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ARTICLE

Accommodating individual travel history and
unsampled diversity in Bayesian phylogeographic
inference of SARS-CoV-2
Philippe Lemey 1✉, Samuel L. Hong 1, Verity Hill 2, Guy Baele1, Chiara Poletto3, Vittoria Colizza 3,

Áine O’Toole 2, John T. McCrone2, Kristian G. Andersen4, Michael Worobey5, Martha I. Nelson6,

Andrew Rambaut 2 & Marc A. Suchard 7,8,9✉

Spatiotemporal bias in genome sampling can severely confound discrete trait phylogeo-

graphic inference. This has impeded our ability to accurately track the spread of SARS-CoV-2,

the virus responsible for the COVID-19 pandemic, despite the availability of unprecedented

numbers of SARS-CoV-2 genomes. Here, we present an approach to integrate individual

travel history data in Bayesian phylogeographic inference and apply it to the early spread of

SARS-CoV-2. We demonstrate that including travel history data yields i) more realistic

hypotheses of virus spread and ii) higher posterior predictive accuracy compared to including

only sampling location. We further explore methods to ameliorate the impact of sampling

bias by augmenting the phylogeographic analysis with lineages from undersampled locations.

Our reconstructions reinforce specific transmission hypotheses suggested by the inclusion of

travel history data, but also suggest alternative routes of virus migration that are plausible

within the epidemiological context but are not apparent with current sampling efforts.
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S ince its emergence in late 2019, SARS-CoV-2 has rapidly
spread across the world, prompting governments to enact
restrictions on human mobility that are unprecedented on a

global scale. While coronavirus disease 2019 (COVID-19) has
exposed critical gaps in public health preparedness and research,
an observed strength of the COVID-19 response has been the
rapid speed with which whole-genome sequences of SARS-CoV-2
have been generated globally (over 100,000 genomes as of Sep-
tember 15, 2020). The success of global sequence production has
at least been partially facilitated by protocols and networks that
arose during the response to the 2013–2016 Ebola virus disease
(Ebola) epidemic in West Africa. That Ebola epidemic was par-
ticularly important for spurring development of tools and
methods for real-time in-country virus sequencing, including in
resource-limited settings, e.g., ref. 1.

Genomic data represent a key resource for testing hypotheses
about how and when SARS-CoV-2 became established in dif-
ferent locations. For example, phylogenetic approaches may be
able to distinguish community transmission from new intro-
ductions from travelers2, whether viral outbreaks were associated
with multiple introductions3, how long viruses may have been
transmitting undetected in a community (“cryptic transmis-
sion”4) and when widespread domestic spread began in the
United States5. Such studies have already greatly contributed to
charting the course of an unfolding pandemic, informing public
health decisions about when to enforce lockdown measures of
various degrees of stringency. Recently, many countries have
entered a new phase in which restrictions, such as school and
business closures, and mobility restrictions are eased or lifted.
Suppressing SARS-CoV-2 spread remains our only viable defense
so far and efficient test, trace and isolate systems will be crucial
tools to achieve these goals. Molecular epidemiology can continue
to inform public health actions during this phase, for instance
through uncovering cryptic transmission or new introductions, as
sources of flare-ups.

Recent advances in virus sequencing and phylogenetics hold
great promise for addressing key questions in infectious disease
epidemiology and outbreak response6. There are limitations,
however, to the insights that can be obtained from the wealth of
SARS-CoV-2 genome data. The current sequence diversity is
relatively limited because SARS-CoV-2 emerged only recently in
late 2019 and because SARS-CoV-2 transmission outpaces the
rate at which substitutions accumulate4. This implies that short-
term transmission patterns may not leave a detectable footprint in
virus genomes, resulting in poorly resolved genomic reconstruc-
tions. In addition, large spatiotemporal biases exist in the avail-
able genome data, e.g., 7. For instance, ~40% of currently available
genomes have been sampled from the UK, whereas Italy, having
experienced a similar number of cases and likely an earlier epi-
demic onset, only represents ~0.3% of the genome collection on
GISAID8. Both low sequence diversity and sampling bias con-
found the interpretation of transmission patterns, and highly
similar SARS-CoV-2 genomes from the same or different loca-
tions do not necessarily imply direct linkage.

Despite a relatively slow evolutionary rate, the “phylodynamic
threshold” for SARS-CoV-2 was reached relatively early9,
meaning that sufficient divergence had accumulated over the
sampling time range to infer time-calibrated phylogenies and the
underlying transmission processes that generate such trees,
including spatiotemporal spread. However, sampling bias pre-
sents a critical challenge for popular discrete trait ancestral
reconstruction procedures10,11. Although the modern phylody-
namic framework includes other statistical approaches that are
less sensitive to sampling bias, e.g., 12–14, computational com-
plexity challenges their application to large data sets, in particular
when insights are needed in short turnaround times.

This explains the widespread adoption of ancestral reconstruction
approaches that provide real-time tracking of pathogen evolution
and spread15.

When confronted with low diversity and sampling bias, evo-
lutionary reconstructions may greatly benefit from integrating
additional sources of information. Bayesian phylodynamic
approaches are particularly adept for this purpose16, and phylo-
geographic methods in particular have been extended to take
advantage of human transportation data as proxies of population-
level connectivity between locations17. This approach has been
utilized in a wide range of applications, including the identifica-
tion of the key drivers of Ebolavirus spread in West Africa18.
Individual travel history of sampled patients also represents an
important source of information that currently has not been used
to its full potential in phylogeographic inference. Genomic data
from (returning) travelers may help to uncover pathogen diver-
sity in locations that are otherwise undersampled. This has been
elegantly demonstrated by a study on Zika virus that used travel
surveillance and genomics to demonstrate hidden viral trans-
mission in Cuba19. Formally integrating such travel data in
phylogeographic reconstructions may therefore help to address or
correct for sampling bias. In general, epidemiological information
provides important context to assess genomic sampling biases,
and this can be used to subsample genomes by location
in situations where large collections are available20. The question
therefore emerges how such information can be formally
embedded in phylodynamic models. Specifically, if particular
locations remain undersampled despite their potential impor-
tance for viral spread, can the reconstructions account for
hypotheses alternative to the ones supported by the sampled
genomes, but plausible according to the epidemiological context?
Here, we extend phylogeographic methodology to incorporate
travel data and, together with the integration of transportation
data, we apply this to reconstruct the early spread of SARS-CoV-2
and formally validate the approach, using a posterior predictive
accuracy procedure. In addition, we demonstrate how epide-
miological data can be used to incorporate unsampled diversity.
Taken together, these approaches constitute an important step
toward more realistic and more nuanced phylogeographic
reconstructions.

Results
Travel history uncovers more realistic phylogeographic pat-
terns. To focus on the early dynamics of SARS-CoV-2 spread, we
analyze a data set consisting of curated genomes available in
GISAID on March 10th, 2020 (n= 282). Having collected travel
history data for over 20% of the sampled patients, we extend
phylogeographic reconstruction methodology to incorporate this
source of information (cfr. “Methods”). Specifically, we augment
the sampled genomes from known travelers with their recent
travel location and either the time of their return journey or
estimated time of infection (see below). Critically, we include
travelers returning from severely undersampled locations,
including Italy, Iran, and Hubei, China, where the virus was first
identified.

