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Background—Active surveillance (AS) is increasingly accepted for managing low-risk prostate
cancer, yet there is no consensus about implementation. The lack of consensus is due in part to
uncertainty about risks of disease progression, which have not been systematically compared or
integrated across AS studies with variable surveillance protocols and dropout to treatment.

Objective—To (1) compare risks of upgrading from Gleason score (GS) <6 to >7 across AS
studies after accounting for differences in surveillance intervals and competing treatments and (2)
evaluate tradeoffs of more vs less frequent biopsies.

Design—Joint statistical model of longitudinal prostate-specific antigen (PSA) levels and risks of
biopsy upgrading.

Setting—Johns Hopkins University (JHU), Canary Prostate Active Surveillance Study (PASS),
University of California San Francisco (UCSF), and University of Toronto (UT) AS studies.

Patients—2,576 men aged 40-79 years diagnosed with GS <6 and clinical stage <T?2 prostate
cancer enrolled in 1995-2014.

Measurements—PSA levels and biopsy GS.

Results—After accounting for variable surveillance intervals and competing treatment, estimated
risks of biopsy upgrading in PASS and UT were similar, but UCSF was higher and JHU lower. All
cohorts produced a delay of 3-5 months in detecting upgrading under biennial biopsies starting
after a first confirmatory biopsy relative to annual biopsies.

Limitations—The model does not account for possible biopsy GS misclassification.

Conclusions—Men in different AS studies exhibit different risks of biopsy upgrading after
accounting for variable surveillance protocols and competing treatments. Nonetheless, despite
these differences, the consequences of more versus less frequent biopsies appear to be similar
across cohorts. Biennial biopsies appear to be an acceptable alternative to annual biopsies.

Funding Source—National Cancer Institute and others.

Keywords

active surveillance; biopsy upgrading; Gleason score; joint model; prostate-specific antigen;
prostatic neoplasms

Introduction

Active surveillance (AS) is now the preferred approach for managing newly diagnosed, low-
risk prostate cancer (PC) (1, 2). A recent guideline from the American Society of Clinical
Oncology (ASCO) (2) supports the use of AS for low-risk PC and provides
recommendations regarding target population and surveillance protocol. However, the
recommendations lack specifics about how AS should be implemented.

Several studies are ongoing in North America (3—-6) and Europe (7) to learn about the
outcomes of AS, but they involve different populations, follow-up durations, inclusion
criteria, surveillance protocols, and definitions of progression that lead to treatment referral.
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The accumulation of data across multiple AS cohorts provides an opportunity to learn more
about disease progression on AS. Indeed, recent analyses within specific cohorts (6, 8, 9)
have pointed to prostate-specific antigen (PSA) level, number of prior stable biopsies, PSA
density, and history of any negative biopsies as important predictors of progression.
However, differences in AS implementation and compliance across cohorts preclude
straightforward comparison of progression risks and prevent direct integration of results to
inform best practices (10).

This article brings together individual-level data from four of the largest North American AS
studies to compare and integrate their information about PC progression on AS. We evaluate
whether progression rates are consistent across cohorts after standardizing inclusion criteria
and the definition of progression and after controlling for variable surveillance intervals and
risks of competing treatments. In addition, we examine the expected consequences of more
versus less frequent biopsies across AS studies. This cross-cohort analysis is critical to
assessing representativeness of individual studies and to developing sound AS guidelines
that balance timely intervention against the morbidity from intensive surveillance.

Data sources

De-identified, individual-level data were obtained from four AS cohorts following
institutional review board approval. Records included patient age and year of diagnosis,
clinical and pathologic information at diagnosis, and dates and results of all surveillance
tests, including PSA values and biopsy results, dates of curative treatment, and vital status.
Cohort inclusion criteria, surveillance strategies, and conditions for referral to treatment are
summarized in Table 1.

Johns Hopkins University (JHU) (4)—The JHU study began enrollment in 1995.
Eligibility criteria include PSA density <0.15 ug/L/cc, clinical stage <T1c, Gleason score
(GS) <6, <2 positive biopsy cores, and <50% involvement of any biopsy core with cancer.
Men are monitored with PSA and digital rectal exam (DRE) every 6 months and with annual
biopsies. Curative intervention is recommended for disease progression, defined as any
adverse change on prostate biopsy.

