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ABSTRACT OF THE DISSERTATION 

 

High Frequency Guided Wave Propagation 

 in Layered Media  

 

by 

 

Lifu Wang 

Doctor of Philosophy in Mechanical Engineering 

University of California, Los Angeles, 2023 

Professor Ajit K. Mal, Chair 

 

Honeycomb sandwich structures (HSS), due to their high strength/stiffness to density ratio, are 

widely used in aerospace industry. Efficient and reliable techniques are required to detect 

damages in HSS. While conventional damage detection methods cannot meet the requirements, 

ultrasonic guided waves, due to their long propagating range and sensitivity to different types of 

defects, have the potential to significantly improve the state-of-the art in the NDE of HSS. 

However, the literature on ultrasound propagation in HSS is rather sparse, especially on the 

detailed characteristics of the waves and their interaction with realistic defects in HSS 

components. When the defect is smaller, excitation signal with higher frequency is required. 

However, there is no published research on this subject. 

The major objective of this research is to study high frequency wave propagation in HSS with or 

without the presence of defects. A numerical searcher is developed to solve the dispersion 

equations in HSS under very high frequency excitations. With this tool, solutions for high 

frequency Lamb waves in isotropic media are obtained and compared with numerical 

simulations. To obtain the solution in layered media, the global matrix method (GMM) is used 
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and solutions for force responses are obtained by the residue theorem. However, the 

conventional method has singularity issues causing numerical instability in certain frequencies. 

A new formulation of the method is developed to solve the problem. The HSS is later 

homogenized to a three-layered medium and the dispersion curves for this model is studied with 

changes in the core material properties. At the end, the conventional damping model for Lamb 

waves is validated through the method and the corresponding damping coefficients are obtained 

experimentally. 

An experiment is performed to obtain the signal features when disbond damages are introduced 

in the HSS. The characteristics of the waves incident from different angles are studied to identify 

the most favorable incident angle for defects detection Based on this study, a new damage index 

is extracted from the signals and is applied to improve the quality of the damage detection 

images. Finally, an experiment is performed about the feasibility of using non-contact 

transducers to detect damages in HSS.  
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Chapter 1 Introduction 

1.1 Motivation 

1.1.1 Background of nondestructive evaluation (NDE) based on guided waves 

 Evaluation of material degradation without destroying the structure has been studied for almost 

a century and many tools have been implemented for NDE of critical structural components. 

Ultrasound, due to its low cost, safety and high efficiency, is widely used for NDE of a variety of 

structures. Conventional methods for NDE using ultrasound include pulse echo and pitch catch 

arrangements of single or multiple transducers that can generate bulk waves in the test article. It 

is well known that on guided Lamb type waves can be an effective tool in NDE and SHM of 

layered structures due to their long range of propagation and high sensitivity to defects in their 

paths [1-4]. However, in contrast to bulk waves, Lamb waves are dispersive and contains 

multiple modes that can be used to detect defects of different sizes and depths but it makes the 

data interpretation and defects characterization more challenging. Therefore, studying how 

guided waves propagate in varies media and how they interact with different defects are 

important so that we can differentiate amongst different types of defects. 

1.1.2 Thick plate response 

Lamb waves that commonly applied in NDE is in a frequency range with frequency-thickness 

product from 50kHz ∙ mm to 3000 kHz ∙ mm. For example, Yashiro et al. in his paper explored 

the NDT method based on Lamb wave with 300kHz central frequency excitation in a 3mm 

composite plate [1]. In another paper, Michal et al studied the response of their transducer at a 

working frequency from 100kHz to 500kHz in a 4mm thick plate [2]. Gao and his coauthors, he 
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proposed an amplitude modified method based on Lamb wave detection with a working 

frequency below 1MHz in a 2mm thick composite plate [3]. The selection of frequency is usually 

based on the sensor of excitation. However, in order to achieve better resolution in sensing, more 

and more research becomes interested in high frequency excitation. For example, Greve et al 

studied the excitation of 15MHz ∙ mm in a plate [4]. Few research is done on Lamb waves in 

plate with a thickness more than 50MHz ∙ mm. To fill the gap, more research needs to be done to 

clarify the responses of the Lamb waves at higher values of the frequencyൈthickness.  

1.1.3 Honeycomb sandwich structure  

Honeycomb sandwich structures refer to the composite structures with large in-plane stiffness 

solid skin material such as carbon-fiber composite, and a low-density cellular core with shear 

rigidity. They combine the advantages of high level of bending stiffness and low density, and 

therefore, widely used in aerospace industry [5]. The honeycomb sandwich structures usually 

have a layer of in-plane stiff material, following with an adhesive layer. The honeycomb 

sandwich core is bonded next to the adhesive layer. The core is vented to avoid pressure change 

inside the honeycomb sandwich cores.  

Amount all the failures, disbond between the face sheet and the core is the most commonly seem 

defect, and sometimes is invisible from the surface of the panel.  

 

Figure 1-1 Example of a Disbond in a Honeycomb Sandwich Panel [6] 
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Honeycomb sandwich structures are important in the aerospace industry that many accidences 

are caused by material failure of the honeycomb sandwich structures. For example, in 2002, an 

F-15E crashed because of the structural failure of the honeycomb material in a vertical stabilizer 

leading edge [7]. Applying NDE on Honeycomb Sandwich Structures is very important for 

defect inspection. The smaller the defect that can be detected, the more robust the design can be. 

1.1.4 Wave propagation in a honeycomb sandwich structure 

Some common techniques for NDE in the honeycomb sandwich structures include ultrasonic C 

scan [8], thermography inspection and x-ray inspection [9]. Other inspection method for metallic 

honeycomb structures may includes the use of eddy currents [10]. Using guided wave for NDE 

in honeycomb sandwich structures is not new. The wave propagation inside the honeycomb 

sandwich structures has been studied by a number of researchers. And yet, there are no 

conclusive results as to the waves propagate in the honeycomb sandwich structures and how to 

use these waves for testing. One main reason is that the energy of the waves gets attenuated 

significantly inside the honeycomb core and it is difficult to interpret the experimental results 

[11]. Research has been done using global matrix method for analyzing the wave propagation in 

honeycomb sandwich structures [12]. Some work using finite element method have also been 

done for the honeycomb sandwich structures [13]. Damage localization in these structures using 

mode conversion has been studied experimentally [14, 15].  It can be concluded that there are at 

least have two different propagation models for the honeycomb sandwich structures: the 

homogenized model and the discretized model. The homogenized model considered the 

honeycomb sandwich panel as a three-layered media with the homogenized mechanical 
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properties, while the discretized model considers that waves mainly propagate inside the excited 

face sheet and can interact with the core.  

1.2 Outline of the thesis 

The goal of this thesis is to explore how the Lamb waves behave in thick plates and in layered 

media at high frequencies. To better present the work, the thesis is split into Chapters 2 - 4, 

covering the three main topics: theoretical research on Lamb waves in a thick plates and in 

layered media, and experiments on waves propagating in honeycomb sandwich structures. 

Chapter 2 introduces the Lamb wave dispersion equations and solving for the response using 

residue theory for a homogeneous plate. A new equation roots-search tool is developed in order 

to find the roots of the dispersion equations efficiently. With this tool, a wide-range of dispersion 

curves can be obtained and some new wave phenomena are discussed analytically. At the end, 

the thick plate responses predicted by Lamb wave theory are compared with numerical 

simulations, and some newly discovered properties are presented. 

Chapter 3 discusses several improvements in existing formulas related to the solution of Lamb 

waves propagating in layered media. First, a new method to obtain the mode shapes using 

singular value decomposition is proposed. Then a new formula in matrix form is derived to 

obtain the analytical solution for the wave fields in layered media. A new method to avoid well 

known singularities in the formulas is proposed. With these new tools, the dispersion curves in 

homogenized HSS structure is obtained. Research is conducted on studying the effects of the 

homogenized core properties to the dispersion curves of the HSS structure. And finally, the Q-

factor-based damping model is validated in experimentally and can potentially be used in the 

NDE of HSS.  
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Chapter 4 presents several experimental studies on Lamb waves in honeycomb sandwich 

structures and discusses how they can be used in damage detection. A new damage index is 

proposed together with an improved mapping method for detecting a core-skin disbond damage 

in a honeycomb sandwich structures. Then a feasibility study is conducted in using non-contact 

air-coupled transducers to detect damages in honeycomb sandwich structures. 

