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Abstract

Background: Predicting long-term clinical outcome based on early acute ischemic stroke (AIS) 

information is valuable for prognostication, resource management, clinical trials, and patient 

expectations. Current methods require subjective decisions about which imaging features to assess 

and may require time-consuming post-processing. This study’s goal was to predict ordinal 90-day 

modified Rankin Scale (mRS) in AIS patients by fusing a deep learning model of DWI images and 

clinical information from the acute period.

Methods: 640 AIS patients who underwent MRI within 1–7 days post-stroke and had 90-day 

mRS follow-up data were randomly divided into 70% (n=448) for model training, 15% (n=96) 

for validation, and 15% (n=96) for internal testing. Additionally, external testing on a cohort 

from Lausanne University Hospital (LUH) (n=280) was performed to further evaluate model 

generalization. Accuracy for ordinal mRS, accuracy within ±1 mRS category, mean absolute 

prediction error, and determination of unfavorable outcome (mRS>2) were evaluated for clinical 

only, imaging only, and 2 fused clinical-imaging models.

Results: The fused models demonstrated superior performance in predicting ordinal mRS score 

and unfavorable outcome in both internal and external test cohorts when compared to the clinical 
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and imaging models. For the internal test cohort, the top fused model had the highest AUC of 

0.92 for unfavorable outcome prediction and the lowest mean absolute error (MAE: 0.96; 95% 

CI: 0.77–1.16), with the highest proportion of mRS score predictions within ±1 category (79%; 

95% CI: 71–88%). On the external LUH cohort, the best fused model had an AUC of 0.90 for 

unfavorable outcome prediction and outperformed other models with an MAE of 0.90 (95% CI: 

0.79–1.01), and the highest percentage of mRS score predictions within ±1 category (83%; 95% 

CI: 78–87%).

Conclusions: A deep learning-based imaging model fused with clinical variables can be used to 

predict 90-day stroke outcome with reduced subjectivity and user burden.

Graphical Abstract

INTRODUCTION

With around 795,000 strokes occurring yearly, stroke is a leading cause of disability and 

death worldwide1. Stroke survivors commonly suffer from disability and function loss 

that impacts their quality of life significantly2. Predicting the long-term degree of clinical 

impairment based on information available early in the course of acute ischemic stroke 

(AIS) would be valuable for optimizing rehabilitation strategies, prognostication, clinical 

trials, resource management, and patient expectations1,3. However, long-term outcome 

prediction is challenging because various factors may directly or indirectly impact how 

disabled a patient will be in the long run1,4,5. For example, many studies have shown that the 

size of the initial infarct is a relatively weak predictor of outcome6–9.

Some studies1,4,10 have attempted to predict the long-term degree of outcome by estimating 

the modified Rankin Scale obtained at three months (90-day mRS) following hospital 

discharge. For example, Zhang et al.10 showed that a model relying only on age and NIHSS 

score at the discharge time could be used to predict the 90-day mRS score. Xie et al.1 and 

Heo et al.4 predicted the 90-day mRS score using machine learning models based on clinical 

and imaging variables. Brugnara et al.5 introduced a multimodal machine learning model of 

clinical, multimodal imaging, and angiographic characteristics to predict clinical outcome 

after endovascular treatment. However, these approaches may be subject to inconsistent 

and sub-optimal performance for several reasons: firstly, they all rely on human-crafted 

imaging features which may not be optimal for prediction and secondly, they may require 

clinical measurements that are either not routinely acquired in non-specialist centers or may 

be subjective. In particular, the choice and extraction of imaging features add additional 
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layers of subjectivity and typically require time-consuming, often manual post-processing 

resources.

Deep learning (DL), using convolutional neural networks, has recently demonstrated 

remarkable capabilities in comprehending radiologic images and enhancing medical imaging 

diagnosis and prognostication11,12. DL can adaptively learn representative information from 

raw medical imaging without any preconceptions related to the human-involved feature 

extraction process. To the best of our knowledge, no studies have leveraged deep learning to 

identify optimal features from medical imaging for predicting long-term disability outcomes, 

particularly the specific score on the 90-day mRS, a challenging but valuable task.

This study aimed to develop and evaluate a DL-based fused predictive model incorporating 

a DL model of diffusion-weighted imaging (DWI) and routinely obtained clinical variables 

from the acute stroke period for predicting the exact 90-day mRS as well as favorable 

outcome (mRS<=2). The fused models were evaluated using two separate test cohorts and 

compared with the models only using imaging or clinical information.

METHODS

Patients and MRI datasets

Data underpinning the findings of this study can be obtained from the corresponding author 

upon a reasonable request. This study was carried out according to the United States 

Health Insurance Portability and Accountability Act (HIPAA) of 1996 with institutional 

review board (IRB) approval. All subjects provided written informed consent or the need 

for consent was waived by the local IRB. This study included AIS patients from four 

prospective multicenter trials and two single-center registries (multicenter trials: Imaging 

Collaterals in Acute Stroke (iCAS) (April 2014 to June 2019; n = 188)13, Diffusion 

Weighted Imaging Evaluation for Understanding Stroke Evolution Study–2 (DEFUSE-2) 

(July 2008 to October 2012; n = 140)14, Endovascular Therapy Following Imaging 

Evaluation for Ischemic Stroke 3 (DEFUSE 3) (May 2016 to May 2017; n=182)15, 

Computed Tomography Perfusion to Predict Response to Recanalization in Ischemic Stroke 

Project (CRISP) (August 2008 to June 2012; n=201)16; single-center registries: University 

of California, Los Angeles (UCLA) stroke registry (2012 to 2016; n = 196), and Lausanne 

University Hospital (LUH) stroke registry1 (January 2008 to December 2017; n = 1723). 

