15E-01 1.15E-01 1.10E-03 | 3.33E-01 5.76E-02 2.76E-01 | 2.51E-01 4.80E-02 2.05E-01
B3 5.36E-03 5.34E-03 4.59E-05 | 9.73E-02 1.77E-02 7.97E-02 | 5.49E-02 1.21E-02 4.33E-02
Ba1a 243E-03 2.44E-03 3.22E-06 | 1.20E-01 2.02E-02 9.97E-02 | 9.32E-02 2.04E-02 7.36E-02
Bais 6.37E-04 6.41E-04 1.24E-10 | 4.82E-02 9.57E-03 3.87E-02 | 4.07E-02 1.22E-02 2.89E-02
Baa1 1.14E-01 1.13E-01 1.62E-03 | 5.33E-02 3.75E-02 1.61E-02 | 3.21E-02 2.36E-02 9.42E-03
P22 1.66E-02 1.64E-02 2.98E-04 | 3.98E-02 2.20E-02 1.79E-02 | 1.70E-02 6.64E-03 1.06E-02
Ba23 5.93E-04 5.93E-04 2.77E-06 | 1.11E-02 5.40E-03 5.72E-03 | 1.02E-02 5.15E-03 5.20E-03
B224 2.02E-04 2.03E-04 5.39E-09 | 7.85E-03 4.59E-03 3.28E-03 | 9.89E-03 4.02E-03 6.02E-03
Ba2s 1.03E-04 1.03E-04 1.46E-07 | 7.80E-03 3.76E-03 4.06E-03 | 6.91E-03 4.07E-03 3.00E-03
Baz1 6.84E-02 6.72E-02 1.61E-03 | 5.14E-02 3.98E-02 1.19E-02 | 4.92E-02 4.52E-02 5.76E-03
Bas2 3.02E-03 2.99E-03 5.41E-05 | 1.10E-02 7.66E-03 3.37E-03 | 7.67E-03 7.14E-03 8.02E-04
Bass 1.24E-04 1.25E-04 4.23E-07 | 2.88E-03 2.40E-03 5.01E-04 | 2.40E-03 2.44E-03 5.47E-05
B34 8.18E-05 &.10E-05 1.23E-06 | 4.66E-03 3.64E-03 1.04E-03 | 4.09E-03 3.94E-03 3.08E-04
Bass 5.52E-05 5.54E-05 1.85E-07 | 4.72E-03 3.79E-03 9.57E-04 | 2.83E-03 2.19E-03 7.22E-04
Ban 447E-02 4.38E-02 1.16E-03 | 3.66E-02 2.50E-02 1.18E-02 | 2.05E-02 1.78E-02 3.41E-03
B4z 6.99E-03 6.92E-03 1.05E-04 | 2.66E-02 1.58E-02 1.10E-02 | 1.27E-02 7.00E-03 5.96E-03
B243 2.17E-04 2.15E-04 3.84E-06 | 5.89E-03 3.20E-03 2.71E-03 | 3.27E-03 2.40E-03 9.62E-04
B2aa 6.06E-05 6.06E-05 3.62E-07 | 3.78E-03 2.46E-03 1.33E-03 | 3.29E-03 3.13E-03 2.77E-04
Baus 6.69E-05 6.71E-05 1.31E-07 | 6.40E-03 3.81E-03 2.61E-03 | 5.30E-03 3.59E-03 1.85E-03

Table B.4: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is identified. The parameters compared are regression coefficients for the SZ families, (3, for
j=1..., 4, k=1,...,Kandp = 2.
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QNO

BFFM (QNO Converges)

BFFM (QNO Fails)

Parameter

RMSE

Var

Sq Bias

RMSE

Var

Sq Bias

RMSE

Var

Sq Bias

Q12
a3
Q14
Q15
22
23
24
25
a32
a33
34
ass
Q42
Q43
Q44

Q45

1.20E-04
2.50E-04
1.18E-04
9.07E-05
2.13E-03
2.71E-04
2.20E-04
6.76E-04
1.54E-03
1.75E-03
1.79E-03
1.90E-04
1.17E-03
3.37E-04
7.21E-04
5.94E-04

1.20E-04
2.49E-04
1.19E-04
9.06E-05
2.14E-03
2.72E-04
2.21E-04
6.77E-04
1.55E-03
1.76E-03
1.80E-03
1.90E-04
1.17E-03
3.32E-04
7.18E-04
5.93E-04

1.66E-07
2.26E-06
1.06E-07
5.46E-07
1.12E-06
8.01E-07
2.93E-09
2.69E-06
1.42E-06
2.90E-07
2.86E-06
3.64E-07
3.67E-07
6.82E-06
6.73E-06
4.91E-06

1.38E-03
1.26E-02
2.35E-02
9.23E-03
5.85E-03
4.51E-02
5.27E-02
4.58E-01
5.61E-02
5.93E-02
4.61E-01
1.14E-01
3.16E-03
5.01E-02
1.51E-01
4.66E-01

5.34E-04
2.13E-03
3.40E-03
1.58E-03
4.64E-03
2.58E-03
4.13E-03
1.83E-02
5.47E-03
6.24E-03
3.37E-02
8.30E-03
2.84E-03
2.57E-03
7. 7TTE-03
1.89E-02

8.50E-04
1.05E-02
2.02E-02
7.65E-03
1.24E-03
4.25E-02
4.86E-02
4.40E-01
5.07E-02
5.31E-02
4.27E-01
1.06E-01
3.33E-04
4.75E-02
1.43E-01
4.47E-01

1.70E-03
1.31E-02
2.39E-02
1.07E-02
6.70E-03
4.49E-02
4.21E-02
4.06E-01
4.32E-02
5.25E-02
4.25E-01
9.27E-02
3.43E-03
5.51E-02
1.72E-01
5.00E-01

1.04E-03
1.28E-03
2.73E-03
1.52E-03
6.49E-03
3.96E-03
2.66E-03
2.78E-02
2.36E-03
2.44E-03
2.06E-02
5.41E-03
3.44E-03
4.17E-03
1.22E-02
2.48E-02

7.04E-04
1.19E-02
2.13E-02
9.22E-03
4.58E-04
4.10E-02
3.96E-02
3.79E-01
4.09E-02
5.01E-02
4.05E-01
8.75E-02
1.20E-04
5.11E-02
1.60E-01
4.76E-01

Table B.5: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is identified. The parameters compared are family member factor loadings, a;i, for j = 1,...,4
and £k =2,...,5.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter | RMSE Var Sq Bias | RMSE Var Sq Bias RMSE Var Sq Bias
bo1 7.08E-04 7.12E-04 1.60E-07 | 2.81E-03 5.81E-04 2.23E-03 | 3.37E-03 8.39E-04 2.56E-03
bao 5.20E-03 5.14E-03 8.45E-05 | 2.73E-02 9.59E-04 2.64E-02 | 3.12E-02 1.21E-03 3.00E-02
bos 3.57E-01 3.53E-01 5.49E-03 | 6.42E-02 5.37E-04 6.37E-02 | 6.75E-02 6.07E-04 6.70E-02
bay 2.10E+02 2.11E+02 3.83E-01 | 2.83E+00 6.78E-03 2.82E+00 | 2.99E+00 5.11E-03 2.99E+00
bas 8.78E-01 8.37E-01 4.59E-02 | 9.18E-02 1.05E-03 9.08E-02 | 9.42E-02 1.10E-03 9.31E-02
bs1 5.64E-04 5.66E-04 1.48E-06 | 6.23E-03 9.74E-04 5.26E-03 | 5.73E-03 1.08E-03 4.69E-03
bso 5.42E-03 5.44E-03 8.64E-06 | 1.65E-03 7.07E-04 9.47E-04 | 1.50E-03 6.35E-04 8.84E-04
b33 2.27E+00 2.18E+00 9.78E-02 | 2.64E-01 3.15E-03 2.61E-01 | 2.71E-01 4.33E-03 2.67E-01
b3y 3.32E-01 3.12E-01 2.20E-02 | 2.62E-01 1.82E-03 2.60E-01 | 2.90E-01 1.48E-03 2.89E-01
bss 4.72E-01 4.50E-01 2.44E-02 | 6.97E-02 8.94E-04 6.89E-02 | 5.96E-02 6.22E-04 5.90E-02
by 2.86E-04 2.87E-04 1.10E-06 | 1.86E-03 3.24E-04 1.54E-03 | 1.40E-03 3.98E-04 1.02E-03
byo 2.34E-03 2.35E-03 9.32E-06 | 2.68E-03 6.20E-04 2.07E-03 | 1.56E-03 5.02E-04 1.08E-03
bys3 2.68E-01 2.64E-01 5.31E-03 | 1.27E-03 5.58E-04 7.12E-04 | 1.13E-03 5.09E-04 6.38E-04
by 4.00E-01 3.77E-01 2.58E-02 | 1.05E-01 1.86E-03 1.03E-01 | 1.21E-01 1.59E-03 1.19E-01
bys 1.66E-01 1.56E-01 1.08E-02 | 2.22E-01 5.50E-04 2.21E-01 | 2.25E-01 4.18E-04 2.25E-01

Table B.6: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is identified. The parameters compared are outcome factor loadings, b, for j = 1,...,4 and
k=2,...,5.