Canary Prostate Active Surveillance Study (PASS) (3)—The PASS study began
enrollment in 2008. Eligibility criteria include clinical stage <T2 disease and either a 10-
core biopsy <1 year before enrollment or =2 biopsies with at least one <1 year before
enrollment (3). Men are monitored with PSA tests every 3 months, DRE every 6 months,
and biopsies 6-12, 24, 48, and 72 months after enroliment. Curative intervention is
recommended if there is an increase in either biopsy GS or volume (from <33% to >33%
positive cores).

University of Toronto (UT) (5)—The UT study began enrollment in 1995. Between 1995
and 1999, eligibility criteria included PSA <10 ug/L and GS <6 for men age < 70 years and
PSA <15 ug/L and GS <3+4 for men age =70 years. In January 2000, eligibility criteria were
expanded to include PSA <20 ug/L and GS <3+4 in men with substantial comorbidities or
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life expectancy <10 years. Men are monitored with PSA tests every 3 months for 2 years and
then every 6 months. A confirmatory biopsy is performed within 12 months of the initial
biopsy and then every 3-4 years until the patient reaches age 80 years. Curative intervention
is recommended in case of histologic upgrading on repeat biopsy or clinical progression
between biopsies (or PSA kinetics before 2009).

University of California San Francisco (UCSF) (6)—The UCSF study began
enrollment in 1990. Eligibility criteria evolved over time and currently include PSA <10
Ha/L, clinical stage <T2, biopsy GS <6, <33% positive cores, and <50% tumor in any single
core. Selected patients who do not satisfy these criteria may be enrolled, and these comprise
>30% of the cohort (6). Men are monitored with a confirmatory biopsy within 12 months of
the initial biopsy and every 12—24 months thereafter. Curative intervention is recommended
for any biopsy reclassification.

Data Synthesis and Analysis

Exclusion criteria and endpoint definitions

Patients diagnosed before 1995, age >80 years at enrollment, or with GS =7 at diagnosis
were excluded from the analysis to obtain a more homogeneous population (Appendix Table
1). Further, we standardized the definition of disease progression to focus exclusively on
biopsy upgrading, i.e., the first point at which a biopsy GS =7 is reached. We also defined
competing treatments as initiation of treatment in the absence of biopsy upgrading, for
example, in response to an increase in biopsy volume or an increase in PSA growth.
Accounting for differences in risks of competing treatments is important because cohorts
with a high frequency of competing treatments may appear to have a lower risk of biopsy
upgrading than comparable cohorts with a low frequency of competing treatments even if
their underlying risk of biopsy upgrading is similar.

Estimating underlying risks of upgrading

The empirical risk of upgrading is affected by both the surveillance protocol and the
frequency of competing treatment. Our first objective is to compare underlying risks of
upgrading across surveillance cohorts, i.e., risks that would be observed in the absence of
competing treatments. A standard approach for obtaining underlying risks—a Kaplan-Meier
(K-M) curve—is only valid if the competing event is independent of the event of interest. In
the AS setting, upgrading and treatment initiation may be dependent. For example, if
patients with higher PSA level or PSA velocity tend to initiate treatment more frequently,
this could induce a dependence between treatment initiation and upgrading risk. In the case
of a dependent competing risk, the K-M approach is biased (11, 12). However, a commonly-
used alternative—the cumulative incidence estimate—captures the risk of the event of
interest in the presence of the competing eventand can therefore be sensitive to the
competing risk. For example, two cohorts could have the same underlying risk of upgrading,
but one with a higher incidence of competing treatment would appear to have a lower
incidence of upgrading.

Ann Intern Med. Author manuscript; available in PMC 2018 July 02.
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To overcome this problem, we first evaluate the dependence of the two events using a
regression model that allows both events to depend on patient age and PSA kinetics.
Allowing risks of both upgrading and competing treatment to depend on these common
patient variables allows us to capture their potential dependence on each other. For example,
if the risks of upgrading and treatment initiation both increase with PSA velocity, the two
risks will be positively correlated. In practice, we estimate a so-called joint model for the
evolution of the patient variables and the risks of upgrading and treatment initiation (13-15).
After fitting the joint model, we extract the risk of upgrading in the absence of competing
treatments using standard statistical formulas for obtaining marginal from conditional data
summaries. This avoids the limitations of the K-M and cumulative incidence approaches.

The joint model has three components.

1 The PSA model. A linear mixed-effects model for log PSA captures
heterogeneity in patient PSA kinetics, i.e., baseline PSA and PSA velocity, which
is defined as the annual percent change in the PSA level.