The enrollment details of the clinical trials can be found in the publications cited above; the 

enrollment criteria for the registries can be found at the studies1,17,18.

The long-term clinical outcome measure was mRS, which ranged between 0 (no disability) 

and 6 (death)19,20 and was assessed at a median of 90 days (range: 60–120 days) following 

discharge. We excluded patients without a 90-day mRS, and those without day 1–7 DWI 

or B0 images. Clinical variables included in the model are listed in Table 1. If the clinical 

variable was missing, the mean value of this variable in the training dataset was used. Rates 

of missing data situation are shown in Table 1 and were generally low. We built the models 

using a random subset of patients from iCAS, DEFUSE2, DEFUSE3, CRISP, and the UCLA 

registry for training and validation. The remaining patients from these datasets were used as 

an internal test cohort. In addition, we included LUH patients as an external generalization 
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cohort to further test the model’s performance. The LUH patient cohort differs from the 

internal cohort in several respects, including fewer patients with hypertension and diabetes, 

and lower stroke severity as measured by NIHSS. A flow chart of the subjects included in 

the study can be found in Figure 1.

Data Preprocessing

We co-registered and normalized all MRI images to the Montreal Neurological Institute 

template using SPM12 software (Statistical Parametric Mapping, The Wellcome Trust 

Centre for Neuroimaging). DWI and B0 images were normalized by their means before 

being fed into the deep learning model. Categorical variables (such as history of diabetes 

or hypertension) were transformed into dummy variables before being fed into the clinical 

model.

Model Structure, Training, and Testing

We are testing 5 different machine learning models in this study. This includes two clinical 

models, an imaging-only model, and two DL fused models that combine the imaging model 

with one or the other clinical model. These are described in more detail below.

Clinical models –—We employed a Support Vector Regression (SVR) model as the basis 

for our clinical model. Commonly collected clinical variables, including age, sex, prior 

mRS, baseline NIHSS, large vessel occlusion status (yes/no), and history of hypertension, 

diabetes, atrial fibrillation, heart diseases, and previous stroke (yes/no), as well as the 

treatment regimen (no treatment, intravenous tissue plasminogen activator (IV tPA) only, 

endovascular therapy (EVT) only, or both IV tPA and EVT), were input into the clinical 

model to generate a continuous prediction of a 90-day mRS (Clinical Model I). Clinical 

Model II expands upon Clinical Model I by also including the 24-hour NIHSS score. These 

were evaluated separately since many sites do not routinely collect 24-hour NIHSS scores. 

SVR was selected for its proven robustness, effective handling of high-dimensional data, and 

strong generalization performance, which has yielded accurate predictions across diverse 

applications21.

Imaging model –—A customized 3D CNN with a 3D ResNet22 as the backbone was 

adopted as the imaging model. Details of the model can be found in Supplemental Figure 

S1. We reduced the number of neurons in the last fully connected layer to one, which 

enables the CNN to perform a regression task. The imaging model takes the DWI and B0 

images (obtained 1 to 7 days after the stroke onset) as the input and outputs a continuous 

prediction of 90-day mRS.

Fused models -—The deep learning fused models consist of a DL-based imaging model 

combined with a clinical model, which are subsequently integrated through an ensemble 

stacking technique23 to produce the mRS prediction, which is again a continuous variable. 

Predictions larger than 6 were adjusted to 6, and less than 0 to 0. Ensemble stacking is 

a well-defined technique that involves training multiple base models independently and 

then aggregating their individual predictions through a higher-level, or meta-model24. This 

approach capitalizes on the unique strengths and advantages of each base model, resulting 
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in enhanced prediction accuracy and minimal overfitting. Two fused models were developed: 

Fused Model I, which combines Clinical Model I with the Imaging Model, and Fused Model 

II, which integrates Clinical Model II and the Imaging Model. More details can be found in 

Figure 2.

We employed stochastic gradient descent (SGD) as the optimizer and smooth L1 loss25 as 

the loss function during deep learning model training. To augment the imaging data sample 

size during model training, we randomly introduced blurring, noise, and changes in image 

contrast. The primary dataset was randomly divided into a development cohort (n=544) for 

model development and an internal testing cohort (IT Cohort, n=96) for model evaluation. 

During each training run, the development cohort was further split into training (n=448) 

and validation (n=96) subsets. We set the maximum number of training epochs to 100 and 

selected the optimal model for each run based on the lowest validation loss after 30 training 

epochs. The IT Cohort remained separate from the model development process. Each model 

was trained and developed using the development cohort 50 times with random initialization 

weights. We averaged predictions across these multiple models for the final predictions on 

the test sets, where the variance in predictions also yields an estimate of the uncertainty of 

the model. For patients with multiple MRI scans between days 1–7 post-stroke, we used all 

acquired MRI images for model training, while only the latest MRI scans within that time 

period were used for model validation and testing. To assess this latter decision, we also 

examined model results when using only the latest MRI scan as part of the training process, 

which can be found in Supplemental Materials.

