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ABSTRACT OF THE DISSERTATION

State estimation with imperfect communications: escape time formulation and exact
quantized-innovations filtering

by

Chun-Chia Huang

Doctor of Philosophy in Engineering Science (Mechanical Engineering)

University of California, San Diego, 2015

Professor Robert R. Bitmead, Chair

The problem of state estimation for a linear, time-varying, gaussian system

from measurements which are communicated over an imperfect channel is considered

from several perspectives. The communication imperfections include intermittency,

channel noise, quantization, etc. The first part of the thesis examines the stochastic

behavior of the state estimation error and of the regulated state itself in situations of

intermittent and quantized measurements via the formulation of an escape time problem

dealing with the cumulative distribution function of the probability of escape of these

signals from a given set. This is compared to and contrasted with earlier analyses which

x



considered the behavior of Kalman filters with intermittent data based on moments and

conditional moments, and the evaluation of the minimal number of bits required for

mean square stabilization. The main result shows the escape time is characterized by a

Markov chain which is amenable to explicit analysis through the calculation of the its

cumulative distribution function. The second part of the thesis focuses on developing

an exact formulation of the conditional probability density function of the system state

given quantized innovations signals communicated from a linear Kalman filter at the

transmitter. This is based on Bayesian filtering and extends previous works on the subject

but without the requirement for simplifying assumptions. This latter result follows from

a simple observation concerning the correct choice of state for the transmitter, which

includes the transmitters’ Kalman filter estimate. This leads to an exact and recursive

approach.
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Chapter 1

Introduction

1.1 Framework

Wireless sensor networks have been in application for several decades because

of the advantages stemming from remote communication of process data, such as the

absence of cabling, grounding issues, remote installation, etc. However, imperfect com-

munication can cause severe problems such as intermittency, channel noise, quantization,

delay, etc.

We consider state estimation for the linear, time-varying, gaussian system at one

terminal of a communications link – the transmitter.

xk+1 = Akxk +Bkuk +wk, (1.1)

yk =Ckxk + vk, (1.2)

where wk ∼N (0,Qk), vk ∼N (0,Rk), x0 ∼N (x̂0|−1,Σ0|−1) with each of these signals

mutually independent and with {wk} and {vk} white. Here, as usual, xk, uk, yk, wk,

vk are the system state, input, output, process noise and measurement noise signals

of dimensions n, p, m, n, m respectively and [Ak,Bk,Ck] are the system matrices of

conformable dimensions. State estimation for this system given the measurements {yk} is

1
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performed by the Kalman predictor or filter, which we describe shortly. We will consider

two variations of this problem determined by the data communicated from the transmitter

through the imperfect channel to a receiver at which state estimation is performed.

In the first part of the thesis we discuss an intermittent and quantized communica-

tion channel providing data

zk = γkQd(yk), (1.3)

to the receiver. Function Qd describes a subtractive dithered quantizer and signal

γk ∈ {0,1} captures the intermittency. The receiver given this data then computes a

state estimate, x̂k|k−1, and possibly also a feedback control, uk, which is applied to the

system directly without passing through an additional communication channel. Such a

single-link problem might arise in the control of a geographically distributed system with

remote sensing and local actuation.

Under this structure, we examine the escape time of the state estimation error,

x̃k|k−1 = xk− x̂k|k−1, and, if controlled, of the state itself, xk, from a given set D ⊂ Rn.

By escape time we mean the first time in which the signal lies outside the set. Since

the system is stochastic, this time is a random variable and we develop procedures to

computes its cumulative distribution function as it evolves over time. This is compared

and contrasted with earlier works which focused on the moments of the errors or of the

controlled state. We believe that this escape time formulation is more appropriate and

helpful an analysis than the moment-based approach, since for gaussian systems escape

is almost sure no matter then bounds on moments, as we show shortly.

In the second part of thesis, we consider a clever and more communications

oriented approach in which a Kalman predictor is operated at the transmitter to yield the

least-squares optimal state estimate, x̂KF
k|k−1, and the data communicated to the receiver
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is the transmitter-side innovations sequence, εk = yk−Ckx̂KF
k|k−1. The communication

channel is both intermittent and quantized, although now through an arbitrary quantizer,

Q. This innovations sequence has the property that it is white, zero mean and low

variance. So the bitrate associated with the digital channel is more efficiently used. The

data arriving at the receiver is described by

ε̄k = γkQ(εk). (1.4)

This problem has been studied recently by a number of researchers who have

needed to make simplifying assumptions in order to derive a receiver-side recursive

state estimator based on Bayesian filtering. Our core observation is that the appropriate

transmitter state for this Bayesian filter comprises the system state, xk, augmented by the

transmitter’s Kalman predictor state, x̂KF
k|k−1. This is used directly in the Bayesian filter to

derive our results without further assumption. This does not mitigate the computational

complexity of the Bayesian filter probability density function(PDF) calculations but does

affect their accuracy.

1.2 Kalman Filter

The theme in this thesis is state estimation problem in an imperfect communi-

cation environment as described above. Before stepping into the main problems of the

thesis, we would like to describe and unify the notation of Kalman filter (KF). Optimal

state estimation for linear time varying gaussian systems with a least conditional mean

squares criterion is provided by the KF. The initial condition of the Kalman predictor

is the mean value x̂0|−1 with initial covariance Σ0|−1. We present the Kalman filter here

based on [1].

The system model is (2.1-2.2) with the assumptions concerning gaussian initial
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condition, process noise {wk}, and measurement noise {vk} given immediately below.

Since the KF is linear, the state estimate and the state estimation error are both gaussian

and hence possess pdfs and conditional pdfs completely described by their first two

moments. Denote: the output measurement sequence Yk = {y0,y1, · · ·yk}; and estimates:

x̂k|k−1 = E[xk

∣∣∣Yk−1] x̂k|k = E[xk

∣∣∣Yk].

The estimate x̂k|k−1 minimizes

Σk|k−1 = E
[
|xk− x̂k|k−1|2

∣∣∣Yk−1

]
,

and x̂k|k minimizes

Σk|k = E
[
|xk− x̂k|k|2

∣∣∣Yk

]
,

We express the recursive algorithm Kalman filter as following.

measurement update

Lk = Σk|k−1CT
k (CkΣk|k−1CT

k +Rk)
−1,

Kk = AkLk, (Kalman gain)

x̂k|k = x̂k|k−1 +Lk(yk−Ckx̂k|k−1), (Filtered state estimate )

Σk|k = Σk|k−1−LkCkΣk|k−1. (Filter covariance)

x̃k|k = xk− x̂k|k, (Filtered error)

time update

x̂k+1|k = Akx̂k|k +Bkuk, (Predicted state estimate)

Σk+1|k = AkΣk|kAT
k +Qk, (Predicted covariance)

x̃k+1|k = xk+1− x̂k+1|k, (Prediction error)
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The KF recursion produces the conditional mean and the conditional variance of the state

given the measurements. The following formula is the recursive formula for predicted

error covariance, Riccati Difference Equation (RDE):

Σk+1|k = AkΣk|k−1AT
k −AkΣk|k−1CT

k (CkΣk|k−1CT
k +Rk)

−1CkΣk|k−1AT
k +Qk,

and Lyapunov version of the RDE

Σk+1|k = (Ak−KkCk)Σk|k−1(Ak−KkCk)
T +KkRkKT

k +Qk.

There are several things worth mentioning, which we list as follows.

1. The recursive covariance formulas are precomputable and do not depend on the

data while the but state formulas do.

2. The innovations signal εk = yk−Cx̂k|k−1 is the term in the filtered state estimate

measurement update formula. It is white, gaussian, zero-mean, with covariance

Pεk =CkΣk|k−1Ck
k +Rk. We will use these properties in the second part of thesis.

3. For time invariant systems, a steady state solution of RDE exists (subject to

conditions [1]) and is the limiting value of the RDE solution and satisfies the

Algebraic Riccati Equation.

Σ = AΣAT −AΣCT (CΣCT +R)−1CΣAT +Q,

4. The Information Filter is a variant of the KF recursion and yields the same solutions

but has computational advantages in some circumstances. The derivation from the

Kalman Filter to the Information Filter is based on the Matrix Inversion Lemma
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and is shown in [1]. The covariance recursions of the Information Filter are

Σ
−1
k|k = Σ

−1
k|k−1 +CT

k R−1
k Ck (1.5)

Σ
−1
k+1|k = Q−1

k −Q−1
k Ak(Σ

−1
k|k +AT

k Q−1
k Ak)

−1AT
k Q−1

k (1.6)

The importance of the Kalman filtering recursion to the work in this thesis is

that it provides a background against which to compare the results derived. We study

in Part I the formulation of the escape time for the KF prediction error from a specific

domain in the circumstances where the measurement data are subject to intermittency

and quantization as described by (1.3). These problems are no longer gaussian, because

of the nonlinear quantization, and the escape time problem, even for gaussian processes,

does not admit a straightforward recursive analysis. Our research presented here derives

a recursive formula for the cumulative distribution function of escape as a function of

time. This derivation is exact for known packet-dropping sequence {γk}. The distribution

of escape time can then be computed by averaging over this sequence.

The escape time analysis of the Kalman predictor error is extended to the con-

sideration of escape of the controlled output, yk, of system (2.1-2.2), where the control

signal is given by state estimate feedback

uk =−Kx̂k|k.

These results provide an alternative to the mean-square stabilization results of [20], which

provide no upper bound on the controlled output and assume reliable communications.

On the other hand, they are able to determine minimal communication requirements.

In Part II of the thesis, we focus entirely on the construction of the conditional

density of xk given the intermittent, quantized measurements Ēk = {ε̄` : `= 0, ...,k} given
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by (1.4). This is conducted using the concept from Bayesian filtering presented next.

The innovations sequence, εk, in the KF above is gaussian, zero mean with prescribed

covariance. By contrast, the quantized innovations, ε̄k, has compact support and need

not be zero mean depending on the quantizer. The Bayesian filter allows us to develop a

recursive approach to the computation of the conditional density of the state, from which

any desired statistic, not just the conditional mean and variance, can be computed. This

has been a longstanding technical problem.

1.3 Bayesian filter

The KF gives the conditional density for gaussian signals, as would apply at

the transmitter side. Quantization is nonlinear and data signals at the receiver are not

gaussian. So the KF no longer yields the correct conditional density. Bayesian filtering

is a more general nonlinear technique to produce the conditional probability density

function of the state. The content of this section is based on Bayesian state estimation as

presented in [3].

Suppose we have a state-space system as follows.

xk+1 = fk(xk,wk), (1.7)

yk = hk(xk,vk), (1.8)

where process noise {wk} and measurement noise {vk} are independent and white. The

functions fk(·, ·) and hk(·, ·) are not necessarily linear time-varying system equations. The

goal of a Bayesian estimator is to compute the predicted pdf p(xk

∣∣∣Yk−1 = {y0,y1 . . .yk−1})

and the filtered pdf p(xk

∣∣∣Yk = {y0,y1, . . .yk}) starting from the initial state pdf p(x0).

The first probability density function we compute is the filtered pdf p(x0

∣∣∣y0)
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using Bayes Rule,

p(x0

∣∣∣y0) =
p(y0

∣∣∣x0)

p(y0)
p(x0).