2. The model for time to upgrading. A Weibull regression models the risk of
upgrading given patient age and PSA kinetics. This model assumes that biopsy
GS has no misclassification error. Thus, patients with all biopsy GS <6 biopsy
are right censoredfor the event of upgrading, i.e., their upgrading event can only
occur after the end of their follow-up, and patients with an observed biopsy GS
=7 must have upgraded after the prior biopsy but before this biopsy.

3. The model for time to competing treatment. Another Weibull regression models
the risk of treatment initiation given patient age and PSA Kinetics.

We use Bayesian methods to estimate the three models simultaneously (Appendix 1). We do
not attempt to model pathologic GS because previous work encountered substantial
difficulties in doing so using serial biopsies among men on AS (16).

Predicting consequences under more versus less intensive surveillance protocols

Using the fitted joint model, we simulated times to upgrading in each cohort in the absence
of competing treatments. Then, we superimposed surveillance protocols that involved
regular biopsies every 1, 2, 3, and 4 years to determine the earliest point that biopsy would
detect the upgrade. To acknowledge the clinical value of a confirmatory biopsy, we also
consider biopsies every 2 years starting after the first confirmatory biopsy (i.e., 1 year after
enrollment). The model predictions consist of the average number of biopsies performed and
the average time delay between detection under each protocol relative to annual biopsies. To
project the consequences of delaying the detection of biopsy upgrade, we harnessed a
previously developed algorithm (17) that translates delays in diagnosis and treatment into
relative risks of PC death. Specifically, the algorithm applies an established nomogram for
PC death given the predicted change in PSA due to the delay since the true point of biopsy
upgrade while keeping other prognostic covariates (e.g., volume) constant. Our projections
are for clinically localized disease with GS >7.

Ann Intern Med. Author manuscript; available in PMC 2018 July 02.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Inoue et al. Page 6

Role of the funding source

The funding sources had no role in the design, conduct, or reporting of this study.

Results

Empirical risks of upgrading

Descriptive statistics for the four cohorts are shown in Table 2. Appendix Table 1 reports the
number of patients omitted by our exclusion criteria to obtain more comparable patient
populations; the resulting sample consists of 699, 613, 421, and 843 patients from JHU,
PASS, UT, and UCSF cohorts, respectively. Figure 1 presents the empirical cumulative
incidence (CI) of upgrading across cohorts after applying the exclusions. (Appendix Figure
1 shows corresponding curves before exclusions.) The empirical CI represents the
cumulative risk of upgrading /n the presence of competing treatment, i.e., if treatment is
initiated for a given patient, that patient is no longer at risk of upgrading. Figure 1 shows that
UCSF has the highest ClI of disease upgrading; JHU has the lowest; and PASS and UT are
intermediate between UCSF and JHU. In contrast, JHU has the highest risk of competing
treatment, possibly due to the relatively high incidence of reclassification by volume-only in
this cohort, which accounts for about half the reclassified patients (4), whereas the other
cohorts have similar, lower risks of competing treatments.

Risks of upgrading and associations with baseline PSA and PSA velocity

Exploratory plots show a range of PSA profiles across 3 selected patients from each cohort,
illustrating that the PSA models capture the observed diversity (Appendix Figure 2). Mean
PSA velocity is similar across the cohorts, with an estimated 5% (95% confidence interval
(4%, 6%)) annual increase for JHU, 6% (4%, 7%) for PASS, 8% (6%, 9%) for UT, and 7%
(6%,8%) for UCSF. Across cohorts, men with higher PSA levels tend to have higher risks of
upgrading as indicated by the baseline PSA (intercept) and/or PSA velocity (slope)
significantly associated with the risk of upgrading in every cohort (Appendix Table 2). Older
men tend to have higher risks of upgrading, most notably in JHU and UT, and lower risks of
treatment, most notably in JHU.

Annual risks of upgrading

Figure 2 shows the estimated cumulative risks of upgrading by year in the absence of
competing treatments as derived from the joint model, where disease upgrading is
considered to occur in the interval between a last negative (no cancer or GS <6) biopsy and a
first positive (GS =7) biopsy. (Appendix Figure 3 shows empirical K-M curves in which
upgrading occurs at the first observed biopsy GS =7.) While the upgrading risk is still
highest in UCSF and lowest in JHU, the risk in UT closely matches the risk in PASS, in
contrast to the empirical results in Figure 1. This convergence is due to the interval
censoring, which impacts the estimates from UT more than other cohorts due its longer
surveillance intervals.

Appendix Figure 4 shows the estimated cumulative risks of upgrading in the absence of
competing treatments for a man age 60 years at entry and specified values for baseline PSA
and PSA velocity. Conditional on his PSA kinetics, comparisons across cohorts may shift.