Performance Evaluation

Mean absolute error (MAE), accuracy for a specific mRS (ACC), and mRS accuracy 

within ±1 score (±1ACC) were used to measure the model’s ordinal outcome prediction 

performance. MAE evaluates the average absolute discrepancy between the predicted score 

and the ground truth of the 90-day mRS, with a smaller MAE signifying superior model 

performance. The predicted score, as a continuous variable, was rounded to the nearest 

integer (0–6) to enable the calculation of ACC and ±1ACC for the ordinal prediction of 

each patient’s mRS score. ACC measures the percentage of correct predictions over all 

the predictions. ±1ACC measures the accuracy of prediction within ±1 mRS category. We 

have additionally calculated a tertile outcome metric, assessing accuracy as binned into the 

following mRS categories: 0–2, 3–4, 5–626. These results can be found in Supplemental 

Materials. Finally, we evaluated the performance of the model in subgroups of patients based 

on type of intervention (none, IV tPA only, EVT only, and combined IV tPA and EVT), 

which is also included in Supplemental Materials.

The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity 

were used to measure the model’s ability to distinguish favorable from unfavorable outcome 

(90-day mRS 0–2 vs. 3–6, respectively). AUC was calculated by thresholding at a predicted 

mRS score of 2.5. Predicted scores ranging from 0–2.5 and 2.5–6 were linearly rescaled to 

0–0.5 and 0.5–1, respectively. This rescaling facilitated the calculation of AUC, effectively 

representing the model’s capacity to differentiate between favorable and unfavorable 

outcomes. For obtaining sensitivity and specificity, the Youden index operating point was 
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used (solid triangles on the ROC curves). Similar analyses were performed for determining 

excellent outcome (mRS 0–1) and a large core trial metric (mRS 0–3) from other classes, 

and these can be found in the Supplemental Materials.

For interpreting the imaging model, saliency maps were created using channel activation 

maps for the regression task27,28, visually highlighting the significant regions within the 

input images that contribute to the model’s predictions. To assess how important the 

saliency maps were for prediction, we evaluated the quality of our model’s lesion detection 

by dividing the results into three categories: 1) no detection of the lesion; 2) moderate 

detection, the model partially captured the stroke lesion, often touching its boundary; and 

3) excellent detection, accurately including the entirety of the ground-truth lesion. Lesion 

detection was performed by an independent reader who was blinded to both the 90-day 

outcome prediction and the reference standard. The results can be found in Supplemental 

Materials.

Statistical Analysis

The Diebold-Mariano test was performed to assess for significant differences between 

two MAEs. The significance of differences between AUC was obtained using the two-

sided Delong test. The McNemar test was used to compare sensitivity and specificity. 

The permutation test was used to compare ACC and ±1ACC. P values less than 0.05 

were considered statistically significant. To address multiple testing concerns, we used 

the Benjamini-Hochberg procedure, keeping the false discovery rate at a 0.05 level29. 

95% confidence interval (CI) for sensitivity and specificity was calculated using Wilson’s 

method.

RESULTS

Patient Characteristics

A total of 1,028 patients were initially considered for the training, validation, and internal 

test sets, sourced from four major clinical trials (DEFUSE2, DEFUSE3, iCAS, CRISP) 

and the UCLA registry. After applying the inclusion and exclusion criteria, 640 patients 

were selected and randomly divided into 70% (n=448) for model training, 15% (n=96) for 

validation, and 15% (n=96) for internal testing. The LUH generalization cohort included 280 

patients, who were selected based on the same criteria.

Performance Analysis on the Internal Test Cohort

Figure 3 presents three representative examples of outcome prediction by the fused, 

imaging, and clinical models. In Case A, both the fused (type I) and imaging models 

accurately predict the patient’s 90-day mRS as 4, whereas the clinical model I incorrectly 

predicts it as 3, potentially influenced by the patient’s young age. In Case B, the fused and 

clinical models (type I) predict the 90-day mRS as 2, while the imaging model estimates 

it as 3. The saliency map indicates that the model may not have learned to focus on 

the infarct’s location. In Case C, all three models (type I for fused and clinical models) 

inaccurately predict an mRS of 3 for a patient who was deceased (mRS 6) at 90 days.
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Table 2 and Figure 4(A) show the quantitative comparisons between clinical models, 

imaging model, and fused models on the internal test cohort. Table 2 (upper part) describes 

the performance of clinical, imaging, and fused models in predicting specific mRS outcomes 

in the internal test set. The Fused Model II had the lowest MAE (0.96; 95% CI: 0.77–1.16) 

among all the models, significantly better than the clinical model I (MAE: 1.23; 95% CI: 

1.03–1.45; p<0.001) and Clinical Model II (MAE: 1.03; 95% CI: 0.83–1.23; p=0.002), but 

not significantly different from the other models. Fused Model II also demonstrated a higher 

proportion of mRS score predictions within ±1 category (79%; 95% CI: 70–85%) compared 

to Clinical Model I (65%; 95% CI: 48–69%; p=0.007), Clinical Model II (74%; 95% CI: 

64–80%; p=0.13), Imaging Model (75%; 95% CI: 67–83%; p=0.48), and Fused Model I 

(74%; 95% CI: 66–82%; p=0.33). Fused Model II also exhibited the highest exact mRS 

accuracy of 35% (95% CI: 26–46%), though this did not also significantly differ from the 

other models.

