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ORIGINAL ARTICLES

A Bayesian Double Fusion Model for Resting-State Brain
Connectivity Using Joint Functional and Structural Data

Hakmook Kang,1,2 Hernando Ombao,3,4 Christopher Fonnesbeck,1,2

Zhaohua Ding,5,6 and Victoria L. Morgan5,6

Abstract

Current approaches separately analyze concurrently acquired diffusion tensor imaging (DTI) and functional
magnetic resonance imaging (fMRI) data. The primary limitation of these approaches is that they do not take
advantage of the information from DTI that could potentially enhance estimation of resting-state functional con-
nectivity (FC) between brain regions. To overcome this limitation, we develop a Bayesian hierarchical spatio-
temporal model that incorporates structural connectivity (SC) into estimating FC. In our proposed approach,
SC based on DTI data is used to construct an informative prior for FC based on resting-state fMRI data through
the Cholesky decomposition. Simulation studies showed that incorporating the two data produced significantly
reduced mean squared errors compared to the standard approach of separately analyzing the two data from dif-
ferent modalities. We applied our model to analyze the resting state DTI and fMRI data collected to estimate FC
between the brain regions that were hypothetically important in the origination and spread of temporal lobe
epilepsy seizures. Our analysis concludes that the proposed model achieves smaller false positive rates and is
much robust to data decimation compared to the conventional approach.

Keywords: diffusion tensor image; functional connectivity; functional magnetic resonance imaging; space-time
structure; structural connectivity

Introduction

Neuroimaging techniques continue to be developed
for investigating the underlying brain functions related

to human cognition, emotions, and behaviors. Applications
of functional magnetic resonance imaging (fMRI) have
shed light on brain research, including studies of the func-
tional and effective connectivity between two regions of
the brain providing insights into understanding the functional
networks in the brain. Functional connectivity (FC) has been
used as a biomarker for neurological and psychiatric disor-
ders, for example, Alzheimer’s disease ( Joo et al., 2016;
Wang et al., 2007; Zippo et al., 2015) and bipolar disorder
(Altinay et al., 2015; Dickstein et al., 2010).

To study brain functional and effective connectivity, it is
important to understand the extent to which this is facilitated
by structural connectivity (SC) that can be estimated by
multiple-tensor model or by probabilistic diffusion tractogra-

phy (Behrens et al., 2007) using diffusion tensor imaging
(DTI) data. It has been demonstrated in van den Heuvel
et al. (2009) the existence of anatomical white matter tracts,
SC, and interconnect regions associated with resting-state
networks.

A significant amount of work has been done to develop sta-
tistical models and procedures to analyze fMRI data (Bowman,
2007; Poldrack et al., 2011; Worsley et al., 1996), fMRI data
with a Bayesian approach (Yu et al., 2016; Zhang et al.,
2014, 2015), or DTI data (Basser et al., 1994; Behrens et al.,
2003, 2007), separately. Recently, Harrison et al. (2015) used
an independent component analysis approach to handle
spatiotemporal modes in large-scale resting-state fMRI (rs-
fMRI), combined with Bayesian approximation.

Although there has not been much effort to develop statis-
tical models that use these two types of data jointly, Olesen
et al. (2003) proposed a combined analysis of fMRI and DTI
to explore the association between maturation of white

1Department of Biostatistics, Vanderbilt University, Nashville, Tennessee.
2Center for Quantitative Sciences, Vanderbilt University, Nashville, Tennessee.
3Applied Mathematics and Computational Science, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
4Department of Statistics, University of California, Irvine, California.
5Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee.
6Department of Radiology and Radiological Science, Vanderbilt University, Nashville, Tennessee.

BRAIN CONNECTIVITY
Volume 7, Number 4, 2017
ª Mary Ann Liebert, Inc.
DOI: 10.1089/brain.2016.0447

219



matter and changes in brain activity during childhood. They
used structural information as a covariate in a typical multi-
ple regression model for fMRI data analysis. There are other
studies that address the advantages of using both fMRI and
DTI (Bowman et al., 2012; Greicius et al., 2009; Hendler
et al., 2003; Honey et al., 2009; Morgan et al., 2009; Werring
et al., 1998; Wieshmann et al., 2001; Xue et al., 2015).

Recently, Schmittmann et al. (2015) proposed to distin-
guish indirect FC from direct FC. On the same note, direct
SC can be separated from indirect SC where we define direct
SC as structural connection between two regions by white
matter tracts, whereas indirect SC as any structural con-
nection beside direct SC between two regions. To capture
dynamics in FC, Cribben et al. (2012) proposed dynamic
connectivity regression model. In 2014, Deco et al. proposed
a method in which SC estimation was iteratively enhanced
using empirical FC at bifurcation and Hansen et al. (2015)
constructed FC dynamics while SC was fused into the gener-
ative model. These two approaches were designed to capture
nonstationary nature of FC.

