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Abstract

Purpose—To develop and evaluate the performance of a fully-automated convolutional neural 

network (CNN)-based algorithm to evaluate hepatobiliary phase (HBP) adequacy of gadoxetate 

disodium (EOB)-enhanced MRI. Secondarily, we explored the potential of the proposed CNN 

algorithm to reduce examination length by applying it to EOB-MRI examinations.
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Methods—We retrospectively identified EOB-enhanced MRI-HBP series from examinations 

performed 2011 2018 (internal and external datasets). Our algorithm, comprising a liver 

segmentation and classification CNN, produces an adequacy score. Two abdominal radiologists 

independently classified series as adequate or suboptimal. The consensus determination of HBP 

adequacy was used as ground truth for CNN model training and validation. Reader agreement was 

evaluated with Cohen s kappa. Performance of the algorithm was assessed by receiver operating 

characteristics (ROC) analysis and computation of the area under the ROC curve (AUC). Potential 

examination duration reduction was evaluated descriptively.

Results—1408 HBP series from 484 patients were included. Reader kappa agreement was 0.67 

(internal dataset) and 0.80 (external dataset). AUCs were 0.97 (0.96–0.99) for internal and 0.95 

(0.92 96) for external and were not significantly different from each other (p = 0.24). 48 % 

(50/105) examinations could have been shorter by applying the algorithm.

Conclusion—A proposed CNN-based algorithm achieves higher than 95 % AUC for classifying 

HBP images as adequate versus suboptimal. The application of this algorithm could potentially 

shorten examination time and aid radiologists in recognizing technically suboptimal images, 

avoiding diagnostic pitfalls.

Keywords

Liver; Magnetic resonance imaging; Gd-EOB-DTPA

1. Introduction

Gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced 

MRI (EOB-MRI) provides high sensitivity and specificity for detection and characterization 

of liver lesions [1 3]. Most malignant lesions appear dark compared to the hyperintense 

background liver during the hepatobiliary phase (HBP), increasing sensitivity. During the 

HBP, the liver peaks in enhancement/intensity while intrahepatic blood vessels become 

hypointense due to clearance of contrast from the vascular space. Peak HBP enhancement 

can occur between 10 60 min following injection, depending on patient characteristics [4]. 

Hepatocellular enhancement may be impaired or delayed by liver dysfunction, reduced 

number of hepatocytes (i.e. replacement of liver parenchyma by fibrosis), severe cholestasis, 

among other factors [5,6]. Conversely, with normal or near normal hepatocellular function, 

peak enhancement may occur as early as 10 min. For convenience, in clinical practice, HBP 

images are commonly acquired around 20 min following contrast injection [4,7 9]. However, 

routine 20-minute HBP delay may be inefficient and unnecessary since adequate HBP 

enhancement can occur earlier in a substantial proportion of patients.

Adequate HBP imaging is necessary to achieve the added value of EOB-MRI and is defined 

as liver parenchyma unequivocally brighter than hepatic vasculature and spleen. When these 

criteria are not met, the Liver Imaging Reporting and Data System (LI-RADS) classifies the 

HBP as suboptimal [10]. Determination of adequate versus suboptimal HBP is important 

clinically as assessment of features may be unreliable with suboptimal HBP [11]. Automated 

determination of HBP adequacy could help to improve not only diagnostic interpretation but 

also workflow efficiency. In patients with adequate HBP enhancement prior to 20 min, the 
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examination could be terminated earlier, thereby improving throughput and patient comfort 

[4,7,12].

However, real-time assessment of HBP adequacy by a radiologist at the scanner suite to 

optimize imaging protocol is neither feasible nor time efficient. Ideally this process could be 

automated. Convolutional neural networks (CNNs) have shown enormous potential for 

automating radiological processes [13,14]. A CNN capable of assessing HBP adequacy in 

real-time could allow termination of the exam by the technologist when adequate HBP 

imaging is achieved tailoring the delay to the liver hepatocellular uptake. Additionally, it 

may aid radiologists in recognizing technically suboptimal images, avoiding diagnostic 

pitfalls.