To predict unfavorable outcome (Figure 4), the clinical model I had an AUC of 0.82 (95% 

CI: 0.73–0.90). Clinical Model II, which integrated the 24-hour NIHSS score into the 

model, demonstrated a superior AUC of 0.88 (95% CI: 0.81–0.94), although the difference 

did not reach statistical significance (p=0.14). The imaging model had an AUC of 0.88 

(95% CI: 0.82–0.94; p=0.16 and 98 when compared to both clinical models). Fusing the 

imaging model with clinical model I (Fused Model I) resulted in an AUC of 0.91 (95% 

CI: 0.84–0.96; p=0.01 and 0.15 in comparison to clinical model I and the imaging model, 

respectively). Fused Model II demonstrated the best performance, achieving an AUC of 

0.92 (95% CI: 0.86–0.97, p=0.02 compared to the clinical model I; p=0.05 compared to the 

clinical model II; p=0.19 compared to the imaging model; p=0.68 compared to Fused Model 

I).

Moreover, at the Youden index point, Fused Model II attained the highest sensitivity (0.91; 

95% CI: 0.80–0.96) among all models, while maintaining a relatively high specificity (0.84; 

95% CI: 0.70–0.92). Fused Model I demonstrated the highest specificity (both 0.86; 95% CI: 

0.73–0.93). More details can be found in Supplemental Table S1.

Supplemental Figure S2(A) shows the median and range of the fused model predictions 

compared with the ground truth for each mRS level, showing better performance over the 

mRS 0–4 interval compared with the mRS 5–6 interval. Supplemental Figures S3 (A&C) 

display the ROC curve performance for excellent outcomes (mRS 0–1) and (mRS 0–3), 

respectively, both demonstrating similar trends.

Performance Analysis on the External LUH Cohort

Table 2(lower part) and Figure 4(B) show the quantitative comparisons between clinical 

models, imaging model, and fused models on the external LUH test cohort. To predict 

mRS, Fused Model II achieved the lowest MAE (MAE: 0.90; 95% CI: 0.79–1.01). This 

performance was comparable to that of Clinical Model II (MAE: 0.91; 95% CI: 0.80–1.03). 

Moreover, it significantly outperformed the Imaging Model (MAE: 1.03; 95% CI: 0.91–

1.15; p=0.005), Clinical Model I (MAE: 1.15; 95% CI: 1.03–1.27; p<0.001) and Fused 

Model I (MAE: 0.99; 95% CI: 0.87–1.11; p=0.02). In terms of ±1 Accuracy (±1ACC), 

Fused Model II and Clinical Model II were the top performers, with similar outcomes 
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(Fused Model II: 83%, 95% CI: 78–87%; Clinical Model II: 84%, 95% CI: 79–88%; 

p=0.66). Both of these models outperformed Clinical Model I (71%; 95% CI: 65–76; 

p<0.001) and also exceeded the performance of Imaging Model (77%; 95% CI: 72–82; 

p=0.17 and 0.10) and Fused Model I (81%; 95% CI: 76–85; p=0.19 and 0.13). The best 

exact mRS accuracy was achieved by Fused Model II, with 36% (95% CI: 30–41%), 

followed closely by the Imaging Model and Fused Model I, both at 35% (95% CI: 29–40%). 

Clinical Model II recorded an accuracy of 34% (95% CI: 29–40%), while Clinical Model I 

lagged behind at 28% (95% CI: 22–34%). However, there was no significant difference in 

accuracy between Fused Model II and the other models.

For predicting unfavorable outcomes, Clinical Model I achieved an AUC of 0.77 (95% CI: 

0.71–0.82). Clinical Model II performed significantly better with an AUC of 0.88 (95% CI: 

0.84–0.92; p<0.001). The Imaging Model attained an AUC of 0.85 (95% CI: 0.80–0.90), 

significantly surpassing Clinical Model I (p<0.02), yet trailing behind Clinical Model II 

(p=0.18). Fused Model I exhibited an AUC of 0.87 (95% CI: 0.83–0.90), outperforming 

Clinical Model I significantly (p<0.001), but not significantly different from the Imaging 

Model (p=0.49). The best performance was achieved by Fused Model II, recording an AUC 

of 0.90 (95% CI: 0.86–0.93; p<0.001 compared to Clinical Model I; p=0.03 compared to 

Clinical Model II; p=0.004 compared to the Imaging Model; p=0.02 compared to Fused 

Model I). Furthermore, at the Youden index, Fused Model II achieved the highest sensitivity 

among all models at 0.94 (95% CI: 0.87–0.97). It significantly outperformed Clinical 

Model I (0.76; 95% CI: 0.66–0.83; p<0.001), Clinical Model II (0.84; 95% CI: 0.76–0.90; 

p=0.007), and the Imaging Model (0.79; 95% CI: 0.69–0.86; p=0.002), but did not differ 

significantly from Fused Model I (0.94; 95% CI: 0.87–0.97; p=0.74). The Imaging Model 

(0.76; 95% CI: 0.73–0.93) and Clinical Model II (0.76; 95% CI: 0.70–0.82) had the highest 

specificity, differing significantly from both fused models. Further details are provided in 

Supplementary Table S1.