To assess the relationship between FC and SC, Huang and
Ding (2016) investigated association between conditional
Granger Causality, as a measure of FC, and edge weight as
a measure of SC proposed by Hagmann et al. (2008). The
mutual relationship between FC and SC was confirmed by
Meier et al. (2016), although the relationship was not one
to one. More methods and applications of fusing DTI and
fMRI can be found in Zhu et al. (2014). However, using
the SC acquired by analyzing DTI data to guide the estimates
of FC has not been extensively explored.

To properly take into account underlying spatiotemporal
correlation in rs-fMRI data while improving precision and
accuracy of FC estimation using multimodal MRI data,
that is, rs-fMRI and DTI, we developed a novel Bayesian hi-
erarchical modeling framework. Before describing the model
in detail, let’s define a term ‘‘naive FC’’: The naive FC is de-
fined as the correlation between two averaged time series
across voxels within each region of interest without taking
into account temporal correlation, which has been also
widely used in practice.

Our model takes into account the intrinsic spatial and tem-
poral correlation in rs-fMRI data while using the weighted
average of SC from DTI data and the naive FC as a source
of prior information for FC. Moreover, we fused two distinct
contributions of SC to FC estimation, that is, the effect of in-
direct SC on FC estimation was treated differently from that
of direct SC using a mixture model. Given predefined regions
of interests (ROIs), our approach naturally enables us to es-
timate FC by incorporating both functional and structural
data, that is, rs-fMRI and DTI data. As a result, our method
is expected to improve estimation accuracy and lead to more
reliable inference.

To validate our novel method, we conducted several nu-
merical experiments where we generated data with realistic
spatial and temporal correlation at each voxel within a ROI
and imposed correlation (i.e., structural and FC) between a
pair of ROIs, to appropriately represent the behavior of rs-
fMRI data. Then we analyzed the data by applying our
Bayesian hierarchical spatiotemporal model. In addition,
we applied our model to a data set consisting of rs-fMRI
time series and DTI acquired at voxels from predetermined
ROIs that were hypothetically important in the origination

and spread of temporal lobe epilepsy seizures (Holmes
et al., 2013): left hippocampus (HL), right hippocampus
(HR), left thalamus (TL), right thalamus (TR), precuneus
(PC), left insula (IL), right insula (IR), and cingulate gyrus
(CG). This data set provides us with an ideal opportunity
to study the relationships between SC and FC and how SC
affects FC estimation through our double-fusion process.

With this data set, we assess which approach is more ro-
bust to data decimation: assessing change in inference results
over different sample sizes enables us to compare our ap-
proach with the most common approach without knowing
the ground truth. With the most common approach (denoted
as AVG-FC) to estimate FC between a pair of ROIs, all the
time series within an ROI are summarized into one time
course by simply taking the average of the time series across
voxels within that ROI. Then after taking into account tempo-
ral correlation in each time series, we compute the correlation
between each pair of time series to estimate ROI-level FC.

Materials and Methods

Spatiotemporal hierarchical model

Let C be the number of ROIs and Vc be the number of vox-
els within the c-th ROI. Denote the time series at voxel v in
ROI c to be Ycv(t), t = 1,.,T, which would be a typical struc-
ture of observed data in an rs-fMRI study. We define a kernel
function wc �ð Þ that generates a valid covariance matrix for
local spatial (within ROI) covariance. We assume that wc �ð Þ
is a function of Euclidean distance. Using the model described
below, we can take into account the distant-dependent spatial
correlation between voxels within the same ROI and the tem-
poral correlation within a voxel.

Consider the following spatiotemporal model for rs-fMRI
time series:

Ycv tð Þ = bcþ bc vð Þþ dcþ �cv tð Þ (1)

� bc is the grand mean in ROI c;
� bc vð Þ is a zero-mean voxel-specific random effect

within an ROI c; this component captures the local spa-
tial dependency between voxels within the ROI. In this
study, we specify the covariance structure to be

Cov bc vð Þ, bc¢ v¢ð Þð Þ = wc k v� v¢ kð Þ, when c = c¢
0, when c 6¼ c¢:

�
(2)

Note that when two voxels belong to different ROIs then
their corresponding b values are uncorrelated as illustrated
in the second condition in equation (2). The function wc �ð Þ
can be any valid spatial covariance function, for example, ex-
ponential, Gaussian, or Matérn family (Cressie, 1993) in
which the correlation between two voxels is inversely propor-
tional to the distance between them. In this article, the expo-
nential function is used as illustrated in equation (3), where

Cov bc vð Þ, bc¢ v¢ð Þð Þ = r2
cexp �k v� v¢ k =/cð Þ, (3)

and r2
c is defined as the spatial variance at each voxel in ROI

c, v� v¢j jj j denotes the distance between two voxels, v and v¢,
and /c is ROI-specific decaying parameter;

� dc is a zero-mean ROI-specific random effect with a co-
variance structure Cov dc, dc¢ð Þ that is used to model FC
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between ROIs. Both the SC resulting from DTI and
naive FC play a role of prior information when estimat-
ing the covariance matrix of d = [d1, d2., dC]T; and

� �cv tð Þ is the noise that takes into account voxel-specific
temporal correlation that is assumed to follow an auto-
regressive temporal process with order one, that is, AR(1).
That is, �cv tð Þ = /�cv t� 1ð Þþw tð Þ, where / is the AR(1)
coefficient and w tð Þ denotes Gaussian random noise.