The purpose of this study was to develop and evaluate the performance of a fully-automated 

algorithm, comprising a liver segmentation CNN and an HBP classification CNN, to 

evaluate HBP adequacy in patients undergoing EOB-MRI. Secondarily, we explored the 

potential impact of the proposed CNN algorithm to reduce examination duration by applying 

the algorithm to multiphasic diagnostic EOB-MRI examinations.

2. Materials and methods

This HIPAA-compliant retrospective dual-center study was approved by both institutional 

review boards with waived requirement for written informed consent.

2.1. Internal imaging data

We selected HBP series from patients with chronic liver disease who underwent liver EOB-

MRI at our tertiary care institution for hepatocellular carcinoma (HCC) screening or 

diagnosis, using an abbreviated EOB-MRI (EOB-AMRI) protocol [15] or a multiphasic 

EOB-MRI protocol, respectively, from January 2011 to February 2018, on 1.5 T or 3 T (GE 

Medical Systems, WI, USA). For EOB-AMRIs, Gd-EOB-DTPA (0.025 mmol/kg) was 

injected using a peripheral butterfly IV. One HBP acquisition was routinely obtained about 

20 min or later; additional HBP acquisitions were obtained 5 10 min later in 172 exams. For 

the multiphasic studies, the same dose of contrast was administered intravenously at a rate of 

1 ml/second followed by a saline bolus. Post-contrast acquisitions included one to six 

acquisitions in the arterial phase, one in the portal venous phase (60 80 seconds), one to four 

in the transitional phase (2 5 min), and one or more HBP acquisitions every 5 min from 15 

min. Inclusion criterion was: patients with at least one HBP image (10 min or later following 

contrast injection). Imaging protocols and parameters are listed in Table 1. In both protocols, 

among patients with more than one HBP series, acquisition intervals were approximately 

every 5 min. No exclusion criteria were applied. Patients and corresponding series were 

randomly partitioned into training and validation sets using a 70/30 split. Patients included 

in the training set were not included in the validation set.

2.2. External imaging data

HBP series were extracted from diagnostic examinations of consecutive patients undergoing 

EOB-MRI at 1.5 T and 3 T (Siemens Healthcare, Erlangen, Germany) at an outpatient 

imaging center from a different country [name redacted during submission] from September 
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to November 2018 (Fig. 1). Patients had various clinical indications for liver MRI, including 

patients without known chronic liver disease, for focal lesion characterization. A predosed 

syringe with 10 ml (0.25 mmol/ml) of Gd-EOB-DTPA-based contrast was infused by 

peripheral IV at a rate of 1 ml/second. Imaging parameters are listed in Table 1. Inclusion 

criterion was the same as for the internal dataset and no exclusion criteria were applied. 

Patient information, series numbers and acquisition time information were withheld due to 

anonymization during image transfer.

2.3. Image analysis and reference standard by expert readers

Series were prepared for research analysis by removing field strength and acquisition delay 

information. Series were randomized by patient and acquisition time so that series from the 

same patient were not reviewed consecutively. Two abdominal imaging fellowship-trained 

radiologists [initials withheld for review] with 5 and 10 years of experience in liver imaging 

independently classified each HBP series as A) adequate or B) suboptimal. Images were 

classified as adequate if the liver was unequivocally more hyperintense than hepatic blood 

vessels according to LI-RADS [10] and suboptimal if this criterion was not met. Discordant 

classifications were adjudicated in consensus. Consensus determination of HBP adequacy 

was used as ground truth for CNN model training and validation. Additionally, each reader 

classified each series as having or not having image degradation related to imaging or 

motion artifacts severe enough to obscure liver contours or internal anatomical structures.

2.4. Algorithm development and training

The algorithm comprised two components (Fig. 2). First, HBP series are propagated through 

a 2D liver segmentation CNN with U-net architecture to produce masks containing liver 

intensities [16]. The 10 slices containing the largest liver mask areas are then propagated 

through an HBP-CNN classification network, which produces a single continuous adequacy 

score between 0 (absolute certainty of suboptimal HBP) and 1 (absolute certainty of 

adequate HBP). Algorithm and training details are described in Supplementary Materials.