98



QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter | RMSE Var Sq Bias | RMSE Var Sq Bias | RMSE Var Sq Bias

(] 8.90E-01 7.49E-01 1.50E-O1 | 1.09E-02 8.56E-03 2.46E-03 | 1.69E-02 1.31E-02 3.90E-03
() 5.12E-02 4.52E-02 6.58E-03 | 1.11E-02 7.55E-03 3.65E-03 | 1.30E-02 9.19E-03 3.88E-03
V3 1.24E-03 1.12E-03 1.33E-04 | 9.94E-03 7.12E-03 2.91E-03 | 1.26E-02 8.18E-03 4.48E-03
(N 2.09E-04 1.72E-04 3.88E-05 | 5.44E-03 5.12E-03 3.77E-04 | 7.77E-03 5.69E-03 2.12E-03
Vs 7.26E-05 5.87E-05 1.46E-05 | 5.04E-03 4.90E-03 1.90E-04 | 4.85E-03 4.61E-03 2.83E-04
Pa1 6.86E-03 6.74E-03 1.99E-04 | 1.41E-02 7.70E-03 6.49E-03 | 1.48E-02 8.85E-03 6.04E-03
Pa12 1.20E-01 1.14E-01 7.40E-03 | 4.17E-02 2.24E-02 1.95E-02 | 4.24E-02 2.83E-02 1.44E-02
$a22 9.79E-03 8.81E-03 1.09E-03 | 2.53E-02 1.04E-02 1.51E-02 | 1.95E-02 7.97E-03 1.16E-02
Pa13 1.99E-01 1.92E-01 8.40E-03 | 5.25E-02 2.68E-02 2.61E-02 | 5.26E-02 2.57E-02 2.71E-02
Pa23 1.65E-01 1.58E-01 8.88E-03 | 5.56E-02 2.73E-02 2.86E-02 | 4.93E-02 2.32E-02 2.63E-02
P a33 8.81E-03 8.70E-03 2.19E-04 | 2.33E-02 9.17E-03 1.43E-02 | 2.59E-02 1.10E-02 1.50E-02
P14 8.42E-02 8.29E-02 2.32E-03 | 4.63E-02 1.49E-02 3.16E-02 | 5.30E-02 1.74E-02 3.57E-02
¢ A24 9.76E-02 9.24E-02 6.32E-03 | 5.59E-02 1.80E-02 3.81E-02 | 5.28E-02 1.52E-02 3.78E-02
Paz4 1.34E-01 1.27E-01 9.39E-03 | 6.56E-02 1.94E-02 4.65E-02 | 6.42E-02 1.93E-02 4.51E-02
® A44 3.98E-02 3.70E-02 3.20E-03 | 6.37E-02 1.31E-02 5.07E-02 | 5.99E-02 1.02E-02 4.98E-02

Table B.7: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is close to not identified. The parameters compared are unique error variances, vy and family factor
vairances and covariances, ¢ a;,,, forl =1,...,4andm =1,...,1.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter | RMSE Var Sq Bias RMSE Var Sq Bias | RMSE Var Sq Bias

®B11 1.19E-02 1.21E-02 1.16E-08 | 1.45E-02 1.29E-02 1.78E-03 | 1.23E-02 9.13E-03 3.23E-03
¢B12 1.74E+00 1.73E+00 2.84E-02 | 1.44E-01 9.14E-02 5.35E-02 | 1.73E-01 8.61E-02 8.76E-02
®B22 8.66E-02 8.45E-02 3.10E-03 | 1.12E-01 1.79E-02 9.42E-02 | 1.17E-01 1.98E-02 9.75E-02
®B13 1.36E+01 1.28E+01 9.77E-01 | 5.13E-01 3.73E-01 1.44E-01 | 6.42E-01 4.37E-01 2.09E-01
®B23 1.50E+01 1.42E+01 1.04E+00 | 5.40E-01 3.49E-01 1.95E-01 | 6.08E-01 3.41E-01 2.71E-01
®B33 5.58E-02 5.41E-02 2.38E-03 | 8.36E-02 3.96E-02 4.45E-02 | 8.72E-02 4.03E-02 4.73E-02
®B14 1.61E+00 1.61E+00 1.98E-02 | 6.59E-02 6.50E-02 1.70E-03 | 5.59E-02 5.51E-02 1.22E-03
®B2u 298E+02 2.76E+02 247E+01 | 1.49E+00 1.09E+00 4.10E-01 | 1.35E+00 7.81E-01 5.74E-0O1
B34 1.07E+02 8.82E+01 2.02E+01 | 5.87E-01 5.41E-01 5.25E-02 | 6.20E-01 5.85E-01 4.05E-02
®B4s 1.04E+00 8.49E-01 2.01E-01 | 2.23E-02 2.01E-02 2.44E-03 | 2.14E-02 1.11E-02 1.04E-02
®B15 3.29E+01 3.04E+01 2.92E+00 | 4.79E-01 3.02E-01 1.81E-0O1 | 4.09E-01 2.19E-01 1.92E-01
®B2s 6.97E+01 6.41E+01 6.32E+00 | 7.94E-01 3.81E-01 4.17E-01 | 9.07E-01 3.43E-01 5.68E-0O1
®B3s 4.66E+01 3.90E+01 8.10E+00 | 3.56E-01 3.53E-01 7.51E-03 | 3.69E-01 3.42E-01 2.95E-02
®Bas 5.39E+01 4.40E+01 1.04E+01 | 2.39E-01 1.96E-01 4.48E-02 | 1.36E-01 1.20E-01 1.75E-02
®Bs55 6.78E+00 5.32E+00 1.52E+00 | 6.08E-02 3.94E-02 2.18E-02 | 5.16E-02 4.04E-02 1.15E-02

Table B.8: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is close to not identified. The parameters compared are outcome factor variances and covariances,
Oim,forl=1,....5andm=1,...,L.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter | RMSE Var Sq Bias | RMSE Var Sq Bias | RMSE Var Sq Bias

B 2.58E-02 2.55E-02 6.32E-04 | 1.87E-02 1.86E-02 3.44E-04 | 1.88E-02 1.89E-02 1.03E-04
P12 6.42E-03 6.43E-03 6.41E-05 | 1.87E-02 1.88E-02 1.07E-04 | 1.78E-02 1.79E-02 1.17E-04
P13 2.14E-04 2.16E-04 9.53E-07 | 4.12E-03 4.17E-03 4.31E-06 | 3.76E-03 3.78E-03 1.53E-05
Bi1a 6.28E-05 6.07E-05 2.84E-06 | 3.10E-03 3.01E-03 1.28E-04 | 3.37E-03 3.39E-03 1.69E-05
Biis 5.65E-05 5.64E-05 7.99E-07 | 4.19E-03 4.21E-03 3.61E-05 | 4.38E-03 4.42E-03 1.58E-06
Biz 2.93E-02 2.85E-02 1.11E-03 | 2.13E-02 2.08E-02 6.96E-04 | 2.56E-02 2.53E-02 4.72E-04
B2z 3.38E-03 3.36E-03 6.24E-05 | 1.02E-02 1.02E-02 1.33E-04 | 1.11E-02 1.11E-02 1.12E-05
P23 5.68E-04 5.54E-04 2.06E-05 | 1.02E-02 9.97E-03 3.05E-04 | 9.97E-03 9.95E-03 1.05E-04
Bi24 1.11E-04 1.04E-04 8.78E-06 | 4.96E-03 4.64E-03 3.76E-04 | 6.49E-03 6.19E-03 3.55E-04
Bias 2.37E-05 2.32E-05 7.37E-07 | 1.86E-03 1.83E-03 4.93E-05 | 2.12E-03 2.11E-03 3.31E-05
Biz1 3.33E-02 3.30E-02 7.08E-04 | 2.49E-02 2.48E-02 4.29E-04 | 2.73E-02 2.71E-02 3.68E-04
Bizz 3.99E-03 4.03E-03 8.37E-06 | 1.27E-02 1.29E-02 1.17E-05 | 1.38E-02 1.39E-02 3.16E-06
B33 2.40E-04 242E-04 3.41E-07 | 4.68E-03 4.73E-03 1.92E-06 | 3.61E-03 3.64E-03 2.16E-07
B34 3.06E-05 3.06E-05 3.43E-07 | 1.67E-03 1.68E-03 1.47E-05 | 1.89E-03 1.82E-03 7.85E-05
Biss 5.04E-05 5.10E-05 1.32E-08 | 3.95E-03 3.99E-03 4.11E-07 | 2.54E-03 2.57E-03 4.69E-09
Bia1 4.57E-02 4.51E-02 1.10E-03 | 3.50E-02 3.47E-02 7.27E-04 | 420E-02 4.22E-02 2.06E-04
Braz 5.21E-03 5.27E-03 8.63E-06 | 1.70E-02 1.72E-02 7.38E-06 | 1.67E-02 1.68E-02 3.37E-05
B1a3 2.76E-04 2.76E-04 3.53E-06 | 5.25E-03 5.27E-03 4.05E-05 | 6.33E-03 6.36E-03 2.23E-05
Braa 3.88E-05 3.77E-05 1.56E-06 | 2.06E-03 2.02E-03 6.46E-05 | 2.24E-03 2.21E-03 4.32E-05
Bias 3.23E-05 3.24E-05 3.28E-07 | 2.72E-03 2.74E-03 1.71E-05 | 2.21E-03 2.23E-03 8.69E-07

Table B.9: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is close to not identified. The parameters compared are regression coefficients for the control
families, Bpji, forj =1,...,4,k=1,...,Kandp = 1.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter | RMSE Var Sq Bias | RMSE Var Sq Bias | RMSE Var Sq Bias

P11 4.02E-01 3.97E-01 9.98E-03 | 9.84E-02 7.04E-02 2.88E-02 | 1.11E-01 7.70E-02 3.50E-02
P12 1.06E-01 1.05E-01 1.81E-03 | 1.21E-01 7.53E-02 4.65E-02 | 1.37E-01 6.68E-02 7.05E-02
Ba13 3.65E-03 3.67E-03 1.81E-05 | 2.84E-02 1.73E-02 1.13E-02 | 3.20E-02 1.80E-02 1.42E-02
Ba1a 1.01E-03 1.02E-03 5.20E-06 | 2.05E-02 1.28E-02 7.91E-03 | 2.15E-02 1.29E-02 8.71E-03
Bais 7.66E-04 7.39E-04 3.63E-05 | 2.28E-02 1.36E-02 9.44E-03 | 3.21E-02 1.59E-02 1.64E-02
Bazn 1.22E-01 1.23E-01 4.44E-04 | 5.80E-02 4.97E-02 8.96E-03 | 3.93E-02 3.14E-02 8.12E-03
P22 1.35E-02 1.37E-02 2.08E-05 | 2.89E-02 2.26E-02 6.55E-03 | 2.52E-02 2.02E-02 5.12E-03
P23 1.95E-03 1.95E-03 2.72E-05 | 3.30E-02 2.21E-02 1.11E-02 | 2.11E-02 1.36E-02 7.67E-03
B224 5.65E-04 5.59E-04 1.29E-05 | 2.23E-02 1.34E-02 9.08E-03 | 1.71E-02 1.08E-02 6.38E-03
Ba2s 7.46E-05 7.51E-05 3.93E-07 | 5.03E-03 3.65E-03 1.42E-03 | 3.58E-03 2.73E-03 8.79E-04
Bz 4.26E-02 4.19E-02 1.20E-03 | 3.15E-02 3.13E-02 6.66E-04 | 2.79E-02 2.61E-02 2.11E-03
Baza 3.67E-03 3.60E-03 1.15E-04 | 1.08E-02 1.07E-02 2.35E-04 | 1.19E-02 1.04E-02 1.65E-03
B33 3.35E-04 3.39E-04 4.39E-07 | 7.27E-03 6.87E-03 4.83E-04 | 5.32E-03 4.83E-03 5.35E-04
B34 4.76E-05 4.79E-05 2.25E-07 | 2.90E-03 2.68E-03 2.53E-04 | 2.13E-03 1.79E-03 3.56E-04
Bass 6.95E-05 7.00E-05 2.54E-07 | 5.77E-03 5.52E-03 3.08E-04 | 4.76E-03 3.89E-03 9.06E-04
Baa 5.06E-02 5.07E-02 4.86E-04 | 4.02E-02 3.79E-02 2.70E-03 | 3.57E-02 3.38E-02 2.21E-03
Baaz 4.78E-03 4.77E-03 6.88E-05 | 1.53E-02 1.44E-02 1.14E-03 | 1.95E-02 1.71E-02 2.47E-03
B3 4.18E-04 4.21E-04 1.18E-06 | 1.03E-02 7.85E-03 2.53E-03 | 1.02E-02 7.75E-03 2.54E-03
B4 5.59E-05 5.64E-05 1.33E-07 | 3.54E-03 2.82E-03 7.62E-04 | 3.86E-03 3.05E-03 8.43E-04
Baus 2.68E-05 2.71E-05 7.70E-08 | 2.41E-03 2.09E-03 3.46E-04 | 2.78E-03 2.24E-03 5.62E-04

