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ABSTRACT -
We présent art.hwj-:gt'ic‘:al' formalism which Allow_s thev generation
3 61‘ a hrge class of exact Vlasov-Maxwéll ‘equilibria with sheared
qggnetic flelds. All quamtities are assumed to vary only in one
spatial direction, x, =nd the magnetlc field ha_s components only
?i% the y and z directfons. The Viasov equations are solved by

Eai . : .
“fiaking the distribution functions depend only on constants of the

‘:;:}otion. The_uaxvell equations are then reduced t_o_finding the motion

L a pseudo-particle in a two dimensional potential. Three examples
‘”'E'I‘é'o;'resj)ondin,g‘ to sheet-like, sheath-like, and wave-like equilibria

#“Bre presented.

I. INTRODUCTION
Knowledge of the exact Vlasov-Maxwell equilibrium is often
i"}mec:easa;v;y' when ana]yzi:z the stability of a plasma, expecially when
the inhomgeneity sca.le lmgth 1s not large compared to the ion -

‘ gyroradius. Examples of such eqnilibria with unidirectional, i.e.,
unsheared, magnetic fields have been constructed previously.l -6
However, for reasons of plasma stability or .pértiéle containment,
devices are often bullt with Sheéfed magnetic fields; for example

' the toroidal stuffed cusp, 'I'orma'c‘,%9 in which the width of the sheath

-2-

is on the order of en ion gyroradius. In this paper we present a
thedretical formalism which allovis us to generate.a large class of
exact Vlasov-Maxwell equilibria with sheared magnetic flelds.

For simplicity we cohs'ider a-I situation in whicﬂ all ,quantit.iés
vary only in the x direction, dnd the magnetic field has vcom]:'»onents
By and Bz in the y and 2z directions. :The »equilibriﬁm is

qharactéri’ied by a zero electric field. To find a8 self-consistent:

equilibrium, we must solve the coupled Vliasov-Maxwell equations.

The Vlasov equations are easily satisfied by making the distribution

functions depend only on constants of the motion. Maxwell's equations

are then a coupled set of nonlinear integro-differential equatioms.

We will find_ a large, but not complete, class of solutions to these

equations .

II. GMML FORMALISM
Since the electric field is taken to be zero, we. require
exact charge nentral:lty:

M) = N(D) . W

' The magnetic field can be derived from a vector potential, I, -and

' ay ' a R
. I
Bz ax By T . {2)

The Maxwell's equations for the magnetic field bécome

a2 4T - ' '
%‘ = - cy - ‘ (3)
dx o



a4
A

- | (@)

dx
where '-}(x) ‘is the curTent density.

'I'he constants of the motion for particles oi‘ species, 8

(s = i or e), sre the Fzmiltonian

n : . :
P . _
._..25 .(vx + vy + v23 o S (5)

and thé y and 2z cangon_enté of momentum,.

Ay
Pys = msvy =%, | o A_(6)
q A
_ g 2 -
st_ = .msvz.* — o (7)

where m.,q; are the mass and charge of particles of species s.

In order to satisfy the Vlasov equation for species s, the

distribution function must be a function of the constants of the motion.

We assume 1t is of .t.he faorm
o .8 u : C ,
fg e *elor) o T (®

where B, are constants and g, are functions to be determined.
This form for f_ is arbitrary but is motivated by physical
reasonableness and by the considersble méthemat:lct_al simplicity
which follows from the chosen dependence on H. |

The nunber densities of ions and électrons are. easily

-seen to be given by

' 'I‘he current density can be written

‘ -.&’.[ -Ef'fl + p._quz
1 > f an I\y ¢ z ¢
N (x) = '\/ e .
s 2 \VmB
m s"s : »

X gg(RyP, )PP, . BN C R

Sl Al

x'g(P,P JPAP, "(10)
= )
qA
st = —5 s sf( )
x SS(P},,Pz)dPysz . ©(11)

Let us observe thht

N
J = L 8 )
ys Bs"ﬂ;
3N '
I =8 : (12)
z8 By A | .

Iget us now assume that Ni- and Ne -are equal hot only as functions

of “x but also as functions of Ay and Az; i.é.,

Ni(Ay,Az) = Ne(Ay,Az) . o (13)
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This is & regtrictive assumption but despite it we are able to find

-2

= ——+.—.-
5o

many equilibria, The q‘otal current can now be wntten as

: T ) 1 P i . :
E Y 4 Su U Vi S \ (14) .
b B By F;) *, : oo B

'- Noté,' by the way, t&t the ratio of ion current to electron current -

e ¥

!D

= Since B, is the invers'e temperature, Equation (15) is what we

o~ would expect to be the case.

i

et . If we define

; B = w1

o WA = (EZ . Be> N (16)

sy, ThED Equations (3) and (4) become

aomeny, ) 2 . » . LR . . ’ .