 

 

 

Chapter 2 Lamb Waves in a Thick Plate 

2.1 Lamb wave dispersion equations and responses in an homogeneous 

isotropic plate 

 Consider an isotropic plate of thickness 2H shown in Figure 2-1, together with a global 

coordinate system in which X and Z axes are parallel to the plate surfaces and the Y- axis is 

normal to the plate. A plane strain problem on the XY-plane is considered in this study. 

 

 

By solving the equations of motion using the Helmholtz’s decomposition and substituting the 

displacements into the boundary conditions, one can obtain the dispersion equations [16] 

2H 

Y 

Z 

2D plane  

X 

Figure 2-1 Coordinate system in an isotropic plate 
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ሾsinhሺ𝜂ଵ𝑦ሻ coshሺ𝜂ଶ𝐻ሻ െ 2𝑘ଶ coshሺ𝜂ଵ𝐻ሻ sinhሺ𝜂ଶ𝑦ሻሿ𝑒௜ሺ௞௫ିఠ௧ሻ𝑑𝑘𝑑𝜔

 

(2-2) 

for the symmetric modes and 
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ሾcoshሺ𝜂ଵ𝑦ሻ sinhሺ𝜂ଶ𝐻ሻ െ 2𝑘ଶ sinhሺ𝜂ଵ𝐻ሻ coshሺ𝜂ଶ𝑦ሻሿ𝑒௜ሺ௞௫ିఠ௧ሻ𝑑𝑘𝑑𝜔

 

(2-3) 

for the antisymmetric modes. 𝑃ሺ𝜔, 𝑘ሻ is the surface loading after taking double Fourier 

transform with respect to time 𝑡 and coordinate 𝑥. 𝑅ௌ and 𝑅஺ can be expressed by: 



7 
 

ቊ
𝑅௔ሺ𝜔,𝑘ሻ ൌ 4𝑘ଶ𝜂ଵ𝜂ଶcoshሺ𝜂ଵ𝐻ሻ sinhሺ𝜂ଶ𝐻ሻെሺ𝑘ଶ ൅ 𝜂ଶ

ଶሻଶsinhሺ𝜂ଵ𝐻ሻ coshሺ𝜂ଶ𝐻ሻ
𝑅௦ሺ𝜔,𝑘ሻ ൌ 4𝑘ଶ𝜂ଵ𝜂ଶsinhሺ𝜂ଵ𝐻ሻ coshሺ𝜂ଶ𝐻ሻെሺ𝑘ଶ ൅ 𝜂ଶ

ଶሻଶcoshሺ𝜂ଵ𝐻ሻ sinhሺ𝜂ଶ𝐻ሻ
 

(2-4) 

The roots 𝑘ሺ𝜔ሻ for (2-1) need to be solved by numerical tools. After obtaining the roots, the 

displacements and stresses can be solved by substituting 𝑘 into the expressions. The following 

subchapters focuses on the equation solver and responses for a thick plate under high frequency 

excitations. 

2.2 Self-adapted root searcher 

The dispersion equations are transcendental and periodic equations, whose roots cannot be found 

easily. Till these days, numerical methods are widely used to solve the equations to obtain the 

dispersion curves for different solids and structures. They include the superposition of partial 

bulk waves (SPBW), semi-analytical finite element (SAFE) method, wave-guide finite element 

(WFE) method [24-28]. However, these numerical methods do not work very well at higher 

frequencies or for large plate thickness since they are tied to the mesh size of each element. 

There are also several analytical solvers for this problem, one of them is by using a tracing 

algorithm [17]. However, it has been found that this algorithm can become unstable when the 

dispersion curves is unstable when the slope of the dispersion curves is too large or too small. 

There are many other methods such as Muller’s method to obtain the solution of a complex 

transcendental equation. However, due to the algebraic complexity of the dispersion equations, it 

is difficult to obtain the solution accurately and efficiently, especially in the high frequency 

region (more than 10MHz) where there are much larger number of modes compared to the low 

frequency region. To adapt the complicated situation of the dispersion curves, a self-adapted root 
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searcher is developed. This subchapter mainly introduces the searcher in three topics: the root 

judging method, the initial roots searching and the root tracing algorithm. 

2.2.1 Root judging method 

For convenience, in the following part of the thesis, the evaluated function value is expressed in 

the form (Re, Im), where Re is the real part of the evaluated function and Im is the imaginary 

part. In order to search and find the solution, the dispersion equations are rewritten into continue 

functions form to remove the singularities in tan function, and the problem reduces to finding the 

roots of continuous functions in equation (2-4). 

The roots for the function are at the point with magnitude 0. Numerically speaking, the closest 

point to the root of the function within the searching range will have the minimum magnitude. 

However, the point with the minimum magnitude within the searching range may not always be 

the solution. Therefore, a new method to judge the root of the equation is needed for the 

searcher. It is shown that the function near the root are three types: “I” shape, “U” shape and “L” 

shape. 
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Figure 2-2 The three types of the distribution of the evaluated function values near a root, (a) “I” shape 
(b) “U” shape and (c) “L” shape 

 

Figure 2-2 shows the three types of the distributions. The “I” shaped distribution includes a pure 

real or imaginary solution. It happens when the root is in an odd order. The function near the root 

crosses the diagonal quadrants. It usually happens for fundamental modes or when the frequency 

is very large. This can be summarized using the mathematical expression: 

𝑅𝑒ሺ𝑓௡ሻ𝑅𝑒ሺ𝑓௡ାଵሻ ൑ 0ሩ𝐼𝑚ሺ𝑓௡ሻ𝐼𝑚ሺ𝑓௡ାଵሻ ൑ 0 

(2-5) 

The “U” shape appears when the root is in an even order. The function crosses two neighboring 

quadrants. It happens for higher modes when the wave number is low and can be expressed by: 

𝑅𝑒ሺ𝑓௡ሻ𝑅𝑒ሺ𝑓௡ାଵሻ ൑ 0ሩ𝐼𝑚ሺ𝑓௡ିଵ െ 𝑓௡ሻ𝐼𝑚ሺ𝑓௡ାଵ െ 𝑓௡ାଶሻ ൏ 0 

or 

𝐼𝑚ሺ𝑓௡ሻ𝐼𝑚ሺ𝑓௡ାଵሻ ൑ 0ሩ𝑅𝑒ሺ𝑓௡ିଵ െ 𝑓௡ሻ𝑅𝑒ሺ𝑓௡ାଵ െ 𝑓௡ାଶሻ ൏ 0 

(2-6) 
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Lastly, the “L” shape happens when the function has a branch cut, and the evaluated function 

values changes from pure real numbers to pure imaginary numbers. This usually happens when 

the dispersion curves pass through the Bulk wave velocity 𝑐ଵ and 𝑐ଶ. It can be expressed by: 

𝑅𝑒ሺ𝑓௡ሻ𝑅𝑒ሺ𝑓௡ାଵሻ ൌ 𝐼𝑚ሺ𝑓௡ሻ𝐼𝑚ሺ𝑓௡ାଵሻ ൌ 0 

(2-7) 

All evaluated values within the searching range will be checked by the method above and any 

sampling point that satisfied any of the three cases will be considered as a solution of the Lamb 

waves dispersion equations. 

2.2.2 Root searching 

To initiate the searching, the initial searching limits are defined. A low frequency limit is defined 

to search for the roots of all fundamental modes. The limit cannot be zero since dispersion 

equations are singular at frequency equals to zero. The initial searching range is divided into 

hundreds of uniform or non-uniform intervals, based on the goal of the searching engine. If the 

searching engine is for searching 𝜔 െ 𝑘 domain, the intervals will be non-uniform when 

searching for 𝑘. Instead, the 𝜔/𝑘 values, which is the phase velocities, searching intervals are 

uniform. By doing this, one can avoid the crowded 𝑘 values when 𝜔 is small. After finding the 

possible intervals which contain roots, the target interval will be then divided into even smaller 

intervals for increasing the accuracy. The same operation will be repeated until the interval 

length reaches the requirements, and then the beginning data of the target interval will be 

considered as the root.  
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Figure 2-3 Searching for the initial roots of the equation 

 

The root judging method requires 4 data points for the input: 𝑓௡ିଵ to 𝑓௡ାଶ. If 𝑛 ൌ 1 or 𝑛 ൒

𝑒𝑛𝑑 െ 1, which means the root happens on the boundary of the searching range, an additional 

value will be introduced to guarantee four values inputting into the root judging method. For 

example, if 𝑛 ൌ 1, a value with the index 𝑛 ൌ 0 will be introduced and 𝑥ଶ െ 𝑥ଵ ൌ 𝑥ଵ െ 𝑥଴ is 

guaranteed.  