The term p(y0

∣∣∣x0) can be computed in terms of the distribution of vk. Then, we step

into the algorithm to find predicted pdf p(xk+1

∣∣∣Yk) and filtered pdf p(xk+1

∣∣∣Yk+1). The

predicted pdf can be computed as follows.

p(xk+1

∣∣∣Yk) =
∫

xk

p[(xk+1,xk)
∣∣∣Yk]dxk

=
∫

xk

p[xk+1

∣∣∣(xk,Yk)]p(xk

∣∣∣Yk)dxk

=
∫

xk

p[xk+1

∣∣∣xk]p(xk

∣∣∣Yk)dxk (1.9)

The second equality follows by Bayes’ Rule and the third equality follows from the

Markovian property of the state. The p(xk+1

∣∣∣xk) can be calculated from the system

state equation (1.7) and the distribution of the process noise wk. Relation (1.9) is the

computation of predicted state conditional pdf from the filtered state conditional pdf —

equivalent to the time update phase of the KF.

Next we compute the filtered conditional pdf of xk from the predicted conditional

pdf and the new measurement. This coincides with the measurement update phase of the
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KF. Start by applying Bayes Rule.

p(xk+1

∣∣∣Yk+1) =
p(Yk+1

∣∣∣xk+1)

p(Yk+1)
p(xk+1)

=
p(yk+1,Yk

∣∣∣xk+1)

p(yk+1,Yk)

p(xk+1

∣∣∣Yk)p(Yk)

p(Yk

∣∣∣xk+1)

=
p(xk+1,yk+1,Yk)

p(xk+1), p(yk+1,Yk)

p(xk+1,Yk)p(Yk)

p(Yk)p(Yk

∣∣∣xk+1)

=
p(xk+1,yk+1,Yk)p(xk+1,Yk)p(Yk)

p(xk+1), p(yk+1,Yk)p(Yk)p(Yk

∣∣∣xk+1)

p(xk+1,yk+1)

p(xk+1,yk+1)

=
p(Yk

∣∣∣xk+1,yk+1)p(yk+1

∣∣∣xk+1)p(xk+1

∣∣∣Yk)

p(yk+1

∣∣∣Yk)p(Yk

∣∣∣xk+1)
(1.10)

Next apply the Markovian property of the state in the term p(Yk

∣∣∣xk+1,yk+1).

p(xk+1

∣∣∣Yk+1) =
p(yk+1

∣∣∣xk+1)p(xk+1

∣∣∣Yk)

p(yk+1

∣∣∣Yk)
(1.11)

All of these terms are available from the output equation (1.8) and the density of the

measurement noise vk. The denominator can be computed as follows.

p(yk+1

∣∣∣Yk) =
∫

xk+1

p(yk+1,xk+1

∣∣∣Yk)dxk+1

=
∫

xk+1

p(yk+1

∣∣∣xk+1,Yk)p(xk+1

∣∣∣Yk)dxk+1

=
∫

xk+1

p(yk+1

∣∣∣xk+1)p(xk+1

∣∣∣Yk)dxk+1 (1.12)
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So, we obtain the filtered pdf from the predicted pdf and the new measurement.

p(xk+1

∣∣∣Yk+1) =
p(yk+1

∣∣∣xk+1)p(xk+1

∣∣∣Yk)∫
xk+1

p(yk+1

∣∣∣xk+1)p(xk+1

∣∣∣Yk)dxk+1

(1.13)

The equations (1.9-1.13) form the Bayesian filter.

As will be demonstrated in Chapter 5, our contribution to quantized innovations

state estimation is to apply the Bayesian filter to: system equations 2.1 and (2.2); the KF

equations of Section 1.2; and the quantized innovations measurement equation (1.4) to

yield an exact recursion for the predicted and filtered state conditional densities. The

(surprising to us) novelty compared to earlier work in this area is that we recognize

that the appropriate state for the quantized innovations filter consists of system state xk

augmented by KF estimator state x̂k|k−1. The Bayesian filter calculations then proceed

directly. While the Bayesian filter is structurally very similar to the Kalman filter —

indeed the Kalman filter is the Bayesian filter for linear gaussian systems — the Bayesian

filter is significantly more complicated computationally than is the KF, because of the

representation of the pdf. For the KF gaussian densities one may propagate the conditional

mean and covariance, while the Bayesian filter requires a more complex representation,

usually a sampling of the density function. An alternative approach for nonlinear state

estimation is the Particle filter, where samples are propagated through the dynamics

and then resampled in the measurement update. The Particle filter is computationally

significantly more challenging than the Bayesian filter.
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1.4 Background and literature survey

1.4.1 Background and literature survey of escape time

For the transmitter-side system (2.1-2.2) with communicated data {zk} given by

(1.3), we define the escape time.

Definition 1 (Escape time) Given a closed domain D ⊂ Rd and a stochastic process

{ξk : k = 1, . . .} on Rd , the escape time is defined to be

τe =


argmink ξk 6∈D ,

∞, if ξk ∈D ∀k.

Sometimes the escape time is called the ‘first exit time,’ ‘stopping time,’ ‘hitting time’ or

‘residence time.’ We shall be concerned with the escape time for the state process, xk, or

the output process, yk, of (2.1-2.2) when the control input is causally computed. Only for

simplicity in this part, we take the system to be time-invariant: Ak = A, Bk = B, Ck =C.

Figure 1.1 shows two simulations of the Kalman state estimation error x̃k|k−1 for a

scalar system with a magnitude bound placed at 60 and differing rates of packet dropping.

In the left graph, the expected value of the conditional error covariance – the focus of

[25] – is finite, while in the right it is not. Note the similarities between the figures except

for the time scales. Escape time would correspond to the first achievement of the bound

60. Our interest is in characterizing this escape time distribution function. Clearly the

escape time is a random variable provided the infinite value has zero probability. We

have the following result applicable in the linear Gaussian case and independent of the

system matrices [A,B,C].

Lemma 1 For the linear system (2.1), with noise process {wk} Gaussian, white, pos-

sessing full-rank covariance and independent from x1, with control uk causally computed,
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Figure 1.1. Simulation of Kalman predictor error with A=1.2, C = 1, Q = 0.005, R =
0.001, Pγ = 0.15 (left) and 0.1 (right), and bound level 60.

and for D compact, the escape time of xk is almost surely finite.

Proof: Without loss of generality take D to be a hypersphere in Rn, i.e. |x|2 ≤ r for some

r > 0. If this is not the case then, since D is compact, we can replace D by another

compact set D+ which is a hypersphere containing D and perform the same analysis.

Escape from D+ certainly implies escape from D .

At time k with state xk and control uk, both of which are independent from wk

under the conditions of the lemma, the condition for xk+1 to lie outside D is that

Axk +Buk +wk ∈Dc,
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the complement of D . Since D is a hypersphere and wk is zero mean Gaussian

Pr(wk + v ∈D)≤ Pr(wk ∈D) = β < 1,

for any vector v. This argument can be extended to multiple steps as follows.

Pr(wk + vk ∈D ,wk+1 + vk+1 ∈D)

= Pr(wk+1 + vk+1 ∈D
∣∣∣wk + vk ∈D)Pr(wk + vk ∈D),

≤ βPr(wk + vk ∈D),

≤ β
2.

So the probability of escape by time k is bounded by β k and, by the Borel-Cantelli

Lemma, we have the probability of no escape is zero.

The import of Lemma 1 is that it ensures that, in the linear Gaussian case or

equivalent problems able to be transformed to linear Gaussian, using say Girsanov’s

Theorem, the finite escape of the state and/or output from any compact domain is ensured.

The analysis of such processes then ought to concentrate on the description of the escape

time rather than attempting to establish almost sure confinement to a compact set or

characterize moment properties. This hearkens back to the escape time or residence time

analysis of, say, [13, 31, 39, 16, 8]. These earlier treatments focus on stable continuous-

time systems with small stochastic perturbations and use the Theory of Large Deviations

to develop escape time characterizations as the noise power tends to zero. Our approach

will maintain discrete time and deal with both stable and unstable systems with non-

infinitesimal perturbations. This will not draw on Large Deviations Theory other than for

comparison.
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Our treatment of (2.1-1.3) endeavors to blend two distinct trains of research. The

first is associated with the behavior of state estimators for such systems as treated in,

say, [25, 24, 12, 19] with or without control being applied. Since the system is linear

and if the applied control is known, the controlled state behavior is derivable from the

estimator. The second class of problems, characterized by results such as [30, 29, 20, 38]

concentrates on the stabilization aspects of the feedback control. The distinction between

the two sets of problems in the literature rests with the description of the communications

channel. The work in [18, 21] studies the earlier work in a more general case and yields

necessary conditions for stabilization, recovering results of some previous works in the

two approaches. In the estimator problem, the communication is taken to be intermittent

— that is the stochastic process {γk} operates in a persistent fashion to cause arbitrarily

long outages of communications — but the communication is not limited in bitrate (there

is no quantizer) and full state reconstruction occurs with any successful communication

packet. In earlier work on the stabilization problem, the emphasis is on the quantizer and

its associated bitrate limit and the channel is assumed not intermittent, i.e. γk = 1 for all

k, with a deterministic maximal delay and possible additive channel noise. The approach

adopted in this paper is to permit both intermittency and limited bitrate, since the Markov

model describing escape time applies to both. We also pose a different set of questions

dealing with escape time, which we regard as being more apropos for these problems.

These focus not on limiting behaviors or mean-square stabilization but on characterizing

the cumulative probability distribution function (cdf) of the escape time of the system

state, output or state estimate error, since in general there is no almost sure bound on

these, as stated in Lemma 1.

Before launching into the analysis, it is pertinent to examine some practical

sources of estimation and control problems associated with systems described by (2.1-

1.3), since the presence of a single communications link rules out teleoperation-styled
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feedback control problems. Utility management of a geographically distributed system,

such as a power grid or radar network, where the sensors, but not the actuators, are

remotely placed and linked back to base by communications networks, is the clearest

application of state estimation operating with communications limits. The study of sensor

fusion and its sibling area of sensor scheduling [6, 7] has a long history in these arenas.

Schweppe [23] was a pioneer in the application of such methods in power system state

estimation using data of variable reliability. More generally, the study of missing data

has been longstanding in statistics [15] and in array beamforming [28] with studies of

estimation in high noise going back to Wiener [33], whose work was connected with the

origins of radar.

Closing the loop on a system to achieve stabilization using communicated data

would appear to be a more recent problem. Interestingly, Wong and Brockett study first

the state estimation problem [36] and then the feedback stabilization problem [37] for

systems with reliable but bandlimited communications. This extends earlier results due

to Williamson [34, 35] and Delchamps [4] on finite-wordlength effects on estimation and

control in deterministic contexts. Sensor scheduling is also a feedback control or decision

problem with a solution achievable via dynamic programming. The unifying aspect of

these earlier analyses of the estimation and the control problems is that the covariance

function of the state estimate error or of the state itself is the target of the analysis. Thus,

mean-square stabilization is the objective in Nair and Evans [20].

For communications problems with intermittence, the conditional covariance,

Σk+1|k, of the state prediction error is a random process adapted to the {γk} sequence.

