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Chapter 1

Introduction

China is the world’s largest energy consumer, coal producer and consumer, and carbon
dioxide emitter. Over 60% of its total energy requirements are satisfied by coal [2].
In addition, China relies heavily on coal for electricity production [3]. This reliance
on coal has not only led China to become the largest carbon dioxide emitter in the
world [2] but has also raised new national security concerns [4]. Simultaneously, due
to decreasing costs, government incentives, and a desire to ameliorate pollution[5], and
climate change [6], China has also become the world’s leader in installed capacity of
renewable energy. The National Renewable Energy Law, passed in 2005 and revised
in 2009, mandates an increased share in electricity production from renewable sources
by 2020 [7]. China has set up ambitious renewable energy development target to have
20% of its primary energy from non-fossil sources by 2030 [8].

By the end of 2016, China’s installed wind power capacity had reached 148 GW,
up from 1.3 GW in 2005. Wind power has been the fastest growing renewable energy
source nationally in the past 6 years and, according to the latest Five-Year plan, it is
expected to surpass 210 GW of installed capacity by 2020 [9]. Similarly, solar photo-
voltaic (PV) capacity is expected to surpass 100 GW by 2020 with an additional 5 GW
of installed concentrated solar capacity also expected by 2020 [10].

With increased participation in the procurement of electricity, renewable sources
typically encounter grid integration issues [11] [12]. In California, an important con-
sideration to achieve the renewable portfolio standards (RPS) has been the increase in
system regulation requirements [13]. China shares some of these problems in integrat-
ing renewables with California [14], but due to large structural differences, such as over
reliance on coal and a relative lack of gas infrastructure and resources, it also faces a
different set of complex challenges [3] [15].

In this chapter we frame our research and elaborate on our motivations for de-
veloping an electricity load model [Chapter 3]. As an introduction, we contextualize
the historical growth of electricity consumption in China and the interrelated issues of
atmospheric pollution in Sections 1.1 and 1.2. In addition, we will contextualize this
electricity consumption growth and associated pollution problems within China’s com-
mitments in COP21 to reduce carbon intensity and emissions, and increase renewable
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capacity in Sections 1.2 and 1.3. In later chapter, the electricity load model is used to
understand the flexibility requirements of the Chinese grid under different renewables
penetration scenarios in 2030 [Chapter 5]. We make a case for flexibility provision
using demand response (DR) to alleviate some of these constraints in Chapter 7.

1.1 Chinese electricity growth

Electricity consumption per capita in China has increased 13-fold between 1980 and
2014, rising from 281 kWh to 3927 kWh per person. By 2015, total national electricity
consumption reached 6,000 TWh[16]. With over 70% of national electricity output
produced by coal in 2015, China has met most of the historical growth in demand
by electricity production from coal power plants. Nonetheless, the government plans
for a flattening of coal generation by shifting to renewable power [17]. Most recently,
in the beginning of 2017, China announced its intention to invest 360 billion USD in
renewable energy [18] by 2020. Estimates for per capita electricity consumption in
2030 range widely from 5308 to 8292 kWh [19]. In Chapter 3 we develop a model of
an hourly load forecast with a controllable commercial component (Chapter 2) using,
in part, yearly demand estimates from [19].

In China, most of the population and economic output is concentrated in the urban
eastern coastal provinces [20]. Consequently, the majority of electricity consumption
occurs in these densely populated regions with high rates of urbanization [21]. As
population and economic output continue to increase, these coastal regions are expected
to maintain the lead in future electricity consumption, but the interior regions are
expected to increase their share as well[22]. Furthermore, as China’s economy moves
from an export-oriented model to a consumer-based model, shifts in the economic and
electricity consumption patterns will occur. In this work we will focus primarily in the
increasing role of commercial buildings in electricity consumption, but also, their role
in providing flexibility to the grid [Chapters 2-7].

Since the country’s electricity system currently runs primarily on coal, their future
climate emissions and ability to stay within a safe carbon budget depends on the
prospects of producing electricity from renewable sources. In addition to climate change
concerns, coal dependence presents other significant problems to Chinese development.
First, coal producing regions, such as Shaanxi, Gansu, and Inner Mongolia are far away
from load centers. Consequently, in order to power the eastern regions, coal has to be
transported by freight, boat, or trucks, or alternatively, electricity generated in the coal
producing regions is transmitted over vast distances. If the coal is burned nearby cities,
pollution problems arise that increase mortality and morbidity, and reduce productivity
[5].
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1.2 Pollution problems and climate change

Chinese pollution problems are well known and documented in the media [23, 24, 25],
affecting millions of lives every day, especially in Northern China and urban centers.
Researchers have linked air pollution issues in Northern China to regional electricity
production sources [26]. Research shows that pollution levels have a negative effect
on the health of citizens of major cities, leading to increased health care costs and
premature deaths [27, 28]. Partly due to these air pollution concerns, all levels of
government have increased their interest in integrating larger amounts of renewables
into their electricity grid. Unfortunately, pollution has also contributed to a reduction
of renewable electricity production as studied by Mauzerall et al [29].

As coal-based electricity production in China has increased over the last thirty
years, so have carbon dioxide emissions. China became the biggest carbon dioxide
emitter in 2009, surpassing the United States. In 2015, national annual emissions
reached approximately 10.5 Gt, accounting for close to 30% of the global total [30]. In
an analysis done by CarbonBrief, after a three year plateau, carbon dioxide emissions
rose about 2% in 2017 [31]. On a per capita basis, Chinese emissions continue to rise
but still lag behind developed countries.

1.2.1 COP 21

Some researchers argue that coping with climate change should no longer be regarded
as a cost for China, but rather as an opportunity to help deliver better national growth,
environment, and energy infrastructure to its people[32]. In December 2015, China,
together with 200 other countries agreed to take further steps to limit emissions con-
tributing to climate change. In particular, China undertook several commitments.
First, China committed to reducing carbon intensity by around 65% from 2005 levels
by 2030. Second, China committed to increasing non-fossil-fuel energy to 20 percent of
its energy mix, and third, they committed to reaching peak carbon emissions by 2030
[33]. Although the country has made significant progress since 2015 it showed a 2%
increase in carbon emissions in 2017 [31]. Coal consumption remained relatively flat
between 2013 and 2016, with some analysts claiming a peak in consumption [34], but
as with carbon emissions, coal consumption also grew in 2017 [35].

In contrast to the relative small growth in coal consumption and carbon emissions,
solar and wind energy utilization continues to grow at the fastest pace in the world [8].
A transition to cleaner energy will help China tackle its air pollution challenges and
put the countrys future growth on a low-carbon pathway [33]. How China gets there
depends on how ambitiously they implement their national efficiency and renewable
energy plans.

An analysis by Climate Action Tracker contextualizes China’s efforts to combat
climate change [36], estimating that if current efforts are kept or increased for the
next decade, it is likely that emissions will plateau to about 12 GtCO2e per year. If,
however, coal consumption does not continue to decline, and instead stalls at todays
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levels, and if no additional policies are introduced to limit other, non-CO2greenhouse
gases, China’s total GHG emissions could continue to rise until at least 2030 [36]. In
part, how the country achieves a total decrease in coal consumption depends on how
fast renewable energy plays an increasing role in meeting national energy demand.

1.3 Renewable energy plans

China’s renewable energy law, passed in 2005 and updated multiple times since then,
stipulates a minimum contribution of 20% of energy production from renewable sources
(including large hydro) to meet national energy needs by 2030 [7]. In order to achieve
this national target of 20% non-fossil primary energy by 2030, an additional 800 to
1000GW of low-carbon power capacity needs to be deployed [42]. As mentioned earlier,
in its most recent Five-Year Plan, the Chinese government has announced goals to
expand solar and wind capacity to over 100 and 200 GW, respectively, by 2020 [10, 9].
This Five-Year Plan gets China a portion of the way towards their 2030 goals.

Increasing penetration of renewable intermittent electricity in the Chinese grid is
driven, in part, by efforts to meet 2030 goals, combat pollution and climate change,
as well as forward national strategies to become a world leader in this area. China’s
installed solar and wind capacity and production currently exceeds that of any other
country, and meeting these goals would only further their global lead. Even after
meeting their goals, there would be untapped potential for both solar and wind resource
utilization in the country.

While China’s 2030 goals may seem ambitious, the country has the resource poten-
tial to meet them. Studies on the potential of wind generated electricity in China show
that the resources available could reduce dependency on coal to meet large amounts
of national energy needs [37, 38]. Other studies on resource potential have focused on
the practical questions of the integrating such large wind capacity into the grid [15].
Similarly, studies on the potential of solar generation in China show great prospects in
reducing dependency on coal [39, 40, 41]. When accounting for all non-fossil sources,
a comprehensive energy system study by the Deep Decarbonization Pathways project
estimates that the share of these sources in total electricity generation could reach
approximately 43% in 2030[32].

As the experiences in California, Denmark, and countries with large amounts of
renewables in their electricity system show, there are integration issues that need to be
throughly studied and addressed in order to integrate higher amounts of renewables. In
Chapter 4 we explore different renewable pathways to 2030 and compare their impact
on netload in Chapter 5. Two of the three renewable pathways developed in Chapter
4, in accordance with our scenario projections, propose solar and wind capacities that
surpass the estimated 1000 GW of low-carbon power needed to meet the national 20%
non-fossil primary energy target by 2030.
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1.3.1 Integration issues

With installed solar and wind capacities of 130 and 160 GW, respectively, by the end of
2017, there seems to be little doubt that China will exceed its own national renewable
capacity 2020 goals [43]. Their solar capacity goals have already been exceeded ahead
of schedule, and wind capacity goals are nearly met. Nevertheless, when analyzing
electricity production, we can see that capacity factors are unusually low [44] and
monumental efforts will be required to integrate the estimated 800 to 1000 additional
GW of non-fossil fuel power. Specifically, the capacity factor from wind is also around
20% [41], much lower than the typical 30% found in the United States[45].

Flexibility and reliability

According to a recent study by the Danish Energy Agency, China faces three kinds
of flexibility challenges at present. First, prices do not provide incentive to provide
flexibility. Second, Chinese power plants are not as flexible as their Danish counter-
parts. Third, the distance between load centers and production areas is large and leads
to inefficiencies [46]. A reality of the Chinese electricity system is that the provinces
with the largest solar and wind power potential are often far away from the load cen-
ters [40, 38]. Having low demand placed next to high supply locations often leads to
transmission lines not being built, and therefore, around 10% of installed capacity is
persistently unconnected to a transmission line at any point in time [44]. In response
to these issues, transmission lines, and especially ultra-high voltage DC lines, are now
being built across the country to connect high load centers on the coast to high supply
regions, like Northwestern China.

As renewable energy continues to play a larger role in China’s electricity grid, obsta-
cles for increasing grid flexibility and reliability need to be addressed. Overall improved
flexibility could be achieved by institutional changes, adding flexible supply, improv-
ing the reliability and efficiency of the transmission sector, and enhancing demand side
flexibility. In this work, we focus specifically on the challenges and potential of demand
response to provide flexibility to the Chinese grid in times of extreme need in a future
with high penetration of renewables.

1.4 Demand response

Managing demand in times of critical need to alleviate grid constraints has been studied
in a variety of contexts and locations. In China, Wang et al provides context for the
potential utilization of demand response to alleviate electricity shortages [47]. Hu et al
describes China’s experience with demand side management and explores the barriers
to, and the potential for, new demand-side investment [48]. Other studies focus on DR’s
potential in flexibility provision for the integration of renewables in other countries
with large renewable portfolios [49]. In the US, studies have investigated how regions
that depend on variable hydro-electric resources can enhance their flexibility through
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demand management to help integrate new electricity generation from solar and wind
sources[50].

Until recent years, the most commonly used form of demand curtailment in China
was industry based, in which distribution and transmission networks serving industrial
clients are required to shutdown, or at least run their own grid-independent plants.
Efforts to study the ability of industrial loads to provide ancillary services have been
done by Yao et al [51].

A more economically sensible, and less intrusive way of managing demand is through
widespread sharing of demand response needs across many buildings [52, 53]. In the
US, an often studied way of managing electricity demand relies on adjusting buildings’
temperature setpoints in heating, ventilation, and air conditioning (HVAC) systems.
A building usually has two temperature setpoints that frame the range of temperatures
comfortable to occupants. If temperature in the building goes above the upper setpoint,
the HVAC system cools, and if the temperature in the building dips below the lower
setpoint, the HVAC system heats. In traditional DR, an increase in the upper setpoint,
would lead to a decrease in power consumption in summer. In the winter, the same
increase in upper setpoint would lead to an increase in power consumption. In contrast
to traditional DR, continuous DR strategies allow systems to continuously manipulate
temperature setpoints, and therefore the system’s power consumption, to match a
system operator’s frequent requests rather than only large infrequent deviations from
baseline [54].

In this work we aim to provide an analysis on the potential and impact of manag-
ing both traditional and continuous demand response from the commercial sector to
provide flexibility and reliability services in a Chinese grid with increasing penetration
of renewables. In Chapters 6 and 7 we present two different demand response models
that can be used to estimate DR for commercial buildings at the building level and at
the national level, respectively.
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Chapter 2

Commercial sector electricity load
model for China

2.1 Introduction

From 1990 to 2016, the commercial sector electricity consumption in China has seen
a 2000% increase going from 38 to roughly 800 TWh. The corresponding share in
electricity consumption from the commercial sector in the same period has grown from
4 to 13.4% of the total electricity consumption in their respective year [21].

Yearly electricity consumption growth has also been faster for the commercial sec-
tor than the total consumption growth of any other economic sector in the country.
Between 2015 and 2016, the commercial sector consumption grew by 11.2%, while the
yearly total electricity consumption grew by 4.9%. For the 2010-2017 period, yearly
growth rates for the industrial, residential and commercial sectors have been 6.5, 8.4,
and 10.6% respectively [21].

As the economy continues to evolve and the country transitions to a more consumer
based growth, the commercial sector will continue to increase their share in electricity
consumption. By 2030, we expect the commercial sector to consume 16.3% of the total
electricity consumption[55].

In this chapter, our developed hourly load model for the Chinese commercial sector
will be described. We first state our motivations to create such a model and state our
assumptions in building it. We then describe the methodology used to construct it,
including the individual building models used. Finally, we compare some of the model
results with available data from other research sources.

2.2 Motivation

The commercial sector model described in this section is built for two main purposes.
First, the model will be used to develop an hourly load forecast model to 2030. Second,
the models will be used to estimate the demand response potential of the commercial
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sector as the economic structure evolves and becomes more service oriented.
The main motivation to fulfill the first purpose, that is, to build a commercial

sector model to aid in the forecast of load in 2030 comes from the lack of available and
reliable hourly data to describe electricity demand on a regional and national basis. In
the SWITCH China model, He et al constructed hourly load models based on monthly
and hourly consumption shares across all load in the system [41]. Although these load
models allow the SWITCH optimization to broadly analyze distinct parts of the yearly
load curve, they fall short in accounting for changing proportions in the electricity load
from the different industrial, residential and commercial sectors, and from the different
building types in the commercial sector.

Buildings in the United States and China consumed 41% and 28% of the total pri-
mary energy in 2011, respectively [56]. We assume that buildings in China will continue
to increase their energy consumption share and close the gap with their US counter-
parts. Economic restructuring will be a driving factor in changing the daily load shape
and its load procuring requirements. In addition to its very significant expected load
growth, with estimates having China consuming between 2 and 3 times more electricity
in 2030 than in 2010 [57, 58], the load shape changes will lead to increased peak capac-
ity and flexibility requirements. Although both residential and commercial sectors will
increase in importance in future electricity consumption, this work only describes mod-
els for commercial buildings. The rationale behind this is that under the same data
availability restrictions, it is more feasible to construct commercial building models
that conform to published norms. Residential buildings vary much more significantly
in vintage, applicable construction standards, and appliance ownership models.

Building physically-based building models for the commercial sector is important
in order to understand future load shapes for several reasons. First, modifying the
physical characteristics of the model will impact the load shape of a typical day in
2030. For example, having a very small load factor in the commercial sector, will
in turn reduce the load factor of the total load in a given day if the industrial and
residential load hourly models are unchanged. Having an available model to test and
measure how much will the peak load and flexibility requirements change with changing
sectoral proportions is of key interest. In this work, we will use non-parametric load
curves to represent the hourly behaviors of agricultural, industrial and residential loads
in aggregate. These load curves will be explained further in Chapter 3 below, and are
based on work by Yao et al [51].

A second reason we feel motivated to build physically-based building models for
the commercial sector is that, as is the case with commercial buildings, controlling a
smaller group of loads more predictably seems more feasible in the foreseeable future
than controlling large numbers of diverse residential buildings. Controlling loads in the
residential sector for the purpose of flexibility provision is possible but it presupposes
existing infrastructure needs larger than the needs in the commercial sector. Further-
more, China already has pilots of commercial and large buildings able to participate in
demand response programs [59, 60]. Although smart appliances area available in the
market, plans for implementing a large distribution of smart appliances or a transition
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to smart appliances needed for large scale demand response programs in the residential
sector were not found.

2.3 Assumptions

The commercial sector model is built using a bottom up approach with individual
building models that are climate, efficiency standard and operational schedule depen-
dent. This section will discuss the three main assumptions in the model. First, I will
describe the individual building models that make up the backbone of this commercial
sector model. Second, climate considerations will be described as they relate to the
building models representing the commercial sector in China. Finally, I will discuss
commercial sector electricity consumption proportions by building type and efficiency
standards.

2.3.1 Building types and reference models

The commercial sector load is defined by the building electricity consumption from
offices, retailers, malls, hospitals, service providers, and public buildings among others.
In this study, the controllable commercial sector is described by a simplified model
using six types of physically-based building models: offices with and without datacen-
ters, retail buildings, hotels, hospitals and schools. All building models are modified
versions of the Individual Standard 90.1-2013 Prototype Building EnergyPlus Models
published by the Building Energy Codes Program of the U.S. Department of Energy
and developed by researchers at Pacific Northwest National Laboratory (PNNL) [61].
All other details for the building models not covered in this section are presented on
their PNNL prototype scorecards, available at [61]. How a building is constructed,
what is the window to wall ratio, for example, affects what construction standards
values are used.

EnergyPlus

EnergyPlus is a building energy simulation program developed by the U.S. Department
of Energy’s Building Technologies Office, and managed by the the National Renewable
Energy Laboratory. Researchers, engineers and architects use EnergyPlus to study
the impact of efficiency improvements on building operation and comfort for ASHRAE
standards [62]. Furthermore, researchers have used EnergyPlus to model buildings and
efficiency improvements across the globe [63, 64, 65]. In this work, EnergyPlus is used
to simulate the six main types of commercial buildings in the Chinese sector: offices
with and without datacenters, retail buildings, hotels, hospitals and schools. Reference
prototype models were downloaded from [61] and are briefly described in the next
sections.
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Operational Schedules

The reference models used in this work come loaded with operational schedules defining
the building’s HVAC, lights, equipment’s operation and occupants behavior (among
other characteristics) as suggested by the American Society of Heating, Refrigerat-
ing and Air-Conditioning Engineers (ASHRAE). These operational schedules can be
modified to test impacts of operational changes on energy consumption, comfort and
construction [61] or to compare against standards and operational schedules in China
[66]. In this work we are interested in situating these out-of-the-box building reference
models onto a Chinese context and therefore provide a comparison between the opera-
tional schedules suggested by ASHRAE and those suggested by the Ministry of Housing
of Urban and Rural Development (MOHURD) in China [67, 68]. In Section 2.6 the
impacts of using the different operational schedules on the electricity consumption of
the reference building will be presented and discussed.

Office Reference model

The office building reference model has twelve floors with a 40% window to wall ratio,
and a basement that might host a datacenter depending on the type of office building.
Each above ground floor has five climate controlled zones. The HVAC system that
provides temperature and comfort regulation in these climate controlled zones consists
of two cooling coils and pumps systems that provide cooling and a gas boiler that
provides heating. The building’s operational schedules for a given weekday proposed
by ASHRAE and MOHURD standards are presented below.
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Figure 1: Chinese and US operational schedules for the modeled office building in a
weekday

Figure 1 shows a representative set of operational schedules for both the ASHRAE

10



COMMERCIAL MODEL 2.3. ASSUMPTIONS

(US, in gray) and MOHURD (Chinese, in black) office buildings. Starting on the
upper left and continuing clock-wise, we can see the building’s cooling and heating
temperature setpoints, the HVAC operational hours (and the corresponding assumed
fraction of infiltration of outside air into the building), the equipment and lights load
as a fraction of the designed maxima, and the occupancy throughout the day as a
fraction of the maximum design occupancy.

From Figure 1, three main differences can be observed between the Chinese and
US operational schedules. First, the US cooling and heating schedules fall within the
Chinese schedules. This implies that buildings operating with Chinese schedules have
a temperature controlled zone wider than those operating with US schedules. This
difference would lead to wider temperature swings and lower engagement from the
cooling and heating systems in the building. Second, HVAC systems are operated for
longer hours each day in US buildings. Finally, equipment and lights are assumed to
operate at higher intensities during the day in US buildings than in Chinese buildings.

Retail Reference model

The retail building model has one floor with five climate controlled zones and a 7%
window to wall ratio. Cooling is provided by a packaged air conditioning unit, while
heating for four of the five zones is provided by a gas furnace inside the packaged air
conditioning unit. A stand alone gas furnace provides heating to the front entry zone.
No cooling is provided to the front entry.
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Figure 2: Chinese and US operational schedules for the modeled retail building in a
weekday

From Figure 2, three main differences can be observed between the Chinese and
US operational schedules. First, as with the office building’s operational schedules, the
US cooling and heating schedules fall within the Chinese schedules. This implies that
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retail buildings operating with Chinese schedules have a temperature controlled zone
wider than those operating with US schedules in turn leading to wider temperature
swings and lower engagement from the cooling and heating systems in the building.
Second, as with the office building’s operational schedules, HVAC systems in retail
buildings are operated for longer hours each day in the US case. Finally, occupancy
is assumed to stay constant between business hours for the Chinese building. On the
other hand, US buildings have a more punctuated occupancy profile during the day.

School Reference model

The school building model has 2 floors with a window to wall ratio of 33%. Heating
is provided by both gas furnaces inside the packaged air conditioning units and a gas-
fired boiler. Cooling is provided by the packaged air conditioning unit and an air-cooled
chiller. In addition, the school building year schedule is different from other building
types as it follows the school calendar as established by government. In contrast to
other buildings, its operation is marked by two extended vacation periods between
semesters.
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Figure 3: Chinese and US operational schedules for the modeled school building in a
weekday

From Figure 3 we can point out almost the same differences between the Chinese and
the US operational schedules for a typical weekday: higher temperature gap between
cooling and heating setpoints for the Chinese case, longer HVAC operational hours,
and higher intensity in equipment and lights plugs for both US operational schedules.
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Hotel Reference model

The hotel building model has six above-ground floors and a basement with different
window to wall ratios for each side of the building. On average, the window to wall
ratio is 30.2%. The basement is a single conditioned climate zone, while all the above-
ground floors consist of seven climate controlled zones each. The ground floor includes
retail and lobby facilities, a cafeteria and a laundry room. From the second to the fifth
floor are the guest floors, with each hosting 42 guest rooms. The top floor includes
guest rooms, a banquet room, and a kitchen. Heating and cooling are provided by a
gas-fired boiler and an air-cooled chiller, respectively.
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Figure 4: Chinese and US operational schedules for a modeled guest room in a hotel
building in a weekday

From Figure 4 we can see important differences between the operational schedules
of hotels and offices, retail buildings, or schools. First, temperature setpoints for guest
rooms stay constant throughout the day for both the Chinese and the US operational
schedules. Buildings have the same temperature gap between cooling and heating
setpoints, but are shifted away from each other by a degree, depending if they follow
Chinese or US schedules. HVAC operational hours are the same for both operational
schedules types. Finally, occupancy is assumed to be lower, on average, for US hotels
than for their Chinese counterparts.

Hospital Reference model

The hospital building model has 5 above-ground floors and a basement. All rooms,
with the exception of the basement are conditioned and the building’s average window
to wall ratio is 16%. A gas boiler provides heating, while two water cooled centrifugal
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chiller provide cooling to the conditioned zones across the buildings. Several variable-
air-volume (VAV) units modulate air flow into the respective zones.
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Figure 5: Chinese and US operational schedules for a modeled inpatient room in a
hospital building in a weekday

From Figure 5 we can see similarities between the operational schedules of hospitals
and hotels in both countries. Hospitals and hotels have the same cooling and heating
temperature setpoints, and HVAC operational hours. The Chinese occupancy schedules
differ from the US case in that it assumes a constant occupancy of its in-patient rooms,
while US rooms see a high plateau in the middle of the day.

2.3.2 Climate considerations

To provide higher quality standards applicable to the different kinds of climates in the
country, China’s MOHURD classifies the country’s climate into five different zones:
Severe Cold, Cold, Hot Summer Cold Winter (HSCW), Hot Summer Warm Winter
(HSWW), and Temperate (or Mild) [69, 70, 71].

In this study, only four climate zones are used to model the building’s operation
across the country. The temperate (or mild) climate region covers part of Sichuan
and Yunnan provinces and are included within the HSCW region. For each climate
zone, MOHURD develops and applies different standards for each commercial building
type [67, 68]. Part of our motivation on which building models to choose from the
database available from PNNL is the published availability of building standards from
MOHURD. There are more building models available than there are published stan-
dards. We used all the models for which we can match published MOHURD building
standards.

In order to model the appropriate climate within the EnergyPlus framework, the
cities of Harbin, Beijing, Shanghai, and Guangzhou were chosen as representatives for
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each of our climate regions: Severe Cold, Cold, HSCW, and HSWW. With appropriate
climate files to inform the sizing requirement of the buildings in each region, as well
as to provide more realistic outside temperature and humidity profiles, it is possible
to situate the prototypes to their Chinese regional variation. Table 1 shows how all
provinces and cities in China are grouped within the four climate zones aforementioned
in our model.

Climate Zone Provinces and cities included

Severe Cold Heilongjiang, Inner Mongolia, Jilin, Liaoning, Qinghai, Tibet
Cold Beijing, Gansu, Hebei, Henan, Ningxia, Shandong, Shanxi,

Shaanxi, Tianjin, Xinjiang
HSCW Anhui, Chongqing, Fujian, Guizhou, Hubei, Hunan, Jiangsu,

Jiangxi, Shanghai, Sichuan, Yunnan, Zhejiang
HSWW Guangdong, Guangxi, Hainan

Table 1: Climate regions in China

2.3.3 Sub-Sectoral Estimates

Commercial sector electricity consumption by building type, ρb,r,y

In order to construct a realistic bottom up model of the commercial sector in China by
climate region, estimates for the shares of the total sector consumption from different
building types in a given year are used. These sub-sectoral proportions are used to
create a weighted average across the different building models described in Section
2.3.1 by climate region for any given year. Using data from [55], we calculated the
fraction of the total commercial sector electricity consumption in a given year and
climate region consumed by office, retail, hospital, hotel, and school buildings. The
fraction of the total commercial sector consumption consumed by any other type of
buildings is aggregated into its own category, ’Other’.

Table 2 shows the proportion of total sector consumption consumed by each mod-
eled building type for a given year, between 2015 and 2030, and across all simulated
climate zones. In general, we notice similar building electricity consumption shares
across all climate zones. About 30% of the sector’s total electricity is consumed by
both types of office buildings. Hotels, schools and hospitals consume about 18, 15, and
6% of the commercial sector’s total consumption with small variations across climate
zones for any given year. Some trends as time progresses are noticeable, in particular,
small increases in the fraction of total sector electricity consumed by offices from 2015
to 2030 across all climate zones are expected. On the other hand a more pronounced
decline in the proportion of total sector electricity consumed by retail buildings is ob-
served for the same period. Proportion of the total sector consumption consumed by
the ’Other’ building categories shows moderate increases between 2015 and 2030.
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Building type

Climate Zone Year Office Retail Hospital Hotel School Other

Severe Cold 2015 0.298 0.180 0.054 0.182 0.144 0.141

2020 0.302 0.168 0.056 0.182 0.148 0.143

2030 0.306 0.156 0.059 0.183 0.152 0.144

Cold 2015 0.298 0.180 0.053 0.181 0.145 0.142

2020 0.302 0.168 0.055 0.182 0.147 0.143

2030 0.306 0.156 0.058 0.184 0.149 0.144

HSCW 2015 0.298 0.180 0.053 0.181 0.146 0.142

2020 0.301 0.169 0.056 0.182 0.149 0.143

2030 0.305 0.157 0.059 0.184 0.152 0.144

HSWW 2015 0.297 0.182 0.053 0.181 0.145 0.142

2020 0.301 0.172 0.055 0.182 0.147 0.143

2030 0.305 0.159 0.058 0.184 0.149 0.144

Table 2: Fraction of commercial sector electricity consumption consumed by building
type, in 2015, 2020 and 2030, across all climate regions, ρb,r,y

Standards over time

ASHRAE/PNNL energy codes and standards used in the reference model buildings
for the commercial sector in the US do not map directly to building models applicable
in China. The first national set of standards for commercial buildings in China was
published by MOHURD in 2005 and updated with more stringent goals in 2014 [67, 68].
Throughout this work, for brevity’s sake, we will refer to them by the year of their
publication: 2005 or 2014 and drop the name of the Ministry in charge of publishing
them.

Existing research on Chinese building standards focuses on how building standards
are useful to develop better sustainable development goals and metrics[72] or to com-
pare the impact of adopting ASHRAE operational schedules and standards in Chinese
buildings [56]. Some researchers also provide suggestion on having more frequent up-
dates for Chinese building standards [71].

Adopting this last suggestion for more frequent standards, and using linear interpo-
lation between the published 2005 and 2014 standards, future standards for 2020 and
2025 are estimated for the following building construction parameters: wall, roof, and
window heat transfer coefficients (Uwall, Uroof , Uwindow, respectively), window’s solar
heat gain coefficient (SHGC), outside air infiltration (foa, also knows as air tightness),
boiler efficiency (ηb), COP, light and plug load intensities (βl and βe, respectively), and
occupancy levels (σp).
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According to the 2014 standards, different sizes in buildings, as well as geometries
across different climate zones in China are subject to meet different building standards
[68]. In Table 3 we show the value for the above mentioned parameters across differ-
ent climate zones and through time for the office buildings used in our model. It is
important to note that a larger building, or a building without windows, or a building
with very different temperature setpoints would all require to meet different standards
according to MOHURD. A more detailed description of the office model is presented
in Section 2.3.1.

Using the same linear approximations, parameters across all other building type
models in each climate zone in any given year are estimated to model efficiency gains
by 2030. The efficiency standards tables for all buildings are presented in Appendix
B. Two different scenarios for standard adoption in the commercial building sector in
2030 are studied. The first scenario assumes that developers and builders are subject to
strict monitoring for compliance which in turn results in all buildings complying with
the estimated 2020 standards for their respective climate zone. The second scenario
assumes that developers and builders are subject to stricter monitoring for compliance
which in turn results in a commercial sector that complies with the estimated 2025
standards for their respective climate zone.

Offices with data centers, δ

In this work, we assume that data centers in offices become more common in the future.
As data centers become more common, the electricity consumption from these offices
will also increase due to increased cooling loads.

We estimate the proportion of offices with datacenters to increase in the future. In
Table 4 we can observe that by 2030, our model assumes that 25% of all office buildings
will have a dedicated data center in the basement of the building. For this version of
the model, we do not have different scenarios in data center penetration in buildings
of any type. In future iteration of the model, other data center penetration scenarios
might be explored.

2.4 Scenarios

In this model, the commercial sector is a function of three global variables that define
the overall energy consumption in each building: efficiency standards adoption, oper-
ating schedules and electrification of heating (with symbols ξ, θ, and χ, respectively).
Efficiency standard adoption scenarios capture two different efficiency standards com-
pliance levels across the building stock. Building level operating schedules model the
way each building, irrespective of its adopted efficiency standards, is operated. Finally,
electrification of heating explores how the building provides heating to its conditioned
zones. In this section we will describe the different scenarios for each of these global
variables. In Section 2.6 we will explore how different scenarios give rise to different
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HSWW Standards HSCW Standards Units

2005 2014 2020 2025 2005 2014 2020 2025

Uwall 1.5 1.5 1.5 1.5 1.0 0.8 0.66 0.55
W

K ·m2

Uroof 0.9 0.8 0.73 0.68 0.7 0.5 0.37 0.26 ”

Uwindow 3.5 3.0 2.7 2.4 3.0 2.6 2.3 2.1 ”

SHGC 0.45 0.35 0.28 0.22 0.5 0.4 0.33 0.28 −

foa 7.5 3.0 1.0 1.0 7.5 3.0 1.0 1.0
m3

m2 · hr
ηb 0.89 0.89 0.91 0.91 0.89 0.89 0.91 0.91 −

COPc 5.1 5.7 6.1 6.4 5.1 5.6 5.9 6.2 −

βl 11 9 7.7 6.6 11 9 7.7 6.6
W

m2

βe 20 15 11.7 8.9 20 15 11.7 8.9 ”

σp 8 10 11.3 12.4 8 10 11.3 12.4
m2

person

Cold Standards Severe Cold Standards

2005 2013 2020 2025 2005 2014 2020 2025

Uwall 0.6 0.5 0.43 0.38 0.45 0.38 0.33 0.29
W

K ·m2

Uroof 0.55 0.45 0.38 0.21 0.35 0.28 0.23 0.19 ”

Uwindow 2.7 2.4 2.2 2.0 2.5 2.2 2.0 1.8 ”

SHGC 0.7 0.48 0.33 0.21 0.7 0.7 0.7 0.7 −

foa 7.5 3.0 1.0 1.0 7.5 3.0 1.0 1.0
m3

m2 · hr
ηb 0.89 0.89 0.91 0.91 0.89 0.9 0.91 0.91 −

COPc 4.7 5.2 5.5 5.8 4.7 5.0 5.2 5.4 −

βl 11.0 9.0 7.7 6.6 11.0 9.0 7.7 6.6
W

m2

βe 20.0 15.0 11.7 8.9 20.0 15.0 11.7 8.9 ”

σp 8 10 11.3 12.4 8 10 11.3 12.4
m2

person

Table 3: Chinese Office building standards over time and across climate regions
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Year
Offices with datacenters

(% of total)

2010 -
2015 10
2020 15
2030 25

Table 4: Proportion of offices with datacenters, δ, between 2010 and 2030

commercial sector electricity consumption levels. In Chapter 3 we will expand our
analysis on how different global variables affect the overall regional and national load.
Finally, in Chapter 5, renewable generation will be introduced into the picture and see
how the three global variables affect the national netload.