In our Bayesian analysis of the complete data set, we model a
discrete diffusion process between 44 locations: 29 countries and
15 locations within China, including 13 provinces, one munici-
pality (Beijing), and one special administrative area (Hong Kong).
We fit a generalized linear model (GLM) parameterization of the
discrete diffusion process and consider air travel data, within-
continent geographic distances, and an estimable asymmetry
coefficient for transitions from and to Hubei as covariates for the
diffusion rates. In Table 1, we compare the posterior estimates for
the inclusion probabilities and conditional effect sizes (on a log
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scale) of these covariates in an analysis that incorporates (i)
sampling location and travel history (travel-aware phylogeo-
graphic inference), (ii) sampling location only, and (iii) travel
origin location. Regardless of what location data we use in the
analyses, they consistently indicate that in this early stage, SARS-
CoV-2 spread is shaped by air travel and not by geographic
distance, and that there is strong asymmetric flow out of Hubei.
Interestingly, this asymmetry is somewhat stronger for the
analyses that incorporate travel locations compared to the
analysis using only sampling locations. One explanation is that
the majority of travelers were returning from Hubei, and adding
this information contributes appropriately to the intensity of
outflux from Hubei. In Supplementary Text S3, we also report
estimates for the same predictor set expanded with sample sizes
as origin and destination predictors for transitions. These
estimates indicate that sample sizes contribute considerably less
in travel-aware analyses compared to using sampling location
only, suggesting that the travel-aware reconstructions will also be
more robust to sample size bias.

As expected for a low degree of sequence variability over this
limited time range, our Bayesian phylogeographic reconstructions
are burdened by a high degree of topological uncertainty. In
Fig. 1, posterior support for the nodes in the maximum clade
credibility (MCC) tree is represented by the size of the node
circles and the support across all nodes is summarized as a
histogram. This illustrates that only a limited number of clusters
are reasonably well supported. Poor phylogenetic signal is also
illustrated by likelihood mapping analysis (Supplementary
Fig. S4). This renders a single phylogenetic tree summary
inadequate to interpret phylogeographic history. We sidestep
this problem by studying spatial trajectories that marginalize over
phylogenetic variability, in the ancestral history of single taxa.

In Fig. 2, we consider a case study involving the spatial path of
a virus that was collected in Switzerland in February 2020
(EPI_ISL_413021). As summarized in Fig. 2a, the Swiss virus is
positioned within a cluster of viruses primarily from Europe that
has been the subject of controversy. The basal clustering of a
genome from the first detected case in Germany led to the
speculation that the virus spread from Germany to Italy21. The
trajectory plots summarize across the posterior distribution the
time intervals in the phylogenetic ancestry during which the virus
remains in the same location (horizontal lines) and the transitions
between two locations (vertical lines). Using the standard location
of sampling (Fig. 2b), the trajectory plot traces the origins of the
Swiss virus back to the Netherlands, an inference that is likely due
to a relatively large number of Dutch genomes in the cluster.
Going further back in time, the virus appears to have spread from
Germany to the Netherlands. The original ancestry prior to
Germany becomes uncertain, and could be Hubei, Guangdong, or

other locations. Italy is not part of the trajectory at all because
Italy is undersampled (only two genomes in the cluster). Using
the locations of origin for the travelers (Fig. 2c), the trajectory is
more ambiguous about the spatial path, and whether the Swiss
virus came from Italy or the Netherlands. The travel-aware
reconstruction, which includes both sampling location and
traveler’s location of origin (Fig. 2d), almost fully resolves the
ancestry of the Swiss virus. The Swiss virus was imported from
Italy, and not the Netherlands. The fact that this cluster contains
five genomes from travelers returning from Italy to various
countries, including Germany, Scotland, Mexico, Nigeria, and
Brazil, is instrumental in positioning Italy at the root of this
cluster and helps correct for Italy’s lack of data. The inclusion of
genomes associated with a Hubei travel history also strengthens
the original Hubei ancestry in the phylogeography, as trajectories
appear to coalesce earlier in Hubei. Although the trajectory
suggests an introduction into Italy from Germany, the support for
this is not overwhelming and solely due to the single genome
sample from Germany basal to the Italian cluster. We return to
this transmission hypothesis in the next section.

In a second case study, we consider a virus from Australia
sampled in February 2020 (EPI_ISL_412975). The virus is
positioned within a clade of other closely related viruses from
Australia (lineage B.4, Fig. 1), some of which were sampled from
travelers returning from Iran22. Using sampling location alone
does not provide any support for Iranian ancestry, since the data
set does not include any genomes directly sampled from Iran
(Fig. 3a). Using the locations of origin for the travelers does
support Iranian ancestry (Fig. 3b), but with considerable
ambiguity. However, the travel-aware reconstruction, including
both sampling location and traveler’s location of origin, clearly
supports an ancestry that includes Iran (Fig. 3c). This
Iran–Australia case study provides an example where enforcing
the travel location somewhat deeper in the evolutionary history
(at return dates of the travelers) imparts more information that is
critical for correctly reconstructing ancestral relationships.

Although our case studies illustrate the impact of incorporating
travel history information and how this results in more realistic
hypotheses, they do not provide a formal assessment of the
approach. To validate the approach, we perform a posterior
predictive accuracy assessment. Specifically, we perform a tenfold
cross validation that, in each fold, holds out 10% of the travel
history information in the phylogeographic inference (cfr.
“Methods”). We estimate the ancestral travel locations for the
tips with withheld travel information and compare the prediction
accuracy (i) when including the remaining 90% of the travel
history and (ii) when excluding all travel history data, using the
Brier score (BS; cfr. “Methods”). Our evaluation results in a BS of
1.35 without travel history data, and 0.70 with 90% of the travel

Table 1 Inferred generalized linear model (GLM) of discrete location transitions under three different usage strategies of travel
history information.

Information usage
strategy

Air travel Geographic distance Asymmetry out of Hubei

Inclusion
probability

Log conditional
effect size

Inclusion
probability

Log conditional effect size Inclusion
probability

Log conditional
effect size

Sampling location
and travel history

>0.999 0.718 (0.505, 0.948) 0.114 −0.042 (−0.105, 0.024) >0.999 2.362 (1.864, 2.859)

Sampling
location only

>0.999 1.131 (0.838, 1.481) 0.049 −0.016 (−0.105, 0.077) 0.969 1.620 (0.631, 2.319)

Travel origin location >0.999 1.000 (0.709, 1.317) 0.114 0.050 (−0.043, 0.146) >0.999 2.226 (1.650, 2.800)

We report posterior inclusion probabilities and posterior mean (95% highest probability density intervals) log conditional effect sizes for air travel, geographic distance, and asymmetry out of Hubei.
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history data. This represents a large, twofold improvement in
discrimination and calibration. In practical terms, the odds of
identifying the correct ancestral state increases 4.5-fold, which
clearly demonstrates the advantages of including travel history
under conditions where the truth is known.

Unsampled diversity reinforces reconstructions informed by
travel data and unveils alternative transmission hypotheses. To
further explore the sensitivity of phylogeographic analyses to
sampling bias, we incorporate unsampled taxa in our recon-
structions, in addition to travel history data. Supplementary Text
S2 illustrates how this approach can recover established pathways
of migration using a Zika virus example. In our SARS-CoV-2
analyses, we add unsampled taxa for locations that are under-
sampled according to case counts (cfr. “Methods”), in this case
primarily for Hubei (n= 307), followed by Italy (n= 47), Iran
(n= 40), and South Korea (n= 30). We specify a prior dis-
tribution over their tip ages (“sampling times”) based on esti-
mates of prevalent infections (cfr. “Methods”). Using this

framework, we revisit the trajectory estimate for the Swiss B.1
genome (Fig. 4). In contrast to the reconstructions with no
unsampled taxa (Fig. 2), we now mainly observe a direct transi-
tion from Hubei to Italy (posterior probability= 0.88), implying
that a second introduction from Hubei that is independent from
the introduction into Germany may have seeded the Italian clade.
This hypothesis arises from the inclusion of unsampled Hubei
taxa that now cluster between the German virus and the Italian
clade (Fig. 4), even though the branch connecting the German
genome to the Italian clade only represents a single substitution.
The many unsampled Italian taxa that fall in this clade further
reinforce its Italian ancestry.