Supplemental Figure S2(B) shows the median and range of the fused model predictions 

compared with the ground truth for each mRS level, with similar performance as in the 

internal test set. Supplemental Figures S3 (B&D) display the ROC curve performance for 

excellent outcomes (mRS 0–1) and (mRS 0–3), respectively, both showing similar trends.

Interestingly, there is less differentiation of the different models for excellent outcome 

prediction in the LUH dataset, which may be related to the overall reduced severity of the 

index strokes.

Additional Analyses

Supplemental Table S2 shows the performance of the different models in subgroups of 

patients who underwent different treatments. Supplemental Table S3 shows the performance 

of the different models on tertile outcome prediction, showing similar findings to ±1ACC 

accuracy presented in Table S2. Supplemental Table S4 demonstrates the effect of training 

on either all available day 1–7 MRI or only the last MRI in this period on the imaging 

model, demonstrating a small but non-significant improvement in performance using all 

available day 1–7 MRI studies for training. Supplemental Table S5 demonstrates that the 

performance of the imaging model improves when the saliency maps demonstrate that 
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the model identifies the stroke lesion, further demonstrating that the model is identifying 

important features for outcome prediction.

DISCUSSION

We developed and evaluated a DL-based outcome predictive model, which fused routinely 

obtained MR images and clinical variables available during the early acute phase of 

stroke. Overall, the fused models performed the best at 90-day clinical outcome prediction 

following stroke, especially when combined with 24-hour NIHSS score. This finding was 

generalizable, seen in the internal multicenter test set as well as in a separate single-site 

registry from a different country with different severity characteristics. The performance was 

similar or better than other studies using human-crafted features and included much larger 

cohorts, both for training and testing. It is worth noting that this study’s prediction tasks are 

twofold: predicting unfavorable outcomes and the exact score on the mRS. While there have 

been several attempts to predict unfavorable outcomes, studies that aim to predict the exact 

score on the mRS are still scarce. This study represents one of the first attempts to predict 

the exact score of the 90-day mRS by utilizing deep learning, a powerful machine learning 

methodology whose performance scales well with increasing amounts of data.

The fused model, which only used easily accessible imaging and clinical variables, can be 

seamlessly embedded into the current clinical workflow to achieve 90-day mRS prediction. 

It entails minimal preprocessing steps, primarily requiring the normalization of DWI and 

B0 images to a standard template; no subjective human or automated measurements are 

required. Regarding the clinical variables, we consciously used fewer clinical variables as 

compared to the previous studies1,5, limiting ourselves to those that are most routinely 

available. This should make the model more applicable to sites without support teams to 

collect such data. Also, the assignment of clinical variables can introduce human variability 

that could make the model performance suffer during generalization to diverse settings.

When utilizing imaging information for outcome prediction, a previous study (23) 

demonstrated that infarct volume can serve as an independent predictor of 90-day outcomes, 

but that it at best explained 41% of the variability in outcomes. Combining location and 

volume resulted in a significantly better correlation with clinical deficit severity than using 

volume alone7. The use of the ASPECTS score also exhibited the potential for predicting 

90-day outcomes30. Unlike earlier studies that employed imaging for outcome prediction, 

our approach uses a deep learning model to extract the most relevant features from the 

imaging, bypassing the need for traditional human-derived metrics such as volume, location, 

and ASPECTS. These assessments often suffer from sub-optimal interobserver agreement 

and only exploit a portion of the available imaging information. In contrast, a deep learning-

based, data-driven method can implicitly capture and integrate the essential aspects related 

to volume, location, or ASPECTS, improving prediction accuracy and consistency. While 

the model performed better when the saliency maps showed overlap with the infarct, 

we emphasize that the deep learning model was designed to identify important features 

for outcome prediction, not stroke segmentation. This allows the model to potentially 

also include important non-stroke information, such as atrophy, chronic infarcts, and T2-

weighted hyperintensities. It is not possible to extract these separate features using deep 
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learning methodology, but we hypothesize that all contribute potentially to stroke outcomes. 

Additionally, compared with studies1,5 using perfusion or angiography imaging, the fused 

model only took DWI and B0 as inputs, making it more applicable to sites with limited 

resources.

We did not initially include the 24-hour NIHSS score in the clinical model I, despite 

evidence from several studies1,5 that it is a strong predictor of long-term stroke outcomes - a 

conclusion further validated by Supplementary Table S6. This is because obtaining 24-hour 

NIHSS may not be a routine clinical practice in some hospitals or healthcare systems31, 

and its use may depend on the physician’s judgment31. Instead, to accommodate different 

practices, we developed two fused models: one that includes the 24-hour NIHSS score and 

another that does not. This allows centers to choose the model that best aligns with their 

routine for obtaining 24-hour NIHSS scores in AIS patients.

Fused Model I, which did not utilize the 24-hour NIHSS, performed similarly to the other 

models that did include 24-hour NIHSS, including the imaging only model. This underlines 

two points: first, the imaging model does not require a human to assess NIHSS, thereby 

reducing variability due to differences in evaluator expertise or training levels. Second, 

if only initial NIHSS is routinely recorded, the combination of the clinical and imaging 

information is quite similar to models that required 24-hour NIHSS assessment.