2.4.1 Efficiency Adoption, ξ

There are two efficiency standards adoption scenarios modeled in this work labeled
2020 and 2025 (ξ1, and ξ2, respectively). If buildings follow ξ1 (2020 standards) stan-
dard adoption scenarios, then by 2030, the model assumes that buildings’ construction
(wall, roof, window, and equipment efficiency, etcetera) will comply with 2020 effi-
ciency standards as presented in Table 3 (for the case of office buildings). Similarly,
if ξ2 (2025) standard adoption scenario is followed, then by 2030, the model assumes
that buildings will comply with 2025 efficiency standards. The impact of following the
two different efficiency scenarios outlined here will be presented in Section 2.6.

2.4.2 Operating Schedules, θ

Independently of how buildings are constructed, that is, what efficiency adoption sce-
nario (ξ) is used, there are two building level operating schedules scenarios that build-
ings could adopt by 2030, θ1 and θ2. For scenario θ1, buildings adhere to the operating
schedules in the 2014 standards. In θ2, buildings adhere to the operating schedules
used in the US ASHRAE/ANSI 90.1-2012 commercial building prototypes in Section
2.3.1. As outlined in Section 2.3.1, θ1 and θ2 are different in terms of temperature
setpoints in a day, and across days, HVAC operating schedules, and occupancy profile
assumptions among other characteristics. For example, the difference in temperature
setpoints between high and low occupancy hours (2 pm vs 2 am) is not that large for
the θ2 (US) schedules. In Chinese buildings, this difference in temperature setpoint
can sometimes be as large as ten degrees centigrade for some building types.

Operational schedules can increase or reduce the energy intensity of a building.
In addition, a building designer, and EnergyPlus, needs to know the time the HVAC
system turns on, the temperature cooling and heating setpoints, as well as the occu-
pancy profile in a variety of days in order to properly size the heating and cooling
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equipment. Furthermore, different operating schedules can give rise to different com-
fort levels. Introducing operating schedules (θ) as a global variable across scenarios
allows us to explore how will commercial sector load in China change if behaviors and
comfort expectations of building users emulate those in the United States.

As mentioned before, operating schedules (θ) and efficiency adoption decisions (ξ)
are independent. A building can be operating with the US schedule θ2 and in com-
pliance with efficiency standards adoption scenario ξ1, or operating with the Chinese
operating schedule (θ1) and in compliance with efficiency standards ξ2 (2025). The im-
pact of adopting either operating schedule will be discussed in more detail in Section
2.6.

2.4.3 Heating Electrification, χ

By default, all reference building models use gas as their heating fuel. Nevertheless, as
China pursues electrification of their commercial sector in order to reach their clean air
and renewable energy goals and in compliance with the required fundamental changes
in the energy system for a deep decarbonization[73], we expect that the building sector’s
heating consumption will shift towards electricity and away from coal or gas as the main
fuel by 2030 [74, 75, 76]. In order to study the effects on load, netload, and demand
response of such a shift, we propose three different heating electrification scenarios of
the commercial sector to 2030.

The first heating electrification scenario, χ1, assumes that all buildings use electric-
ity as their main heating fuel with a heating efficiency equal to that of a traditional gas
boiler, or about 90%. The second scenario, χ2, assumes no electrification of heating in
the building sector. That is, buildings continue to use gas or coal as their main heating
fuel. The third scenario, χ3, assumes that heating is provided with a heating pump 2.5
times more efficient than a traditional gas boiler.

As mentioned before with variables ξ and θ, heating electrification scenarios (χ) are
independent from the other two. The impact of pursuing different heating electrifica-
tion options will be discussed in more detail in Section 2.6 of this chapter.

2.4.4 Summary of parameters

To summarize the needed parameters to define a set of commercial building models we
provide Table 5 below for quick reference.

Parameter Value: Description

ξ1: Buildings follow 2020 standards in 2030
ξ, Efficiency standards

ξ2: Buildings follow 2025 standards in 2030
θ1: Buildings follow Chinese operational sched-
ules guidelines

θ, Operation schedules
θ2: Buildings follow US operational schedules
guidelines
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χ1: Heating is provided by low efficiency electric
boilers
χ2: Heating is provided by gas or coal boilersχ, Heating electrification
χ3: Heating is provided by high efficiency elec-
tric heat pumps

Table 5: Commercial building model parameters

2.5 Methodology

In this section we describe the steps taken to model the hourly load from the commercial
sector derived from the individual building models discussed in Section 2.3.1 and the
sub-sectoral estimates discussed in Section 2.3.3. For every climate region, we define a
building’s electricity load as a function of three main variables, or scenarios, as shown
in Equation 2.5.1.

Lb,r,y = fb,r,y(ξ, θ, χ) (2.5.1)

where Lb,r,y is the electricity load for building b, in climate region r in year y, fb,r,y
is the model describing the same building, in the same region and year and ξ, θ, and
χ represent the three global decision variables or scenarios available as described in
Section 2.4.

For any given building, climate region, and year (b, r, and y, respectively), and for
scenarios ξ, θ, and χ every building model output provides hourly energy consumption
from all different equipment or services in the building including HVAC electricity,
heating gas, lights, total building electricity and gas consumption. Using these time-
series, we can calculate the hourly electricity load, Lb,r,y, for a given building, climate
region, and year with Equation 2.5.2.

Lb,r,y = Ce,nh,b,r,y(ξ, θ) +H(χ) · ηboiler,b,r,y(ξ) · Cgas,h,b,r,y(ξ, θ) (2.5.2)

where Ce,nh,b,r,y(ξ, θ) is the hourly electricity consumption from all processes other
than heating as a function of the efficiency (ξ) and operational schedule (θ) scenar-
ios, H(χ) is the heating exchange factor as a function of the heating electrification
χ scenario chosen, ηboiler,b,r,y(ξ) is the boiler efficiency as a function of the efficiency
(ξ) scenario, and Cgas,h,b,r,y(ξ, θ) is the hourly energy consumption from gas to provide
heating as a function of ξ and θ, for any given building, region, and year (b,r,and y,
respectively).

After a building model is run, its respective electricity intensity (in kWh
m2 ) is calcu-

lated by summing across its hourly electricity load and dividing it by its floor space
area, Ab, as in Equation 2.5.3.

ib,r,y =

∑8760
h=1 Lb,r,y(h)

Ab
(2.5.3)
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As shown in Equation 2.5.1 above, Lb,r,y is a function of the three global variables
or scenarios. By extension, ib,r,y is also a function of the same three variables (ξ, θ, and
χ). We can now formulate a definition for the average intensity of commercial sector
with Equation 2.5.4.

īr,y =
∑
b∈B

ρb,r,y · ib,r,y(ξ, θ, χ) (2.5.4)

where īr,y is the average building intensity from the commercial sector built from
the individual models described in 2.3.1 (defined here as set B), as a function of the
three global variables, ρb,r,y is the proportion of the yearly electricity consumption
consumed by building type b (as discussed in Section 2.3.3) and the total commercial
sector consumption in region r and year y, and ib,r,y is electricity intensity of building
b, in region r, and year y as a function of (ξ, θ, and χ).

In order to track the impact of efficiency gains, operational schedules, or electrifi-
cation scenarios at the commercial sector level, we define a baseline average intensity
in climate region r as the average intensity when global variables equal ξ1, θ1, and χ1

respectively as shown in Equation 2.5.5.

ībaseline,r,y =
∑
b∈B

ρb,r,y · ib,r,y(ξ1, θ1, χ1) (2.5.5)

We aggregate the electricity consumption from each of the individual models into
a regional electricity density model as in Equation 2.5.6.

Γr,y(h) =
∑
b∈B

ρb,r,y · Lb,r,y(h)

Ab
(2.5.6)

where Γr,y(h) is the hourly weighted sum, across all buildings in set B, of the hourly
building load models, Lb,r,y(h), in region r and year y, ρb,r,y is the ratio between the
yearly electricity consumption from building type b and the total commercial sector
consumption in region r and year y, and Ab, is the total floor area of building b.

By combining Equations 2.5.5 and 2.5.6 and introducing two new parameters,
εcomm,y and Cr,y, we can now define an hourly load for the commercial sector built
from the individual building models. We label this commercial sector load as control-
lable (with the subscript c), since as we will see in Chapter 7 we can control the load
of these buildings to provide flexibility to the electric grid. The commercial sector
controllable load in region r and year y is then defined in Equation 2.5.7

Lcommc,r,y(h) =
Γr,y(h)

ībaseline,r,y
· (1− ρother,r,y) · Cr,y · εcomm,y (2.5.7)

where Lcommc,r,y is the hourly demand of the controllable commercial sector, Γr,y(h)
is the regional electricity density function as defined in Equation 2.5.6, ībaseline,r,y is the
baseline average intensity, as defined in Equation 2.5.5, ρother,r,y is the ratio between
the yearly electricity consumption from building types not built from the individual
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models in set B and the total commercial sector consumption in region r and year y.
The new parameters Cr,y and εcomm,y represent the total electricity consumption across
all sectors , and the ratio of electricity consumption consumed by the commercial sector
and the total electricity consumption across all sectors of the economy in region r and
year y, respectively. Equation parameters Cr,y and εcomm,y will be described in more
detail in Chapter 3.

2.6 Results

In this section, we present the results of our commercial building models for each
building type and climate region in terms of yearly building intensity, kWh

m2 . We present
results of only two scenarios for comparison purposes. With two efficiency standard
(ξ), two operational schedules (θ), three heating electrification scenarios (χ) across four
climate regions and six different building models we developed a total of 288 building
models. For brevity’s sake, in this section we only present the full results at the building
level for buildings under sets of scenarios. The individual building’s electricity intensity
across different set of parameters and climate zones in 2030 are presented in Appendix
C.

Table 6 shows the estimated individual building intensities across all climate zones
for buildings complying with the 2005 standards. These building models all have
heating that is provided by traditional gas or coal boilers and operational schedules
that follow MOHURD recommendations and not their American counterparts.

Building Climate region
Severe Cold Cold HSCW HSWW

Hospital 396.1 376.4 380.0 394.8
Hotel 249.0 214.1 233.5 247.8
Office 128.8 104.0 96.9 100.2
Retail 162.2 149.0 139.2 153.4
School 101.3 116.3 96.7 104.8

Table 6: Building intensity with 2005 standards, by climate region, in kWh
m2

The second set of presented results in Table 7 provide the yearly individual building
intensities for the base case scenario across the four climate zones for buildings with
low-efficiency heating electrification (χ1) that have MOHURD recommended operation
schedules (θ1) meeting the estimated 2020 standards (ξ1).

Among the building types modeled across both scenarios, hospitals have the highest
energy consumption footprint with 350 - 400 kWh

m2 . School buildings have the lowest
energy consumption with intensities ranging from 70 to 80 kWh

m2 for the improved 2020
standards across all climate regions. Office building’s building intensities vary greatly
between those with and without datacenter with ranges between 80 - 210 kWh

m2 across
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Building Climate region
Severe Cold Cold HSCW HSWW

Hospital 386.0 361.5 352.6 361.9
Hotel 199.3 173.6 183.8 200.5
Office (with datacenter) 211.0 194.2 189.4 194.3
Office (no datacenter) 109.9 90.9 82.4 84.2
Retail 120.7 114.7 98.9 109.4
School 70.7 81.0 68.8 73.9
Average 152.1 139.1 132.9 140.8

Table 7: Building intensity of the base case scenario in 2030 for individual buildings
and regional average, by climate region, in kWh

m2

all climate regions. Retail and hotel buildings electricity intensities hover around 100-
120 and 170-200 kWh

m2 , respectively for the improved 2020 standards across all climate
regions.

We can calculate the average regional building intensity by using the sub-sectoral
estimates presented in Section 2.3.3. On average, the region with the lowest overall
average commercial sector intensity is the one with the mildest climate, Hot Summer
Cool Winter (HSCW), with a 132 kWh

m2 . The region with the highest average commer-
cial sector intensity is the northernmost region of Severe Cold climate with 152 kWh

m2 .
Overall, given our assumptions for building distributions across all climate regions, the
average building intensities are within 20% of each other.

Building Climate region
Severe Cold Cold HSCW HSWW

Hospital -2.6 -4.0 -7.2 -8.3
Hotel -20.0 -18.9 -21.3 -19.1
Office (with datacenter) 63.9 86.7 95.4 93.9
Office (no datacenter) -14.7 -12.6 -15.0 -15.9
Retail -25.6 -23.0 -28.9 -28.7
School -30.3 -30.4 -28.9 -29.5

Table 8: Building intensity change, in percentage, from the 2005 standard case scenario
to the 2030 base case scenario for individual buildings and regional average, by climate
region, in kWh

m2

In Table 8 we show the decrease in building intensity between building models that
comply with the 2005 and the estimated 2020 building standards. We see that the
linear approximation of standard improvement does not have a large effect on hospital
buildings. In addition, offices with datacenter show an increase in energy consumption
of between 60-95% with respect to offices in 2005. The lowest increase in offices with
datacenter occurs for buildings in the Severe Cold climate since they need the least
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amount of extra cooling among all climate regions. In general, buildings that comply
with the estimated 2020 efficiency standards will be between 20 to 30% more efficient
than those meeting 2005 standards, depending on the building type and climate region.
The biggest decrease in energy consumption occurs for schools in cold climates with a
30.4% efficiency improvement.

2.6.1 Aggregating across the country

With electricity demand data at the province level, and assuming that provinces fit
neatly into climate regions, as presented in Chapter 3, we can estimate the overall
commercial sector building intensity for each set of parameters used to model the
buildings. Table 5 is offered for reference in the definition of parameter values.

Scenario 2020 (ξ1) 2025 (ξ2)

θ1χ1 138.4 134.4
θ1χ2 118.5 114.8
θ1χ3 125.1 121.3
θ2χ1 154.7 150.4
θ2χ2 129.2 125.2
θ2χ3 137.7 133.6

Table 9: Average commercial sector, building intensity, kWh
m2

In scenarios where heating (χ) is provided by electricity (χ1,3), the intensities from
each building, and the commercial sector overall increases. In colder climates the
heating electrification scenario has a bigger impact on the intensity of the commercial
sector. In general, commercial buildings that operate with ASHRAE/PNNL recom-
mended schedules (θ2) consume about 10% more energy in a year than buildings that
operate with MOHURD recommendations (θ1). In the absence of heating electrifica-
tion (χ2), buildings in the warmest climate (HSWW) have the highest energy intensity
of all commercial buildings. Compliance to Efficient standards by 2030 (ξ2) lead to an
average decrease in commercial sector building intensity of 4 kWh

m2 as compared to the
BAU standards (ξ1).

In Section 2.7 we perform a sensitivity analysis for each of the possible variations
across parameters available in our model (ξ,θ,χ) with comparison with the basecase
scenario.

2.6.2 Literature comparison

Although there are comparative studies on energy performance done on office build-
ings in China across multiple climate regions ([71, 69]) there is no definitive compar-
ison available for all building types modeled in this work. Feng et al built a series of
Chinese reference office building models using surveys of existing buildings as well as
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design drawings of newly constructed ones. Their average intensity for the three mod-
eled buildings using 2005 standards is almost 160 kWh

m2 . The Cold climate model using
2005 standards had a energy intensity of about 140 kWh

m2 . When compared with the
Cold climate office model used in this work it appears as if our model severely under
estimates its energy consumption since our model does not take into account build-
ing’s heating load as it is assumed that for the 2005 standards buildings in Northern
China are provided by heat from district heating. Research from Da Yan at Tsinghua
aggregates heating and non-heating load across all buildings in China. It estimates
a range between 53-80 kWh

m2 for heating provision in Beijing[77]. Adding this heating
energy consumption, our model energy consumption now surpasses that from Feng et
al by 10-20%.

Research on the energy consumption of buildings across China rely on data aggre-
gation that does not suit our direct needs. For example, in Da Yan’s research it is
estimated that the public and commercial buildings have an electric building intensity
of around 55 kWh

m2 . When heating is added, buildings have an average energy con-
sumption of 170 kWh

m2 [77]. As seen from Table 9 our 2030 commercial sector building
intensity average ranges from 120 to 150 kWh

m2 depending on the parameters used to
construct the buildings across all climate regions and excluding scenarios without elec-
trification of heating. This range of potential average building intensity seems like a
plausible future if efficiency in building construction, operation, and heating provision
is pursued.

2.7 Discussion

As discussed in Section 2.4 our commercial building hourly model is a function of the
parameters or scenarios chosen. In this section we examine the impact of modifying a
parameter at a time on the electricity intensity climate region average for the basecase
scenario (ξ1,θ1,χ1).

2.7.1 Impact of parameters

Climate Region Parameter change
∆ξ ∆θ χ1 → χ2 χ1 → χ3

Severe Cold -2.0 12.3 -27.4 -18.3
Cold -3.3 14.9 -16.5 -11.0
HSCW -2.7 9.5 -10.3 -6.9
HSWW -3.7 8.8 -5.9 -3.9

Table 10: Percentage effect of changing a parameter from the average regional climate
building intensity on the base case scenario
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In general, as seen in Table 10, differences in efficiency standards as defined in
Section 2.3.3 have a small effect on the average climate region commercial building
intensity. A shift from 2020 to 2025 standards compliance by 2030 (∆ξ) only reduces
electricity consumption by 2 to 4% from the basecase scenario depending on the climate
region we compare. On the other hand the other two parameters (θ,χ) have a much
larger impact on the electricity consumption in buildings. For example, changing the
operation schedules from those recommended by MOHURD to ASHRAE (∆θ) increases
electricity consumption between 9 and 15% from the base case scenario. Changing the
electrification scenario has a higher impact for buildings in the North (Severe Cold and
Cold climates) than changing any of the other two parameters. For example, when
buildings go from self-providing heating by electric boilers to having their electricity
provision met by gas or coal boilers (χ1 → χ2) we see a 27 and 16% decrease in
electricity consumption for buildings in the Severe Cold and Cold climate regions. On
the other hand, buildings further south in the HSCW and HSWW climate regions
only see a 10 and 6% decrease in yearly consumption from this transition. Providing
the building’s heating with more efficient electrified heating (χ1 → χ3) has a smaller
impact on electricity consumption than de-electrifying the heating load completely with
consumption reductions between 4 to 18%.

2.8 Conclusion

In this Chapter we presented a model for an hourly commercial model at the climate
region level in China for a given set of parameters in Section 2.5. The model parame-
ters that define the commercial load are efficiency standards adoption (2020 vs 2025),
operational schedules (China vs US), and heating electrification (no electrification,
low-efficiency electrification, high-efficiency electrification). We found that our model
predicts a range of building intensities consistent with literature. We also described
that for a 2030 basecase scenario defined by a commercial sector with 2020 standards,
Chinese operational schedules and low-efficiency electrification of heating the average
commercial sector intensity is 138 kWh

m2 2.6. If we assume an average commercial build-
ing intensity of 170 kWh

m2 as per [77], then, our basecase scenario has a reduction of
19% from the present intensity estimate. Finally, we examined the impacts of chang-
ing a parameter from basecase scenario. We found out that changing the operational
schedules has the largest impact across all climate regions, but that changing heating
electrification has a disproportionately large impact on the electricity consumption of
buildings in Northern China. In the next chapter we will use the commercial model
described here to develop an hourly load model at the climate region level.
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Chapter 3

Electricity load forecast model for
China

3.1 Introduction

In this chapter we develop a model to describe hourly load at the regional and national
level in China using a parametrized model for the commercial sector at the climate
region level described in Chapter 2. In order to build a model of the hourly load we first
describe our assumptions in Section 3.2 which include national and provincial demand
forecasts to 2030. We then describe our method to disaggregate the provincial demand
data by time of the year and consumption sector (agricultural, commercial, industrial,
and residential). We clearly define a portion of the commercial component load as a
controllable load and provide a definition of a controllable regional and national hourly
load model 3.2.6. Finally, we present the results of our model with an emphasis on
understanding the descriptive statistics of load in 2030 in Section 3.3.

3.2 Assumptions

3.2.1 National and regional consumption, Ctotal,y and Cregion,y

Forecasting electricity consumption in China has been the subject of study among
many researchers coming from a diverse set of angles [8]. Over the past 30 years,
China has seen its electricity consumption rise in relative tandem with its economic
output [20]. For some researchers, electricity consumption and economic output are
intrinsically related and therefore formulate models to understand the future growth
of the economy and the electricity sector in China [78, 79, 80].

In this work we use load trajectories from 2015 to 2030 at the national, climate
region, and provincial levels. We assume that economic growth, and, therefore, elec-
tricity consumption continue to increase but with a decreasing growth rate. Between
2015 and 2020, we assume that electricity consumption at the national level grows
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at 3.9% on average annually reaching 6878 TWh. Between 2020 and 2030, national
consumption starts to significantly slow down, with an average yearly growth rate of
0.9%, achieving a relative plateau by 2030, as discussed in [19].

Nevertheless, as shown in Table 11, not all provinces or cities slow down at the
same rate between 2015 and 2030. More developed cities, like Beijing and Shanghai,
for example, have negative electricity consumption rates of -0.4 and -0.3%, respectively,
depicting effects of both efficiency gains and overall decrease consumption. On the
other hand, provinces with relatively low development indexes like Gansu, Tibet, and
Xinjiang are expected to have only moderate decreases in growth rates from the 2015-
2020 (3.3, 6.3, and 4.1% for Gansu, Tibet, and Xinjiang, respectively) to 2020-2030
(2.6, 3.2, and 4.1 % for the same provinces, respectively) periods.

At the climate region level, differences in consumption levels and rates can be
observed. By 2030, the climate region with the highest consumption will be the Hot
Summer Cold Winter (HSCW) region with over 3000 TWh of expected electricity
consumption, equivalent to 40.7% of the total national consumption. This climate
region spans over 12 cities and provinces, including Jiangsu province, Shanghai, and
Zhejiang province. The second largest region is the Cold climate region spanning over
10 cities and provinces, including Beijing, Hebei and Shaanxi provinces. By 2030 the
cold climate region is expected to consume over 2600 TWh, equivalent to 35.3% of the
national total.

By 2030, we assume that China will consume just over 7500 TWh of electricity
in 2030 if the commercial sector follows the baseline scenario as discussed in Chapter
2. We assume that further changes from the demand sector (outside of the modeled
commercial sector), including efficiency gains or significant sectorial disruption do not
occur. The impact of efficiency gains and other changes in the operation of the com-
mercial sector on the total yearly demand by 2030 is demonstrated in Section 3.3 of
this chapter.

To put China’s national electricity consumption in 2030 into perspective, the US
had a total consumption of approximately 3900 TWh in 2015. Assuming no further
growth in electricity consumption, by 2030, China would consume about twice as much
electricity than the US.

Climate Province Demand (TWh)
2015 2020 2030

Severe Cold
Heilongjiang 95 120 118
Inner Mongolia 231 283 335
Jilin 76 92 107
Liaoning 226 282 314
Qinghai 58 69 75
Tibet 3 4 6

Region 689 851 955
Cold
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Climate Province Demand (TWh)
2015 2020 2030

Beijing 95 104 100
Gansu 104 122 157
Hebei 388 482 518
Henan 328 408 420
Ningxia 73 87 109
Shaanxi 112 138 179
Shandong 458 540 585
Shanxi 229 276 285
Tianjin 87 108 114
Xinjiang 101 125 187

Region 1,975 2,390 2,653
HSCW

Anhui 146 179 184
Chongqing 84 109 132
Fujian 181 219 237
Guizhou 113 137 167
Hubei 176 216 263
Hunan 151 193 230
Jiangsu 505 615 610
Jiangxi 86 107 127
Shanghai 163 196 190
Sichuan 197 243 282
Yunnan 135 161 183
Zhejiang 375 450 451

Region 2,312 2,825 3,057
HSWW

Guangdong 522 613 614
Guangxi 143 169 196
Hainan 24 31 36

Region 688 813 846

China Total 5,665 6,878 7,506
Table 11: Model demand in TWh, at the national, cli-
mate region, and provincial level for years 2015, 2020,
and 2030

3.2.2 Daily demand share, Stotal,d

Daily demand share of the total baseline consumption in a year, Ctotal,y, discussed in
3.2.1, was obtained from He et al work on renewable and load planning optimization
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tools and scenarios [41]. The original model assigns a fraction of the total baseline
consumption in a year to each month of the year. It then proceeds to divide the
monthly consumption equally among the days in each month. The sum of the daily
shares across the year equals 1. In this model, a modified version of the simple daily
demand share model as utilized in [41] to build daily load profiles is proposed.

Instead of a single daily share throughout the month, two linear interpolations
between three points, are used to describe the daily demand share in each day of the
month. The middle of the month converges to the same daily demand share as proposed
by the simplified model in [41]. The daily demand share of the first day of each month
is the average of the daily demand share of the middle of the last and the current
months. Similarly, the daily demand share of the last day of the month is defined
as the average of the daily demand share of the middle of the current and the next
months. From these simple points, linear interpolations are built for the demand share
of each day in that month and for every month in a year. The sum of the daily shares
across the year equals 1 for both the original and the modified daily share models.

In Figure 6, a comparison between the original daily share model (shown in gray)
and the modified model (shown in black) is presented. Although other methods could
have been used to smooth the transitions in daily demand shares between months, two
linear interpolations for every month already decrease the inconsistencies in load esti-
mates between the last hour of a month, and the first hour of the following month and
create a more realistic baseline to study hour to hour ramping rates. A more accurate
representation of load should most likely include a noise term in the interpolations.
For future work we could analyze other ways to estimate daily demand shares using
stochastic methods.

Original

Figure 6: Daily demand share, Stotal
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For the remainder of this chapter we assume that the Stotal is the same for all
climate regions and for any given year, that is, on any given day d, the ratio between
the total daily consumption and the regional yearly consumption is given by Stotal,d.

3.2.3 Sectoral demand share, εsector,y

The sectoral demand share is the proportion between the electricity consumption from
different economic sectors (agriculture, commercial, industrial, and residential) at the
national or regional level and the total or regional demand, respectively. We assume
that the ratio of electricity consumed by a given sector in a given year is the same both
at the national and climate region level.

In order to estimate the sectoral demand shares of the agricultural, commercial,
industiral, and residential sectors we used Chinese Electricity Council statistics (CEC)
for the last two decades [21]. The CEC releases yearly statistics on production and
consumption of electricity that include breakdowns by energy source and economic
sector, at the national level. Since breakdowns by economic sectors at the province
or climate region level are not publicly available, in this work we assume that the
national shares of electricity consumption by sector presented in this section apply at
the climate region level.

Using available historical national electricity consumption data by sectors between
1990 and 2017, we built a linear regression model to estimate the sectoral demand share
of the total national consumption to 2030 for the agriculture, commercial, industrial,
and residential sectors. Statistical data collection bins by China’s National Bureaus
of Statistics do not cleanly coincide with our own defined sectors [20]. In our analysis
we aggregated statistical industrial load data from the Industry and Construction cat-
egories. Residential, and agricultural loads are collected under the same categories as
our defined sectors. Commercial sector load in this model is an aggregate of three sta-
tistical categories used by Chinese statistics: Transport-Storage-Post, Commercial and
Other Commercial. The estimated sectoral demand shares using the linear regression
model are presented in Table 12.

Year Economic sector

Agriculture Commercial Industry Residential
εag,y εcomm,y εind,y εres,y

2010 0.023 0.107 0.748 0.122
2015 0.018 0.126 0.728 0.128
2020 0.016 0.145 0.699 0.140
2030 0.014 0.164 0.673 0.150

Table 12: Sectoral demand share of total electricity consumption in a given year

In 2015, 72% of the national electricity consumption was from industrial demand.
Although the industrial share of total electricity consumption has been decreasing for
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the last two decades, it is expected to continue to account for most of the electricity
consumed in the country past 2030. As shown in Table 12, between 2010 and 2030,
industrial load is expected to decrease its share of total electricity consumption from
74.8 to 67.3%. A similar decreasing trend is expected to occur for the agricultural
sector where shares go from 2.3 to 1.4% of the national total.

On the other hand, both commercial and residential shares of the national total
electricity consumption see an increasing trend between 2010 and 2030. Commercial
and residential load shares increase from 10.7 to 16.4% and 12.2 to 15.0%

As the Chinese economy continues to grow and shift away from an industrial,
export-oriented and towards a consumer-based economy the shares of industry and
agriculture electricity consumption will continue to decrease and the shares of the
commercial and residential sector electricity consumption from the total will continue
to increase.

3.2.4 Non-Controllable load

In this work we model the hourly electricity demand from the agricultural, industrial,
residential and a subset of the commercial sector, at the climate region level, with a
simplified non-parametric model. In contrast to the commercial model described in
Chapter 2, the hourly load from these sectors does not depend on any controllable
parameter or variable and are non-physically based. For all these non-controllable
models, an hourly load share curve is presented and compared.

Agricultural, Industrial, and Residential demand, Lς,r,y

The total electricity consumption from the agricultural, industrial and residential sec-
tors, Cς,y, ∀ς ∈ {ag, ind, res}, in a given year y, is described by Equation 3.2.1, where
Cregion,y is the regional electricity consumption for a given region and ες,y is the sectorial
share (as defined in Section 3.2.3) when ς ∈ {ag, ind, res} in year y, respectively.

Cς,r,y = Cr,y · ες,y,∀ς ∈ {ag, ind, res} (3.2.1)

Typical hourly load shares of daily total consumption for the agricultural, industrial
and residential sectors were obtained from Yao et al[51] and are shown in Figure 7. We
assume that for the agricultural, industrial, and residential sectors the representative
hourly share stays constant for any given day of the year and climate region.

The hourly load, Lς,y(t) of sector ς ∈ {ag, ind, res}, for a given year y, is defined
in Equation 3.2.2.

Lς,r,y(t) = Cς,r,y · [Sς ◦ Stotal] (3.2.2)

where Cς,region,y is the regional level consumption from a given sector, ς, in a given
year y, ◦ represents the element-wise product,
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Sς =
(
Sς Sς · · · Sς︸ ︷︷ ︸

365 elements

)
, for a given sector ς ∈ {ag, ind, res}, and

Stotal =
(
Stot,d Stot,d · · · Stot,d︸ ︷︷ ︸

24 elements

)365

d=1

Note that the resulting vectors Sς and Stotal have as many elements as hours in a
year.
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Figure 7: Agricultural Sag, Industrial Sind, and Residential Sres hourly shares of daily
totals

The sum of the different sectorial hourly shares of daily totals shown in Figure 7
all equal 1 but are qualitatively very different. While the industrial daily load share
curve is relatively flat, ranging 0.035 and 0.045 for any given hour, the residential load
curve is expected to have a big peak at night time when people come home from work,
around 0.07, and deep valley during the night hours when most people are asleep,
around 0.015. These qualitative differences are important, because, as discussed in
Section 3.2.3, the share of electricity consumed by the industrial sector is decreasing
and the share from the residential sector is increasing. This qualitative shift in load
composition will therefore rise to higher peaks, and lower lows in a typical day even if
demand stays constant.
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Non-Controllable Commercial load Lcommnc,r,y

The total electricity consumption from the non-controllable commercial sector, Ccommnc,y,
in a given year y, is described by Equation 3.2.3, where Cregion,y is the climate region
electricity consumption, εcomm,y is the commercial sector share of the climate region
consumption, and ρother,r,y is the non-controllable component’s share of the commercial
sector yearly electricity consumption in a given region r, in year y, respectively.

Ccommnc,region,y = Cregion,y · εcomm,y · ρother,r,y (3.2.3)

Hourly load shares of daily total consumption for the non controllable commercial
sectors for the four different climate regions were obtained from the estimated 2010
commercial sector model in Chapter 2 and follow the form shown in Equation 3.2.4.

Scommnc,r(h) =

∑365
d=1 Lcommc,r,2010((d− 1) · 24 + h)

Ccommc,r,2010

(3.2.4)

where
∑365

d=1 Lcommc,r,2010((d−1)·24+h) is the sum of the commercial load in a given
region, r, in 2010 for the hour h ∈ 1− 24 of every day d of the year, and Ccommc,r,2010

is the total consumption from the controllable component of the commercial sector in
a given region in 2010.

The resulting hourly load shares of daily total consumption by the non controllable
component of the commercial sector from the four different climate zones are shown in
Figure 8. We assume that the non-controllable component of the commercial sectors
hourly load share stays constant for any given day of the year within each climate
region. When looking at the daily share of total electricity consumed in an specific
season of the year we see a higher differentiation among our models. In Figure 9 we
show the daily share of total electricity consumed in the winter season. As expected, the
northernmost region in the country has the highest shares of electricity consumption
for any given hour. As the model captures more southern buildings we see a decrease in
the share of daily total for the Cold, HSCW, and HSWW climate regions, accordingly.