2.5. Algorithm validation

Algorithm validation was performed on both internal and external datasets. Individual CNN 

adequacy scores were compared against the reference standard and performance was 

evaluated. Model predictions were used to investigate model accuracy, sensitivity (of 

suboptimal HBP), and specificity on the validation datasets by selecting the threshold that 

enforced a 95 % sensitivity on the internal training dataset (selected to minimize false 

negatives, i.e., suboptimal series falsely classified as adequate) using consensus reader 

assessment of HBP as the ground truth.

2.6. Exploring potential impact of algorithm to shorten examinations

As an exploratory aim, we assessed the potential of the algorithm to shorten examinations by 

retrospectively applying it to all examinations containing at least two HBP acquisitions in 

the internal validation dataset. CNN-generated HBP adequacy scores using the threshold that 

achieved 95 % sensitivity for suboptimal HBP on the training dataset were calculated. For 

each examination, the potential reduction in examination duration was calculated by the time 
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between the first series classified as adequate and the last acquired series within the same 

examination. For example, an examination with series acquired at 15, 20 and 27 min after 

contrast administration with suboptimal, adequate, and adequate classifications, respectively, 

could potentially shorten the examination by 7 min.

2.7. Identifying how the CNN determines HBP classification

Rectified saliency maps were used to visually identify features most influential for HBP 

classification [17]. Saliency maps are heatmap visualizations that place higher values on 

image regions with greater contribution to CNN prediction.

2.8. Statistical analysis

Statistical analyses were performed by a biostatistician (initials redacted) using R-v3.4.0 

software. Reader agreement for HBP classification and presence of image degradation was 

assessed using descriptive statistics and Cohen s kappa with the following levels of 

agreement: none to weak ( 0.59), moderate (0.6–0.79), strong ( 0.8) [18]. Performance of the 

HBP-CNN was evaluated using area under the ROC curve (AUC). Accuracies, sensitivities, 

and specificities were calculated for the validation datasets (internal and external) using the 

threshold that enforced 95 % sensitivity for suboptimal HBP on the training dataset. AUCs 

for internal and external validation datasets were compared using bootstrap. Influence of 

patient characteristics, presence of image degradation as determined by at least one reader, 

and imaging acquisition parameters on classification error was assessed for the internal 

dataset using two multivariate logistic random effects models: 1) adequate and 2) suboptimal 

classes, separately. Mixed effects models containing significant characteristics were 

determined by backward elimination. 95 % confidence intervals (CIs) were analytically 

calculated as appropriate. The potential to reduce examination duration was assessed 

descriptively.

3. Results

3.1. Internal validation cohort

Training and validation demographics are provided in Table 2. 406 patients were selected for 

the internal dataset. 178 patients had multiple examinations, leading to 729 examinations 

and 1201 individual HBP series. 826 HBP series from 284 patients were used for CNN 

training and remaining 375 series from 122 patients for CNN validation (Fig. 1).

3.2. External validation cohort

For external validation, 207 3D T1-weighted HBP series from 78 patients were included.

3.3. Reader scores for HBP adequacy

Readers classified as suboptimal 312/1201 and 216/1201 series for the internal dataset and 

43/207 and 34/207 series, for the external dataset, respectively. Of the total, 89 % 

(1063/1201) and 94 % (194/207) of series were classified the same by both readers for the 

internal and external datasets. Following consensus, 299/1201 and 40/207 series were 

classified as suboptimal for the internal and external datasets. Cohen s kappa between reader 
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adequacy classification for the internal and external datasets were 0.67 (p < 0.001) and 0.80 

(p < 0.001). Readers classified 223/1201 (19 %) and 268/1201 (22 %) series as having 

image degradation in the internal dataset and 45/207 (22 %) and 51/207 (25 %) in the 

external dataset, respectively. Reader agreement for presence of image degradation was 0.56 

(p < 0.001) and 0.30 (p < 0.001), respectively.

3.4. Algorithm performance

Performance metrics of the algorithm for assessment of HBP adequacy in the internal and 

external validation datasets are summarized in Table 3. ROC curves are shown in Fig. 3. 

