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A Bound on the Sum

of Weighted Pairwise Distances

of Points Constrained to Balls ∗

Neal E. Young

September 1994

Abstract

We consider the problem of choosing Euclidean points to maximize the sum of their weighted
pairwise distances, when each point is constrained to a ball centered at the origin. We derive
a dual minimization problem and show strong duality holds (i.e., the resulting upper bound is
tight) when some locally optimal configuration of points is affinely independent. We sketch a
polynomial time algorithm for finding a near-optimal set of points.

1 Introduction

We consider the following maximization problem P (n,w, ℓ):

maximize{pi}
∑

1≤i<j≤n

w(i, j)d(pi, pj)

subject to







pi ∈ IRn−1 (i = 1, .., n);

||pi|| ≤ ℓ(i) (i = 1, .., n).

Here each w(i, j) ≥ 0 and each ℓ(i) ≥ 0 is fixed, d(p, q) denotes the Euclidean distance between
points p and q, and ||p|| denotes the Euclidean length (distance from the origin) of point p.

We derive the following dual problem D(n,w, ℓ):

minimize{xi}

√

√

√

√

∑

1≤i<j≤n

w2(i, j)

xixj
×

√

√

√

√

n
∑

i=1

ℓ2(i)xi ×

√

√

√

√

n
∑

i=1

xi

subject to







xi ∈ IR (i = 1, .., n);

xi ≥ 0 (i = 1, .., n).

Throughout the paper, 0
0 is defined to be 0.

We show that the value of the maximization problem is at most the value of the minimization
problem. We use a physical interpretation of the two problems to show that the values are equal
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provided the maximization problem admits a set of points {pi} that is both affinely independent
and stationary (i.e., the gradient of the objective function is a nonnegative combination of the
gradients of the active constraints, a necessary condition at any local maximizer of P (n,w, ℓ)).

We sketch how a near-optimal solution to the problem can be found in polynomial time via the
ellipsoid method.

2 Related Work

The case w(i, j) = ℓ(i) = 1 (in which the optimal points are given by the vertices of the regular

n-simplex, achieving a value of n
√

(n
2

)

) was previously considered by [3]. Our Lemma 1 generalizes

a bound in that paper.
Specific instances of P (n,w, ℓ) were studied to obtain geometric inequalities that were used to

analyze approximation algorithms for finding low-degree, low-weight spanning trees in Euclidean
spaces [2].

Goemans and Williamson [1] consider related problems with applications to approximating the
maximum cut in a graph and to maximizing the number of satisfied clauses in a CNF formula. We
modify their approach to solving their problems to obtain a polynomial time algorithm for ours.

3 A Dual Problem

Lemma 1 For any n, w, and ℓ, the value of the maximization problem P (n,w, ℓ) is at most the
value of the minimization problem D(n,w, ℓ).

Proof: Fix any n, w, and ℓ. Fix any set of points {pi} and values {xi} meeting the constraints

of P (n,w, ℓ) and D(n,w, ℓ), respectively. Let A(i, j) = w(i,j)√
xixj

and B(i, j) =
√
xixjd(pi, pj) for

1 ≤ i < j ≤ n. Then, by the Cauchy-Schwartz inequality A · B ≤ ‖A‖ × ‖B‖ (where A and B are
interpreted as

(n
2

)

-dimensional vectors, and · denotes the dot product):

∑

i<j

w(i, j)d(pi, pj) ≤
√

√

√

√

∑

i<j

w2(i, j)

xixj
×
√

∑

i<j

xixjd2(pi, pj). (1)

It remains only to show

∑

i<j

xixjd
2(pi, pj) ≤

(

∑

i

xi

)

×
(

∑

i

ℓ2(i)xi

)

.

Expanding the left-hand side,

∑

i<j

xixjd
2(pi, pj)

=
1

2

∑

i,j

xixj(pi − pj) · (pi − pj)

=
1

2

∑

i,j

xixj(pi · pi − 2pi · pj + pj · pj)
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≤
∑

i,j

xixj(ℓ
2(i) − pi · pj) (2)

=

(

∑

i

xi

)

×
(

∑

i

xiℓ
2(i)

)

−
(

∑

i

xipi

)

·
(

∑

i

xipi

)

=

(

∑

i

xi

)

×
(

∑

i

xiℓ
2(i)

)

−
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i

xipi

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

≤
(

∑

i

xi

)

×
(

∑

i

xiℓ
2(i)

)

. (3)

Lemma 2 Fix any n, w, and ℓ. Suppose the maximization problem P (n,w, ℓ) admits a set of
points {pi} that is both stationary and affinely independent. Then the values of the two problems
are equal. Further, there exists {xi} such that

xipi =
∑

j

w(i, j)
pi − pj

d(pi, pj)
(4)

(where xi = 0 in case ‖pi‖ < ℓi, and w(i, j) = w(j, i) and w(i, i) = 0), and {pi} and {xi} are global
optima for the two problems.

Proof: Fix any n, w, and ℓ. Consider the objective function Φ({pi}) =
∑

ij w(i, j)d(pi, pj) of
P (n,w, ℓ). That {pi} is stationary means that the gradient of Φ is a nonnegative combination of
the gradients of the constraints of P (n,w, ℓ) active at {pi}. By elementary calculus, the gradient
of Φ consists of a vector fi for each point pi, with each fi equal to the right-hand side of (4). The
only constraint on pi is ‖pi‖ ≤ ℓ(i), whose gradient (again by elementary calculus) is a nonnegative
multiple of pi. Thus, for each i, there exists an xi ≥ 0 such that (4) holds. Note that if ‖pi‖ < ℓ(i),
then the constraint is not active, so that fi must be the zero vector. In this case we take xi = 0.