Ann Intern Med. Author manuscript; available in PMC 2018 July 02.
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Upgrading risks are closer in PASS, UCSF, and UT for lower PSA levels (3 ug/L) at entry,
but the curves fan out for men with higher PSA levels (6 ug/L) at entry, with UCSF showing
a marked increase in the risk of upgrading with baseline PSA level. This finding is
consistent with Appendix Table 2, which shows a stronger positive association between PSA
at entry and the risk of upgrading in UCSF than in the other cohorts. Even when age and
PSA kinetics are held constant, the JHU cohort still has a lower risk of upgrading than the
other cohorts.

More versus less intensive surveillance protocols

Table 3 shows model-predicted outcomes over a range of surveillance intervals. For
example, on average, biennial biopsies starting at enrollment reduces the number of biopsies
relative to annual biopsies by 42-48% but delays detection of upgrading by 6-8 months.
Biennial biopsies starting after the first confirmatory biopsy (1 year after enrollment)
reduces the number of biopsies relative to annual biopsies by 32—-38% but delays detection
of upgrading by only 3-5 months.

Table 4 provides more detail about annual versus biennial surveillance protocols. Except for
year 1, annual probabilities of upgrades are reasonably constant. Thus, while both biennial
strategies materially reduce the number of biopsies, biennial surveillance starting after a first
confirmatory biopsy may represent a more acceptable balance. To assess the clinical
consequences of detection delays, Appendix Figure 5 shows that the hazard of PC death
increases with delayed detection relative to the point of true upgrading. However, for the
range of delays assessed (1-4 years), this increase is <3% across cohorts. While this long-
term prediction provides a useful benchmark, it assumes other prognostic covariates (e.g.,
volume) remain constant during the delay.

Discussion

Active surveillance continues to evolve and gain acceptance as a strategy for managing low-
risk PC, but consensus on an optimal protocol is lacking (10). To inform any consensus, we
need a representative assessment of the extent to which PC patients on AS face risks of
disease progression and adverse downstream outcomes. This study is the first to bring
together individual-level data across AS studies for such an assessment.

Integrating evidence across AS studies means confronting major differences in inclusion
criteria, protocols, and endpoints. It also means addressing differences in competing
treatment. All these differences materially affect published risks of progression. However,
even when we level the playing field in terms of inclusion criteria, surveillance intervals, and
endpoints and present results in the absence of competing treatment, there appear to be
fundamental differences in underlying risks of biopsy upgrading across cohorts. Indeed, the
estimated 10-year cumulative risk of upgrading in the absence of competing treatments
ranges from 25% (JHU) to 65% (UCSF).

How can we explain these persistent differences? They may be partly explained by minor
differences in biopsy cores sampled but are more likely due to variations in the profiles of
entering patients that are not captured by the characteristics measured in this study. For
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example, most JHU patients were very low risk with PSA density <0.15 pg/L/cc. Since low
PSA density may result from a higher prostate volume, the chance of identifying high-grade
foci could have been reduced. This is supported by the results of imposing this condition on
PASS patients (the only other cohort that recorded this information), where approximately
75% of patients had PSA density <0.15 pg/L/cc. While the estimated risk of upgrading in
this subset is modestly reduced relative to the risk in the whole cohort (Appendix Figure 6),
it does not become comparable to the risk in the JHU cohort. The low risk of upgrading in
JHU may also reflect other factors associated with selection into this cohort, such as the
biopsy volume. JHU restricted enrollment to <2 cores with cancer and <50% involvement of
every core, while UCSF allowed up to 33% of cores and included some patients with higher
volumes.

Our results indicate that a single AS study may not reflect the risks of PC progression in
another population. Nonetheless, our analysis suggests that consequences of varying the
intensity of surveillance are highly robust across levels of underlying risk. For example,
biennial biopsies starting at enrollment will detect upgrading on average only 6-8 months
later than annual biopsies, a time delay that is unlikely to confer a substantially increased
risk of adverse downstream outcomes based on our assessment and on published studies of
treatment delays in low- to moderate-risk patients (18, 19). Biennial biopsies starting after a
confirmatory biopsy (1 year after enroliment) imply even shorter expected delays.

A crucial assumption of our analysis is that the risks of upgrading and competing treatment
are independent given patient age and PSA Kinetics and that no other factors correlate with
these events.

