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Learning of rules that have high-frequency exceptions:
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Abstract

Theorists of human learning, in domains as various as calegory
learning and language acquisition, have grappled with the is-
sue of whether learners induce rules or remember exemplars,
or both. In this article we present new daia that reflect both
rule induction and exemplar encoding, and we present a new
connectionist model that specifies one way in which rule-based
and exemplar-based mechanisms might interact. Our empiri-
cal study was motivaled by analogy to past tense acquisition,
and specifically by the previous work of Palermo and Howe
(1970). Human subjects learned to categorize items, most of
which could be classified by a simple rule, excepl for a few fre-
quently recurring exceptions. The modeling was motivated by
the idea of combining an exemplar-based module (ALCOVE,
Kruschke, 1992) and a rule-based module in a connectionist
architecture, and allowing the system to learn which module
should be responsible for which instances, using the competi-
tive gating mechanism introduced by Jacobs, Jordan, Nowlan,
and Hinton (1991). We report quantitative fits of the model to
the learning data.

Introduction

Theorists of human learning, in domains as various as category
learning and language acquisition, have grappled with the is-
sue of whether learners induce rules or remember exemplars,
or both. In the field of language acquisition, this issue has
been highlighted by debate over the adequacy of certain con-
nectionist models, that have no explicit rules, to account for
the acquisition of the past tense of English verbs (e.g. Rumel-
hart & McClelland, 1986; Pinker & Prince, 1988; Plunkeu &
Marchman, 1991; MacWhinney & Leinbach, 1991; Ling &
Marinov, 1993). Pinker (1991; Prasada & Pinker 1993) ar-
gued that a satisfactory explanation of past tense acquisition
and production requires both rules — to account for aspects
of regular verbs — and exemplar memory — to account for
aspects of irregular verbs. In the field of category learning,
it has been found that people can learn a classification using
different strategies, such that in some situations their leamm-
ing and performance is best described by a rule, and in other
situations it is best described by similarity to the training in-
stances (e.g. Allen & Brooks, 1991; Nosofsky, Clark, & Shin,
1989; Palmeri & Nosofsky, 1994; Regehr & Brooks, 1993).
Shanks and St. John (1994) argued that category learning is
subserved by two separate and dissociable systems, one for
rule induction and one for instance encoding. In this article
we present new data that we believe reflect both rule induction
and exemplar encoding, and we also present a new connec-
tionist model that specifies one way in which rule-based and

514

exemplar-based mechanisms might interact.

Our empirical study was motivated by analogy to past tense
acquisition, and specifically by the previous work of Palermo
(Palermo & Eberhart, 1968; Palermo & Howe, 1970). Human
subjects learned to categorize items, most of which could be
classified by a simple rule, except for a few frequently recur-
ring exceptions. The results showed an increase in the pro-
portion of over-generalization errors as training progressed,
and little evidence of regressions in performance (U-shaped
learning) on the exceptions. Importantly, we also found that
many subjects learned the rule instances earlier in training than
the exceptions. The latter result turns out to be the one most
difficult to capture by models using instance encoding alone.

The modeling was motivated by the idea of combining
exemplar-based and rule-based modules in a connectionist ar-
chitecture, and allowing the system to learn which module
should be responsible for which instances. A modified ver-
sion of ALCOVE (Kruschke, 1992) served as the exemplar
module, linear-threshold nodes (perceptrons) constituted the
rule module, and the competitive gating between the modules
used a mechanism introduced by Jacobs et al. (1991). We
report quantitative fits of the model to the learning data.

Human Learning

In the field of language acquisition, proponents of rule-based
theories often adduce the phenomenon of three-stage, or U-
shaped, leamning of high-frequency irregulars. For example,
when leamning the English past tense, some children exhibit
three stages of acquisition (Ervin, 1964): First, they learn a
few high-frequency irregular verbs, such as go—went. Second,
they learn many regular verbs, such as walk-walked, and at the
same time often over-generalize the regular suffix, producing
forms such as goed or wented. Third, they releamn the proper
forms of the irregulars and acquire a larger vocabulary of lower
frequency verbs, both regular and irregular. The acquisition
of high-frequency irregular verbs is often described as “U-
shaped,” because a plot of accuracy as a function of time would
show a dip during the second stage. The over-generalization
in stage 2 can be accounted for by positing rule induction:
The learner has induced and overapplied a rule that was not
present earlier in learning.