We will show that each inequality in Lemma 1 is tight for these {pi} and {xi}. Inequality (3)
is tight because, by (4),

∑

i xipi is the zero vector. Inequality (2) is tight because ‖pi‖ < ℓ(i) only
if xi = 0.

Inequality (1) is tight provided the vector A (in the proof of Lemma 1) is a scalar multiple of
B. Assume {pi} is affinely independent. Then, considering {xi} and {pi} fixed and {w(i, j)} as the
set of unknowns (i.e., reversing their roles), (4) uniquely determines each w(i, j). Since

w(i, j) =
xixjd(pi, pj)
∑

k xk
(1 ≤ i < j ≤ n) (5)

is consistent with (4) (check this by substitution for w(i, j) in (4)), it follows that (5) necessarily
holds. Thus, A is a scalar multiple of B and Inequality (1) is tight.

A physical model for the quantities involved is as follows. Consider a physical system of n
points {pi}. Each point pi is constrained to a ball of radius ℓ(i) centered at the origin. For each
pair of points (pi, pj), pi repels pj (and vice versa) with a force of magnitude w(i, j).

Under this interpretation, each vector fi in the proof corresponds to the force on pi, and xi is
the magnitude of this force, divided by ‖pi‖.
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4 Solving P (n, w, ℓ) in Polynomial Time

If the instance of P (n,w, ℓ) is small or has a high degree of symmetry, the dual problem D(n,w, ℓ)
might yield a function that can be minimized directly by symbolic methods. In general, it is
possible to solve P (n,w, ℓ) (to any given degree of precision) in polynomial time using semi-definite
programming, following the approach in [1].

Those authors consider a related problem GW (w,n):

maximize{pi}
∑

1≤i<j≤n

w(i, j)d2(pi, pj)

subject to







pi ∈ IRn (i = 1, .., n);

‖pi‖ = 1 (i = 1, .., n).

The authors show how to solve this problem in polynomial time by formulating it as a semi-definite
program, and how to round a (near-)optimal set of points {pi} to obtain an approximate solution to
a corresponding max-cut problem. This approach yielded the first polynomial-time approximation
algorithm achieving a performance guarantee better than two for the max-cut problem.

We briefly sketch their aproach for solving GW (w,n) and how it can be modified to solve
P (w,n, ℓ). The connection between sets of points and positive semi-definite matrices is the follow-
ing: an n × n symmetric matrix Y is positive semi-definite if and only if there exists a set of n
points {pi} in IRn such that Yij = pi · pj . Thus, GW (w,n) is equivalent to following:

maximize{Y }
∑

ij

w(i, j)(2 − 2Yij)

subject to







Y is an n× n symmetric, positive semi-definite matrix;

Yii = 1 (i = 1, .., n).

The space of n × n symmetric, positive semi-definite matrices admits a polynomial time sep-
aration oracle because a symmetric matrix Y is positive semi-definite if and only if xTY x ≥ 0
for each x ∈ IRn, and in fact it suffices to check each eigenvector x of Y . Thus, combining the
constraint that Y is positive semi-definite with arbitrary linear inequalities on the elements of Y
yields a convex space with a polynomial time separation oracle. Approximate feasibility of such a
problem is testable in polynomial time via the ellipsoid method. Thus, GW (n) can be solved to
near-optimality in polynomial time.

A similar approach can be used to solve P (n,w, ℓ) in polynomial time. In particular, P (n,w, ℓ)
corresponds to the following semi-definite program:

maximize{Y }
∑

ij

w(i, j)
√

Yii + Yjj − 2Yij

subject to







Y is an n× n symmetric, positive semi-definite matrix;

Yii ≤ ℓ(i) (i = 1, .., n).

Since
∑

ij w(i, j)
√

Yii + Yjj − 2Yij is a concave function in {Yij} whose gradient can be computed
in polynomial time, the above program also admits a separation oracle sufficient to solve it to
near-optimality in polynomial time using the ellipsoid method.
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5 Open Problems

It would be interesting to obtain a more efficient algorithm for solving P (w,n, ℓ) than is obtained
by reducing to the ellipsoid method. Especially interesting would be a primal-dual algorithm along
the lines of traditional “combinatorial” algorithms for solving or approximating linear programs.
It is not clear how to achieve such algorithms in the semi-definite setting.

Similarly, the only known method for achieving a better factor than two for the max-cut problem
is by reduction to semi-definite programming. Goemans and Williamson leave open the problem of
finding a more efficient algorithm that beats a factor of two. A more efficient algorithm for P (n,w, ℓ)
(with each ℓ(i) = 1) would solve this, because applying their randomized rounding technique to
P (n,w, ℓ) also yields an approximation algorithm for max-cut with performance guarantee better
than two.

On the other hand, consider the generalization of GW (n,w) in which the objective function is
replaced by

∑

ij w(i, j)d
2+ǫ(pi, pj) for some ǫ ≥ 0. For ǫ > 0, applying Goemans and Williamson’s

approach to this program rather than GW (n,w) would provide a better approximation to max-cut.
Is the generalization solvable in polynomial time for some ǫ > 0?
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