A key limitation of this work is that we only consider biopsy upgrading rather than true,
pathologic upgrading. Because of potential misclassification, biopsy grade may not capture
the true pathologic grade, which is a better surrogate for aggressiveness. We previously
showed (16) that we cannot identify the true grade trajectory from serial biopsies on AS
even if we know the misclassification probabilities. Thus, grade progression is the first
biopsy with GS =7, and our analysis does not allow grade to have progressed before the last
biopsy with GS <6. Our analysis also does not allow for false positive biopsies or address
other questions of interest, such as inclusion of GS 3+4 patients, optimal ages of enrollment,
or the appropriateness of AS for African-American men. Finally, we do not address
questions about magnetic resonance imaging or novel biomarkers for predicting disease
progression or aggressiveness; further research is needed to tailor surveillance protocols to
underlying or evolving risk of progression.

In conclusion, our analysis reveals practical challenges to medical decision making and
guideline development around AS. In particular, risks of cancer upgrading do not generalize
from one cohort to another even after controlling for differences in eligibility criteria,
surveillance protocols, and competing treatments. However, expected delays to detecting
upgrading under more versus less intensive protocols are robust across cohorts. Our analysis
suggests that biennial rather than annual biopsies may be justified, particularly given the
invasiveness and potential morbidity of annual biopsies. This finding provides quantitative
justification for the ASCO clinical practice guideline (2), which also recommends less
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frequent biopsies after a confirmatory biopsy within a year of entering AS. Both that
guideline and our analysis support less frequent biopsies for men on AS, which should
reduce morbidity and complications of this conservative approach as it becomes further
established as a preferred method for managing low-risk prostate cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.

Empirical cumulative incidence of biopsy upgrading and competing treatments across active
surveillance studies after applying exclusions to yield more comparable patient
characteristics across cohorts (Appendix 1).
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Model-based cumulative probabilities of biopsy upgrading and competing treatments (each

in the absence of the other) by cohort. For each curve, we assume baseline PSA and PSA
velocity fixed at cohort-specific mean values. Estimates accommodate interval censoring for
biopsy upgrading between the last negative and first positive biopsy.
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Table 1

Page 13

Eligibility criteria, surveillance protocol, and definition of progression in four active surveillance studies.

Institution, start
year, sample size*

Eligibility criteria

Follow-up schedule

Definition of
progression accor ding
to protocol

Johns Hopkins
University, 1995, N
=1,298

Younger men:

T1c stage;

< 0.15 pg/L/cc PSA density;
< 6 Gleason score;

< 2 positive cores;

< 50% core involvement
Older men:

< T2a stage;

<10 ug/L PSA;

< 6 Gleason score

~ 6 months: PSA, DRE
~12 months: biopsy

Any adverse change on
prostate biopsy

Canary Prostate
Active Surveillance
Study, 2008, N =
1,067

< T2 stage;
10-core biopsy < 1 year or = 2 biopsies > 1 year

~ 3 months: PSA;

~ 6 months: DRE;
6-12, 24, 48, and 72 months: biopsy

Increase in biopsy
Gleason score or in
volume from < 34% to =
34% of cores positive

University of
Toronto, 1995, N =
1,104

Before 1999:

For age <70 years:

< 6 Gleason score;

<10 pg/L PSA;

For age 270 years:

<15 pg/L PSA or

< 3+4 Gleason score

After 1999:

Additionally, < 20 pg/L PSA and < 3+4 Gleason
score in men with clinically significant
comorbidities or < 10 year life expectancy

First year:

~3 months: PSA;

~12 months: biopsy
Second year:

~ 3 months: PSA

Third year and beyond:
~ 6 months: PSA

~ 36—-48 months: biopsy

Histologic upgrading or
clinical progression
between biopsies; until
2009 also < 3 years PSA
doubling time

University of
California San
Francisco, 1990, N
=1,319

Has evolved over time
Currently:

< T2 Stage;

<10 pg/L PSA;

< 6 Gleason score;

< 33% positive cores;

< 50% core involvement;
Exceptions can be made

~3 months: PSA;
~6 months: Transrectal ultrasound

~12-24 months: biopsy depending
on risk

Increase to > 3+4
Gleason score, > 33%
positive cores, or > 50%
involvement

Sample size used in this study before exclusions, which may be different from previous published papers.

means “every”.
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Table 2

Descriptive statistics for four active surveillance cohorts.