 

2.2.3 Root tracing algorithm 

To guarantee that the root exists within the searching range, a local polar coordinate is set up for 

searching the root. Two variables are defined for searching the root: searching radius and 

searching angle. Starting from the initial roots, a searching range with 180 degrees of searching 

angle is applied. Once the next root is found, based on the previous two root, the algorithm will 

predict the next searching range by considering this function is close to linear within a small 

range. After the first three roots are found, based on the slope change, the searching angle and 

searching radius will be adjusted. For a small slope change, the searching angle will be smaller, 

and the searching radius will be larger, to efficiently compute the following roots. For a large 
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slope change, the searching angle will be larger, and the searching radius will be smaller, to 

increase the accuracy of the solution sets. A flowchart of the algorithm and its schematic graph 

are shown in Figs. 2-4 and 2-5. 

 

Figure 2-4 Flowchart of the Algorithm 

 

There are three types of errors that may happen during the searching process. The first type 

shows that there is no solution within the searching range. This usually happens when the 

dispersion curves cross one another or when the searching angle is too small. The second type is 

that multiple solutions are found within the searching range. This type of error happens when the 

searching radius is too large and when two modes are close to each other. The third type is that 

the root is closed to the boundary. This occurs when the slopes of the dispersion curves change 

significantly. If the first two types happen, then the searching radius will be reduced, and the 
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searching angle will increase. If no solution can be found with the full range search which has 

the maximum accuracy, the program will quit and report the error information to the user.  

 

Figure 2-5 Schematic Graph for the Algorithm 

 

2.3 Dispersion curves in a wide frequency range 

With the efficient searcher, the dispersion curves in a wide frequency range can be determined 

and studied. In this subsection, the behavior of the dispersion curves for an aluminum plate under 

a wide frequency range will be studied, including the cut-off frequencies and the convergence 

property of different modes. 

2.3.1 Cut-off frequencies 

Equation (2-1) shows the dispersion equations for the Lamb waves including the symmetric and 

antisymmetric modes. These equations can be expressed in the alternate forms: 
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⎩
⎪
⎨

⎪
⎧

tanh ሺ𝑣ଶ𝛺ሻ
tanh ሺ𝑣ଵ𝛺ሻ

ൌ
ሺ𝑣ଶ ൅ 𝑣ଶ

ଶሻଶ

4𝑣ଶ𝑣ଵ𝑣ଶ

tanh ሺ𝑣ଵ𝛺ሻ
tanh ሺ𝑣ଶ𝛺ሻ

ൌ
ሺ𝑣ଶ ൅ 𝑣ଶ

ଶሻଶ

4𝑣ଶ𝑣ଵ𝑣ଶ

 

(2-8) 

where Ω ൌ ωH is the frequency-thickness-product and 𝜈 ൌ ଵ

௖೛
 , 𝑣௜ ൌ ට

ଵ

௖೛
െ ଵ

௖೔
, 𝑐௣ is the phase 

velocity. 

The cut-off frequencies are the frequencies when new modes start to appear. All modes start with 

𝑘 ൌ 0ା. For the antisymmetric modes, when 𝑘 ൌ 0ା, equation (2-8) can be solved and the cut-

off frequencies can be obtained: 

൝
Ωଵ ൌ cଵnπ

Ωଶ ൌ cଶ ቀnπ െ
π
2
ቁ
 

(2-9) 

where n is an integer. Notice that in equation (2-9) there are two families of roots having 

different periods, and therefore the root is not periodical.  

Similar to the antisymmetric modes, the symmetric modes have the cut-off frequencies given by: 

൝
Ω ൌ 𝑐ଶ𝑛𝜋

Ω ൌ 𝑐ଵ ቀ𝑛𝜋 ൅
𝜋
2
ቁ
 

(2-10) 

The cut-off frequencies in equation (2-10) are plotted together with the dispersion curves in the 

-k plane in Figure 2-6. 



15 
 

 

Figure 2-6 Dispersion curves and the predicted cut-off frequencies 

 

2.3.2 Convergence study 

The phase velocity of the Lamb waves will converge to some specific values when the 

frequency-thickness-product tends to infinity. When the convergence velocity is lower than c2, 

both 𝑣ଵ and 𝑣ଶ will be real numbers, and therefore, tanhሺ𝑣௜Ωሻ → 1 and (2-8) becomes: 

ሺ𝑣ଶ ൅ 𝑣ଶ
ଶሻଶ െ 4𝑣ଶ𝑣ଵ𝑣ଶ ൌ 0 

(2-11) 

Equation (2-11) shows one convergence velocity for both symmetric and antisymmetric modes. 

It is clear that when the frequency-thickness-product is large, the solution is unique, implying 

that there is only one mode for each family that converges to this velocity. This velocity is equal 

to the Rayleigh wave velocity cr in the same solid.  

If the convergence velocity is higher than c2 but lower than c1, tanhሺ𝑣ଶΩሻ in (2-11) becomes 

tanhሺ𝑖𝑠ଶΩሻ ൌ 𝑖𝑡𝑎𝑛ሺ𝑠ଶΩሻ,  where 𝑠ଶ ൌ െ𝑖𝑣ଶ is a real number. When  is large enough, 

tanhሺ𝑣ଵΩሻ → 1 and (2-8) can be transformed to: 
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⎩
⎪
⎨

⎪
⎧tanሺ𝑠ଶΩሻ ൌ െ

ሺ𝑣ଶ െ 𝑠ଶ
ଶሻଶ

4𝑣ଶ𝑣ଵ𝑠ଶ
ൌ 𝑓ሺ𝑠ଶሻ

cotሺ𝑠ଶΩሻ ൌ
ሺ𝑣ଶ െ 𝑠ଶ

ଶሻଶ

4𝑣ଶ𝑣ଵ𝑠ଶ
ൌ െ𝑓ሺ𝑠ଶሻ

 

(2-12) 

Notice that when 𝑠ଶ is a fixed number (i.e., when 𝑐௣ is a constant), the frequency-thickness 

product for high frequencies can be expressed as:  

⎩
⎪
⎨

⎪
⎧ Ω ൌ

arctan൫𝑓ሺ𝑠ଶሻ൯ ൅ 𝑛𝜋
𝑠ଶ

Ω ൌ
arctan൫𝑓ሺ𝑠ଶሻ൯ ൅ ቀ𝑛 ൅

1
2ቁ 𝜋

𝑠ଶ

 

(2-13) 

Equation (2-13) provide the solutions of the dispersion equations for large frequency-thickness-

product representing different modes. It can be observed that if the frequency-thickness product 

is large enough, the symmetric modes and anti-symmetric modes appear to be periodic functions 

with a period of 
గ

௦మ
. Furthermore, the separation distance between two neighboring modes is 

గ

ଶ௦మ
. 