__'}d- -« -8 : _z.d = A = ‘ (17)
- ’ T " .

- “dx K ax™ 2 . _

e .
£y These are just the Hamiltonian equations for a pseudo—partiele with

coordinates (Ay,Az) moving in the potential U( _Ay,Az). Equations

.~ (17) cen be derived from the Hamiltonian

2 2.
"PA + P.A.

H, = —1———Z—-+U(Ay,sz) . © (18)

A 2

e ' o ' (15)

Since
a, 3H, A 3,
B, " T w, TR M Byt tow, T R
Yy A 4
Y z
(19)

we note that the constancy of H, in x 15 just the equation of

total preséure‘ balance.

. We have reduced the equaticne for the fields to a two

dimensional potential problem. -;Iypically, however, instead of knowing

" the d_ietributidn functions from which we can derive the fields we

have some idea of what the fields are and want to find the distribu-
tion functions. Thus, usually we know t.he.fi‘elds and can, by solving
Equatione (2), find the trajectory «of the pseudo-particle in the

' (%,,Az) plane. We then wan§ to find a potentiai, U(Ay,Az), which
will produce this trajectory, & problem which, in 'many\ cases, 1s

. easy to solvg qualitatively. Given the potential, U(Ay,Az), we must
ten find the distribution functions. Useing Equatioms (9), (13), and
(16), we find that the distribution functions satism -

= GONCOIIN
1 2" _ ‘ Tgs(Py,Pz)dPysz- -

Ve

BBy U(A ’Az) ‘ ‘ '
WETET (20)
» e 1
Equations (_20) are integral equations for gy the distribution
functions are then given by Equation (8).
Once the trajectory of the pseudo-particle, i.e., the fields,
18 known, the potential, U(A ,Az), can be changed, without changing

the magnetic fields, - itravily om any set which does not intersect
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the trajectory. Howewer, vf.he_' dist;*ibution functions, given by
Equation (20), depénd or VU(A‘ ,A )} for all (A ,A ) and thus, there
are arbitrarlly many dissribution functions which produce a given set
of fields. _This arbitw.:iness in the potential can be used to ‘
Vproduce a variety of fazmres, such as asymmetric momentum distribu-.
tions, in the distribuiim functions.

Note also that an overall constant can 'be added to the
potential vithout changmg the fields. The freedom to add this
~constant must sometimes Be used to insure thét the diétribution
functions, which are sclutions of Equation (20),} are everywhere
non-negative. For cazrmienée, the potential can bg trahslated -
arbitrarily in the (& T"Az) plane without changing the fieldg._

ibtivated by the much wider class of situations to which it
might be applied, we Imwe attempted to extend t.hia formalism. to
cylindrical geometry, Bzt have found that a stra.ightt‘orward extension

isn't possible.

v III. EXAMPLES
. In this sectiom we give three examples, each of which _
11lustrates e differemt way of solving Equation (20).

(a) Unsheared Sheath

Consider a sitmtion in which the mgnetic field is unid:lrec- j

tional; we can take A = 0. Equation (20) then becomes

qsf;) ,
5‘ BBy U(A) S
J' ; g (P )dP = W.B:T%y ‘, . (21)

where we have assumed

-8-
g = g®) . e
‘and , , _
U= owa) . . (23
»'Let Us now assume that
-YA2 . . -
wa) = pe T I )

‘where D and vy are conétants, go that the potential now resembles

a "hill". We can easily choose the velocity (i.e., nﬁgnetie field)

at -= to be such that the pseudo-particle Just manages to roll to
the top of the hill; i.e., we choose

(=) . : B
Bz(-ﬂ) = % = . '\’21) = BO . (25)

Th\is, the magnetic field and, from the constancy in x of HA

(see Eq. (18)), particle density are as shown in Figure 1; this is .
a sheéth.

To find the distribution function we must solve Bquation (21)

with _U(Ay) given by Equation (24). We Fourier transform Equation'

o Zi) and, denoting transformed functions by a tilde, obtain

na?