Table B.10: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is close to not identified. The parameters compared are regression coefficients for the SZ families,
Bpjk,forj=1,... .4, k=1,..., Kandp = 2.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter | RMSE Var Sq Bias | RMSE Var Sq Bias | RMSE Var Sq Bias

a1o 1.97E-04 1.99E-04 8.31E-10 | 2.51E-03 1.12E-03 1.40E-03 | 2.69E-03 1.38E-03 1.32E-03
a3 3.52E-04 3.51E-04 4.90E-06 | 4.86E-03 2.66E-03 2.24E-03 | 4.44E-03 2.73E-03 1.74E-03
a4 3.20E-04 3.20E-04 4.09E-06 | 7.54E-03 4.00E-03 3.59E-03 | 7.81E-03 3.86E-03 3.99E-03
ass 6.60E-05 6.64E-05 4.20E-07 | 5.28E-03 2.27E-03 3.04E-03 | 5.37E-03 2.32E-03 3.06E-03
a9 1.39E-03 1.41E-03 2.24E-07 | 6.11E-03 2.85E-03 3.29E-03 | 4.77E-03 2.09E-03 2.70E-03
o3 1.11E-04 1.11E-04 1.11E-06 | 8.02E-03 2.23E-03 5.82E-03 | 7.54E-03 2.23E-03 5.33E-03
a4 6.86E-05 6.94E-05 4.54E-08 | 6.73E-03 2.45E-03 4.31E-03 | 6.09E-03 2.41E-03 3.70E-03
Qo5 6.89E-04 6.96E-04 1.40E-06 | 1.66E-02 7.13E-03 9.51E-03 | 1.70E-02 8.12E-03 8.96E-03
azo 1.96E-03 1.92E-03 6.70E-05 | 7.49E-03 3.70E-03 3.83E-03 | 7.85E-03 3.28E-03 4.60E-03
ass 3.83E-04 3.86E-04 1.88E-06 | 9.70E-03 3.07E-03 6.67E-03 | 1.03E-02 3.73E-03 6.57E-03
az4 3.15E-03 3.17E-03 2.10E-05 | 2.55E-02 1.33E-02 1.24E-02 | 2.36E-02 9.94E-03 1.37E-02
ass 1.23E-04 1.24E-04 1.97E-11 | 1.37E-02 4.04E-03 9.75E-03 | 1.19E-02 4.28E-03 7.61E-03
Q4 4.16E-03 4.14E-03 7.54E-05 | 2.26E-02 7.94E-03 1.47E-02 | 2.26E-02 5.83E-03 1.68E-02
Q43 5.17E-04 5.23E-04 6.68E-07 | 3.49E-02 6.37E-03 2.86E-02 | 4.13E-02 7.36E-03 3.40E-02
o 1.46E-03 1.47E-03 1.52E-05 | 4.24E-02 1.37E-02 2.89E-02 | 3.57E-02 7.98E-03 2.78E-02
g5 1.43E-03 1.44E-03 2.49E-06 | 7.55E-02 1.53E-02 6.04E-02 | 8.25E-02 1.76E-02 6.50E-02

Table B.11: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is close to not identified. The parameters compared are family member factor loadings, a;, for
j=1,...,4and k=2,... 5.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter | RMSE Var Sq Bias RMSE Var Sq Bias | RMSE Var Sq Bias

bo1 1.23E-03 1.13E-03 1.17E-04 | 1.12E-03 1.13E-03 4.53E-07 | 7.93E-04 7.73E-04 2.66E-05
bao 6.15E-03 6.23E-03 2.40E-07 | 1.61E-02 1.96E-03 1.41E-02 | 1.53E-02 1.54E-03 1.38E-02
bos 1.83E-02 1.67E-02 1.85E-03 | 2.74E-02 4.11E-03 2.34E-02 | 3.29E-02 3.63E-03 2.93E-02
bay 2.16E+01 1.96E+01 2.17E+00 | 6.24E-01 2.28E-02 6.02E-01 | 6.20E-01 1.86E-02 6.02E-01
bas 3.57E+00 3.29E+00 3.22E-01 | 1.51E-02 5.46E-03 9.75E-03 | 1.39E-02 5.78E-03 8.16E-03
bs1 9.16E-04 8.70E-04 5.64E-05 | 1.19E-03 1.20E-03 1.62E-06 | 1.16E-03 1.06E-03 1.17E-04
bso 4.82E-03 4.81E-03 6.08E-05 | 1.86E-02 1.65E-03 1.70E-02 | 1.60E-02 2.23E-03 1.38E-02
b33 1.12E-01 1.09E-01 3.84E-03 | 1.96E-02 1.96E-02 2.21E-04 | 1.87E-02 1.88E-02 2.11E-05
b3y 1.5IE+00 1.46E+00 6.75E-02 | 1.65E-02 6.72E-03 9.90E-03 | 1.61E-02 8.16E-03 8.01E-03
b3s 4.96E+00 4.99E+00 2.83E-02 | 2.18E-02 3.19E-03 1.86E-02 | 2.31E-02 4.11E-03 1.91E-02
by 4.23E-04 4.24E-04 4.41E-06 | 1.05E-03 9.50E-04 1.10E-04 | 8.96E-04 7.25E-04 1.77E-04
byo 2.63E-03 2.66E-03 5.68E-06 | 1.80E-02 1.57E-03 1.65E-02 | 1.70E-02 1.40E-03 1.56E-02
bys3 1.07E-02 1.04E-02 4.62E-04 | 3.22E-02 4.24E-03 2.80E-02 | 3.35E-02 3.57E-03 3.00E-02
byy 3.44E+00 3.20E+00 2.84E-01 | 4.77E-02 7.45E-03 4.04E-02 | 4.74E-02 1.05E-02 3.70E-02
bys 1.03E+01 1.04E+01 1.39E-04 | 1.11E-01 1.83E-03 1.09E-01 | 1.13E-01 1.61E-03 1.12E-01

Table B.12: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the sce-
nario where the true covariance matrix is close to not identified. The parameters compared are outcome factor loadings, b;;, for
j=1,....,4andk=2,...,5.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter | RMSE Var Sq Bias | RMSE Var Sq Bias | RMSE Var Sq Bias

Uy 1.34E+00 1.13E+00 2.52E-01 | 6.97E-02 1.03E-02 5.98E-02 | 7.05E-02 1.50E-02 5.56E-02
(2 5.22E-02 5.31E-02 9.77E-04 | 1.17E-02 8.83E-03 3.19E-03 | 2.17E-02 1.53E-02 6.48E-03
V3 2.19E-03 1.46E-03 7.78E-04 | 9.71E-03 6.54E-03 3.39E-03 | 1.04E-02 5.83E-03 4.63E-03
Uy 3.90E-04 2.26E-04 1.72E-04 | 1.05E-02 6.57E-03 4.11E-03 | 8.06E-03 4.46E-03 3.63E-03
Vs 1.15E-04 5.68E-05 6.04E-05 | 5.56E-03 4.32E-03 1.38E-03 | 7.74E-03 5.30E-03 2.47E-03
Pan 1.82E-02 1.65E-02 2.26E-03 | 6.88E-02 6.48E-03 6.25E-02 | 6.09E-02 4.84E-03 5.61E-02
P a1z 1.18E-01 1.00E-01 2.12E-02 | 1.34E-01 6.93E-03 1.28E-01 | 1.44E-01 9.50E-03 1.34E-01
P a22 1.03E-02 9.02E-03 1.63E-03 | 6.50E-02 3.08E-03 6.20E-02 | 6.73E-02 4.39E-03 6.30E-02
G a13 2.22E-01 2.07E-01 2.19E-02 | 1.90E-01 1.40E-02 1.77E-01 | 2.06E-01 2.08E-02 1.85E-01
Pa23 2.32E-01 1.96E-01 4.25E-02 | 1.13E-01 9.95E-03 1.04E-0O1 | 1.23E-01 1.19E-02 1.11E-01
P a33 8.73E-03 7.36E-03 1.63E-03 | 7.89E-02 6.39E-03 7.27E-02 | 8.09E-02 8.07E-03 7.28E-02
P a4 2.00E-01 1.69E-01 3.73E-02 | 1.29E-01 6.42E-03 1.22E-01 | 1.29E-01 8.79E-03 1.20E-01
¢ a24 9.60E-02 8.07E-02 1.81E-02 | 1.50E-01 6.66E-03 1.44E-01 | 1.65E-01 7.99E-03 1.57E-01
P a3 4.38E-01 3.86E-01 6.50E-02 | 1.06E-01 9.32E-03 9.69E-02 | 1.12E-01 1.14E-02 1.01E-01
P a4a 3.84E-02 3.54E-02 4.16E-03 | 1.85E-01 9.99E-03 1.75E-01 | 1.99E-01 1.08E-02 1.88E-01