Notice that when  𝑠ଶ → 0, meaning that 𝑐௣ → 𝑐ଶ, the distance between two modes, 
గ

ଶ௦మ
, 

approaches ∞. This means that the two modes will never intersect with each other when they are 

approaching 𝑐ଶ. 
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Figure 2-7 Comparison between the solution of the exact equations with those obtained from the 
approximate simplified equations. The blue lines are for the symmetric mode, red lines are for the 

antisymmetric modes and black dashed lines are for the approximate solutions 

 

If the convergence velocity is higher than c1, 𝑠௜ ൌ െ𝑖𝑣௜ is a real number and the equation 

becomes tanhሺ𝑖𝑠௜Ωሻ ൌ 𝑖𝑡𝑎𝑛ሺ𝑠௜Ωሻ. Then equations (2-8) can be rewritten as: 

⎩
⎪
⎨

⎪
⎧

tanሺ𝑠ଶΩሻ
tanሺ𝑠ଵΩሻ

ൌ െ
ሺ𝑣ଶ െ 𝑠ଶ

ଶሻଶ

4𝑣ଶ𝑠ଵ𝑠ଶ
ൌ 𝑔൫𝑐௣൯

tanሺ𝑠ଵΩሻ
tanሺ𝑠ଶΩሻ

ൌ െ
ሺ𝑣ଶ െ 𝑠ଶ

ଶሻଶ

4𝑣ଶ𝑠ଵ𝑠ଶ
ൌ 𝑔൫𝑐௣൯

 

(2-14) 

The transcendental equations are usually unsolvable with only assuming Ω is large. However, 

unlike the previous results, the symmetric modes and antisymmetric modes can cross over each 

other, and the cross-points are given by: 

tanଶሺ𝑠ଵΩሻ ൌ tanଶሺ𝑠ଶΩሻ 

(2-15) 
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From equation (2-14), it is obvious that 𝑔ሺ𝑐௣ሻ is a function with only negative real values, 

implying that tanሺ𝑠ଵΩሻ and tanሺ𝑠ଶΩሻ must have different sign. Therefore, equation (2-15) can 

be transformed into: 

𝑅൫𝑐௣൯ ൌ 𝑠ଵ ൅ 𝑠ଶ ൌ
𝑛𝜋
Ω

 

(2-16) 

and the frequency can be expressed as: 

Ω ൌ
𝑛𝜋

ඨ
1
𝑐ଵ
ଶ െ

1
𝑐௣ଶ
൅ ඨ

1
𝑐ଶ
ଶ െ

1
𝑐௣ଶ

 

(2-17) 

Equation (2-17) represents the asymptote line that all the cross points of symmetric and 

antisymmetric modes pass through. It is shown that when the frequency-thickness-product 

increases, the symmetric modes and antisymmetric modes get closer and closer to the asymptote 

line. 

 

Figure 2-8 Symmetric modes (blue lines), antisymmetric modes (red lines) and the asymptotes (black 
dashed line) 
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2.4 Thick plate response compared with finite element simulation 

With the efficient tools to obtain dispersion curves, the force responses can be expanded to a 

wide frequency range. In this chapter, the high frequency responses of the Lamb waves are 

discussed and the solutions from different methods are compared. The Lamb waves responses 

are compared to the numerical solution obtained by finite element simulation of a thick block.  

          

Figure 2-9 Dispersion curves for a wide range of frequencies a) phase velocity b) group velocity 

 

2.4.1 Lamb wave prediction at large frequency-thickness product  

Using equation (2-2) and (2-3), the displacements components within the plate can be obtained. 

Some results are shown in the following figures: 

    

Figure 2-10 Responses of the top surface a) in frequency domain for only the fundamental modes and b) 
in time domain 
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When the frequency is high, the response of the plate converges to that of a semi-infinite plate 

response. It can be seen from Figure 2-10 b) that the response includes the Rayleigh wave (the 

main packet) and other waves reflected from the boundary of the numerical model. According to 

the analytical solution of the semi-infinite medium, for the Rayleigh wave amplitudes in the 

horizontal displacement should be roughly 2/3 of the vertical displacement. This can be seen 

also from the results for Lamb waves at very high frequencies presented in Figure 2-10. 

Moreover, the phase and group velocities of the fundamental modes also converge to the 

Rayleigh wave velocity. It is reasonable to assume that the fundamental modes will be converted 

to Rayleigh waves with increasing values of frequency and thickness product. The amplitude of 

the sum of two fundamental modes across the thickness of the plate is presented in Figure 2-11 

a). It can be seen that near the surface, the amplitude decay exponentially, which is expected to 

be seen in a Rayleigh wave. From Figure 2-11 b) it can be seen from the time domain signals that 

the summation of two fundamental modes can form a clear signal who has the velocity of the 

Rayleigh wave. 

       

Figure 2-11 Summation of two fundamental modes shown as a) through-thickness amplitude profile and 
b) time domain signal 
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Next, to further study the high frequency solution, some parts of the solution are removed from 

the original solution of the dispersion equations. The remaining solution satisfies the following 

relationship: 

𝑐௣ ൌ
𝜔
𝑘
൑ 0.99 𝑐ଵ ൌ 0.99ඨ

𝜆 ൅ 2𝜇
𝜌

 

(2-18) 

 

With this condition, all data that contain phase velocity greater than 𝑐ଵ is filtered out. Then the 

displacements at 𝑥 ൌ 17.4𝑚𝑚 and 𝑦 ൌ 0 (midplane) is obtained for comparison. The results are 

shown in Figure 2-12. It can be concluded that with the modification, the P wave(first packet) is 

removed from the original response. Conclusion can be dropped that for a wide frequency range 

response, instead of studying the motion of certain modes, studying the combination of all modes 

may be physically more meaningful.  

       

Figure 2-12 Displacements at 𝑥 ൌ 17.4𝑚𝑚 and 𝑦 ൌ 0 for a) without modification and b) with 
modification 
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2.4.2 Finite element results 

Finite element method is commonly used to obtain the wavefield of the solution. To verify the 

theoretical result obtained from the previous subchapters, a finite element model is constructed in 

order to compare with the theoretical solution. The model is 20mm ൈ 40mm in size and the 

historical result is presented at the coordinate 𝑥 ൌ 13.5𝑚𝑚 and 𝑦 ൌ 0. The material is aluminum 

with the material properties given below. 

Mechanical Properties E ሾGPaሿ ν ρ ሾkg/mଷሿ 
 68.9 0.33 2700 

Table 2-1 Material properties of Aluminum 6061-T6  

 

The shear wave velocity for this solid is 3097 mm/ms and the corresponding wavelength under 

an excitation of 4.5 MHz is about 0.69 mm. To guarantee at least 20 elements per wavelength, 

the mesh size is selected to be 0.025 mm. As for the time increment, the sampling frequency is 

selected to be 200 MHz, more than 40 times of the central frequency of the signal to guarantee 

convergence. Plane strain element is used for the calculation and the dynamic explicit procedure 

is used. The solution is then compared to the theoretical Lamb wave prediction. 

          

Figure 2-13 Response at 𝑥 ൌ 13.5𝑚𝑚 and 𝑦 ൌ 0 for a) FEM simulation and b) Lamb wave prediction 

 



23 
 

Figure 2-13 shows a comparable result between the FEM simulation and Lamb wave prediction. 

The difference includes: 1) There is resonance in the Lamb wave prediction due to the numerical 

instability near the cut-off frequencies. 2) In general, the time of arrival of each packet is 

identical. 3) There are small differences between the predicted and simulated results. The 

difference may have resulted from the fact that the two cases are not exactly the same in term of 

the loading. 

 

                     

Figure 2-14 Lamb-wave predicted field output for a point source 
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Chapter 3 Lamb Waves in Layered Media 

In 1917, Lamb H. first provided the theory on wave propagation inside an elastic plate [18]. It 

was shown that for waves propagating inside a plate, there exists dispersion phenomenon in 

velocity and the dispersion equation was derived. Since then, elastic wave propagation in a solid 

plate became a hot topic in seismology and earthquake studying. In 1950, Thomson proposed a 

[19] matrix manipulation of elastic wave problems and later Haskell corrected and elaborated the 

method [20]. The Thomson matrix method also be is referred as Transfer Matrix Method (TMM) 

for solving the dispersive relation in a multilayered medium. However, research shows that 

TMM does not have a good stability of the mode decaying through the thickness [21], especially 

for large thickness or high frequency. Later in 1964, Knopoff provide an alternate matrix 

method, and later known as Global Matrix Method (GMM), to provide a relatively robust 

solution for the dispersion equation in layered media [22]. The method is latter improved by 

changing of local coordinate system, which greatly reduced the numerical error [23]. Since then, 

GMM is widely used for analysis the dispersion relations in composite layered material. There 

are other methods and studies on obtaining the elastodynamic response of layer media such as 

the Elastodynamic Green’s function [36-39], numerical method [24, 25]. This thesis focuses on 

the global matrix method, and the method of residue to obtain the forcing response, for its 

advantage in obtaining accurate high frequency results while keeping the computational 

efficiency. 