With a constructed set of hourly load shares from the non-controllable component
of the commercial sector for every climate region, we can now find the hourly demand,
D̄commnc,region,y(t), for the non-controllable component of the commercial sector for a
given region and year y. This hourly demand is defined similarly to the hourly demand
of the agricultural, industrial or residential sector and presented in Equation 3.2.5.

Lcommnc,r,y(t) = Ccommnc,r,y · [Scommnc,r ◦ Stotal] (3.2.5)

where Ccommnc,region,y is the regional level consumption from the non controllable
component of the commercial in a given region, and year y, ◦ represents the element-
wise product,

Scommnc,region =
(
Scommnc,region Scommnc,region · · · Scommnc,region︸ ︷︷ ︸

365 elements

)
,

for a given climate region, and
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Figure 8: Hourly shares of daily total from the non-controlable commercial component
of the commercial sector,n Scommnc,r, for the four different climate regions in China
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Figure 9: Hourly shares of daily total from the non-controlable commercial component
of the commercial sector in the winter season, Scommnc,r, for the four different climate
regions in China
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Stotal =
(
Stot,d Stot,d · · · Stot,d︸ ︷︷ ︸

24 elements

)365

d=1

As with the other non controllable loads previously presented, the length of the
Scommnc,region and Stotal vectors equal the number of hours in a given year.

3.2.5 Controllable Commercial load, Lcommc,r,y

Controllable commercial demand is modeled at the climate region level as the weighted
average of the electricity demand from the six different individual controllable building
models: offices with and without datacenters, retail buildings, hospitals, hotels, and
schools and described at length in Chapter 2. The hourly controllable commmercial
load for a region r and year y is described by Equation 2.5.7 in Chapter 2 and shown
below.

Lcommc,r,y(h) =
Γr,y(h)

ībaseline,r,y
· (1− ρother,r,y) · Cr,y · εcomm,y

where Γr,y(h) is the regional electricity density function as defined in Equation 2.5.6,
ībaseline,r,y is the baseline average intensity, as defined in Equation 2.5.5, ρother,r,y is the
ratio between the yearly electricity consumption from building types not built from the
individual models and the total commercial sector consumption in region r and year
y. Parameters Cr,y and εcomm,y represent the total electricity consumption across all
sectors, and the ratio of electricity consumption consumed by the commercial sector
and the total electricity consumption across all sectors of the economy in region r and
year y as described in Section 3.2.1.

It is useful to remind the reader that Lcommc,r,y is a function of the individual
building models for the particular region and they in turn are a function of the efficiency
standards, operational schedules, and heating electrification parameters chosen (ξ, θ,
and χ). By extension, Lcommc,r,y is also a function of these three parameters as shown
in Equation 3.2.6

Lcommc,r,y = g(ξ, θ, χ) (3.2.6)

3.2.6 Regional and national load, Ltotal,r,y, LCH,y

The total hourly load for a given region and year, shown in Equation 3.2.7, is the sum of
the load from the non-controllable agricultural, commercial, industrial and residential
sectors, and the load from the controllable commercial sector.

Ltotal,r,y =
∑
ς∈Snc

Lς,r,y + Lcommc,r,y (3.2.7)

where
∑

ς∈Snc
Lς,r,y is the sum of the load from all the non-controllable sectors

included in set Snc = {ag, commnc, ind, res} and Lcommc,r,y is the load of the control-
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lable commercial sector for region r, and year y, as defined in Sections 3.2.4 and 3.2.5
respectively.

If Lcommc,r,y is a function of the building parameters (ξ, θ, and χ) chosen, then
Ltotal,r,y is a also a function of these three parameters as shown in Equation 3.2.8.

Ltotal,r,y =
∑
ς∈Snc

Lς,r,y + g(ξ, θ, χ) = h(ξ, θ, χ) (3.2.8)

Summing Equation 3.2.8 over all climate regions in China, we can then obtain a
national hourly load model as a function of the building parameters (ξ, θ, and χ)
chosen, as shown in Equation 3.2.9.

LCH,y(ξ, θ, χ) =
∑
r∈CH

Ltotal,r,y(ξ, θ, χ) (3.2.9)

3.3 Results

In this section we present the results of our simulated hourly load forecasts for the year
2030 across multiple set of parameters. We first provide a comparison between the
estimated hourly loads in 2015 and the basecase scenario in 2030. We then present the
descriptive statistics from all simulated scenarios across the three different parameters
(ξ,θ,χ). We define six descriptive statistics as:

1. Total demand (TWh)

2. Load factor (unitless)

3. Peak load (GW)

4. Minimum hourly load (GW)

5. Maximum hour-to-hour up ramping rate (GW/h)

6. Maximum hour-to-hour down ramping rate (GW/h)

3.3.1 2015 vs 2030 basecase comparison

As we can see from Table 13 there is an increase across all descriptive statistics in our
base case scenario load models for 2015 and 2030, LCH(ξ1,θ1,χ1).

As mentioned earlier, total demand is expected to increase by almost 2,000 TWh,
equivalent to a 32% increase from 2015. Load factor stays relatively constant increasing
by less than 3% in the fifteen-year period. Peak load increases by over 250 GW while
the lowest netload of the year increases by 130 GW, equivalent to a 29% increase for
each.
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Statistics

Year Demand (TWh) Load factor Load (GW ) Ramping, (GW
h

)
Peak Min ↑, max ↓, max

2015 5662 0.75 862 439 89 -76
2030 7506 0.77 1115 568 160 -112
%∆ 32.6 2.6 29.3 29.5 80.5 46.8

Table 13: 2015 and basecase scenario 2030 load comparison across descriptive statistics.
Percent change from 2015 load statistics

3.3.2 2030 load forecast across parameters

In Table 14 we show the descriptive statistics across the two standard adoption, two
operational schedules, and three electrification of heating scenarios, for a total of twelve
different load models developed in this work. As seen from the Demand columns, total
yearly demand among our models varies between 7330 to 7630 TWh for the 2025 stan-
dards, Chinese schedules, and no electrification of heating commercial model scenario,
and the 2020 standards, US schedules, and low-efficiency electrification scenarios, re-
spectively. Load factors do not change dramatically with different parameters, staying
within 0.76-0.77 across all parameters.

As shown under the Load, Peak column in Table 14, peak load ranges between
1,091 to 1,152 GW across all parameters, while lowest netload ranges between 560 to
580 GW. Maximum ramping up and down rates for the year for the base case 2030
scenario are 160 and 112 GW per hour. The range for maximum ramping up rates
across all parameters is between 114 to 160 GW per hour, while the range for the
maximum ramping down rates across all models is between 112 to 133 GW per hour.

Parameters Statistics

Standard Schedule Heating Demand (TWh) Load factor Load (GW ) Ramping, (GW
h

)
ξ θ χ Peak Min ↑, max ↓, max

2020 CH χ1 7,506 0.77 1,115 568 160 -112
2020 CH χ2 7,357 0.76 1,099 561 122 -112
2020 CH χ3 7,407 0.77 1,100 564 122 -112

2020 US χ1 7,629 0.76 1,152 580 159 -133
2020 US χ2 7,439 0.76 1,115 573 117 -118
2020 US χ3 7,502 0.77 1,115 575 117 -118

2025 CH χ1 7,475 0.77 1,109 568 159 -112
2025 CH χ2 7,329 0.77 1,091 561 119 -112
2025 CH χ3 7,378 0.77 1,092 563 119 -112

2025 US χ1 7,596 0.76 1,146 578 160 -125
2025 US χ2 7,408 0.76 1,106 571 114 -117
2025 US χ3 7,471 0.77 1,107 574 114 -117

Table 14: Descriptive statistics for all load models developed across all parameters
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3.4 Discussion

Statistic Change in parameter

∆ξ ∆θ χ1 → χ2 χ1 → χ2

∆Demand -0.41 1.64 -1.99 -1.32
∆Load factor 0.13 -1.63 -0.62 -0.01
∆Peak load -0.54 3.32 -1.37 -1.31
∆Load, min 0.02 2.07 -1.14 -0.66
∆Ramping ↑, max -0.41 -0.62 -23.64 -23.64
∆Ramping ↓, max -0.28 19.21 0.19 0.03

Table 15: Percent change in load statistics from a variation in parameter

In general, as seen in Table 15, differences in efficiency standards as defined in Chap-
ter 2.3.3 have a small effect on the descriptive statistics of load in 2030. A shift from
2020 to 2025 standards compliance by 2030 (∆ξ) only reduces electricity consumption
by 0.41% from the basecase scenario (L(ξ1, θ1, χ1)→ L(ξ2, θ1, χ1)). The same shift de-
creases peak load by 0.54% and maximum ramping up and down, respectively, by 0.41
and 0.28%. In general, we see a small decrease on the descriptive statistics between
improvements in efficiency.

On the other hand, the other two parameters (θ,χ) have a much larger impact
on the electricity consumption in buildings and the national load in general. For
example, changing the operational schedules from those recommended by MOHURD
to ASHRAE (∆θ), increases total system electricity consumption between by 1.64%
from the base case scenario, decreases load factor by 1.63%. In addition, operating
buildings like their American counterparts increases system peak load by 3.3% and
lowest netload by 2.1%. While the maximum ramping up rate is only decreased by
0.6%, it increases the maximum ramping down by over 19%.

From performing a sensitivity analysis on the commercial sector in Chapter 2 we
learned that changing the electrification scenario (χ) has a higher impact for buildings
in the North (Severe Cold and Cold climates) than changing any of the other two
parameters. In general, de-electrifying the heating load (χ1 → χ2) has larger impacts
than just increasing the efficiency of the heating provision (χ1 → χ3). For example,
when buildings go from self-providing heating by electric boilers to having their elec-
tricity provision met by gas or coal boilers (χ1 → χ2) we see a 2% decrease in total
electricity consumption at the national level. Both peak load and the lowest netload of
the year decrease by 1.4 and 1.1%, respectively. This shift in heat provision decreases
by 24% the maximum ramping up rate required in the system while increasing the
maximum ramping down rate by only 0.2%.

Providing the building’s heating with more efficient electrified heating (χ1 → χ3)
has a smaller impact on electricity consumption than de-electrifying the heating load
completely with total system demand and peak load reductions of about 1.3%. The
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maximum ramping up rate decreases by 24%, the same as when de-electrifying the
heating load across all buildings in the commercial sector. All other descriptive statis-
tics have the same direction but smaller magnitude in change as the de-electrification
case (χ1 → χ2).

3.5 Conclusion

In this Chapter we developed a model for an hourly load estimate of the Chinese
demand in 2030. It is built on a parametrized commercial model with efficiency, op-
erational schedules and electrification of heating as different parameters. The model
allows us to understand how changes in the construction and operation of the com-
mercial sector affect the total demand, peak load, and ramping rates of the system
load. In contrast to other load forecasting tools it allows us to characterize ramping
rates and the impact of the commercial sector on these rates. We found that expected
electricity demand in China by 2030 will increase by 32% from its 2015 value. In ad-
dition, peak load is expected to increase about 29%. Ramping events will increase in
number and magnitude with the maximum ramping up and down rates increasing by
80 and 46%, respectively between 2015 and 2030. We performed a sensitivity analysis
and found that the commercial model parameters with the largest impact in overall
system metrics are how buildings are operated (θ) and how heating load is met (χ).

We will use this load model in combination with hourly renewable production fore-
casts (Chapter 4) to formulate a netload scenario that allows us to understand the
impact of renewable penetration on the constraints of the system (Chapter 5). Finally,
making the commercial component of this load model controllable, will allow us to use
it to estimate the impact of demand response from the commercial sector in the provi-
sion of system flexibility in a future system with significant penetration of renewables
(Chapter 7).
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Chapter 4

Solar PV and Wind Potential in
China

4.1 Introduction

In this chapter we describe a model to estimate hourly renewable production from
solar PV and wind by developing three different PV and wind capacity expansion
scenarios to 2030. We first introduce the reader to the past and current growth in
installed capacities for both renewable types studied here. We then present the current
expansion plans to 2020 at the provincial level. Finally, using three different assumption
for capacity expansion growth, we extrapolate the 2016-2020 growth rates to 2030 to
formulate three different capacity scenarios. Using our capacity estimates and available
hourly capacity factor data [40, 38] we compare the impact on demand from the three
different scenarios.

In the last decade China has seen unparalleled growth in the installation of renew-
able energy capacity [8]. As seen in Table 16, between 2010 and 2016, China added
renewable capacity at an average rate of 40% a year, increasing total installed renew-
able capacity from 29.8 to over 225 GW [21]. For the same time period, solar PV
installed capacity has grown at an unprecedented rate of 168% a year reaching an in-
stalled capacity of over 77 GW in 2016. Similarly, installed wind capacity has grown
at a rate of 30.8% a year reaching an installed capacity of over 148 GW in 2016. This
sustained yearly growth in installed renewable capacity has made China the global
leader on installed solar and wind capacities. By 2017, China surpassed the European
Union in installed renewable capacity.

As seen in Table 17, the province with the most installed solar capacity in 2016 was
Xinjiang where 8.6 GW of solar has been installed, accounting for over 11% of the total
solar capacity. Gansu, Inner Mongolia, Ningxia, Qinghai, and Xinjiang autonomous
regions together account for 33.9 GW or 43.8% of the total installed solar capacity.
The province with the most installed wind capacity was Inner Mongolia where 25.6
GW has been installed, accounting for over 17% of the total wind capacity. As with
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Renewable 2010 2016 Yearly Growth (%)

Solar 205.02 77,190 168
Wind 29,575 148,170 30.8
Total 29,780 225,360 40.1

Table 16: Solar and wind installed capacity in 2010 and 2016 in MW and yearly growth
in this period in %.

solar, Gansu, Inner Mongolia, Ningxia, and Xinjiang autonomous regions together
account for 65.5 GW or 44.0% of the total installed capacity. These provinces located
in Northwest and Western China have relatively low populations and loads and are
therefore net solar and wind electricity exporting regions.

4.2 Existing Plans to 2020

According to official documents from the Chinese Electricity Council (CEC)[21], China
has goals of increasing its renewable capacity to almost 400 GW within the current
Five-Year plan. The CEC has published goals for capacity installations to 2020 by
province for solar PV and wind [9, 10].

4.2.1 Solar

As shown in Table 18, by 2020, expected installed solar capacity will almost double cur-
rent levels, reaching over 130 GW. The fastest expected growth comes from provinces
with relatively low installed capacity in 2016. For example, Heilongjiang, in Northeast
China, is expected to grow at a 111% yearly rate adding over 3 GW of capacity in that
period. Provinces that will see larger absolute increase in installed solar capacity in-
clude Hebei, Jiangsu, Shanxi and Zhejiang provinces with additional installed capacity
of around 4 GW in each. The average yearly growth rate in solar installations between
2016-2020 at the national level is 14%

A number of cities and provinces including Beijing, Chongqing, Fujian, Gansu,
Hainan, Ningxia, Tianjin, Tibet, Xinjiang, and to a lesser visible extent Inner Mon-
golia have reduced plans for expansion in installed capacity due to curtailment issues.
Excluding these provinces from the calculation, the average yearly growth in installed
solar capacity between 2016 and 2020 increases from 14 to 18%.

4.2.2 Wind

As shown in Table 19, between 2016 and 2020, the expected installed solar capacity
will almost double reaching over 260 GW. The fastest expected growth comes from
provinces with relatively low installed capacity in 2016. For example, Henan, in Central
China, is expected to grow at a 88% yearly rate adding over 12 GW of capacity in that
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Province Installed capacity (MW)
Solar Wind Total

Anhui 3,450 1,770 5,220
Beijing 240 190 430
Chongqing 5 280 285
Fujian 270 2,140 2,410
Gansu 6,860 12,770 19,630
Guangdong 1,560 2,680 4,240
Guangxi 180 670 850
Guizhou 460 3,620 4,080
Hainan 340 310 650
Hebei 4,430 11,880 16,310
Heilongjiang 170 5,610 5,780
Henan 2,840 1,040 3,880
Hubei 1,870 2,010 3,880
Hunan 300 2,170 2,470
Inner Mongolia 6,370 25,570 31,940
Jiangsu 5,460 5,610 11,070
Jiangxi 2,280 1,080 3,360
Jilin 560 5,050 5,610
Liaoning 520 6,950 7,470
Ningxia 5,260 9,420 14,680
Qinghai 6,820 690 7,510
Shaanxi 3,340 2,490 5,830
Shandong 4,450 8,390 12,840
Shanghai 350 710 1,060
Shanxi 2,970 7,710 10,680
Sichuan 960 1,250 2,210
Tianjin 600 290 890
Tibet 330 10 340
Xinjiang 8,620 17,760 26,380
Yunnan 2,080 7,370 9,450
Zhejiang 3,380 1,190 4,570

National 77,325 148,680 226,005

Table 17: Solar and Wind installed capacity in 2016, by province, MW
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Province 2016 2020 Growth

Anhui 3,450 5,850 14%
Beijing 240 240 0%
Chongqing 5 5 0%
Fujian 270 270 0%
Gansu 6,860 6,860 0%
Guangdong 1,560 4,460 30%
Guangxi 180 1,580 72%
Guizhou 460 1,660 38%
Hainan 340 340 0%
Hebei 4,430 9,030 19%
Heilongjiang 170 3,370 111%
Henan 2,840 5,240 17%
Hubei 1,870 3,470 17%
Hunan 300 1,900 59%
Inner Mongolia 6,370 10,370 13%
Jiangsu 5,460 9,660 15%
Jiangxi 2,280 3,680 13%
Jilin 560 2,260 42%
Liaoning 520 2,020 40%
Ningxia 5,260 5,260 0%
Qinghai 6,820 9,120 8%
Shaanxi 3,340 6,540 18%
Shandong 4,450 7,950 16%
Shanghai 350 350 0%
Shanxi 2,970 6,770 23%
Sichuan 960 2,560 28%
Tianjin 600 600 0%
Tibet 330 330 0%
Xinjiang 8,620 8,620 0%
Yunnan 2,080 4,080 18%
Zhejiang 3,380 7,380 22%

National 77,325 131,825 14%

Table 18: Provincial and national installed and planned solar capacity in 2016 and
2020, respectively, and yearly growth rate in MW and %, respectively
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period. Provinces that will see larger absolute increase in installed solar capacity
include Hebei, Henan, Shandong, Shanxi provinces with additional installed capacity
of around 10 GW in each. The average yearly growth rate in wind installations between
2016-2020 at the national level is 15%

A number of provinces including Gansu, Heilongjiang, Inner Mongolia, Jilin, and
Xinjiang, have reduced plans for expansion in installed capacity due to curtailment
issues. Excluding these provinces from the national calculation, the average yearly
growth in installed solar capacity between 2016 and 2020 increases from 15 to 24%.

4.2.3 Curtailment issues

Provinces with low or zero growth between 2016 and 2020 have had high curtailment
rates or higher than average rates of capacity not connected to the grid in the last few
years. Provinces with such problems were not included in plans for renewables capacity
expansion to 2020 and are therefore not expected to see any growth in installed capacity
until these curtailment and unconnected capacity rates are decreased.

As mentioned in section 4.2.1, in the case of solar installations, provinces and
cities with very low growth include: Beijing, Chongqing, Fujian, Gansu, Hainan, Inner
Mongolia, Ningxia, Tianjin, Tibet, and Xinjiang. Excluding these locations from the
calculation, the average yearly growth for solar capacity between 2016 and 2020 is
expected to increase from 14 to 18%. As mentioned in section 4.2.2, in the case of
wind installations, provinces and cities with very small growth but with large potential
include: Gansu, Heilongjiang, Inner Mongolia, Jilin, and Xinjiang. Excluding these
locations the average yearly growth for solar between 2016 and 2020 would increase
from 15 to 24%. These provinces with curtailment constraints between 2016 and 2020
are shown in Table 21.

Once the government alleviates the curtailment and low connection-to-grid issues,
provinces with no expected additional capacity to 2020 might see increases in their
expected capacity expansions. Forecasting renewable capacity growth to 2030 and
beyond requires therefore at least two scenarios, one where curtailment issues are not
resolved and continue to impair the provinces’ growth opportunity, and another where
the government decreases curtailment and increases connection to grid and therefore
spur further capacity expansion in those provinces. Such scenarios will be presented in
section 4.3.

4.3 Capacity Expansion Scenarios

In this section we describe the three different renewables capacity expansion scenarios
in this work. We first start by introducing the primary component, yearly installation
rate, for the construction of these renewable expansion scenarios in section 4.3.1. We
then describe the applied limits on renewable capacity expansion in section 4.3.2 by
presenting the physical potential of each renewable resource by province. Finally, we
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Province 2016 2020 Growth

Anhui 1,770 6,270 37%
Beijing 190 390 20%
Chongqing 280 1,030 38%
Fujian 2,140 5,640 27%
Gansu 12,770 14,000 2%
Guangdong 2,680 8,830 35%
Guangxi 670 5,670 71%
Guizhou 3,620 6,010 14%
Hainan 310 660 21%
Hebei 11,880 23,270 18%
Heilongjiang 5,610 6,000 2%
Henan 1,040 13,040 88%
Hubei 2,010 9,530 48%
Hunan 2,170 9,790 46%
Inner Mongolia 25,570 27,000 1%
Jiangsu 5,610 9,310 14%
Jiangxi 1,080 5,810 52%
Jilin 5,050 5,050 0%
Liaoning 6,950 8,550 5%
Ningxia 9,420 9,420 0%
Qinghai 690 5,690 69%
Shaanxi 2,490 10,020 42%
Shandong 8,390 18,290 22%
Shanghai 710 1,010 9%
Shanxi 7,710 17,110 22%
Sichuan 1,250 1,950 12%
Tianjin 290 1,520 51%
Tibet 10 210 114%
Xinjiang 17,760 18,000 0%
Yunnan 7,370 9,320 6%
Zhejiang 1,190 3,990 35%

National 148,680 262,380 15%

Table 19: Provincial and national installed and planned wind capacity in 2016 and
2020, respectively, and yearly growth rate in MW and %, respectively
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Renewable City/Province
Solar Beijing, Chongqing, Fujian, Gansu, Hainan, Inner Mon-

golia, Ningxia, Tianjin, Tibet, Xinjiang
Wind Gansu, Heilongjiang, Inner Mongolia, Jilin, Xinjiang

Table 21: Cities and provinces with curtailment constraints between 2016 and 2020
development plans

present the hourly capacity factor data used to construct provincial average renewable
electricity production profiles in section 4.3.3. We use these three building blocks to
construct three different scenarios presented in sections 4.3.4, 4.3.5, and 4.3.6

4.3.1 Installation growth model

One way we estimate renewables installation growth between 2020 and 2030 is by
extrapolating expected growth rates between 2016 and 2020 at the provincial level
for both solar PV and wind. In order to provide a conservative growth estimate, we
then divide these yearly growth rates by two, and apply it to each province between
2020 and 2030. As seen in Tables 18 and 19 national average yearly rates are 14
and 15%, and fluctuate between 0 and 111% and 0 and 114% for solar PV and wind
respectively. The installation of renewables is therefore not uniform and provinces with
very small installed capacities are expected to receive orders of magnitude increases in
their installed capacities by 2020. As some of these yearly growth rates if maintained
between 2020 and 2030 would give rise to improbably high capacities, constraints on
the potential capacity for solar PV and wind at the province level needs to be discussed.
In the next section we discuss what is the potential for expansion, based on physical
and environmental constraints, for each province and how they were calculated.

4.3.2 Potential

He et al published two studies on the potential of capacity installations in China at the
provincial level [38, 40]. The studies utilized 10-year hourly solar irradiation and wind
speed data from 2001 to 2010 from 200 representative locations to develop provincial
solar and wind availability profiles.

Solar PV potential

The study by He et al [40] found that China has a potential solar capacity from 4700
GW to 39300 GW, and the annual solar output could reach 6900 TWh to 70100
TWh. Resources are most concentrated in northwest provinces, topped by Gansu, Inner
Mongolia, and Xinjiang. The challenge of solar development in China is integration of
such resources rather than resource scarcity.
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As shown in Table 22 China’s national solar PV potential ranges from 4.7 and 39
TW. Current total capacity including coal, gas, hydro and nuclear barely surpasses
1 TW. The provinces with the most solar PV capacity potential are Gansu, Inner
Mongolia, and Xinjiang with 297, 1,398, and 1,363 GW at the lower end, and 3,692,
13,599, and 12,343 GW at the higher end of the spectrum.

Wind potential

In his assessment study, He et al [38], found that China’s annual wind generation
could reach between 2000 TWh to 3500 TWh. Nationally this would correspond to
an average capacity factor of 0.18. Reasons for why the capacity factor is this low
are presented by [44]. The diurnal and seasonal variation shows spring and winter has
better wind resources than in the summer and fall.

As shown in Table 23 China’s national wind potential onshore ranges from 833 and
1,805 GW, and offshore potential is around 469 GW. The provinces with the most wind
capacity potential are also Gansu, Inner Mongolia, and Xinjiang with 55, 291, and 285
GW at the lower end, and 121, 562, and 568 GW at the higher end of the spectrum for
onshore. The provinces with most available offshore potential are Guangdong, Jiangsu,
Liaoning, Shandong, and Zhejiang with 52, 107, 61, 77, and 54 GW, respectively.

4.3.3 Provincial capacity factors

Capacity factor data from the 200 representative sites, for 2001-2010, across the country
for each renewable type was aggregated by province. At the province level, hourly data
was averaged to produce a provincial capacity factor hourly time series for an average
year. The mean and standard deviation of the resulting time series for each renewable
type across all provinces are shown in Table 24.

Provinces with high capacity factors are deemed to be potentially rich in the re-
source if the environmental constraints allow it. For solar, Gansu, Inner Mongolia,
Ningxia, Qinghai, Tibet and Yunnan all have average capacity factors above 0.2. For
wind, Beijing, Fujian, Hainan, Hebei, Inner Mongolia, Jiangsu, Shandong, Shanghai,
Shanxi and Zhejiang all have average capacity factors above 0.2.

4.3.4 Scenario Ra: 2020 goals

In Scenario Ra, our conservative scenario, we assume 2020 goals at every province are
met, but that no further development occurs to 2030. This development pathway leads
to a total solar PV and wind capacities of 132 and 262 GW, respectively. As shown
in Table 25 the total installed renewables capacity adds up to 394.2 GW under Ra

scenario.
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Province Potential capacity (GW)
Low High

Anhui 8 34
Beijing 4 25
Chongqing 5 15
Fujian 32 280
Gansu 287 3,692
Guangdong 163 643
Guangxi 199 707
Guizhou 45 338
Hainan 91 205
Hebei 63 483
Heilongjiang 183 279
Henan 11 116
Hubei 10 70
Hunan 1 16
Inner Mongolia 1,398 13,599
Jiangsu 7 25.2
Jiangxi 56 265
Jilin 252 465
Liaoning 59 420
Ningxia 58 516
Qinghai 30 1,791
Shaanxi 91 1,106
Shandong 113 313
Shanghai 0.6 1.1
Shanxi 51 689
Sichuan 3 116
Tianjin 3 7
Tibet 1 21
Xinjiang 1,363 12,343
Yunnan 67 598
Zhejiang 13 120

National 4,667.6 39,298.3

Table 22: Low and High Solar PV installation potential, respectively, by province, GW
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Province Potential capacity (GW)
Low High Offshore

Anhui 3.31 9.03 0
Beijing 0.37 1.59 0
Chongqing 1.46 5.7 0
Fujian 2.84 12.2 28.05
Gansu 54.99 120.85 0
Guangdong 6.88 19.05 51.71
Guangxi 13.85 36.4 26.59
Guizhou 8.87 26.28 0
Hainan 2.28 5.04 10.36
Hebei 5.78 17.86 24.12
Heilongjiang 37.54 85.81 0
Henan 2.22 7 0
Hubei 4.98 15.71 0
Hunan 10.12 27.93 0
Inner Mongolia 291.55 562 0
Jiangsu 0.44 0.9 107.62
Jiangxi 8.67 22.48 0
Jilin 13.29 30.09 0
Liaoning 5.58 14.07 60.58
Ningxia 6.42 13.76 0
Qinghai 28.47 80.4 0
Shaanxi 13.55 35.06 0
Shandong 4.23 8.81 76.54
Shanghai 0.01 0.07 24.3
Shanxi 7.21 22.35 0
Sichuan 2.06 12.98 0
Tianjin 0.09 0.17 5.56
Tibet 0.1 0.83 0
Xinjiang 285.14 567.6 0
Yunnan 8.13 33.59 0
Zhejiang 2.22 9.44 53.84

National 832.65 1,805.05 469.27

Table 23: Low and High estimates for onshore wind, and offshore wind, installation
potential, respectively, by province, GW
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Solar PV cf Wind cf

Province µ σ µ σ

Anhui 0.149 0.215 0.119 0.148
Beijing 0.181 0.241 0.253 0.251
Chongqing 0.126 0.198 0.182 0.202
Fujian 0.154 0.220 0.235 0.267
Gansu 0.206 0.252 0.143 0.147
Guangdong 0.153 0.209 0.192 0.191
Guangxi 0.148 0.203 0.171 0.195
Guizhou 0.162 0.221 0.157 0.200
Hainan 0.176 0.241 0.201 0.225
Hebei 0.180 0.234 0.204 0.234
Heilongjiang 0.178 0.228 0.184 0.190
Henan 0.150 0.214 0.085 0.118
Hubei 0.138 0.199 0.116 0.135
Hunan 0.134 0.199 0.123 0.133
Inner Mongolia 0.209 0.248 0.236 0.169
Jiangsu 0.153 0.217 0.204 0.241
Jiangxi 0.142 0.207 0.110 0.118
Jilin 0.174 0.233 0.147 0.166
Liaoning 0.172 0.230 0.191 0.228
Ningxia 0.204 0.265 0.112 0.151
Qinghai 0.262 0.301 0.109 0.132
Shaanxi 0.175 0.230 0.142 0.160
Shandong 0.164 0.226 0.204 0.234
Shanghai 0.151 0.228 0.233 0.257
Shanxi 0.189 0.249 0.248 0.251
Sichuan 0.167 0.208 0.103 0.109
Tianjin 0.168 0.231 0.116 0.170
Tibet 0.311 0.331 0.298 0.254
Xinjiang 0.183 0.227 0.176 0.168
Yunnan 0.215 0.265 0.185 0.188
Zhejiang 0.148 0.218 0.201 0.224

Table 24: Mean (µ) and standard deviation (σ) for hourly capacity factor data by
province and renewable type
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4.3.5 Scenario Rb: Historic growth, with curtailment

Scenario Rb represents an optimistic scenario; in it we assume solar and wind at the
province level grow at a rate equal to half of the historic 2016-2020 period growth rate,
as discussed in Section 4.3.1. This renewable installation scenario leads to installed
capacities of solar PV and wind of 613 and 617 GW, respectively. As shown in Table
25, under scenario Rb, the total installed renewables capacity adds up to 1230 GW.

In this scenario we assume that provinces with offshore potential tap into it if their
capacity under the growth scenario outlined in 4.3.1 surpasses that provinces onshore
potential (high) as shown in Table 23. Installed solar PV capacity is assumed to be
independent of wind installed capacity.

4.3.6 Scenario Rc: Historic growth, reduced curtailment

In Scenario Rc we assume a slightly more optimistic scenario where the capacity instal-
lation growth rates for all provinces, except the ones with curtailment issues, as shown
in Table 21, are equal to that of Scenario Rb. After experiencing a hiatus in growth
between 2016 and 2020, these provinces experience a growth rate equal to the national
average rate without them, 18 and 24% for solar PV and wind respectively.

As shown in Table 25, this renewable installation scenario leads to installed ca-
pacities of solar PV and wind of 768 and 1122 GW, respectively. The total installed
renewables capacity adds up to 1889 GW. In this scenario we still assume that provinces
with offshore potential tap into it if their capacity under the growth scenario outlined
in 4.3.1 surpasses that provinces onshore potential (high) as shown in Table 23.

Meeting 2020 goals without updating and surpassing them, as in Scenario Ra, would
lead to an installation capacity of less than 400 GW. To provide a comparison, the US
had approximately 130 GW of solar and wind capacity installed in 2017, while China
had over 140 GW of just wind, by the end of 2016. Although not an insignificant
amount compared to other industrialized nations, meeting 2020 goals in 2030 for re-
newable capacity expansion would provide around 8% of the total consumption of that
year. Scenarios Rb and Rc would require a further 210 and 380% increase from 2020
goals (Scenario Ra) in the required installed capacity. In order to reduce the greenhouse
emission in the power sector, a large ramp in capacity installed for both solar and wind
is required. Both Scenarios Rb and Rc would meet expected expansion necessary to
meet the COP21 goals [42].

4.4 Results: Renewable Production

The different renewable expansion scenarios (Ra,Rb, and Rc) map out to different
futures in production and in reduction of green house gas emissions from the electricity
sector. In Table 25 we can see the assumptions for capacity installed at the province
level for each of the renewable scenarios outlined in Section 4.3.