Hierarchical structure

Our main goal is to determine if using SC through a double
fusion process improves the accuracy and precision in func-
tional and effective connectivity estimation and enhances
power to detect statistically meaningful FC, that is, impor-
tant FC is defined as the probability of FC being >0.4 is
larger than 0.5. As no standard threshold has been estab-
lished, we choose Pr(FC >0.4) >0.5 as important, which
has been used to reflect moderate functional coherence by
Xue et al. (2015). Note that a posterior distribution of each
FC can be used as a descriptive tool to characterize the
FC, for example, median and interquartile range.

Let’s define Yc(t) = [Yc1(t),.,YcV c(t)]
T. Let 1m and Im¢ de-

note an all-ones vector with length m and an m¢ · m¢ identity
matrix, respectively. Then the model (1) can be rewritten as
an ROI-level model,

Yc tð Þ = bcþ bcþdcþ �c tð Þ (4)

where bc = bc1(Vc), bc = [bc(1),.,bc(Vc)]
T, dc = dc1(V c), and

ec(t) = [ec1(t),.,ecV c(t)]
T. Then this model has the following

hierarchical structure:

bc ~ N 0, r2
bc

� �
bc ~ N 0, Sbc

ð Þ
d ~ N 0, Sdð Þ

�cv tð Þ ~ N 0, r2
�cv
= 1�/2

cv

� �� � (5)

where some of terms can be further explained in detail as fol-
lows. Each term bc follows a Gaussian distribution with mean

zero and variance r2
bc

and bc is independent of bc¢ where

c 6¼ c¢. The term d = [d1,.,dC]T is also assumed to follow a
Gaussian distribution N 0, Sdð Þ, where the correlation matrix
of d denotes the FC among ROIs. For temporal correlation, we
assume that a time series at each voxel v follows an autore-
gressive model of order one (AR(1)), that is, the covariance
of ecv shows an AR(1) structure with AR(1) parameter /cv.

Note that model (4) can take into account (1) distance-
dependent spatial correlation between voxels inside the same
ROI using Cov bcð Þ and (2) temporal correlation at each voxel.

Double fusion of structural and FC

We develop a rigorous framework that incorporates struc-
tural information in estimating FC. Our approach is a Bayes-
ian hierarchical model (4) and allows us to capture the
resting state FC (rs-FC) between brain regions, which is de-
fined as the correlation of d = d1, . . . , dC½ �T in the model
(Friston et al., 1993).

Our model captures the FC between ROIs while adjusting
for the effect of local ROI-specific spatial correlation. Each
entry of the correlation matrix of d corresponds to the FC

of the appropriate pair of ROIs. The prior distribution of
the correlation matrix is a function of the structural and
naive FC of the ROIs in two distinct steps. The first fusion
of SC and naive FC is performed given that the effect of di-
rect SC on FC estimation is different from that of indirect SC
on FC estimation. For example, lower values for SC suggest
that there is no direct structural coupling between the two
ROIs, but there may be indirect structural connection be-
tween the two ROIs, possibly leading to high functional cou-
pling. If there is truly no structural connection, then the low
SC would push the corresponding FC toward zero. However,
indirect SC that cannot be measured in practice should be
treated differently from direct SC when fused with naive FC.

Consider the prior distribution of the covariance matrix
Cov dc, dc¢ð Þ. Let Sd denote the covariance matrix of d that
is assumed to be a function of structural and naive FC matrix.
Also, let Lsc, Lnfc, and LSd

denote a lower triangular matrix
resulting from the Cholesky decomposition of structural co-
variance matrix, naive functional covariance matrix, and func-
tional covariance matrix, respectively. To distinguish the
effects of direct SC from indirect SC, let LDSd

and LIDSd
de-

note LSd
corresponding to the lower triangular matrix resulted

from ‘‘direct’’ SC and ‘‘indirect’’ SC, respectively.
Then, we assume that

LDSd
i, jð Þ = kkLsc i, jð Þþ 1� kkð ÞLnfc i, jð Þ, (6)

LIDSd
i, jð Þ = SC i, jð ÞkkLsc i, jð Þþ 1� SC i, jð Þkkð ÞLnfc i, jð Þ,

(7)