3.1 The global matrix method 

Consider an isotropic plate shown in Figure 3-1 with the thickness H. The global coordinate 

system is set so that X and Z are the in-plane coordinates and Y are the out of plane direction. The 
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plane formed by X and Y coordinates are the 2D plane of interest. For this case, the plane can be 

considered as plane strain problem as the Z direction dimension is relatively large. By 

considering the equilibrium equations inside elastic solid material and applying proper boundary 

condition, one can obtain the elastic wave propagation matrix, which will be shown in the 

following chapter. 

 

Figure 3-1 Global coordinate system in isotropic plate 

 

3.1.1 Potential functions and solution in local layer 

For a homogeneous and isotropic solid material with plane strain assumption, with small 

displacements, the 2D stress component inside the plane of interest can be express in terms of 

linear combinations of first partial derivatives of displacement, also known as Hooke’s law for 

elasticity: 

 

(3-1) 

 

Displacement can be decomposed by scalar and vector potentials, which is known as Stokes-
Helmholtz decomposition: 

H 

X 

Y 

Z 

2D plane of interest 
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(3-2) 

 

Now consider the equations of motion inside an elastic media for plane problem. Assume the 
media is homogeneous with constant density ρ.  

 

(3-3) 

 

By substituting (3-1) and (3-2) into (3-3), one can obtain the set of equations for the potential 
functions for an elastic plane strain media: 

 

(3-4) 

One of the solution set for the two potential functions is: 

 

(3-5) 

Where: 
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Finally the potential functions can be obtain by solving the second order partial differential 

equation. For convenience, the potential function is split into a function of time multiplied by a 

function of space: 

 

(3-6) 

Where: 

 𝜔 is the angular frequency of the wave 

 𝑘 is the wavenumber in x direction 

 𝜂ଵ, 𝜂ଶ are the wavenumber in y direction and 

 

(3-7) 

  

Finally, by substituting the potential function expression in (3-6) into (3-1) and (3-2), one can 

obtain the displacement and stress solution for one layer: 

 

(3-8) 

 

Where 𝜁ଶ ൌ 2𝑘ଶ െ 𝑘ଶ
ଶ. Rearrange the solution in a matrix form: 



28 
 

 

 

 

 

 

(3-9) 

 

Where U is the displacement-stress matrix for m’s layer, Q is a spatial independent matrix, E is a 

diagonal spatial dependent matrix and C is the undetermined coefficient. This is the matrix form 

expression of elastic wave propagation inside a plane strain media. 

3.1.2 Boundary conditions in the global matrix method 

 Now consider the boundary conditions for a layered media shown in Figure 3-2. Global 

coordinate system is set so that the X direction is the wave propagation direction while Y is 

through thickness direction. y0 to yN is the y coordinates of each interface from the top surface to 

the bottom surface.  
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Figure 3-2 Geometry of Layered Media [26] 

 

There are two different types of boundary conditions: traction free boundary conditions at top 

and bottom surface of the plate and continuity boundary conditions at each interface. The 

boundary conditions can be expressed as: 

 

(3-10) 

 

Where 𝐔ା represents the 𝐔 vector evaluated at the bottom surface (with greater y coordinate) 

and 𝐔ି represents the 𝐔 vector evaluated at the top surface. According to the coordinate system 

in Figure 3-2, the spatial dependent matrix E evaluated at the surfaces and the interfaces should 

be written into two sets: 
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(3-11) 

 

Where hm is the layer m’s thickness and diag() means a diagonal matrix. For convenience, define 

the E matrix to be: 

 

(3-12) 

 

So that  

 

(3-13) 

 

Now substitute (3-11), (3-12) and (3-13) into (3-10), one can obtain the system of equations for 

the boundary conditions: 

 

(3-14) 

 

Where G is the global matrix: 
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(3-15) 

 

Then a two dimensional Fourier transform about time and space coordinate x is applied to the 

system of equations (3-14)  to transform to frequency-wavenumber domain: 

 

 

(3-16) 

 

From the system of equations in frequency-wavenumber domain (3-16), for a non-trivial solution 

of C, the global matrix G should satisfy the equation: 

 

(3-17) 

 

Equation (3-17) shows the relationship between frequency 𝜔 and wavenumber 𝑘, which is also 

known as dispersion equation of elastic wave propagate inside a layered media.  

3.2 Mode shapes obtained from the singular value decomposition 

Apart from dispersion curves, the modal function is also a good way to inspect how waves 

propagate inside a solid. As the results for dispersion curves always have numerical errors, which 
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makes the computation of modal function much harder. In this chapter, singular value 

decomposition is applied for an approximate modal function evaluation. Besides, minimum 

singular value, condition number and null space uniqueness are used to check the stability of 

different modal functions in different frequency. 

3.2.1 Modal functions 

To obtain the displacement modal functions, recall the equation (3-9). The displacement modal 

functions through the thickness in frequency domain should be: 

 

(3-18) 

Where: 

 Cሺmሻ ൌ 𝐂ሺସ୬ିଷሻ:ସ୬ and 𝐂 ൌ Nullሺ𝐆ሻ 

However, since the numerical searching algorism can’t guarantee the G matrix exactly singular, 

the G matrix computed from the searching result may not have a null space vector. Therefore, by 

applying the singular value decomposition (SVD) and choose the vector corresponding to the 

minimum singular value, one can find an approximate null space for global matrix G: 

 

(3-19) 

 

In the formula, ideally, σmin is the minimum singular value which is supposed to be zero, and 𝒗𝒄∗ 

is the complex conjugate transpose of the null space vector of G matrix. As mentioned before, 

due to the numerical errors, σmin can’t be zero and therefore, using 𝒗𝒄 as the coefficient vector C 
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will make the solution not satisfying all boundary conditions. But it’s still a good approximation 

for the actual modal function.  

    

Figure 3-3 Sample A0 and S0 Mode Shapes 

 

3.2.2 Stability control by three important factors 

 As mentioned before, all boundary conditions cannot be satisfied due to numerical error when 

finding roots for dispersion equation. Therefore, three factors are used for evaluate the numerical 

error for different modes under different frequencies: the minimum singular value σmin, the 

condition number κ and the null space uniqueness ξ. The minimum singular value σmin is the most 

straight-forward way to evaluate the matrix singularity. When the global matrix is singular, σmin 

is supposed to be zero. The condition number κ of the global matrix is defined as κ ൌ
ఙ೘ೌೣ 

ఙ೘೔೙
. It 

should be close to infinity if the matrix is close to singular. Apart from that, the condition 

number shows how much the boundary conditions can be changed due to a small error in the 

constant vector. Finally the null space of the solutions should always be one dimension other 

than the crossing point, which means ideally there’s always only one zero singular value for the 

matrix. The uniqueness, ξ, defined by ξ ൌ
ఙమ 

ఙ೘೔೙
, should be infinity all the time. To make the result 

more visible, 1/κ and 1/ ξ are shown for the result.  
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Figure 3-4 Sample Dispersion Curve for Sandwich Panel 

 

 

Figure 3-5 Sample Higher Mode Behavior of the Three Factors  

   

Figure 3-5 shows the three-factor stability control for the first higher mode with cutoff frequency 

about 100 kHz. According to the σmin frequency graph, generally speaking, the numerical error 

increases with the frequency. From 650kHz to 700 kHz, the result is extremely unstable. This is 

because at this frequency, the slope of the dispersion curve changes a lot, and with the root-

finding algorithm, the numerical error can be a lot. At about 700 kHz to 750 kHz, the minimum 

singular value is small but 1/ ξ is very large. At this band, the mode is approach to another mode. 
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This results in a low uniqueness value. In conclusion, the three factors can predict about what 

type of numerical problem happened to the  

3.3 Matrix form of the wave field 

3.3.1 Obtaining the wave field by residue theorem and Jacobi’s formula 

Getting back to the time domain expression for assembling global matrix, as shown in the 

previous chapter: 

𝑮𝑪𝑒௜ሺ௞௫ିఠ௧ሻ ൌ 0 

(3-20) 