Table B.13: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is not identified. The parameters compared are unique error variances, 1, and family factor
vairances and covariances, ¢ a;,,, forl =1,...,4andm =1,...,1.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter | RMSE Var Sq Bias RMSE Var Sq Bias RMSE Var Sq Bias
®B11 1.65E-02 1.67E-02 3.34E-04 | 1.51E-02 1.38E-02 1.86E-03 | 1.51E-02 1.05E-02 4.65E-03
®B12 2.63E+00 2.49E+00 2.26E-01 | 3.24E-01 1.69E-01 1.61E-01 | 2.88E-01 1.27E-01 1.62E-01
OB22 1.12E-01 1.05E-01 1.08E-02 | 5.32E-02 3.26E-02 2.17E-02 | 5.47E-02 2.85E-02 2.64E-02
®B13 1.83E+01 1.77E+01 1.26E+00 | 6.78E-01 2.98E-01 3.90E-01 | 6.63E-01 2.30E-01 4.34E-01
®B23 8.07E+01 6.15E+01 2.12E+01 | 8.10E-01 2.85E-01 5.34E-O1 | 7.08E-01 247E-01 4.62E-01
®B33 9.56E-01 6.78E-01 3.01E-O1 | 1.70E-02 7.33E-03 9.89E-03 | 1.31E-02 6.48E-03 6.63E-03
®B14 9.20E+00 7.92E+00 1.55E+00 | 1.86E-01 6.46E-02 1.23E-01 | 1.85E-01 6.70E-02 1.19E-01
®B24 2.75E+02 2.09E+02 7.32E+01 | 2.03E+00 8.48E-01 1.21E+00 | 2.70E+00 9.99E-01 1.70E+00
®B34 8.47E+02 5.60E+02 3.06E+02 | 5.58E-01 2.71E-01 2.96E-01 | 4.98E-01 2.23E-01 2.76E-01
®Ba4 5.15E+00 3.49E+00 1.78E+00 | 2.02E-02 1.48E-02 5.92E-03 | 3.13E-02 2.58E-02 5.62E-03
®B15 3.98E+01 3.88E+01 2.36E+00 | 6.09E-01 2.61E-01 3.58E-0O1 | 8.37E-01 2.65E-01 5.74E-01
®B2s 2.03E+02 1.65E+02 4.42E+01 | 9.35E-01 2.83E-01 6.62E-01 | 1.23E+00 4.23E-01 8.13E-01
OB3s 2.89E+02 2.19E+02 7.72E+01 | 3.07E-01 1.04E-01 2.07E-01 | 3.94E-01 1.49E-01 2.45E-01
®B4s 3.15E+02 2.28E+02 9.50E+01 | 1.34E-01 5.58E-02 8.05E-02 | 2.27E-01 9.93E-02 1.28E-01
®Bss 2.26E+01 1.48E+01 8.33E+00 | 5.14E-02 3.27E-02 1.98E-02 | 7.19E-02 4.10E-02 3.11E-02

Table B.14: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is not identified. The parameters compared are outcome factor variances and covariances, @ g,
forl=1,....,5andm =1,...,1.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter | RMSE Var Sq Bias | RMSE Var Sq Bias | RMSE Var Sq Bias

P11 297E-02 3.08E-02 3.38E-06 | 1.93E-02 2.00E-02 6.51E-07 | 1.34E-02 1.33E-02 1.91E-04
Bi12 4.54E-03 4.70E-03 1.53E-07 | 1.08E-02 1.12E-02 1.25E-06 | 8.36E-03 8.27E-03 1.41E-04
Bz 2.37E-04 245E-04 3.22E-08 | 3.93E-03 4.07E-03 1.97E-06 | 4.05E-03 4.07E-03 4.50E-06
Bi1a 6.33E-05 6.16E-05 3.78E-06 | 2.69E-03 2.58E-03 2.00E-04 | 2.60E-03 2.60E-03 2.36E-05
Biis 3.83E-05 3.95E-05 1.23E-07 | 2.31E-03 2.39E-03 1.59E-06 | 2.70E-03 2.68E-03 3.39E-05
Bia1 2770E-02 2.79E-02 9.79E-05 | 1.79E-02 1.85E-02 4.20E-05 | 1.32E-02 1.32E-02 1.90E-05
B2z 3.87E-03 3.97E-03 3.62E-05 | 1.03E-02 1.06E-02 5.93E-05 | 8.57E-03 8.63E-03 2.64E-08
P23 1.77E-04 1.75E-04 7.54E-06 | 2.97E-03 2.92E-03 1.57E-04 | 3.29E-03 3.31E-03 3.43E-06
Bi24 5.99E-05 5.91E-05 2.76E-06 | 2.68E-03 2.66E-03 1.08E-04 | 2.75E-03 2.76E-03 2.18E-06
Bi2s 3.25E-05 3.21E-05 1.50E-06 | 2.06E-03 2.03E-03 9.73E-05 | 2.07E-03 2.08E-03 3.51E-06
Bz 4.86E-02 5.03E-02 8.05E-05 | 3.11E-02 3.21E-02 1.59E-04 | 1.42E-02 1.43E-02 2.76E-07
Bis2 6.23E-03 6.42E-03 3.09E-05 | 1.49E-02 1.53E-02 1.72E-04 | 9.67E-03 9.68E-03 5.02E-05
B33 3.64E-04 3.74E-04 3.05E-06 | 5.50E-03 5.58E-03 1.14E-04 | 3.42E-03 3.44E-03 2.46E-06
B34 1.05E-04 1.04E-04 3.85E-06 | 4.09E-03 4.02E-03 2.10E-04 | 2.28E-03 2.28E-03 1.43E-05
Bi3s 5.94E-05 6.06E-05 9.30E-07 | 3.50E-03 3.56E-03 5.53E-05 | 2.49E-03 2.47E-03 3.16E-05
Bia1 3.96E-02 4.10E-02 1.42E-05 | 2.82E-02 2.92E-02 3.09E-05 | 1.90E-02 1.91E-02 3.99E-05
Braz 3.48E-03 3.59E-03 8.19E-06 | 9.40E-03 9.68E-03 5.65E-05 | 1.18E-02 1.18E-02 2.50E-05
B1a3 1.34E-04 1.32E-04 7.07E-06 | 2.15E-03 2.07E-03 1.46E-04 | 3.69E-03 3.70E-03 9.93E-06
B1aa 4.57E-05 4.72E-05 1.31E-07 | 2.26E-03 2.33E-03 1.11E-05 | 3.04E-03 3.06E-03 2.71E-06
Buas 1.98E-05 2.00E-05 4.49E-07 | 1.40E-03 1.40E-03 5.20E-05 | 2.98E-03 2.98E-03 1.06E-05

Table B.15: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is not identified. The parameters compared are regression coefficients for the control families, 53,
foryj=1,...,4,k=1,..., Kandp = 1.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter | RMSE Var Sq Bias | RMSE Var Sq Bias | RMSE Var Sq Bias

Ba11 2.72E-01 2.62E-01 1.92E-02 | 1.56E-01 4.33E-02 1.14E-01 | 1.32E-01 6.09E-02 7.11E-02
Ba12 5.55E-02 545E-02 2.86E-03 | 1.39E-01 3.26E-02 1.08E-01 | 1.22E-01 3.62E-02 8.62E-02
B3 397E-03 3.63E-03 4.70E-04 | 6.94E-02 1.57E-02 5.43E-02 | 4.62E-02 1.51E-02 3.12E-02
Ba1a 6.64E-04 6.66E-04 2.12E-05 | 3.90E-02 6.84E-03 3.24E-02 | 3.85E-02 1.26E-02 2.59E-02
Bais 6.34E-04 6.48E-04 8.42E-06 | 4.08E-02 9.83E-03 3.13E-02 | 3.59E-02 1.05E-02 2.55E-02
Bazn 6.27E-02 6.49E-02 1.26E-05 | 4.19E-02 2.53E-02 1.74E-02 | 5.19E-02 3.34E-02 1.87E-02
P22 1.22E-02 1.25E-02 6.63E-05 | 3.78E-02 1.85E-02 2.00E-02 | 3.53E-02 1.68E-02 1.87E-02
P23 4.97E-04 5.00E-04 1.47E-05 | 1.39E-02 5.45E-03 8.60E-03 | 1.09E-02 5.59E-03 5.38E-03
B224 2.18E-04 2.26E-04 1.26E-09 | 1.05E-02 5.65E-03 5.04E-03 | 9.56E-03 4.78E-03 4.81E-03
Ba2s 6.19E-05 6.40E-05 2.32E-08 | 6.95E-03 2.68E-03 4.36E-03 | 9.03E-03 4.15E-03 4.90E-03
Baz1 2.66E-02 2.67E-02 7091E-04 | 2.69E-02 1.85E-02 9.02E-03 | 2.74E-02 2.21E-02 5.51E-03
B232 3.32E-03 2.74E-03 6.72E-04 | 1.98E-02 7.18E-03 1.29E-02 | 1.77E-02 1.29E-02 4.83E-03
Bass 1.49E-04 1.40E-04 1.32E-05 | 5.21E-03 2.43E-03 2.86E-03 | 5.96E-03 4.77E-03 1.22E-03
B34 6.13E-05 5.58E-05 7.36E-06 | 4.97E-03 2.33E-03 2.72E-03 | 3.72E-03 2.82E-03 9.23E-04
Bass 3.72E-05 3.53E-05 3.06E-06 | 4.64E-03 2.59E-03 2.14E-03 | 4.59E-03 3.65E-03 9.60E-04
Ban 278E-02 2.74E-02 1.30E-03 | 3.03E-02 1.92E-02 1.17E-02 | 3.40E-02 2.76E-02 6.57E-03
Baaz 4.59E-03 4.58E-03 1.74E-04 | 1.97E-02 1.20E-02 &.11E-03 | 1.91E-02 1.27E-02 6.47E-03
B243 1.74E-04 1.64E-04 1.54E-05 | 6.13E-03 3.01E-03 3.23E-03 | 4.99E-03 3.47E-03 1.55E-03
B2aa 6.92E-05 6.88E-05 2.72E-06 | 4.62E-03 2.83E-03 1.89E-03 | 4.34E-03 3.09E-03 1.27E-03
Baus 3.37E-05 3.49E-05 4.44E-08 | 3.19E-03 2.19E-03 1.08E-03 | 4.54E-03 3.12E-03 1.44E-03