LSd
i, jð Þ = xkLDSd

i, jð Þþ 1�xkð ÞLIDSd
i, jð Þ, (8)

where kk and xk are mixture weights on [0, 1] sampled from
a noninformative beta distribution with both the shape and
scale parameters being one; SC i, jð Þ denotes SC measure be-
tween ith and jth ROI, where k = 1, . . . , K ( = the number
of nonzero elements in LSd

), i = 1, . . . , C, and j = 1, . . . , C.
In Equation (6), the contribution of direct SC to LDSd

is reg-
ulated by kk that is determined by data, whereas that of
indirect SC to LIDSd

is also regulated by kk and the corre-
sponding SC as shown in Equation (7). Therefore, small SC
i, jð Þ derives LIDSd

i, jð Þ to be a function of only Lnfc i, jð Þ
where kk controls the effect of Lnfc i, jð Þ on LIDSd

i, jð Þ. The
second mixture between LDSd

i, jð Þ and LIDSd
i, jð Þ is regulated

by xk that is determined by data and results in LSd
i, jð Þ. In this

way, we can accommodate the contribution of both direct and
indirect SC for FC estimation. Then, LSd

, a hyperprior of Sd,
can be said as the element-wise weighted average of Lsc and
Lnfc while taking into account both direct and indirect contri-

bution of SC.
Then, the covariance matrix Sd is reconstructed as

LSd
· LSd

T , where LSd

T denotes the transpose of LSd
. Simple

normalization of Sd results in the correlation matrix of d, rs-
FC. This approach can guarantee that the estimated covari-
ance (or correlation) matrix is positive semidefinite, which
is one of most important characteristics of a valid covariance
(correlation) matrix.

Prior distributions

We used Markov Chain Monte Carlo (MCMC) methods for
estimation using Metropolis–Hastings sampler implemented
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in PyMC 2.3.4 (Patil et al., 2010). The standard deviation
terms rc, rbc

, and rec
, as well as the decaying parameter of

exponential covariance function in equation (3) uc, were as-
sumed to follow a uniform distribution, which is a common
noninformative prior for a variance parameter: rc, rec

, rbc
~

unif 0, 100ð Þ, and /c ~ unif 0, 20ð Þ where unif a, bð Þ denotes
a uniform distribution between a and b. For temporal corre-
lation, an AR(1) parameter at each ROI was also assumed to
follow a uniform distribution, unif 0, 1ð Þ, imposing positive
temporal correlation over time. The standard deviation term
rdc

in logarithmic scale was also assumed to follow a uni-
form distribution, unif 0, 20ð Þ, which was used to convert a
correlation matrix to the corresponding covariance matrix
and vice versa. Since we had no prior information regarding
the values of our parameters, we used uninformative priors.

Simulation study: data generation

We generated time series with a length of T = 128 scans
using autoregressive model with order one (AR(1)) at five
ROIs in which there are 100 voxels. We assumed positive
temporal correlation with the AR(1) coefficient of 0.6.
Then we imposed correlation between ROIs using a multivar-
iate normal distribution with zero mean and the correlation
matrix shown in matrix (9), assuming that the underlying
SC was fixed at the matrix (9) but FC was randomly sampled
from a Wishart distribution with mean covariance matrix
based on matrix (9) and six degrees of freedom.

Spatial correlation within a ROI was added by applying
spatial smoothing kernel with (1) FWHM = 0 (no spatial cor-
relation), (2) FWHM =3.53 (moderate spatial correlation), (3)
FWHM = 8.24 (strong spatial correlation), and (4) FWHM =1
(extreme spatial correlation where all the observations are the
same within an ROI) across voxels at each time point. In this
way, we could explore the effect of the degree of spatial cor-
relation on mean squared error (MSE).

We also generated the data using a t-distribution with three
degrees of freedom to investigate the robustness of Gaussian
noise assumption at FWHM = 3.53. Moreover, at FWHM =
3.53, we examined the effect of violating the assumption
of AR(1) process: we simulated the data using AR(2) process
with AR(1) coefficient of 0.6 and AR(2) coefficient of 0.3 and
then analyzed the simulated data using only AR(1) process.

1 0:6 0 0:5 0

1 0:2 0:1 0

1 0 0:1
1 0:2

1

0
BBBB@

1
CCCCA (9)

Simulation study: estimation

We analyzed the simulated data with two different priors
for FC, in particular, an informative prior based on true SC
and another prior based on structural independence assump-
tion (i.e., an identity matrix as prior); we computed the MSEs
of estimated rs-FC for each case. Moreover, we computed how
often three different strength of FCs, that is, zero FC, low FC
(0.1 or 0.2), and strong FC (0.5 or 0.6) were claimed important
at different sample sizes, n = 10, 8, 5, and 4. For comparison,
we also used the conventional approach (AVG-FC). Although
it is not necessary to infer FC by finding important pairs and

our approach can fully characterize FC in a descriptive way,
we used the notion of important FC to make direct compari-
sons between our approach and AVG-FC.