In which G is the global matrix and C is the unknown constants. With the introduced forces 

applied on the boundary or interfaces, the expression (3-20) can be modulated to: 

𝑮𝑪𝑒௜ሺ௞௫ିఠ௧ሻ ൌ 𝑭ሺ𝑥, 𝑡ሻ ൌ 𝒇ሺ𝑡ሻ𝒈ሺ𝑥ሻ 

(3-21) 

F is a non-zero function vector indicating the forces applied on the boundary, which can be 

decomposed into a function vector about the time t multiplying another function vector about the 

space x. Applied 2D Fourier’s transform to both side of the equation, one can obtain the 

frequency-wavenumber domain equation: 

𝑮𝑪 ൌ 𝑭෩ሺ𝑘,𝜔ሻ ൌ 𝒇෨ሺ𝜔ሻ𝒈෥ሺ𝑘ሻ 

(3-22) 

The 𝒇෨ሺ𝜔ሻ and 𝒈෥ሺ𝑘ሻ are the frequency and the wavenumber domain expression for 𝒇ሺ𝑡ሻ and 

𝒈ሺ𝑥ሻ. 𝜔 is the angular frequency and 𝑘 is the angular wavenumber. So the problem can be 

solved in the frequency-wavenumber domain by the inverse of the GMM: 

𝑪 ൌ 𝑮ିଵ𝑭෩ ൌ
𝑴𝑭෩

det ሺ𝑮ሻ
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(3-23) 

Where 𝑴 is the adjoint matrix of 𝑮 defined by: 

𝑀௝௜ ൌ ሺെ1ሻ௜ା௝det ሺ𝐺௜௝ሻ   

(3-24) 

Where 𝐺௜௝ is 𝑮 matrix without the ith row and jth column. Then apply the inverse Fourier’s 

transform to equation (3-23) and be back to the frequency domain:  

𝑪 ൌ
1

2𝜋
න

𝑴𝑭෩

det ሺ𝑮ሻ

ஶ

ିஶ

𝑒௜௞௫𝑑𝑘 

(3-25) 

Equation (3-25) shows the solution in frequency domain. Notice the poles of the expression 

satisfy the equation detሺ𝑮ሻ ൌ 0, which is exactly the roots for dispersion equation shown in the 

previous chapter. A closed contour in the complex k plane with infinite radius was introduced to 

solve the integration.  

 
Figure 3-6: Closed Contour in the Upper Half Complex k Plane  

Only positive real and imaginary k and the complex k with positive imaginary part are selected to 

ensure one direction propagation and convergence in the propagating direction. With this 

contour, one can obtain the infinite integration by applying residue theorem on equation (3-25) 

and get: 
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𝑪 ൌ  
1

2𝜋
 ሺ2𝜋𝑖ሻቌ෍

𝑴𝑭෩

∂ detሺ𝑮ሻ
∂k

ቍ𝑒௜௞௫ቮ

௞ୀ௞ഀ

ൌ 𝑖 ቌ෍
𝑴𝑭෩

∂ detሺ𝑮ሻ
∂k

ቍ𝑒௜௞௫ቮ

௞ୀ௞ഀ

 

(3-26) 

Where 𝑘ఈ is the poles in the complex k domain. They also represent the roots for the dispersion 

equation, in another word, different modes, which are orthogonal to each other. With the Jocobi 

formula and the orthogonality of the modes, equation (3-26) can be further simplified to: 

𝑪ఈ ൌ  𝑖
𝑴𝑭෩

∂detሺ𝑮ሻ
∂k

ൌ 𝑖
𝑴𝑭෩

𝑡𝑟ሺ𝑴𝑮ሶ ሻ
 

(3-27) 

Where 𝑪ఈ is the solution for mode 𝛼 and 𝑮ሶ  is the derivative matrix for 𝑮 with respect to k given 

as: 

𝑮ሶ ൌ

⎩
⎪
⎨

⎪
⎧

𝑸ଶଵሶ ሺ1ሻ 𝑸ଶଶሶ ሺ1ሻ𝑬ሺ1ሻ ൅ 𝑸ଶଶሺ1ሻ𝑬ሶ ሺ1ሻ 𝟎 𝟎 … 𝟎 𝟎
𝑸ଵଵሶ ሺ1ሻ𝑬ሺ1ሻ ൅ 𝑸ଵଵሺ1ሻ𝑬ሶ ሺ1ሻ 𝑸ଵଶሶ ሺ1ሻ െ𝑸ଵଵሶ ሺ2ሻ െ𝑸ଵଶሶ ሺ2ሻ𝑬ሺ2ሻ ൅ 𝑸ଵଶሺ2ሻ𝑬ሶ ሺ2ሻ … 𝟎 𝟎
𝑸ଶଵሶ ሺ1ሻ𝑬ሺ1ሻ ൅ 𝑸ଶଵሺ1ሻ𝑬ሶ ሺ1ሻ 𝑸ଶଶሶ ሺ1ሻ െ𝑸ଶଵሶ ሺ2ሻ െ𝑸ଶଶሶ ሺ2ሻ𝑬ሺ2ሻ ൅ 𝑸ଶଶሺ2ሻ𝑬ሶ ሺ2ሻ … 𝟎 𝟎

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝟎 𝟎 𝟎 𝟎 … 𝑸ଶଵሶ ሺ𝑁ሻ𝑬ሺ𝑁ሻ ൅ 𝑸ଶଵሺ𝑁ሻ𝑬ሶ ሺ𝑁ሻ 𝑸ଶଶሶ ሺ𝑁ሻ⎭

⎪
⎬

⎪
⎫

 

𝐐ሶ ሺmሻ ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝑖

𝑘
𝜂ଶ

𝑘 െ
𝑘
𝜂ଶ

െ
𝑘
𝜂ଵ

𝑖
𝑘
𝜂ଵ

𝑖

െ2𝑖
ሺ𝑘ଶ ൅ 𝜂ଵ

ଶሻ
𝜂ଵ

𝜇 െ4𝑘𝜇 െ2𝑖
ሺ𝑘ଶ ൅ 𝜂ଵ

ଶሻ
𝜂ଵ

𝜇 െ4𝑘𝜇

4𝑘𝜇 െ2𝑖
ሺ𝑘ଶ ൅ 𝜂ଵ

ଶሻ
𝜂ଵ

𝜇 4𝑘𝜇 2𝑖
ሺ𝑘ଶ ൅ 𝜂ଵ

ଶሻ
𝜂ଵ

𝜇
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

𝐄ሶ ሺmሻ ൌ 𝑑𝑖𝑎𝑔ሺെ
𝑘ℎ௠
𝜂ଵ

𝑒ିఎభ௛೘ െ
𝑘ℎ௠
𝜂ଶ

𝑒ିఎమ௛೘ሻ 

(3-28) 

The Q and E matrices are defined in the previous chapter. Finally, the displacement and stress 

vector in frequency domain can be express as: 
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𝑼ሺ𝑚ሻ ൌ

⎩
⎪
⎨

⎪
⎧
𝑈
𝑉
𝛴௫
𝑇
𝛴௬⎭
⎪
⎬

⎪
⎫

ൌ 𝑖𝑸ሺ𝑚ሻ𝑬ሺ𝑦,𝑚ሻ  
𝑴𝑭෩

𝑡𝑟ሺ𝑴𝑮ሶ ሻ
𝑒௜௞ഀ௫ 

(3-29) 

Where 𝑼ሺ𝑚ሻ is the displacement and stress vector in frequency domain for the mth layer. And 

𝑸ሺ𝑚ሻ and 𝑬ሺ𝑦,𝑚ሻ have been defined in the previous chapter. Finally, by applying the inverse 

Fourier’s transform in frequency domain, one can get back to the time domain solutions: 

𝑼ሺ𝑡,𝑚ሻ ൌ න 𝑖𝑸ሺ𝑚ሻ𝑬ሺ𝑦,𝑚ሻ  
𝑴𝑭෩ሺ𝜔, 𝑘ఈሻ

𝑡𝑟ሺ𝑴𝑮ሶ ሻ
𝑒௜ሺ௞ഀ௫ିఠ௧ሻ𝑑𝜔

ஶ

ିஶ
 

(3-30) 

Equation (3-30) shows the time response for any applied force on the boundary for a multi-

layered medium. 