56



SOLAR AND WIND SCENARIOS 4.4. RENEWABLE PRODUCTION

Province Solar PV capacity (GW) Wind capacity (GW)

Ra Rb Rc Ra Rb Rc

Anhui 5.9 11.6 11.6 6.3 9.0 9.0
Beijing 0.2 0.2 1.4 0.4 1.0 1.0
Chongqing 0.0 0.0 0.0 1.0 5.7 5.7
Fujian 0.3 0.3 1.6 5.6 20.4 20.4
Gansu 6.9 6.9 40.9 14.0 15.7 118.2
Guangdong 4.5 18.1 18.1 8.8 43.8 43.8
Guangxi 1.6 34.4 34.4 5.7 63.0 63.0
Guizhou 1.7 9.4 9.4 6.0 11.6 11.6
Hainan 0.3 0.3 2.0 0.7 1.8 1.8
Hebei 9.0 22.9 22.9 23.3 42.0 42.0
Heilongjiang 3.4 278.6 278.6 6.0 6.5 50.7
Henan 5.2 11.6 11.6 13.0 7.0 7.0
Hubei 3.5 7.7 7.7 9.5 15.7 15.7
Hunan 1.9 16.0 16.0 9.8 27.9 27.9
Inner Mongolia 10.4 19.4 61.8 27.0 28.9 228.0
Jiangsu 9.7 20.2 20.2 9.3 17.9 17.9
Jiangxi 3.7 6.8 6.8 5.8 22.5 22.5
Jilin 2.3 15.0 15.0 5.1 5.1 30.1
Liaoning 2.0 12.7 12.7 8.6 11.1 11.1
Ningxia 5.3 5.3 31.4 9.4 9.4 9.4
Qinghai 9.1 13.2 13.2 5.7 80.4 80.4
Shaanxi 6.5 15.7 15.7 10.0 35.1 35.1
Shandong 8.0 16.9 16.9 18.3 50.8 50.8
Shanghai 0.4 0.4 1.1 1.0 1.6 1.6
Shanxi 6.8 20.0 20.0 17.1 22.4 22.4
Sichuan 2.6 9.4 9.4 2.0 3.5 3.5
Tianjin 0.6 0.6 3.6 1.5 5.7 5.7
Tibet 0.3 0.3 2.0 0.2 0.8 0.8
Xinjiang 8.6 8.6 51.4 18.0 18.3 152.0
Yunnan 4.1 9.8 9.8 9.3 12.6 12.6
Zhejiang 7.4 20.5 20.5 4.0 20.3 20.3

National 131.8 612.8 767.8 262.4 617.3 1122

Table 25: Solar PV and wind capacity installations for the three different 2030 scenar-
ios, by province, GW
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Using the provincial average hourly capacity factor data mentioned in Section 4.3.3
and the renewables installation estimates for the different renewable scenarios shown
in Table 25 we can calculate hourly solar PV and wind production time series as a
function of the renewable scenario. Solar PV production as a function of renewable
scenario (RPsolar,p(Ri)) at province p is defined in Equation 4.4.1

RPsolar,p(Ri) = ϕsolar,p ·Ksolar,p(Ri) (4.4.1)

where ϕsolar,p and Ksolar,p(Ri) are the provincial average hourly solar PV capacity
factor for every hour of the year, and the solar capacity installed in province p under
renewable scenario Ri.

Depending on the province’s location, provincial wind installation might be located
on or offshore. Therefore, hourly wind production in province p under renewable
scenario Ri is defined in Equation 4.4.2

RPwind,p(Ri) = ϕwind,on,p ·Kwind,on,p(Ri) + ϕwind,off,p ·Kwind,off,p(Ri) (4.4.2)

where ϕwind,on,p and Kwind,on,p(Ri) are the provincial average hourly onshore wind
capacity factor for every hour of the year, and the onshore wind capacity installed in
province p under renewable scenario Ri. Similarly, ϕwind,off,p and Kwind,off,p(Ri) are
the provincial average hourly offshore wind capacity factor for every hour of the year,
and the offshore wind capacity installed in province p under renewable scenario Ri

Combining Equations 4.4.1 and 4.4.2 we obtained a generalized model for the hourly
renewable production in province p under renewable scenario Ri represented in Equa-
tion 4.4.3.

RPp(Ri) = RPsolar,p(Ri) +RPwind,p(Ri) (4.4.3)

By summing across all provinces in China, we can obtain a national hourly renew-
able production under renewable scenario Ri as shown in Equation 4.4.4

RPCH(Ri) =
∑
p∈CH

RPp(Ri) (4.4.4)

Table 26 shows the expected solar PV, wind, and total capacity installed by 2030
under the three different renewable scenarios described in this chapter. In addition,
the total yearly renewable production as calculated by Equation 4.4.4 is seen on the
right most column.

Under Scenario Ra renewables would provide about 616 TWh of electricity, equiva-
lent to 8% of the total electricity consumption in the country (7506 TWh) for the base
case load scenario scenario (see 3.2.1). Assuming no further curtailment, scenario Rb

would produce 1230 TWh of renewable electricity, equivalent to about 25% of the total
electricity consumption in 2030. Finally under renewable scenario Rc, and assuming
no further curtailment, we calculate a yearly renewables production in 2030 of 2971
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Scenario Solar PV Wind Total Production
(GW) (GW) (GW) (TWh)

Ra: 2020 goals 131.8 262.4 394.2 615.9
Rb: Growth, with curtailment 612.8 617.3 1230 1852
Rc: Growth, reduced curtailment 767.8 1122 1889 2971

Table 26: Installed renewables capacity and total yearly electricity production in 2030
under different scenarios

TWh. In this scenario, renewables would provide about 40% of the total electricity
consumption by 2030.

4.5 Conclusion

In this chapter we presented the historical growth of solar PV and wind installed ca-
pacity in China. In addition we presented the expected capacity expansion for each
solar PV and wind to 2020. We used the growth rates between 2016 and 2020 to for-
mulate growth scenarios between 2020 and 2030 at the provincial level. We assumed
that growth would fall within the two most extreme renewable scenarios developed: a
future with no added capacity beyond 2020 goals (Ra), and a future with increased
investment in renewable capacity Rc reaching a total of 1889 GW renewable capacity
installed. In a Ra future, and assuming a total electricity demand of 7500 TWh in 2030,
solar PV and wind could account for around 8% of total generation. In the most opti-
mistic scenario, solar PV and wind would account for just over 40% of total generation.
Other researchers have estimated that wind could provide about 26% of electricity de-
mand in 2030 [3]. As more renewable capacity gets added to the grid, challenges for
the integration of renewable become more prominent. The effects of integrating large
amounts of renewable electricity into the system under different renewable scenarios
will be discussed in detail in Chapter 5.
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Chapter 5

Electricity netload forecast model
for China

5.1 Introduction

The increasing penetration of intermittent renewables into the Chinese electricity sys-
tem will exacerbate problems that are already causing solar PV and wind installations
to have relatively low capacity factors and high curtailment rates [81, 44]. Increasing
penetration of renewable will have an impact on all system load characteristics from
peak load, to ramping rates. Understanding these impacts is a key component in as-
sessing the required capacity or the flexibility requirements from increased ramping
rates needed by 2030 [37, 45, 82].

In this chapter we will develop an hourly netload model for the Chinese electric-
ity system as a function of the parameters defining the commercial sector, and the
renewable penetration scenario expected between 2020 and 2030. After introducing
the model, we present the results from our model by providing key statistics in the
forecasted netload under different scenarios. Finally, we analyze these results with
emphasis on understanding the increase flexibility requirements that need to be met
across different efficiency and renewable penetration scenarios.

5.2 Model Description

In Chapter 3, an hourly load model as a function of the efficiency standards, oper-
ational schedules, and heating electrification modes (ξ,θ, and χ, respectively) for the
commercial sector was presented and used to forecast load and to assess load character-
istics in 2030. In this chapter, we combine the results derived by the model in Chapter
3 and the renewable penetration and production scenarios presented in Chapter 4 to
produce a model for Chinese netload in 2030.

The netload of the system at any hour of the year is defined as the difference
between the load and the renewable production at that location and time. Since the
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hourly load (LCH) is a function of the efficiency standards, operational schedules,
and heating electrification modes (ξ,θ, and χ, respectively) and the hourly national
renewable production RPCH is a function of the renewable penetration scenario (Ri),
then it follows that the the hourly netload at the national level would be a function of
ξ,θ, χ, and Ri as shown in Equation 5.2.1.

NLCH(ξ, θ, χ,Ri) = LCH(ξ, θ, χ)−RPCH(Ri) (5.2.1)

where NLCH , LCH , and RPCH are the national hourly netload, load, and renew-
able production, respectively, and the parameters ξ, θ, χ, and Ri represent the global
parameters: efficiency standards, operation schedules, heating electrification, and re-
newable penetration, respectively. Table 27 describe the different values for the global
parameters in the netload model. For a more detailed description of these parameters
see Chapters 2 and 4.

Parameter Value: Description

ξ1: Buildings follow 2020 standards in 2030
ξ, Efficiency standards

ξ2: Buildings follow 2025 standards in 2030
θ1: Buildings follow Chinese operational sched-
ules guidelines

θ, Operation schedules
θ2: Buildings follow US operational schedules
guidelines
χ1: Heating is provided by low efficiency electric
boilers
χ2: Heating is provided by gas or coal boilersχ, Heating electrification
χ3: Heating is provided by high efficiency elec-
tric heat pumps
Ra: Renewable capacity stays constant after
2020 (installed capacity = 394 GW)
Rb: Capacity continues to grow to 2030, high
potential provinces have limited additional ca-
pacity installations (1230 GW)Ri, Renewable penetration
Rc: Capacity continues to grow to 2030 for all
provinces (1890 GW)

Table 27: Global parameters for the national hourly net-
load model

In the next Section 5.3 we will discuss the output of the netload model under a
variety of global parameters. In particular, we will compare models from the base case
scenario as defined by a hourly netload output of NLCH(ξ1, θ1, χ1, Ri) across different
renewable scenarios. In Section 5.4 we will analyze the impact emissions, and load from
renewable pathways, and the effect of global load parameters on the netload hourly
output.
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5.3 Results

In this section we present several key statistics that show the impact of introducing
renewables into the Chinese grid for the base case load scenario defined by the output
of the function L(ξ1, θ1, χ1).

5.3.1 Netload statistics

In Table 28 we show seven different netload statistics across the three renewable sce-
narios.

Renewable Statistics

DemandNL (TWh) ExcessRP (TWh) Load factor Netload (GW ) Ramping, (GW
h

)
Max Min Max Min

Ra 6,890 - 0.73 1,082 458 159 -112
Rb 5,559 - 0.60 1,065 90 215 -121
Rc 4,443 3.2 0.50 1,023 -150 242 -144

Table 28: Netload statistics for the base case load scenario L(ξ1, θ1, χ1) for the three
different renewable penetration scenarios.

DemandNL is defined as the sum of the hourly netload across all hours when netload
is positive. ExcessRP is defined as the sum of the renewable production across all hours
of the year when RP > L.

As Table 28 shows, netload under scenario Ra, NL(ξ1, θ1, χ1, Ra), has a total de-
mand not met by renewables of about 6,900 TWh. The load factor of this yearly
netload is 0.73. The maximum peak load reaches 1080 GW, while the lowest drops to
460 GW. The highest ramping up rate between any two hours of the year is about 160
GW
h

, while the highest ramping down rate is -112 GW
h

. As renewable capacity increases,
so would the renewable production. Therefore, we can see in Table 28 that the load
not met by renewables drops to about 5,500 TWh under renewable scenario Rb. Fur-
thermore, the load factor sees a reduction to 0.6. Peak netload does not change by as
much but lowest netload decreases to about 90 GW. Both ramping up and down rates
increase in their magnitude reaching 215, and -121 GW

h
. Under our most aggressive

renewable penetration scenario, Rc, we continue to see decreases in the load not met by
renewables down to about 4,500 TWh. With total installed capacities in the country
surpassing 760, and 1,100 GW of solar PV and wind, respectively, some hours of the
year see more renewable production than actual load. In contrast with the other two
renewable scenarios, under Rc we see renewable excess production of about 3 TWh.
Since, as with the other two renewable scenarios, the peak netload does not change
dramatically, while the lowest netload drops below zero and down to -150 GW, the load
factor sees a further decrease to 0.50. Ramping continues the trend up as ramping up
and down rates increase to 240 and -140 GW

h
at the extreme.
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5.3.2 Statistics variation and renewable scenarios

Overall, we see a significant change in load not met by renewables, load factor, min-
imum netload and highest ramping up rates of the year as penetration of renewables
increases in the Chinese grid. Table 29 shows the percent change in key load charac-
teristics between the original load defined by L(ξ1, θ1, χ1) and the netload associated
with the three different renewable scenarios.

Renewable Statistics

∆DemandNL ∆Load factor ∆Netload ∆Ramping
Max Min Max Min

Ra -8.2 -5.5 -2.9 -19.4 -0.6 0.5
Rb -25.9 -22.5 -4.4 -84.1 34.5 7.8
Rc -40.8 -35.6 -8.2 -126.4 51.0 28.5

Table 29: Netload statistics change from base case load L(ξ1, θ1, χ1), for the three
different renewable penetration scenarios, in percentage terms

With renewable installed capacity to levels described by the renewable scenario Ra

load demand, ∆DemandNL, falls by about 8% while load factor decreases by about
5.5%. While netload maximum and minimum drop by about 3 and 19% respectively.
Ramping rates stay relatively stable when we compare the load and netload associated
with renewable scenario Ra.

As the installed capacity increases to levels described in renewable scenario Rb total
demand not met by renewables decreases to almost -26%, both peak and lowest netload
decrease by 4.4 and 84 % respectively. Load factor sees a more dramatic decrease than
with the renewable scenario Ra, decreasing 22.5 percent. On the other hand, ramping
up and down rates, both, increase by 34 and 8% respectively when compared to rates
in the base case load.

Finally, as installation capacities reach those of renewable scenario Rc demand not
met by renewables and load factor both fall by 40 and 36 % respectively. Peak and
lowest netload also fall by 8 and 126% respectively. We see decrease larger than 100%
in lowest netload in the year because with almost 2,000 GW of combined solar and
wind capacity installed, there are hours of the year that have renewable production
that exceeds the base case load. On the other hand, just like under scenario Rb, both
maximum ramping up and down rates increase by 51 and 29 % respectively. Ramping
down sees a significant increase in particular.

5.3.3 Average daily netload curves

From the netload statistics in Table 28 is not possible to see what drives the sharp
decrease in load factor as the renewables installed capacity increases. One way to
understand both the decrease in load factor and the increase in ramping rates is by
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plotting what the average daily load looks like as renewable penetration increases
against the basecase load scenario.
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Figure 10: Hourly shares of yearly national total case case load and netload for the
three renewable penetration scenarios

Figure 10 shows a comparison of the average hourly share between the base case
load, shown in a black solid line, and the three different netload under different re-
newable scenarios, shown in dashed and dotted gray lines. As the installed renewable
capacity increases, we see that there is an increasingly large dip in netload between
10 am and 3 pm in comparison with the original base case load. In the Rc renewable
case, on average, the hours between 10 am and 3 pm consume less electricity than the
early hours of the day when load is at a minimum. This implies that large amounts of
renewables produce electricity at around these times. By increasing the relative dis-
tance between the average daily peak and the average load of the day, the load factor
starts to decrease as the installed renewable capacity increases. On the other hand, the
evening peak of load not met by renewables moves later in the day as the production
from solar decreases. As we can see from Figure 10, on average, this change increases
the need for ramping up flexibility between 3 and 8 pm. By the same process, ramping
down rates, on average, increase when solar production ramps up around 8 am.
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5.3.4 Netload duration curves

Another way to understand the effects of renewable integration into the grid is by
visualizing the effects on the load duration curve associated with different netload
scenarios. Figure 11 shows a snapshot of the sorted lowest and highest 100 load hours
of 2030 for the original base case load scenario and the associated netload from the
three different renewable installed capacity scenarios.
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Figure 11: Load duration curve details on the lowest and highest 1% of hours in the
year of base case load and netload for the three renewable penetration scenarios in
2030.

On the left panel of Figure 11 we show the lowest 100 hours of netload in 2030
under different renewable scenarios. With hour 1 as the lowest of the year, we can see
how the increasing installed renewable capacity pushes the lowest netload hours from
just below 600 GW to below 500, 100, and below zero GW for renewable penetration
scenarios Ra, Rb, and Rc, respectively. When compared to the base case load scenario,
all netload scenarios show a greater disparity between the lowest netload hour (hour
= 1) than the hundredth lowest hour with only about fifty hours of negative netload
for the most aggressive renewable scenario (Rc).

On the right panel of Figure 11 we show the highest 100 hours of netload in 2030
under different renewable scenarios. With hour 8760 as the highest of the year, we
can see how the increasing installed renewable capacity decreases the highest netload
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hours from just above 1,100 GW to about 1,025 GW under Rc renewable scenario. In
contrast with the lowest hour of the year, renewable production does not have as great
an impact on decreasing system peak load. While the maximum difference at the peak
load hour between load and netload scenarios is about 90 GW, the maximum difference
between the lowest load and netload hour is over 700 GW.

5.3.5 Ramping duration curves
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Figure 12: Load duration-type curve details on the lowest and highest 1% of hours in
the year of base case load and netload ramping for the three renewable penetration
scenarios in 2030.

Increasing renewable production also lead to increasing rates in the ramping up and
down rates on an hour to hour basis. Figure 12 shows the sorted ramping hours for
the base case load scenario and the netload for the three different renewable scenarios.

On the left panel we can see a comparison among the hundred largest hour-to-hour
ramping down rates for the load and netload scenarios. Hour 1 shows the highest down
ramping rate in the system. The impact of the Ra renewable scenario on ramping in
comparison to the base case load scenario seems negligible in comparison to the impact
from the other two renewable scenarios. With renewable scenario Rb the highest down
ramping rate increases by about 10 GW per hour, while with the most aggressive
scenario Rc, the new largest down ramping rate is almost 35 GW per hour larger. In
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addition, the hours when down ramping is larger (more negative) for netload scenarios
Rb and Rc than the largest down ramping of the original base case load scenario is 25
and 75 hours of the year respectively. What this translates to is to a system that has
larger swings, and where larger swings are more recurrent.

On the right panel of Figure 12 we can see the comparison among the hundred
largest hour-to-hour ramping up rates for the load and netload scenarios. Hour 8759
shows the highest ramping up rate in the system. As with the down ramping rates, the
impact of the Ra renewable scenario on ramping in comparison to the base case load
scenario seems negligible in comparison to the impact from the other two renewable
scenarios. With renewable scenario Rb, the highest up ramping rate increases by over
50 GW per hour, while with the most aggressive scenario Rc, the new largest down
ramping rate is almost 80 GW per hour larger. In addition, the hours when up ramping
is larger for netload scenarios Rb and Rc than the largest up ramping of the original
base case load scenario is about 25 and 80 hours of the year respectively.

With increasing installed renewable capacity in the system, there are larger hour-
to-hour up and down netload swings, and the occurrance of these swings increases as
well.

5.3.6 Impact of renewables on extreme case days

In this section we compare four 24-hour periods of the base case load and the netload
associated with the three different renewable scenarios. Each 24-hour period is centered
around the hour of highest and lowest netload, and highest up and down ramping for
the most aggressive renewable penetration scenario. The goal of this section is to
provide a visualization of the impact of renewable production on the day around the
extreme netload and ramping hours of the system.

The left panel of Figure 13 shows the load and netload scenarios of the 24 hour
period around 4 pm in April 25th, 2030, when netload is lowest in a system with base
case load and installed renewable capacities described by renewable scenario Rc. By
taking the difference between base case load, represented by the solid black line, and
the dashed and dotted lines representing the netload with different renewable scenarios
we can calculate the renewable electricity production at a given hour. At 4 pm on that
day, renewable production almost reaches 1 TWh exceeding the required load and
therefore going negative for the renewable scenario Rc. For this scenario, renewable
production exceeds load between 11 am and 6 pm. With less installed capacity, there
is no overproduction from renewables. Nevertheless, under renewable scenario Rb the
daily load shape still retains its overall morphed shape with the lowest netload (around
250 GW) occuring at around 4 pm, and rising to approximately 600 GW around 10
pm. Under these two scenarios, ramping between 4 and 10 pm is about 400 and 550
GW over that period for the Rb and Rc cases respectively.

The right panel of Figure 13 shows the load and netload scenarios of the 24 hour
period around 8 pm of August 28th, 2030, when netload is at its highest point in a
system with base case load and installed renewable capacities described by renewable
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Figure 13: Renewable production impact on the 24 hours around the lowest and highest
netload hour for the netload model NL(ξ1, θ1, χ1, Rc) for load and netload across the
three renewable penetration scenarios.
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scenario Rc. At 8 pm on that day, renewable production is less than 100 GWh for
the most aggressive renewable installation scenario, Rc, and less than 50 GWh for the
other two scenarios. Since at that time, solar production will probably be close to zero,
having a small renewables production means that wind production around 8 pm is low
across the country, or that the provinces with the biggest installation capacities have
very low production. Although the renewable production before 8 pm on that day
seems to be significant for scenarios Rb and Rc, renewable production has little impact
on the hour of the peak load. Due to the decrease in production from solar after 2
pm, and the lack of production from wind, we see ramping rates between 2 and 8 pm
increase to over 300 and 500 GW in that six hour window for the Rb and Rc renewable
scenario cases, respectively.

We can do a similar analysis for the 24 hour periods around the highest down and
up ramping hours of the year. The left panel of Figure 14 shows the load and netload
scenarios of the 24 hour period around 8 am in November 24th, 2030, when hour-to-
hour ramping down is highest in a system with base case load and installed renewable
capacities described by renewable scenario Rc. This rapid decrease in netload coincides
with the beginning of the diurnal cycle of solar production for that day. Between 8
and 9 am of that day, renewables production increases faster than load by 144 GW.
Such a large decrease in netload surpasses the ramping maximum of 112 GW per hour
decrease in the original base case load scenario (not shown). Assuming that system
operators are ready to meet a 112 GW capacity shed in the system with no intermittent
renewables, there is still a 32 GW decrease in that that needs to be met across the
system if renewables penetration reaches the levels described in renewable scenario Rc.
As the installed capacity decreases, the required hour-to-hour ramping down rate at
that hour decreases to less than 100 GW for the less aggressive Rb scenario. For a
moderate renewable penetration scenario as described by Ra netload is not as affected
at that hour and follows the upward trend of the original base case load.

The right panel of Figure 14 shows the load and netload scenarios of the 24 hour
period around 6 pm in March 24th, 2030, when hour-to-hour ramping up is highest in
a system with base case load and installed renewable capacities described by renewable
scenario Rc. This rapid increase in netload coincides with the end of the diurnal cycle of
solar production for that day. Between 6 and 7 pm of that day, renewables production
decreases while load increases creating a hour-to-hour ramping of approximately 215
and 240 GW in that period. Such a large increase in netload surpasses the ramping
maximum of 160 GW per hour increase in the original base case load scenario (not
shown). Assuming that system operators are ready to meet a 160 GW capacity addition
in a given hour in the system with no intermittent renewables, there is still a 55 and 80
GW increase that needs to be met across the system if renewables penetration reaches
the levels described in renewable scenarios Rb and Rc respectively. As the installed
capacity decreases, the required hour-to-hour ramping up at that hour decreases.

The maximum ramping up and down rates in the system occur on the edges of the
diurnal solar production cycles and are therefore a new feature of a system with high
penetration of solar PV, and to a lesser extent, wind capacity.

70



NETLOAD FORECAST MODEL 5.3. RESULTS

300

500

700

900

8 pm 8 am 8 pm

November 24−25th

N
et

lo
ad

 (
G

W
)

0

200

400

600

800

6 am 6 pm 6 am

March 24−25th

Ra

Rb

Rc

Load

Figure 14: Renewable production impact on the 24 hours around the lowest and highest
netload ramping hour for the netload model NL(ξ1, θ1, χ1, Rc) for load and netload
across the three renewable penetration scenarios.
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5.4 Discussion

5.4.1 Increased flexibility requirements

As we saw in Table 29, the introduction of intermittent renewables into the Chinese
grid according to the scenarios discussed in Chapter 4 has an impact on the effective
peak and lowest load, as well as on the highest hour-to-hour up and down ramping
rates in the system. Assuming that the system planners and operators have the ca-
pacity to provide peak load, and ramping up to the requirements of the base case
load scenario, then the introduction of renewables facilitates or adds challenges to the
effective operation of the system, depending on what metric we focus on.

Decreasing netload for the system

Across all renewable scenarios, meeting peak load is facilitated by the introduction of
renewable capacity. At the most conservative end, keeping 2020 renewable capacities
constant to 2030 would decrease effective peak load by about 3%. As the penetration
of renewables increases, the effective peak load decreases by 4.4 and 8.2% for the Rb

and Rc scenarios respectively. Despite the reduction in effective peak load, load factor
decreases, as intermittent renewable production increases, by 5.5, 22.5 and 35.6% for
the Ra, Rb, and Rc, respectively, when compared to the load factor of the base case
load. This decrease in load factor imply that the overall average load is reduced more
than the peak load.

When we add the effects of renewable production on the minimum netload we start
to see that the impact from the addition of renewables on the operation of the system
is more dramatic on the lower netload hours. As renewable production increases, the
minimum load not met by renewables decreases dramatically. As the minimum net-
load requirement falls from 460 to 90 GW for the Ra and Rb scenarios respectively
system operators already have a significantly different system operating conditions.
With a difference between peak and minimum netload increasing for these two renew-
able scenarios from 600 to almost 1,000 GW, the ability to provide a minimum stable
production baseline for long term contracts or for slow ramping units decreases sig-
nificantly. What is more, if the renewable penetration reaches the installed capacities
outlined in scenario Rc, the system might see some hours when renewable production
exceeds load. Three ways on how to handle this overproduction exist for such hours.
First, the renewable excess production will be curtailed. This entails losses and un-
certainty to the renewable providers. Second, the excess production could be used in
some ways by either shifting load to those hours, and/or by storing massive amounts
of electricity in batteries. Finally, the third option system operators might have during
such windows of high renewable production at the national level is to export across
national boundaries to neighboring countries. At the hour of minimum netload for the
Rc renewable scenario, all three options might be required, as overcapacity is equivalent
to 150 GW, the size of a small neighboring country’s electricity system.
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Increasing ramps for the system

Hour to hour load changes increase as the installed capacity of renewable increases.
For a system with a renewable capacity described by scenario Ra ramping requirements
do not change significantly. Nevertheless, as capacity increases to levels described in
scenarios Rb and Rc the highest hour-to-hour ramping up and down increases. As
shown in Section 5.3.6 with high penetration of solar PV and wind the diurnal cycle
of solar and wind become more important in changing the shape of load not met by
renewables. As found in other research[83]], the number and intensity of ramping
events increased as the renewables penetration increases.

Specifically in our model, a large drop in netload (coincident with increasing PV
production) followed by a large increase in netload when solar production decreases
increases the system ramping requirements on an almost daily basis. Furthermore,
the highest ramping up rates with scenarios Rb and Rc increase by 35 and 51 % when
compared to the rates required to meet load every hour. Similarly, the highest ramping
down rates increase by 8 and 29 % with renewable scenarios Rb and Rc respectively. A
30-50% on an already large (160 GW per hour) ramping up rate amounts to bringing
hundreds of gigawatt-sized power plants an hour. Conversely, an 8 to 29 % increase on
top of a 110 GW per hour ramping down rate means shutting down tens of gigawatt-
sized power plants an hour.

Figure 15 shows the maximum, and top 0.1 and 1% of up and down ramps in 2030
for the netload models NL(ξ1, θ1, χ1, Ra−c) as a proportion of the average load. The
expected increase in ramping as penetration of renewable increase in China is similar
to that of other countries around the world as presented in [84]. In Figure 15 our
data for the netload models NL(ξ1, θ1, χ1, Ra−c) is shown in dots, while the estimated
relationship between ramping rates and penetration for other renewable scenarios is
shown as the trendlines. It’s important to note that given the limits in the number of
our renewable scenarios, the trendlines appear linear, while the ones in [84] do not.

As seen in Figure 15, as renewable penetration increases, the up ramping rates
increase faster than the down ramping rates. In order to integrate larger amounts of
renewables, efforts to provide up ramping flexibility will be key.

5.4.2 Effect of renewable path

If we assume that a national plan points towards a renewable future that resembles the
Rb renewables scenario what are the consequences of changing pathways towards a less
or more aggressive renewable penetration scenario? By comparing total demand, load
factor, max and minimum netload, and highest up and down ramping rates between
Ra, Rc and Rb scenarios we can estimate the changing system operation challenges
faced by operators under different renewable scenarios.

If the political will to build a system with higher penetration of renewables waned
after reaching the 2020 capacity goals described in 4.2 then operating the system would
require to prepare for a 1.6% increase in peak load, but a 400% increase in minimum
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Figure 15: Extreme hourly ramps in netload with increasing renewables penetration
level in China. Maximum ramp values as well as positive and negative ramps presenting
0.1% and 1% of exceedence level are shown.

Statistic Renewable scenario comparison

Rb → Ra Rb → Rc

∆DemandNL 24 -20
∆Load factor 22 -17
∆Netload, max 1.6 -3.9
∆Netload, min 406 -266
∆Ramping, up -26 12
∆Ramping, down -7 19

Table 30: Netload statistics comparison between renewable scenario Rb and the other
two renewable scenarios, holding base case load constant, in percentage terms
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netload. This in turn would improve the load factor by 22%. Maximum ramping
requirements would experience decreases of 26 and 7% for up and down hour-to-hour
load changes, making it that much easier to maintain balance in demand and supply.
The cost of operating a system with these relaxed constraints is a total increase of 24%
(about 1,300 TWh) in electricity demand that needs to be met by other sources. The
impact on emissions of such a scenario depends on the assumed carbon intensity of
electricity from other sources in 2030 but it’s likely to be significant.

A more ambitious shift towards renewable electricity as the foundation of the Chi-
nese grid modeled as a shift from scenario Rb to Rc would reduce the electricity demand
that needs to be met by other sources by 20%. Less electricity demand unmet means
lower total emissions from the power system overall. Nevertheless, this decrease in
potentially carbon-intensive electricity demand comes with overall higher operational
constraints. Although peak netload decreases by about 4%, hours when renewable
production exceeds load start occurring and the overall decrease in minimum netload
reaches 266%. Furthermore, as discussed in Section 5.4.1, the diurnal cycle of renew-
able production on scale starts increase ramping up and down rates by 12 and 19%
respectively.

From these comparisons it’s reasonable to conclude that increasing renewable par-
ticipation in the system effectively requires not only improved capabilities of ramping
provision, but demand response, storage or efficient ways to export electricity at times
of high production. These decision are especially important when deciding on the
market design of ramping products or how to improve flexibility from thermal plants
[83, 85]. In Chapter 6 we present a working model for regulation provision using demand
management at the building level. In Chapter 7 we will present a case of the potential
impact of demand response in alleviating these increased flexibility constraints.

Impact on emissions and operation costs

From a carbon mitigation perspective, reducing netload ideally reduces the need to
build and operate thermal power plants. Ideally, the introduction of renewables would
displace production from inefficient thermal plants. Without better knowledge of the
specific generation portfolio expected in 2030 we estimate that reduced needed produc-
tion will come mostly from coal power plants.

Using a 2010 study by the National Energy Technology Laboratory (NETL) [1]
which estimated costs and performance for different fossil energy plants we can provide
an estimate for the carbon emissions and financial savings for the netload reduction
across the three renewable scenarios using the emissions and cost of electricity (COE)
per megawatt-hour in Table 31.

If we assume that the displaced thermal production is composed of 90% pulverized
coal (PC) supercritical boilers, and 10% natural gas combined cycle (NGCC) plants
we can then estimate the system savings in terms of both carbon and dollars, for a
given renewable penetration scenario.

Under the given assumptions, a future installed capacity outlined by renewable
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Power plant type CO2 emissions COE
(tons per MWh) ($ per MWh)

IGCC 0.78 76.3
PC, Supercritical 0.80 58.9
NGCC 0.37 58.9

Table 31: Power plant CO2 emissions and COE data

Renewable Scenario Emission savings Cost savings
(GTons C) (billions of $)

Meeting 2020 goals, Ra 0.5 36.3
Historic growth, key provinces curtailed, Rb 1.5 115

Historic growth, reduced curtailment, Rc 2.3 180

Table 32: Associated carbon emisssions and cost savings for the three different renew-
able scenarios

scenario Ra would reduce emissions in 2030 by 0.5 gigatons of carbon and system costs
of 36.3 billion dollars. As renewable generation increases, emissions and cost savings
increase. Carbon emission savings increase to 1.5 and 2.3 gigatons of carbon for a
renewable installed capacity outlined by renewables scenarios Rb and Rc, respectively.
Operation and maintenance savings increase to 115 and 180 billion dollars for those
two renewable scenarios, respectively. Assuming an optimistic carbon emission rate
of 12 gigatons of carbon in 2030, then under the three renewable scenarios, carbon
emissions could be reduced by 4, 12.5 and 19.2%.

If renewable integration was not given priority in system operation, or if the dis-
placed thermal plants differed significantly from our stated assumptions, total emission
and cost savings would also differ accordingly.

Negative load

In hours of very low netload, or at the extreme, hours when renewable production
surpasses load, under current system flexibility circumstances, renewable production
most likely will be curtailed [86]. The discussion about the benefits of raising the
minimum netload in order to increase the role renewables play on the provision of
electricity, should include a more nuanced analysis on who benefits and who loses
when the minimum is increased.

