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Abstract

We consider the problem of choosing Euclidean points to maximize the sum of their weighted
pairwise distances, when each point is constrained to a ball centered at the origin. We derive
a dual minimization problem and show strong duality holds (i.e., the resulting upper bound is
tight) when some locally optimal configuration of points is affinely independent. We sketch a
polynomial time algorithm for finding a near-optimal set of points.

1 Introduction
We consider the following maximization problem P(n,w,{):
maximizey, Z w(i, j)d(pi, p;)
1<i<j<n
pi € R (i=1,.,n);

subject to , ,
Ipal| < €G)  (@=1,.,n).

Here each w(i,7) > 0 and each £(i) > 0 is fixed, d(p,q) denotes the Euclidean distance between
points p and ¢, and ||p|| denotes the Euclidean length (distance from the origin) of point p.
We derive the following dual problem D(n,w,¥¢):

207 n n
minimizey, $ Z wij) X \lZﬁ(z)xz X \IZ:EZ
i=1 i=1

1<i<j<n  LiTJ

z, € R (i=1,.,n);

subject to
r, > 0 (i=1,.,n).
Throughout the paper, % is defined to be 0.
We show that the value of the maximization problem is at most the value of the minimization
problem. We use a physical interpretation of the two problems to show that the values are equal
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provided the maximization problem admits a set of points {p;} that is both affinely independent
and stationary (i.e., the gradient of the objective function is a nonnegative combination of the
gradients of the active constraints, a necessary condition at any local maximizer of P(n,w,¥)).

We sketch how a near-optimal solution to the problem can be found in polynomial time via the
ellipsoid method.

2 Related Work

The case w(i,j) = £(i) = 1 (in which the optimal points are given by the vertices of the regular

n-simplex, achieving a value of n\/@ ) was previously considered by [3]. Our Lemma [I] generalizes
a bound in that paper.

Specific instances of P(n,w, ) were studied to obtain geometric inequalities that were used to
analyze approximation algorithms for finding low-degree, low-weight spanning trees in Euclidean
spaces [2].

Goemans and Williamson [I] consider related problems with applications to approximating the
maximum cut in a graph and to maximizing the number of satisfied clauses in a CNF formula. We
modify their approach to solving their problems to obtain a polynomial time algorithm for ours.

3 A Dual Problem

Lemma 1 For any n, w, and ¢, the value of the mazximization problem P(n,w,f) is at most the
value of the minimization problem D(n,w, ().

Proof: Fix any n, w, and ¢. Fix any set of points {p;} and values {x;} meeting the constraints
of P(n,w,?) and D(n,w,/), respectively. Let A(i,j) = % and B(i,j) = /Z;z;d(pi,p;) for

1 <i < j <n. Then, by the Cauchy-Schwartz inequality A - B < ||A|| x ||B|| (where A and B are
interpreted as (g)—dimensional vectors, and - denotes the dot product):

> w(i, j)d(pi,pj) < ZMX > wiw;d?(pi, pj). (1)

i<j i<y ity i<j
It remains only to show

Zx,azj (pi,pj) < <sz> X <Zg2(1)x,>

1<j

Expanding the left-hand side,

E xzxj pwp]
1<j

1
= 5 > zixi(pi — pj) - (i — pj)
i7j

1
= 52%%’(2% “pi — 2pi - pj +pj ;)
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Lemma 2 Fiz any n, w, and {. Suppose the maximization problem P(n,w,f) admits a set of
points {p;} that is both stationary and affinely independent. Then the values of the two problems
are equal. Further, there exists {x;} such that

zip; = zwu)ﬁ (4)

(where x; = 0 in case ||pi|| < 4i, and w(i,j) = w(j,i) and w(i,i) =0), and {p;} and {z;} are global
optima for the two problems.

Proof: Fix any n, w, and £. Consider the objective function ®({p;}) = >_,; w(4, j)d(p:,p;) of
P(n,w,?). That {p;} is stationary means that the gradient of ® is a nonnegative combination of
the gradients of the constraints of P(n,w,f) active at {p;}. By elementary calculus, the gradient
of ® consists of a vector f; for each point p;, with each f; equal to the right-hand side of ({]). The
only constraint on p; is ||p;|| < £(i), whose gradient (again by elementary calculus) is a nonnegative
multiple of p;. Thus, for each i, there exists an x; > 0 such that (@) holds. Note that if ||p;|| < £(7),
then the constraint is not active, so that f; must be the zero vector. In this case we take x; = 0.