Recent research (Marcus, Pinker, Ullman, Hollander,
Rosen, & Xu, 1992; Plunkett & Marchman, 1991) suggests
that the U-shape might be more subtle than initially suggested.
It is difficult accurately to measure performance on various
verbs, insofar as only a relatively small sample of a child’s
speech and linguistic environment can be recorded and ana-
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Figure 1: Example of a stimulus used in the category
leaming experiment.

lyzed. The difficulty of experimental control in natural lan-
guage led Palermo (Palermo & Eberhart, 1968; Palermo &
Howe, 1970) to create laboratory analogues of the language
learning situation.

We make no claims about the relation of category learn-
ing and language learning (cf. Palermo, 1971; Palermo &
Eberhart, 1971), but we are interested in the empirical ques-
tion of whether carefully controlled category learning can ex-
hibit U-shaped learning curves on high-frequency exceptions
to rules, and we are interested in determining whether formal,
exemplar-based models can account for the detailed laboratory
data.

Method

Subjects leamed to classify simple geometric forms into one of
six categories. Stimuli were presented on a computer screen,
and consisted of a rectangle that could have one of eight
heights, and an internal line segment that could have one of
eight lateral positions (see Figure 1). On each trial, the subject
was shown a stimulus and prompted to make a classification
decision. The subject pressed the key corresponding to the
category label of their choice, and then the correct label was
displayed. In the initial trials, the subjects were just guess-
ing, but after several trials they began to learn which stimuli
corresponded to which category labels.

We chose a category structure that approximately followed
the design of Palermo and Howe (1970). There were a total
of 8 x 8 = 64 possible stimuli’, most of which could be
classified by the following simple rule: If the height is 5 or
more, then it’s in category R1, otherwise it’s in category R2.
There were four exceptions to the rule, chosen randomly for
each subject, constrained so that no two exceptions had the
same height or lateral position. In every block of 22 trials,
there were 6 distinct instances of rule-based category R1, 6
distinct instances of rule-based category R2, 1 occurrence of
the exception category E1, 2 recurrences of the exception E2,
3 recurrences of the exception E3, and 4 recurrences of the
exception E4.

!Following Palermo and Howe (1970), eight stimuli were omitted
from the design, for which the height value equaled the position value.
Thus there were actually 56 possible stimuli.
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The rule we used, which divided the heights into two equal
regions, was simpler than the rule used by Palermo and Howe
(1970). Their study included three rule categories that divided
the stimulus space into alternating “stripes;” e.g., heights 1, 4
and 6 were category R1, heights 2, 5 and 8 were category R2,
elc. We simplified the rule structure because we found in
pilot experiments that most subjects could not reliably learn
the more complicated structure in the time available (about
1.5 hrs).

Subjects were trained until they performed perfectly for 4
consecutive blocks, or for a maximum of 55 blocks. The
experiment lasted about 1.5 hours. Subjects were volunteers
from an introductory psychology course at Indiana University,
who received partial course credit for their participation.

Results

Unlike Palermo and Howe (1970), we found many subjects
who learned the rule-based categories before the exceptions.
The fact that Palermo and Howe (1970) found no subjects who
learned the rule first can probably be attributed to the more dif-
ficult rule used in their study. We decided that a subject had
learned the exceptions first if her first best block on excep-
tions came before her first best block on rules. For example,
suppose a given subject has several blocks in which she got
10 out of 10 exceptions correct. The first block in which she
achieves that performance is her first best block for excep-
tions. Suppose the same subject achieves at most 11 correct
responses out of 12 rule exemplars in a block. The first block
in which she achieves that performance is her first best block
for rules. We tried several other methods for dividing sub-
jects into rule-first and exception-first groups, such as overall
proportion correct, etc., and they agreed on nearly all the sub-
jects. Of the 70 subjects in the experiment, 49 were classified
as exceptions-first, and the remaining 21 were classified as
rules-first. (The rules-first group also included ties.) The pro-
portion of correct responses, for each category type, is shown
as a function of training block in Figure 2. The solid line in
each panel shows performance on the rule exemplars, and the
dashed lines show performance on the exceptions. The four
dashed lines in each panel correspond to the four different ex-
ceptions, with higher frequency exceptions learned better than
lower frequency exceptions.