We observed a disparity in the predictive performance of Clinical Model 1 between the 

LUH and IT cohorts. This inconsistency could potentially be attributed to the comparatively 

lower severity of patients upon admission in the LUH cohort, which may have resulted in 

more accurate predictions by the model for this group. The effectiveness of the model could 

be influenced by the severity of the patient’s condition, suggesting that its development or 

calibration might have primarily focused on less severe cases.

The results of this study indicate that the fused clinical and imaging models outperformed 

models that included either one or the other approach. This suggests that each model 

contributes uniquely to clinical outcome prediction. While some clinical information, such 

as brain age, may be inferred from imaging32, it can be difficult for the model to accurately 

learn such information without a large dataset. Imaging, especially DWI, offers a more 

detailed profile of cerebral tissue viability and perfusion, which cannot be fully captured by 

clinical variables. It is well known that outcome is only predicted weakly by infarct size6–9; 

the DL methodology allows a way to incorporate location in a purely data-driven way.

Compared to previous stroke outcome prediction methods, our study presents several notable 

differences and advantages. First, our study achieved the highest AUC (above 0.90 in both 

internal and external generalization cohorts) for predicting unfavorable stroke outcomes. 

This performance surpasses all previous studies, though we acknowledge potential 

differences in test cohort distributions that may affect the fairness of this comparison. 

Second, by utilizing two separate test cohorts, our study allows for a more robust and 

generalized assessment of our model across a broader range of patient populations. Third, 

our study is the first to employ deep learning to extract information from imaging 

data for outcome prediction, moving beyond the reliance on potentially subjective and 
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difficult-to-obtain radiological variables. Finally, while previous research mainly focused on 

predicting unfavorable outcomes by dichotomizing mRS scores, our study not only predicts 

unfavorable outcomes but also offers predictions of specific mRS scores, providing a more 

comprehensive approach to stroke outcome prediction. The top-performing fused models 

achieved an ordinal mRS accuracy rate of 35%, nearly 2.5 times greater than random 

predictions. This represents one of the initial efforts to predict exact mRS categories using 

any method, and it is the first to use deep learning. The complexity involved in forecasting a 

7-point ordinal scale surpasses that of binary or simpler multi-class prediction tasks, which 

form the majority of the prior literature on outcome prediction. Thus, although the accuracy 

might appear modest, it is a promising starting point given the task’s challenging nature. 

However, it is important to clarify that our intent is not to propose immediate clinical 

application of this model’s capability in predicting exact mRS categories.

Supplementary Figure S2 shows the distribution of differences between true and predicted 

mRS scores for each true mRS score category. We observed the model’s performance 

depends on the true mRS score. For patients with true mRS scores ranging from 0 to 

4, the differences are generally closer to 0, indicating accurate predictions and relatively 

balanced under- and overestimations for these patients. Conversely, for patients with true 

mRS scores of 5 and 6, the differences are predominantly positive, suggesting that the 

model tends to underestimate the mRS scores for patients within this higher score range. 

One potential reason could be the fused model’s reliance on acute-phase information for 

90-day clinical outcome prediction, while other critical factors after the acute phase, such 

as rehabilitation techniques, new comorbidities, and emerging diseases, may also impact the 

long-term disability of stroke patients. This is particularly evident for some of the mRS 6 

cases; some had very small strokes and may have passed away from separate causes rather 

than directly due to their ischemic event (such as the patient shown in Figure 3c). Similar 

to the findings in a prior study1, the models do not perform well in these cases. Based 

on autopsy-verified findings, approximately 60% of AIS patients died from causes other 

than brain lesions33. Therefore, only stroke-related imaging and clinical variables might be 

suboptimal in predicting death. Nevertheless, the outcome prediction achieved by the model 

could serve as the baseline prediction based on current acute phase information to offer 

physicians and patients long-term expectations of stroke-related disabilities and optimize 

resources for patient rehabilitation planning.

In a separate analysis focusing on excellent clinical outcome (mRS 0–1 versus 2–6), we 

observed less significant enhancements when using imaging. A potential explanation for the 

subtler improvements seen with imaging in the Imaging or Fused models within the LUH 

dataset for either mRS 0–1 or 0–2 may be attributed to the relatively mild severity of the 

strokes. The disproportionate distribution of mRS scores, heavily skewed towards the 0–2 

range, poses a predictive challenge for all models. In contrast, the internal test set exhibited a 

more broadly distributed range of mRS scores.

Our study has a few limitations; First, we use mRS as the primary outcome measure. 

Although mRS is currently the most widespread metric to define disability severity, some 

weaknesses exist, such as subjective determination between categories and reproducibility 

by different examiners34. Since it focuses on activities of daily living, it also combines 
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many types of disability into the same groups, limiting fine-grained outcome prediction. 

Second, although we collected training samples from multiple clinical trials, the effect of 

the training sample size on the prediction performance is still uncertain. Third, the imaging 

used in the study were obtained after 24 hours since the initial baseline imaging. This was 

because any acute interventions had concluded by that time. In the future, it would be 

interesting to investigate using initial, pre-treatment imaging to predict outcome, thereby 

potentially enabling a role in treatment decision-making. Also, other imaging sequences 

besides DWI and B0 could be incorporated into the models at the expense of added site 

requirements and image post-processing. Fourth, our study did not account for variability in 

treatment strategies employed for the AIS patients, as this was not included in the model. 