Recent works have been concerned with the distributional and moment properties of

this {Σk+1|k} process. Thus: Sinopoli et al. [25] consider the convergence of the

expectation E[Σk+1|k] as k→ ∞; [11] models the packet dropping channel as the a two

state Markov chain and arrives at the stabilization condition as in [25] for the scalar case;
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Shi, Epstein and Murray [24] quantify the probability Pr
(
Σk+1|k > G

)
for given matrix

G; [12] analyzes conditions for the weak (in distribution) convergence of Σk+1|k; and,

[19] treats the tail distribution properties of this covariance. (In this latter reference ‘tail’

refers to the distribution on the tail σ -algebra as k→ ∞ and not the tail probabilities in

the sense of Σk+1|k taking on large values for any specific value of k.)

1.4.2 Background and literature survey of Bayesian filtering
approach to quantized innovations

Consider the system (2.1-2.2), with the assumptions concerning gaussian ini-

tial condition and noises, operated on the transmitter-side and sending the complete

innovations, εk = yk−Ckx̂k|k−1 to the receiver. Denote the innovations sequence, Ek =

{ε0,ε1, . . . ,εk}. The receiver can compute the pdf by Bayesian filtering (1.9-1.13). Then,

we have following formulas:

p(xk+1

∣∣∣Ek) =
∫

xk

p(xk+1

∣∣∣xk)p(xk

∣∣∣Ek)dxk (1.14)

p(xk+1

∣∣∣Ek+1) =
p(εk+1

∣∣∣xk+1,Ek)p(xk+1

∣∣∣Ek)

p(εk+1

∣∣∣Ek)
(1.15)

where p(εk+1

∣∣∣Ek) = p(εk+1) = N (0,CkΣk|k−1CT
k +Rk) by the innovations signal prop-

erties of whiteness and zero-mean. The term p(εk+1

∣∣∣xk+1,Ek) can be expressed as

follows

p(εk+1

∣∣∣xk+1,Ek) = p(Ck+1(xk+1− x̂k+1|k)+ vk+1

∣∣∣xk+1,Ek)

= N (Ck+1(xk+1− x̂k+1|k),Rk+1) (1.16)

The second equality is based on that fact: x̂k+1|k is a linear combination of the history of

innovations signals Ek. Then, all of the terms in (1.14-1.15) are computable. However,
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this recursion does not hold for quantized innovations signals as the received information

because of their non-gaussian nature. The term p(εk+1

∣∣∣xk+1, Ēk) is hard to compute

because the quantized innovations signals contribute information for to x̂k+1|k but in a

complicated way.

The estimation problem with quantized measurements can be traced back to

an early work [27]. The paper deals with a special case that the initial state density

must be uniform by solving the Fokker-Planck equation and Bayes’ rule. The paper [2]

uses the sign of innovations (SOI) signals in the estimation problem with the Kalman

filter recursion modified in the measurement update term through the replacement of the

measurement noise covariance by an expression reflecting the effect of quantization —

we demonstrate later that this assumption does not hold, although the method does yield

both an approximate conditional mean and conditional variance. To proceed from this

point with analysis, these authors are required to make an assumption that the predicted

conditional pdf of the state is gaussian. The work [14] extends [2] to more complex

multi-bit quantizers. Both of the above works appeal to the property that that innovations

signals have smaller covariance than the output measurements. However, the work in [2]

and [14] uses the Kalman filtering recursion based on quantized measurement innovations

with the assumption that the prior conditional state density is Gaussian. The assumption

only makes sense when the bitrate is high and saturation is absent. This assumption is

questioned in [26] and the authors provide a Lemma in [22] which shows that the state

given quantized innovations is the sum of two independent random variables. In [5], the

authors provide another analysis to approach the exact solution but with approximate

computation.

Sukhavasi and Hassibi provide the following lemma for the gaussian system above

with transmitter-side measurements yk, their quantized variants qk and Yk = {y0, . . . ,yk},

Qk = {q0, . . . ,qk}.
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Lemma 2 ([22]) The state conditioned on the quantized measurements Qk can be ex-

pressed as a sum of two independent random variables as follows

xk

∣∣∣Qk ∼ Zk +Rxk,YkR−1
Yk

[Yk

∣∣∣Qk], (1.17)

where Zk ∼N
(

0,Rxk−RxkYkR−1
Yk

RYkxk

)
(1.18)

where Rxk is the covariance of xk and RxkYk is the cross-covariance of xk and the previous

history of measurements Yk. The first term Zk is a product of the Kalman filter at the

transmitter. The second term is a correction term accommodating the quantization. Form

the perspective of this thesis, the second term is problematic in that it is not computable

in a recursive fashion. Rather, it relies on the entire measurement history ay each time.

The second paper, [5], provides the following idea. The predicted pdf p(xk+1|Ēk)

can be computed from the traditional Bayesian filtering formula. The filtered pdf can be

compute by the following formula.

p(xk+1

∣∣∣Ēk+1) =
∫

Ek+1

p(xk+1

∣∣∣Ek+1)p(Ek+1

∣∣∣Ēk+1)dxk (1.19)

where p(xk+1

∣∣∣Ek+1) is a gaussian distribution function and p(Ek+1

∣∣∣Ēk+1) is a truncated

gaussian distribution function whose dimension increases with time, i.e. this is not a

recursive formula. The integration operation in (1.19) is approximated with a recursive

but approximate formula based on a mid-point approximation to the integrals. The above

works either do not provide an exact solution or rely on the whole history and cannot be

implemented recursively. The second part of thesis provides simple recursive formulas

of Bayesian filtering for the exact computation of state estimation pdfs given quantized

measurements/innovations.
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1.5 Contribution and Thesis Organization

1.5.1 Contribution

The first part of thesis provides a new perspective for intermittent communication

systems. We list several points of the contribution.

1. The behavior of escape time can be described as a Markov Chain process, which

observation provides access to analytical tools.

2. Theorem 3 provides the algorithm to compute the exact probability distribution

function of escape time when we know the {γk} sequence of packet drops.

3. We compare the analysis of estimator escape time performance, which is applicable

to both stable and unstable systems, to the conditional moment-based approaches

of [25] and [24] which are of interest for unstable systems.

4. We extend the escape time analysis to include the state prediction error and the

controlled system output. This invites comparison to [20].

5. Our analysis includes the treatment of quantization effects in output escape time

problems and shows that bitrate choice can have a profound effect on the output

escape time properties of a controlled system.

The second part of thesis focuses on the computation of the conditional probability density

function of the state given quantized innovations signals. This is based on Bayesian

filtering.

1. We provide an approach to calculate the exact conditional probability density

functions of the predictor and of the filter.

2. We derive a recursive formulation of the pdf calculation based on the Bayesian

filter and demonstrate its application.
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3. The core innovation permitting the appeal to Bayesian filtering is in the identifica-

tion of the appropriate underlying transmitter-side state process.

4. These new methods subsume earlier work and permit consideration of more com-

plicated quantizers than the set of subtractive dithered quantizers used in Part I.

5. These methods, since they produce the exact state pdfs, obviate the approach to the

estimation problem using particle filters.

1.5.2 Thesis Organization

The thesis is divided into two parts. The first part is organized as follows: The

escape time problem formulation is presented in Chapter 2 and the concepts of escape

and survival times are introduced for the estimation and stabilization problems. Chapter 3

develops the central Markov chain description in a general context before examining

this for Gaussian and quantized Gaussian linear systems. These results pertain when

the packet arrival sequence, {γk}, is known. Chapter 4 presents numerical examples to

demonstrate: the method, heuristics of escape time, and the quality of approximations.

The analysis is then extended to explore approaches to quantization and retransmission

in the output stabilization escape time.

The second part of thesis is organized as follows: The problem formulation

and derivation of the exact solution for the predictor and filter pdfs of the quantized

innovations state estimator is in Chapter 5. It includes comparison with other approaches

to dealing with this problem by others. The formal derivation of the new result here is

brief, which is part of the importance of the work. Chapter 6 shows several simulations to

demonstrate the implementation of the method and to compare these computed densities

with the pdfs from both the Kalman filter and [2], which latter work is based on a gaussian

assumption of the prior density.
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Chapter 1, in part, has been submitted for publication of the material as it may

appear in the introductions of the following two works. “Escape time formulation of

state estimation and stabilization with quantized intermittent communication”, 2015

Automatica, Chun-Chia Huang, Robert R. Bitmead; “Exact formulation of quantized-

innovations state estimation using Bayesian filtering,” 2015 submitted to IEEE transaction

on signal processing, Chun-Chia Huang, Robert R. Bitmead.



Part I

Escape time formulation of state

estimation and stabilization with

quantized intermittent communication
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Chapter 2

Problem formulation

2.1 Assumptions

We commence with the communications-linked control system as follows

xk+1 = Axk +Buk +wk, (2.1)

yk =Cxk + vk, (2.2)

zk = γkQd(yk). (2.3)

with the same description in Section 1.1 and make the following assumptions.

Assumption 1 1.1 x1, the initial state, is Gaussian with mean x̄1, and covariance Σ1|0.

1.2 uk =−Kx̂k|k constant linear state filter feedback is applied.

1.3 wk and vk are independent, white, zero-mean Gaussian processes independent from

x1 and with covariance matrices Q and R, which we take to be positive definite.

1.4 {γk} is a Bernoulli random process independent from x1, {wk}, and {vk} and taking

values 0 or 1 to describe the non-arrival or arrival of a data packet, respectively.

1.5 Qd is a subtractive, dithered, b-bit-per-channel, mid-rise, symmetric, linear quan-

tizer with saturation values±ζ . The subtractive dither signal is white, triangularly

23
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distributed, tr
(
−ζ/2b−1,ζ/2b−1), and known exactly to both transmitter and

receiver.

A number of extensions are possible at the expense of clarity of development. (i)

Time-variation can be included into the noise covariance matrices and into the feedback

control gain. Stationarity of the problem does permit the calculation of expectations

which converge over time as in [25]. However given Lemma 1, our focus is not on

limiting behaviors but explicitly on transient properties, where time-variation is readily

accommodated. (ii) In Assumption 1.4 we assume the process {γk} is Bernoulli, as in

[25]. It might equally well be taken as Markov as in [12]. (iii) Extension to nonlinear

forms of quantization is straightforward. Extension to adaptive quantizers, while it is

at the heart of Nair’s and Evans’ [20] demonstration of the minimal feedback bitrate

required for mean-square stabilization, comes at the cost of communications and is not

part of our analysis.

2.2 Incorporating quantization

Subtractive dithered b-bit quantizer, Qd(·), is depicted in Figure 2.1. It includes

the standard quantizer Q and subtractive dither signal, dk.

              �k

zkyk

dk dk

quantizer              

+ +

�+

subtractive dithered quantizer: Qd(·)

Q(·)

Figure 2.1. Subtractive dithered quantization including intermittent gain γk.
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Figure 2.2. The linear quantizer Q

The fixed quantizer function Q(·) is a mid-rise, symmetric, linear quantizer with

2b levels within the range [−ζ ,ζ ]. Figure 2.2 shows a 3-bit quantizer Q, the basic unit

of the quantizer is ∆ = ζ/2b−1. We note that subtractive dithered quantization requires

careful handling of the wordlength of the subtraction operation, since dk is recorded at a

higher bitrate than b bits, see [32].