Subjects

To examine the impact of the SC between brain regions
associated with the origination of and spread of temporal
lobe epilepsy seizures, on the rs-FC, we utilized our proposed
hierarchical spatiotemporal model. A total of 7 healthy subjects
(37.3 � 16.5 years, 2 men, right-handed), without a history of
neurological, psychiatric, or medical conditions, participated in
this study. All subjects gave written informed consent.

Magnetic resonance imaging

All MRI was performed using a Philips Achieva 3T MRI
scanner (Philips Healthcare, Inc., Best, Netherlands) using a
32-channel head coil. Informed consent was obtained before
scanning as per institutional review board guidelines. The im-
aging protocol for each subject included a three-dimensional,
T1-weighted high-resolution image series across the whole
brain for intersubject normalization (1 · 1 · 1 mm3) and Free-
Surfer segmentation, and an fMRI T2* weighted gradient
echo, echo-planar image series at rest with eyes closed—
matrix 80 · 80, FOV = 240 mm, 34 axial slices, TE = 35 ms,
TR = 2 sec, slice thickness = 3.5 mm with 0.5 mm gap, 300
volumes. Physiological monitoring of cardiac and respiratory
fluctuations was performed at 500 Hz using the MRI scanner
integrated pulse oximeter and the respiratory belt.

Diffusion weighted images were acquired to quantify
white matter integrity parameters using a single shot, spin-
echo, echo-planar sequence—b = 1600 s/mm2, 92 diffusion
sensitizing directions, TR = 8.5 s, TE = 65 ms, matrix = 96 · 96,
50 slices, 2.5 · 2.5 · 2.5 mm3, no gap, 3 averages.

Imaging processing

The fMRI data were corrected for slice timing effects and
motion occurring between the fMRI scans using SPM8 soft-
ware (www.fil.ion.ucl.ac.uk/spm/software/spm8). The x, y,
and z translations and rotations of each volume acquisition
were saved as potential confounds in the FC computation.
The images were then corrected for physiological noise using
a RETROICOR protocol (Glover et al., 2000) using the
measured cardiac and respiratory time series. The corrected
fMRI images were spatially normalized to the Montreal
Neurological Institute template. The normalized fMRI time
series were then low pass filtered at a cutoff frequency of
0.1 Hz (Cordes et al., 2001).

Probabilistic tractography

The probabilistic tractography was created by analyzing
the DTI using the algorithm proposed by Behrens et al.
(2003) implemented in FSL software (Behrens et al.,
2007). More details about the algorithm are well described
in Behrens et al. (2003). From each voxel in the first ROI
(ROI 1, seed ROI), we created 5000 streamlines which
could travel in constrained directions due to the anisotropic
characteristic of diffusion coefficient of water molecule.
Therefore, some of the streamlines can reach to any voxels
in the second ROI (ROI 2, target ROI). We count the number
of voxels in ROI 1 that contain at least one streamline
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reached to ROI 2. The proportion of those voxels to the total
number of voxels in ROI 1 is considered as the probability of
the SC between the two ROIs. The same procedure is done
by letting ROI 2 be a seed ROI. Then, finally the maximum
of the two probabilities is claimed as the SC between ROI 1
and ROI 2.

Results

Simulation study: results

We evaluated each approach in terms of MSE of the FC
based on 400 Monte Carlo simulations. The results are summa-
rized in Table 1. In the Table 1, our proposed approach with
informative prior (true structural correlation) and indepen-
dence assumption (no structural correlation) is denoted as
‘‘CorrectSC’’ and ‘‘Independence,’’ respectively. The conven-
tional approach based on averaged time series across voxels in
ROIs is denoted as ‘‘AVG-FC.’’ Because, we only consider
positive FC, all the estimated values corresponding to zero
true connectivity are slightly overestimated, whereas the over-
estimation tapers out with bigger true connectivity values.

It is noteworthy that our approach, that is, CorrectSC and
Independence, outperforms the conventional approach
(AVG-FC) in terms of MSEs: the MSE value resulted from
CorrectSC, Independence, and AVG-FC is 0.599, 0.560,
and 1.235, respectively (see Table 1 when FWHM = 3.53,
sum of MSEs for high and low SC, e.g., 0.599 [total
MSE] = 0.555 [low SC] + 0.044 [high SC] for CorrectSC).
Although using the underlying true SC is expected to achieve
the lowest MSE, Independence SC produces the lowest MSE
because the true SC consists of many lower values, that is, 0,
0.1, and 0.2 where Independence SC is a quite informative
prior. However, for higher values, that is, 0.5 and 0.6, Inde-
pendence SC does not play a role of informative prior.