AUCs for the internal and external datasets were 0.973 (95 % CI 0.960–0.986) and 0.952 (95 

% CI 0.919–0.985), respectively. The internal dataset AUC was not significantly different 

from the external dataset AUC (p = 0.24). The threshold enforcing 95 % sensitivity for 

suboptimal HBP on the internal training dataset was 0.87. Using this threshold, accuracies, 

sensitivities and specificities were [82.7 % (310/375), 100 % (114/114) and 75.1 % 

(196/261)] for the internal validation dataset and [93.2 % (193/207), 85.0 % (34/40) and 

94.2 % (159/167)] for the external validation dataset. Performance of the individual 

segmentation component of the algorithm was not in the scope of this current work and has 

been described elsewhere [16].

3.5. Influence of Patient/imaging characteristics on algorithm performance

Influences of patient and image characteristics on algorithm classification error are 

summarized in Table 4. Following backward elimination, presence of image degradation 

judged by at least one radiologist (p < 0.001) and larger frequency matrix size (p = 0.003) 

were the only independent characteristics that significantly affected adequate classification 

accuracy. Field strength (p = 0.002), slice thickness (p < 0.001), and frequency matrix size (p 

< 0.001) were the only independent characteristics that significantly affected suboptimal 

classification accuracy.

3.6. Potential of algorithm to shorten examinations

105 examinations from 76 patients in the internal validation dataset had at least two HBP 

acquisitions. The 0.87 HBP score threshold from the sensitivity analysis was used for 

classification. Of the 105 examinations, 50 (48 %) could have been shortened by real-time 

application of the CNN algorithm, including 7 examinations that could have been shortened 

by >10 min. A cumulative total of about 220 min of examination time could have been 

eliminated. Example applications of the HBP-CNN to three separate examinations are 

shown in Fig. 4.

3.7. Saliency map analysis

Saliency maps for two HBP series correctly classified as adequate and suboptimal are shown 

in Fig. 5. The CNN focused on the edges of vessels for adequate predictions. Predictions for 

the suboptimal class had little or no activation across the liver, suggesting suboptimal HBP 

classification is determined by unclear vessel edges in the image.
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4. Discussion

In this study, we developed and evaluated the performance of a fully-automated CNN-based 

algorithm to evaluate HBP adequacy. The model was validated on 582 individual HBP series 

(375 internal series and 207 external series) from 200 unique patients. AUCs were 0.973 and 

0.952 for the internal and external datasets, respectively. We additionally explored the 

potential of the CNN algorithm to shorten examinations. Using a threshold enforcing high 

sensitivity for suboptimal HBP, we found 48 % of patients in the internal cohort achieved 

adequate HBP at least one acquisition earlier than the last HBP series acquired, and a total of 

∼220 min of examination time may have been unnecessary. In clinical practice, EOB-MRI 

protocols often insert additional sequences between portal venous phase acquisitions and the 

standard 20 min delay, which may include additional breath-hold T1-weighted images [19]. 

If implemented at a console level, our algorithm could allow for a reduction of examination 

time by sending immediate feedback on HBP adequacy to the technologist. This would have 

reduced examination time in up to half of all patients in our cohort. Additionally, HBP 

adequacy classification could be informative to radiologists in the reading room when 

applying diagnostic criteria specific to this imaging phase.

CNNs have been applied to quickly and automatically classify medical images aiming to 

optimize radiology workflow [13,20 24]. Lee has proposed the use of a CNN framework for 

MRI protocol optimization [25]. Although Lee s work was based on clinical data and not 

image classification, it demonstrates the potential of CNNs to improve radiologic decisions. 

Esses et al. proposed a CNN approach to assess image quality by automatically classifying 

T2-weighted liver MR images as diagnostic and nondiagnostic [14]. However, the CNN had 

a high false positive rate. Most false-positive classifications by the CNN were retrospectively 

attributed to artifacts outside the liver; while these artifacts caused the CNN to deem images 

nondiagnostic, the artifacts were appropriately ignored by the radiologists. Our algorithm is 

less susceptible to such errors because it incorporates a segmentation CNN that constrains 

the classification task to the liver area.