" [2m LY 8 8,D -
2n 8 ~ - e i b
- -rg(w)e 2 ———T\[ T e . (26)
m,,a,_J s (ee+aimv:

1

Solving for gg. we find

w Bg w2
8,8,Dn, %6, 2 7.""76"
1678, + 8,) V== o

y(w) = (27) .
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In order to be able ¢ nvert the Fourier transform we must require

Y H<’ nf.‘;(zf—;ﬁf') I - (28)

' _This aimply {says that * the sheath is too narrow then charge

7

-

-neutral:l_.ty can not be mintained. If we let

o
: m'da

-]
,_i:l.*
w0

then’ the distributicm “mctions ‘are given by

f's(Ha'Pys) - a"‘“ :

'\‘27611: .' o TN (30)

where Ny
(b) Sheared Sheet

Letusassu-emt

WAL = De Y P o

* where D' and 'y are amstants. Then Equation (17) becomes

, T @

:lsthedmxx.'myat x_=+c6. N - ERE

By

—f e aye VP L ()

10~
We observe that ‘
d2A 'd2A S
e Ty S (34)
dx Cdx ‘ e C . L :

~E'<1uatioh (34) éan be immediately ‘integrited twice to give

AT A vEXGE I ¢ 2
' where El and - E, are constants. Combining Equations ( 33\) ‘and
(35) glves ‘ | -
d?){z 2YA_+YE, '
- = -D' e P} (36)
where
| - YE, , .
D' = Dye . A - (37)
If we define
G = ZyAz“* YEx ' - (38)

then Equation (36) becomes

2, : ’
L7 et L (39)
dx e .
dG '
-'Mxl_tiplying by = and integrating glves
4G 2 ' c . o :
(Ex- = -4yD'e '+ E3 ;o ~ (40)

where ‘E3 is a conszant. Equation (40) can be. easily integfated

to give
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4YD! _ccosvh2 —%—
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&x) = 2 =l S = . < (48) -

. o ‘ L o In order to find the distribution functioms, we must solve 7
Usins Equation ( 38) we find . BEREE ‘ DI . Equatfon (20) with the potential given by Equation (31). .uuiough we

a4 : ' . cannot use Fourier transforms i_.x'x.th_i_s case, the_'aolution 18 easily *
v A~z(x). == ? fa Gm 'T) (W N T seen to be, by inspection, B T C '
conbining Equations (352 and (42), we get ‘ - IR o ' ' R o _ yzc m, Yc(Py’Pz)

o BeB,D (mB 2 qu q
&(FyoF,) '4ﬂ%*ﬁp\?‘)’s e

Ex S \ + . (49)
S(x) = --!n(cmh ) 5=+ E, +W"n ZW?" (43)

: 'me dietributioh function is now given by Equation {8). The number .
It‘ we require

L ) . . . S S ‘ ' density and magnetic fields for this equilibrium are shown in Figure 3.
. By("’) -0 ' _ ’ o -. o S | 71!110 is a plasma sheét in a sheared magnetic fleld. -
' ' (c) Wave-like Solution '
By(‘.)- = 30’; R S (44) i In our previous exampies the pseudo-particle's trajectory

» o _ E g ‘went to infinity. If the potential, ._U'(Ay,Az), increases as %,Az
then, dropping edditive censtants, we find -

. . Ve .
go to infinity then the pseudo-particle will be confined and periodic

’ ; 1om h YB x _ EQ_ (45) ' A ' motion can result. Thus; let us assume that the'potent_ial‘i'.s'

R Y i A @ o DOTion e ean, TS TR fem |

A : T . U(AyrAz) D, + 5 (Ay. A, ) . | . (50)

- yB.x\ B.x _ ‘ »

- 1, 0 0
Ay(x) = -7k GOSh -z =z (1'6_) Equation (17) is then
The traJectory of f.be pseudo-particle is shown in Fig 2. Ve can now .' S o "12'A 1)
VVVVV ’ . ' . . ‘2 <D,
find the magnetic fields from Equation (2); ' : _ —-}dx sz ’
: B YB i
B = 2- 0 O : 47) ' : . - gR
T Tz 2 T ‘ d Az : L ;
, _ : —% = DA, . , (52)
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The solutions of Equet’xs {<1) and (52)'are clearly

: . ) ] . . +
N . e 8,8, WA A) | . \¥
% = e".(f_x + 5 : (53 - . € J - _17 21 1 S
B E : 7mRe. + 8.) - -minl \ 2m
q ' . 4T Be + 31 ms msBs oo mn 8 .
o o b"A = L bl '\/TD_ '+5>>7 . (5"). - : ' m. n 8s 2.0 2 ‘ :
T z - Tz SO\ VXt ) v 54)- . ' : -E_('P +P <) N\
. : e R . : q A q. A 2 y 'z Bg
o | B VI e A [ 3 4 e 0 B,
where AW , A, 8, 52 -are real constants. The magnetic fields are ’ : e h ¢ 7 B 178 -
o % 1 : o - ST : R o : . ' c .
B, = "D, Ayb cos (3/£bx‘+ 6;) o ) | o } i AR R L _
' . o . . . ' 8 5
o . ‘ _ _ x Hn<: 5—P, gs(Py,Pz)dPysz . (58)
. . — . f— ) . 5 s . . .
&n . . | Let us also expand g as . | L "
R % have found a staticxmry 'ave solution. By transforming to a - )
_moving frame of referenre, sc that the magnetic field becomes » - , L gs(.Py’Pz) - (s) Hx(’ ) ( ’ ) (59) |
both an electric and a megnetic field, we produce a travelling ' ' D