Theorem 1 Under the conditions of Assumption 1.5, and provided yk ∈ [−ζ ,ζ ], the

quantization noise,

nk = Qd[yk]− yk = [Q(yk +dk)−dk]− yk, (2.4)
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is white, independent from {yk}, and uniformly distributed U(−ζ/2b,ζ/2b).

The independence and uniform distribution of the theorem statement follow directly from

Theorem QTSD of [32]. The whiteness of {nk} follows from the whiteness of {dk}.

The effective measurement noise in zk is the sum of two independent terms, one

Gaussian (measurement noise) and the other uniform (quantization noise).

veff,k = vk +nk, (2.5)

In our subsequent analysis, we show how to compute the escape times with any measure-

ment noise process but for clarity specialize to either a strictly Gaussian measurement

noise or a Gaussian-plus-uniform measurement noise. With independent m-vectors

vk ∼ N(0m,R) and nk ∼Um(−ζ/2b,ζ/2b) the pdf of vk +nk is given by

fv+n(z) =
2b−1

ζ

{
Φ

[
R−1/2

(
z+

ζ

2b

)]
− Φ

[
R−1/2

(
z− ζ

2b

)]}
, (2.6)

where Φ(·) is the multivariate standard normal cdf of appropriate dimension. This is the

convolution of the Gaussian pdf of vk with the uniform pdf of nk.

When a quantizer is present and for yk ∈ [−ζ ,ζ ], the effective measurement noise

covariance for zk increases from R with perfect reconstruction of yk to

Reff = R+
ζ 2

3×22b Im. (2.7)

which is the measurement noise, vk, covariance plus the quantizer noise, nk, since these

two noises are additive in (2.5) and are independent. With quantization, this quantity

replaces R in the Kalman filter recursion, which relies solely on second-order statistics

and yields the least mean squares linear unbiased estimator.

Outside of the range [−ζ ,ζ ] the quantization error becomes potentially un-
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bounded and correlated. In our situation of escape time analysis with fixed quantization,

once the outer levels are breached the state or state estimation error has escaped. Nair

and Evans in [20] develop an ingenious approach to adaptive quantization amenable to

mitigating the effects of saturation errors by expanding ζ faster than the state can escape

and, further, to achieving this within the allocated bitrate. In 4.3, strategies are studied

to mitigate the effects of intermittency through the allocation of a fraction of the b bits

in the communicated signal to the coarse retransmission of earlier values of yk. These

studies extend earlier studies of signal reconstruction with missing data [9] and can deal

with strategies for bit assignment in both TCP/IP and UMDP settings depending on the

transmitter’s knowledge of the arrival of packets.

2.3 Kalman state estimation with intermittent quan-
tized observations

The Kalman state estimation equations with intermittent quantized observations

described by {γk} and Q, commencing from initial values x̂1|0 = x̄1 and Σ1|0, are as

follows. These equations are identical to those of [25, 24] and subsequent works modulo

the incorporation of quantization via Reff and nk. It is similar to the formulas of Section 1.2
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except the γk and Reff.

measurement update

Lk = γk
[
Σk|k−1CT (CΣk|k−1CT +Reff)

−1] , (2.8)

x̂k|k = x̂k|k−1 +Lk(zk−Cx̂k|k−1),

Σk|k = Σk|k−1−LkCΣk|k−1. (2.9)

time update

x̂k+1|k = Ax̂k|k +Buk,

Σk+1|k = AΣk|kAT +Q, (2.10)

filtered error

x̃k|k = xk− x̂k|k,

prediction error

x̃k+1|k = xk+1− x̂k+1|k,

x̃k+1|k = (A−ALkC)x̃k|k−1 +wk−ALk(vk +nk). (2.11)

Note the γk appears explicitly solely in the Kalman gain Lk and that, conditioned on {γk},

the state prediction error system (2.11) is linear, time-varying due to γk, and driven by

not-necessarily-Gaussian white noise. The Kalman predictor error equation (2.11) is

central to both the estimator and the output escape time formulations below. We note

that, when γk = 0, then Lk = 0 and (2.11) will be unstable if A has eigenvalues outside

the unit circle and driven by wk alone. If γk = 0 for all k — a case where we refer to the

escape time as the survival time — (2.11) is time-invariant, which simplifies the analysis.
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2.4 Output feedback control with intermittent and
quantized observations

The output feedback control problem with intermittent and quantized observations

differs from the estimator problem since it involves both the filter error, x̃k|k, and the

controlled plant state, xk. It is described by the linear system:


xk+1

x̃k+1|k

yk+1

=


A−BK BK(I−LkC) 0

0 A(I−LkC) 0

C(A−BK) CBK(I−LkC) 0




xk

x̃k|k−1

yk



+


−BKLk(vk +nk)+wk

−ALk(vk +nk)+wk

−CBKLk(vk +nk)+Cwk + vk+1

 , (2.12)

This system’s state covariance matrix is shown as follows,

cov




xk

x̃k|k−1

yk


=


Pk Σk|k−1 PkCT

Σk|k−1 Σk|k−1 Σk|k−1CT

CPk CΣk|k−1 CPkCT +Reff

 (2.13)

The Kalman filtering recursion for intermittent quantized data, (2.8), (2.9), (2.10),

yields the controlled state covariance, Pk, recursion

Pk+1 = (A−BK)Pk(A−BK)T +(A−BK)Σk|k−1(I−LkC)T KT BT

+BK(I−LkC)Σk|k−1(A−BK)T +BK(I−LkC)Σk|k−1(I−LkC)T KT BT

+BKLkReffLT
k KT BT +Q. (2.14)

The effect of increasing the measurement noise through quantization is two-fold; the error
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covariance, Σk+1|k, increases and then, as a consequence, the controlled state covariance,

Pk, also increases. Additionallly, Reff directly drives (2.14). During periods of packet

loss, measurement noise and quantization noise do not affect the system directly, since

Lk = 0. At times of packet arrival however, the quantization noise effect in increasing the

underlying state estimate covariance and controlled state covariance is evident.

2.5 Escape times, conditional escape times and survival
times

We have established that for output signals, yk, within the quantization range

[−ζ ,ζ ], both the estimator error and the output feedback controlled system are governed

by linear systems driven by white, not-necessarily-Gaussian noises: {(2.8), (2.9), (2.10),

(2.11)} for the estimator; and additionally (2.12) for the controlled system. This will

form the basis for our calculation of escape times.

We make the following definitions.

Definition 2 (Estimator escape time τe) For given positive scalar bound G, we define

the estimator escape time to be the escape time for the random sequence {x̃k+1|k} starting

from the initial condition x̃1|0∼N(0,Σ1|0) and with D = {
∥∥x̃k+1|k

∥∥
∞
≤G}. The estimator

escape time cdf is the cdf of τe given these initial conditions.

Definition 3 (Output escape time τo) Given the output quantizer magnitude upper

bound, ζ from Assumption 1.5, and given initial state covariance matrix P1 and state

estimate error covariance matrix Σ1|0, we define the output escape time to be the escape

time from D = {‖yk‖∞
≤ ζ} from initial condition satisfying y1 ∼ N(0,CP1CT +Reff).

The estimator and output escape times are random variables depending on: the

bound ζ , the initial covariances Σ1|0 and P1, the realizations of the noise processes x1,

{wk}, {vk +nk}, and the realization of {γk}, the sequence of packet arrival successes or
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failures. Our aim is to compute and to characterize the probability cumulative distribution

functions (cdfs) of these escape times as the communication link’s arrival probability,

Pγ , changes. The results of [25] establish a lower bound on Pγ for the expected value of

the conditional estimator covariance to be finite for all time, i.e. E[Σk|k]< ∞, which can

occur even though the estimate error itself escapes any bounded domain with probability

one.

The inclusion of the output escape time problem differs from the analysis of

[25, 24], which considers estimator behavior only, and brings us more into contact

with works such as [20] which study stochastic stabilization. We note that for the

state-estimate-feedback controlled system, the covariance of output yk depends on the

covariance of the controlled state xk, which in turn depends on the covariance of the state

estimation error, x̃k|k.

For specific γk sequences, we introduce the following definition:

Definition 4 (Conditional escape time) For bounded domain D and stochastic process

{ξk} adapted to the sequence {γk}, the conditional escape time cdf, Φe(k), is the escape

time cdf from D for a given sequence, {γk}, of successful and dropped communications

packets.

In particular, we shall identify a special set of conditional escape times associated

with unsuccessful communication from time 1 onwards.

Definition 5 (Survival time) We define the survival time cdf for {ξk}, Φs(k), as the

conditional escape time cdf for the domain D with sequence {γk = 0,k = 1,2, . . .}.

Chapter 2, in full, is a reprint of the material as it appears in the section 2 of

the work, “Escape time formulation of state estimation and stabilization with quantized

intermittent communication”, 2015 Automatica, Chun-Chia Huang, Robert R. Bitmead.



Chapter 3

EscapeTime Markov Chain Analysis

This section provides the fundamental theoretical support for these calculations,

which later will be applied to examples.

3.1 General Markov Chain model

Following Definition 1, given a closed domain D ⊂ Rd and a stochastic process

{ξk : k = 1, . . .} on Rd , the escape time of ξk from D is described by a Markov chain.

This is a general result concerning adapted processes and is not limited to linear Gaussian

systems nor to hyperspherical domains.

Theorem 2 (Principal theoretical result [10]) For stochastic process {ξk : k = 1, . . .}

the random variable

Jk+1 =


1, if ξk ∈D and Jk = 1,

0, otherwise,
(3.1)

is a Markov process and, denoting

Πk =

Pr(Jk = 1)

Pr(Jk = 0)

 ,

32
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is described by the Markov chain.

Πk+1 =

 αk 0

1−αk 1

Πk,

where

αk = Pr(Jk+1

∣∣∣Jk = 1) (3.2)

The escape time of the stochastic process {ξk} is the value of k when Jk = 0 for the first

time.

Proof: From the definition (3.1), Jk satisfies the Markov property.

Pr(Jk+1

∣∣∣ Jk, . . .J1) = Pr(Jk+1

∣∣∣ Jk),

and so {Jk} is described by a Markov chain. The transition matrix of this chain is given

by

 Pr(Jk+1 = 1|Jk = 1) Pr(Jk+1 = 1|Jk = 0)

Pr(Jk+1 = 0|Jk = 1) Pr(Jk+1 = 0|Jk = 0)


The (1,2)-element of this matrix is zero, because there is no possibility of moving from

Jk = 0 to Jk+1 = 1.

Corollary 1 For a given {γk} sequence, the corresponding {αk} sequence describes the
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evolution of the conditional escape time cdf, Φe(k),

Pr(Jk+1 = 0) = (1−αk)Pr(Jk = 1)+Pr(Jk = 0),

Φe(k+1) = (1−αk)[1−Φe(k)]+Φe(k),

or,

Φe(k+1) = (1−αk)+αkΦe(k), (3.3)

whence

Φe(k) = 1−
k−1

∏
i=0

αi. (3.4)

Proof: The final result (3.4) follows by rewriting (3.3) as

[1−Φe(k+1)] = αk[1−Φe(k)],

and recognizing that 1−Φe(1) = α0.