From the point of view of renewable electricity suppliers, increasing the lowest
netload of the system might reduce the need to have flexible provision for baseload
hours, by effectively increasing the power that can be met from baseload (usually less
flexible but cheaper) power plants. The second way that increasing the netload of the
system with demand response facilitates the integration of renewables is by reducing
the need for high capacity storage in hours of over production.
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Nevertheless, the benefits and costs of a higher baseload capacity depend on the
power plants meeting such capacity. If baseload is met with power production from
coal power plants, then the impact on emissions by letting more coal plants operate is
significant. If in 2030 the system baseload is met with a combination of nuclear and
hydro then there is no significant impact on emissions.

5.4.3 Effect of parameters

As discussed in Chapter 3, the hourly load model is a function of three global param-
eters that affect the simulated commercial model 2. In this section we study the effect
of changes in parameters on the system netload compared against renewable scenario
Rb. In Table 33 we show the effect of changing a parameter at a time across the three
parameters (efficiency standards adoption, operating schedule selection, and heating
electrification, ξ, θ, and χ, respectively) on the different netload statistics for the base
case load scenario L(ξ1, θ1, χ1). Parameters and their respective values are described
in Table 27 of this chapter.

Statistic Change in parameter

∆ξ ∆θ χ1 → χ2 χ1 → χ3

∆DemandNL -0.6 2.2 -2.7 -1.8
∆Load factor 0.2 -0.5 -2.5 -1.7
∆Netload, peak -0.8 2.7 -0.2 -0.1
∆Netload, min -1.8 26.0 -13.1 -8.7
∆Ramping ↑, max -0.1 -4.8 0.3 0.2
∆Ramping ↓, max -0.8 16.4 -1.9 -2.9

Table 33: Netload statistics effect of change in load parameters, holding renewable
scenario Rb constant, in percentage terms

Improving the efficiency standards of the commercial sector ξ1 → ξ2 has a small
effect on the overall characteristics of the netload under scenario Rb. As it is expected,
improving efficiency reduces the total demand not met by renewables by 0.6% and im-
proves load factor by 0.2%. Peak netload, and ramping rates are decreased by less than
1% each as the commercial sector becomes more efficient. Minimum netload decreases
by almost 2% as efficiency gains reduce overall commercial sector consumption.

Operating the buildings as recommended by the prototype US buildings θ1 →
θ2 has a larger effect on netload than changing efficiency standards in our model.
Total demand increases by 2.2% while load factor decreases by 0.5%. Both peak and
minimum netload increase by 2.7 and 26% respectively. The highest ramping up rate
see a decrease of almost 5% while the highest ramping down rate increases by over 16%

Finally, if heating in the commercial building is de-electrified from a high-efficiency
electric boiler to a equally high-efficiency gas boiler we see decreases in total elec-
tricity consumed, load factor, peak and minimum netload of 2.7, 2.5, 0.2 and 13.1%
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respectively. Highest ramping rates up are increased by 0.3%, while ramping down
is decreased by 1.9%. If heating provision in commercial buildings stay electric but
becomes significantly more efficient, then the changes when compared to the load case
scenario become smaller with total demand, load factor, maximum and minimun net-
load decreasing by 1.8, 1.7, 0.1, and 8.7% respectively. Maximum ramping down rate
decreases by 2.9%, which is a larger decrease than under the no electrification scenario.

5.5 Conclusion

China has ambitious goals for the role of solar and wind renewable generation in their
grid. The introduction of renewables into the Chinese grid provides important opportu-
nities for carbon emission and cost savings but also poses significant impacts on system
operation. In particular, we studied the impacts on four netload cases: high and low
netload, and down and up ramping hours. We found that peak netload is reduced by a
small margin, while netload at the lowest hours is significantly decreased as renewable
penetration increases. Both down and up ramping rates are increased in systems with
large penetration of renewables (shown by renewable scenarios Rb, and Rc) but not
changed significantly under less aggressive penetration scenarios (Ra). Large increases
in renewable shares in the Chinese electricity system will require increase focus on
flexibility provision in planning and operation. In the following Chapters we build a
case for the provision of such flexibility by managing demand of existing infrastructure.
In Chapter 6 we develop and test a building control model to provide regulation-like
services to the grid. In Chapter 7 we present a study on the impacts of managing load
at the commercial sector level in China to provide system flexibility under different
commercial model parameter and renewable penetration scenarios.
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Chapter 6

A case for building-level demand
response for regulation provision

6.1 Introduction

With increasing penetration of renewable electricity into the grid, supply forecast error
and flexibility requirements are growing rapidly[81, 87]. In the United States, short-
term forecast error is currently managed by using ancillary services, such as regulation,
and sub-hourly generator dispatch. Fast-ramping conventional power plants, such as
gas turbines, currently dominate the provision of ancillary services. Nevertheless, devel-
opment of communication and control strategies is creating opportunities for electric
loads to participate in demand side management programs to help balance the grid
[13, 51]. Aggregations of electric loads can offset forecast error by shifting the timing
of electricity use relative to an uncontrolled baseline[88]. Similarly, controlling a HVAC
system in a building can provide ancillary services[89].

DR control strategies should be designed to avoid impacting mechanical wear or
equipment warranties. Interviews with application engineers with major chiller and
fan manufacturers have indicated that frequent adjustment of chiller and fan capacity
should have no negative effect upon variable speed equipment[54]. In contrast, their
primary concern is control stability. Nevertheless full variable speed cooling systems
are currently mostly limited to large chiller and air-handling unit systems. Multi-stage
direct expansion units (currently common) could be negatively affected by excessive
cycling, since they would actually turn compressors on and off without regard for their
current state.

This chapter investigates whether air-based cooling systems with continuously con-
trollable cooling output can be used effectively to balance positive and negative fore-
cast errors in power systems (either in load or renewable generation capacity) using a
model predictive control approach. Previous research has been done on MPC systems
in buildings [90, 91], but they have mostly focused on improving building efficiency.
The specific question to be answered is whether cooling system power can be managed
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to provide high quality power signal tracking without loss in comfort for occupants.
The building and HVAC models are described in the following section. Then, the lin-
ear system model developed to test system performance under control is presented and
the power tracking and thermal comfort performance for the different target signals
are studied and analyzed. Finally the last two sections provide an analysis for climate
applicability in the United States and concluding remarks respectively.

6.2 Model Description

A simplified building and HVAC system model incorporating first and second order
transfer functions to approximate VAV system dynamics, based on a previous method-
ology by Underwood [92], was developed. Several simplifying assumptions are made.
First, internal and external loads are constant during the simulation time frame. Sec-
ond, time dependent model variables, such as temperature and airflow rates, depict
deviations from an baseline value and not the absolute values of such state. Third,
the non-linear relationship between room airflow and temperature is reduced to a first-
order approximation. Fourth, room temperatures are perfectly uniform throughout
the rooms. Fifth, cooling demand is only a function of sensible load, and coil dynamic
behavior uses an average of wet and dry conditions. Finally, each of the rooms is in
cooling mode upon disturbance and room reheat is ignored as the heat source is usually
not electricity.

Working under these assumptions, models for the building walls, rooms, and cooling
and fan systems are presented in the following section.

6.2.1 Wall Model

Each external wall is modeled using three layers: gypsum, insulation and brick.The
three materials are characterized by their respective layer and thermal properties de-
scribed in Table 34. The heat transfer through the first layer of the walls, gypsum, is
depicted in Fig. 16 below with a two layer model of each wall component.

Performing an energy balance on the system represented in Fig. 16, the deviation in
the gypsum layer temperature can be described by the coupled differential Eq. (6.2.1)
and (6.2.2) below.

lgρgcp,g
dθg
dt

= ug,i(θr − θg)− ug(θg − θg,o) (6.2.1)

lgρgcp,g
dθg,o
dt

= ug(θg − θg,o)− ug,o(θg,o − θins) (6.2.2)

where all parameters are defined in Table 34 above.

Taking the Laplace transform of Eq. (6.2.1) and (6.2.2), combining them and
rearranging variables, the following transfer function for the temperature deviation
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Figure 16: Two later wall model diagram

on the first layer, as a function of the temperature deviations in the room, and the
temperature deviations in the insulation layer is obtained:

θg(s) =
Ags+Bg

Cgs2 +Dgs+ Eg
θr(s) +

Fg
Cgs2 +Dgs+ Eg

θins(s) (6.2.3)

where

Ag = lgρgcp,gug,i Bg = ugug,i + ug,oug,i

Cg = (lgρgcp,g)
2 Dg = lgρgcp,g(2ug + ug,i + ug,o)

Eg = ugug,i + ug,oug,i + ugug,o Fg = ugug,o

Performing the same procedure on the insulation and brick wall layers, the transfer
functions depicting temperature deviations of those layers are as follows:

θins(s) =
Ainss+Bins

Cinss2 +Dinss+ Eins
θg(s) +

Fins
Cinss2 +Dinss+ Eins

θbr(s) (6.2.4)

θbr(s) =
Abrs+Bbr

Cbrs2 +Dbrs+ Ebr
θins(s) +

Fbr
Cbrs2 +Dbrs+ Ebr

θoa(s) (6.2.5)

The transfer function coefficients in Eq. (6.2.4) and (6.2.5), above, are defined
similarly to the coefficients in Eq. (6.2.3), but using their respective layer material
thermal properties, as defined in Table 34.

6.2.2 Room Model

Four identical rooms are modeled as if they were uniform thermal masses with a VAV
box supplying chilled air to each. Each room is differentiated from each other by a
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Parameter Gypsum Insulation Brick Units

m=g m=ins m=br

lm 0.016 0.05 0.11 m
ρm 595 30 1700 kg/m3

cp,m 1.1 1.0 0.8 kJ/kg·K
um,i 8.31 21.4 1.4 W/m·K
um 21.4 1.4 15 W/m·K
um,o 21.4 8.33 8.33 W/m·K

Table 34: Wall model parameters

different supply air flow rate needed to maintain steady state in the room without
changes in load. Each VAV terminal box is connected to the air supply system that
ultimately leads to the cooling unit. The only thermal mass in the room is assumed
to be that of the air. For this reason, the model would overestimate the temperature
deviations that would occur from a given disturbance. Finally, since the interior of the
building is pressurized, no infiltration occurs.

Figure 17: Side view diagram of a room

Figure 17 depicts a cross view of a room with the left depicting the inside of the
building, and the right depicting the outside conditions with the middle wall separating
the two different thermal masses. The temperature deviation upon a disturbance in
room i, can be derived from the simplified differential Eq. (6.2.6) below
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Parameter Value Units

Vr 240 m3

ρ 1.2 kg/m3

cpa 1.0 kJ/kg-K
ΣUA 0.2 W/K
θsa,ss 12.7 C◦

θr,ss 23.8 C◦

ma,1,ss 0.32 m3/s
ma,2,ss 0.36 m3/s
ma,3,ss 0.41 m3/s
ma,4,ss 0.43 m3/s

Table 35: Room model parameters

Vrρcpa
dθr,i
dt

= qplant,i − Σ(UA)(θr,i − θg,i) (6.2.6)

where all parameters are defined in Table 35 and qplant,i, defined in Eq. (6.2.7) below,
is the linear approximation in cooling load deviation supplied by the VAV box in the
room.

qplant,i ≈ cpa(θsa,ss − θr,ss)ma,i +ma,i,sscpa(θsa − θr,i) (6.2.7)

Substituting Eq. (6.2.7) into Eq. (6.2.6), rearranging variables, and expressing in
the Laplace domain, a transfer function (6.2.8) that relates θr,i to ma,i, θsa and θg,i in
room i is obtained.

θr,i(s) =
Gma,i

(τr,is+ 1)
ma,i(s) +

Gθsa,i

(τr,is+ 1)
θsa(s) +

Gθg,i

(τr,is+ 1)
θg(s) (6.2.8)

where

τr,i =
Vrρcpa

ma,ss,icpa + Σ(UA)
Gma,i =

cpa(θsa,ss − θr,ss)
ma,ss,icpa + Σ(UA)

Gθsa,i =
ma,ss,icpa

ma,ss,icpa + Σ(UA)
Gθg ,i =

ΣUA

ma,ss,icpa + Σ(UA)

Combining transfer functions [6.2.3-6.2.5], describing wall heat transfers, with Eq.
(6.2.8) describing room temperature into a block diagram, a block diagram for the
coupled wall-room system in Fig. 18 below is obtained.
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Figure 18: Block diagram for the coupled wall - air mass model
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6.2.3 VAV Terminal Box Model

The VAV terminal box modulates airflow into each room via an air valve. A PI con-
troller measures and controls airflow with K = -0.19 and I = -2.4x10−4. The gains
are optimized in Simulink. The PI controller uses the difference between the desired
room temperature, Tset, and the actual room temperature, Tr, as the input signal. The
control signal modifies the airflow, ma required to correct for difference in tempera-
tures by adjusting the valve position. We assume that from 18% to 68% open the
airflow response to valve position is linear and constrained to not exceed the maximum
or minimum flow rates and that it takes between 45 and 90 seconds, with constant
speed, for the valve to change from fully closed to fully open, or vice versa [93, 94].
While the air valve reacts rather quickly to signal changes, thermostats usually lag by
several minutes. The thermostat is approximated with a first order time lag with time
constant of 2 minutes. Fig. 19 below, depicts the block diagram for the terminal box
model. The ’Room’ block in Fig. 19 represents the coupled wall-room model in Fig.18.

Figure 19: Block diagram for the terminal box model

6.2.4 Fan Model

The building’s fan system is modeled by adding the deviations in air flow rate in each
of the rooms, as in Eq. (6.2.9) and applying a first order lag with a 30-second time
constant[95]. The block diagram for the building fan system is shown in Fig. 20 below.

ma,net =
4∑
i=1

ma,i (6.2.9)

The net change in air flow rate, ma,net, determines the change in fan power in the
model. Fan power is nonlinearly related to change in airflow, however, in the model it
is approximated with a piecewise affine function of ma,net estimated about the baseline
operating point shown in Eq. (6.2.10) below.
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Figure 20: Block diagram for the fan model

Symbol Value Units

Pfan,max 3.2 kW
Pfan,ss 2.1 kW
ma,max 1.85 kg/s
ma,ss 1.54 kg/s

Table 36: Fan model parameters

Pfan =


2.3ma,net − 0.06 if ma,net ≤ −0.1

3ma,net + 0.01 if − 0.1 < ma,net ≤ 0.1

3.8ma,net − 0.07 if ma,net > 0.1

(6.2.10)

The MPC algorithm, explained in the next section, will use the affine power calcu-
lation, in Eq. (6.2.10), to optimize the system and to control the power consumption
of the building, but in order to more rigorously assess the efficacy of the controller, the
tracking error is measured against the non-linear power calculation (from[96]) of Eq.
(6.2.11) below.

Pfan,nl = Pfan,max
(
m3
a,f − 0.46m2

a,f + 0.38ma,f + 0.07
)
− Pfan,ss (6.2.11)

where

ma,f =
ma,net +ma,ss

ma,max

(6.2.12)

and the coefficients for steady state and maximum fan power are defined in Table
36.
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Symbol Value Units

Cs 30 kW
Pcool,max 6.99 kW
Pcool,ss 5.63 kW
cpw 4.18 J/g·K

mw,max 0.97 kg/s
mw,ss 0.81 kg/s
τc 200 s

Table 37: Cooling model parameters

6.2.5 Cooling Model

In the model, there are four main interactions that affect the air temperature supplied
by the cooling unit, θsa: mw, ma,net, fan heat, and OA%.

Based on previous work by Underwood [92], a PI controller, a temperature sensor,
and a cooling coil are modeled to estimate the interaction between θsa and mw. For
the PI controller, the gains K =-1.0, and I = -1.0x10−3 were chosen by the Simulink
PI controller optimizer. We model the temperature sensor with a 20-second first order
characteristic time[93, 94]. The time constant representing the response in supply
temperature from a change in water flow, τc is assumed to be 200 seconds [95]. The
air temperature change on the coil outlet takes the following form:

θc(s) =
Csmw(s)

mw,sscpw(τcs+ 1)
(6.2.13)

The characteristic rates and constants defining the cooling system are presented in
Table 37.

In order to capture the interactions between θsa and ma,net, a transfer function with
gain and time constant of 6.5 and two seconds respectively is defined. θsa is affected
by the fan in proportion to fan power consumption and the air flow through it, ma,net.
Finally, OA% affects θsa proportionally. The outdoor air is assumed to be 5 ◦C above
the return air temperature in the system. All the interactions are added to provide the
resulting θsa as depicted in the block diagrams in Fig. 21 below.

While θsa is a function of several variables, the model assumes that cooling power
is described by a piecewise affine function of mw, as shown in Eq. (6.2.14) below. As
with fan power, the MPC algorithm will use the affine version of the cooling power cal-
culation to optimize the system and to control the power consumption of the building.

Pcool =

{
7.5mw − 0.034 if mw ≤ 0

8.5mw − 0.034 if mw > 0
(6.2.14)
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Figure 21: Block diagram for cooling model

A quadratic approximation for cooling power, shown in Eq. (6.2.15) (from[96]) is
used for comparison and error measurement.

Pcool,nl = Pcool,max
(
0.22m2

w,f + 0.73mw,f + 0.04
)
− Pcool,ss (6.2.15)

where coefficients for steady state and maximum cooling power are defined in Table 37
and

mw,f =
mw +mw,ss

mw,max

(6.2.16)

6.3 System Simulation

The model links the inputs and outputs that define the individual components de-
scribed in the previous sections, and illustrated in Figs. [18-21], into a building wide
system. Figure 22 illustrates how the cooling loop, the thermal zones, and the fan
interact with each other in a Simulink model. In addition, it shows the input vari-
ables that to manipulate the system: four temperature setpoints describing each of
the the four rooms thermostats, the cooling supply air temperature setpoint, and the
percentage of outside air in the air supply.

In order to test the ability of a building to provide ancillary services, and in specific
follow a target signal for power deviation, the main output of concern is system power
consumption defined in Eq. (6.3.1) below.

Pmodel = Pfan + Pcool (6.3.1)
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Figure 22: Block diagram for building’s HVAC system

6.3.1 MPC Algorithm

A supervisory MPC algorithm to control system power by manipulating the control
inputs on the combined model was implemented on MATLAB. The controller uses a
state space linear model provided by the dlinmod command with a one-minute time
step to discretize the combined block diagram system shown in Fig. 22. The linear
time invariant state space model that describes the system takes the following form:

xk+1 = Axk +Buk (6.3.2)

where A ∈ <78x78 and B ∈ <78x6 are built by the dlinmod MATLAB command.

The MPC controller decides the optimal set of inputs that minimize both tracking
error between model power and target power deviations, defined in Eq. (6.3.3), and
room temperature deviations.

ε = Pmodel − Ptarget (6.3.3)

The objective function is described in Eq. (6.3.4) below over the whole control
horizon, N steps ahead. The superscript T refers to the transpose of the vector. In
this implementation, the control horizon, N , equals five minutes. Increasing N results
in better performance, but it assumes receiving a target signal at higher frequency,
which might might not be feasible in a real implementation.

F = φε

N∑
k=1

|εt+k|22 + φθ

N∑
k=1

|θt+k|22 (6.3.4)

subject to
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xk+1 = Axk+Buk, for k = 1, ..., N

−1 ◦C ≤θ < 1 ◦C

−2 ◦C ≤θsa < 5 ◦C

0.068−ma,i,ss ≤ma,i < 0.453−ma,i,ss,∀i
0.3mw,k−1 −mw,ss ≤mw < mw,k−1 −mw,ss

−10% ≤OA% < 10%

Both ε and θ are functions of the optimization variable uk. The subscript notation
t+k refers to a time k timesteps beyond timestep t given that t is the beginning of the
optimization time horizon. The MPC controller will choose a set of uk for k = 1, ..., N
that optimizes the cost function at each time step in the horizon. The controller only
acts on the first of these input vectors updating the state of the system. It then sets
up to find the optimal inputs for the next N steps.

For plants with full variable speed control, the control strategy outlined here, could
be implemented using existing building energy management control system (EMCS)
equipment with some parallel computing. The MPC would run in parallel locally or
on the cloud, as long as the calculation runtime is shorter than the MPC step time,
and then submit control setpoints to the building’s EMCS for implementation.

6.4 Model Testing

The purpose of the model is to test the controllability of a building’s power consump-
tion through the implemented MPC algorithm. Controllability is tested against two
different sets of power signals to be followed. The signals communicate the deviation
from baseline power consumption as a percentage of the power rating of the system.
The signals were chosen because they resemble actual signals used by system operators
and can be applied to systems of different sizes and, therefore, potentials. For this
system, the power rating = Pcool,max + Pfan,max

6.4.1 Zero Mean Target

The first set of random target signals tests the ability of the system to provide contin-
uous DR to the grid that resemble load following and regulation services. The set is
characterized by a zero mean trajectory within the limits on the maximum allowable
deviations in power, given in percent. The limits are symmetrical, that is, the value of
the maximum possible positive deviation is equal to the maximum possible negative
deviation. The set of target signals studied have 10, 15, 20 and 25% limits respectively.
Every five minutes a new random target power deviation within the ±limit range is
set. The power trajectory ramps down or up linearly from every subsequent target
point to the next.
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6.4.2 Step Target

The second set of target signals tests the ability of the system to provide a sustained
power deviation from baseline, resembling a traditional DR signal such as those in
load shifting or load curtailing programs. The target is a step percentage change from
base power consumption, held for fifty minutes. It takes five minutes to ramp up
from baseline to the target and five minutes to ramp down to zero, back to baseline
consumption. The ramping time was chosen arbitrarily, but longer ramping times
would smooth out the effects caused by the required input signals.

6.5 Results and Discussion

Performance with Zero Mean Targets

For the set of zero mean target signals, a hundred runs with random, zero mean,
target trajectories were simulated. The performance error is defined, in Eq. (6.5.1),
as the difference between the target deviation and the system’s power deviation, as a
percentage of total power rating.

ε% =
Pactual − Ptarget

Pfan,max + Pcool,max
x100% (6.5.1)

where

Pactual = Pfan,nl + Pcool,nl (6.5.2)

The system power is calculated in Eq. (6.5.2) using the non-linear functions for fan
and cooling loads as defined in Eq. (6.2.11) and (6.2.15) respectively. A sample of the
results tracking a target signal is provided in Fig. 23 below.

Figure 24 shows the median and variability of ε% across different target ranges on
each of the four types of runs with different defined limits. Each plot presents the
resulting ε% from the one hundred target signals within their respective limit, as a
function of the range the target requested fell in for each run.

The top and down row plots in Fig. 24 show the results for the one hundred runs
with target signals within the ±10% and ±15% and ±20% and ±25% limits from left
to right, respectively. The mean ε% is depicted by the bold black line, with the 95%
confidence interval shaded.

There are several main takeaways from these results. First, ε% has a small positive
bias, that is, it is on average above the requested target signal. Second, taking this
bias into account, ε% is the smallest for requests that fall in the 5%−10% range across
all different limits. Third, variability in ε% generally increases with increasing values
of requests, that is, expected variability in ε% is smaller for the 5%− 10% target range
than for the 10% − 15%. Finally, variability in ε% generally increases as the limits of
the target signal increases. This last point is important as it implies that participants
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Figure 23: Tracking results for a single zero mean target trajectory within ±20% limits
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Figure 24: Error as a function of target range for all runs.
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in DR programs with a higher tolerance for power deviations will, all else staying the
same, provide a response to a given signal with less precision.

6.5.1 Temperature Comfort with Zero Mean Targets

Large and fast deviations from baseline temperatures are not desired as they will
undermine occupants comfort. Constraints on room temperature deviation for the
target trajectory above, in Fig. 23, are not violated as seen in Fig. 25 below.
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Figure 25: Temperature deviations in the building as a result of following signal shown
in Figure 23

In order to compare temperature deviations associated with all target trajectories,
the norm, |θ|2, and maximum value, |θ|∞, of θ for each run is computed and recorded.

Table 38 shows the mean (and standard deviation) of |θ|2 and |θ|∞ across all runs
within each respective limits.

Limits ±10% ±15% ±20% ±25%

|θ|2 0.21 (0.03) 0.23 (0.04) 0.25 (0.06) 0.34 (0.13)
|θ|∞ 0.40 (0.07) 0.46 (0.09) 0.54 (0.14) 0.73 (0.24)

Table 38: |θ|2 and |θ|∞ associated with zero mean target’s within specified limits

There is an increasing temperature deviation from baseline as the requested target
range increases. Interestingly, both the mean and standard deviations of |θ|∞ are
approximately double those of |θ|2. Assuming the air in the room is well mixed, then
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the results for targets within 10, 15, and 20% do not significantly disturb the occupants
and would be therefore tolerated. Nevertheless, since both the mean and standard
deviation for |θ|∞ for targets within 25% are large enough to have a high likelihood
of having temperature deviations hitting the constraints, buildings subscribing to such
a large potential power deviation would probably affect occupant comfort negatively.
Nevertheless, because the model considers air as the only thermal mass in the room,
the estimate of the availability of power before incurring noticeable changes for the
occupant would be more conservative than expected. A more detailed model is required
to understand the fluid dynamics effects on occupant comfort.

6.5.2 Performance with Step Change Targets

For the set of step change target signals, multiple runs with different, negative and
positive, targets were simulated. The performance error is defined in Eq. 6.5.1 above.

Figure 26 below shows four plots of target and actual power deviation model outputs
with two runs on each of the plots. The top and bottom rows show the results of the
runs with targets±10% and±15%, and±20% and±25% from left to right respectively.
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Figure 26: Sample of tracking results for step target requests

For each target signal |ε%|2 is calculated. Figure 27, below, shows |ε%|2 as a function

94



BUILDING DR FOR REGULATION 6.5. RESULTS AND DISCUSSION

of the requested target. As the absolute value of the target increases so does |ε%|2. As
in the results for the zero mean target set in Fig. 24, |ε%|2 is smaller for positive
than for negative requests. But interestingly, an abrupt increase in |ε%|2 occurs after
target requests exceed +20%. Targets around +20% and higher, hit the temperature
constraints and therefore start decreasing the controllability of the cooling load.
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Figure 27: |ε%|2 as a function of step target request

6.5.3 Temperature Comfort with Step Targets

Complying to a step target is more taxing on the building’s HVAC system than track-
ing a zero mean target. Maintaining a power deviation for extended periods of time
will most likely cause the controller to take measures that affect occupants comfort.
Traditional DR, like load shifting, often requires temperature setpoint changes for an
extended period of time.

Figure 28 below, shows the temperature deviations in the rooms associated with
tracking a +10% step target. Even when the largest temperature deviations are larger
than for a zero mean target with ±20% limits, as in Fig. 25, they do not reach the
imposed constraints.

Nevertheless, as Fig. 29 below shows, the temperature deviations associated with
tracking a +20% step target are significantly larger. At least two rooms have reached
the temperature constraints and would therefore feel as if the thermostat had been set
a degree lower.

Figure. 30 shows that, in general, negative targets from baseline have less effect on
temperature than positive targets. In addition, and a deciding factor on the reliability
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Figure 28: Temperature deviations in the building associated with a +10% step target
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Figure 29: Temperature deviations in the building associated with a +20% step target
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of the system to provide step deviations from baseline, targets above 20% seem to
jeopardize occupants comfort.
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Figure 30: |θ|2 and |θ|∞ as a function of step target

6.6 Climate Parameters

As of 2003, 30% of all commercial floor area in the United States used VAV HVAC sys-
tems for cooling and heating purposes and 24% included an EMCS[97], which enables
measurement and control of system parameters relevant to the strategy presented in
this paper. Industry buildings with an EMCS generally have newer and high capacity
cooling equipment with digital controls [54]. Conservative estimates put at 4% of the
total commercial floor area in the United States the available area that can make use
of the control strategy presented above, without major equipment replacement or ad-
dition. Furthermore, the industry is shifting towards variable speed compressors and
cooling in both chillers and packaged direct expansion units. This will allow a bigger
percent of the total future building floor space to be able to implement this control
strategy. Assuming a typical cooling load, system efficiency, and California load factor,
continuously controllable air-based cooling systems represent roughly 50 GW peak (5%
of installed capacity) and 10 GW average load (1% of installed capacity) in the United
States [97, 98].

Despite the moderate effects on occupant comfort by allowing the system to track a
zero mean target, not all systems are utilizable all the time. Energy codes now require
VAV systems to have economizers. ASHRAE 90.1 requires this for all systems larger
than 15.8 kW cooling capacity. Economizers reduce or eliminate cooling energy use
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Zone City Zone City

1 Miami 4.1 Albuquerque
2 Houston 4.2 Seattle

2.1 Phoenix 5 Chicago
3 Atlanta 5.1 Boulder

3.1 LA 6 Minneapolis
3.2 Las Vegas 6.1 Helena
3.3 San Francisco 7 Duluth

4 Baltimore 8 Fairbanks

Table 39: Climate zones in representative cities

when outdoor air conditions are favorable by using the cooler outside air for cooling.
Depending upon the distribution strategy, all cooling consumption might be eliminated
when outdoor temperature is below the 12.7-18.3◦C range. Cooling electricity demand
tends to be 2-5 times higher than fan electricity demand for VAV at full load. The ratio
increases at part load. The controllable resource thus decrease dramatically when cool-
ing power is not present. The best locations that maximize the available controllable
resource have few hours below the critical 12.7-18.3◦C.

It is assumed that most of the building’s controllability can be achieved during the
working hour periods, defined from 6 am to 6 pm. In order to estimate the availability of
controllable resource during these hours, a climate analysis was performed with national
level hourly temperature data for sixteen cities. Ambient (dry bulb) temperature data
was collected[99] for each city in Table 39.

A measure of how often a temperature threshold is surpassed on any city for the 6
am - 6 pm period every day is defined by Eq. 6.6.1 below. This measure is useful to
approximate the availability of power since the economizer will compromise controlla-
bility when ambient temperature, θoa, drops below somewhere on the 12.7-18.3◦C range
depending on the actual system set point. Since the precise temperature threshold cho-
sen for the building is not constant across cities or buildings, the average availability
per city or climate zone will fall in the [Pθ>18.3◦C , Pθ>12.7◦C ]

Pθ>α =
Hours when θoa > α

4335 Hours
x100% (6.6.1)

Figure 31, below, shows that controllability ranges widely as a function of the
geographic location. For example, the area around Miami could provide continuous
DR between 93 and 99% of the time during the 6 am to 6 pm period. In contrast,
a building in Fairbanks would most likely provide continuous DR between 10 and
30% of the time. In San Francisco, where the widest daily temperature swings occur
among studied cities, the threshhold economizer position can substantively affect the
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availability of cooling power, and therefore, controllability of the system.
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Figure 31: Pθ>12.7◦C and Pθ>18.3◦C for different US climate zones

6.7 Conclusion

This paper presented a linear model of an HVAC VAV system and a MPC algorithm
that achieves controllability. The controllability of the model is tested against two types
of power deviation signals. The zero mean target signal achieves controllability with
less than 1% error for signals with amplitudes within ±20%, of power rating capacity,
or up to ±2GW on a national scale with current infrastructure and technology. With
newer variable speed compressors and cooling in both chillers and packaged direct
expansion units replacing packaged direct-expansion units with staged cooling control,
the potential will increase. Furthermore, the expected maximum temperature deviation
in any of the rooms is less than 0.54◦C. For step targets within ±20%, the controller
achieves less than 2% error, and less than 1◦C maximum temperature deviation in any
of the rooms. Higher targets increase both the error and occupants’ discomfort. Finally,
a climate analysis was performed in order to assess the availability of controllable
resources in sixteen cities in the US. This control strategy could be implemented up to
99% of the time in the hottest regions, but as low as 10% of the time in the coldest.
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Chapter 7

Assessing DR flexibility provision
potential from the commercial
sector in China

7.1 Introduction

As presented in Chapter 6 of this dissertation, it is possible to provide regulation
services by managing the HVAC system in a building and to maintain temperature
comfort at the same time. Other research at the intersection of DR and renewables
integration has focused on the potential of DR to provide flexibility and aid in the
integration of renewables in other countries, like Germany [100], or from the residential
sector in the US [101].

In this chapter, we will use the netload model described in Chapter 5 to investigate
the potential flexibility provision from managing electricity at the commercial sector
level across China in 2030. We first describe the model used to estimate the demand
response available in Section 7.2 from the commercial sector. We then present the
estimated DR impacts of managing the commercial sector across China for a specific
base case netload scenario of a given set of parameters and a renewable penetration
scenario in Section 7.3. Section 7.4 we analyze the results in the previous section,
as well as provide a parameter and renewable scenario sensitivity analysis on the DR
impact across all cases studied. We also compare two DR impact between two different
netload scenarios to investigate the effect of parameters in tandem. Finally, we expand
this comparison across all modeled netload scenarios to understand what commercial
sector buildings’ parameters are more important for the provision of demand response.

7.2 Model description

Quantifying the impacts of DR strategies at a regional level poses several challenges
similar to those at the building level. Namely, estimation of a baseline is necessary
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[102], utilizing a reliable physical model is critical, and, as we found out in our research,
analyzing the resulting demand response is focus dependent. It’s important to elaborate
on the last point. DR estimates will be different for models that focus on controlling
demand in intrahour or hour to hour timeframes as well as models controlling ramping
or load. Furthermore, if DR events are called infrequently, then the expected deviation
from baseline is likely to be larger than if the DR provider is continuously involved in
flexibility provision.

The present model is built on a constructed country wide electricity demand base-
line, presented in Chapter 3, that both grows as yearly consumption grows, and changes
qualitatively as the energy consumption from different economic sectors change in im-
portance over time. The baseline is a function of a physically constructed commercial
sector model as explained in Chapter 2. As the system integrates renewables the dif-
ference between baseline load and renewable production will be qualitatively different
than the load. As presented in Chapter 5, as more renewables are integrated the
operation constraints become more challenging.