The inclusion of unsampled taxa also provides more resolution
on the Hubei ancestry of the Iran–Australia case study in lineage
B.4 (EPI_ISL_412975). We estimate a similar trajectory as the
analysis using travel history without unsampled taxa (Fig. 3), but
with a more recent coalescence in Hubei because of unsampled
Hubei taxa clustering basal to an Iranian clade (Fig. 5). The
genomes from four Australian travelers returning from this
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performed using 44 location states, nodes and branches are shaded according to an aggregated color scheme for clarity. Lineage classifications are
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country, one direct contact, another Australian genome without
travel history, as well as a genome from a traveler returning from
Iran to New Zealand are effectively embedded in unsampled
Iranian diversity. The most basal virus in this clade is from a
Canadian traveler returning from Iran. Although the basal nature
of this virus is not well supported, there is good posterior support
for the monophyly of all the sampled genomes in this clade.

Notably, this virus was sampled before the first report of COVID-
19 in Iran on February 19th23, but our reconstruction suggests
that considerable diversification, and hence transmission, already
took place prior to this report.

In addition to focusing on specific transmission patterns, we
also summarize the overall dispersal dynamics in a way that
marginalizes over plausible phylogenetic histories for the different
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analyses (Fig. 6 and Supplementary Fig. S7). While introductions
from Hubei represent the dominant pattern when using sampling
location only (Fig. 6a), this is far more pronounced for the other
analyses that include travel history. Using sampling location
suggests unrealistic dispersal from locations, such as Australia
and The Netherlands, that largely disappear when using travel
history data, without or with unsampled diversity (Fig. 6b, c). In
the travel-aware analyses, European countries experience more
introductions from Italy, as well as more directly from Hubei. As
also illustrated by the specific examples (Figs. 2 and 3), the
considerable number of secondary transmissions from Italy
and Iran is revealed by using travel history data (Fig. 6b).

The substantial addition of unsampled taxa from these relatively
undersampled locations does not further contribute to this
pattern (Fig. 6c), but adding unsampled diversity from Hubei
does remove an unexpected dispersal from The Netherlands to
Taiwan (Fig. 6b, c).

Retrospective genome availability fills specific sampling gaps
but still benefits from incorporating travel history. We
assembled the 282 genome data set based on genomes available in
GISAID on March 10. Because many sequences with sampling
times before this date have become available retrospectively,

Fig. 2 Phylogeographic reconstruction and spatiotemporal ancestry of a virus collected in Switzerland (EPI_ISL_413021). a Phylogenetic cluster with
the Swiss virus shaded in gray in the MCC tree, and the same B.1 cluster with branches colored according to posterior modal location states inferred by an
analysis using sampling location only. The tip for the Swiss virus corresponding to the trajectory in b is indicated with an arrow. Markov jump trajectory plot
depicting the ancestral transition history between locations from Hubei up the sampling location for the Swiss genome, using b sampling location only,
c travel origin location, and d sampling location and travel history. The trajectories are summarized from a posterior tree distribution with Markov jump
history annotation. A horizontal line in a trajectory represents the time during which a particular location state is maintained in the spatiotemporal ancestry
of the virus. An example of such an ancestry is highlighted in gray in the MCC tree cluster. A vertical line represents a Markov jump between two locations
in the trajectory. The most prominent locations in the posterior trajectories are ordered along the Y-axis together with “other”, which represents all
remaining locations. The relative density of lines reflects the posterior uncertainty in location state and transition time between states.
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Fig. 3 Markov jump trajectory plot depicting the ancestral transition history between locations from Hubei up the sampling location for an Australian
genome (EPI_ISL_412975) in lineage B.4. The reconstructions use a sampling location only, b travel origin location, and c sampling location and travel
history. The trajectories are summarized from a posterior tree distribution with Markov jump history annotation in the same way as in Fig. 2.
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we also compiled a larger data set by downsampling the available
genome sequences with a sampling time up to March 10
~4 months after this date. We focus on 43 of the 44 locations
represented in the 282 genome data set, but include Shanghai
instead of Fujian (cfr. “Methods”). The downsampling procedure
mitigates sampling bias for many locations but not all (Supple-
mentary Fig. S5c), and we therefore incorporate travel history for
the same subset of genomes as in the 282 genome data set. The
travel-aware analysis of the 500 genome data set (Fig. 6d) results
in highly consistent overall dispersal dynamics compared to the
previous travel-aware reconstructions without or with unsampled
diversity (Fig. 6b, c), e.g., in terms of the seeding patterns from
Hubei, and the considerable number of secondary transmissions
from Italy and Iran. Because of the larger sampling in this data
set, a limited number of additional dispersal events are inferred.
The presence of 16 additional Italian viruses in the European
clade (Supplementary Fig. S8) of the 500 genome data set con-
firms the Italian ancestry of the clade in much the same way as

the unsampled Italian taxa in the 282 genome analysis (Fig. 4).
Incorporating travel history information remains important to
establish the Iranian ancestry of the cluster, in which viruses were
sampled from travelers returning to Australia, New Zealand, and
Canada (Supplementary Fig. S9). Interestingly, the single genome
from Iran included in the 500 genome data set is part of this
cluster (Supplementary Fig. S9), as predicted by the 282 genome
analysis with unsampled taxa (Fig. 5).

Discussion
International travelers had a central role in the early global spread
of the SARS-CoV-2 virus. To track whether COVID-19 cases
were new imports or community transmission, detailed travel
histories were collected from many of the early patients. To date,
however, phylogeographic approaches using discrete trait recon-
struction have not been able to fully incorporate travel history
data. Researchers had to select whether to assign a sample to the
location of sampling, typically the home country, or to the
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location visited by the traveler. Either way, half of the information
was lost. During a period when there were major gaps in the
availability of SARS-CoV-2 genomes from many key locations,
losing half of the spatial information provided by travelers has
been suboptimal. Here, by developing a phylogeographic
approach that introduces ancestral nodes in the phylogeny that
are associated with locations visited by travelers, we provide a
method to formally recapture all the rich information provided by
travelers. Most importantly, we demonstrate that the travel-aware
approach can dramatically improve phylogeographic inferences
about the specific country-to-country paths followed by the
SARS-CoV-2 virus during the early stages of global spread. As
expected, the inclusion of travel history data is most informative
when travelers are arriving from locations, such as Italy and Iran
that experienced early SARS-CoV-2 outbreaks, but for which few
genome sequences were available, resulting in large gaps in the
phylogeny. In addition to illustrating the benefit of including

travel information in such cases, we also demonstrate that the
travel-aware reconstructions are associated with a higher pos-
terior predictive accuracy.

We retrieved travel history data for ~20% of the early available
genomes, but many more travel-based introductions may be
undocumented. While such information is sometimes available in
GISAID records, this is not commonly included metadata and
there is otherwise no specific resource available to retrieve such
information. This may at least partly be explained by concerns
about the risk of patient identification. Travel history data may be
particularly important when analyzing low diversity data using
Bayesian joint inference of sequence and traits because sharing
the same location state can contribute to the phylogenetic clus-
tering of taxa. In general, it is crucial to consider the uncertainty
of Bayesian time-measured phylogenetic reconstructions because,
even for sparse sequence information, a single-tree sample (such
as the MCC tree) will appear highly resolved with branching
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Fig. 5 Markov jump trajectory plot as in fig. 3 for the Australian genome (EPI_ISL_412975) in lineage B.4 and B4 subtree for the Bayesian
phylogeographic analysis incorporating travel data and unsampled diversity. Dotted branches in the phylogeny are associated with unsampled taxa
assigned to Iran and Hubei, China. The tip for the Australian genome corresponding to the trajectory is indicated with an arrow. The vertical dotted line
represents the first report of COVID-19 in Iran.
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Fig. 6 Sankey plots summarizing Markov jump estimates for the analyses of the 282 genome data set. The reconstructions use a sampling location only,
b sampling location and travel history, and c sampling location and travel history with unsampled diversity, and d for the analysis of the 500 genome data
set using sampling location and travel history. The plots show the relative number of transitions between origin (top) and destination (bottom) locations.
We note that locations may both be origin locations (in the top row) and destination locations (in the bottom row), and there is no temporal order for the
transitions involved. For summaries that show all transitions to and from a location connected to that particular location, we refer to the circular migration
plots in Supplementary Fig. S7.
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structures that may not be supported by substitutions (Fig. 1).
However, this is only a single transmission hypothesis compatible
with the data, while many other hypotheses will be plausible as
should be reflected by the different topologies in the posterior and
hence by low node support values. For this reason, we resorted to
posterior summaries that focus on the location-transition pat-
terns in the ancestral history of single taxa or on Markov jump
estimates, both averaging over all plausible trees.