3.2 Computation of αk for linear systems

As developed in Theorem 2, the escape time of stochastic process {xk} is governed

by a Markov chain and the probability transition matrix is determined by a sole scalar

value αk. For any escape time problem, αk might be computed as

αk =
Pr(xk+1 ∈D ,xk ∈D , . . . ,x1 ∈D)

Pr(xk ∈D , . . . ,x1 ∈D)
.
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This requires the computation of a (k+ 1)n-dimensional and a kn-dimensional multi-

variate Gaussian cdf, as could in the Gaussian case in principle be carried out using

mvncdf in matlab. However, this is problematic due to the growth of dimension of

the argument. We now present an alternative recursion for the computation of αk for

linear systems.

Theorem 3 Consider the time-varying stochastic linear system

ξk+1 = Fkξk +ωk, (3.5)

with: ξ1 possessing a pdf, fξ1
(z), and {ωk}, independent from ξ1, white and with pdfs

fωk(z).

Take

h0(z) = fξ1
(z), (3.6)

and define the sequence of (pdf) functions {hk : Rn→ R+}

hk(z) =
1∫

D hk−1(w)dw

∫
D

fωk(z−Fkw)hk−1(w)dw. (3.7)

Then

αk =
∫
D

hk(w)dw. (3.8)
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Proof: The proof hinges on the careful application of the Markov property. Denote by p

the general pdf where the argument specifies the pdf and define

hk(ξk+1) = p(ξk+1

∣∣∣Jk = 1) (3.9)

=
p(ξk+1,Jk = 1)

Pr(Jk = 1)
. (3.10)

Now note that the numerator

p(ξk+1,Jk = 1) =
∫

ξk∈D
p(ξk+1

∣∣∣ξk,Jk−1 = 1)p(ξk,Jk−1 = 1)dξk,

=
∫

ξk∈D
p(ξk+1

∣∣∣ξk)p(ξk,Jk−1 = 1)dξk,

= Pr(Jk−1 = 1)
∫

ξk∈D
p(ξk+1

∣∣∣ξk)p(ξk

∣∣∣Jk−1 = 1)dξk,

= Pr(Jk−1 = 1)
∫

ξk∈D
fωk(ξk+1−Fkξk)hk−1(ξk)dξk, (3.11)

where fωk is the probability density function of ωk. [The Markov property is invoked in

replacing p(ξk+1

∣∣∣ξk,Jk−1 = 1) by p(ξk+1

∣∣∣ξk).] Substituting (3.11) into (3.10) yields

hk(ξk+1) =
Pr(Jk−1 = 1)
Pr(Jk = 1)

∫
ξk∈D

fωk(ξk+1−Fkξk)hk−1(ξk)dξk,

=
1

αk−1

∫
ξk∈D

fωk(ξk+1−Fkξk)hk−1(ξk)dξk.

Finally, integrating (3.9) yields

αk = Pr(ξk+1 ∈D |Jk = 1) =
∫

ξk+1∈D
p(ξk+1

∣∣∣Jk = 1)dξk+1,

=
∫

ξk+1∈D
hk(ξk+1)dξk+1.
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Theroem 3 permits calculation of {αk} for (3.5) for any process noise pdfs, even

time-varying. In the sequel for comparison with earlier results, we shall limit investigation

to either Gaussian or Gaussian-plus-uniform noise

Corollary 2 For linear Gaussian system (3.5) with initial state ξ1 ∼ N(0,ρ1) with ρ1 >

0, and ωk ∼ N(0,Ωk), white and independent from ξ1, αk is given by the recursion

(3.6-3.8) with

fξ1
(z) =

1
(2π)n/2|ρ1|1/2 exp

(
−1

2
zt

ρ
−1
1 z
)
,

fωk(z−Fkw) =
1

(2π)n/2|Ωk|1/2 exp
[
−1

2
(z−Fkw)T

Ω
−1
k (z−Fkw)

]
. (3.12)

For the same system and initial state but with ωk = vk +nk where vk ∼ N(0,Rk)

and nk ∼U
(
−ζ/2b,ζ/2b) with {vk} and {nk} independent and white, αk is given the

recursion (3.6-3.8) with fξ1
(z) as above and fωk(z) given by fv+n(z) from (2.6).

Corollary 3 For linear n-dimension Gaussian system (3.5) with any sets as D shown

below

D =
n⋂

i=1

{||ξk(i)||∞ ≤ Gi}, Gi ≥ 0

ξk(i) is i-th element of ξk

the probability quantities Pr(ξk+1 ∈ D
∣∣∣ξk ∈ D , . . . ,Ji−1 = 1) and Pr(ξk+1 ∈ D

∣∣∣ξk ∈

D , . . . ,Ji−1 = 0) have an lower bound Pr(ξk+1 ∈D
∣∣∣ξk is a zero vector).
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Proof:

Pr(ξk+1 ∈D
∣∣∣ξk ∈D , . . . ,ξi ∈D ,Ji−1 = 1)

=

∫
ξk+1∈D . . .

∫
ξi∈D p(ξk+1

∣∣∣ξk) . . . p(ξi

∣∣∣Ji−1 = 1)dξi . . .dξk+1∫
ξk∈D . . .

∫
ξi∈D p(ξk

∣∣∣ξk−1) . . . p(ξi

∣∣∣Ji−1 = 1)dξi . . .dξk

(3.13)

Denote

G(ξi) =
∫

ξk∈D
. . .
∫

ξi+1∈D
p(ξk

∣∣∣ξk−1) . . . p(ξi+1

∣∣∣ξi)dξi+1 . . .dξk

By Fubini’s theorem, we can change the order of integration in (3.13). Then, we have

Pr(ξk+1 ∈D
∣∣∣ξk ∈D . . .ξi+1 ∈D ,Ji−1 = 1)

=

∫
ξi∈D

∫
ξk+1∈D p(ξk+1

∣∣∣ξk)G(ξi)p(ξi

∣∣∣Ji−1 = 1)dξk+1dξi∫
ξi∈D G(ξi)p(ξi

∣∣∣Ji−1 = 1)dξi

(3.14)

For the upper bound probability, we have

Pr(ξk+1 ∈D
∣∣∣ξk zero vector)

=
∫

ξk+1∈D
p(ξk+1

∣∣∣ξk zero vector)dξk+1

=
∫

ξk+1∈D
p(ξk+1

∣∣∣ξk zero vector)dξk+1×
∫

ξi∈D G(ξi)p(ξi

∣∣∣Ji−1 = 1)dξi∫
ξi∈D G(ξi)p(ξi

∣∣∣Ji−1 = 1)dξi

=

∫
ξi∈D

∫
ξk+1∈D p(ξk+1

∣∣∣ξk zero vector )G(ξi)p(ξi

∣∣∣Ji−1 = 1)dξk+1dξi∫
ξi∈D G(ξi)p(ξi

∣∣∣Ji−1 = 1)dξi

(3.15)
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Compare (3.14) and (3.15), if we can prove

∫
ξk+1∈D

p(ξk+1

∣∣∣ξk zero vector)dξk+1 ≥
∫

ξk+1∈D
p(ξk+1

∣∣∣ξk)dξk+1,∀ξk+1 ∈D (3.16)

,we are done. p(ξk+1

∣∣∣ξk) = fωk(ωk = ξk+1−Fkξk) is a normal distribution and

p(ξk+1

∣∣∣ξk zero vector) = fωk(ωk = ξk+1) is also a normal distriubtion. Since

∫
ξk+1∈D

p(ξk+1

∣∣∣ξk zero vector)dξk+1 =
∫

ξk+1∈D
fωk(ωk = ξk+1)dξk+1

is the area whose center is origin. Then, we can conclude inequality (3.16) is correct.

In both the estimator and the output escape problems, a given {γk} sequence and

initial state estimate covariance determines the associated Kalman gain sequence {Lk},

which captures the time-variability of the problem. Both cases can be subsumed into the

study of the linear system (2.12) with the corresponding escape set. For example, the

corresponding escape set of output escape time D and initial covariance C :

D =




xk

x̃k|k−1

yk

 : ||yk||∞ ≤ ζ

 ;C =


P1

Σ1|0

CP1CT +R

 (3.17)

The escape set of estimation escape time uses {||x̃k|k−1||∞ ≤ G} instead of {||yk||∞ ≤ ζ}

in above equation.

For the estimator or for the output, the results of this section permit the calculation

of the conditional escape time cdf for any given packet arrival sequence, {γk}. Since in

this case, the system matrices, Fk, are known.
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With γk = 0,k = 1,2, . . . , the survival time analysis for both the estimator escape

and for the output escape with linear systems is a time-invariant analysis, since the

Kalman gain Lk = 0. Accordingly, the study of survival time can be explicitly conducted,

which provides insight into the processes underlying escape times, which usually require

simulation for evaluation.

3.3 Properties of output escape time for linear time-
invariant Gaussian systems

Denote by Φe(t) the cdf of the output escape time for the linear time-invariant

Gaussian system

xk+1 = Axk +Buk +wk, (3.18)

yk =Ck + vk, (3.19)

with

uk =−Kx̂k|k; x1 ∼ N(0,P1);

wk ∼ N(0,Q); vk ∼ N(0,R).

By Lemma 1 since D = {‖yk‖∞ ≤ ζ} is bounded, Φe(t)→ 1 as t → ∞. For the same

γ-sequence (which means the same Fk, ωk in Theorem 3), Φe is a function of t, P1, Q,

R and ζ . From the Theorem 3, we further have the following properties holding for all

t > 0 where the superscript delineates each of two different cases:

{P1
1 ≥ P2

1 }∪{Q1 ≥ Q2}∪{R1 ≥ R2}∪{ζ 1 ≤ ζ
2}

=⇒ Φe(t,P1
1 ,Q

1,R1,ζ 1)≥Φe(t,P2
1 ,Q

2,R2,ζ 2), (3.20)
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Proof: Consider the time-varying, linear, gaussian system (3.18)(3.19) written as (2.12)

with zero-mean initial state.

ξk+1 = Fkξk +χk

with ξ0 ∼ N (0,P0) and χk ∼ N (0,υk). Further, consider escape from the region

D = {|Dξk| ≤ g} for some constant matrix D. At time t, escape of this system coincides

with

Ξt =



ξ0

ξ1

...

ξt


6∈D t+1=

t +1 times︷ ︸︸ ︷
D×D×·· ·×D ,

and Ξt is gaussian and zero mean. Now, if either cov(ξ0) increases or cov(χk) increases

then the covariance of ξt increases and escape from the set D t as defined above increases.

By the same token, if the parameter g decreases then the escape probability increases.

This proves (3.20).

Theorem 4 For the linear time-invariant Gaussian system (3.18-3.19), the cdf of the

survival time, Φs, admits the following implication

P1
1 ≥ AnP2

1 AnT
+An−1QAn−1T

+ · · ·+AQAT +Q (3.21)

=⇒ Φs(t,P1
1 ,Q,R,ζ )≥Φs(t +n,P2

1 ,Q,R,ζ ). (3.22)

Theorem 4 will be used when studying the effect of quantization errors on the escape

time.