We will show that each inequality in Lemma [ is tight for these {p;} and {z;}. Inequality (3]
is tight because, by @), >, z;p; is the zero vector. Inequality (2]) is tight because ||p;|| < £(i) only

Inequality () is tight provided the vector A (in the proof of Lemma [I]) is a scalar multiple of
B. Assume {p;} is affinely independent. Then, considering {z;} and {p;} fixed and {w(i,7)} as the
set of unknowns (i.e., reversing their roles), () uniquely determines each w(i, j). Since

ziz;d(pi, pj)

w(i,j) = 1<i<i3<n 5

(i) = LR (1 <i< <) Q

is consistent with () (check this by substitution for w(i,j) in (@)), it follows that (Bl necessarily
holds. Thus, A is a scalar multiple of B and Inequality () is tight. 0

A physical model for the quantities involved is as follows. Consider a physical system of n
points {p;}. Each point p; is constrained to a ball of radius £(i) centered at the origin. For each
pair of points (p;, p;), p; repels p; (and vice versa) with a force of magnitude w(3, 7).

Under this interpretation, each vector f; in the proof corresponds to the force on p;, and x; is
the magnitude of this force, divided by ||p;]|-



4 Solving P(n,w,{) in Polynomial Time

If the instance of P(n,w, ) is small or has a high degree of symmetry, the dual problem D(n,w,¢)
might yield a function that can be minimized directly by symbolic methods. In general, it is
possible to solve P(n,w, ¢) (to any given degree of precision) in polynomial time using semi-definite
programming, following the approach in [IJ.

Those authors consider a related problem GW (w,n):

maximizeg,, > w(i,§)d(pi,p;)

1<i<j<n
, € R* (i=1,..,n);
subject to bi ( )
Ilpil] = 1 (t=1,.,n).

The authors show how to solve this problem in polynomial time by formulating it as a semi-definite
program, and how to round a (near-)optimal set of points {p;} to obtain an approximate solution to
a corresponding max-cut problem. This approach yielded the first polynomial-time approximation
algorithm achieving a performance guarantee better than two for the max-cut problem.

We briefly sketch their aproach for solving GW (w,n) and how it can be modified to solve
P(w,n, ). The connection between sets of points and positive semi-definite matrices is the follow-
ing: an n X n symmetric matrix Y is positive semi-definite if and only if there exists a set of n
points {p;} in R™ such that Y;; = p; - p;. Thus, GW (w,n) is equivalent to following:

maximizeyy Y w(i, j)(2 — 2Yj;)
ij
is an n X n symmetric, positive semi-definite matrix;

subject to
Yi = 1 (i=1,..,n).

The space of n X n symmetric, positive semi-definite matrices admits a polynomial time sep-
aration oracle because a symmetric matrix Y is positive semi-definite if and only if 27Yz > 0
for each € R", and in fact it suffices to check each eigenvector x of Y. Thus, combining the
constraint that Y is positive semi-definite with arbitrary linear inequalities on the elements of Y
yields a convex space with a polynomial time separation oracle. Approximate feasibility of such a
problem is testable in polynomial time via the ellipsoid method. Thus, GW (n) can be solved to
near-optimality in polynomial time.

A similar approach can be used to solve P(n,w, ) in polynomial time. In particular, P(n,w, {)
corresponds to the following semi-definite program:

maximize yy Zw(i,j)\/Yii +Yj; —2Y;;
]
Y is an n X n symmetric, positive semi-definite matrix;

subject to
Yii < £(3) (i=1,.,n).

Since 3°,;; w(i, j)/Yii + Yjj — 2Yi; is a concave function in {Y;;} whose gradient can be computed
in polynomial time, the above program also admits a separation oracle sufficient to solve it to
near-optimality in polynomial time using the ellipsoid method.



5 Open Problems

It would be interesting to obtain a more efficient algorithm for solving P(w,n,¢) than is obtained
by reducing to the ellipsoid method. Especially interesting would be a primal-dual algorithm along
the lines of traditional “combinatorial” algorithms for solving or approximating linear programs.
It is not clear how to achieve such algorithms in the semi-definite setting.

Similarly, the only known method for achieving a better factor than two for the max-cut problem
is by reduction to semi-definite programming. Goemans and Williamson leave open the problem of
finding a more efficient algorithm that beats a factor of two. A more efficient algorithm for P(n,w, ¢)
(with each £(i) = 1) would solve this, because applying their randomized rounding technique to
P(n,w,¥) also yields an approximation algorithm for max-cut with performance guarantee better
than two.

On the other hand, consider the generalization of GW (n,w) in which the objective function is
replaced by 37, w(i, 7)d*T¢(p;, pj) for some € > 0. For € > 0, applying Goemans and Williamson’s
approach to this program rather than GW (n,w) would provide a better approximation to max-cut.
Is the generalization solvable in polynomial time for some € > 07
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