This decision was made because the imaging used was acquired after acute treatment 

was complete. Additional information about treatment and/or imaging data relevant to 

treatment (such as perfusion imaging that might signal the presence of continued at-risk 

tissue) could be included in future models to improve performance, but again, this comes 

at the expense of greater complexity and demands on the individual sites. Fifth, this study 

utilizes clinical trials spanning a considerable period, during which the standard of care for 

acute interventions substantially evolved, especially following the validation of mechanical 

thrombectomy in 2015 and the treatment window extension in 2018. However, this paper 

focuses on MRI studies acquired after any acute treatment, and therefore might be less 

sensitive to different acute treatment modalities.

In conclusion, we developed and evaluated deep learning-based fused models combining 

brain MR and clinical information for long-term outcome prediction in AIS patients. 

Overall, the deep learning-based fusion of clinical variables and imaging enables outcome 

prediction while potentially minimizing user subjectivity and image post-processing 

requirements. The superiority of the fused model over standalone imaging and clinical 

models becomes particularly pronounced when the 24-hour NIHSS score is not available, 

highlighting its potential value in real-world clinical practice, where experienced 

neurologists may not be available for this assessment. Nonetheless, if resources are 

available, we recommend obtaining 24-hour NIHSS score to enhance the performance of 

both the clinical and fused models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Nonstandard Abbreviations and Acronyms

±1ACC accuracy within ±1 score

ACC accuracy

AIS acute ischemic stroke

AUC The area under the receiver operating characteristic curve

CI confidence interval

DL Deep Learning

DWI diffusion-weighted imaging

EVT endovascular therapy

IV tPA intravenous tissue plasminogen activator

MAE Mean absolute error

mRS modified Rankin Scale

NIHSS National Institutes of Health Stroke Scale
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Figure 1: 
Training and testing flowcharts for patients in the current study. The gray boxes highlight 

the test case patients who were completely excluded from all training related to model 

development.
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Figure 2: 
(A) The overall architecture of the fused model, which comprises a deep learning-

based imaging model and a clinical model. The clinical model uses clinical variables 

as inputs, while the imaging model includes diffusion-weighted and B0 images. (B) 
Detailed compositions of the models employed in the study. Specifically, Clinical Model 

I incorporates the following clinical information: age, gender, race, baseline NIHSS, prior 

mRS, medical history (including hypertension, diabetes, atrial fibrillation, heart diseases, 

and previous stroke), occlusion status, and treatment regimen. Clinical Model II extends 

Clinical Model I by incorporating NIHSS scores obtained after 24 hours. Fused Models 

I and II are created by integrating the imaging model with Clinical Models I and II, 

respectively. All models generate continuous predictions of 90-day mRS outcomes.
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Figure 3: 
MR images (first and second columns are diffusion-weighted imaging (DWI) and B0 

images) and corresponding saliency activation maps (rightmost column) generated by 

deep learning-based imaging models for three patients with varying clinical histories and 

90-day mRS scores. The activations are color-coded, with red indicating higher attention. 

All clinical and fused models in this figure are Type I (without 24-hour NIHSS). The 

predictions of the model are continuous but rounded to the nearest whole number to 

facilitate comparison with the true mRS. Patient A, a 39-year-old male, has a history of 

hypertension and a 90-day mRS of 3. The clinical and fused models correctly predict his 

score, and the imaging model displays high activations around the lesions. Patient B, a 

73-year-old female, has no history of diabetes or hypertension and a 90-day mRS of 0. The 

fused and clinical models predict a score of 2, while the imaging model predicts 3, with low 

activations around the stroke lesion. Patient C, a 71-year-old female, has histories of diabetes 

and hypertension and a 90-day mRS of 6. All three models predict a score of 3, and the 

imaging model shows high activations around the lesions.
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Figure 4: 
ROC Comparisons for Clinical Models, Imaging Model, and Fused Models across the two 

testing cohorts. A) Internal Test (IT) Cohort: Left - Clinical Model I, Imaging Model, and 

Fused Model I comparisons; Right - Clinical Model II, Imaging Model, and Fused Model 

II comparisons. B) Lausanne University Hospital (LUH) Cohort: Left - Clinical Model I, 

Imaging Model, and Fused Model I comparisons; Right - Clinical Model II, Imaging Model, 

and Fused Model II comparisons. The maximum value of the Youden index was used to 

determine the optimal cut-off points, shown as solid triangles on the ROC curves.
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Table 1:

Summary of the Characteristics of AIS Patients Included in Development, Internal, and External Test Cohorts

Training &Validation Cohort
(n=544)

IT Cohort
(n=96)

LUH Cohort
(n=280)

Male
271 (50.0)

0.2%1 48 (50.0) 159 (56.8)

Age 69 (57, 78) 68 (56, 75) 66 (52, 75)

Hypertension 384 (70.7)
0.2% 73 (76.0) 138 (56.8)

13.2%

Diabetes 134 (24.8)
0.6% 27 (28.1) 47 (19.1)

12.1%

Baseline NIHSS
median (IQR)

15.0 (10.0–20.0)
0.2% 15.0 (11.0–21.0) 7.0 (4.0,14.0)