Table B.16: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is not identified. The parameters compared are regression coefficients for the SZ families, (3,1, for
j=1..., 4, k=1,...,Kandp = 2.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter | RMSE Var Sq Bias | RMSE Var Sq Bias | RMSE Var Sq Bias

a1o 4.73E-04 4.90E-04 2.50E-07 | 1.13E-02 1.35E-03 9.96E-03 | 1.07E-02 9.27E-04 9.75E-03
a3 9.77E-04 1.01E-03 5.53E-06 | 6.84E-02 5.18E-03 6.34E-02 | 6.68E-02 4.72E-03 6.21E-02
a4 5.34E-04 5.09E-04 4.26E-05 | 9.27E-02 8.14E-03 8.48E-02 | 9.43E-02 7.33E-03 8.70E-02
ass 2.05E-04 2.10E-04 2.42E-06 | 5.64E-02 6.90E-03 4.97E-02 | 5.27E-02 4.46E-03 4.83E-02
a9 2.41E-03 2.44E-03 4.81E-05 | 4.23E-02 4.75E-03 3.77E-02 | 4.18E-02 3.07E-03 3.88E-02
o3 3.08E-04 294E-04 242E-05 | 2.86E-02 1.78E-03 2.69E-02 | 3.07E-02 1.88E-03 2.88E-02
24 1.48E-04 1.53E-04 4.61E-07 | 3.63E-02 1.61E-03 3.48E-02 | 3.81E-02 1.77E-03 3.64E-02
Qo5 7.00E-04 6.95E-04 2.81E-05 | 2.18E-01 1.21E-02 2.06E-01 | 2.22E-01 1.21E-02 2.10E-01
azo 9.58E-04 9.90E-04 2.03E-06 | 3.75E-02 3.42E-03 3.42E-02 | 3.62E-02 3.87E-03 3.24E-02
ass 6.39E-04 6.17E-04 4.38E-05 | 6.27E-02 3.77E-03 5.91E-02 | 5.63E-02 4.42E-03 5.19E-02
a34 1.35E-03 1.38E-03 2.32E-05 | 2.75E-01 2.19E-02 2.54E-01 | 2.34E-01 1.59E-02 2.18E-01
ass 9.77E-05 9.54E-05 5.58E-06 | 6.77E-02 3.51E-03 6.43E-02 | 5.67E-02 4.40E-03 5.23E-02
Q4 1.47E-03 1.47E-03 5.67E-05 | 3.49E-02 3.79E-03 3.12E-02 | 3.85E-02 3.31E-03 3.52E-02
Q43 2.26E-04 2.24E-04 9.88E-06 | 4.60E-02 2.12E-03 4.39E-02 | 4.21E-02 2.36E-03 3.98E-02
o 6.59E-04 6.74E-04 8.63E-06 | 1.15E-01 5.24E-03 1.10E-01 | 1.25E-01 8.88E-03 1.16E-01
Q45 7.59E-04 7.79E-04 7.09E-06 | 1.88E-01 1.28E-02 1.76E-01 | 1.86E-01 9.66E-03 1.76E-01

Table B.17: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is not identified. The parameters compared are family member factor loadings, aj;, forj =1,...,4
and k =2,...,5.
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QNO BFFM (QNO Converges) BFFM (QNO Fails)

Parameter | RMSE Var Sq Bias | RMSE Var Sq Bias | RMSE Var Sq Bias

bo1 1.90E-03 1.96E-03 1.03E-06 | 1.17E-03 1.21E-03 9.74E-09 | 9.10E-04 9.14E-04 1.37E-06
bao 5.46E-03 5.40E-03 243E-04 | 1.52E-03 1.51E-03 6.71E-05 | 1.21E-03 1.11E-03 1.05E-04
bos 1.60E-01 1.65E-01 1.28E-03 | 6.04E-04 6.25E-04 9.14E-07 | 4.31E-04 4.14E-04 1.95E-05
bay 9.99E-01 1.03E+00 1.27E-03 | 2.56E-03 2.50E-03 1.45E-04 | 2.34E-03 2.34E-03 1.17E-05
bas 4.93E+00 5.10E+00 4.36E-03 | 4.25E-04 4.21E-04 1.83E-05 | 3.92E-04 3.91E-04 3.41E-06
bs1 1.46E-03 1.51E-03 2.11E-06 | 1.13E-03 1.17E-03 2.25E-06 | 7.02E-04 7.06E-04 1.45E-09
bso 2.84E-03 2.62E-03 3.12E-04 | 9.06E-04 7.81E-04 1.52E-04 | 9.59E-04 9.46E-04 1.82E-05
b33 6.34E-01 6.56E-01 3.80E-04 | 2.97E-03 2.42E-03 6.39E-04 | 2.63E-03 2.54E-03 1.05E-04
b3y 2.12E-01 2.19E-01 4.71E-05 | 9.17E-04 9.09E-04 4.00E-05 | 8.48E-04 8.36E-04 1.63E-05
bss 1.88E+00 1.95E+00 3.97E-05 | 5.35E-04 5.53E-04 4.31E-07 | 2.23E-04 2.15E-04 9.32E-06
by 1.05E-03 1.06E-03 2.85E-05 | 9.61E-04 9.63E-04 3.08E-05 | 4.89E-04 4.89E-04 2.94E-06
byo 2.71E-03  2.56E-03 2.33E-04 | 1.00E-03 8.88E-04 1.45E-04 | 7.34E-04 7.08E-04 2.99E-05
bys3 7.14E-02  7.31E-02 8.21E-04 | 5.58E-04 4.46E-04 1.27E-04 | 4.83E-04 4.66E-04 1.99E-05
by 3.55E-01 3.52E-01 1.50E-02 | 1.36E-03 1.39E-03 9.72E-06 | 1.08E-03 1.06E-03 1.97E-05
bys 9.62E-01 9.86E-01 1.04E-02 | 1.85E-04 1.89E-04 3.03E-06 | 1.87E-04 1.85E-04 3.19E-06

Table B.18: Comparison of the relative mean squared errors (MSEs), relative variances and relative squared biases from FIML-QNO
when it is successful, from the BFFM when FIML-QNO is successful, and from the BFFM when FIML-QNO fails, in the scenario
where the true covariance matrix is not identified. The parameters compared are outcome factor loadings, b, for j = 1,...,4 and
k=2,...,b.
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APPENDIX C

Summary Statistics for the UCLA Family Study Data
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Control Schizophrenia

Variable Prob Sib Fa Mo Prob Sib Fa Mo
MANIPA 0.76  0.70 076  0.74 0.68  0.71 0.76 0.72
CPTDSD 254 231 207 262 217 228 2.42 2.33
Mean CPT37D 4.47  4.35 4.49  4.86 3.87 4.3 4.48  4.29
SPAN10 56.1 54.9 53.8 538 53.3 548 51.4 51.9
logTRLBA —-1.39 —-1.43 —-14 —1.41 —1.51 —1.47 —-1.48 —1.52
MANIPA 0.13  0.15 0.11 0.13 0.17  0.18 0.16 0.15
CPTDSD 1.00 1.03 088  0.92 1.22 1.11 0.99 1.04
Std Dev CPT37D 0.82 094 0.74  0.63 1.09  0.95 0.59 0.90
SPAN10 4.9 6.5 5.4 4.7 7.2 5.3 5.4 5.9
logTRLBA  0.24  0.22 0.21 0.2 024  0.23 0.2 0.23

Table C.1: Raw group means and standard deviations of the 5 outcomes measured on probands, siblings, fathers and mothers in the
schizophrenia and control families. Please refer to Table 4.2 for description of variables.
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Prl1 P2 Pr3 Prd Pr5 Sibl Sib2 Sib3 Sib4 SibS5 Fal Fa2 Fa3 Fa4 Fa5 Mol Mo2 Mo3 Mo4

Prl 1.00

Pr2 35 1.00

Pr3 38 .50 1.00

Pr4 35 39 54 1.00

Pr5 33 42 54 .50 1.00

Sibl 20 13 16 .12 .26 1.00

Sib2 23 .21 28 .07 .30 .40 1.00

Sib3 09 23 28 19 .30 41 .39 1.00

Sib4 A0 0 17 18 220 24 25 29 44 1.00
Sib5 .09 18 28 .20 .31 47 .28 .53 46 1.00

Fal .08 02 -02 .04 -03] .03 .01 .09 .000.03 1.00

Fa2 | —01 .08 —-02 .04 .09) .08 .14 —-.01 .10-0.03 12 1.00

Fa3 1219 10 .04 200 .11 A3 .04 —.01 0.05 26 .57 1.00

Fa4 20 .20 .16 .18 .21 .09 16 .15 .18 .04 27 .28 27 1.00

Fa5 21 14 10 .08 .05 .01 .06 —.06 —.04.09 06 18 31 .36 1.00

Mol A7 17 09 12 21 .04 .03 —-.01 —-.01-.13 -13 .01 —-.06 .02.09 1.00

Mo2| 21 .08 .12 .12 .15 09 14 13 .16 .09 -.02 —-.03 —-.07 .00.13 22 1.00

Mo3 23 16 22 13 200 .00 —.04 .05 .01.04 .01 -0.07 .03 .17 .24 32 .32 1.00

Mo4| .15 -03 .04 .06 .09] .03 —-.02 —-.05 .21-01 —-.05 .02 -0.02 .16 .13 21 39 47 1.00
Mo5 19 12 .08 11 .21 12 -0.04 .05 .09 .12 -07 .07 .05 .11 .22 S0 .30 .61 .52

Table C.2: Correlation matrix of 4 of measurements of 5 outcomes on 4 family members. Pr, Sib, Fa and Mo refer to proband,
sibling, father and mother, respectively. Numbers 1, 2, 3, 4, 5 on variable names refers to the five outcomes MANIPA, CPTDSD,
CPT37D, SPANI10 and logTRLBA, respectively. The block diagonal matrices are correlations between the five outcomes for the
same family member.
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Proband Sibling Father Mother

Proband 1.00
MANIPA  Sibling 0.20 1.00
Father 0.08 0.03 1.00
Mother 0.17 0.04 -0.13 1.00
Proband 1.00
CPTDSD  Sibling 0.31 1.00
Father 0.05 0.09 1.00
Mother 0.21 0.12 0.22 1.00

Proband 1.00
CPT37D Sibling 0.22 1.00
Father 0.18 0.18 1.00
Mother 0.06 0.21 0.16 1.00

Proband 1.00
SPANI10 Sibling 0.28 1.00
Father 0.10 0.04 1.00
Mother 0.22 0.05 0.03 1.00

Proband 1.00
logTRLBA Sibling 0.21 1.00
Father 0.08 0.14 1.00
Mother 0.08 0.14 —-0.03 1.00

Table C.3: Sample correlations between measurements on different family members for
the same outcome. For all five outcomes, the correlations between proband and sibling
are the highest (about 0.2). Please refer to Table 4.2 for description of variables.
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APPENDIX D

Summary of Posterior Distributions for the UCLA

Family Study Data with Five Outcomes

Tables D.1, D.2 and D.3 give summaries of the posterior distributions including mean,
SD and posterior probabilities, p(f < 0|Y") from fitting the BFFM to the UCLA NSF

data.