Chapter 3, in full, is a reprint of the material as it appears in the section 3 of

the work, “Escape time formulation of state estimation and stabilization with quantized
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intermittent communication”, 2015 Automatica, Chun-Chia Huang, Robert R. Bitmead.



Chapter 4

Escape time computational examples

4.1 Example 1: Estimator survival time

Recall that the survival time is the escape time when no data packets are received

at times k = 1,2, . . . . Because Theorem 3 provides an explicit formula for αk, we study

first the survival time of the estimator. This example, while simple, permits revealing

comparisons between the escape/survival time analysis and the moment-based methods

of [25, 24].

Consider the system

A = 1.5,B = 1,C = 1,Q = 0.005,R = 0.001,ζ = 10,

with Σ1|0 = M̄ = AReffAT +Q = 0.00725,

which corresponds to the largest possible conditional prediction covariance immediately

after receiving a single data sample. We compute the survival time cdf using Theorems 2

and 3 which is a time-invariant system transient analysis yielding explicitly the survival

cdf. The probability density function is plotted in Figure 4.1.

The calculation of the density function of τs was verified, needlessly, by simula-

tion. Figure 4.2 displays three sample x̃k+1|k trajectories of differing survival times: 8,

43
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Figure 4.1. Probability density function of estimator survival time for Example 1.

12, and 19, from a Monte Carlo simulation with initial covariance Σ1|0 = 0.00725. We

have selected three trajectories which escaped with positive state-estimate error values.

From the problem description, the state-estimate error satisfies,

x̃k+1|k = (1.5)kx̃1|0 +
k

∑
j=1

(1.5)k− jw j,

which displays the relative importance of the random terms. Since wk ∼ N(0,0.005),

once the state exceeds roughly 0.2 (three σ ) in magnitude it becomes most unlikely that

wk will arise to bring the error back to a small magnitude. Once the three trajectories

exceed this value, we see that they all escape with roughly similar behavior, i.e. at a

rate of 1.5k. The difference between the trajectories lies in their residence time in the
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Figure 4.2. Three different estimator survival time trajectory samples for Example 1
with initial error covariance Σ1|0 = 0.00725.

neighborhood |x̃|< 0.2. Here the disturbance process is as likely to drag the error back

towards small magnitudes as it is to increase the magnitude, resulting in some trajectories

remaining close to zero for an extended time. This is captured by the Markov analysis.

4.2 Markov versus covariance comparison

Comparing the current Markov results to the covariance calculations of [25], we

see that, in both survival time analyses, the conditional covariance is given by

Σk+1|k = Ak
Σ1|0AkT

+
k−1

∑
j=0

A jQA jT .
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In apposition to the Markov analysis, the covariance Σk+1|k may be used to compute

directly the probabilities Pr(‖x̃k+1|k‖2 ≤ ζ ) and Pr(‖x̃k+1|k‖2 > ζ ) using the normal cdf.

Whence, the escape probability may be approximated via

Pr(
∥∥x̃k+1|k

∥∥
2 > ζ )×

k

∏
j=1

Pr(
∥∥x̃k+1− j|k− j

∥∥
2 < ζ ). (4.1)

This calculation may be performed using the stationary expected conditional covariance

value or using the data-dependent covariance, Σk+1|k, derived from the {γk} sequence.

Figure 4.3 displays three curves computed for Sinopoli’s example from [25] in

the region where the expected conditional covariance is finite, i.e. Pγ > 0.36. Here,

A =

1.25 0

1 1.1

 , Q =

20 0

0 20

 , Pγ = 0.4

M̄ =

67.36 −.052

−.052 22.73

 , C =

[
1 1

]
, R = 2.5,ζ = 100.

This calculation demonstrates that attention solely to the covariance is problem-

atic and, further, that the stationary expected conditional covariance is pessimistic in

its implication regarding escape time, while the time-varying covariance is overly opti-

mistic. This corroborates the results of [24], where the expected value of the conditional

covariance is replaced by analysis of its probabilistic behavior.
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Figure 4.3. Comparison of escape time cdf for Sinopoli’s Example: unbroken curve –
simulation, dash-dot curve and dashed curve are both using (4.1) with fixed expected
condition covariance or time-vary conditional covariance then averaged over 1000 trials.

4.2.1 Example 1 redux: Output survival times with quantized data

We return to the scalar-state Example 1, but now with state-estimate feedback

control. The parameters of the controlled system and output signal bound, ζ , are:

A = 1.5,B = 1,C = 1,D = 0,K = 1.2,

Q = 0.005,R = 0.001,ζ = 10.

We consider two quantization scenarios; 5-bit quantization of yk, and 16-bit quantization.

Figure 4.4 depicts the cdfs for 16-bit (blue) and 5-bit (red) for Pγ taking values in
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{0.2,0.3,0.4,0.5}. It is noteworthy that the explicitly quantified difference in survival
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Figure 4.4. Semilog plot of cumulative distribution functions of output escape times for
5-bit (red) and 16-bit (blue) quantized measurements as the probability of successful
packet arrival, Pγ , varies.

times of the differing bitrates, described by Theorem 4 in the case where Pγ = 0, is

exacerbated when Pγ increases.

Figure 4.5 shows the variation in escape times for increasing values of the bound,

ζ , defining the escape domain D , and for fixed Pγ = 0.2. The bound ζ takes values in

the set [1,10,100,500]. This affects the quantization intervals and, in turn, affects: the

effective measurement noise, Reff, as in (2.7); the estimator covariance value M̄ or Σk+1|k;

and the initial controlled state covariance, P1.

It is apparent that, for small numbers of bits, the quantization error becomes a

significant factor when its effect on P0 dominates that of the process noise Q. When the

initial state covariance P1 becomes large enough, the dependence of escape time on ζ
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Figure 4.5. Cumulative distribution functions of controlled output escape times for
Example 1 with ζ = 1,10,100,500, and with Pγ = 0.2. Results are shown for 5-bit
quantization (red) and 16-bit quantization (blue).
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depends primarily on growth in ζ versus the maximal eigenvalue of A. Thus, for these ζ

values and 5-bit quantization, we see little apparent variation in the escape time statistics

past ζ = 10, while the 16-bit quantization escape times continue to grow dramatically

with ζ .

4.3 Bitrate assignment and escape time

Communications issues of intermittency and limited bitrate may be combined for

joint analysis and design, particularly in the realm of partitioning the available bitrate as a

hedge against the deleterious effects of dropped packets. Evidently this is a rudimentary

coding question, since one can sacrifice some bits to accommodate error recovery. This

represents a departure from [25, 24], whose analysis is restricted to intermittency alone.

Although, [24] countenances retransmission of data within each packet, albeit at no cost

to the communication rate. More recently, [17] has studied the application of redundant

parallel channels in the amelioration of packet loss effects, again without addressing

quantization issues arising due to limited bitrates.

Sinopoli et al. [25] assume that the measurement matrix C = I in (2.2) while [24]

assumes that each packet contains r successive measurements, where r is the the least

value for which

range
[
CT ATCT . . . A(r−1)T

CT

]
⊃ range ArT

.

Further, these data packets are not bitrate limited. In either case, the arrival of any single

packet suffices for reconstruction of the state estimate with conditional covariance less

than a bounded quantity derived from the Information Filter, see [1].

With a limited bitrate and r > 1, the assignment of bits within a measurement

packet to retransmitted data comes at a cost in terms of the state estimate error, because
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multiply arriving copies of data carry no information and the associated bits might better

have been used for the new data. We next analyze by simulation the effect of such bitrate

assignment on escape time.

Suppose that the bits at any time are assigned to the most recent data and also

to some fraction of the earlier data, as is illustrated in Figure 4.6. This redundancy in

ykyk�1

8 bits

5 bits3 bits

Figure 4.6. Bit allocation scheme. Here 3 of 8 bits at time k are assigned to yk−1 and 5
bits to yk.

data transmission should provide some protection from packet loss at the expense of

estimation accuracy. This impact can be subtle, since the reduction in bits for yk affects

both the limiting filtered estimate and controlled state covariances.

Our example takes

A =

 0 1.5

1.5 0

 ,B =

1

0

 , C =

[
1 0

]
,D = 0,

Q =

0.05 0

0 0.05

 ,R = 0.01,ζ = 5, K = [−1.1,1.66].
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Case A: We take 8 bits for yk at each time k. Then the appropriate initial covariances are

Σ0|0 =

0.010 0

0 0.0073

 ;P0 =

1.027 1.353

1.353 2.361

 .
Case B: We take 4 bits each for yk−1 and for yk with corresponding

Σ0|0 =

0.075 0

0 0.219

 ,P0 =

2.404 3.099

3.099 5.459

 .
Escape time cdfs are shown in Figure 4.7 for the case where Pγ = 0.3. We see that, in

this case, the retransmission strategy serves to extend the time for escape attributable to

nefarious sequences {γk} at the cost of increasing the likelihood of early escape ascribed

to the concomitant increase in initial covariances.

4.4 Comments and conclusions

We have presented an approach to the study of state estimation and state-estimate

feedback stabilization with intermittent and quantized measurements. This is based on

escape time analysis and computation, which is compared to earlier works in estimation

and stabilization with differing descriptions of the properties – finite expected condi-

tional covariance and mean-square stabilization – and of the communication system –

intermittent but exact and quantized but certain. The central result is that the escape time

can be described by a Markov chain, which in the linear case is easily computed. This

yields much more precise evaluation of behavior than covariance calculations, even in the

Gaussian case. Our analysis has included the treatment of quantization effects in output

escape time problems and shown that bitrate choice can have a profound effect on the

output escape time properties of a controlled system.
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Figure 4.7. Output escape time cdfs with single transmission (Case A) and split bitrate
signal retransmission (Case B) when Pγ = 0.3

The thrust of these problems was to replicate in the escape time framework the

resetting of covariance-based analyses once certain sequences of successful packets

arrive. In the Kalman filtering context, this is used to guarantee the return to an upper

bounded conditional covariance matrix once a successful packet or sequence of packets

arrives – the actual bound follows from the Information Filter formulation of the problem.

This resetting permits the separation of the analysis of future behavior from that prior to

the reset. In the escape time formulation this separation is no longer possible and it is

instructive to understand why.

In the Gaussian case, one (including the authors) might be expected to use the
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following relation following from (3.2).

αk = Pr(Jk+1 = 1
∣∣∣Jk = 1),

= Pr(Jk+1 = 1
∣∣∣Jk = 1,Jk−1 = 1),

=
Pr(Jk+1 = 1,Jk = 1

∣∣∣Jk−1 = 1)

Pr(Jk = 1
∣∣∣Jk−1 = 1)

.

This latter quantity is familiar from Kalman filtering and computations such as

Pr(xk+1|yk,yk−1, . . . ,y1) =
Pr(xk+1,yk|yk−1,...,y1)

Pr(yk|yk−1,...,y1)
.

However for escape times, the conditioning is not on the specific value taken by a signal

such as yk. Instead, the conditioning is over the residence of xk ∈D and the probabilities

above need to be computed as integrals over all of D . The finite-dimensionality of the

Kalman filter is lost since, even though (xk+1,xk) are jointly Gaussian, the conditional

probability Pr(xk+1|xk ∈D) is not Gaussian. This is evident in the precise calculations

of Theorem 3.