We intentionally examined the performance of our methods on
an early SARS-CoV-2 data set that was heavily burdened by
spatiotemporal sampling bias. However, as we are studying a
pandemic as it unfolds, and as new SARS-CoV-2 sequences
continue to be generated globally at an explosive pace, there are
constant opportunities to reassess the probability of conclusions
drawn from earlier data sets and to further expand on them. We
made use of this by compiling a second data set ~4 months after
constructing the original data set. The retrospective availability of
more genomes from Hubei for example removes to a large extent
the need for unsampled diversity from the pandemic origin in
phylogeographic reconstructions. This updated data set also
allows assessing the validity of specific details of the early
reconstructions. For example, the data set includes one of the two
Iranian genomes that had become available in GISAID, and this
virus clusters with viruses from Australian travelers returning
from this country (Supplementary Fig. S9), reinforcing the
Iran–Australia connection observed in our travel history recon-
structions. The availability of additional data from Italy also
supports the spatial connections inferred from early traveler data
and from unsampled Italian diversity (Figs. 2 and 4, and Sup-
plementary Fig. S8).

While downsampling genomic data from locations in unba-
lanced data sets has become a common practice17,20, we present
here an alternative approach that adds unsampled taxa to assess
the sensitivity of inferences to sampling bias. We emphasize that
even though the inclusion of unsampled taxa is informed by
epidemiological data, these unsampled taxa should never be
considered as additional observations. The unsampled diversity
reveals alternative hypotheses that may not be captured by the
available genome sampling, but are worth considering in the
context of biased sampling. However, reconstructions using
unsampled taxa do not provide evidence for any single hypothesis
with the same weight as actual genomic data.

Despite the encouraging results, including the recovery a well-
established pathway of migration in another empirical example
(Zika virus, Supplementary Text S2), we envision reconstructions
built with unsampled taxa as being exploratory in nature, and
most useful as added support for conclusions drawn indepen-
dently from other analytical approaches, for example, evolu-
tionary simulations or epidemiological studies.

It is important for future users of these methods to understand
exactly how different kinds of empirical data are used to deter-
mine where unsampled taxa will attach to the phylogenetic
backbone of sampled genomes. The first important aspect is the
relative positioning in time of unsampled tips, which in our case
is drawn from distribution curves of estimated prevalent infec-
tions over time. So, this together with the relative abundance of
unsampled taxa by location is informed by epidemiological data.
Second, the locations of unsampled taxa will determine their
clustering when jointly inferring the phylogeny based on
sequences and discrete location traits. In this respect, unsampled
taxa will preferentially cluster with taxa representing the same
locations, either sampled genomes or other unsampled ones.
However, unsampled taxa can, and do in our experience, branch
off lineages representing different location states. The relative
preference for which location transitions this involves will be
determined by the matrix of transition rates of the discrete trait

continuous-time Markov chain (CTMC), which in our case are
informed by covariates, such as air travel. This implies that in the
SARS-CoV-2 analysis unsampled taxa can be positioned with taxa
from countries that are highly connected by airline travel, given
the importance of air travel in the early spread of the virus.
Finally, the branch lengths, or time it takes for unsampled taxa to
find a common ancestor with other taxa, will be influenced by the
coalescent prior. We opted for a simple exponential growth
coalescent prior in our analyses, but more flexible tree priors are
available that can also be informed by epidemiological data, e.g.,
ref. 24.

By formally accommodating the possibility of unsampled
diversity in our phylogenetic reconstructions, we provide alter-
native scenarios for how SARS-CoV-2 spread globally and
entered specific countries. Most importantly, many early intro-
ductions in different locations were likely from Hubei, in line
with modeling estimates that point at the underdetection of
exported COVID-19 cases from Wuhan25. In addition, our
findings reinforce estimates shaped by travel history that point at
early introductions into both Italy and Iran, two countries that
are not well represented by genomic sampling, and subsequent
transmission events from these countries to other locations. Due
to the low genomic variability of SARS-CoV-2, it may be more
appropriate to refer to unsampled transmission chains rather
than unsampled diversity because many unsampled taxa may
represent highly similar or even identical genomes. With the large
number of SARS-CoV-2 genomes now available, the question
arises how scalable the incorporation of unsampled taxa will be.
For computationally expensive Bayesian inferences, the approach
may need to go hand in hand with downsampling procedures or
more detailed examination of specific sublineages. The com-
plementarity with downsampling is suggested by the 500 genome
data set for which downsampling can mitigate, but not fully
remove, sampling bias. In our case however, the incorporation of
travel history data corrected for particular remaining large sam-
pling gaps (e.g., from Iran). Furthermore, as averaging over all
plausible phylogenetic “placements” of large numbers of “volatile”
unsampled taxa can be a challenging task, further developments
are needed to make the estimation more efficient for larger-scale
data sets.

We firmly acknowledge that many aspects of these analyses
require further detailed examination and refinement in other
pathogen systems, with different types of data gaps and sampling
biases. For example, we used an arbitrary threshold for the ratio
of available genomes to case counts, in order to decide which
locations required representation by unsampled taxa (without
accounting for differences in reporting rates for case counts), so it
would be useful to investigate how sensitive the reconstructions
are with respect to such decisions. Our spatial diffusion GLM may
benefit from 2020 air travel data that are impacted by travel
restrictions. The time dependency imposed by travel restrictions
could potentially be modeled with an epoch version of the dis-
crete trait CTMC26. This could also be important for the asym-
metry factor we included for transitions from Hubei, as these will
be severely impacted by the travel ban imposed on January 2327.
Finally, in addition to our posterior predictive accuracy assess-
ment, simulation studies would greatly assist in evaluating the
performance of the phylogeographic reconstructions in other
controlled scenarios.

In conclusion, we demonstrate how travel history data can be
formally integrated into discrete phylogeographic reconstructions
and that this, together with accounting for unsampled diversity,
can mitigate spatiotemporal sampling bias in reconstructions of
the early spread of SARS-CoV-2. More research is needed on the
specifications of such analyses, and we hope that this work will
stimulate developments to further integrate epidemiological
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information and other data sources into phylodynamic
reconstructions.