In Table 1, the MSE for each approach is reported along
with MSE for low SC (i.e., 0, 0.1, and 0.2) and MSE for
high SC (i.e., 0.5 and 0.6) under four different strengths of
underlying spatial correlation. The MSE for high SC with
CorrectSC approach (0.044) is the lowest while the MSE
for low SC with Independence (0.454) outperforms that
with CorrectSC (0.555) at FWHM = 3.53. However, both
CorrectSC and Independence always outperform AVG-FC.
Our Bayesian spatiotemporal models with double fusion

reduce almost 50% of the MSE resulted from AVG-FC ap-
proach. Given that a true underlying SC based on probabilistic
tractography is somewhere between unknown truth and com-
plete disconnection (i.e., no structural connection between two
regions), then we would expect to achieve significant reduc-
tion in MSE of FC by taking into account the underlying
distant-dependent spatial correlation and using an extra infor-
mation regarding SC.

The similar results were observed when the data were gen-
erated without spatial dependence (FWHM = 0), with strong
spatial correlation (FWHM = 8.24), and with extreme spatial
correlation (FWHM =1), when the Gaussian noise assump-
tion was violated, and when the temporal correlation struc-
ture was misspecified.

Moreover, we assessed which model was most robust to
data decimation. That is, 400 simulated data sets were di-
vided into 40, 50, 80, and 100 group-level data sets in
which there were 10, 8, 5, and 4 subjects per group, respec-
tively. For each sample size, the rate of positive findings, that
is, number of times rejecting the null (FC = 0) divided by a
total number of repetitions ( = number of group-level data
sets), was computed for each FC. For the Bayesian approach,
the number of times rejecting the null is equivalent to the
number of times claiming FC important.

In Figure 1, the rates of positive findings were summarized
following three categories of FC: (1) zero FC (i.e., FC = 0,
blue) where positive findings were all erroneous, (2) low
FC (i.e., FC = 0.1 or 0.2, green) where positive findings may
or may not be erroneous, and (3) strong FC (i.e., FC = 0.5 or
0.6, red) where positive findings are desired. As shown in
Figure 1, two Bayesian models denoted by solid line
(CorrectSC) and dashed line (Independence) are quite robust
against data decimation, compared to AVG-FC (dotted line)
showing significant decrease in rate of positive findings as
decrease in sample size. Moreover, note that high false pos-
itive rate is observed with AVG-FC when the underlying true
FC = 0, denoted by dotted blue line. When the underlying FC
is strong, CorrectSC (solid red line) outperforms the other
two approaches but Independence (dashed red) also seems
to be very robust to data decimation. With very large sample
size, it is expected that the performance of Independence
converges to that of CorrectSC, while AVG-FC is more
likely to claim all FCs statistically significant.

Table 1. Total MSE for Each Model Under Four Different Strengths of Spatial Correlation,

FWHM = 0, 3.53, 8.24, and1: CorrectSC, Independence, and AVG-GLM

Spatial correlation MSE by type of SC
Bayesian

correct SC
Bayesian

Independence AVG-FC

No correlation FWHM = 0 MSE for low SC 0.551 0.455a 1.100
MSE for high SC 0.048a 0.118 0.130

Moderate correlation FWHM = 3.53 MSE for low SC 0.555 0.454a 1.112
MSE for high SC 0.044a 0.106 0.123

Strong correlation FWHM = 8.24 MSE for low SC 0.573 0.473a 1.128
MSE for high SC 0.054a 0.116 0.138

Extreme correlation FWHM =1 MSE for low SC 0.533 0.453a 1.087
MSE for high SC 0.051a 0.115 0.135

Total MSE is divided into MSE for low SC (i.e., 0, 0.1, and 0.2) and MSE for high SC (i.e., 0.5 and 0.6).
For each case, adenotes the smallest MSE among CorrectSC, Independence, and AVG-GLM.
FC, functional connectivity; MSE, mean squared error; SC, structural connectivity.
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Data analysis: results

We assessed FC by looking into the following probability:
Pr(FC >0.4), where FC denotes the FC estimated by the me-
dian value of posterior distribution of each FC. Instead of
computing p values based on t-statistics as done for the
AVG-FC approach, we computed the posterior probability
and used it as an inference tool, that is, any ROI pair with
Pr(FC >0.4) >0.5 would be considered important as Xue
et al. (2015) used 0.4 as a threshold for moderate or above
functional coherence. Although it seems that the threshold
values are arbitrary, by generating a series of probabilistic
statements with different thresholds such as Pr(FC >0.3),
Pr(FC >0.4), and Pr(FC >0.5), we would be able to under-
stand how those probabilities change with different thresh-
olds, indicating which pairs of ROIs are of great interest
and importance in terms of rs-FC. The resulting 13 important
FC estimates are all above the reference line at Pr(FC >0.4)
(Fig. 2 and Table 2).