There was no strong evidence of U-shaped leaming on the
exceptions; the leaming curves for the exceptions in Figure 2
show no dramatic drop after performance on the rule cases
rises. We also aligned individual subjects’ learning curves to
their first best block on exceptions, and found a small regres-
sion in performance on the two lowest-frequency exceptions.
We feel additional replications are required to putmuch weight
on those results, however.

We considered the possibility that absolute performance on
the exceptions would not decline, but the proportion of errors
on exceptions that are overgeneralization errors might increase
suddenly when the rule begins to be learned. For both the
exceptions-first and rules-first subjects, there was a gradual,
not sudden, increase in the proportion of over-generalization
errors throughout the course of learning.

In some respects, then, we failed to find the touchstone
empirical phenomena that we sought: We did not find dramatic
U-shaped learning on the exceptions, nor did we find a sudden
increase in the proportion of over-generalization errors. As
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Figure 2: Human learning data.

those two phenomena were thought to be the key challenges
to an exemplar-based account, it might seem that an exemplar-
based model could handle the results readily. On the contrary,
the unexpected result, that many subjects learned the rules
first, turns out to be impossible to capture for at least one
exemplar-based model.

A Hybrid Connectionist Model

An exemplar-based connectionist model named ALCOVE (Kr-
uschke, 1992, 1993a, 1993b) previously has been shown to
account for a variety of phenomena in human category learn-
ing. In particular, Kruschke (1992) demonstrated that AL-
COVE could exhibit U-shaped leaning of high-frequency ex-
ceptions to a rule, although in that demonstration there were
no human learning data available for quantitative fits. The
experiment reported above provides quantitative data from a
relevant experiment.

ALCOVE is a feed-forward connectionist network that maps
stimuli to category labels. It combines the classification
scheme of the generalized context model (Nosofsky, 1986)
with the learning mechanism of backpropagation (Rumelhart,
Hinton, & Williams, 1986), and thereby formalizes three prin-
ciples (Kruschke, 1993b): First, its hidden nodes correspond
to individual training exemplars, such that the activation of a
hidden node represents the similarity of the current input to the
exemplar represented by the node. (Figure 3 shows the activa-
tion function of an exemplar node in ALCOVE.) Second, each
input dimension is gated by an attention strength that reflects
the learned relevance of the dimension for the current cate-
gory distinctions. For example, in the categories used in the
experiment described here, only the height of the rectangles
is relevant for distinguishing the two rule-based categories,
but both dimensions are relevant for distinguishing the ex-
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ceptions. Third, the dimensional attention strengths, and the
association weights between exemplars and categories, are
learned via gradient descent on an error measure.

ALCOVE suffers two main problems when fit to the data
in Figure 2: First, it cannot learn the rules as quickly as
the high-frequency exceptions, unlike the rules-first subjects.
The model suffers because it cannot generalize across rule ex-
emplars extensively and rapidly enough; the exemplar-based
similarity function is too localized for rapid extrapolation to
distant exemplars. A second shortcoming of the model is that
it is much too sensitive to the relative frequencies of the ex-
ceptions, so that the spread between the learning curves of the
four exceptions is too large.

We are not claiming that no possible exemplar-based model
could fit these data. Rather, we fit one promising model to the
data and found it lacking. As described in the introduction,
other evidence also points to inadequacies in purely exemplar-
based models of human category learning.

When a model fails to account for a set of data, the theorist
has two choices: Either re-formulate the existing principles
embodied in the model, or incorporate new principles (Kr-
uschke, 1993b). We believe that solutions to the aforemen-
tioned failures require new principles, not just reformulated
old principles. One of the added principles is rule-based rep-
resentation, used in conjunction with exemplar-based repre-
sentation.

Model architecture

To accommodate the rapidity with which some subjects leamn
the rule-based instances, we conjoined to ALCOVE a mod-
ule of nodes that represented rules. We wanted the nodes
to represent simple rules such as “if the height is greater
than value V, then it’s in category X.” A natural way to do
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Figure 4: Architecture of the model. Heavy arrows denote connections with learned weights.

that is with linear-threshold nodes (perceptrons) aligned to
the dimensional axes of the input space. Figure 3 illustrates
the difference between the two types of representation: In
ALCOVE's exemplar-based representation, each node is acti-
vated by a limited region of the input space, whereas in the
rule-based representation, each node is activated by an entire
half-space. Thus, we have two modules of nodes that embody
different basis functions. The underlying notion is that the dif-
ferent representational schemes used by human learners can
be implemented by different basis functions in a connectionist
network.