Methods
SARS-CoV-2 genome data sets and associated travel history. To focus on the
early stage of COVID-19 spread, we analyzed SARS-CoV-2 genome sequences and
metadata available in GISAID on March 10th8. We curated a data set of 305
genomes by removing error-prone sequences, keeping only genomes with appro-
priate metadata, and a single genome from patients with multiple genomes avail-
able. We assigned each genome a global lineage designation based on the
nomenclature scheme outlined in Rambaut et al.28 using pangolin v1.1.14 (https://
github.com/hCoV-2019/pangolin), lineages data release 2020-05-19 (https://github.
com/hCoV-2019/lineages). We aligned the remaining genomes using MAFFT
v.7.45329 and partially trimmed the 5′ and 3′ ends. All sequences were associated
with exact sampling dates in their meta-information, except for one genome from
Anhui with known month of sampling. Upon visualizing root-to-tip divergence as
a function of sampling time, using TempEst v.1.5.330 based on an ML tree inferred
with IQ-TREE v.2.0-rc131, we removed one potential outlier. The root-to-tip plots
without the outlier are shown in Supplementary Fig. S3. We formally tested for
temporal signal using BETS32. The final 282 genomes were sampled from 28 dif-
ferent countries, with Chinese samples originating from 13 provinces, one muni-
cipality (Beijing), and one special administrative area (Hong Kong), which we
considered as separate locations in our (discrete) phylogeographic analyses. Phy-
logenetic signal in the data set was explored through likelihood mapping analysis33

(Supplementary Fig. S4).
We searched for travel history data associated with the genomes in the GISAID

records, media reports, and publications and retrieved recent travel locations for 64
genomes (22.5%, Supplementary Table 2): 43 traveled/returned from Hubei
(Wuhan), 1 from Beijing, 3 from China without further detail (which we associated
with an appropriate ambiguity code in our phylogeographic analysis that represents
all sampled Chinese locations), 2 from Singapore, 1 from Southeast Asia (which we
also associated with an ambiguity code that represents all sampled Southeast Asian
locations), 7 from Italy, and 7 from Iran. In this data set, Italy is better represented
by recent travel locations than actual samples (n= 4) and Iran is exclusively
represented by travelers returning from this country. For 46 out of the 64 genomes,
we retrieved the date of travel, which represents the most recent time point at
which the ancestral lineage circulated in the travel location.

In order to examine (i) to what extent our reconstructions could be updated by
the genome data that has become available retrospectively for the same locations
and the same time period before March 10 ~4 months after this date, and (ii) how
sampling bias can be mitigated by downsampling from the larger collection of
available genomes, we assembled an additional data set of 500 genomes. For this
purpose, SARS-CoV-2 genomes were downloaded from GISAID on June 23, 2020
and processed according to the COG-UK pre-analysis pipeline (https://github.com/
COG-UK/grapevine). Briefly, sequences were aligned to the reference sequence
Wuhan-Hu-1 (Genbank accession number NC_045512) using Minimap2 v.2.1734.
Problematic sites were masked (https://virological.org/t/issues-with-sars-cov-2-
sequencing-data/473), and sequences with <95% coverage or an overabundance of
mutations were removed. Due to the availability of a relatively large amount of
genomes from Shanghai and its importance in international air travel, we
considered genomes for this location instead of Fujian to maintain the same
phylogeographic dimensionality (44 locations) as in the 282 genome data set. We
included the same 64 genomes with travel history used in the 282 genome data set,
and for the remaining 436 genomes, we performed a subsampling relative to time
and geographic location from the sequences sampled before Mach 10, 2020. To
maximize the temporal signal with minimal geographic bias, the genomes were
selected such that the 500 sequences were distributed as evenly as possible in each
epi-week for which samples were available. Within each week, sequences were
sampled proportionally to the cumulative number of cases in that location on
March 10. Despite this sampling procedure, the resulting number of genomes by
location as a function of case counts still indicates sampling biases (Supplementary
Fig. S5c). The root-to-tip divergence plot and likelihood mapping plot are shown in
Supplementary Figs. S3 and S4 respectively.

Incorporating travel history in Bayesian phylogeographic inference. Discrete
trait phylogeographic inference attempts to reconstruct an ancestral location-
transition history along a phylogeny based on the discrete states associated with the
sampled sequences. In our Bayesian approach, the phylogeny is treated as random
which is critical to accommodate estimation uncertainty, when confronted with
sparse sequence information. Here, we aim to augment these location-transition
history reconstructions on random trees with travel history information obtained
from (returning) travelers. When such information is available, the tip location
state for a sequence can either be set to the location of sampling, as is done in the
absence of such information, or the location from which the individual traveled
(assuming that this was the location from which the infection was acquired).
Neither of these options is satisfactory: using the location of sampling ignores
important information about the ancestral location of the sequence, whereas using
the travel location together with the collection date represents a data mismatch,
and ignores the final transitions to the location of sampling. These events are

particularly important when the infected traveler then produces a productive
transmission chain in the sampling location.

Incorporating information about ancestral locations cannot be achieved simply
through the parameterization of the discrete diffusion model, which follows a
CTMC process determined by relative transition rates between all pairs of locations
that applies homogeneously (or time inhomogeneously26) along the phylogeny.
Instead, we need to shape the realization of this process according to the travel
histories by augmenting the phylogeny with ancestral nodes that are associated
with a location state (but not with a known sequence), and hence enforce that
ancestral location at a particular, possibly random point in the past of a lineage.
Depending on the time at which the ancestral node lies, it may fall on a terminal
branch leading to the tip associated with travel history, or before nodes
representing common ancestors with other taxa. Further, the location state
associated with the ancestral node can also be ambiguous, allowing equal or
weighted probability to be assigned to multiple possible locations35. We illustrate
this procedure for an empirical example that includes 9 SARS-CoV-2 genomes in
Fig. 7.

The empirical example includes two genomes from Hubei, four from Australia,
and three from Italy. Travel history is available for five genomes (one sampled in
Italy and four in Australia), and Fig. 7a demonstrates how this information is
incorporated. When a sampled traveler returned from location i to location j, we
denote time Ti→j as the time when the traveler started the return journey to j. At
this time point in the ancestral path of the tip (indicated with arrows for the five
relevant tips), we introduce an ancestral node and associate it with location i, in
order to inform the reconstruction that at this point in time the lineage was in
location i. The upper arrow represents the information introduced for the traveler
that returned from Hubei to Italy. The same procedure is applied to the four
genomes from travelers returning to Australian from Hubei, Iran, Southeast Asia,
and Hubei again (from top to bottom in Fig. 7a).

In subsequent panels, we compare a travel-aware reconstruction (Fig. 7b) to a
reconstruction using the standard sampling location (Fig. 7c), and a reconstruction
using the location of origin for the travelers (Fig. 7d). Using the location of
sampling (Fig. 7c) results in an unrealistic Australian ancestry and two transitions
from Australia to Italy, likely because Australia is represented by the largest
number of tips. Using the location of travel origin, Fig. 7d results in a
reconstruction that better matches the travel-aware reconstruction in terms of
inferring an ancestry in Hubei, but misses transitions along four tip branches and
differs from the reconstruction including travel history for the upper two Italian
genomes. Specifically, it implies a transition from Hubei for the Italian patient that
does not have travel history.

We note that Ti→j can be treated as a random variable in case the time of
traveling to the sampling location is not known (with sufficient precision). We
make use of this ability for the genomes associated with a travel location, but
without a clear travel time. In our Bayesian inference, we specify normal prior
distributions over Ti→j informed by an estimate of time of infection and truncated
to be positive (back-in-time) relative to sampling date. Specifically, we use a mean
of 10 days before sampling based on a mean incubation time of 5 days36, and a
constant ascertainment period of 5 days between symptom onset and testing37, and
a standard deviation of 3 days to incorporate the uncertainty on the incubation
time. Finally, we indicate that not only information about the sampled traveler can
be incorporated, but also about prior transmission history. We apply this for two
cases in our data set. One of the genomes was sampled from a German patient, who
was infected after contact with someone who came from Shanghai. The person
traveling from Shanghai was assumed to be infected after being visited by her
parents from Wuhan a few days before she left. In this case, we incorporate Wuhan
(Hubei) as an ancestral location with an associated time that accounts for the travel
time from Shanghai with a number of additional days and associated uncertainty.
Another genome was obtained from a French person, who had been in contact with
a person who is believed to have contracted the virus at a conference in
Singapore38. In this case, we incorporate Singapore as an ancestral location with a
known travel time (Supplementary Table 3).