The algorithm was robust against sex, age, BMI, liver etiology, field-of-view, and phase 

matrix size when classifying series as adequate or suboptimal. Images degraded by artifacts 

did not significantly affect accuracy of the algorithm for classifying series as suboptimal 

series but reduced accuracy of the algorithm for classifying series as adequate. Based on 

visual assessment of the saliency maps, we speculate that on degraded images the 

conspicuity and contrast of boundaries is reduced, causing a liver with adequate uptake to 

resemble a liver with suboptimal uptake. However, clinically, the misclassification of 

adequate series with motion artifacts as suboptimal may be acceptable since it may lead to 

repeat acquisitions potentially less impacted by artifact. Additional factors that significantly 

affected suboptimal classification included field strength (1.5 T) possibly reflecting lower 

SNR and larger slice thickness with volume averaging in the z-direction. Larger frequency 

matrix size was associated with lower accuracy for both adequate and suboptimal 

classification. Although it is unclear why larger frequency matrix size reduces accuracy, 

AUCs stratified across significant characteristics all exceeded 0.95, indicating their effect on 

prediction accuracy is likely not clinically impactful.
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Our CNN was trained and validated using radiologist consensus of HBP adequacy as a 

reference standard. An objective HBP adequacy score based on manual calculations of liver-

to-portal vein signal ratio have been proposed by Bashir et al. also using radiologist 

assessment as a reference standard [26]. When applying this criteria, EOB-MRI 

examinations in patients without chronic liver disease could have been terminated earlier 

than 20 min in up to 56 % of that population [26]. Another study has shown that in up to 61 

% of patients with chronic liver disease, lesion detection rates did not differ when acquiring 

HBP images at 10 or 20 min [7]. When searching for a diagnostic threshold most studies 

weigh both sensitivity and specificity, usually using the Youden index [27]. However, we 

exploratorily favored sensitivity over specificity since suboptimal series misclassified as 

adequate would lead to termination of the examination prior to adequate HBP acquisition, 

thereby negatively impacting clinical diagnostic accuracy. When applying this high 

sensitivity threshold for classification, we found up to 48 % of patients achieved adequate 

HBP uptake at least one acquisition earlier than the last HBP series. This is slightly lower 

compared to the study by Bashir et al., likely due to the exclusion of patients with chronic 

liver disease in that study. In contrast, our population was comprised primarily of patients 

with chronic liver disease and likely many with some degree of liver function impairment. 

Furthermore, the previously proposed method relies on manual ROI drawing, a time 

consuming and somewhat specialized task. We believe the implementation of a CNN-based 

method to evaluate HBP adequacy is advantageous as it may allow for real-time and fully 

automated assessment, potentially at the scanner console and during examination.

Our study has limitations. First, despite efforts to overcome reader variability, there is no 

objective reference standard for adequate versus suboptimal HBP. Nevertheless, reader 

agreement was moderate to strong for both internal and external datasets and similar to 

agreement described in the literature [26]. In addition, series numbers and acquisition time 

information in the external dataset were not available and we were unable to explore how 

much expendable acquisition time could have been reduced in this population. Additionally, 

we observed differences in sensitivity and specificity between the internal and external 

validation datasets. This is probably due to different rates of chronic liver disease between 

the internal and external cohorts. Further training and research are needed to determine 

which, if any, universal threshold could be applied to achieve desired sensitivity and 

specificity in the general population. Finally, as a current limitation and future direction of 

our work, the clinical benefit of the algorithm will likely be highest if allowing for the 

prediction of the ideal HBP delay based on information gathered from earlier acquisitions 

(i.e. pre-contrast, arterial or portal venous phases).