1.8%

24-hour NIHSS 10.0 (4.0–17.0)
15.1%

10.0 (4.0–18.0)
14.6%

5.0 (1.0–11.0)
3.2%

Days After Stroke
median (IQR) 1 (1–4) 3 (1–5) 3 (1–5)

Large Vessel Occlusion
497 (91.4)

0.2%1 88 (91.7) 192 (68.6)

Treatment Methods

No Treatment 92 (16.9) 12 (12.5) 167 (59.6)

Only IV tPA 81 (14.9) 14 (14.6) 76 (27.1)

Only EVT 220 (40.4) 34 (35.4) 11 (3.9)

IV tPA & EVT 151 (27.8) 36 (37.5) 26 (9.3)

90-day Outcome

Favorable Outcome
(90-day mRS<=2) 239 (43.9) 43 (44.8) 152 (65.2)

Unfavorable Outcome
(90-day mRS>2) 305 (56.1) 53 (55.2) 81 (34.8)

mRS score at 90 days

0 59 (10.8) 15 (15.6) 45 (16.1)

1 100 (18.4) 17 (17.7) 69 (24.6)

2 80 (14.7) 11 (11.5) 71 (25.4)

3 104 (19.1) 17 (17.7) 45 (16.1)

4 104 (19.1) 18 (18.8) 19 (6.8)

5 34 (6.3) 8 (8.3) 8 (3.0)

6 63 (11.6) 10 (10.4) 23 (8.2)

Unless otherwise mentioned, data are expressed as number (percentage) of patients. Abbreviations: NIHSS, National Institutes of Health Stroke 
Scale; mRS, modified Rankin scale; LUH, Lausanne University Hospital; IT: Internal Testing. IV tPA: intravenous tissue plasminogen activator; 
EVT: endovascular therapy.

1
Percentage of variables missing. If no data is missing, then there will be no percentage reported.
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Table 2:

Performance Comparisons for Multinomial Prediction Performance of Clinical models, Imaging model and 

the Fused model on IT Cohort, LUH cohort.

Models MAE ±1 ACC ACC

IT Cohort (n=96) 

Clinical Model I 1.23 (1.03, 1.45) 0.65 (0.54, 0.74) 0.26 (0.18, 0.35)

Clinical Model II
(Clinical Model I + 24-hour NIHSS)

1.03 (0.83, 1.23)
p1=.02

0.74 (0.65, 0.82)
p1=.04

0.33 (0.24, 0.44)
p1=.10

Imaging Model
1.04 (0.88, 1.23)
p1=.03; p2=.89

0.75 (0.67, 0.83)
p1=.06; p2=.91

0.28 (0.19, 0.36)
p1=.74; p2=.29

Fused Model I
(Clinical Model I + Imaging Model)

0.99 (0.81, 1.19)

p1<.001†; p2=.26
p3=.06

0.74 (0.66, 0.82)
p1=.03; p2=1.00

p3=.87

0.34 (0.25, 0.44)
p1=.05; p2=.78

p3=.07

Fused Model II
(Clinical Model II + Imaging Model)

0.96 (0.77, 1.16)
p1<.001†; p2=.002†

p3=.08; p4=.58

0.79 (0.71, 0.88)
p1=.004; p2=.12
p3=.35; p4=.21

0.35 (0.26, 0.46)
p1=.04; p2=.39
p3=.04; p4=.73

LUH Cohort (n=280) 

Clinical Model I 1.15 (1.03, 1.27) 0.71 (0.65, 0.76) 0.28 (0.22, 0.33)

Clinical Model II
(Clinical Model I + 24-hour NIHSS)

0.91 (0.80, 1.03)

p1<0.001†
0.84 (0.79,0.88)

p1<0.001†
0.34 (0.29, 0.40)

p1=.02

Imaging Model
1.03 (0.91, 1.15)

p1=.001†; p2=.05
0.77 (0.72, 0.82)
p1=.18; p2=.17

0.35 (0.29, 0.40)
p1=.09; p2=.78

Fused Model I
(Clinical Model I + Imaging Model)

0.99 (0.87, 1.11)

p1<.001†; p2=.09
p3=.19

0.79 (0.74, 0.84)

p1<.009†; p2=.19
p3=.44

0.35 (0.29, 
0.40) 

p1=.05; p2=.85
p3=.93

Fused Model II
(Clinical Model II + Imaging Model)

0.90 (0.79, 1.01)
p1<.001†; p2=.88

p3=.005†; p4=.02†

0.83 (0.78, 0.87)

p1<.001†; p2=.66
p3=.10; p4=.13

0.36 (0.30, 0.41)
p1=.008; p2=.48
p3=.38; p4=.39

p1 is for the statistical comparison to the Clinical Model I, p2 is for the statistical comparison to the Clinical Model II, p3 is for the statistical 
comparison to the Imaging Model, p4 is for the statistical comparison to the Fused Model I. Abbreviations: NIHSS, National Institutes of Health 
Stroke Scale; LUH, Lausanne University Hospital; IT: Internal Testing. MAE: Mean absolute error; ACC: accuracy for a specific mRS; ±1 ACC: 
mRS accuracy within ±1 score; MAE: Mean Absolute Error.

†
P value still held significance (p < 0.05) after accounting for multiple comparisons and applying a 5% false discovery rate through the 

Benjamini-Hochberg procedure.
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