Chapter 4, in full, is a reprint of the material as it appears in the section 4 and 5 of

the work, “Escape time formulation of state estimation and stabilization with quantized

intermittent communication”, 2015 Automatica, Chun-Chia Huang, Robert R. Bitmead.
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Chapter 5

Problem formulation and derivation of
the exact solution

5.1 Problem formulation

plant
Kalman 

Filter       PDF
✏k ✏̄kyk

transmitter receiver
x̂k|k�1

xk+1 = Akxk + Bkuk + wk

yk = Ckxk + vk
Qk Q�1

k

Figure 5.1. Block diagram of quantized innovations system.

We consider the system depicted in Figure 5.1, where the innovations, {εk},

signal from a Kalman filter is quantized and then transmitted across a communications

channel to a receiver, where it is dequantized to received signal {ε̄k} from which one

seeks to compute predicted and/or filtered estimates of the state, xk, of the plant. We

make the following plant assumptions.

A.1: The plant is linear and satisfies

xk+1 = Akxk +Bkuk +wk, (5.1)

yk =Ckxk + vk. (5.2)

56
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A.2: Process and measurement noises {wk} and {vk} correlated white gaussian with

wk

vk

∼N


0

0

 ,
Qk Sk

Sk Rk

δk j

 (5.3)

A.3: Initial state x0 ∼N (x̂0|−1,Σ0|−1) and is independent from {wk} and {vk}.

A.4: The innovations realization of the Kalman filter is run at the transmitter from initial

values x̂0|−1 and Σ0|−1.

εk = yk−Ckx̂k|k−1, (5.4)

Kk = (AkΣk|k−1CT
k +Sk)(CkΣk|k−1CT

k +Rk)
−1 (5.5)

x̂k+1|k = Akx̂k|k−1 +Bkuk +Kkεk, (5.6)

Σk+1|k = AkΣk|k−1AT
k −Kk(AkΣk|k−1CT

k +Sk)
T +Qk. (5.7)

Our derivation in the next section is a general formula for any quantizer function, as

opposed to the specialized quantizer of the earlier chapters. We use an m-level quantizer,

Qk(·), consisting of a collection of m intervals (zk,l,zk,u], which form a disjoint covering

of the real line and a corresponding rule, Q−1
k (·), for dequantizing the received signal

into a real number — for a p-channel vector quantizer, we take a scalar quantizer in

each channel for simplicity but could consider any p-channel-in/p-channel-out quantizer-

dequantizer pair. When the innovations signal εk lies within the range (zk,l,zk,u] the

output of the quantizer is transmitted as one of m symbols which is then dequantized

at the receiver as ε̄k. We take ε̄k to be a value within the range (zk,l,zk,u] including for

the two edge saturation levels, where one of the limits is infinite. The quantizer range ζ

should be related to the covariance of innovations signals. We do not focus on how to

design an appropriate quantizer.
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In order to clarify the quantizer, consider a 3-bit uniform quantizer-dequantizer

cascade example shown in Figure 5.2 and used in Example 6.1 in Chapter 6. Evidently,

ε̄k = Q−1
k Qk(εk). The input is the innovations signal, εk, and the output is the recovered

quantized innovations signal, ε̄k. The values ±ζ denote the upper and lower saturation

limits of the quantizer, which we take for simplicity to be symmetric. We take five-times

steady state innovation covariance as the quantizer range in Figure 5.2.

2LL 3L

L/2

3L/2

5L/2

7L/2

4L

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.5

−0.4
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−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

input

ou
tp
ut

⇣ = 5� = 4L

Figure 5.2. Quantizer-dequantizer function for Example 6.1. Three-Bit (m = 8) uniform
quantizer-dequantizer pair input-output relation. The values for this quantizer are based
on a steady-state innovations covariance σ2 = 0.0155.

We make the additional assumptions.

A.5: For every value of k≥ 0 the receiver knows: Ak, Bk, uk, Ck, Qk, Rk, Qk(·), Q−1
k (·).
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A.6: The receiver knows x̂0|−1 and Σ0|−1.

5.2 Derivation of exact solution

The recursive formula of predicted pdf p(xk+1

∣∣∣Ēk) and filtered pdf p(xk+1

∣∣∣Ēk+1)

will be presented in this section based on the Bayesian filter presented in Section 1.3.

Since the system is based on the transmission of the quantized innovations sequence

{ε̄t , t = 0.,1, . . . ,k}, we rely on properties of the innovations, {εt , t = 0.,1, . . . ,k}, at the

transmitter.

Property 1 Under the linear gaussian system assumptions above, the innovations se-

quence, {εt , t = 0.,1, . . . ,k}, is white, gaussian, zero-mean, with covariance Pεk =

CT
k Σk|k−1Ck +Rk.

Property 2 The least-squares optimal state estimates at the transmitter, x̂k+1|k and x̂k|k,

are linear combinations of {εt , t = 0.,1, . . . ,k}. [For clarity, we take {uk}= {0}.]

x̂k+1|k = Akx̂k|k−1 +Kkεk, (5.8)

= Kkεk +AkKk−1εk−1 + · · ·+
[

k+1

∏
j=0

A j

]
x̂0|−1. (5.9)

Lk = Σk|k−1CT
k (CkΣk|k−1CT

k +Rk)
−1 (5.10)

x̂k|k = x̂k|k−1 +Lkεk,

= Lkεk +Kk−1εk−1 +Ak−2Kk−2εk−2 + · · ·+
[

k

∏
j=0

A j

]
x̂0|−1. (5.11)
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We set up a new system to help us compute the pdfs. The εk-generating system has a

dimension-2n state.

Z ′
k+1 =

 xk+1

x̂k+1|k

=

 Ak 0

KkCk Ak−KkCk


 xk

x̂k|k−1

+
Bk

Bk

uk +

I 0

0 Kk


wk

vk

 , (5.12)

εk =

[
Ck −Ck

] xk

x̂k|k−1

+[0 I

]wk

vk

 . (5.13)

Or equivalently,

Zk+1 =

 xk+1

x̃k+1|k

=

Ak 0

0 Ak−KkCk


 xk

x̃k|k−1

+
Bk

0

uk +

I 0

I −Kk


wk

vk

 , (5.14)

εk =

[
0 −Ck

] xk

x̃k|k−1

+[0 I

]wk

vk

 . (5.15)

If we regard either of these systems as the state equation whose state is being estimated

by observation of the {εk} sequence, then we would reconstruct the Innovations Filter.
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We should then see:

Ẑk+1|k =

̂ xk

x̃k|k−1


∣∣∣∣∣∣∣
k−1

=

x̂k|k−1

0

 ,

Ẑ ′
k+1|k =

̂ xk

x̂k|k−1


∣∣∣∣∣∣∣
k−1

=

x̂k|k−1

x̂k|k−1

 .
The structure of the systems allow us to use the Bayesian filter which consists of two

parts.

p(Zk+1

∣∣∣Ēk) =
∫
Zk

p(Zk+1

∣∣∣Zk)p(Zk

∣∣∣Ēk)dZk, (5.16)

p(Zk+1

∣∣∣Ēk+1) =
p(ε̄k+1

∣∣∣Zk+1)p(Zk+1

∣∣∣Ēk)

p(ε̄k+1)
. (5.17)

The above equations form a recursive algorithm to compute the predicted pdf and

filtered pdf for each time. We show the detail of each term:

1. p(Zk+1

∣∣∣Zk) = p
(
[wk = xk+1−Akxk−Bkuk]∩ [Kkvk = (Ak−KkCk)x̃k|k−1]

)
This probability can be computed from the joint distribution of wk and vk.

2. The second equation, (5.17), applies the whiteness of the innovations signal in the

denominator,

p(ε̄k+1

∣∣∣Ēk) = p(ε̄k+1) =
∫ zk+1,u

zk+1,l

p(εk+1)dεk+1

=
∫ zk+1,u

zk+1,l

N (0,CkΣk+1|kC
T +Rk)dεk+1
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3. The term p(ε̄k+1

∣∣∣Zk+1) can be computed as follows:

p(ε̄k+1

∣∣∣Zk+1) =
∫ zk+1,u

zk+1,l

p(εk+1

∣∣∣Zk+1)dεk+1

=
∫ zk+1,u

zk+1,l

p(εk+1 =Ckxk+1−Ckx̂k+1|k + vk+1)dεk+1

=
∫ zk+1,u

zk+1,l

N (Ckxk+1−Ckx̂k+1|k,Rk+1)dεk+1 (5.18)

4. The initial probability density function in the receiver

p(Z0

∣∣∣Z−1) = p(Z0) = p


 x0

x̃0|−1


= N


x̂0|−1

0

 ,
Σ0|−1 Σ0|−1

Σ0|−1 Σ0|−1


 .

(5.19)

The second equality corresponds to Assumption A.6: that the transmitter and

receiver are synchronized at time zero.

Then, we can compute all terms in formulas (5.16) and (5.17).This is conducted

in the numerical computations in the next chapter.
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5.3 Comparison with prior work

The central observation in our development is that the Bayesian filter state and

measurement equations derive from the system

Zk+1 =

 xk+1

x̃k+1|k

=

Ak 0

0 Ak−KkCk


 xk

x̃k|k−1

+
Bk

0

uk +

I 0

I −Kk


wk

vk

 , (5.20)

ε̄k = Q−1
k Qk

[0 −Ck

] xk

x̃k|k−1

+[0 I

]wk

vk


 , (5.21)

which is directly in the form amenable to Bayesian filtering without further modification.

This should be compared and contrasted to the earlier approaches of [2] and [22], which

commence from the state equation of the system alone and the measurement. Both of

these works use the methods of estimation theory to derive their algorithms but without

accounting for the transmitter KF state, x̃k|k−1. This is the source of the difficulty in

developing the recursion for the exact pdfs. We next discuss in more detail each of these

works and make comparisons.

5.3.1 Ribeiro, Giannakis and Roumeliotis

In [2], the authors use the sign of innovations (SOI) as the transmitted packet and

derive the Kalman-filter-like recursive formulas from Bayesian filtering with a Gaussian

assumption for the prediction pdf. In developing their recursive algorithm, the authors

first approach the problem via Bayesian filtering to yield new expressions for the pdfs.

Block diagram Figure 5.3 depicts their technique and shows how their innovations signal

is computed; this signal is distinct from the KF innovations signal at the transmitter, since
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Figure 5.3. Block diagram representation of the Bayesian filtering approach of [2], where
the transmitter replicates the receiver’s computation of the predicted states conditional
pdf to calculate an innovations signal for quantized transmission.

it is based on the data available to the receiver and the receiver’s computation of the

prediction of xk, x̂SOI
k|k−1, the mean value of the prediction conditional pdf of the receiver.

The signal transmitted to the receiver, b̄k, is the quantized value of bk.

b̄k = Q[bk] = Qk

[
yk− ŷSOI

k|k−1

]
,

= Qk

[
yk−Ckx̂SOI

k|k−1

]
, (5.22)

= Qk

[
Ck(xk− x̂SOI

k|k−1)+ vk

]
. (5.23)

Since bk is not the innovations signal from the KF, it does not necessarily possess the

whiteness, zero-mean, and known covariance properties of the KF innovations.