Incorporating unsampled diversity in Bayesian phylogeographic inference. To
investigate how unsampled diversity may impact phylogeographic reconstructions,
we include in our Bayesian inference of the 282 genome data set taxa that are
associated with a location, but not with observed sequence data. We identify
undersampled locations by considering the ratio of available genomes to the
cumulative number of cases for each location (obtained from Our World in Data,
https://ourworldindata.org/coronavirus-source-data). To keep all available data, we
opt not to downsample genomes, but to add a number of unsampled taxa to
specific locations in order to achieve a minimal ratio of taxa (sampled and
unsampled) to cumulative number of cases. In Supplementary Fig. S5a, we plot the
number of available genomes against the number of cases on March 10th, 2020 on
a log–log scale. In our case, we set the minimal ratio arbitrarily to 0.005. Although
higher ratios may be preferred, this comes at the expense of adding larger numbers
of unsampled taxa, and hence computationally more expensive Bayesian analyses.
Our choice for the minimal ratio requires adding 458 taxa for 14 locations (colored
symbols in Supplementary Fig. S5b), so ~1.6 times the number of available gen-
omes. Most of the unsampled taxa are assigned to Hubei (n= 307), followed by
Italy (n= 47), Iran (n= 40), and South Korea (n= 30). For comparison, we also
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plot the number of available genomes against the number of cases for the 500
genome data set in Supplementary Fig. S5c.

We integrate over all possible phylogenetic placements of such taxa, using
standard Markov chain Monte Carlo (MCMC) transition kernels. In the absence of
sequence data, time of sampling represents an important source of information for
the analysis in addition to sampling location. Here, we use epidemiological data in
order to estimate a probabilistic distribution for the sampling times of unsampled
taxa. Specifically, we follow Grubaugh et al.5 in estimating the number of prevalent
infectious individuals on day t (Pt), by multiplying the number of incident
infections up to day t by the probability that an individual who became infectious
on day i was still infectious on day t:

Pt ¼
Xt�1

i¼1

Iið1� γðt � iÞÞ þ It ; ð1Þ

Where γ (t−i ) is the cumulative distribution function of the infectious period.
We also follow Grubaugh et al.5 in modeling the infectious period as a gamma
distribution with mean 7 days and standard deviation 4.5 days. Based on the
estimated distributions of prevalent infections for the relevant locations over the
time period of our analysis, we specify exponential or (truncated) normal prior
distributions on the sampling times of unsampled taxa (Supplementary Fig. S6),
and integrate over all possible times using MCMC in the full Bayesian analysis.
Using a different, small empirical example, we illustrate the concept of including
unsampled diversity in phylogeographic reconstruction and how it contributes to
uncovering viral migration pathways (Supplementary Text S2).

Bayesian phylogeographic inference incorporating global mobility. We
implement our approach to incorporate travel history in discrete phylogeographic
inference in the BEAST framework (v.1.10.439). In this framework, we assume
that discrete trait data X, in our case location data associated with both sampled
and unsampled taxa, and aligned molecular sequence data Y arise according to
CTMC processes on a random phylogeny F with the following model posterior
distribution:

PrðF;Λ;T;ϕjX;YÞ / PrðXjF;T;ΛÞPrðYjF;ϕÞ
Pr Fð ÞPrðTÞPrðΛÞPrðϕÞ; ð2Þ

where Pr(X|F,T,Λ) and Pr(Y|F,ϕ) represent the discrete trait likelihood and
sequence likelihood, respectively, T is the additional time information for the

ancestral nodes, Λ and ϕ characterize the discrete trait and molecular sequence
CTMC parameterizations along F, respectively.

Likelihoods Pr(X|F,T,Λ) and Pr(Y|F,ϕ) are calculated using Felsenstein’s
pruning algorithm40, a computation that is efficiently performed using the high-
performance BEAGLE library41. We note that for the travel histories, the ancestral
locations and times are introduced only for evaluating the discrete trait location
likelihood Pr(X|F,T,Λ). The ancestral locations and times do not affect the
sequence likelihood Pr(Y|F,ϕ), nor the likelihood of the coalescent model we use as
our tree prior Pr(F).

For the sequence data, we use the HKY nucleotide substitution CTMC
model42, with a proportion of invariant sites and gamma-distributed rate
variation among sites43, a strict molecular clock model, and an exponential
growth coalescent tree prior. The uncertainty in collection date for 1 genome was
accommodated in the inference by integrating their age over the respective
month of sampling. Our discrete location diffusion model involves 44 locations,
represented by a limited number of sampled (and unsampled) taxa and ancestral
nodes associated with travel locations. In order to avoid having to estimate a
huge number of location-transition parameters in a high-dimensional CTMC,
and to further inform the phylogenetic placement of unsampled taxa, we adopt a
GLM formulation of the discrete trait CTMC that parametrizes the transition
rates as a function of a number of potential covariates17. As covariates, we
consider (i) air travel data, (ii) geographic distance, and (iii) an estimable
asymmetry coefficient for Hubei to account for the fact that the early stage of
COVID-19 spread was dominated by importations from Hubei (with
underdetected cases of COVID-19 probably having spread in most locations
around the world25). The air travel data consist of average daily symmetric fluxes
between the 44 locations in January and February, 2013 (International Air
Transport Association, http://www.iata.org). The geographic distance covariate
only considers distances for pairs of locations in the same continent, which are
based on centroid coordinates. We estimate the effect size of each of these
covariates, as well as their inclusion probability (specifying a 0.5 prior inclusion
probability for each covariate).

We approximate the posterior distribution of our full probabilistic model using
MCMC sampling. We run sufficiently long chains to ensure adequate effective
sample sizes for continuous parameters as diagnosed, using Tracer v.1.7.144. We
summarize posterior tree distributions using MCC trees, and visualize them using
FigTree v.1.4.4. However, due to the limitations of single-tree representations when
facing extensive phylogenetic uncertainty, we also propose new summaries below.

Australia

Italy

Hubei

SE Asia

Iran

a b

c d

Fig. 7 Incorporating travel history data in phylogeographic reconstruction. a The concept of introducing ancestral nodes associated with locations from
which travelers returned. The ancestral nodes are indicated by arrows for five cases relating them to the genomes sampled from the travelers. The
ancestral nodes are introduced at different times in the ancestral path of each sampled genome. b–d The results from analyses using sampling location and
travel history, sampling location only, and travel origin location, respectively. The branch color reflects the modal state estimate at the child node. There is
some topological variability, but only involving nodes that are poorly supported.
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A tutorial explaining how to perform travel-aware phylogeographic analyses in
BEAST can be found at http://beast.community/travel_history.

Posterior predictive accuracy assessment. We validate the approach of incor-
porating travel history data through a posterior predictive accuracy assessment.
Specifically, we perform a tenfold cross validation that, in each fold, holds out a
10% random partition of the travel history information (the ancestral travel
location for tip sequences with travel history data) and estimates the known, but
not included, location at their respective times in the past (Ti→j, generally the travel
return times). Across folds, we measure the prediction accuracy for the withheld
ancestral travel locations (i) when including the remaining 90% of the travel his-
tory, and (ii) when excluding all travel history data, using the original BS for
multistate predictions45, defined as follows:

BS ¼ 1
N

XN
i¼1

XK
j¼1

pij � xij
� �2

; ð3Þ

where N is the number of ancestral location instances we predict in our tenfold
validation, K is the number of location states, pij is the posterior probability for
location state j in ancestral location instance i, and xij is the outcome for location
state j in ancestral location instance i (1 for the observed location state at the
ancestral travel history node and 0 for all other location states). This score
represents the mean squared error for the predictions and ranges between 0 for
perfect accuracy and 2 for perfect inaccuracy, and is a proper scoring rule that
incorporates both discrimination and calibration, arguably the two most important
characteristics of prediction46.

Phylogeographic visualizations. Due to the relatively low sequence variability
over the short time scale of spread, phylogenetic reconstructions of SARS-CoV-2
are inherently uncertain, which also complicates inferring and interpreting
location-transition histories. If nodes in an MCC tree are associated with low
posterior support, their conditional modal state annotation will be determined by a
limited number of corresponding samples from the posterior tree distribution. The
addition of unsampled taxa adds an additional challenge because the absence of
sequence data makes them highly volatile in phylogenetic reconstruction, reducing
posterior node support to impractically low values for many nodes.