Whereas previous researchers have suggested that human
category leaming uses both rules and exemplars, the difficult
task of determining how those subsystems interact is yet to
be worked out (cf. Shanks & St. John, 1994). In our model,
we used the competitive gating scheme of Jacobs et al. (1991)
to govern the learning of the exemplar and rule modules, as
illustrated in Figure 4. Each rule node was connected to a set
of category nodes, and each exemplar node was connectedtoa
distinct set of categery nodes. The final output was determined
by randomly selecting either the rule-based or exemplar-based
classification according to probabilities given by a competitive
gating node. The gating node was connected to the exemplar
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representation only, so that the exemplar nodes could “veto”
the more general rule nodes, when necessary. The category
nodes in both modules, and the gating node, were simple linear
summators (as in ALCOVE). All the connection weights to the
category nodes and the gating node were initialized to zero and
adjusted by gradient descent on the error function described
in Jacobs et al. (1991).

The model had six, freely-estimated parameters, including
the following five: the learning rate for the rule-based cate-
gory nodes, the learning rate for the exemplar-based category
nodes, the learning rate for the gating node, the fixed bias of
the gating node, and the fixed receptive field diameter of the
exemplar nodes. There was no dimensional altention leamn-
ing in the exemplar module; i.e., the attention learning rate
in ALCOVE was set to zero, because it was assumed that se-
lective attention to dimensions would be accomplished by the
competition between dimension-specific rules.

One other new principle was introduced into the model, to
accommodate the relatively small spread between the leam-
ing curves of the different-frequency exceptions. Connections
from exemplars to category nodes suffered a refractory period
after learning. That is, if a given connection weight was ad-
justed on a certain trial, then its effective learning rate imme-
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Figure 5: Fits of the model to the human learning data in Figure 2,

diately plunged after that trial and gradually recharged over
subsequent trials. The recharge rate was the sixth parameter
of the model. The ramifications of this modification are ex-
tensive: It might help account for a variety of phenomena in
human leaming, such as the effects of massed vs. distributed
learning, etc. This particular modification is not the focus of
this paper, however, so we will not discuss it further.

Fit to human data

Figure 5 shows the predictions of the model. The best-fitting
parameter values reflected our intuitions about the subjects:
For the exceptions-first group, the learning rate for the ex-
emplar module was high (1.03) and the leaming rate for the
rule module was very low (0.0!), whereas for the the rules-
first group, the opposite was true, with the exemplar-module
learning rate low (0.41) and the rule-module learning rate
high (1.27). The human learners in the exceptions-first group
showed a gradual but robust increase in the proportion of
over-generalization errors throughout training, and so did the
model, despite the disuse of the rule module. In that case,
the model showed overgeneralization entirely because of ex-
emplar similarity: Each exception was surrounded by rule
instances, so when an error was made, it tended to be an over-
generalization error.

Summary and Conclusion

In this article we have emphasized two main points: First, a
novel empirical phenomenon that required us to seek a hy-
brid, rule and exemplar, model was that some subjects learned
the rule before they leamned the exceptions, whereas other
subjects learned the (high-frequency) exceptions before they
learned the rule. Second, we described a candidate connec-
tionist architecture for integrating rule-based and exemplar-

based modules. It introduces the combination of ideas that
different representational schemes for human categorization
may be implemented by different basis functions in connec-
tionist networks, and those basis functions can compete to
learn the categories. The model also used a novel method of
refractory learning rates on the connection weights.

The proposed architecture is not intended, in its present
form, as a comprehensive model of human category learning
in general. Rather, it is intended to demonstrate the veracity of
the approach. Future models could include additional basis-
function modules for representing prototypes as, e.g., radial
basis functions with adaptive receptive fields, and decision
boundaries as, e.g., polynomial basis functions. More com-
plicated schemes for gating the modules might also need to
be developed. We believe that one way to achieve significant
progress on the theoretical issue of how rules and exemplars
interact in human learning is to formulate specific models and
test them with detailed quantitative data, as we have described
here.
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