‘ electromgnetic wave thz~ 1s an exact solution of‘ “the Vlasov-Maxwell Using Equation (59) in Equation (58) we find

equations. (Note that ty choosing a potential, U(l\J A ), which

i) | | ' (s + 8,) f—— 8, Y
depends on higher povers af %, and A we could produce waves  WALA) = i~

v _ ' o ‘3" 2’ m B
w'lth nonsinuscidal shapes.) ‘ » : : B, B:l 5

" We can solve Eqmtion ( 20) for the distribution function by

J""“"a‘_: N >. L ! : ) N : A . .
“fnspection, but we choose instead to 111ustrate another technique. » _ 8 c(°)<gl) C ) (60)
o , Note_ that© h

: qg A . " ’ q A ' This equation. detemines C(B) in terms of the (m,n) coefficient
) -E-( > Z ( >< ) ' . of the Taylor series for U(Ay,Az). »Equation (60) is particularly

useful whe’n, as_is the case in Equation (50),. U(Ay,Az) is a
(57)

» ‘polynomial. Thus Equations (50) and (60) yleld:
where H is the nth bermite polynomial. Using expension (57) in ‘ -

both variables in Equation (20), we find-
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_ . ). _E L mSBS o : | : i -, . 'simple analytic solutions of Fquations (3) and (4) do not, in
s et 1/ , . . : _
- . D. o _ : . :
:Coo il - 2 2m L _ (61) - : o ge‘r‘meralf, exist. The golution of Equation (20) for the distribution

»funétions,is more difficult, but, if the poténfial U(A A )}, can
be chosen 1o be a real analytic function the hermitc;. polynomal

c(e) . (o) 3.65_‘”53"2. T8, o ([ ) S ' : -expanaion method can be used to find the distribution functions.
= C = - : . D, . 62). - : :
02 20 < n oo 2 em - T2t : o ' - s S : - : -
26 (8, *+ B, )8, T o T ‘ o '

-

. . o - ‘ S AC!Q«O\'ILEDGMENTS
Ins.erting'_the expressSices for -the hermite polynomials,lo we find " Iam gratet‘ul to A. M Sessler and J. H, Hammer for. helpf‘ul

discussions.

G .P) = el V== D. . (P ) |
& ¥z : » ar {” “2 tt

(s> 8))
' (63)

v

Requiring gg 20 imp:iesv

_»D.>Dmx< ) (e

Equatiqr; (64) simply szys that t.here must be enough particles present -
to produce the requim currents.: '

E The hermite pc.:ruomial expansion can be used to solve
Equation (20) vhenever‘the potential can be expandeg- in a’converéent
poter‘s‘eries ; in fact, our second examplé could have_ been solved in
this fashian. | |

We cc;uld easily construc't'c;ther examples of Vliasov-Maxwell _
-'equilibr'ia. Because t’ the intuitive nature of two dimensional
potentia.l problems, z:cosing a potential U(A}.’,Az'), f.hat will

produce “the desired m=_-=;::et1c fields is generally easy, -even though
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FIGURE CAPTIONS
Ratio of magnetic field to maximum magnetic field, B/BO,'and

ratio of particle density to maximum particle cdensity, H/N.,

as a t‘uhctioﬁ of i for the unsheared-isheath of Section

III(a). We have taken ¥y = .25 in Equation (24), with

Af0) =

TraJectory of the pseudoparticle with coordinates ( Ay A )
as given by Equations (45) and (1.6) The components of
velocity of the pseudpparticle are related to the magneiic
field by Equation (2). |

Ratio of Bz to maximum Bz’ Bz/BO’ ratio of By to
maximum By’ By/BO’ and ratio of particle density to-@xim
pa.rtiéle density, N/No, " as a function of x . for the
equilibrium given Sy Equations (47), (1;8), and (49). In-
Equations (47)-and (48), we have takén B, = 2. As can be
seen, this corresponds to a sheared sheei.
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