Figure D.1 plots the posterior distribution group means for all five outcomes mea-
sured on probands, fathers, mothers and siblings in schizophrenia and control families.
Figures D.2 and D.3 plot the posterior distribution of non-zero family factor loadings

and outcome factor loadings, grouped by family member and by outcome, respectively.
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Param Mean SD  p(f <0]Y) Param Mean SD p(6 <0|Y)

Unique Error Variances Family Member Factor Loadings
Wy 150.17 12.15 aio 0.88 0.16 < .0001
() 65.41 5.28 a3 1.01  0.15 < .0001
3 28.57 3.19 a4 0.61 0.09 < .0001
Wy 1577  1.65 ays 2.13  0.33 < .0001
Vs 229.25 21.24 a2 0.61 0.17 0.0008

Famliy Member Factor Vari -Covar 93 0.99 0.17 < .0001

da1 5057  13.64 a4 046 0.09 < .0001
a2 1979 8.16  0.002 azs 2.05 034 < .0001
Gaze  50.81  14.69 aso 092 023 < .0001
bas 7.0 748 0.16 ass 0.73 0.18 < .0001
bas 2.87 720 0.34 asy 047 0.12 <.0001
basz 3331  10.85 ass 1.77 051 0.0006
bas 349 570 027 o 0.77 0.18 < .0001
baza 147 658 041 Qs 090 0.14 < .0001
dass  3.67 649 027 o 0.52 0.09 < .0001
basa 3714 9.84 s 236 036 < .0001

Table D.1: Posterior means and SD of unique error vairances, 1, family member factor
covriance matrix, ® 4 and family member factor loadings, a;i, for j = 1,...4 corre-
sponding to prbands, siblings, fathers and mothers, and £ = 1,...,5 corresponding to
MANIPA, CPTDSD, CPT37D, SPAN10 and logTRLBA. The posterior probabilities,
p(6 < 0]Y") are also listed.
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Param Mean SD  p(6 < 0]Y)

Param Mean SD p(f <0]Y)

Unique Error Variances

Family Member Factor Loadings

Outcome Factor Var-Covar

Outcome Factor Loadings

$p11 5020 18.02
b2 20.66 851  0.0005
bpa  24.06 7.63

bpi3 1426 7.05 0.008
¢pas 1221 5.11  0.0005
bpss 1670 5.92

s 535 345  0.03
bpas 376 223 0.02
bpss 257 193 0.06
bpas 467  1.52

bp1s  41.26 19.52 0.002
bpas 2550 1212 0.002
bpss  21.38 10.87 0.004
épss  10.04 526  0.004
bpss  97.69 37.86

ba1 1.18 0.28 < .0001
bao .23 0.28 < .0001
bas 0.84 037 0.01

bay 1.52 030 < .0001
bas 0.81 0.28 0.002
b3, 0.18 033 0.29
bsa 0.66 029 0.01

b33 0.60 0.29 0.01

bs4 1.08 0.36 0.0006
bss 0.84 036 0.007
bs 0.54 027 0.02
bio 0.65 0.27 0.006
bys 0.68 0.23 0.001
baa 098 0.27 0.0002
bys 0.76  0.26 0.001

Table D.2: Posterior means and SD of outcome factor variance-covariances, ® g and

outcome factor loadings, i, for j = 1,...4 corresponding to prbands, siblings, fa-

thers and mothers, and £ = 1,...,5 corresponding to MANIPA, CPTDSD, CPT37D,

SPAN10 and 1ogTRLBA. The posterior probabilities, p(¢ < 0|Y") are also listed.
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Means of Control Means of SZ Diff in Means, Control-SZ
Param Mean SD |Param Mean SD | Param Mean SD p(6 <0)
i1 7601 1.89 | Byy 66.56  1.60 | f111 — forn 945  2.47 0.0002
Biia 2527 125 fayp 2138 1.10| fi12 — Borz 3.89  1.67 0.01
Prob fi15 4463  1.08 | fBoiz 3844 093 | S35 — Barz 6.19 142 <.0001
Bria 56.05  0.68 | forsa 53.32  0.60 | Brig — Bara 273 091 0.00
Biis  -139.35 2.60 | a5 -151.11 226 | fi15 — PBars 1177 3.44  0.0004
B 7025 197 | fayr 7237 226 | fior — Boar -2.12 299 0.77
Bios 2285 124 | PBoyy 2344 148 | Biay — Pass -0.59 1.93 0.61
Sib  frog 4336 1.06 | Bony 4377 1.24 | Braz — faas 042 1.64 0.59
Bios 5479  0.68 | Bayy 5533 0.80 | Bios — Bazs -0.54 1.06 0.70
Bios  -143.00 2.56 | Bozs  -145.10 2.98 | Bio5 — Bass 2.10 3.95 0.30
Bzt 7700 218 | fozr 7559 240 | B3 — Bogi 141 322 0.33
Biza  20.83 151 | PBogy  24.02  1.65| Bizo — Baza -3.19 224 0.92
Fath B33 45.01  1.06 | Bog3 4436  1.20 | Big3 — fBogs 0.65 1.62 0.34
Bizs 5388  0.78 | Bazs 5113 0.84 | Bizy — fasa 275 1.15 0.01
Biss  -139.48 2.92| fazs  -150.00 3.32 | fi35 — Bogs 10.52 4.43 0.01
Brai 7439 1.75| Boyr 7184 1.63 | Bia1 — Pony 255 238 0.14
Buo 2607 116 | fage 2325 110 | frao — Bosz 2.82  1.61 0.04
Moth (145 4855 094 | Bos 4290 090 | fr4s — faas 5.65 1.29 <.0001
Braa 5375  0.63 | foas 51.68  0.61 | Brag — Posa 2.06  0.87 0.01
Bus  -140.78 2.53 | Boys  -151.76 2.46 | fias — Poss 1098 3.52 <.0001

Table D.3: The left and middle panels present posterior means and SD of regression

coefficients, [3,;i, which are the means of the k" outcomes for the jth family member

in the control families (p = 1) and the SZ families (p = 2), for j = 1,...4 corre-

sponding to probands, siblings, fathers and mothers, and £ = 1, ..., 5 corresponding to

MANIPA, CPTDSD, CPT37D, SPAN10 and logTRLBA. The right panel presents the

posterior means, SD of difference in group means, control minus SZ, 3, — B2;1. The

posterior probabilities, p(Sy,x — S2jx < 0|Y) are also listed.
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Posterior Density Plots of Means of Five Outcomes
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Figure D.1: Posterior density of group means for probands, siblings, fathers and moth-

ers in the control (solid lines) and SZ (dashed lines) families.
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Posterior Density Plots of Family Member Factor Loadings
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Figure D.2: Posterior density plots of family member factor loadings, aj, for
7 =1,...,4 corresponding to probands, siblings, fathers and mothers and k = 2,...,5

corresponding to CPTDSD, CPT37D, SPAN10 and logTRLBA.
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Posterior Density Plots of Outcome Factor Loadings
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Figure D.3: Posterior density plots of outcome factor loadings, by, for j = 2,...,4

corresponding to siblings, fathers and mothers and £ = 1, ..., 5 corresponding to MA-

NIPA, CPTDSD, CPT37D, SPAN10 and logTRLBA.
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APPENDIX E

Descriptive Statistics and Prior Specification for the

UCLA Family Study Data with Seventeen Outcomes

Table E.1 lists the sample correlations among observations of 17 outcomes from the

UCLA NFS data, ignoring the family structure.
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CPTDSD HitrDS FalrDS SPAN10 SPAN1 SPANS5 CPT37D Hitr37 Falr37 logTRLBA logTRLAA VFFAS NCFRSFSC Manipa MAINacc MANIPrt
CPTDSDR |1.00
HitrDS .86 1.00
FalrDS .66 .35 1.00
SPAN10  |.34 .30 32 1.00
SPAN1 25 23 .28 38 1.00
SPANS 31 29 .35 T4 52 1.00
CPT37D |43 40 .35 43 .39 44 1.00
Hitr37 35 37 27 40 .36 44 .88 1.00
Falr37 27 24 32 31 37 40 .68 52 1.00
logTRLBA |.33 .30 31 47 .33 47 52 45 42 |1.00
logTRLAA |27 23 .20 .38 21 37 44 37 38 |64 1.00
VFFAS .33 .30 .25 32 21 .30 42 37 0 31 |51 43 1.00
NCFRSFSC|.27 29 18 31 19 .26 .34 27 34 |31 32 .30 1.00
Manipa .29 .29 .19 25 22 22 37 36 24 33 32 25 .18 1.00
MAINacc [.32 .33 .25 .26 .26 27 48 44 34 42 34 32 .26 .66 1.00
MANIPrt  |.00 .02 .02 -.02 13 .04 .10 A3 .06 .05 .01 A1 .06 .10 12 1.00
MAINTt -.07 -05 -04 -08 .09 -02 .02 .03 .03 -05 -.05 02 -.02 -03 .05 .76

Table E.1: Sample correlations among observations of 17 outcomes from the UCLA NFS data, ignoring the family structure.
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5jk Py, Ak bjk OBk

Mean Var 16 « Mean Var Mean Var Mean
CPTDSD 28 121 194 10 1.000 1.000 1 1 48.4
HitrDS 63 529 846 10 2.091 4.372 1 1 211.6
FalrDS 7 225 360 10 1.364 1.860 1 1 90
SPAN10 50 25 40 10 0.455 0.207 1 1 10
SPAN1 60 20.25 32 10 0.409 0.167 1 1 8.1
SPANS 60 59.29 95 10 0.700 0.490 1 1 23.7
CPT37D 41 81 130 10 0.818 0.669 1 1 324
Hitr37 95 361 578 10 1.727 2.983 1 1 144.4
Falr37 0.6 16 26 10 0.364 0.132 1 1 6.4
logTRLBA  -140 400 640 10 1.818 3.306 1 1 160
logTRLAA -140 289 462 10 1.545 2.388 1 1 115.6
VFFAS 38 100 160 10 0.909 0.826 1 1 40
NCFRSFSC 23 17.64 28 10 0.382 0.146 1 1 7.056
MANIPA 70 169 270 10 1.182 1.397 1 1 67.6
MAINacc 70 169 270 10 1.182 1.397 1 1 67.6
MANIPrt 12 9 14 10 0.273 0.074 1 1 3.6
MAINTrt 12 9 14 10 0.273 0.074 1 1 3.6