Denoting Bk = {b0,b1, . . . ,bk} and B̄k = {b̄0, b̄1 . . . , b̄k}, the Bayesian filtering
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equations from [2] are as follows.

p(xk

∣∣∣B̄k−1) =
∫

p(xk

∣∣∣xk−1)p(xk

∣∣∣B̄k−1)dxk, (5.24)

p(xk

∣∣∣B̄k) =
p(b̄k

∣∣∣xk, B̄k−1)p(xk

∣∣∣B̄k−1)∫
xk

p(b̄k

∣∣∣xk, B̄k−1)p(xk

∣∣∣B̄k−1)dxk

. (5.25)

The estimate x̂SOI
k|k−1 is defined as

x̂SOI
k|k−1 = E[xk

∣∣∣B̄k−1] =
∫

xk p(xk

∣∣∣B̄k−1)dxk. (5.26)

These formulas are akin to the traditional Bayesian filtering. The structure has a compu-

tational advantage in computing the term p(b̄k

∣∣∣xk, B̄k−1) in the filtered pdf because x̂SOI
k|k−1

is computed by (5.26) and admits the simplification

p(b̄k

∣∣∣xk, B̄k−1) = p(Qk[Ck(xk− x̂SOI
k|k−1)+ vk]

∣∣∣xk, B̄k−1),

=
∫ zk,u

zk,l

p(Ck(xk− x̂SOI
k|k−1)+ vk

∣∣∣xk, B̄k−1)dbk

=
∫ zk,u

zk,l

N
(

Ck(xk− x̂SOI
k|k−1),Rk

)
dbk.

We note, however, that [2] starts with the plant system state equation (5.1) with

measurement signal bk and then appeals to the Bayesian filtering equations to arrive at a

recursion (5.24-5.25). Since the measurement sequence, bk is not a function of xk alone

but of xk and Bk−1, xk is not longer the signal generating state in the formal sense. Rather

the state is xk∪Bk−1. However, the insight that the authors bring is that xk is the unknown

part of the state, since Bk−1 is available to both transmitter and receiver. While this is

a clever observation, there remains the possibility that the bk sequence is neither white

nor zero-mean and therefore is not as efficient in the use of the channel capacity. Further
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research needs to be performed to assess the properties of this approach.

The authors then move from this Bayesian filtering based formulation to develop

a recursion similar in form to the KF in that it propagates only conditional means and

variances as if the densities were gaussian. Their calculations from the earlier analysis

allow them to develop a replacement for the measurement noise covariance, R, in the

KF recursion which reflects the effective measurement noise introduced by the signum

function in a fashion alike that used to define Reff in (2.7) in Chapter 2.

In our work, we preserve the formal BF analysis, since we identify the appropriate

state of the quantized innovations signal and work with this and the transmission of

the quantized innovations signal from the Kalman filter at the transmitter side. This

permits the derivation of an exact Bayesian filter in recursive form. But it comes at a

computational cost compared with the work of [2].

5.3.2 Sukhavasi and Hassibi

Sukhavasi and Hassibi provide the following lemma for the gaussian system above

with: transmitter-side measurements yk, their quantized variants qk and Yk = {y0, . . . ,yk},

Qk = {q0, . . . ,qk}.

Lemma 3 ([22]) The state conditioned on the quantized measurements Qk can be ex-

pressed as a sum of two independent random variables as follows

xk

∣∣∣Qk ∼ Zk +Rxk,YkR−1
Yk

[Yk

∣∣∣Qk], (5.27)

where Zk ∼N
(

0,Rxk−RxkYkR−1
Yk

RYkxk

)
(5.28)

where Rxk is the covariance of xk and RxkYk is the cross-covariance of xk and the previous

history of measurements Yk and Yk

∣∣∣Qk is a random variable distributed as Yk given Qk.

The first term Zk is filtered state estimate error of the Kalman filter at the transmitter. The
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second term is an additive term accommodating the quantization and increasing the error

covariance. From the perspective of this thesis, the second term is problematic in that

it is not computable in a recursive fashion. Rather, it relies on the entire measurement

history at each time.

The paper [5] provides the following idea. The predicted pdf p(xk+1|Ēk) can

be computed from the traditional Bayesian filtering formula. The filtered pdf can be

compute by the following formula.

p(xk+1

∣∣∣Ēk+1) =
∫

Ek+1

p(xk+1

∣∣∣Ek+1)p(Ek+1

∣∣∣Ēk+1)dxk (5.29)

where p(xk+1

∣∣∣Ek+1) is a gaussian distribution function and p(Ek+1

∣∣∣Ēk+1) is a truncated

gaussian distribution function whose dimension increases with time, i.e. this is not a

recursive formula. The integration operation in (5.29) is approximated with a recursive

but approximate formula based on a mid-point approximation to the integrals. The above

works either do not provide an exact solution or rely on the whole history and cannot be

implemented recursively. The second part of thesis provides simple recursive formulas

of Bayesian filtering for the exact computation of state estimation pdfs given quantized

measurements/innovations.

Chapter 5, in full, is the section II (background and other literature) and III (anal-

ysis of techniques) of the submitted paper “Quantized Innovaitons Bayesian Filtering”,

2015 submitted to IEEE transaction on signal processing , Chun-Chia Huang, Robert R.

Bitmead.



Chapter 6

Computational examples

In this chapter the Bayesian filtering formulas (5.16-5.17) are implemented for

specific simulation examples. We study three time-invariant scalar examples with system,

xk+1 = Axk +wk (6.1)

yk =Cxk + vk (6.2)

1. The first example has scalar state and system matrices A =C = 1. The initial state

is N (0, .02) and the process and measurement noise covariances are Q = 0.0001

and R = 0.00001. The quantizer is linear, symmetric with three bits or eight levels.

The saturation level of the quantizer is ±0.7. That is, the state remains close to its

initial value and the measurements at the transmitter are very accurate. So εk is

small with high probability.

2. The second case is the sign-of-innovations example which corresponds to the

work [2]. The state process is scalar with A = 0.95, C = 1, x0 ∼ (0,0.0155),

Q = R = 0.01. Since we transmit the signs of the innovations, the quantizer has

one bit or two levels. In this case, we compare our computed pdfs with both those

of the Kalman filter and the pdfs associated with [2], which takes the predicted pdf

to be Gaussian.

68
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6.1 Scalar examples

6.1.1 Case 1: almost fixed state

For the system

xk+1 = xk +wk,

yk = xk + vk.

with wk ∼N (0,0.0001), vk ∼N (0,0.00001), x0 ∼N (0, .02) and 3-bit quantizer (as

displayed in Figure 5.2) with saturation value ζ = 0.7 the Bayesian filter described in

Section 5.2 is calculated in matlab using 101 samples points for each pdf. The resultant

approximate pdfs are shown in Figures 6.1-6.2. For them, The upper figure is the

filtered pdf and predicted pdf on receiver-side computed from Bayesian filtering with

data ε̄0 ∈ (0,0.1750]. The second figure shows the predicted and filtered pdfs on the

transmitter-side from the Kalman filter. Since the state remains effectively at the same

point, we have the same quantized innovations, ε̄k ∈ (0,0.1750] for these figures for

different times. The next few steps do not significantly alter the figures further. The

pdfs are close to truncated gaussians with slight smoothing at the edges according to the

narrow densities of vk in the filter and wk in the predictor. These appear to be sensible

estimated pdfs given the data. This example illustrates that the approach is sound.

6.1.2 Case 2: sign of innovations

For the system

xk+1 = 0.95xk +wk,

yk = xk + vk.
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Figure 6.1. The comparison of predicted state pdf and filtered state pdf with exact
measurement or quantized measurement.(first time step)

with wk ∼N (0,0.01), vk ∼N (0,0.01), x0 ∼N (0, .0155) and one-bit/two-level quan-

tizer the Bayesian filter is again applied in matlab with 101 samples for each pdf. This

example appears in [2] where they apply their Kalman-filter-like algorithm. Figures 6.3-

6.5 show the evolving probability density functions when the sign-of-innovations signal

is negative at each of three successive times. The upper figures display the filtered pdfs

and predicted pdfs on the receiver-side computed using our Bayesian filter. The middle

figures show the predicted and filtered pdfs on the transmitter-side from the Kalman filter

The lower figures show the gaussian predicted pdf using SOI statistic quantities from the

algorithm of [2].
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Figure 6.2. The comparison of predicted state pdf and filtered state pdf with exact
measurement or quantized measurement.(second time step)

We compare the results from the Kalman filter at the transmitter and the prior pdf

assumed in the derivation of [2]. This example indicates that the calculation in [2] might

be overly optimistic about the estimate quality.

6.2 Conclusions and future work

We have presented an approach of state estimation problem for computing the

probability density functions with the quantized innovations signals. The solution we

provides is exact and also is recursive. The receiver-side computation of predicted

and filtered state pdfs is performed using the Bayesian filter with a system state model
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containing the plant system state, xk, augmented by the transmitter-side Kalman filter

state error, x̃k|k−1. We compare the work with [2] whose Kalman-filter-like algorithm

is derived based on the Bayesian filter and uses synchronized transmitter and receiver

state estimates and, therefore, a different notion of innovations from the KF. We have

provided a more general algorithm which maintains the calculation of the KF and its

innovations at the transmitter. On the other hand, our algorithm has significantly greater

computational burden at the receiver side because of calculating full pdfs. By the same

token, the workload is greatly reduced compared with, say, the Particle filter.

The future work could be: We would introduce more complicate communication

channel, including packet-drop, delay in this work. Bit rate resource allocation as in

Section 4.3 of escape time can be implemented in computing pdf from our Bayesian

filtering by recomputing from previous pdfs whose new measurement just arrived. TCP/IP

system with packet-dropping known to both ends is worth researching while applying

our Bayesian filtering on it.

The full comparison with [2] and [22] to understand the computational com-

parisons versus the performance is worth researching. Especially, the structure of [2]

presented in 5.3 provides another approach to compute exact pdf.

Chapter 6, in full, is the section IV (comparison and examples) of the submitted

paper “Quantized Innovaitons Bayesian Filtering”, 2015 submitted to IEEE transaction

on signal processing , Chun-Chia Huang, Robert R. Bitmead.
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Figure 6.3. The estimation quantities: x̂1|0 =−0.0454, Σ1|0 = 0.016, x̂SOI
1|0 =−0.0875,

ΣSOI
1|0 = 0.018. The signal values in the transmitter-side system are: x0 = −0.1088,

x1 =−0.1260, w0 =−0.0226, v0 = 0.0371.
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Figure 6.4. The estimation quantities: x̂2|1 =−0.0410, Σ2|1 = 0.0156, x̂SOI
2|1 =−0.1661,

ΣSOI
2|1 = 0.018. The signal values in the transmitter-side system are: x1 = −0.1260,

x2 =−0.2286, w1 =−0.1089, v1 = 0.1117.
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Figure 6.5. The estimation quantities: x̂3|2 =−0.0345, Σ3|2 = 0.0155, x̂SOI
3|2 =−0.2394,

ΣSOI
3|2 = 0.0179. The real value : x2 =−0.2286,x3 =−0.1619,w2 = 0.0553,v2 = 0.0033.
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