It is noteworthy that the FC between TL and TR shows the
smallest change over the three thresholds, indicating that the
FC is quite strong and highly likely to be >0.5. The second
strong FC is observed between HL and HR. In contrast, a sig-
nificant change in probability that the FC between HR and
TR, that is, Pr(FC >0.3) = 0.7876 to Pr(FC >0.5) = 0.2633, in-
dicates that the strength of FC between the two ROIs would
lie between 0.3 and 0.4 with high probability.

With the AVG-FC approach, all of 28 FC values were sta-
tistically significant at FDR = 0.05. As shown in the previous

simulation study, the conventional approach tends to result in
high false positives because ignoring spatial correlation
within a ROI causes to underestimate the variance associated
with FC, leading to smaller p values and much tight 95% CI
on each FC. In Table 2, 13 important FC values are summa-
rized along with 95% credible intervals and statistics resulted
from AVG-FC. Note that 95% CI is always tighter than the
corresponding 95% credible interval, because AVG-FC un-
derestimates the variance associated with FC. Probabilistic
SC values corresponding to those 13 pairs are also reported
in Table 2. Note that HL-HR and TL-TR pairs show the
two strongest functional coupling detected by both the
conventional approach and our spatiotemporal model.
Although the SC for HL-HR (0.093) is much smaller than
that for TL-TR (0.382), both pairs are claimed important
by our Bayesian approach, indicating that our model can
well accommodate both direct and indirect effect of SC
on FC estimation.

One way to compare methods without knowing the ground
truth is to assess how sensitive each method is to data deci-
mation (Yang et al., 2014). If one method is very robust and
reliable, then the method is expected to show certain degree
of robustness to data decimation, that is, with smaller sample
size the method gives rise to the similar results to the original
inference result. To this end, we reduced the sample size
(n = 6, 5, and 4) with all possible combinations and then an-
alyzed the data with both our Bayesian approach and AVG-
FC. With each sample size, we counted how many times the

FIG. 1. Test positive rate at different sample sizes with
moderate spatial correlation (FWHM = 3.53). Three methods
were denoted by different types of line: AVG-FC (dotted
line), Bayesian with CorrectSC prior (solid line), and Bayes-
ian with Independence prior (dashed line). Three different
colors denote the underlying true strength of FC: red denotes
high FC (i.e., FC = 0.5 and 0.6), green denotes low FC (i.e.,
0.1 and 0.2), and blue denotes zero FC. FC, functional con-
nectivity.

FIG. 2. A graphical summary of 13 important functional
connectivity estimates: Probability of FC >0.3, 0.4, and
0.5. The middle dotted line denotes a probability of 0.5.
The 13 important pairs are: HL and HR, HL and TL, HL
and PC, HL and IL, HR and TR, HR and IR, TL and TR,
TL and PC, TL and CG, TR and CG, PC and CG, IL and
IR, and IL and CG. CG, cingulate gyrus; HL, left hippocam-
pus; HR, right hippocampus; IL, left insula; IR, right insula;
PC, precuneus; TL, left thalamus; TR, right thalamus.
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important or statistically significant FC pairs at FDR = 0.05
shown in Table 2 were correctly found by the corresponding
method. The results are summarized in Figure 3. It is obvious
that our Bayesian spatiotemporal model with double fusion
is much more robust to data decimation than AVG-FC.
Even with n = 4, on average 89% of the time our approach
can result in the same result as n = 7 while only 76% of the
time AVG-FC results in the same result as n = 7.

Discussion

We proposed a Bayesian hierarchical spatiotemporal
model with double fusion to analyze multimodal neuroi-
maging data, that is, concurrently acquired rs-fMRI and
DTI data, which could properly take into account the intrin-
sic spatial correlation among voxels within an ROI, and
temporal correlation at each voxel. Accounting for those
underlying correlation enables us to draw a valid inference
about between-ROI functional couplings. Using a Bayesian
analytic approach, it is very natural to combine prior knowl-
edge about the SC based on DTI data with rs-fMRI data for
updating posterior information about the FC between ROIs.
Moreover, accounting for the role of direct and indirect as-
sociation between FC and SC through double fusion provi-
des a unified framework for incorporating multimodal
MRI data. Our model is flexible enough to be modified to ac-
commodate longitudinal or task-induced fMRI data.

We validated our approach using stimulation study and
also applied our model to analyze multimodal MRI data to
assess the impact of the SC between brain regions on rs-
FC. The simulation study showed that an informative prior
based on the SC reduced the MSE of FC estimates, compared
to using a prior based on structural independence. In addi-
tion, it showed that failing to take into account the underlying
spatial correlation within an ROI highly inflated false posi-
tive rates, leading to erroneous conclusions, for example,
tight 95% confidence intervals. The similar finding was
reported with task-induced fMRI analysis (Kang et al., 2012).