5. Conclusion

In conclusion, our proposed CNN-based algorithm achieves higher than 0.95 AUC for 

classifying HBP images as adequate or suboptimal. This can potentially reduce overall 

examination time in approximately 48 % of patients with chronic liver disease. Further 

prospective studies should be conducted to evaluate the feasibility and performance of 

applying the algorithm during clinical EOB-MRI examinations.
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Fig. 1. 
Imaging data - The internal dataset comprises HBP series of 253 patients with chronic liver 

disease acquired 10 min or later after contrast injection at 1.5 and 3 T (GE Medical Systems, 

WI, USA) at our tertiary care institution for hepatocellular carcinoma (HCC) screening or 

diagnosis. The external validation dataset comprises nominal HBP series of 78 patients with 

various indications for gadoxetate enhanced MRI, including patients without chronic liver 

disease for focal lesion characterization, from an outside institution from another country. 

Due to full exam anonymization, demographics or time delay information were not 

available.
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Fig. 2. 
Diagram of the proposed CNN framework for contrast uptake classification. HBP images are 

propagated through an independently developed 2D liver segmentation CNN to produce a 

liver mask populated with intensities. The largest 10 liver slices of the liver mask image are 

then sent to a contrast uptake classification network to produce a single score for adequate or 

suboptimal HBP.
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Fig. 3. 
ROC curves for the internal and external validation sets. Arrows show the sensitivities and 

specificities of the validation datasets using a 0.87 threshold determined by enforcing a 95 % 

sensitivity for suboptimal HBP on the internal training dataset. Using this threshold, 

sensitivities and specificities were [100 % (114/114) and 75.1 % (196/261)] for the internal 

validation dataset and [85.0 % (34/40) and 94.2 % (159/167)] for the external validation 

dataset.
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Fig. 4. 
Tl-weighted post-contrast MR images. Top row: Patient with chronic liver disease and poor 

liver contrast uptake. Model correctly classifies all HBP images as suboptimal. All series 

were scored as suboptimal and the exam defaults to the standard HBP delay. Middle row: 
Patient with preserved liver function. Adequate HBP is identified as early as 10 min. 

Examination time could potentially be reduced by 17 min. Bottom row: As proof of 

concept, model was applied to all post contrast series in a dynamic diagnostic study: model 

correctly classified images as suboptimal HBP at 5 min and as adequate HBP at 10 min. 

Examination time could potentially be reduced from 20 min to 10 min, a 10-minute 

reduction.
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Fig. 5. 
Saliency maps highlighting anatomical and structural features most influential for HBP 

classification. Red areas indicate regions within the liver that most influenced the CNN 

prediction. Saliency maps showed activation where contrast between vessels and background 

liver parenchyma is pronounced when classifying adequate images. There is little or no 

activation for classification of suboptimal images due to the poor contrast between vessels 

and background liver parenchyma. Interestingly, a high contrast between these structures 

(hyperintense liver vs hypointense liver vessels) is the visual human criteria to classify HBP 

images as having adequate hepatocellular contrast uptake.
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Table 2

Demographic summary of the training and validation sets in the internal dataset.

Training Dataset Internal Validation Dataset

Characteristic # Series # Exams # Patients # Series # Exams # Patients

Overall 826 513 284 375 216 122

Gender

 F 388 238 133 150 91 49

 M 438 275 151 225 125 73

Age (years)* 58.49 ± 12.50 (13 84) 59.97 ± 10.80 (33 84)

 <45 (ref) 107 65 39 35 19 11

 45–64 462 283 164 229 132 73

 >65 257 165 81 111 65 38

BMI (kg/m 2)* 28.85 ± 5.86 (14.6 53.2) 28.83 ± 5.74 (17.30 41.70)

 <24.9 (ref) 233 141 81 88 51 34

 25–30 271 167 94 158 86 44

 >30 317 203 107 129 79 44

 missing 5 2 2 0 0 0

Etiology

 HBV 126 74 34 49 29 14

 HCV 347 213 114 206 113 65

 Alcohol 94 67 49 46 25 12

 NAFLD 130 83 40 32 20 13

 Autoimmune 38 22 14 9 6 3

Hepatitis

 Other 91 54 33 33 23 15

Uptake

 Adequate 641 / / 261 / /

 Suboptimal 185 / / 114 / /

*
Mean ± standard deviation; range in parentheses.

BMI = Body Mass Index, HCV = Hepatitis C Virus, HBV = Hepatitis B Virus, NAFLD = Non-Alcoholic Liver Disease.
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