In this chapter, we use the model developed in Chapter 5 to build a netload baseline
for a given set of global parameters. We then use this baseline to capture the times
of highest netload or ramping flexibility need. In order to do that, we first define the
ordered sequence of netload and ramping for a given set of global parameters as seen
in Equations 7.2.1 and 7.2.2.

NL = {minNLCH , · · · ,maxNLCH} (7.2.1)

NLramp = {minNLCH,ramp, · · · ,maxNLCH,ramp} (7.2.2)

Since NL is an hourly function, and therefore indexable by hour of the year, we can
obtain the hour index of minNL, and maxNL and any other member of the sequences
NL and NLramp in between. The hour index set for NL and NLramp are then defined
by Equations 7.2.3 and 7.2.4, respectively.

T = {tminNLCH
, · · · , tmaxNLCH

} (7.2.3)

Tramp = {tminNLCH,ramp
, · · · , tmaxNLCH,ramp

} (7.2.4)

In this work, we are interested in finding the impact of providing demand response
from the commercial sector. If we order the sequence of hourly commercial load accord-
ing to T and Tramp we get a set of ordered commercial load, Lcommc and Lcommc,ramp

that correspond hour by hour to the sequences in NL and NLramp.
In order to actuate change in the load, we modify the temperature setpoints by

∆T (oC) in the commercial building sector’s HVAC systems to provide flexibility for
four specific netload cases Φcase: high and low netload, and high up and down ramping
rates. The modified temperature setpoints give rise to different commercial sector
model load output and in turn used to build modified load and netload models. The
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demand response impact on the system is defined as the difference between the baseline
netload and the modified netload and is a function of the netload case Φcase for which
DR is requested, and the temperature setpoint change ∆T across commercial HVAC
systems as shown in Equation 7.2.5.

DR = NLCH,mod(ξ, θ, χ,Ri,Φcase,∆T )−NLCH(ξ, θ, χ,Ri) (7.2.5)

where NLCH is the output of the national hourly netload model given by the
chosen parameters, and NLCH,mod is the same model but constructed with temperature
setpoint changes ∆T (oC) actuated in accordance to the case of interest Φcase.

Similarly, we can define the impact on the ramping of the system as a function of
the same global parameters, the netload case Φcase of interest and the temperature
setpoint change ∆T as the difference between the ramping of the modified netload
model and the ramping of the baseline netload model as shown in Equation 7.2.6.

DRramp = NLCH,ramp,mod(ξ, θ, χ,Ri,Φcase,∆T )−NLCH,ramp(ξ, θ, χ,Ri) (7.2.6)

If we order the sequence of hourly demand response according to T and Tramp we
get a sequence of demand response in the year, DR and DRramp that correspond hour
by hour to the sequences NL and NLramp.

For each specific netload case we try to modify and manage the commercial load
with a different set of goals and for different hours of the year. The function Φcase

described below is used to decide how and when to manage the commercial load to
achieve different purposes.

Φcase =



{decrease,T(X)} if case = high netload

{increase,T[1, · · · , X]} if case = low netload

{decrease,T(X)
ramp} if case = high up ramping

{increase,Tramp[1, · · · , X]} if case = high down ramping

do nothing, otherwise.

where we define the X last hours T(−X) as
T(−X) = max(t such that #{s ∈ T|s ≥ t} = X)

and the sequence of X last hours is defined as

T(X) = {t ∈ T|t ≥ T(−X)}
In specific, for a high netload case scenario, the purpose of DR is to decrease load for

the highest X netload hours of the year, T(X). For a low netload scenario, the purpose
of DR is to increase load for the lowest X netload hours of the year, T[1, · · · , X]. For
the high up and down ramping scenarios, DR would be used to decrease ramping rates
for the highest X ramping hours of the year T(X)

ramp and increase ramping rates for the
lowest X ramping hours of the year, Tramp[1, · · · , X]. In this work, only effects on the
highest 1% of netload hours, approximately 88, for any case will be studied.
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7.2.1 Netload algorithms

Since for the two different extreme of the netload different effects are needed (i.e.
decrease load at the highest netload hours and increase load at the lowest netload
hours) two different algorithms for achieving these changes are used in our model. At
times of extreme netload, demand response is actuated by changing the cooling, the
heating or both setpoints of each building in the commercial sector model depending
on the operation of the building.

By controlling the temperature setpoints in the building’s HVAC system, com-
mercial buildings could decrease their electricity consumption for a limited amont of
time before temperature comfort is affected by increasing the temperature gap between
cooling and heating setpoints.

Algorithm 1 Temperature setpoint changes to decrease load in hour h ∈ T(X)

if Ccool,b(h) > 0 and Cheat,b(h) == 0 then
∆Tsp,cool,b(h)← +∆T
∆Tsp,heat,b(h)← 0

else if Cheat,b(h) > 0 and Ccool,b(h) == 0 then
∆Tsp,cool,b(h)← 0
∆Tsp,heat,b(h)← −∆T

else if Cheat,b(h) > 0 and Ccool,b(h) > 0 then
∆Tsp,cool,b(h)← +∆T
∆Tsp,heat,b(h)← −∆T

else {Cheat,b(h) == 0 and Ccool,b(h) == 0}
∆Tsp,cool,b(h)← 0
∆Tsp,heat,b(h)← 0

end if

Algorithm 1 describes how the DR model decides on temperature setpoint changes
for both the cooling and heating components of every building’s HVAC system in order
to decrease netload. If a decrease in load is requested at hour h (to reduce peak load
for example), then each building, b, in our commercial model increases the cooling
setpoint and, or, decreases the heating setpoint by ∆T in oC. If at hour h, building
b is providing cooling, then the cooling setpoint is increased. Similarly, if at hour h,
building b is providing heating, then the heating setpoint is decreased. If both processes
are occurring simultaneously, then both setpoints are moved up and down respectively
by ∆T in oC.

At times of low netload it is similarly possible to increase consumption by decreasing
the temperature gap between cooling and heating temperature setpoints. We first
define this temperature setpoint gap in Equation 7.2.7 and then describe the algorithm
used to increase load in a given hour in Algorithm 2.

Θsp,cool−heat,b(h) = Tsp,cool,b(h)− Tsp,heat,b(h) (7.2.7)
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Tsp,cool,b(h) and Tsp,heat,b(h) are the cooling and heating temperature setpoint for
building b in hour h. If temperature in a given conditioned exceeds Tsp,cool,b(h) for that
room, then the cooling system starts cooling. If temperature in a given conditioned
goes under Tsp,heat,b(h) for that room, then the heating system starts heating.

Algorithm 2 Temperature setpoint changes to increase load in hour h ∈ T[1, · · · , X]

if Ccool,b(h) > 0 and Cheat,b(h) == 0 then
∆Tsp,cool,b(h)← −max{∆T, ∆T

4
·Θsp,cool−heat,b(h)}

∆Tsp,heat,b(h)← 0
else if Cheat,b(h) > 0 and Ccool,b(h) == 0 then

∆Tsp,cool,b(h)← 0
∆Tsp,heat,b(h)← + max{∆T, ∆T

4
·Θsp,cool−heat,b(h)}

else if Cheat,b(h) > 0 and Ccool,b(h) > 0 then
∆Tsp,cool,b(h)← −max{∆T, ∆T

4
·Θsp,cool−heat,b(h)}

∆Tsp,heat,b(h)← + max{∆T, ∆T
4
·Θsp,cool−heat,b(h)}

else {Cheat,b(h) == 0 and Ccool,b(h) == 0}
∆Tsp,cool,b(h)← 0
∆Tsp,heat,b(h)← 0

end if

Algorithm 2 describes how the DR model decides on temperature setpoint changes
for both cooling and heating components of every building’s HVAC system in order
to increase load. If an increase in load is requested at hour h (to increase load at
times of high renewable production and low base load, for example) each building, b,
in our commercial model increases their cooling setpoint and, or, increases the heating
setpoint by the largest of ∆T and ∆T, ∆T

4
· Θsp,cool−heat,b(h) in oC. If the building is

cooling and not heating, then the cooling setpoint is decreased by the largest of ∆T
or ∆T, ∆T

4
·Θsp,cool−heat,b(h) at that hour h. If the building is heating, and not cooling,

then the heating setpoint is increased by the largest of ∆T or ∆T, ∆T
4
·Θsp,cool−heat,b(h)

at that hour h. If both cooling at heating are happening in a given building at hour h,
then both the cooling and heating setpoints are decreased and increased by the largest
of ∆T or ∆T, ∆T

4
·Θsp,cool−heat,b(h) at that hour h, respectively.

In this model we only experiment with ∆T of 1 or 2 oC and therefore use the term
∆T
4

to bound the potential changes in cooling and heating temperature setpoints. The
denominator, 4, could change to 6 if we increased our study range of ∆T to 1-3 oC or
2·max(∆T ) in general.

The resulting effects for a 1 and 2 oC change for the extreme 1% of high and low
netload hours during the year (88 hours each) are summarized in Section 7.3.

7.2.2 Ramping algorithms

As with the extreme netload case, at times of extreme ramping, DR effects are esti-
mated by changing the cooling, the heating or both setpoints of each buildings in the
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commercial sector depending on the operation of the building. For both ramping up
and down, we want to explore the impact of managing load in the commercial sector
to effectively reduce ramping rates in times of highest need. In this report, only effects
on the highest 1% of ramping hours will be studied.

For the highest ramping up hours of the year, if a decrease in ramping is requested
at hour h, then the building follows the algorithm described in Algorithm 3. Since
ramping cannot be controlled in a single hour, in this model we manage ramping in
hour h by managing load in hours h−1 and h. Once we define our objective as managing
load of the hours with the largest change, the algorithm for decreasing ramping up can
be simplified as first increasing load at hour h − 1 and then decreasing load at the
following hour h.

Algorithm 3 Temperature setpoint changes to reduce ramping up in hour h ∈ T(X)
ramp

Perform Algorithm 2 (increase netload) for hour h− 1 and a given ∆T
Perform Algorithm 1 (decrease netload) for hour h and a given ∆T

Similarly, if a decrease in ramping down rate is requested at hour h, then the
building follows the algorithm described in Algorithm 4 by first decreasing load at
hour h− 1 and then increasing load at the following hour h.

Algorithm 4 Temperature setpoint changes to reduce ramping down in hour h ∈
Tramp[1, · · · , X]

Perform Algorithm 1 (decrease netload) for hour h− 1 and a given ∆T
Perform Algorithm 2 (increase netload) for hour h and a given ∆T

7.2.3 Base case scenario

In Section 7.3 we show the effects of a synchronized commercial sector wide change
in temperature setpoint ∆T ∈ {1, 2} across the four types of demand response, Φcase

(high and low netload, high up and down ramping), studied in this work on the netload
base case defined by the parameters described in Table 40.

Parameter Value

Standards 2020 (ξ1), see Chapter 3
Schedules MoHURD, 2014 [68] (θ1)
Heating Electrification Low Efficiency (χ1)
Renewables Historic growth, with curtailment (Rb)

Table 40: Parameters for the base case netload scenario

Under netload parameters described in Table 40 the netload curve can be described
by the statistics in Table 41.
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Statistic Value

Load Factor 0.60
Netload, peak (GW) 1065
Netload, min (GW) 90

Ramping ↑, max (GW/h) 215
Ramping ↓, max (GW/h) -121

Table 41: Statistics for base netload scenario

The peak and lowest netload of the year is 1,065 GW and 90 GW respectively. The
highest ramping up and down rates of the year are 215 and -121 GW per hour and the
overall netload factor is 0.6.

7.3 Results

In this section we present the results of changing the temperature setpoint by 1 and 2
across all commercial buildings to provide demand response for the four netload cases
presented earlier: low and high netload, high up and down ramping.

7.3.1 DR impact statistics

In order to formalize the results from these changes in the operation of the commercial
sector, we start by defining a group of sequences of interest within the ordered sequences
Lcommc , NL, and DR and their ramping equivalents. In general, we want to find the
subsets of the ordered commercial load, netload, and demand response hourly sequences
in accordance to T and Tramp that have been affected by demand response events. If
we only affect the top 1% of hours for each netload case, then we have approximately
88 hours when demand response events are actuated. In order to measure the impact
of the demand response events, we only look at the changes that occur on those hours
when we need demand response.

We define the subset of the commercial load being affected by the demand response
events as L∗commc

and L∗commc,ramp for the hours that require changes in netload and
ramping respectively.

L∗commc
=

{
L(X)
commc

if case = high netload

Lcommc [1, · · · , X] if case = low netload
(7.3.1)

L∗commc,ramp =

{
L(X)
commc,ramp if case = high ↑ ramping

Lcommc,ramp[1, · · · , X] if case = high ↓ ramping
(7.3.2)

The variable X describes the number of hours being affected by the demand re-
sponse. If X = 1, then we are only interested in a single hour of the sequence. In the
super script form, X refers to the last X hours in the sequence.
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We define similar subsets for the netload sequences (Equations7.3.3 and 7.3.4) and
for the demand response sequences (Equations 7.3.5 and 7.3.6).

NL∗ =

{
NL(X) if case = high netload

NL[1, · · · , X] if case = low netload
(7.3.3)

NL∗ramp =

{
NL(X)

ramp if case = high ↑ ramping

NLramp[1, · · · , X] if case = high ↓ ramping
(7.3.4)

DR∗ =

{
DR(X) if case = high netload

DR[1, · · · , X] if case = low netload
(7.3.5)

DR∗ramp =

{
DR(X)

ramp if case = high ↑ ramping

DRramp[1, · · · , X] if case = high ↓ ramping
(7.3.6)

As mentioned earlier in our work we only focused on DR events for the top 1% of
hours for each netload case studied.

Using Equations 7.3.1-7.3.6 we can build a set of statistics that describe the impacts
of the demand response events to provide flexibility in high and low netload cases (42)
and for high down and up ramping cases (43).

Symbol Statistic Units
Low Netload High Netload

δ̇ DR[1] DR(1) GW

δ̇%,l
DR[1]

NL[1]

DR(1)

NL(1)
%

δ̇%,c
DR[1]

Lcommc [1]

DR(1)

L(1)
comm,c

%

µ 〈DR∗〉 GW

µ%,l
〈DR∗〉
〈NL∗〉

%

µ%,c
〈DR∗〉
〈L∗comm,c〉

%

σ std(DR∗) GW

Table 42: DR impact statistics for the lowest and highest netloads in the year

In Tables 42 and 43 δ̇ captures the impact of the demand response signal for the
highest (or lowest) netload or higest up (or down) ramping rate of the year in absolute
terms, while δ̇%,l, and δ̇%,c show the relative impact of the response to the size of the
netload and commercial load at that time. To capture the impact of DR across all
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Symbol Statistic Units
↓ Ramping ↑ Ramping

δ̇ DRramp[1] DR
(1)
ramp

GW

h

δ̇%,l
DRramp[1]

NLramp[1]

DR(1)
ramp

NL(1)
ramp

%

δ̇%,c
DRramp[1]

Lcommc,ramp[1]

DR(1)
ramp

L(1)
commc,ramp

%

µ 〈DR∗ramp〉
GW

h

µ%,l

〈DR∗ramp〉
〈NL∗ramp〉

%

σ std(DR∗ramp)
GW

h

Table 43: DR impact statistics for the highest ramping up and down rates in the year

hours when DR events are actuated, we use µ, µ%,l, and µ%,c. µ is the average response
across all affected hours, in absolute terms, while, µ%,l and µ%,c show the relative
impact of the response to the average of the netload and commercial load at those
times. Finally, σ captures the standard deviation of the response across all responses,
in absolute terms.

7.3.2 DR impacts on netload

We first study the DR impacts of a temperature setpoint deviation of 1 and 2oC for
the low and high netload cases of the base case netload scenario NLCH(ξ1, θ1, χ1, Rb).

We call DR events on the lowest and highest 1% netload hours of the year. In Figure
32 we can see the impact of both signals on the netload for the lowest and highest 100
hours of the year. The dotted line shows the modified netload after actuating a 1oC
temperature setpoint change across all buildings of the commercial sector, while the
dashed line shows the modified netload for a 2oC change.

The descriptive statistics for both the low netload and high netload cases across
both temperature setpoint changes are shown in Table 44.

DR impact on the lowest netload hour, δ̇, is a net increase of 5.8 and 15.3 GW
for a 1 and 2 oC temperature setpoint change, respectively. This amounts to a 6.4
and 16.9% increase in the lowest netload hour in the base case scenario, or a 6.9 and
18.2% increase of the commercial load of that hour. Across all 88 hours, netload is
increased, on average, by 3.8 and 8.2 GW for a 1 and 2 oC temperature setpoint
change, respectively. This represents a 1.6 and 3.5% increase in average netload over
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Figure 32: DR impact on netload for base netload scenario for the lowest and highest
netload hours of the year, in GW

Statistic Low Netload High Netload
∆T=1 ∆T=2 ∆T=1 ∆T=2

δ̇ (GW) 5.8 15.3 -6.8 -12.2

δ̇%,l (%) 6.4 16.9 -0.6 -1.1

δ̇%,c (%) 6.9 18.2 -3.3 -6.0
µ (GW) 3.8 8.2 -2.9 -4.0
µ%,l (%) 1.6 3.5 -0.3 -0.4
µ%,c (%) 3.3 7.3 -1.8 -2.5
σ (GW) 3.0 6.7 3.3 4.5

Table 44: Descriptive statistics for the impact of DR on the lowest and highest netload
1% of hours in the year, in GW or % terms)
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those hours, or a 3.3 and 7.3% average increase in commercial load in those hours.
The standard deviation across both responses is 3.0 and 6.7 GW for a 1 and 2 oC
temperature setpoint change, respectively.

DR impact on the highest netload hours is slightly below the impact on the lowest
netload hours in absolute terms, but much smaller in relative terms. DR impact on
the highest netload hour, δ̇, is a net decrease of 6.8 and 12.2 GW for a 1 and 2 oC
temperature setpoint change, respectively. This amounts to a 0.6 and 1.1% decrease in
the peak netload in the base case scenario, or a 3.3 and 6.0% decrease of the commercial
load of that hour. Across all 88 hours, netload is decreased, on average, by 2.9 and
4.0 GW for a 1 and 2 oC temperature setpoint change, respectively. This represents a
0.3 and 0.4% decrease in average netload over those high netload hours, or a 1.8 and
2.5% average decrease in commercial load across those hours. The standard deviation
across both responses is 3.3 and 4.5 GW for a 1 and 2 oC temperature setpoint change,
respectively.

7.3.3 DR impact on ramping

We call DR events on the highest 1% up and down ramping hours of the year. In
Figure 33 we can see the impact of both signals on the ramping for the lowest and
highest 100 hours of the year. The dotted line shows the modified ramping rates after
actuating a 1oC temperature setpoint change across all buildings of the commercial
sector, while the dashed line shows the modified ramping for a 2oC change.

The descriptive statistics for both the high down and up ramping netload cases
across both temperature setpoint changes are shown in Table 45.

Statistic High Ramp Down High Ramp Up
∆T=1 ∆T=2 ∆T=1 ∆T=2

δ̇ (GW
h

) 14.3 25.1 -10.1 -16.7

δ̇%,l (%) 11.8 20.8 -4.7 -7.8

δ̇%,c (%) 12.6 22.1 -11.4 -18.8
µ (GW

h
) 5.9 11.3 -14.1 -26.6

µ%,l (%) 5.3 10.1 -9.1 -17.3
σ (GW

h
) 2.4 3.8 6.6 12.5

Table 45: Descriptive statistics for the impact of DR on the highest ramping down and
up 1% of hours in the year, in GW per hour or % terms)

DR impact on the highest down ramping hour, δ̇, is a net increase of 14.3 and 25.1
GW per hour for a 1 and 2 oC temperature setpoint change, respectively. This amounts
to a 11.8 and 20.8% increase in ramping rate in the netload base case scenario, or a
12.6 and 22.1% increase of the commercial load ramping of that hour. Across all 88
hours, ramping is increased, on average, by 5.9 and 11.3 GW per hour for a 1 and 2 oC
temperature setpoint change, respectively. This represents a 5.3 and 10.1% increase in
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Figure 33: DR impact on ramping for base netload scenario for the highest ramping
down and up hours of the year, in GW per hour
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average ramping over those hours with respect to the average ramping in the base case
scenario. The standard deviation across both responses in ramping is 2.4 and 3.8 GW
per hour for a 1 and 2oC temperature setpoint change, respectively.

DR impact on the highest up ramping hour, δ̇, is a net decrease of 10.1 and 16.7
GW per hour for a 1 and 2oC temperature setpoint change, respectively. This amounts
to a 4.7 and 7.8% decrease in the highest ramping rate in the base case scenario, or
a 11.4 and 18.8% decrease in ramping of the commercial load of that hour. Across
all 88 hours, ramping is decreased, on average, by 14.1 and 26.6 GW per hour for a 1
and 2oC temperature setpoint change, respectively. This represents a 9.1 and 17.3%
decrease in average ramping up rates over those high ramping hours. The standard
deviation across both responses in ramping is 6.6 and 12.5 GW per hour for a 1 and 2
oC temperature setpoint change, respectively.

7.4 Discussion

In this section we analyze the impact of DR in providing flexibility for the operation
of the electricity system. In Section 7.4.1 we contextualize the impacts of a 1 and 2oC
temperature setpoint change across all commercial buildings for all netload scenarios,
under the renewable scenario Rb. In Section 7.4.2 we analyze the effect of the load
model parameters in the DR impacts across the four different netload cases. Finally,
we provide a comparison between DR impacts for a change in renewable scenarios in
Section 7.4.3.

7.4.1 Impact Assessment

Decreasing peak netload

Reducing peak load reduces the need to build power plants that might only operate
for a few hours a year in order to meet demand on the highest hours of the year. If we
assume that each kW of added capacity cost the system 1,000 dlls, then reducing peak
netload by providing DR from the commercial sector saves the system between 6 and
12 billion dollars for a 1 and 2oC temperature setpoint deviation signal.

With approximately 10.7 billion m2 of public building and commmercial space in
China[77], reducing peak load using DR could pay itself if the cost falls between 0.60
to 1.10 USD per m2 of floorspace affected. The costs can be distributed even further
as the floorspace area of the commercial sector increases.

If we extend the reduction of high netload for the highest 1% of hours in the
year, we can then reduce the peak load even further and decrease the time peaker
plants run in the year. This extends the system savings between 276 and 377 GWh of
electricity from the highest 1% of hours in our current model of the netload defined by
NL(ξ1, θ1, χ1, Rb) for a 1 or 2oC temperature setpoint change, respectively.

Using a 2010 study by the National Energy Technology Laboratory (NETL) [1]
which estimated costs and performance for different fossil energy plants we can provide
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an estimate for the carbon emissions and financial savings for a 276 and 377 GWh of
electricity savings from peak netload hours reduction using the emissions and cost of
electricity (COE) per megawatt-hour in Table 46 for a integrated gasification combined
cycle (IGCC) and natural gas combined cycle (NGCC) power plant, respectively. We
provide the emission and cost data for supercritical pulverized coal (PC) boiler for
comparison.

Power plant type CO2 emissions COE
(tons per MWh) ($ per MWh)

IGCC 0.78 76.3
PC, Supercritical 0.80 58.9
NGCC 0.37 58.9

Table 46: Power plant CO2 emissions and COE data

If we assume that this energy at the highest netload hours of the year would be
provided by IGCC power plants in 2030, then by implementing DR events to decrease
netload at the highest 1% of hours we could have a net reduction of 216 and 294
thousand tons of carbon emitted into the atmosphere by a oC temperature setpoint
change DR signal, respectively. In addition, by reducing the electricity needed in those
hours operation savings between 21 and 28 million dollars could be achieved with a 1
and 2oC temperature setpoint change DR signal, respectively.

If we assume that this energy at the highest netload hours of the year would be
provided by NGCC power plants, instead, then by implementing DR events to decrease
netload at the highest 1% of hours we could have a net reduction of 100 and 138
thousand tons of carbon emitted into the atmosphere with a 1 and 2oC temperature
setpoint change DR signal, respectively. In addition, by reducing the electricity needed
in those hours, operation savings between 16 and 22 million dollars could be achieved
with a 1 and 2oC temperature setpoint change DR signal, respectively.

Increasing low netload

In hours of very low netload, or at the extreme, renewable production that surpasses
load, under current system flexibility circumstances renewable production most likely
will be curtailed. The discussion about the benefits of raising the minimum netload in
order to increase the role renewables play on the provision of electricity, should include
a more nuanced analysis on who benefits and who loses when the minimum is increased.

From the point of view of renewable electricity suppliers, increasing the lowest
netload of the system might reduce the need to have flexible provision for baseload
hours, by effectively increasing the power that can be met from baseload (usually less
flexible but cheaper) power plants. The second way that increasing the netload of the
system with demand response facilitates the integration of renewables is by reducing
the need for high capacity storage in hours of over production.
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Nevertheless, the benefits and costs of a higher baseload capacity depend on the
power plants meeting such capacity. If baseload is met with power production from
coal power plants, then the impact on emissions by letting more coal plants operate is
significant. If in 2030 the system baseload is met with a combination of nuclear and
hydro then there is no significant impact on emissions.

Reducing high ramping rates

The introduction of renewables into the system will change the system’s netload ramp-
ing down and up periods of the day. As large amounts of solar come into the grid,
netload will decrease rapidly until solar production reaches a daily maximum and then
increase rapidly until it reaches the daily peak later in the evening.

If maximizing electricity integration from renewables into the grid is an operational
mandate, then, during hours of fast ramping up in solar production, netload system
ramping rates will require hundreds of GW per hour of down ramping provision. This is
equivalent to hundreds of large power plants being taken offline. If maintaining system
stability, even at the expense of renewable production, then the most likely operational
strategy to deal with such high rates of ramping would be to curtail solar production
during these early morning hours.

By introducing DR to provide down ramping, system operators reduce the need
to shut down plants, renewable or fossil, and therefore electricity providers benefit by
having more production hours. If the hours a coal power supplier runs are agreed
ahead of time in mid to long term contracts then preventing their sudden shutdown
saves system operators money. On the other hand, curtailing renewables as the ’default
option’ as Martinot puts it [86], and allowing non-intermittent fossil power suppliers
to continue producing electricity during periods of high production ramping from re-
newables increases carbon and other pollutants’ emissions and affect the health of the
general population.

On the other hand, when solar production ramps down during the early evening
hours, netload system ramping rates will require hundreds of GW per hour of up
ramping provision. This is equivalent to hundreds of large power plants coming online
simultaneously. In order to prevent such a large increase in netload ramping after
solar power reaches a maximum, system operators will most likely curtail the total
production of solar to manage ramping around the solar production maximum. This
reduces the overall contribution of renewables to the system and therefore has negative
impacts on emissions.

By introducing DR to provide up ramping, system operators reduce the need to have
idle power plants ready to be called within an hour, or plants already online running
with suboptimal capacity factors in order to provide upwards flexibility. Reducing the
extreme ramping rates by providing DR flexibility, also reduces the cost of building
and maintaining fast ramping units idle that are called only a few hours a year.
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7.4.2 Parameter sensitivity analysis

In this section we study the effects on demand response provision across the four differ-
ent netload cases of changes in both the load model parameters and the temperature
setpoint deviation signal sent across all building models.

Table 47 shows the percent difference in mean demand response impact from the
netload base case scenario NL(ξ1, θ1, χ1, Rb) and the netload scenario where one of the
parameters is different for a 1oC temperature deviation for the first four columns, and
the difference in percentage terms between the DR impact from the base case scenario
under a 1 and 2oC temperature deviation signals.

Case Parameter change
∆ξ ∆θ χ1 → χ2 χ1 → χ3 ∆T

High Netload -2.8 100 -32 -23 39
Low Netload 3.4 24 -73 -47 120
High Ramp Up -4.6 55 -61 -44 89
High Ramp Down 2.8 69 -73 -64 91

Table 47: Effect of changing parameter on the mean demand response to a 1oC tem-
perature setpoint signal across different DR scenarios, as a percent of original response

Impact of improving efficiency standards in commercial buildings

As seen from the ∆ξ column, a change in efficiency gains measured in compliance
to efficiency standards from 2020 to 2025 has mild impacts on the demand response
provision across all netload cases. Decreasing load and ramping up rates is affected by
a decrease of 2.8 and 4.6% in a system with higher efficiency standards. Nevertheless,
increasing load and decreasing ramping down rates see a 3.4 and 2.8% improvement
on average response for a 1oC temperature setpoint change across the commercial
sector. From these results we see that the relationship between efficiency and DR is
not necessarily inversely proportional. Two of the four types of services that could be
provided by DR in the facilitation of renewable integration see a negative impact as
efficiency increases, but the other two see proportionate increases in the DR impact.

The estimated average commercial sector building intensity under 2020 standards
is 138 kWh

m2 , while the same average across all buildings and climate zones in China
for 2025 standards is 134 kWh

m2 . Therefore, there is a 4 kWh
m2 difference between the two

standards, or a 2.3% improvement.
If we divide the effect of changing efficiency standards on the mean demand response

to a 1oC temperature setpoint signal across all netload cases as a percent of the original
response by the percent improvement in efficiency, we can approximate the effect of a
percent efficiency gains on the DR impact. DR to reduce peak load is reduced by 1%
for every percent gained in efficiency. DR to increase load at the lowest netload hours
is increased by 1.2% for every percent gained in efficiency improvements. DR to reduce
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ramping up and down rates at the hours of highest ramping rates is reduced by 1.59%
and increased by 1% for every percent gained in efficiency improvements.

Impact of adopting US operational schedules in commercial buildings

As discussed in Chapter 2, MOHURD construction and operation standards outline
a suggested a set of operational schedules across different building loads for the dif-
ferent building types modeled in this work [68]. The results in Section 7.3 show the
DR impacts across different netload cases for the base case netload scenario that as-
sumes buildings operate with MOHURD 2014 schedules. Nevertheless, a shift towards
schedules that resemble those of their American counterparts, outlined by the PNNL
commercial building prototype models, will impact the ability of the commercial sector
to provide flexibility across the four different netload cases.

The impact of such a transition across the four different netload cases is shown
under the θ parameter in Table 47. We can see that a transition towards a more
Americanized building operation for all building types across all climate zones will
lead to an increase in the DR provision of flexibility for all netload cases. The largest
change in average response from a 1oC temperature deviation signal across all buildings
in the commercial sector occurs for the high netload cases with 100% increase in the
average netload reduced across all hours affected by the DR events. Increasing netload
sees a 24% increase in mean netload from a 1oC change in temperature setpoint. DR
provision of ramping rate alleviation is improved for both up and down ramping with
a 55 and 69% increase in the mean response from a 1oC temperature setpoint change
across all buildings in the commercial sector.

Although a transition towards more Americanized building operation will require
some increased costs in energy consumption in the year of about 123 TWh or 2.2%
more than the base case scenario. DR provision is also non-uniformly increased, with
a remarkable doubling in average load reduction at the highest netload hours of the
year. The decision to transition towards operating schedules that resemble those in
the US has to take into consideration not only the increased energy consumption that
it entails, but also the increased occupant comfort and, in particular, increased DR
flexibility provision from the commercial building sector.

Impact of de-electrification and higher efficiency electrification of heating
in commercial buildings

The electrification of heating across all buildings in the commercial sector will alle-
viate pollution problems from coal and gas burning in densely populated areas and
especially in cities in Northern China [76]. Moving towards meeting heating demand
with electricity will have direct positive impacts on the people’s health and happiness
by reducing smog and other pollutants that cause respiratory diseases [29]. In tandem
with alleviating pollution problems, the electrification of heating across the commer-
cial sector could potentially increase the role of renewable electricity in the provision
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of total energy demand across China [75].
In this section we study the impacts of moving back to traditional fuel-combustion

at the local or city level and increase the efficiency of electric heat supply on the mean
DR flexibility provision across the four different netload cases.

If heating is not provided by electricity or heating is provided by more efficient heat
pumps across all buildings in the commercial sector, the average DR impact for all hours
affected by DR events decrease across all four netload cases. Under parameter χ12 we
see the impact in DR flexibility provision of de-electrifying the heating load across all
buildings in the commercial sector for a 1oC temperature setpoint deviation. Mean
demand reduction at the highest netload hours is reduced by 32%. Mean increases in
low netload and mean decreases in down ramping rates by DR provision is reduced
by 73% both when the heating is not provided by electricity. Finally, DR impacts on
reduction of high ramping up rates is reduced by 61% across all hours affected by DR
events.

Keeping electrification of heating but improving the efficiency of the supply by
retrofitting boilers into heat pumps will also decrease the availability of DR from the
commercial sector when compared to the basecase netload scenario. Nevertheless, as
seen under column χ13 the impact of such an efficiency improvement is a more limited
decrease in DR availability as compared with the complete de-electrification of heating
provision. DR impact on the reduction and increase of netload is reduced by 23 and
47% respectively. Mean DR impact on ramping up and down at the highest 88 hours
of the year provision is reduced by 44 and 64% respectively.

In general, we can see that the changes in the way heating is provided have the
largest impacts on DR provision of increasing low netload and decreasing ramping
down services. Reducing the electricity consumption to provide heating across the
commercial sector has a disproportionately large effect on the lowest netload hours of
the year, which are usually colder than average and require heating. The dispropor-
tionately large impact on the ability to reduce ramping down rates by DR events by
de-electrification or increase efficiency in the electric heating component of buildings
can be explained by increased difficulty in increasing load effectively in the hours of
highest down ramping. These hours are usually earlier in the day when solar produc-
tion starts ramping up, causing netload to ramp down rapidly. Since these ramping
rates occur earlier in the day, if they fall in the winter like the highest ramping down
rate under the base case netload scenario (occurring in late November) then increas-
ing efficiency of heating, or de-electrifying it completely, does diminish the ability to
rapidly increase ramping in those hours of the year.