In order to marginalize over phylogenetic clustering in our visualization of
phylogeographic history, we generate Markov jump estimates of the transition
histories that are averaged over the entire posterior in our Bayesian inference17,47.
We study the ancestral transition history of specific taxa of interest by summarizing
their Markov jump estimates as trajectories over time between a number of relevant
states. A new BEAST tree sample tool (TaxaMarkovJumpHistoryAnalyzer available
in the BEAST codebase at https://github.com/beast-dev/beast-mcmc) and
associated R package constructs these estimates. The BEAST tutorial on
incorporating travel history also includes information on how to use these tools
(http://beast.community/travel_history). We also visualize posterior expected
Markov jumps estimates between all locations using Sankey plots and circular
migration flow plots. The latter have been successfully used to visualize migration
data48, including phylogeographic estimates49. When summarizing these jumps
from analyses that include unsampled diversity, we ignore branches that only have
unsampled taxa as descendants. We only plot jumps that have a posterior
probability larger than 0.90.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
BEAST XML input files including the GLM-diffusion model and travel history, with or
without unsampled diversity, are available at https://github.com/phylogeography/
travelHistory50. The SARS-CoV-2 genome data required for running these xmls can be
downloaded from www.gisaid.org. Supplementary Tables 2–5 list accession numbers for
the genomes used in this study. Case count data were obtained from Our World in Data
(https://ourworldindata.org/coronavirus-source-data). Air travel data were obtained
from the International Air Transport Association (http://www.iata.org).

Code availability
The code for running BEAST analyses with travel history is available in the
ancestral_path branch of the BEAST codebase available at https://github.com/beast-dev/
beast-mcmc. The tree sample tool, TaxaMarkovJumpHistoryAnalyzer, is available from
the master branch in the same codebase. The R package to visualize Markov jump
trajectories is available at https://github.com/beast-dev/MarkovJumpR51. A tutorial
explaining how to perform travel-aware phylogeographic analyses in BEAST and how to
summarize them can be found at http://beast.community/travel_history.

Received: 13 June 2020; Accepted: 17 September 2020;

References
1. Quick, J. et al. Real-time, portable genome sequencing for Ebola surveillance.

Nature 530, 228–232 (2016).
2. Lu, J. et al. Genomic epidemiology of SARS-CoV-2 in Guangdong Province,

China. Cell 181, 997–1003 (2020).
3. Deng, X. et al. Genomic surveillance reveals multiple introductions of SARS-

CoV-2 into Northern California. Science 369, 582–587 (2020).
4. Bedford, T. et al. Cryptic transmission of SARS-CoV-2 in Washington State.

Science eabc0523 (2020).
5. Fauver et al. Coast-to-Coast Spread of SARS-CoV-2 during the Early

Epidemic in the United States. Cell 181, 990–996 (2020).
6. Grubaugh, N. D. et al. Tracking virus outbreaks in the twenty-first century.

Nat. Microbiol. 4, 10–19 (2019).
7. Mavian, C., Marini, S., Prosperi, M. & Salemi, M. A snapshot of SARS-CoV-2

genome availability up to April 2020 and its implications: data analysis. JMIR
Public Health Surveill. 6, e19170 (2020).

8. Shu, Y. & McCauley, J. GISAID: Global initiative on sharing all influenza
data - from vision to reality. Euro Surveill. 22, 30494 (2017).

9. Duchene, S. et al. Temporal signal and the phylodynamic threshold of SARS-
CoV-2, Virus Evolution, veaa061, https://doi.org/10.1093/ve/veaa061.

10. Lemey, P., Rambaut, A., Drummond, A. ~J. & Suchard, M. ~A. Bayesian
phylogeography finds its root. PLoS Comput. Biol. 5, e1000520 (2009).

11. Ishikawa, S. A., Zhukova, A., Iwasaki, W. & Gascuel, O. A fast likelihood
method to reconstruct and visualize ancestral scenarios. Mol. Biol. Evol. 36,
2069–2085 (2019).

12. De Maio, N., Wu, C.-H., O’Reilly, K. M. & Wilson, D. New routes to
phylogeography: a Bayesian structured coalescent approximation. PLoS Genet.
11, e1005421 (2015).

13. Kühnert, D., Stadler, T., Vaughan, T. G. & Drummond, A. J. Phylodynamics
with migration: a computational framework to quantify population structure
from genomic data. Mol. Biol. Evol. 33, 2102–2116 (2016).

14. Müller, N. F., Rasmussen, D. A. & Stadler, T. The structured coalescent and its
approximations. Mol. Biol. Evol. 34, 2970–2981 (2017).

15. Hadfield, J. et al. Nextstrain: real-time tracking of pathogen evolution.
Bioinformatics 34, 4121–4123 (2018).

16. Baele, G., Suchard, M. A., Rambaut, A. & Lemey, P. Emerging concepts of data
integration in pathogen phylodynamics. Syst. Biol. 66, e47–e65 (2017).

17. Lemey, P. et al. Unifying viral genetics and human transportation data to
predict the global transmission dynamics of human influenza H3N2. PLoS
Pathog. 10, e1003932 (2014).

18. Dudas, G. et al. Virus genomes reveal factors that spread and sustained the
Ebola epidemic. Nature 544, 309–315 (2017).

19. Grubaugh, N. D. et al. Travel surveillance and genomics uncover a hidden
Zika outbreak during the waning epidemic. Cell 178, 1057–1071.e11 (2019).

20. Hong, S. L. et al. In search of covariates of HIV-1 subtype B spread in the
United States-a cautionary tale of large-scale Bayesian phylogeography.
Viruses 12, 182 (2020).

21. Kupferschmidt, K. Mutations can reveal how the coronavirus moves—but
they’re easy to overinterpret. Science|AAAS https://www.sciencemag.org/news/
2020/03/mutations-can-reveal-how-coronavirus-moves-they-re-easy-
overinterpret (2020).

22. Eden, J.-S. et al. An emergent clade of SARS-CoV-2 linked to returned
travellers from Iran. Virus Evol. 6, veaa027 (2020).

23. Sahafizadeh, E. & Sartoli, S. Epidemic curve and reproduction number of
COVID-19 in Iran. J. Travel Med. 27, taaa077, https://doi.org/10.1093/jtm/
taaa077 (2020).

24. Gill, M. S., Lemey, P., Bennett, S. N., Biek, R. & Suchard, M. A. Understanding
past population dynamics: bayesian coalescent-based modeling with
covariates. Syst. Biol. 65, 1041–1056 (2016).

25. Niehus, R., De Salazar, P. M., Taylor, A. R. & Lipsitch, M. Using observational
data to quantify bias of traveller-derived COVID-19 prevalence estimates in
Wuhan, China. Lancet Infect. Dis. 20, 803–808 (2020).

26. Bielejec, F., Lemey, P., Baele, G., Rambaut, A. & Suchard, M. A. Inferring
heterogeneous evolutionary processes through time: from sequence
substitution to phylogeography. Syst. Biol. 63, 493–504 (2014).

27. Pinotti, F. et al. Tracing and analysis of 288 early SARS-CoV-2 infections
outside China: A modeling study. PLoS Med. 17, e1003193 (2020).

28. Rambaut et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to
assist genomic epidemiology. Nat. Microbiol. https://doi.org/10.1038/s41564-
020-0770-5 (2020).

29. Katoh, K., Asimenos, G. & Toh, H. Multiple alignment of DNA sequences
with MAFFT. Methods Mol. Biol. 537, 39–64 (2009).

30. Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the
temporal structure of heterochronous sequences using TempEst (formerly
Path-O-Gen). Virus Evol. 2, vew007 (2016).

31. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for
phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534
(2020).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18877-9 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5110 | https://doi.org/10.1038/s41467-020-18877-9 | www.nature.com/naturecommunications 13

http://beast.community/travel_history
https://github.com/beast-dev/beast-mcmc
http://beast.community/travel_history
https://github.com/phylogeography/travelHistory
https://github.com/phylogeography/travelHistory
http://www.gisaid.org
https://ourworldindata.org/coronavirus-source-data
http://www.iata.org
https://github.com/beast-dev/beast-mcmc
https://github.com/beast-dev/beast-mcmc
https://github.com/beast-dev/MarkovJumpR
http://beast.community/travel_history
https://doi.org/10.1093/ve/veaa061
https://www.sciencemag.org/news/2020/03/mutations-can-reveal-how-coronavirus-moves-they-re-easy-overinterpret
https://www.sciencemag.org/news/2020/03/mutations-can-reveal-how-coronavirus-moves-they-re-easy-overinterpret
https://www.sciencemag.org/news/2020/03/mutations-can-reveal-how-coronavirus-moves-they-re-easy-overinterpret
https://doi.org/10.1093/jtm/taaa077
https://doi.org/10.1093/jtm/taaa077
https://doi.org/10.1038/s41564-020-0770-5
https://doi.org/10.1038/s41564-020-0770-5
www.nature.com/naturecommunications
www.nature.com/naturecommunications


32. Duchene, S. et al. Bayesian Evaluation of Temporal Signal in Measurably
Evolving Populations. Mol. Biol. Evol. msaa163, https://doi.org/10.1093/
molbev/msaa163.

33. Strimmer, K. & von Haeseler, A. Likelihood-mapping: a simple method to
visualize phylogenetic content of a sequence alignment. Proc. Natl Acad. Sci.
USA 94, 6815–6819 (1997).

34. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics
34, 3094–3100 (2018).

35. Scotch, M. et al. Incorporating sampling uncertainty in the geospatial
assignment of taxa for virus phylogeography. Virus Evol. 5, vey043, https://doi.
org/10.1093/ve/vey043 (2019).

36. Lauer, S. A. et al. The incubation period of coronavirus disease 2019 (COVID-
19) from publicly reported confirmed cases: estimation and application. Ann.
Intern. Med. 172, 577–582 (2020).

37. Ferguson, N. M., & Dighe, A. et al. Impact of Non-pharmaceutical
Interventions (Npis) to Reduce Covid-19 Mortality and Healthcare Demand
(Imperial College, London, 2020).

38. Hodcroft, E. B. Preliminary case report on the SARS-CoV-2 cluster in the UK,
France, and Spain. Swiss Med. Wkly 150, w20212 (2020).

39. Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data
integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).

40. Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood
approach. J. Mol. Evol. 17, 368–376 (1981).

41. Ayres, D. L. et al. BEAGLE 3: improved performance, scaling, and usability for
a high-performance computing library for statistical phylogenetics. Syst. Biol.
68, 1052–1061 (2019).

42. Hasegawa, M., Kishino, H. & Yano, T. Dating of the human-ape splitting by a
molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).

43. Yang, Z. Maximum-likelihood estimation of phylogeny from DNA sequences
when substitution rates differ over sites. Mol. Biol. Evol. 10, 1396–1401 (1993).

44. Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior
summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67,
901–904 (2018).

45. Brier, G. W. Verification of forecasts expressed in terms of probability. Mon.
Weather Rev. 78, 1–3 (1950).

46. Rufibach, K. Use of Brier score to assess binary predictions. J. Clin. Epidemiol.
63, 938–939 (2010).

47. Minin, V. N. & Suchard, M. A. Fast, accurate and simulation-free stochastic
mapping. Philos. Trans. R Soc. Lond. B Biol. Sci. 363, 2985–2995 (2008).

48. Abel, G. J. & Sander, N. Quantifying global international migration flows.
Science 343, 1520–1522 (2014).

49. Faria, N. R. et al. Distinct rates and patterns of spread of the major HIV-1
subtypes in Central and East Africa. PLoS Pathog. 15, e1007976 (2019).

50. Lemey, P. et al. Accommodating individual travel history and unsampled
diversity in Bayesian phylogeographic inference of SARS-CoV-2. https://
github.com/phylogeography/travelHistory, https://doi.org/10.5281/
zenodo.4027885 (2020).

51. Lemey, P. et al. Accommodating individual travel history and unsampled
diversity in Bayesian phylogeographic inference of SARS-CoV-2. https://
github.com/beast-dev/MarkovJumpR, https://doi.org/10.5281/
zenodo.4033310 (2020).

Acknowledgements
We would like to thank all the authors who have kindly shared genome data on GISAID,
and we have included a table (Supplementary Tables 4 and 5) listing the authors and
institutes involved. The research leading to these results has received funding from the
European Research Council under the European Union’s Horizon 2020 research and

innovation program (grant agreement no. 725422-ReservoirDOCS) and from the Eur-
opean Union’s Horizon 2020 project MOOD (grant agreement no. 874850). The Artic
Network receives funding from the Wellcome Trust through project 206298/Z/17/Z. P.L.
acknowledges support by the Research Foundation—Flanders (“Fonds voor Weten-
schappelijk Onderzoek—Vlaanderen”, G066215N, G0D5117N, and G0B9317N). G.B.
acknowledges support from the Interne Fondsen KU Leuven/Internal Funds KU Leuven
under grant agreement C14/18/094, and the Research Foundation—Flanders (“Fonds
voor Wetenschappelijk Onderzoek—Vlaanderen”, G0E1420N). M.A.S. and K.G.A.
acknowledge support from National Institutes of Health grant U19 AI135995. We also
gratefully acknowledge support from NVIDIA Corporation with the donation of parallel
computing resources used for this research. This work was supported by the Multi-
national Influenza Seasonal Mortality Study (MISMS), an on-going international colla-
borative effort to understand influenza epidemiology and evolution, led by the Fogarty
International Center, NIH. The content is solely the responsibility of the authors and
does not necessarily represent official views of the National Institutes of Health.

Author contributions
P.L. and M.A.S designed the study and developed the main methodology. P.L., M.A.S,
S.H., V.H., G.B., Á.O., and J.T.M. performed the analysis. C.P. and V.C. contributed data.
K.G.A, M.W., M.N., and A.R. advised on the methodology and its application, and
contributed to the interpretation of the estimates. All authors discussed the results,
edited, and approved the contents of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-18877-9.

Correspondence and requests for materials should be addressed to P.L. or M.A.S.

Peer review information Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18877-9

14 NATURE COMMUNICATIONS |         (2020) 11:5110 | https://doi.org/10.1038/s41467-020-18877-9 | www.nature.com/naturecommunications

https://doi.org/10.1093/molbev/msaa163
https://doi.org/10.1093/molbev/msaa163
https://doi.org/10.1093/ve/vey043
https://doi.org/10.1093/ve/vey043
https://github.com/phylogeography/travelHistory
https://github.com/phylogeography/travelHistory
https://doi.org/10.5281/zenodo.4027885
https://doi.org/10.5281/zenodo.4027885
https://github.com/beast-dev/MarkovJumpR
https://github.com/beast-dev/MarkovJumpR
https://doi.org/10.5281/zenodo.4033310
https://doi.org/10.5281/zenodo.4033310
https://doi.org/10.1038/s41467-020-18877-9
https://doi.org/10.1038/s41467-020-18877-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Accommodating individual travel history and unsampled diversity in Bayesian phylogeographic inference of SARS-CoV-2
	Results
	Travel history uncovers more realistic phylogeographic patterns
	Unsampled diversity reinforces reconstructions informed by travel data and unveils alternative transmission hypotheses
	Retrospective genome availability fills specific sampling gaps but still benefits from incorporating travel history

	Discussion
	Methods
	SARS-CoV-2 genome data sets and associated travel history
	Incorporating travel history in Bayesian phylogeographic inference
	Incorporating unsampled diversity in Bayesian phylogeographic inference
	Bayesian phylogeographic inference incorporating global mobility
	Posterior predictive accuracy assessment
	Phylogeographic visualizations

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




