
UC Davis
IDAV Publications

Title
Octree Textures on Graphics Hardware

Permalink
https://escholarship.org/uc/item/9cg0w3q7

Authors
Kniss, Joe M.
Lefohn, Aaron
Strzodka, Robert
et al.

Publication Date
2005

DOI
10.1145/1187112.1187129

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9cg0w3q7
https://escholarship.org/uc/item/9cg0w3q7#author
https://escholarship.org
http://www.cdlib.org/

Octree Textures on Graphics Hardware

Joe Kniss
University of Utah

Aaron Lefohn
University of California, Davis

Robert Strzodka
Caesar Research Institute, Bonn

Shubhabrata Sengupta
University of California, Davis

John D. Owens
University of California, Davis

We implement an interactive 3D painting application that stores
paint in an octree-like GPU-based adaptive data structure. Interac-
tive painting of complex or unparameterized surfaces is an impor-
tant problem in the digital film community. Many models used in
production environments are either difficult to parameterize or are
unparameterized implicit surfaces. We address this problem with a
system that allows interactive 3D painting of complex, unparame-
terized models. The included movie demonstrates interactive paint-
ing of a 817k polygon model (as shown in Figure 1) with effective
paint resolutions varying between 643 to 20483. Our implementa-
tion differs from previous work [Benson and Davis 2002; Carr and
Hart 2004; DeBry et al. 2002; Lefebvre et al. 2004] in two impor-
tant ways: first, it uses an adaptive data structure implemented en-
tirely on the GPU, and second, it enables interactive performance
with high quality by supporting quadlinear (mipmapped) filtering
and fast, constant-time data accesses.

Implementation Detail

Our implementation is inspired by the CPU-based octree texture
techniques of DeBry et al. [2002] and Benson and Davis [2002],
including mipmap support. Our GPU data structure is implemented
in the Glift library [Lefohn et al. 2005]. The structure uses a 3D
virtual and physical address space (a small 3D physical memory
buffer) with an address translator that utilizes a mipmap hierarchy
of page tables. The 3D physical memory format enables the GPU to
perform native trilinear filtering. We use the normalized 3D vertex
coordinates of the rest pose of the model as texture coordinates.

Using the octree data structure in a Cg shader is similar to a
conventional 3D texture access. The Glift library inserts the shader
code required to perform the data access at compile time. Below is
an example shader:
float4 main(uniform VMem3D octreePaint,

float3 objCoord) : COLOR {
return octreePaint.vTex3D(objCoord);

}
The bulk of development time was spent designing brushes, paint-
ing techniques, and developing appropriate mipmap creation filters
for our node-centered data representation. Our application locates
brush-model intersections using the GPU to rasterize the model’s
texture coordinates. While brush profiles are described in screen
space, painting on a surface is dependent on surface orientation and
visibility (see Figure 2L). Thus texels are first projected to screen
space and brush weights are applied to texture samples based on the
2D brush profile. Texture resolution is selected dynamically based
on the brush size, requiring refinement or coarsening as necessary.

We unify memory usage for adaptive paint resolutions and
mipmapping. The page table hierarchy allows us to share physi-
cal tiles between mip levels when the adaptive resolution is coarser
than or equal to the mip level’s resolution. This is non-trivial for
two reasons. First, since we are using a “node-centered” scheme,
as opposed to traditional “cell-centered” textures, the filter support
is different (see Figure 2R). Second, since we are allocating texels
in blocks, many texture samples do not intersect the surface and
thus will never be assigned colors. It is important that these sam-
ples do not contribute to the filtering used for coarsening. Thus we
identify “valid” texels by recording the resolution level at which
each texel has been written into the alpha channel. This allows us
to refine from low resolutions to higher resolutions while still iden-
tifying which samples were actually painted at a specific resolution.

Figure 1: Our interactive 3D paint application stores paint in an
octree-like structure with an effective resolution of 20483 (using 15
MB of GPU memory). Our system paints and renders this 817k
polygon model with an octree texture at 15–20 fps and supports
quadlinear filtering.

Results and Future Work

The frame rates for viewing textured models in our 3D paint ap-
plication are unaffected by the use of a single octree texture map.
The frame rates are thus determined entirely by the complexity of
geometry and varied between 15 and 80 fps with models ranging
in complexity from 50k to 1M polygons. Frame rates while paint-
ing depend on the size of the current brush, and we maintain highly
interactive rates during painting.

Future work includes adding support for 1- or 2-level page tables
to provide a balance between access time and memory consump-
tion. We are also working on support for the normal-keyed index-
ing described in previous octree texture implementations [Benson
and Davis 2002; DeBry et al. 2002].

Figure 2: Left: Applying a 2D brush profile to 3D texels, by pro-
jecting to screen space. Right: Cell-centered versus node-centered
filtering. Note the difference in filter support; cell-centered has a
2×2 support, where node-centered has 3×3 with some fine nodes
shared by multiple coarse nodes.

References

BENSON, D., AND DAVIS, J. 2002. Octree textures. ACM Transactions on Graphics
21, 3 (July), 785–790.

CARR, N. A., AND HART, J. C. 2004. Painting detail. ACM Transactions on Graphics
23, 3 (Aug.), 845–852.

DEBRY, D., GIBBS, J., PETTY, D. D., AND ROBINS, N. 2002. Painting and rendering
textures on unparameterized models. ACM Transactions on Graphics 21, 3 (July),
763–768.

LEFEBVRE, S., HORNUS, S., AND NEYRET, F. 2004. All-purpose texture sprites.
Tech. Rep. 5209, INRIA, May.

LEFOHN, A. E., KNISS, J., STRZODKA, R., SENGUPTA, S., AND OWENS, J. D.
2005. Glift: Generic, efficient, random-access GPU data structures. ACM Trans-
actions on Graphics. To appear.