Impact of increasing the DR temperature setpoint signal

In order to understand the impact of increasing the control signal across all buildings we
compare the effects of a 1 and 2oC temperature setpoint deviation on the DR provision
across all netload cases for the basecase netload scenario.

As expected, increasing the disturbance signal increases the response from the sys-
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tem. Nevertheless, the response is not linear and even varies among the different
netload cases. Increasing the temperature deviation from 1 to 2oC increases the mean
reduction of load at the highest 88 netload hours by 39%. This means that the rela-
tionship between average reduction in load and temperature setpoint deviation signal
is sub-linear. Increasing the temperature deviation signal increases the mean increase
of load at the lowest netload hours by 120% making the relationship supralinear. For
ramping up and down rates, increasing the temperature setpoint change increases the
mean reduction on up and down ramping rates by 89 and 91% respectively, making it
approximately linear.

It is clear from the analysis that there are diminishing returns for increasing temper-
ature deviation signals if the purpose of DR is to reduce netload at the highest netload
hours. Since different netload models NL, will have moderately different load shapes,
but perhaps largely different commercial load models (for example with a different of
operational schedules) then it’s not clear from just looking at the effect of temperature
deviation changes for a specific model on the linearity between temperature deviation
signal and average reduction of load. What we can say for this specific model is that
high netload hours do not seem as flexible when you try to reduce load within an hour.

7.4.3 Renewable Scenario Effect

If parameters and temperature setpoint signal affect the average DR available to pro-
vide flexibility under the four netload cases, then it follows that the renewable pene-
tration scenario also affects the availability of DR.

In this section we study the difference in DR impact as a percentage from the
DR impact for 1oC temperature setpoint deviation for the basecase netload scenario,
as seen in Section 7.3. Table 48 compares the DR availability difference when the
renewable scenario is different from the one outlined in scenario Rb: Historical growth
with curtailment in the highest potential regions.

Case Renewable scenario change
Rb → Ra Rb → Rc

High Netload 21 -5.2
Low Netload -45 1.5
High Ramp Up 2.9 -9.3
High Ramp Down 2.6 95

Table 48: Effect of different renewable scenarios on the mean demand response to a
1oC centigrade temperature setpoint signal across different DR scenarios, as a percent
of original response
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Impact of reducing renewables penetration

If renewable penetration in 2030 at the province level was only that on the 2020 govern-
ment goals, then DR across the four different netload cases will be different. The ability
to reduce high netload in a lower penetration scenario (2020 goals, Ra) is increased by
21% when we compare the mean reduction across the two renewable scenarios Ra and
Rb. Increasing low netload is significantly harder with an over all reduction of 45% on
the average increase from the same 1oC temperature setpoint deviation signal. Mean-
while, ramping rate flexibility provision is not significantly affected when the renewable
penetration decreases with only a 2.9 and 2.6 % increase in response for the reduction
of ramping up and down DR events.

In a system with both higher netload and netload not as directly linked to renew-
able penetration reducing load at the highest netload hours is significantly easier. The
opposite is true at low netload hours since those low netload hours are also low load
hours where it’s harder to increase due other factors independent of renewable produc-
tion. For example if the lowest netload hours occur in the middle of the night when
HVAC systems are off for some buildings and regions, then increasing the load from
those buildings under the current strategy of changing the temperature setpoint will
see reduced responses.

Impact of increasing renewables penetration

If renewable penetration in 2030 exceeded that of our moderately ambitious base case
renewable scenario and the provinces with the highest potential grew at proportional
rates as the rest of the country (as in Rc) then the response from the same temperature
deviation signal for three of the four netload cases is not expected to be dramatically
different as for the base case renewable scenario. Reducing netload under a higher
renewable penetration scenario is a slightly harder as there is a 5.2% in average response
across all hours affected by DR events. Similarly, increasing netload at the hours of
lowest netload with a higher penetration of renewable only sees a 1.5% increase in
average increase from the DR events. Reducing high ramping up rates is slightly
harder as there is a 9.3% reduction in average response from the 1oC temperature
deviation signal. The biggest change in DR impact occurs when trying to reduce the
ramping down at the highest ramping down hours of the year. For such hours, a system
with higher penetration of renewables will see their average DR response decrease in
ramping rates go up by 95%.

The relative small changes in DR availability for the same 1oC temperature setpoint
change signal across the commercial sector between renewable scenarios Rb and Rc for
the high and low netload, and the high ramping up netload cases is due to the similar-
ities between the highest 1% of hours in those netload cases. As renewable production
increases, specifically solar, the hours of highest ramping down rates shift towards the
peak solar ramping up hours (between 9 am and noon) and away from evening hours.
Commercial buildings have more ability to increase electricity consumption, and there-
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fore manage their ramping rates in the hours of the new highest ramping down hours
(9 am -12 pm) than during hours when offices, retail buildings, and schools are closed
or closing. This shift in the period of the day explains the dramatic 95% increase in
DR availability to decrease down ramping.

7.5 Scenario Comparison

In this section we compare the DR availability for a 1oC temperature setpoint change
signal across all buildings in the commercial sector of two different netload scenarios
across multiple load parameters and renewable scenarios. In particular we compare
the DR availability between the base case netload scenario, NL(ξ1, θ1, χ1, Rb), and a
more efficient scenario with higher renewable penetration, NL(ξ2, θ1, χ3, Rc). While the
base case scenario assumes that buildings on average comply with the estimated 2020
standards, the comparison scenario assumes that buildings are constructed slightly
more efficient, complying with the estimated 2025 standards. In addition, buildings
in the comparison scenario have high-efficiency heating provision, while buildings in
the basecase scenario have low efficiency heating provision. Finally, the basecase and
comparison scenarios have increasing penetration of renewables following Rb and Rc

scenarios, respectively. We label the basecase scenario as Scenario A, and the more
efficient scenario with higher renewable penetration as Scenario B.

We first compare the descriptive statistics and the netload curves for the 24 hour
periods around the highest and lowest netload, and highest up and down ramping hour
of the year, between these two netload scenarios in Section 7.5.1. We then analyze the
difference in DR for a 1oC temperature setpoint change signal across all buildings in
the commercial sector for the two netload scenarios for all four netload cases in Section
7.5.2.

7.5.1 Netload Comparison

In Figure 34 we see a comparison of the lowest and highest 100 hours of netload
of Scenario A and B. Scenario B has a higher penetration of renewables combined
with a more efficient commercial building sector. This adds up to both lower lowest
and highest netload hours when compared with the base case scenario (Scenario A).
Figure 35 shows a 24 hour close up around the lowest and highest netload hour of the
year. Although both curves across share similar characteristics, Scenario B’s netload
is shifted down across all hours. In the left panel we see a different of almost 400 GW
between the lowest netload points of each graph. In contrast, the right panel shows
more similarities.

In Figure 36 we see a comparison of the lowest and highest 100 hours of ramping of
Scenario A and B. Given the increased renewable penetration, Scenario B’s netload has
higher up and down ramping throughout the year with an increased 25 GW per hour
rates on the highest down and up ramping when compared to the base case scenario.
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Figure 34: Load duration curve details on the lowest and highest 1% of hours in the
year for the base case netload (Scenario A) and a comparison netload scenario (Scenario
B).
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Figure 35: Netload scenarios comparison of the 24 hours around the lowest and highest
netload hour for the netload model NL(ξ2, θ1, χ3, Rc), (Scenario B).

123



7.5. SCENARIO COMPARISON COMMERCIAL SECTOR DR POTENTIAL

Figure 37 shows a 24 hour close up around those same lowest and highest ramping
hours of the year in the left and right panels, respectively.
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Figure 36: Ramping duration curve details on the lowest and highest 1% of hours in
the year for the base case netload (Scenario A) and a comparison netload scenario
(Scenario B).

7.5.2 DR Impact Comparison

In the tables below we label the basecase scenario as Scenario A, and the more ef-
ficient scenario with higher renewable penetration as Scenario B. We will first study
the differences in DR impact on the reduction and increase of high and low netload
respectively for the two netload scenarios. Then we will compare the DR impacts on
ramping rates for the two scenarios.

Effect on Netload

As shown in Table 49, the absolute value of the increase in load for the lowest netload
hours (left half of the table) is smaller for the more efficient scenario with higher pen-
etration of renewables than for our basecase netload scenario. Although the absolute
magnitude of the increase at the hour of lowest netload of the year, δ̇, is approximately
the same between the two scenarios, the average increase across all 88 hours of the year
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Figure 37: Netload scenarios comparison of the 24 hours around the lowest and highest
ramping hour for the netload model NL(ξ2, θ1, χ3, Rc), (Scenario B).
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affected by DR events, µ, do show a 1.7 GW (44%) decrease in DR availability in the
comparison scenario.

Similarly, the absolute value of the decrease in load for the highest netload (right
half of Table 49) hours is smaller for the more efficient scenario with higher penetration
of renewables than for our basecase netload scenario. The absolute magnitude of the
decrease at the hour of highest netload of the year, δ̇, is approximately 1 GW (13%)
smaller for Scenario B. The average decrease across all 88 hours of the year affected
by DR events, µ, have a 1 GW (34%) decrease in DR availability in the comparison
scenario.

Statistic Low Netload High Netload
Scenario A Scenario B Scenario A Scenario B

δ̇ (GW) 5.8 5.5 -6.8 -5.9

δ̇t,% (%) 6.4 -3.4 -0.6 -0.6

δ̇c,% (%) 6.9 3.5 -3.3 -3.0
µ (GW) 3.8 2.1 -2.9 -1.9
µt,% (%) 1.6 -4.8 -0.3 -0.2
µc,% (%) 3.3 1.9 -1.8 -1.4
σ (GW) 3.0 1.6 3.3 2.3

Table 49: Netload impact of a 1oC temperature setpoint change across two different
netload scenarios

Effect on Ramping

As shown in Table 50 and following the decreases seen for the high and low netload
cases, the absolute value for the decrease in ramping rates across for the up and down
ramping cases is smaller for Scenario B than for Scenario A. For the high ramp down
highest hours, we see a decrease of over 10 GW (about 72%) in absolute DR availability
at the highest ramping down hour, δ̇, of each netload scenario. The mean decrease in
ramping down rates across all ramping down hours affected by DR events, µ, see a
difference of 3.7 GW (62% decrease) between Scenarios A and B.

For the high ramp up highest hours, we see a decrease of 6 GW (about 60%) in
absolute DR availability at the highest ramping down hour, δ̇, of each netload scenario.
The mean decrease in ramping up rates across all ramping up hours affected by DR
events, µ, see a difference of 6.4 GW (45% decrease) between Scenarios A and B.

7.6 Maximizing DR impact

In this section we expand the comparison of DR impacts across all the 32 different
netload scenarios studied to find the set of variables that maximize the average DR
availability across all hours affected by DR events for the four netload cases of interest.
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Statistic High Ramp Down High Ramp Up
Scenario A Scenario B Scenario A Scenario B

δ̇ (GW) 14.3 4.0 -10.1 -4.1

δ̇t,% (%) 11.8 2.8 -4.9 -1.7

δ̇c,% (%) 12.6 5.1 -12.1 -5.2
µ (GW) 5.9 2.2 -14.1 -7.7
µt,% (%) 5.3 1.9 -8.7 -4.3
σ (GW) 2.4 1.7 6.6 5.2

Table 50: Ramping impact of a 1oC temperature setpoint change across two different
netload scenarios

7.6.1 Maximum high netload decrease

As shown in Table 51, across all renewable scenarios (Ra, Rb, Rc) the parameters that
maximize the reduction of load at the highest netload hours as a percent of actual
netload of those hours are ξ1, θ2, and χ1, GB-2020 efficiency standards, ASHRAE
recommended operational schedules and low-efficiency heating electrification across all
commercial buildings.

A maximum mean decrease of about 0.6% of netload, or 6.1, 5.7, and 4.9 GW, is ac-
complished with a 1oC temperature setpoint change signal across all commercial build-
ings for netload scenarios NL(ξ1, θ2, χ1, Ra), NL(ξ1, θ2, χ1, Rb), and NL(ξ1, θ2, χ1, Rc)
respectively.

Netload Scenario µ (GW) µt,%

NL(ξ1, θ2, χ1, Ra) -6.1 -0.6
NL(ξ2, θ2, χ1, Ra) -6.0 -0.6
NL(ξ1, θ2, χ1, Rb) -5.7 -0.6
NL(ξ1, θ2, χ1, Rc) -4.9 -0.5

Table 51: Maximum mean decrease in load in GW (µ) and as a percentage of netload
(µt,%) across all hours affected by DR events across all parameters and renewable
penetration scenarios studied

7.6.2 Maximum high ramping up decrease

As shown in Table 52, the maximum mean decrease in high ramping up rates across all
32 netload scenarios studied, occurs for the netload scenario NL(ξ1, θ2, χ1, Rb) (2020 ef-
ficiency standards, ASHRAE/PNNL operational schedules, low-efficiency heating elec-
trification, and the basecase renewable scenario Rb) with a maximum mean reduction
across all hours affected by DR events of 21.8 GW per hour, equivalent of a 14.4%
average reduction in ramping rates.
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A scenario with more efficient commercial building construction (2025 standards)
as the only differing parameter (NL(ξ2, θ2, χ1, Rb)) achieves the second highest mean
decrease in high ramping up rates with an average decrease of 21.3 GW per hour,
equivalent to a 14% average reduction in ramping rates.

Netload Scenario µ (GW
h

) µt,%

NL(ξ1, θ2, χ1, Rb) -21.8 -14.4
NL(ξ2, θ2, χ1, Rb) -21.3 -14.0
NL(ξ1, θ2, χ1, Rc) -14.8 -8.4
NL(ξ2, θ2, χ1, Rc) -14.7 -7.8

Table 52: Maximum mean decrease in ramping up rates in GW
h

(µ) and as a percentage
of ramping (µt,%) across all hours affected by DR events across all parameters and
renewable penetration scenarios studied

As shown in the third and fourth row of Table 52, as the penetration of renew-
ables increases, the mean reduction in high ramping up rates for the same two previ-
ous load scenarios decreases to 14.8 and 14.7 GW per hour for NL(ξ1, θ2, χ1, Rc) and
NL(ξ2, θ2, χ1, Rc) respectively.

7.6.3 Maximum high ramping down decrease

As shown in Table 53, the maximum mean decrease in high ramping down rates across
all 32 netload scenarios studied occurs for the netload scenario NL(ξ1, θ2, χ1, Rc) with
a maximum mean reduction across all hours affected by DR events of 13.8 GW per
hour, equivalent of a 11.4% average reduction in down ramping rates.

A scenario with more efficient commercial building construction as the only differing
parameter (NL(ξ2, θ2, χ1, Rc)) (2025 vs 2020 standards) achieves the second highest
mean decrease in high ramping up rates with an average decrease of 12.0 GW per
hour, equivalent to a 10% average reduction in ramping rates.

Netload Scenario µ (GW
h

) µt,%

NL(ξ1, θ2, χ1, Rc) -13.8 -11.4
NL(ξ2, θ2, χ1, Rc) -12.0 -10.0
NL(ξ1, θ2, χ1, Ra) -14.8 -9.7
NL(ξ1, θ2, χ1, Rb) -14.7 -8.5

Table 53: Maximum mean decrease in ramping down rates in GW
h

(µ) and as a per-
centage of ramping (µt,%) across all hours affected by DR events across all parameters
and renewable penetration scenarios studied

Table 53 also shows the two following highest ramping down decreases across all
netload scenarios. The only difference between these two netload scenarios and the
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netload scenario with the highest ramping down decrease across all netload scenarios are
the renewable scenarios. Instead of including the most aggressive renewable penetration
scenario, Rc, they follow renewable scenarios Ra and Rb, respectively.

7.6.4 Key parameters in maximizing DR impact

As shown in the results of the previous section 7.6 there are some common commercial
sector parameters that provide DR impacts consistently higher than the base case
netload scenario. If we wanted to design buildings that are able to provide higher
amounts of DR flexibility in both absolute and relative (to the netload at that time)
we should then consider the possibility of designing buildings that have operational
schedules that resemble more the ASHRAE than the MOHURD schedules.

7.7 Conclusion

In this Chapter we introduced a model to characterize the impact of demand response
events across the commercial sector to provide flexibility across four netload cases:
hours of high and low netload, and hours of high down and up ramping. We describe
the methodology to actuate demand response by managing the buildings’ HVAC system
and explain the expected metrics.

We find that for the base case netload scenario as characterized by a commercial
sector with 2020 efficiency standards, Chinese operational schedules, and low-efficiency
electrified heating, and a renewable penetration scenario that has curtailment issues
in the provinces with the largest potential (scenario Rb) we can decrease peak netload
between 7-12 GW, saving the system between 7 and 12 billion dollars in deferred
capacity expansion. Extending demand response to the highest 1% of netload hours
in the year we get a 3-4 GW decrease in needed capacity, equivalent to a 276 to
377 GWh reduction in demand and additional operation savings of between 21 to 28
million dollars. Calculating the cost and benefits of increasing netload at the lowest
hours requires further analysis on the potential generation portfolio in 2030 that is
likely to benefit from an increased operational baseload. In addition, demand response
can provide flexibility to alleviate extreme ramping down and up throughout the year.
Actuating demand response on the highest 1% ramping hours of the year can provide,
on average, between 6 to 11 GW per hour and -14 to -27 GW per hour for the extreme
down and up ramping hours of the year.

In general, we find that demand response impact depends on the service that is re-
quested as well as the operational schedules and heating efficiency of the building sector
on which it relies on. We find that an operational schedule, across all buildings types
in China, that resembles those of their American counterparts can provide increased
flexibility to the system at a cost of higher electricity demand through the year. In
addition, buildings with electrified heating systems are able to provide more flexibility
than buildings that rely on boilers to meet heating demand. Increasing the efficiency
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of electrification reduces the building sector’s ability to provide demand response.
Finally, in order commercialize this technology and institutional barriers, including

the lack of competitive electricity market and the resistance by the state grid corpo-
rations, need to be addressed. Without commercialization of demand response it will
be difficult order to fully realize the smart grid’s potential. We recommend China to
consider demand response in their path towards reforming the electricity sector and
establishing an open access electricity market so the pollution-free demand response
resources may compete with power generators on leveled field [103].
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Appendix A

Netload model parameters

Parameter Value: Description

ξ1: Buildings follow 2020 standards in 2030
ξ, Efficiency standards

ξ2: Buildings follow 2025 standards in 2030
θ1: Buildings follow Chinese operational sched-
ules guidelines

θ, Operation schedules
θ2: Buildings follow US operational schedules
guidelines
χ1: Heating is provided by low efficiency electric
boilers
χ2: Heating is provided by gas or coal boilersχ, Heating electrification
χ3: Heating is provided by high efficiency elec-
tric heat pumps
Ra: Renewable capacity stays constant after
2020 (installed capacity = 394 GW)
Rb: Capacity continues to grow to 2030, high
potential provinces have limited additional ca-
pacity installations (1230 GW)Ri, Renewable penetration
Rc: Capacity continues to grow to 2030 for all
provinces (1890 GW)

Table 54: Global parameters for the national hourly net-
load model
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Building Standards
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BUILDING STANDARDS

Severe Cold Standards Cold Standards Units

2005 2014 2020 2025 2005 2014 2020 2025

Uwall 0.45 0.38 0.33 0.29 0.60 0.50 0.43 0.38
W

K ·m2

Uroof 0.35 0.28 0.23 0.19 0.55 0.45 0.38 0.33 ”

Uwindow 3.00 2.70 2.50 2.33 3.50 3.00 2.67 2.39 ”

SHGC 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 −

foa 7.5 3.0 1.0 1.0 7.5 3.0 1.0 1.0
m3

m2 · hr
ηb 0.89 0.89 0.91 0.91 0.89 0.89 0.91 0.91 −

COPc 4.30 5.00 5.47 5.86 4.30 5.10 5.63 6.08 −

βl 12.00 9.00 7.00 5.33 12.00 9.00 7.00 5.33
W

m2

βe 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 ”

σp 5.00 8.00 10.00 11.67 5.00 8.00 10.00 11.67
m2

person

HSCW Standards HSWW Standards

2005 2014 2020 2025 2005 2014 2020 2025

Uwall 1.00 0.80 0.67 0.56 1.50 1.50 1.20 1.20
W

K ·m2

Uroof 0.70 0.50 0.37 0.26 0.90 0.80 0.73 0.68 ”

Uwindow 4.70 3.50 2.70 2.03 6.50 5.20 4.33 3.61 ”

SHGC 0.70 0.70 0.70 0.70 0.70 0.52 0.40 0.30 −

foa 7.5 3.0 1.0 1.0 7.5 3.0 1.0 1.0
m3

m2 · hr
ηb 0.89 0.89 0.91 0.91 0.89 0.9 0.91 0.91 −

COPc 4.7 5.2 5.5 5.8 4.7 5.0 5.2 5.4 −

βl 11.00 9.00 7.67 6.56 12.00 9.00 7.00 5.33
W

m2

βe 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 ”

σp 5.00 8.00 10.00 11.67 5.00 8.00 10.00 11.67
m2

person

Table 55: Chinese hospital building standards over time and across climate regions
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BUILDING STANDARDS

Severe Cold Standards Cold Standards Units

2005 2014 2020 2025 2005 2014 2020 2025

Uwall 0.45 0.38 0.33 0.29 0.60 0.50 0.43 0.38
W

K ·m2

Uroof 0.35 0.28 0.23 0.19 0.55 0.45 0.38 0.33 ”

Uwindow 2.80 2.50 2.30 2.13 3.00 2.70 2.50 2.33 ”

SHGC 0.70 0.70 0.70 0.70 0.70 0.52 0.40 0.30 −

foa 7.5 3.0 1.0 1.0 7.5 3.0 1.0 1.0
m3

m2 · hr
ηb 0.89 0.89 0.91 0.91 0.89 0.89 0.91 0.91 −

COPc 2.60 2.80 2.93 3.04 2.60 2.80 2.93 3.04 −

βl 15.00 7.00 6.00 5.00 15.00 7.00 6.00 5.00
W

m2

βe 20.00 15.00 11.67 8.89 20.00 15.00 11.67 8.89 ”

σp 15.00 25.00 31.67 37.22 15.00 25.00 31.67 37.22
m2

person

HSCW Standards HSWW Standards

2005 2014 2020 2025 2005 2014 2020 2025

Uwall 1.00 0.80 0.67 0.56 1.50 1.50 1.20 1.20
W

K ·m2

Uroof 0.70 0.50 0.37 0.26 0.90 0.80 0.73 0.68 ”

Uwindow 3.50 3.00 2.67 2.39 4.70 4.00 3.53 3.14 ”

SHGC 0.55 0.44 0.37 0.31 0.50 0.44 0.40 0.37 −

foa 7.5 3.0 1.0 1.0 7.5 3.0 1.0 1.0
m3

m2 · hr
ηb 0.89 0.89 0.91 0.91 0.89 0.9 0.91 0.91 −

COPc 2.60 2.90 3.10 3.27 2.60 2.90 3.10 3.27 −

βl 15.00 7.00 6.00 5.00 15.00 7.00 6.00 5.00
W

m2

βe 20.00 15.00 11.67 8.89 20.00 15.00 11.67 8.89 ”

σp 15.00 25.00 31.67 37.22 15.00 25.00 31.67 37.22
m2

person

Table 56: Chinese hotel building standards over time and across climate regions
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BUILDING STANDARDS

HSWW Standards HSCW Standards Units

2005 2014 2020 2025 2005 2014 2020 2025

Uwall 1.5 1.5 1.5 1.5 1.0 0.8 0.66 0.55
W

K ·m2

Uroof 0.9 0.8 0.73 0.68 0.7 0.5 0.37 0.26 ”

Uwindow 3.5 3.0 2.7 2.4 3.0 2.6 2.3 2.1 ”

SHGC 0.45 0.35 0.28 0.22 0.5 0.4 0.33 0.28 −

foa 7.5 3.0 1.0 1.0 7.5 3.0 1.0 1.0
m3

m2 · hr
ηb 0.89 0.89 0.91 0.91 0.89 0.89 0.91 0.91 −

COPc 5.1 5.7 6.1 6.4 5.1 5.6 5.9 6.2 −

βl 11 9 7.7 6.6 11 9 7.7 6.6
W

m2

βe 20 15 11.7 8.9 20 15 11.7 8.9 ”

σp 8 10 11.3 12.4 8 10 11.3 12.4
m2

person

Cold Standards Severe Cold Standards

2005 2013 2020 2025 2005 2014 2020 2025

Uwall 0.6 0.5 0.43 0.38 0.45 0.38 0.33 0.29
W

K ·m2

Uroof 0.55 0.45 0.38 0.21 0.35 0.28 0.23 0.19 ”

Uwindow 2.7 2.4 2.2 2.0 2.5 2.2 2.0 1.8 ”

SHGC 0.7 0.48 0.33 0.21 0.7 0.7 0.7 0.7 −

foa 7.5 3.0 1.0 1.0 7.5 3.0 1.0 1.0
m3

m2 · hr
ηb 0.89 0.89 0.91 0.91 0.89 0.9 0.91 0.91 −

COPc 4.7 5.2 5.5 5.8 4.7 5.0 5.2 5.4 −

βl 11.0 9.0 7.7 6.6 11.0 9.0 7.7 6.6
W

m2

βe 20.0 15.0 11.7 8.9 20.0 15.0 11.7 8.9 ”

σp 8 10 11.3 12.4 8 10 11.3 12.4
m2

person

Table 57: Chinese office building standards over time and across climate regions
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BUILDING STANDARDS

Severe Cold Standards Cold Standards Units

2005 2014 2020 2025 2005 2014 2020 2025

Uwall 0.45 0.38 0.33 0.29 0.60 0.50 0.43 0.38
W

K ·m2

Uroof 0.35 0.28 0.23 0.19 0.55 0.45 0.38 0.33 ”

Uwindow 3.00 2.70 2.50 2.33 3.50 3.00 2.67 2.39 ”

SHGC 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 −

foa 7.5 3.0 1.0 1.0 7.5 3.0 1.0 1.0
m3

m2 · hr
ηb 0.89 0.89 0.91 0.91 0.89 0.89 0.91 0.91 −

COPc 2.60 2.80 2.93 3.04 2.60 2.80 2.93 3.04 −

βl 12.00 10.00 8.67 7.56 12.00 10.00 8.67 7.56
W

m2

βe 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 ”

σp 4.00 8.00 10.67 12.89 4.00 8.00 10.67 12.89
m2

person

HSCW Standards HSWW Standards

2005 2014 2020 2025 2005 2014 2020 2025

Uwall 1.00 0.80 0.67 0.56 1.50 1.50 1.20 1.20
W

K ·m2

Uroof 0.70 0.50 0.37 0.26 0.90 0.80 0.73 0.68 ”

Uwindow 4.70 3.50 2.70 2.03 6.50 5.20 4.33 3.61 ”

SHGC 0.70 0.70 0.70 0.70 0.70 0.52 0.40 0.30 −

foa 7.5 3.0 1.0 1.0 7.5 3.0 1.0 1.0
m3

m2 · hr
ηb 0.89 0.89 0.91 0.91 0.89 0.9 0.91 0.91 −

COPc 2.60 2.90 3.10 3.27 2.60 2.90 3.10 3.27 −

βl 12.00 10.00 8.67 7.56 12.00 10.00 8.67 7.56
W

m2

βe 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 ”

σp 4.00 8.00 10.67 12.89 4.00 8.00 10.67 12.89
m2

person

Table 58: Chinese retail building standards over time and across climate regions
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BUILDING STANDARDS

Severe Cold Standards Cold Standards Units

2005 2014 2020 2025 2005 2014 2020 2025

Uwall 0.45 0.38 0.33 0.29 0.60 0.50 0.43 0.38
W

K ·m2

Uroof 0.35 0.28 0.23 0.19 0.55 0.45 0.38 0.33 ”

Uwindow 2.50 2.20 2.00 1.83 2.70 2.40 2.20 2.03 ”

SHGC 0.70 0.70 0.70 0.70 0.70 0.48 0.33 0.21 −

foa 7.5 3.0 1.0 1.0 7.5 3.0 1.0 1.0
m3

m2 · hr
ηb 0.89 0.89 0.91 0.91 0.89 0.89 0.91 0.91 −

COPc 2.60 2.80 2.93 3.04 2.60 2.80 2.93 3.04 −

βl 11.00 9.00 7.67 6.56 11.00 9.00 7.67 6.56
W

m2

βe 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 ”

σp 2.50 6.00 8.33 10.28 2.50 6.00 8.33 10.28
m2

person

HSCW Standards HSWW Standards

2005 2014 2020 2025 2005 2014 2020 2025

Uwall 1.00 0.60 0.33 0.11 1.50 0.80 0.50 0.50
W

K ·m2

Uroof 0.70 0.40 0.30 0.25 0.90 0.50 0.30 0.25 ”

Uwindow 3.00 2.60 2.33 2.11 3.50 3.00 2.67 2.39 ”

SHGC 0.50 0.40 0.33 0.28 0.45 0.35 0.28 0.23 −

foa 7.5 3.0 1.0 1.0 7.5 3.0 1.0 1.0
m3

m2 · hr
ηb 0.89 0.89 0.91 0.91 0.89 0.9 0.91 0.91 −

COPc 2.60 2.90 3.10 3.27 2.60 2.90 3.10 3.27 −

βl 11.00 9.00 7.67 6.56 11.00 9.00 7.67 6.56
W

m2

βe 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 ”

σp 2.50 6.00 8.33 10.28 2.50 6.00 8.33 10.28
m2

person

Table 59: Chinese school building standards over time and across climate regions
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Appendix C

Electricity intensities for all
commercial building models

Each building model is a function of three parameters: efficiency standards, opera-
tional schedules, and heating electrification (ξ,θ,χ, respectively). Building’s energy
consumption is assumed independent from renewable scenario. For crossreference, see
Appendix A. Each table presents the building intensity for a building type across all
four climate zones under the twelve different parameter choices available.