Table E.2: Means and variances of hyper-parameters for priors of regression coeffi-
cients/group means, p, unique error variances, ¢;, family member factor loadings,
a;,, outcome factor loadings, b;, and family member factor variances, ¢pgpy, for
7=1,...,4.
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Table E.3: Prior correlation matrix of outcome factors, where outcomes 1,...,17
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logTRLBA, logTRLAA, VFFAS, NCFRSFSC, Manipa, MAINacc, MANIPrt and
MAINTIt.
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APPENDIX F

Summary of Posterior Distributions for the UCLA

Family Study Data with 17 Outcomes

Posterior densities of group means for schizophrenia and control families for 17 out-
comes are presented in Figures F.1, F.2 and F.3. Table F.1 lists the posterior means
of group means for control (Ctrl) and schizophrenia (SZ) families (left) and the poste-
rior means of difference between group means (right). Table F.2 includes the posterior
means of outcome factor correlations, while Table F.3 presents the posterior means of

outcome factor variances, family member factor loadings and outcome factor loadings.
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Posterior Densities of Means for SZ and Control Families
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Figure F.1: Posterior densities of means for probands, fathers, mothers and siblings in

schizophrenia family (dashed lines) and control family (solid lines).
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Posterior Densities of Means for SZ and Control Families
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Figure F.2: Posterior densities of means for probands, fathers, mothers and siblings in

schizophrenia family (dashed lines) and control family (solid lines), continued.
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Posterior Densities of Means for SZ and Control Families
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Figure F.3: Posterior densities of means for probands, fathers, mothers and siblings in

schizophrenia family (dashed lines) and control family (solid lines), continued.
129



Group Means Diff between Group Means
Proband Sibling Father Mother Proband Sibling Father Mother

Outcome Ctrl SZ Ctrl SZ Ctrl SZ Ctrl SZ Control minus SZ
CPTDSD 24778 20.86 2247 2332 20.61 2396 2584 23.18 | 392 -0.84  -335  2.66
HitrDS 7426 64.09 69.13 70.63 68.05 7474 T77.05 7394 | 10.18 -1.50  -6.69 3.11
FalrDS -6.72 -9.00 -6.87 -7.27 954 -8.03 -632 -9.09 |2.29 0.40 -1.51 2,77
SPAN10 55.65 53.17 5447 55.14 5354 5096 5341 51.51 | 248 -0.66  2.57 1.90
SPAN1 62.94 6224 63.15 6327 6290 62.65 63.17 6291 |0.70 -0.12  0.25 0.26
SPANS 62.12 59.74 6130 61.54 6092 5798 60.66 58.96 | 2.38 -0.24 294 1.70
CPT37D 44.05 38.16 43.09 4325 4456 44.04 48.08 42.70 | 5.89 -0.16 052 538
Hitr37 9390 8538 9258 91.66 9378 94.15 9574 91.15 | 852 0.92 -0.36  4.59
Falr37 -0.80 -1.27 -097 -0.70 -047 -050 -0.25 -0.82 | 0.47 -0.28 0.03 0.57
logTRLBA  -140.6 -151.9 -143.8 -145.6 -1403 -1504 -1419 -152.1 |11.3 1.8 10.1 10.2
logTRLAA  -1147 -121.5 -1153 -1143 -110.0 -118.5 -112.1 -119.0 | 6.8 -1.0 8.5 6.9
VFFAS 38.16 30.28 35.05 3322 4097 35.12 4320 38.87 | 7.88 1.82 585 433
NCFRSFSC 22.59 21.74 22.68 2292 2288 2297 2355 2353 |0.85 -0.24  -0.09 0.02
Manipa 75.52  66.17 69.86 7193 76.46 7520 73.69 71.60 | 9.35 -2.07 1.26  2.09
MAINacc 80.57 69.35 78.01 7630 81.76 8091 7995 78.64 | 11.22 1.72 0.86 1.30
MANIPrt 1270 11.47 1277 1227 1253 12.67 13.00 1294 | 1.23 0.51 -0.14  0.06
MAINTt 11.78 1086 11.73 11.26 11.38 11.94 11.56 11.54 | 0091 0.47 -0.56  0.02

Table F.1: Posterior means of group means for control (Ctrl) and schizophrenia (SZ) families (left) and the posterior means of
difference between group means (right).
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Outcome Factor Correlations

CPTDSD DShitr DSfalr SPAN10 SPAN1 SPANS CPT37D hitr37 falr37 logTRLBA logTRLAA VFFAS NCFRSFSC Manipa MAINacc MANIPrt

CPTDSD [1.00

DShitr 0.82 1.00

DSfalr 0.67 0.58 1.00

SPAN10  [0.35 0.35 0.29 |1.00

SPAN1 0.20 0.18 0.28 |0.40 1.00

SPANS 0.32 0.31 0.33 (0.77 0.57 1.00
CPT37D |0.44 0.36  0.34 0.38 0.30 040 |[1.00

hitr37 0.37 0.33 0.28 0.44 035 049 10.86 1.00

falr37 0.30 024 034 031 031 038 |0.63 0.55 1.00

logTRLBA |0.38 0.36  0.32 0.58 034 052 045 0.43 0.37 |1.00

logTRLAA |0.30 0.26 0.26 0.53 028 046 043 0.38 0.37 |0.76 1.00

VFFAS 0.45 042 0.33 0.56 028 049 053 049 0.41 |0.79 0.71 1.00

NCFRSFSC|0.25 0.26 0.22 0.30 0.03 021 0.12 0.10 0.21 |0.36 0.39 0.38  1.00

Manipa 0.47 042 036 0.37 023 032 0.39 0.36 0.23 0.54 0.51 0.56  0.26 1.00

MAINacc [0.52 047 040 041 028 037 0.50 047 0.31 0.57 0.51 0.60 0.25 0.86 1.00
MANIPrt  |-0.13 -0.08 -0.04 -0.03 0.14 0.04 -0.11 -0.01 0.02 0.06 -0.02 0.03 0.12 0.03 0.05 1.00
MAINTt -0.19 -0.13 -0.07 -0.07 0.12 0.00 -0.17 -0.08 -0.01 -0.01 -0.07 -0.06 0.06 -0.07 -0.05 0.79

Table F.2: Posterior means of outcome factor correlations.
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Outcome Family Member Factor Loading Outcome Factor Loading

Outcome Fac Var Prob Sib Fa Mo Pro Sib Fa Mo

CPTDSD 35.07 1 1 1 1 1 1.30 0.60 0.93
DShitr 116.87 202 1.63 231 1.75 1 1.34 0.67 0.89
DSfalr 27.72 0.70 0.53 0.89 0.50 1 0.58 0.49 0.64
SPAN10 9.27 0.58 0.60 0.55 0.63 1 1.27 1.02 1.01
SPAN1 3.01 0.19 0.16 0.18 0.04 1 0.07 0.21 0.03
SPANS 10.44 043 032 040 048 1 0.54 0.75 0.63
CPT37D 52.73 0.85 2.00 148 1.62 1 0.15 0.18 0.22
hitr37 97.86 093 210 132 1.84 1 0.06 0.08 0.15
falr37 1.92 0.15 0.28 0.10 0.18 1 0.24 0.10 0.10
logTRLBA  151.98 2.10 2.59 2.17 3.18 1 0.87 0.78 0.66
logTRLAA  95.26 147 165 097 2.33 1 1.01 0.32 0.64
VFFAS 42.98 0.77 1.00 0.84 0.92 1 0.87 0.96 1.14
NCFRSFSC 2.43 0.17 0.18 0.20 0.20 1 0.92 035 0.52
Manipa 100.61 0.89 145 123 145 1 095 0.14 0.27
MAINacc 92.92 098 1.71 1.31 1.28 1 0.78 0.33 0.44
MANIPrt 2.36 0.01 0.14 0.12 0.04 1 0.99 043 0.24
MAINTt 2.46 -0.03 0.13 0.07 -0.01 1 1.10 0.39 0.31

Table F.3: Posterior means of outcome factor variances, family member factor loadings and outcome factor loadings.

132



BIBLIOGRAPHY

Aguilar, O. and West, M. (2000). Bayesian dynamic factor models and portfolio allo-

cation. Journal of Business & Economic Statistics 18, 338-357.

Albright, J. J. and Park, H. M. (2009). Confirmatory factor analysis using Amos, LIS-
REL, Mplus, and SAS/STAT CALIS. The Trustees of Indiana University 1, 1-85.

Arbuckle, J. L. (2011). IBM®) SPSS® AMOS 20 Users Guide. IBM Corporation.

Asarnow, R. F., Nuechterlein, K. H., Fogelson, D., Subotnik, K. L., Payne, D. A., Rus-
sell, A. T., Asamen, J., Kuppinger, H., and Kendler, K. S. (2001). Schizophrenia and
schizophrenia-spectrum personality disorders in the first-degree relatives of children
with schizophrenia: The UCLA Family Study. Archives of General Psychiatry S8,
581-588.

Asarnow, R. F., Nuechterlein, K. H., Subotnik, K. L., Fogelson, D. L., Torquato, R. D.,
Payne, D. L., Asamen, J., Mintz, J., and Guthrie, D. (2002). Neurocognitive im-
pairments in non-psychotic parents of children with schizophrenia and attention-
deficit/hyperactivity disorder: The University of California, Los Angeles Family
Study. Archives of General Psychiatry 59, 1053—-1060.

Bartholomew, D. J., Knott, M., and Moustaki, 1. (2011). Latent Variable Models and
Factor Analysis: A Unified Approach. Wiley.

Basilevsky, A. T. (2009). Statistical Factor Analysis and Related Methods: Theory and

Applications. Wiley.

Benton, A. L. (1994). Contributions to Neuropsychological Assessment: A Clinical

Manual. Oxford University Press.

Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. Springer, 2nd

edition.

133



Blunch, N. (2012). Introduction to Structural Equation Modeling Using IBM SPSS
Statistics and AMOS. Sage.

Bollen, K. A. (1998). Structural Equation Models. Wiley.