JHU PASS uT UCSF
N =913 N = 1,067 N=1,104 N=1,319
Year of Diagnosis
<1995 8 (0.9%) 0 9 (0.8%) 8 (0.6%)
1995-2000 91 (10.0%) 0 176 (15.9%) 57 (4.3%)
2000-2005 273(30.0%) 30 (2.8%) 235 (21.3%) 221 (16.8%)
2005-2010 458 (50.2%) 416 (39.0%) 389 (35.2%) 473 (35.9%)
2010-2015 65(7.1%)  621(58.2%)  263(23.8%) 552 (41.8%)
2015+ 0 0 6 (0.5%) 8 (0.6%)
Missing 18 (2.0%) 0 26 (2.4%) 8 (0.6%)
Age at diagnosis (years)
<40 0 1 (0.09%) 0 0
40-50 12 (1.3%) 44 (4.1%) 33 (3.0%) 66 (5.0%)
50-60 143 (15.7%) 296 (27.7%) 197 (17.8%) 412 (31.2%)
60-70 548 (60.0%) 566 (53.0%) 464 (42.0%) 618 (46.8%)
70-80 204 (22.3%) 158 (14.8%)  337(30.5%) 202 (15.3%)
80+ 6 (0.6%) 2 (0.2%) 47 (4.2%) 21 (1.6%)
Missing 0 0 26 (2.3%) 0
Gleason Score at Diagnosis
4 3(0.3%) 1 (0.09%) 7 (0.6%) 9 (0.7%)
5 13 (1.4%) 3(0.3%) 40 (3.6%) 16 (1.2%)
6 876 (95.9%) 984 (92.2%) 887 (80.3%) 1126 (85.4%)
7+ 2 (0.2%) 79 (7.4%) 148 (13.4%) 154 (11.7%)
Missing 19 (2.1%) 0 22 (2.0%) 15 (1.1%)
Clinical Stage
T1 913 (100.0%) 947 (77.8%) 859 (77.8%) 901 (68.3%)
T2 (not otherwise specified) 0 0 4 (0.4%) 46 (3.5%)
T2a 0 113 (12.4%) 133 (12.0%) 284 (21.5%)
T2b or higher 0 7 (0.6%) 42 (3.8%) 75 (5.7%)
Missing 0 0 66 (6.0%) 13 (1.0%)
Biopsies per person
0 2 (0.2%) 0 26 (2.4%) 0
1 289 (31.6%) 363 (34.0%)  318(28.8%) 288 (21.8%)
2 336 (36.8%) 431 (40.4%) 472 (42.8%) 511 (38.7%)
3 145 (15.9%) 179 (16.8%)  224(20.3%) 250 (19.0%)
4 77 (8.4%) 70 (6.5%) 48 (4.3%) 133 (10.1%)
5 30 (3.3%) 18 (1.7%) 13 (1.2%) 62 (4.7%)
6+ 34 (3.7%) 6 (0.5%) 3(0.3%) 62 (4.7%)
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JHU PASS uT UCSF
N =913 N = 1,067 N =1,104 N =1,319
PSA at enrollment (ug/L) (mean, sd) *
<4 259 (2.4,1.1) 269 (2.5,1.0) 219(2.6,10.1) 270 (2.6, 1.0))
4-8.0 491 (5.4,1.1) 561(55,1.0) 426(5.9,1.1) 777 (5.6, 1.1))
8.0-12.0 79(9.5,1.1) 109 (9.6,1.1) 156 (9.6, 1.1) 202 (9.6, 1.1))
12.0+ 21(15.3,2.6) 39(16.3,3.4) 57(15.9,5.2) 70 (17.4,7.2)
Missing 63 89 246 0
PSA tests per person
0 0 0 17 (1.5%) 0
<5 308(33.7%) 170 (15.9%) 150 (13.6%) 102 (7.7%)
5-10 336 (36.8%)  387(36.3%)  222(20.1%) 331 (25.1%)
10-20 240 (26.2%) 372 (34.9%)  435(39.4%) 477 (36.2%)
20-30 26 (2.8%)  127(11.9%) 198 (17.9%) 267 (20.2%)
30+ 3(0.3%) 11 (1.0%) 82 (7.4%) 142 (10.8%)
Number with disease reclassification
Biopsy upgrade 178 (19.5%) 240 (22.5%) 364 (33.0%) 599 (45.4%
Volume change without upgrade 234 (25.6%) 169 (15.8%) 238 (21.6%) 240 (18.2%)

*
At enrollment or at first PSA on active surveillance 3 months prior or up to 6 months after enroliment.

Page 15

JHU - Johns Hopkins University; PASS — Canary Prostate Active Surveillance Study; UT — University of Toronto; UCSF — University of California

San Francisco.
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