3.3.2 Effects of the spatial distribution 

The forcing function 𝑔෤ሺ𝑘ሻ can be obtained from Continues Fourier Transform (CFT). However, 

for most cases, it is hard to have the CFT for the spatial distribution function. Therefore, we are 

choosing the Discrete Fourier Transform (DFT) to simulate the spatial distribution function in a 

limited region. To study the convergence of DFT to CFT specific on lamb wave excitation, the 

signal used in this thesis is a uniform square loading with 10mm loading diameter. Or the spatial 

distribution function can also be represented by the piecewise continues function: 

𝑔ሺ𝑥ሻ ൌ ቄ1     െ 0.005 ൑ 𝑥 ൑ 0.005
0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(3-31) 

 The CFT of this function can be expressed by: 
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𝑔෤ሺ𝑘ሻ ൌ
2 sinሺ0.005𝑘ሻ

𝑘
 

(3-32) 

To compute the DFT, the algorithm fast Fourier transform(FFT) is applied. The algorithm can be 

expressed by the formula: 

𝑋௞ ൌ ෍ 𝑥௡𝑒
ି
௜ଶగ௞೙
ே

ேିଵ

௡ୀ଴

          𝑘 ൌ 0, 1, …𝑁 െ 1 

(3-33) 

The result from the two method are compared with a special increment Δ𝑥 ൌ 0.05 𝑚𝑚 and 

20000 sampling points. 

 

Figure 3-7 Comparison Between CFT and FFT 

 

It can be seemed that the setting within െ5000 ൏ 𝑘 ൏ 5000 converges well. With this setting, 

the spatial response from a transducer is simulated by a gaussian windowed function with 𝐿 = 

10mm and 𝛼 = 3.5. The function can be expressed by: 

𝑤ሺ𝑛ሻ ൌ 𝑒
ି
ଵ
ଶ൬ఈ

ଶ௡
ሺ௅ିଵሻ൰

మ

 

(3-34) 



40 
 

The function has a square window between x = -5mm and x = 5mm. The distribution is shown in 

Figure 3-8.  

 

Figure 3-8 Spatial Distribution of the Source 

 

3.3.3 Band filter applied to the response 

With the spatial distribution given in the previous chapter and 200kHz 5 cycles Hann windowed 

temporal distribution, the response of a 2mm aluminum plate under the vertical loading can be 

calculated by equation (3-30).  

         

Figure 3-9 The Response of Vertical Loading with Temporal and Spatial Distribution 

 

Figure 3-9 shows that the response has a singularity point when the frequency 𝜔 ൌ 0. This is 

true since wave equation only works when the frequency or wavenumber is large enough so that 
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the media can be considered as infinity. However, in real experiment, since the devices including 

the transducers and amplifier have build-in filters, the low frequency effect will not be shown in 

experimental results. To avoid the low frequency effect, a bandpass 4th order Bessel filter from 

20kHz to 1MHz is applied to the solution. To compare the two cases, the displacements at the 

surface with 500 mm distance from the source are calculated. 

              

Figure 3-10 Comparison between the cases with/without the filter for (a) horizontal displacement and (b) 
vertical displacement 

  

With the bandpass filter, both the horizontal displacement and vertical displacement can be 

improved, while the vertical displacement improved more.  

3.4 Singularities in the dispersion equations 

3.4.1 Numerical issues in the original dispersion equations 

During studying the frequency domain response of a plate, a numerical issue is found in the 

response. At certain frequencies in certain mode, the response of the plate becomes “unstable” 

with a large variation. For example, with a broadband concentrated excitation, the S0 mode 

responses in a 4mm aluminum plate can be show in the following figures:  
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Figure 3-11 S0 mode surface responses of 4mm aluminum plate in (a) horizontal displacement and (b) 
vertical displacement 

 

Figure 3-11 show the singular points happens when the frequency ω ൌ 847 kHz or Ω ൌ

3.39 MHz. At this frequency, the relation 𝜂ଶ ൌ ඥ𝑘ଶ െ 𝑘ଶ
ଶ ൌ 0 can be obtained, which indicates 

the wavenumber coefficient 𝜂ଶ turns from a real number to an imaginary number. At this 

location, the complex modes cross with the real modes and forms a singularity point on the 

dispersion curves. In equation (3-27), both the numerator and the denominator at this point 

equals to zero, and therefore numerically the solution will have trouble dealing with this formula, 

creating a “0/0” type numerical error. 

3.4.2 Modified formulas to avoid the numerical issue 

To avoid this error, the singular points are removed from the equation (3-23) by dividing 𝜂ଵ and 

𝜂ଶ for both the numerator and the denominator, and take the inverse Fourier transform to the 

normalized equation. The modified equation of (3-23) can be written as: 

𝑪 ൌ 𝑮ିଵ𝑭෩ ൌ

𝑴𝑭෩
∏𝜂௜

detሺ𝑮ሻ
∏𝜂௜

 

(3-35) 
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And after taking the inverse Fourier transform, the expression (3-29) can be rewritten as: 

𝑼ሺ𝑚ሻ ൌ 𝑖𝑸ሺ𝑚ሻ𝑬ሺ𝑦,𝑚ሻ  

𝑴𝑭෩
∏𝜂௜

𝑡𝑟൫𝑴𝑮ሶ ൯
∏𝜂௜

െ
detሺ𝑮ሻ

𝜕ሺ∏𝜂௜ሻ
𝜕𝑘

∏𝜂௜
ଶ  

𝑒௜௞ഀ௫ 

(3-36) 

Since η୧ ൌ ඥkଶ െ k୧
ଶ and k୧ is independent to k, the derivative in (3-36) can be calculated by: 

𝜕ሺ∏𝜂௜ሻ
𝜕𝑘

ൌ෍
𝑘
𝜂௜
ෑ𝜂௝
௝ஷ௜

ൌ෍
𝑘
𝜂௜
ଶෑ𝜂௝ 

𝑼ሺ𝑚ሻ ൌ 𝑖𝑸ሺ𝑚ሻ𝑬ሺ𝑦,𝑚ሻ  

𝑴𝑭෩
∏𝜂௜

𝑡𝑟൫𝑴𝑮ሶ ൯
∏𝜂௜

െ
𝑘 detሺ𝑮ሻ∑

1
𝜂௜
ଶ

∏ 𝜂௜
 

𝑒௜௞ഀ௫

ൌ 𝑖𝑸ሺ𝑚ሻ𝑬ሺ𝑦,𝑚ሻ  
𝑴𝑭෩

𝑡𝑟൫𝑴𝑮ሶ ൯ െ 𝑘 detሺ𝑮ሻ∑
1
𝜂௜
ଶ 
𝑒௜௞ഀ௫

ൌ 𝑖𝑸ሺ𝑚ሻ𝑬ሺ𝑦,𝑚ሻ  
𝑴𝑭෩∏𝜂௜

ଶ

𝑡𝑟൫𝑴𝑮ሶ ൯∏𝜂௜
ଶ െ 𝑘 detሺ𝑮ሻ∑ ∏ 𝜂௝

ଶ
௜ஷ௝௜  

 

(3-37) 

With equation (3-37), the numerical instability will be removed. It can be seen that the numerical 

instability is created by the numerical error in detሺ𝑮ሻ, which is canceled by the second term in 

the denominator.  
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Figure 3-12 Comparison between the solution before and after modification for (a) horizontal 
displacement and (b) vertical displacement for S0 mode 

 

The improved formular helps in predicting the solution not only in the frequency domain but also 

in the time domain. The residue signal is close to a single-frequency signal in the time domain, 

which will create uncertainty in NDE especially when dealing with case that is sensitive to the 

phase change. An example is shown below with a excitation of 850kHz in a 4mm plate. The 

residue signal is calculated by: 

𝑦௥௘௦௜ௗ௨௘ ൌ
𝑦௔ െ 𝑦௕

max ሺ|𝑦௔|ሻ
ൈ 100% 

(3-38) 

    

Figure 3-13 (a) Comparison between the two solutions (b) residue signal in percentage 
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3.5 In influence of the core properties on the dispersion curves of a sandwich 

structure 

3.5.1 Homogenized honeycomb core properties 

Consider a composite layer as shown in Figure 3-14 where we define a global stiffness matrix in 

which the x1-axis and x2-axis lies in the plane of the material layer and x3-axis along the 

thickness of the layer. 