Severe Cold Cold

Scenario 2020 (ξ1) 2025 (ξ2) 2020 (ξ1) 2025 (ξ2)
θ1χ1 386.0 380.1 361.5 355.7
θ1χ2 288.3 283.9 294.3 290.2
θ1χ3 320.8 316.0 316.7 312.0
θ2χ1 360.9 359.6 334.5 330.3
θ2χ2 263.7 258.1 266.9 261.2
θ2χ3 296.1 292.0 289.5 284.3

HSCW HSWW

Scenario 2020 (ξ1) 2025 (ξ2) 2020 (ξ1) 2025 (ξ2)
θ1χ1 352.6 347.7 361.9 355.5
θ1χ2 290.5 285.9 307.5 301.3
θ1χ3 311.2 306.5 325.7 319.4
θ2χ1 322.3 316.7 329.5 322.8
θ2χ2 261.8 256.7 276.3 269.3
θ2χ3 282.0 276.7 294.0 287.2

Table 60: Hospital building intensity, kWh
m2
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Severe Cold Cold

Scenario 2020 (ξ1) 2025 (ξ2) 2020 (ξ1) 2025 (ξ2)
θ1χ1 199.3 196.7 173.6 169.1
θ1χ2 133.1 128.7 144.3 140.3
θ1χ3 155.2 151.4 154.1 149.9
θ2χ1 199.0 197.2 174.2 170.4
θ2χ2 135.9 132.4 147.1 143.9
θ2χ3 156.9 154.0 156.1 152.8

HSCW HSWW

Scenario 2020 (ξ1) 2025 (ξ2) 2020 (ξ1) 2025 (ξ2)
θ1χ1 183.8 176.8 200.5 195.3
θ1χ2 156.1 151.0 182.7 177.7
θ1χ3 165.4 159.6 188.7 183.6
θ2χ1 185.0 178.6 202.2 197.6
θ2χ2 159.4 155.1 186.4 182.1
θ2χ3 168.0 162.9 191.7 187.3

Table 61: Hotel building intensity, kWh
m2

Severe Cold Cold

Scenario 2020 (ξ1) 2025 (ξ2) 2020 (ξ1) 2025 (ξ2)
θ1χ1 211.0 208.4 194.2 191.3
θ1χ2 180.9 177.9 185.5 181.6
θ1χ3 191.0 188.0 188.4 184.9
θ2χ1 240.2 237.3 221.5 220.5
θ2χ2 199.6 196.1 206.3 201.3
θ2χ3 213.1 209.8 211.4 207.7

HSCW HSWW

Scenario 2020 (ξ1) 2025 (ξ2) 2020 (ξ1) 2025 (ξ2)
θ1χ1 189.4 185.2 194.3 189.2
θ1χ2 185.5 181.4 194.0 189.0
θ1χ3 186.8 182.7 194.1 189.1
θ2χ1 211.2 206.1 216.4 210.6
θ2χ2 204.2 199.5 215.5 209.8
θ2χ3 206.5 201.7 215.8 210.1

Table 62: Office building intensity, kWh
m2
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Severe Cold Cold

Scenario 2020 (ξ1) 2025 (ξ2) 2020 (ξ1) 2025 (ξ2)
θ1χ1 109.9 109.3 90.9 87.5
θ1χ2 77.8 76.8 80.8 76.4
θ1χ3 88.5 87.6 84.1 80.1
θ2χ1 141.5 138.9 117.5 117.1
θ2χ2 98.7 95.6 101.1 97.8
θ2χ3 113.0 110.0 106.6 104.2

HSCW HSWW

Scenario 2020 (ξ1) 2025 (ξ2) 2020 (ξ1) 2025 (ξ2)
θ1χ1 82.4 78.2 84.2 79.3
θ1χ2 77.4 73.2 83.8 79.0
θ1χ3 79.0 74.9 84.0 79.1
θ2χ1 103.3 98.1 104.8 99.0
θ2χ2 95.0 90.3 103.7 98.0
θ2χ3 97.8 92.9 104.1 98.3

Table 63: Office with no data center intensity, kWh
m2

Severe Cold Cold

Scenario 2020 (ξ1) 2025 (ξ2) 2020 (ξ1) 2025 (ξ2)
θ1χ1 120.7 113.2 114.7 107.5
θ1χ2 82.2 77.2 90.3 83.4
θ1χ3 95.1 89.2 98.4 91.4
θ2χ1 142.6 134.5 142.7 135.9
θ2χ2 86.2 81.4 93.7 88.0
θ2χ3 105.0 99.1 110.0 104.0

HSCW HSWW

Scenario 2020 (ξ1) 2025 (ξ2) 2020 (ξ1) 2025 (ξ2)
θ1χ1 98.9 98.9 109.4 100.8
θ1χ2 92.2 92.2 106.9 98.2
θ1χ3 94.5 94.5 107.7 99.1
θ2χ1 110.7 110.7 119.2 110.8
θ2χ2 98.2 98.2 113.8 105.3
θ2χ3 102.3 102.3 115.6 107.2

Table 64: Retail building intensity, kWh
m2
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Severe Cold Cold

Scenario 2020 (ξ1) 2025 (ξ2) 2020 (ξ1) 2025 (ξ2)
θ1χ1 70.7 69.0 81.0 77.1
θ1χ2 56.5 55.4 58.1 56.7
θ1χ3 61.2 59.9 65.7 63.5
θ2χ1 100.9 97.5 125.1 116.9
θ2χ2 78.3 76.2 81.5 77.9
θ2χ3 85.8 83.3 96.0 90.9

HSCW HSWW

Scenario 2020 (ξ1) 2025 (ξ2) 2020 (ξ1) 2025 (ξ2)
θ1χ1 68.8 67.1 73.9 71.9
θ1χ2 65.4 63.9 73.2 71.0
θ1χ3 66.5 65.0 73.4 71.3
θ2χ1 96.3 91.9 102.0 98.1
θ2χ2 88.7 85.1 99.6 95.2
θ2χ3 91.2 87.3 100.4 96.2

Table 65: School building intensity, kWh
m2
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Appendix D

DR flexibility provision potential
from the commercial sector for all
netload scenarios

Statistics

Symbol Description

δ̇ impact of the demand response signal for the highest (or lowest)
netload or highest up (or down) ramping rate of the year in
absolute terms

δ̇%,t relative impact of the response to the netload

δ̇%,c relative impact of the response to the commercial sector’s load

µ average response across all affected hours, in absolute terms
µ%,t relative impact of the response to the average of the netload
µ%,c relative impact of the response to the average of the commercial

sector’s load

σ standard deviation of the response across all responses, in abso-
lute terms

Table 66: Definitions for DR flexibility provision statis-
tics
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Results

The statistics defined in Talbe 66 are presented for all netload model developed. We
arrange the result tables in the following manner. We first present the results for
each of the netload cases (high and low netload, and high up and down ramping) in
both absolute and relative terms for the Ra, Rb, and Rc respectively. Tables 67 to 74
present the results for DR events across all netload cases for the renewable scenario
Ra. Tables 75 to 82 and 83 to 90 present the results in the same order for the Rb and
Rc, respectively.

For crossreference on the meaning of the global parameters of which netload, and
therefore DR flexibility provision, are a function of, see Appendix A.

Scenario ξ1 ξ2

∆T δ̂ µ σ δ̂ µ σ
1 -4.9 -3.4 4.1 -4.1 -3.1 3.7

θ1χ1 2 -8.8 -5.7 6.6 -8.4 -4.9 6.1
1 -3.7 -2.5 2.8 -3.0 -2.3 2.6

θ1χ2 2 -7.1 -4.3 4.8 -6.9 -3.6 4.1
1 -4.1 -2.6 2.9 -3.4 -2.5 2.7

θ1χ3 2 -7.7 -4.5 5.1 -7.4 -4.0 4.4
1 -15.7 -6.0 6.4 -14.0 -6.1 6.2

θ2χ1 2 -29.7 -9.9 10.7 -26.2 -10.0 10.3
1 -5.1 -3.6 3.5 -5.5 -3.5 3.4

θ2χ2 2 -9.3 -6.0 5.8 -9.6 -5.7 5.4
1 -5.7 -4.0 3.8 -6.4 -4.0 3.7

θ2χ3 2 -10.1 -6.4 6.1 -10.6 -6.4 5.9

Table 67: DR flexibility provision: netload decrease, for high netload case and renew-
able scenario Ra, in GW
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Scenario ξ1 ξ2

∆T δ̂t,% µt,% δ̂c,% µc,% δ̂t,% µt,% δ̂c,% µc,%
1 -0.4 -0.3 -2.4 -2.0 -0.4 -0.3 -2.1 -1.8

θ1χ1 2 -0.8 -0.6 -4.3 -3.3 -0.8 -0.5 -4.3 -2.9
1 -0.3 -0.2 -1.8 -1.5 -0.3 -0.2 -1.5 -1.4

θ1χ2 2 -0.7 -0.4 -3.5 -2.6 -0.6 -0.4 -3.5 -2.3
1 -0.4 -0.3 -2.0 -1.6 -0.3 -0.2 -1.7 -1.6

θ1χ3 2 -0.7 -0.4 -3.8 -2.7 -0.7 -0.4 -3.8 -2.6
1 -1.4 -0.6 -6.3 -3.1 -1.3 -0.6 -5.8 -3.3

θ2χ1 2 -2.7 -0.9 -12.0 -5.2 -2.4 -0.9 -10.8 -5.3
1 -0.5 -0.3 -2.6 -2.0 -0.5 -0.3 -2.9 -2.0

θ2χ2 2 -0.8 -0.6 -4.7 -3.3 -0.9 -0.5 -5.1 -3.4
1 -0.5 -0.4 -2.9 -2.2 -0.6 -0.4 -3.4 -2.3

θ2χ3 2 -0.9 -0.6 -5.1 -3.6 -1.0 -0.6 -5.6 -3.7

Table 68: DR flexibility provision: netload decrease, for high netload case and renew-
able scenario Ra, in percentage deviation

Scenario ξ1 ξ2

∆T δ̂ µ σ δ̂ µ σ
1 2.5 2.1 1.7 2.1 2.0 1.6

θ1χ1 2 5.2 4.2 3.4 4.6 4.0 3.2
1 0.2 0.2 0.2 0.1 0.1 0.2

θ1χ2 2 0.4 0.3 0.3 0.4 0.3 0.3
1 1.0 0.8 0.7 0.8 0.8 0.7

θ1χ3 2 2.0 1.6 1.3 1.8 1.6 1.2
1 0.0 0.1 0.5 0.0 0.0 0.6

θ2χ1 2 0.1 0.1 0.9 0.0 0.0 1.0
1 0.2 0.2 0.3 0.4 0.1 0.5

θ2χ2 2 0.8 0.6 0.8 1.0 0.7 0.9
1 0.5 0.6 0.6 0.6 0.6 0.7

θ2χ3 2 1.6 1.6 1.4 1.8 1.7 1.5

Table 69: DR flexibility provision: netload increase, for low netload case and renewable
scenario Ra, in GW
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Scenario ξ1 ξ2

∆T δ̂t,% µt,% δ̂c,% µc,% δ̂t,% µt,% δ̂c,% µc,%
1 0.56 0.42 4.74 3.59 0.47 0.40 4.01 3.45

θ1χ1 2 1.13 0.84 9.66 7.20 1.02 0.81 8.73 7.07
1 0.03 0.03 0.32 0.35 0.02 0.03 0.24 0.31

θ1χ2 2 0.09 0.05 0.85 0.55 0.08 0.06 0.82 0.61
1 0.21 0.17 1.94 1.62 0.17 0.16 1.61 1.56

θ1χ3 2 0.44 0.32 4.06 3.12 0.40 0.32 3.71 3.16
1 0.00 0.02 0.00 0.13 0.00 0.01 0.00 0.04

θ2χ1 2 0.01 0.01 0.09 0.08 0.00 0.01 0.00 0.07
1 0.05 0.03 0.41 0.26 0.09 0.02 0.73 0.20

θ2χ2 2 0.18 0.13 1.43 1.09 0.21 0.15 1.77 1.27
1 0.11 0.12 0.83 0.97 0.13 0.13 1.07 1.05

θ2χ3 2 0.34 0.32 2.65 2.63 0.39 0.33 3.13 2.74

Table 70: DR flexibility provision: netload increase, for low netload case and renewable
scenario Ra, in percentage deviation

Scenario ξ1 ξ2

∆T δ̂ µ σ δ̂ µ σ
1 -14.9 -14.5 7.0 -14.0 -11.3 4.7

θ1χ1 2 -25.9 -25.3 12.2 -23.8 -19.7 8.4
1 -1.2 -1.1 0.5 -1.1 -1.1 0.6

θ1χ2 2 -2.6 -2.0 1.0 -3.6 -1.9 1.1
1 -4.8 -4.0 1.7 -5.6 -3.5 1.6

θ1χ3 2 -9.1 -7.0 2.7 -9.0 -6.1 2.8
1 -43.1 -2.2 13.1 -38.6 -2.1 11.6

θ2χ1 2 -83.1 -4.3 25.7 -76.6 -4.0 22.4
1 -13.1 -4.6 3.9 -12.0 -4.5 4.0

θ2χ2 2 -27.1 -8.4 7.4 -25.1 -8.2 7.4
1 -2.2 -6.5 4.3 -4.4 -5.7 3.2

θ2χ3 2 -5.6 -12.4 8.2 -9.1 -11.1 6.0

Table 71: DR flexibility provision: ramping decrease, for high ramping up case and
renewable scenario Ra, in GW

h
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Scenario ξ1 ξ2

∆T δ̂t,% µt,% δ̂c,% δ̂t,% µt,% δ̂c,%
1 -9.4 -11.0 -8.5 -8.8 -8.7 -8.5

θ1χ1 2 -16.3 -19.1 -14.8 -15.0 -15.2 -14.5
1 -1.1 -1.1 -1.8 -1.0 -1.1 -1.7

θ1χ2 2 -2.3 -2.0 -3.8 -3.2 -1.9 -5.6
1 -4.1 -3.7 -4.3 -4.7 -3.3 -5.1

θ1χ3 2 -7.7 -6.5 -8.0 -7.7 -5.8 -8.3
1 -27.2 -1.8 -21.7 -24.2 -1.7 -20.6

θ2χ1 2 -52.4 -3.5 -41.9 -48.0 -3.1 -40.9
1 -12.8 -5.0 -11.5 -12.3 -5.0 -11.0

θ2χ2 2 -26.7 -9.1 -23.9 -25.6 -9.1 -23.0
1 -2.0 -6.6 -1.7 -4.0 -5.7 -3.6

θ2χ3 2 -5.1 -12.4 -4.4 -8.3 -11.1 -7.4

Table 72: DR flexibility provision: ramping decrease, for high ramping up case and
renewable scenario Ra, in percentage deviation

Scenario ξ1 ξ2

∆T δ̂ µ σ δ̂ µ σ
1 4.6 6.1 1.3 5.1 6.4 0.9

θ1χ1 2 10.4 11.6 1.2 10.8 11.7 0.9
1 2.5 1.9 0.9 2.2 1.7 0.6

θ1χ2 2 5.5 3.6 2.0 2.9 3.1 1.4
1 3.2 2.5 1.5 3.0 2.4 1.5

θ1χ3 2 7.1 4.8 2.9 6.4 4.4 2.7
1 36.4 11.2 6.5 27.0 10.4 5.6

θ2χ1 2 64.9 23.6 11.5 62.9 21.8 9.5
1 7.7 4.7 3.7 4.8 3.9 2.7

θ2χ2 2 17.1 11.1 6.8 14.8 10.2 5.9
1 8.6 4.6 3.7 6.0 4.2 3.0

θ2χ3 2 19.0 10.9 7.8 17.2 10.2 7.1

Table 73: DR flexibility provision: ramping increase, for high ramping down case and
renewable scenario Ra, in GW

h

157



DR FLEXIBILITY PROVISION POTENTIAL

Scenario ξ1 ξ2

∆T δ̂t,% µt,% δ̂c,% δ̂t,% µt,% δ̂c,%
1 -4.1 -5.6 5.0 -4.5 -5.9 5.6

θ1χ1 2 -9.2 -10.7 11.2 -9.6 -10.7 11.9
1 -2.3 -1.7 2.8 -2.0 -1.5 3.4

θ1χ2 2 -4.9 -3.3 6.0 -2.6 -2.8 4.5
1 -2.9 -2.3 3.5 -2.7 -2.2 3.4

θ1χ3 2 -6.3 -4.4 7.8 -5.7 -4.1 7.2
1 -26.8 -9.7 17.8 -21.1 -9.2 14.0

θ2χ1 2 -47.8 -20.6 31.7 -49.2 -19.2 32.5
1 -6.4 -4.1 7.0 -4.0 -3.4 4.5

θ2χ2 2 -14.3 -9.7 15.6 -12.5 -9.0 13.9
1 -7.2 -4.1 7.8 -5.1 -3.7 5.6

θ2χ3 2 -15.9 -9.5 17.2 -14.5 -9.0 16.0

Table 74: DR flexibility provision: ramping increase, for high ramping down case and
renewable scenario Ra, in percentage deviation

Scenario ξ1 ξ2

∆T δ̂ µ σ δ̂ µ σ
1 -6.8 -2.9 3.3 -6.7 -2.8 3.1

θ1χ1 2 -12.2 -4.0 4.5 -12.6 -3.8 4.1
1 -5.5 -2.0 2.5 -5.5 -1.9 2.4

θ1χ2 2 -10.5 -2.6 3.2 -10.8 -2.5 3.0
1 -5.9 -2.2 2.7 -5.9 -2.1 2.5

θ1χ3 2 -11.1 -3.0 3.5 -11.4 -2.9 3.2
1 -10.2 -5.7 5.9 -10.6 -5.6 5.7

θ2χ1 2 -16.4 -9.3 9.8 -16.7 -8.9 9.2
1 -8.2 -3.6 3.5 -7.8 -3.5 3.3

θ2χ2 2 -13.9 -5.7 5.5 -13.4 -5.5 5.3
1 -8.9 -4.0 3.8 -8.7 -3.8 3.7

θ2χ3 2 -14.7 -6.3 5.9 -14.5 -6.0 5.8

Table 75: DR flexibility provision: netload decrease, for high netload case and renew-
able scenario Rb, in GW

158



DR FLEXIBILITY PROVISION POTENTIAL

Scenario ξ1 ξ2

∆T δ̂t,% µt,% δ̂c,% µc,% δ̂t,% µt,% δ̂c,% µc,%
1 -0.6 -0.3 -3.3 -1.8 -0.6 -0.3 -3.4 -1.9

θ1χ1 2 -1.1 -0.4 -6.0 -2.5 -1.2 -0.4 -6.4 -2.6
1 -0.5 -0.2 -2.7 -1.3 -0.5 -0.2 -2.8 -1.3

θ1χ2 2 -1.0 -0.3 -5.2 -1.8 -1.0 -0.2 -5.6 -1.7
1 -0.6 -0.2 -2.9 -1.5 -0.6 -0.2 -3.0 -1.5

θ1χ3 2 -1.0 -0.3 -5.4 -2.0 -1.1 -0.3 -5.9 -2.0
1 -0.9 -0.6 -5.1 -3.1 -1.0 -0.5 -5.5 -3.1

θ2χ1 2 -1.5 -0.9 -8.2 -5.0 -1.5 -0.9 -8.7 -4.9
1 -0.8 -0.3 -4.2 -2.1 -0.7 -0.3 -4.1 -2.1

θ2χ2 2 -1.3 -0.6 -7.0 -3.3 -1.2 -0.5 -7.1 -3.3
1 -0.8 -0.4 -4.5 -2.3 -0.8 -0.4 -4.6 -2.3

θ2χ3 2 -1.3 -0.6 -7.4 -3.6 -1.3 -0.6 -7.7 -3.6

Table 76: DR flexibility provision: netload decrease, for high netload case and renew-
able scenario Rb, in percentage deviation

Scenario ξ1 ξ2

∆T δ̂ µ σ δ̂ µ σ
1 5.1 3.6 2.9 4.1 4.1 3.1

θ1χ1 2 14.0 8.3 6.6 13.3 8.9 6.9
1 1.8 0.8 1.3 0.9 0.8 1.1

θ1χ2 2 3.6 1.9 2.5 1.4 1.7 2.3
1 3.0 2.0 1.6 2.0 2.0 1.5

θ1χ3 2 7.1 4.4 3.4 5.2 4.3 3.3
1 2.3 4.5 4.0 2.9 4.4 4.0

θ2χ1 2 6.3 10.6 9.2 7.0 10.4 9.2
1 0.7 1.8 2.4 0.3 1.6 2.2

θ2χ2 2 1.4 4.5 5.8 1.0 4.3 5.4
1 1.4 2.7 2.7 1.1 2.6 2.7

θ2χ3 2 3.1 6.8 6.5 2.9 6.5 6.2

Table 77: DR flexibility provision: netload increase, for low netload case and renewable
scenario Rb, in GW
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Scenario ξ1 ξ2

∆T δ̂t,% µt,% δ̂c,% µc,% δ̂t,% µt,% δ̂c,% µc,%
1 5.7 1.6 6.1 3.2 4.7 1.8 5.0 3.7

θ1χ1 2 15.4 3.6 16.7 7.4 14.9 3.9 16.2 8.1
1 2.3 0.4 2.5 0.8 1.2 0.4 1.3 0.8

θ1χ2 2 4.5 0.9 5.0 1.8 1.9 0.8 2.0 1.7
1 3.7 0.9 4.0 1.8 2.5 0.9 2.7 1.9

θ1χ3 2 8.6 2.0 9.3 4.1 6.5 2.0 7.1 4.1
1 2.0 1.8 2.2 3.4 2.5 1.8 2.7 3.5

θ2χ1 2 5.6 4.4 5.9 8.2 6.1 4.3 6.5 8.2
1 0.8 0.8 0.8 1.6 0.3 0.7 0.3 1.5

θ2χ2 2 1.4 2.0 1.5 4.0 1.1 1.9 1.1 3.8
1 1.3 1.2 1.4 2.3 1.1 1.1 1.2 2.2

θ2χ3 2 3.0 2.9 3.2 5.6 2.9 2.8 3.1 5.5

Table 78: DR flexibility provision: netload increase, for low netload case and renewable
scenario Rb, in percentage deviation

Scenario ξ1 ξ2

∆T δ̂ µ σ δ̂ µ σ
1 -10.1 -14.1 6.6 -10.5 -13.4 6.9

θ1χ1 2 -16.7 -26.6 12.5 -16.2 -25.4 13.3
1 -0.4 -5.5 6.1 -0.9 -5.4 5.7

θ1χ2 2 -1.8 -11.4 12.2 -1.9 -11.1 11.6
1 -3.7 -7.9 5.8 -4.1 -7.7 5.0

θ1χ3 2 -6.8 -15.7 11.8 -6.7 -15.1 10.7
1 -16.4 -21.8 10.9 -15.9 -21.3 9.8

θ2χ1 2 -25.1 -39.7 20.4 -24.5 -38.2 18.0
1 -3.5 -10.8 10.9 -3.4 -10.1 10.6

θ2χ2 2 -4.9 -19.0 17.8 -4.8 -17.5 17.6
1 -7.8 -13.3 10.1 -7.4 -13.0 9.6

θ2χ3 2 -11.6 -23.7 16.8 -11.4 -22.9 15.9

Table 79: DR flexibility provision: ramping decrease, for high ramping up case and
renewable scenario Rb, in GW

h
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Scenario ξ1 ξ2

∆T δ̂t,% µt,% δ̂c,% δ̂t,% µt,% δ̂c,%
1 -4.7 -9.1 -11.4 -4.9 -8.7 -12.1

θ1χ1 2 -7.8 -17.3 -18.8 -7.5 -16.5 -18.7
1 -0.2 -3.6 -0.5 -0.4 -3.5 -1.2

θ1χ2 2 -0.8 -7.5 -2.3 -0.9 -7.3 -2.5
1 -1.7 -5.2 -4.5 -1.9 -5.0 -5.2

θ1χ3 2 -3.1 -10.3 -8.2 -3.1 -9.9 -8.4
1 -8.0 -14.4 -16.7 -7.7 -14.0 -16.6

θ2χ1 2 -12.2 -26.2 -25.5 -11.9 -25.1 -25.6
1 -1.7 -7.3 -4.0 -1.7 -6.8 -4.1

θ2χ2 2 -2.4 -12.8 -5.7 -2.4 -11.8 -5.8
1 -3.8 -9.0 -8.7 -3.6 -8.7 -8.5

θ2χ3 2 -5.7 -15.9 -13.0 -5.6 -15.3 -13.1

Table 80: DR flexibility provision: ramping decrease, for high ramping up case and
renewable scenario Rb, in percentage deviation

Scenario ξ1 ξ2

∆T δ̂ µ σ δ̂ µ σ
1 14.3 5.9 2.4 12.3 6.1 2.3

θ1χ1 2 25.1 11.3 3.8 23.4 11.0 4.0
1 0.9 1.6 0.9 2.2 1.5 0.7

θ1χ2 2 0.9 3.1 2.1 2.9 2.7 1.5
1 4.1 2.1 1.8 4.5 3.3 0.4

θ1χ3 2 6.3 3.9 3.4 6.7 6.0 0.8
1 36.3 9.9 6.8 27.0 9.4 5.9

θ2χ1 2 66.8 21.1 13.0 62.9 19.6 10.9
1 2.4 4.2 3.6 0.2 3.4 2.6

θ2χ2 2 3.2 10.2 7.2 2.7 9.0 6.1
1 4.6 6.1 3.2 2.3 5.3 2.3

θ2χ3 2 6.9 14.0 6.1 6.1 12.6 5.5

Table 81: DR flexibility provision: ramping increase, for high ramping down case and
renewable scenario Rb, in GW

h
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Scenario ξ1 ξ2

∆T δ̂t,% µt,% δ̂c,% δ̂t,% µt,% δ̂c,%
1 -11.8 -5.3 12.6 -10.3 -5.5 11.2

θ1χ1 2 -20.8 -10.1 22.1 -19.5 -9.9 21.2
1 -0.8 -1.4 1.4 -1.9 -1.3 3.4

θ1χ2 2 -0.8 -2.8 1.4 -2.5 -2.4 4.5
1 -3.5 -1.9 5.8 -3.8 -3.0 6.5

θ1χ3 2 -5.3 -3.5 8.9 -5.7 -5.4 9.7
1 -25.9 -8.5 17.8 -20.4 -8.1 14.0

θ2χ1 2 -47.6 -18.0 32.7 -47.5 -16.8 32.5
1 -1.9 -3.6 2.8 -0.2 -2.9 0.3

θ2χ2 2 -2.6 -8.8 3.8 -2.2 -7.8 3.3
1 -3.8 -5.3 5.2 -1.9 -4.6 2.6

θ2χ3 2 -5.6 -12.1 7.8 -5.0 -10.9 7.0

Table 82: DR flexibility provision: ramping increase, for high ramping down case and
renewable scenario Rb, in percentage deviation

Scenario ξ1 ξ2

∆T δ̂ µ σ δ̂ µ σ
1 -6.8 -2.7 3.0 -6.7 -2.5 2.7

θ1χ1 2 -12.2 -3.8 4.0 -12.6 -3.5 3.6
1 -5.5 -1.9 2.4 -5.5 -1.7 2.1

θ1χ2 2 -10.5 -2.6 3.1 -10.9 -2.2 2.7
1 -5.9 -2.2 2.6 -5.9 -1.9 2.3

θ1χ3 2 -11.1 -3.0 3.3 -11.4 -2.6 2.9
1 -10.3 -4.9 5.2 -10.7 -4.7 5.0

θ2χ1 2 -16.4 -7.8 8.6 -16.8 -7.2 7.9
1 -8.2 -3.2 3.4 -7.8 -3.0 3.2

θ2χ2 2 -13.9 -5.1 5.3 -13.5 -4.8 5.0
1 -8.9 -3.6 3.7 -8.8 -3.4 3.5

θ2χ3 2 -14.7 -5.6 5.7 -14.6 -5.3 5.5

Table 83: DR flexibility provision: netload decrease, for high netload case and renew-
able scenario Rc, in GW
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Scenario ξ1 ξ2

∆T δ̂t,% µt,% δ̂c,% µc,% δ̂t,% µt,% δ̂c,% µc,%
1 -0.7 -0.3 -3.3 -1.9 -0.7 -0.3 -3.4 -1.8

θ1χ1 2 -1.2 -0.4 -6.0 -2.6 -1.2 -0.4 -6.4 -2.5
1 -0.5 -0.2 -2.7 -1.4 -0.5 -0.2 -2.8 -1.2

θ1χ2 2 -1.0 -0.3 -5.2 -1.9 -1.1 -0.2 -5.6 -1.7
1 -0.6 -0.2 -2.9 -1.6 -0.6 -0.2 -3.0 -1.4

θ1χ3 2 -1.1 -0.3 -5.4 -2.2 -1.1 -0.3 -5.9 -1.9
1 -1.0 -0.5 -5.1 -2.8 -1.0 -0.5 -5.6 -2.8

θ2χ1 2 -1.5 -0.8 -8.2 -4.5 -1.6 -0.7 -8.8 -4.4
1 -0.8 -0.3 -4.2 -1.9 -0.7 -0.3 -4.2 -1.9

θ2χ2 2 -1.3 -0.5 -7.0 -3.1 -1.3 -0.5 -7.2 -3.0
1 -0.8 -0.4 -4.5 -2.2 -0.8 -0.4 -4.6 -2.2

θ2χ3 2 -1.4 -0.6 -7.4 -3.4 -1.4 -0.6 -7.7 -3.4

Table 84: DR flexibility provision: netload decrease, for high netload case and renew-
able scenario Rc, in percentage deviation

Scenario ξ1 ξ2

∆T δ̂ µ σ δ̂ µ σ
1 7.1 3.8 3.0 7.6 4.0 3.0

θ1χ1 2 13.7 8.5 6.7 14.4 8.7 6.9
1 4.5 1.3 1.4 4.4 1.0 1.2

θ1χ2 2 8.9 2.5 2.8 8.1 2.2 2.5
1 5.4 2.2 1.8 5.5 2.1 1.6

θ1χ3 2 10.5 4.6 3.8 10.2 4.5 3.6
1 10.3 3.9 4.1 10.2 3.7 4.0

θ2χ1 2 23.3 9.1 9.3 23.8 8.9 9.1
1 7.4 2.4 2.8 7.0 2.0 2.4

θ2χ2 2 17.5 5.7 6.4 17.6 5.3 5.8
1 8.4 3.3 3.2 8.1 3.0 3.0

θ2χ3 2 19.4 7.7 7.4 19.7 7.4 6.9

Table 85: DR flexibility provision: netload increase, for low netload case and renewable
scenario Rc, in GW
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Scenario ξ1 ξ2

∆T δ̂t,% µt,% δ̂c,% µc,% δ̂t,% µt,% δ̂c,% µc,%
1 -4.8 -12.4 4.3 3.2 -4.8 -11.6 4.7 3.5

θ1χ1 2 -9.1 -27.7 8.2 7.2 -9.1 -25.2 9.0 7.5
1 -2.9 -2.9 2.8 1.2 -2.7 -2.1 2.9 1.0

θ1χ2 2 -5.6 -5.8 5.5 2.3 -4.9 -4.6 5.3 2.1
1 -3.5 -5.6 3.3 2.0 -3.4 -4.8 3.5 1.9

θ1χ3 2 -6.8 -11.6 6.4 4.0 -6.3 -10.4 6.6 4.1
1 -7.0 -19.2 6.1 2.9 -6.6 -15.9 6.3 2.9

θ2χ1 2 -15.8 -45.0 13.8 6.9 -15.5 -37.7 14.6 6.9
1 -4.8 -7.0 4.5 2.0 -4.4 -5.2 4.5 1.7

θ2χ2 2 -11.4 -16.8 10.7 4.8 -11.0 -13.9 11.2 4.6
1 -5.5 -11.1 5.1 2.6 -5.1 -9.1 5.1 2.5

θ2χ3 2 -12.8 -26.3 11.7 6.2 -12.4 -22.4 12.4 6.1

Table 86: DR flexibility provision: netload increase, for low netload case and renewable
scenario Rc, in percentage deviation

Scenario ξ1 ξ2

∆T δ̂ µ σ δ̂ µ σ
1 -10.1 -12.8 6.0 -10.5 -13.2 6.2

θ1χ1 2 -16.2 -24.4 12.1 -15.7 -25.0 12.0
1 -0.4 -5.2 5.5 -0.9 -4.8 5.2

θ1χ2 2 -1.2 -10.9 11.1 -1.3 -9.9 10.5
1 -3.7 -7.8 5.1 -4.1 -7.7 5.2

θ1χ3 2 -6.2 -15.5 10.6 -6.1 -15.2 10.5
1 -16.4 -14.7 12.4 -15.9 -14.8 12.2

θ2χ1 2 -25.1 -26.3 21.5 -24.5 -26.2 20.7
1 -3.1 -10.5 9.7 -3.0 -9.9 9.2

θ2χ2 2 -4.3 -19.0 16.3 -4.6 -17.5 15.3
1 -7.0 -13.7 9.1 -6.7 -13.0 8.8

θ2χ3 2 -11.0 -24.7 15.5 -11.2 -23.0 14.9

Table 87: DR flexibility provision: ramping decrease, for high ramping up case and
renewable scenario Rc, in GW
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Scenario ξ1 ξ2

∆T δ̂t,% µt,% δ̂c,% δ̂t,% µt,% δ̂c,%
1 -4.2 -7.2 -11.4 -4.4 -7.4 -12.1

θ1χ1 2 -6.7 -13.7 -18.2 -6.5 -14.0 -18.1
1 -0.2 -2.9 -0.5 -0.4 -2.7 -1.2

θ1χ2 2 -0.5 -6.1 -1.6 -0.6 -5.6 -1.8
1 -1.5 -4.4 -4.5 -1.7 -4.3 -5.2

θ1χ3 2 -2.6 -8.7 -7.6 -2.5 -8.5 -7.7
1 -7.1 -8.3 -16.7 -6.9 -8.4 -16.6

θ2χ1 2 -10.8 -14.9 -25.5 -10.5 -14.8 -25.6
1 -1.3 -6.1 -3.6 -1.3 -5.7 -3.6

θ2χ2 2 -1.9 -10.9 -5.0 -2.0 -10.1 -5.6
1 -3.0 -7.8 -7.8 -2.9 -7.4 -7.7

θ2χ3 2 -4.8 -14.1 -12.2 -4.8 -13.1 -12.8

Table 88: DR flexibility provision: ramping decrease, for high ramping up case and
renewable scenario Rc, in percentage deviation

Scenario ξ1 ξ2

∆T δ̂ µ σ δ̂ µ σ
1 10.6 11.5 10.6 9.8 11.2 9.1

θ1χ1 2 17.1 20.9 19.2 15.8 19.6 16.1
1 1.1 1.6 1.0 1.1 1.4 0.8

θ1χ2 2 1.3 3.0 2.3 1.3 2.6 1.6
1 4.3 4.0 2.8 4.0 2.2 1.7

θ1χ3 2 6.6 7.5 5.1 6.1 3.9 3.0
1 36.3 13.8 10.6 26.6 12.0 8.8

θ2χ1 2 66.8 26.9 18.9 48.9 23.3 15.6
1 0.8 4.2 4.1 1.1 3.4 3.5

θ2χ2 2 1.9 9.5 7.8 2.1 8.2 6.8
1 0.0 4.0 4.3 0.0 3.3 3.3

θ2χ3 2 0.0 8.7 8.7 0.0 7.8 7.6

Table 89: DR flexibility provision: ramping increase, for high ramping down case and
renewable scenario Rc, in GW

h
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Scenario ξ1 ξ2

∆T δ̂t,% µt,% δ̂c,% δ̂t,% µt,% δ̂c,%
1 -7.4 -9.9 11.5 -6.8 -9.6 10.9

θ1χ1 2 -11.9 -17.9 18.6 -11.0 -16.9 17.5
1 -0.8 -1.4 1.5 -0.8 -1.3 1.5

θ1χ2 2 -1.0 -2.6 1.8 -0.9 -2.3 1.8
1 -3.0 -3.5 5.3 -2.8 -1.9 5.1

θ1χ3 2 -4.7 -6.5 8.2 -4.3 -3.4 7.7
1 -25.0 -11.4 17.8 -18.8 -10.0 13.2

θ2χ1 2 -46.0 -22.3 32.7 -34.4 -19.4 24.2
1 -0.6 -3.5 1.0 -0.8 -2.9 1.4

θ2χ2 2 -1.4 -8.0 2.6 -1.5 -6.9 2.7
1 0.0 -3.3 0.0 0.0 -2.8 0.0

θ2χ3 2 0.0 -7.3 0.0 0.0 -6.6 0.0

Table 90: DR flexibility provision: ramping increase, for high ramping down case and
renewable scenario Rc, in percentage deviation
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