In data analysis, 13 ROI pairs show important functional
couplings in the brain network through our Bayesian ap-
proach, whereas all 28 ROI pairs were claimed statistically
significant through AVG-FC, although it might be false pos-
itive findings. When we considered more conservative
threshold such as Pr (FC >0.5) >0.5, then only four ROI
pairs remained as important: HL-HR, HR-IR, TL-TR, and
TL-CG. We were also able to show that our Bayesian spatio-
temporal model was much robust to data decimation, which
would be one of the most desirable properties of statistical

Table 2. Summary of FC Values with 95% Credible Intervals and Pr(FC > 0.4)

for 13 Important ROI Pairs Based on the Bayesian Spatio-Temporal Approach

ROI pairs
FC by Bayesian (95%

credible intervals) Pr (FC >0.4)
FC by AVG-FC (95%
confidence intervals)

p values for
AVG-FC

Probabilistic
SC

HL-HR 0.605 (0.255–0.734) 0.921 0.726 (0.632–0.823) <0.001 0.093
HL-TL 0.449 (0.150–0.650) 0.594 0.437 (0.235–0.639) 0.003 0.452
HL-PC 0.495 (0.335–0.730) 0.763 0.588 (0.477–0.700) <0.001 0.105
HL-IL 0.486 (0.366–0.770) 0.820 0.604 (0.461–0.747) <0.001 0.299
HR-TR 0.466 (0.163–0.637) 0.655 0.472 (0.286–0.656) 0.002 0.427
HR-IR 0.504 (0.336–0.722) 0.786 0.677 (0.574–0.780) <0.001 0.320
TL-TR 0.674 (0.531–0.809) 1.000 0.842 (0.776–0.907) <0.001 0.382
TL-PC 0.503 (0.147–0.769) 0.687 0.577 (0.370–0.781) 0.002 0.117
TL-CG 0.521 (0.327–0.797) 0.910 0.662 (0.554–0.768) <0.001 0.096
TR-CG 0.458 (0.107–0.775) 0.659 0.611 (0.449–0.770) <0.001 0.112
PC-CG 0.455 (0.322–0.701) 0.832 0.641 (0.513–0.767) <0.001 0.148
IL-IR 0.429 (0.075–0.755) 0.579 0.678 (0.524–0.833) <0.001 0.085
IL-CG 0.442 (0.189–0.734) 0.648 0.693 (0.564–0.820) <0.001 0.028

For comparison, the corresponding FC estimates with 95% confidence intervals and p-values based on the AVG-FC are listed. In the last
column, probabilistic structural connectivity values are reported.

CG, cingulate gyrus; HL, left hippocampus; HR, right hippocampus; IL, left insula; IR, right insula; PC, precuneus; ROI, regions of
interest; TL, left thalamus; TR, right thalamus.

FIG. 3. Mean correct positive rates at different sample
sizes, n = 7, 6, 5, and 4. ‘‘Correct’’ positive rate denotes
how often the 13 FC values summarized in Table 2 were
‘‘correctly’’ detected important by Bayesian spatiotemporal
model with double fusion (cyan) and all of 28 FC values
were ‘‘correctly’’ classified as significant by AVG-FC (red).
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models. Although the data decimation approach would be
more meaningful when we had a large sample size, it
would be still valid to show that our approach was more ro-
bust than AVG-FC with such small sample size.

Our model requires estimating parameters using MCMC
methods, which in general are more computationally de-
manding than frequentist methods, for example, AVG-FC
and require the convergence of the MCMC chains that is al-
ways challenging. In this study, we confirmed the conver-
gence by the Gelman–Rubin diagnostic (Gelman and
Rubin, 1992): the diagnostic values associated with our sim-
ulation studies and data analysis were <1.2. However, the
Bayesian framework allows us to easily combine two dis-
tinct sources of information to estimate FC with higher pre-
cision and accuracy as measured by MSE. Moreover, we
were able to obtain a smaller MSE using the informative
prior based on DTI data.

Then one can argue that our approach heavily relies on the
assumption that we have good estimates of the SC. As shown
in the simulation study, reliable prior structural information
that is somewhere between true underlying SC and structural
independence SC can reduce the MSE of estimates. How-
ever, if the prior information is incorrect but we have a
large sample size, which can be true in fMRI data analysis,
then the point estimates of interest would not be heavily af-
fected using an incorrect prior. But the variance of the esti-
mates will increase and the time to attain the convergence
of Markov chains may also increase.

Conclusion

In summary, we proposed a novel Bayesian spatiotempo-
ral model with double fusion to better estimate FC using both
rs-fMRI and DTI data. The main advantages of using our
model relative to current standard methodologies are: (1) It
is a novel approach that combines multimodal data produc-
ing estimates of FC with lower MSEs in simulation. (2) It
gives valid inference about ROI-level FC while properly ac-
counting for underlying spatiotemporal correlations. (3) It
characterizes a probability distribution of each FC estimate,
which is a unique feature of a Bayesian approach. (4) It can
incorporate both direct and indirect effects of SC on FC es-
timation. (5) It provides an inference tool that is much
more robust to data decimation compared to the conventional
approach.
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