Brannick, M. T. and Spector, P. E. (1990). Estimation problems in the block-diagonal
model of the multitrait-multimethod matrix. Applied Psychological Measurement

14, 325-339.

Brown, T. A. (2006). Confirmatory Factor Analysis for Applied Research. The Guilford

Press.

Browne, M. W. (1984). The decomposition of multitrait-multimethod matrices. British

Journal of Mathematical and Statistical Psychology 37, 1-21.

Byrne, B. M. (2001). Structural equation modeling with AMOS, EQS, and LISREL:
Comparative approaches to testing for the factorial validity of a measuring instru-

ment. International Journal of Testing 1, 55-86.

Byrne, B. M. (2009). Structural Equation Modeling with AMOS: Basic Concepts, Ap-

plications, and Programming. CRC Press.

Byrne, B. M. (2013). Structural Equation Modeling with EQS: Basic Concepts, Appli-

cations, and Programming. Routledge.

Campbell, D. T. and Fiske, D. W. (1959). Convergent and discriminant validation by

the multitrait-multimethod matrix. Psychological Bulletin 56, 81-105.

Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the American
Statistical Association 90, 1313-1321.

Cudeck, R. (1989). Analysis of correlation matrices using covariance structure models.

Psychological Bulletin 105, 317-327.

134



Dickey, J. M. and Lientz, B. P. (1970). The weighted likelihood ratio, sharp hypotheses
about chances, the order of a Markov chain. The Annals of Mathematical Statistics

41, 214-226.

Donner, A. and Koval, J. J. (1980). The estimation of intraclass correlation in the

analysis of family data. Biometrics 36, 19-25.

Eid, M., Lischetzke, T., and Nussbeck, F. W. (2006). Structural Equation Models for
Multitrait-multimethod Data., volume xiv, pages 283-299. American Psychological

Association.

Fox, J. (2006). Teacher’s corner: Structural equation modeling with the sem package

in R. Structural Equation Modeling 13, 465-486.

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating

marginal densities. Journal of the American Statistical Association 85, 398—409.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine

Intelligence 6, 721-741.

Geweke, J. and Zhou, G. (1996). Measuring the pricing error of the arbitrage pricing
theory. Review of Financial Studies 9, 557-587.

Ghosh, J. and Dunson, D. B. (2009). Default prior distributions and efficient posterior
computation in Bayesian factor analysis. Journal of Computational and Graphical

Statistics 18, 306-320.

Grayson, D. and Marsh, H. (1994). Identification with deficient rank loading matrices
in confirmatory factor analysis: Multitrait-multimethod models. Psychometrika 59,

121-134.

135



Hamsten, A. and de Faire, U. (1987). Risk factors for coronary artery disease in families
of young men with myocardial infarction. The American Journal of Cardiology 59,

14-19.
Harman, H. H. (1960). Modern Factor Analysis. University of Chicago Press.

Harrap, S. B., Stebbing, M., Hopper, J. L., Hoang, H. N., and Giles, G. G. (2000). Fa-
milial patterns of covariation for cardiovascular risk factors in adults: The Victorian

Family Heart Study. American Journal of Epidemiology 152, 704-715.

Hunter, J. L. (2005). Structural Equation Modeling with SAS-CALIS. Ph.D. thesis,

Kansas State University.

Joreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor

analysis. Psychometrika 34, 183-202.

Joreskog, K. G. and Sérbom, D. (2012). Lisrel 9.1 [computer software]. Lincolnwood,

IL: Scientific Software International .

Karlin, S., Cameron, E. C., and Williams, P. T. (1981). Sibling and parent—offspring
correlation estimation with variable family size. Proceedings of the National

Academy of Sciences 78, 2664-2668.

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical
Association 90, 773-795.

Kenny, D. and Kashy, D. (1992). Analysis of the multitrait-multimethod matrix by
confirmatory factor analysis. Psychological Bulletin 112, 165-172.

Kim, J., Glahn, D. C., Nuechterlein, K. H., and Cannon, T. D. (2004). Maintenance
and manipulation of information in schizophrenia: Further evidence for impairment

in the central executive component of working memory. Schizophrenia Research 68,

173-187.

136



Kline, R. B. (2011). Principles and Practice of Structural Equation Modeling. Guilford

press.

Koide, T., Aleksic, B., Kikuchi, T., Banno, M., Kohmura, K., Adachi, Y., Kawano,
N., lidaka, T., and Ozaki, N. (2012). Evaluation of factors affecting continuous
performance test identical pairs version score of schizophrenic patients in a Japanese

clinical sample. Schizophrenia Research and Treatment 2012, 1-5.

Kopelowicz, A., Liberman, R. P., Ventura, J., Zarate, R., and Mintz, J. (2005). Neu-
rocognitive correlates of recovery from schizophrenia. Psychological Medicine 38,

1165-1174.

Lance, C. E., Noble, C. L., and Scullen, S. E. (2002). A critique of the correlated
trait-correlated method and correlated uniqueness models for multitrait-multimethod

data. Psychological Methods T, 228-244.

Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data. Wiley,

2nd edition.

Loehlin, J. C. (2004). Latent Variable Models: An Introduction to Factor, Path, and

Structural Analysis. Lawrence Erlbaum Associates, 4th edition.

Lopes, H. F. and West, M. (2004). Bayesian model assessment in factor analysis. Sta-
tistica Sinica 14, 41-68.

Madans, J., Miller, K., Maitland, A., and Willis, G. (2011). Question Evaluation Meth-

ods: Contributing to the Science of Data Quality. Wiley.

Marsh, H. W. (1989). Confirmatory factor analyses of multitrait-multimethod data:
Many problems and a few solutions. Applied Psychological Measurement 13, 335—
361.

137



Marsh, H. W. and Hocevar, D. (1988). A new, more powerful approach to multitrait-
multimethod analyses: Application of second-order confirmatory factor analysis.

Journal of Applied Psychology 73, 107-117.
McCulloch, C. E. (2006). Generalized Linear Mixed Models. Wiley.

Morey, R. D., Rouder, J. N., Pratte, M. S., and Speckman, P. L. (2011). Using MCMC
chain outputs to efficiently estimate Bayes factors. Journal of Mathematical Psy-

chology 55, 368-378.

Morris, N. J. (2009). Multivariate and Structural Equation Models for Family Data.

Ph.D. thesis, Case Western Reserve University.
Muthén, L. K. and Muthén, B. O. (1998-2012). Mplus. Muthén & Muthén, 7th edition.

Naik, D. N. and Rao, S. S. (2001). Analysis of multivariate repeated measures data
with a Kronecker product structured covariance matrix. Journal of Applied Statistics

28, 91-105.

Nelson, B. D. (2001). Variable reduction for modeling using PROC VARCLUS. In

SAS Users Group International Proceedings, pages 261-263.

Nuechterlein, K. H., Asarnow, R. F., Subotnik, K. L., Fogelson, D. L., Payne, D. L.,
Kendler, K. S., Neale, M. C., Jacobson, K. C., and Mintz, J. (2002). The structure of
schizotypy: Relationships between neurocognitive and personality disorder features

in relatives of schizophrenic patients in the UCLA Family Study. Schizophrenia
Research 54, 121-130.

Nuechterlein, K. H., Subotnik, K. L., Green, M. F., Ventura, J., Asarnow, R. F., Gitlin,
M. J., Yee, C. M., Gretchen-Doorly, D., and Mintz, J. (2011). Neurocognitive pre-
dictors of work outcome in recent-onset schizophrenia. Schizophrenia Bulletin 37,

S33-S40.

138



Press, S. J. (2012). Applied Multivariate Analysis: Using Bayesian and Frequentist

Methods of Inference. Courier Dover Publications.

Press, S. J. and Shigemasu, K. (1989). Bayesian inference in factor analysis. In L. J.
Gleser, M. D. Perlman, S. J. Press, and A. R. Sampson, editors, Contributions to

Probability and Statistics, chapter 15, pages 271-287. Springer.

Press, S. J. and Shigemasu, K. (1997). Bayesian inference in factor analysis (revised).

Technical Report 243, University of California, Riverside.

Quinn, K. M. (2004). Bayesian factor analysis for mixed ordinal and continuous re-

sponses. Political Analysis 12, 338-353.

Rao, C. R. (1955). Estimation and tests of significance in factor analysis. Psychome-

trika 20, 93-111.

Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods. Springer, 2nd

edition.

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of

Statistical Software 48, 1-36.

Rowe, D. B. (1998). Correlated Bayesian Factor Analysis. Ph.D. thesis, Univsersity of

California, Riverside.

Rowe, D. B. (2003). Multivariate Bayesian Statistics: Models for Source Separation

and Signal Unmixing. CRC Press.

Rubin, D. B. and Thayer, D. T. (1982). EM algorithms for ML factor analysis. Psy-
chometrika 47, 69-76.

Sammel, M., Lin, X., and Ryan, L. (1999). Multivariate linear mixed models for mul-

tiple outcomes. Statistics in Medicine 18, 2479-2492.

Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. CRC press.

139



Schultz, S. H., North, S. W., and Shields, C. G. (2007). Schizophrenia: A review.
American Family Physician 75, 1821-1829.

Springate, B. and Fein, D. (2013). Halstead-Reitan neuropsychological test battery. In
Encyclopedia of Autism Spectrum Disorders, pages 1479—-1481. Springer.

Srivastava, M. S., von Rosen, T., and von Rosen, D. (2008). Models with a Kro-
necker product covariance structure: Estimation and testing. Mathematical Methods

of Statistics 17, 357-370.

Thompson, B. (2004). Exploratory and Confirmatory Factor Analysis: Understanding

Concepts and Applications. American Psychological Association.

Verdinelli, I. and Wasserman, L. (1995). Computing Bayes factors using a generaliza-
tion of the Savage-Dickey density ratio. Journal of the American Statistical Associ-

ation 90, 614-618.

Wang, X., Guo, X., He, M., and Zhang, H. (2011). Statistical inference in mixed models

and analysis of twin and family data. Biometrics 67, 987-995.

West, M. (2003). Bayesian factor regression models in the “large p, small n”” paradigm.

Bayesian Statistics 7, 723-732.

Wothke, W. (1984). The Estimation of Trait and Method Components in Multitrait-

Multimethod Measurement. Ph.D. thesis, University of Chicago.

Wothke, W. and Browne, M. W. (1990). The direct product model for the MTMM
matrix parameterized as a second order factor analysis model. Psychometrika 55,

255-262.

140