   
Figure 3-14 Model of a composite layer 

 

For a homogeneous and transversely isotropic material with 1-2 plane be the special plane of 

isotropy the stress can be expressed linearly in terms of the displacement by the following stress-

displacement relations: 

⎩
⎪
⎨

⎪
⎧
𝜎ଵଵ
𝜎ଶଶ
𝜎ଷଷ
𝜎ଶଷ
𝜎ଷଵ
𝜎ଵଶ⎭

⎪
⎬

⎪
⎫

ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐶ଵଵ 𝐶ଵଶ 𝐶ଵଷ 0 0 0
𝐶ଵଶ 𝐶ଵଵ 𝐶ଵଷ 0 0 0
𝐶ଵଷ 𝐶ଵଷ 𝐶ଷଷ 0 0 0
0 0 0 𝐶ସସ 0 0
0 0 0 0 𝐶ସସ 0

0 0 0 0 0
1
2
ሺ𝐶ଵଵ െ 𝐶ଵଶሻ⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧

𝑢ଵ,ଵ
𝑢ଶ,ଶ
𝑢ଷ,ଷ

𝑢ଶ,ଷ ൅ 𝑢ଷ,ଶ
𝑢ଵ,ଷ ൅ 𝑢ଷ,ଵ
𝑢ଵ,ଶ ൅ 𝑢ଶ,ଵ⎭

⎪
⎬

⎪
⎫

 

(3-39) 

 

With a general form of the solution: 

1x
2x

3x
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𝑢 ൌ 𝐴𝑒௜ሺ௞௫ିఠ௧ሻାఎ௭           𝑤 ൌ 𝐵𝑒௜ሺ௞௫ିఠ௧ሻାఎ௭ 

(3-40) 

The equations of motions can be expressed by: 

ቆ
𝐶ସସ𝜂ଶ െ 𝐶ଵଵ𝑘ଶ

𝜌
൅ 𝜔ଶቇ𝐴 ൅ ൬

ሺ𝐶ଵଷ ൅ 𝐶ସସሻ𝑖𝑘𝜂
𝜌

 ൰𝐵 ൌ 0 

൬
ሺ𝐶ଵଷ ൅ 𝐶ସସሻ𝑖𝑘𝜂

𝜌
 ൰𝐴 െ ቆ

𝐶ସସ𝑘ଶ െ 𝐶ଷଷ𝜂ଶ

𝜌
െ 𝜔ଶቇ𝐵 ൌ 0 

(3-41) 

To simplify the equation (3-41), four constants are defined: 

𝑐ଵ
ଶ ൌ

஼భభ
ఘ

  𝑐ଶ
ଶ ൌ

஼ఱఱ
ఘ

 𝑐ଷ
ଶ ൌ

஼యయ
ఘ

 𝑐ସ
ଶ ൌ

஼భయା஼ఱఱ
ఘ

 

(3-42) 

All four constants are defined by the material stiffness and the density, and all of them are in 

units of velocity. The first three constants 𝑐ଵ, 𝑐ଶ and 𝑐ଷ are the three Bulk waves velocities of the 

transversely isotropic material. With the four constants, (3-41) can be further simplified to: 

ሺ𝑐ଶ
ଶ𝜂ଶ െ 𝑐ଵ

ଶ𝑘ଶ ൅ 𝜔ଶሻ𝐴 ൅ ሺ𝑐ସ
ଶ𝑖𝑘𝜂ሻ𝐵 ൌ 0 

ሺ𝑐ସ
ଶ𝑖𝑘𝜂ሻ𝐴 െ ሺ𝑐ଶ

ଶ𝑘ଶ െ 𝑐ଷ
ଶ𝜂ଶ െ 𝜔ଶሻ𝐵 ൌ 0 

(3-43) 

For a non-trivial solution set of 𝐴 and 𝐵, the coefficients of equation (3-43) must satisfied the 

condition: 

ቆ
𝜂ଶ

𝑘ଶ
ଶ െ

𝜂ଵ
ଶ

𝑘ଵ
ଶቇ ቆ

𝜂ଶ

𝑘ଷ
ଶ െ

𝜂ଶ
ଶ

𝑘ଶ
ଶቇ ൅

𝑘ଶ𝜂ଶ

𝑘ସ
ସ ൌ 0 

(3-44) 

Where 

𝑘௝
ଶ ൌ

𝜔ଶ

𝑐௝
ଶ          𝜂௝

ଶ ൌ 𝑘ଶ െ 𝑘௝
ଶ 
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Now define 

𝜂ఈଶ ൌ
𝜂ଵ
ଶ𝑘ଶ

ଶ

𝑘ଵ
ଶ         𝜂ఉ

ଶ ൌ
𝜂ଶ
ଶ𝑘ଷ

ଶ

𝑘ଶ
ଶ           𝜂ఊଶ ൌ

𝑘ଶ𝑘ଶ
ଶ𝑘ଷ

ଶ

𝑘ସ
ସ  

The condition (3-44) can be rewrite to: 

𝜂ସ ൅ ൫െ𝜂ఈଶ െ 𝜂ఉ
ଶ ൅ 𝜂ఊଶ൯𝜂ଶ ൅ 𝜂ఈଶ𝜂ఉ

ଶ ൌ 0 

(3-45) 

Equation (3-45) is a quadratic equation of 𝜂ଶ. The roots of the equation can be calculated 

analytically with 

𝜂ଶ ൌ
1
2
ቀെ𝐵ത േ ඥ𝐵തଶ െ 4𝐶̅ቁ 

(3-46) 

Where 𝐵ത  is the coefficient of 𝜂ଶ term and 𝐶̅ is the coefficient of 1. The term 𝐵തଶ െ 4𝐶̅ can be 

simplified with following calculation process: 

𝐵തଶ െ 4𝐶̅ ൌ  ൫𝜂ఉ
ଶ ൅ 𝜂ఈଶ൯

ଶ
െ 2𝜂ఊଶ൫𝜂ఈଶ ൅ 𝜂ఉ

ଶ൯ ൅ 𝜂ఊସ െ 4𝜂ఈଶ𝜂ఉ
ଶ  

ൌ  ൫𝜂ఈଶ െ 𝜂ఉ
ଶ൯

ଶ
െ 2𝜂ఊଶ൫𝜂ఈଶ ൅ 𝜂ఉ

ଶ൯ ൅ 𝜂ఊସ  

ൌ  ൫𝜂ఈଶ െ 𝜂ఉ
ଶ൯

ଶ
െ 2൫𝜂ఈଶ െ 𝜂ఉ

ଶ൯𝜂ఊଶ െ 4𝜂ఊଶ𝜂ఉ
ଶ ൅ 𝜂ఊସ 

ൌ ൫𝜂ఈଶ െ 𝜂ఉ
ଶ െ 𝜂ఊଶ൯

ଶ
െ 4𝜂ఊଶ𝜂ఉ

ଶ  

ൌ ൣ൫𝜂ఈଶ െ 𝜂ఉ
ଶ െ 𝜂ఊଶ൯ ൅ 2𝜂ఊ𝜂ఉ൧ൣ൫𝜂ఈଶ െ 𝜂ఉ

ଶ െ 𝜂ఊଶ൯ െ 2𝜂ఊ𝜂ఉ൧ 

ൌ ቂ𝜂ఈଶ െ ൫𝜂ఉ െ 𝜂ఊ൯
ଶ
ቃ ቂ𝜂ఈଶ െ ൫𝜂ఉ ൅ 𝜂ఊ൯

ଶ
ቃ 

ൌ ሺ𝜂ఈ ൅ 𝜂ఉ െ 𝜂ఊሻሺ𝜂ఈ െ 𝜂ఉ ൅ 𝜂ఊሻሺ𝜂ఈ െ 𝜂ఉ െ 𝜂ఊሻሺ𝜂ఈ ൅ 𝜂ఉ ൅ 𝜂ఊሻ 

(3-47) 

So the solution of (3-46) can be expressed by: 
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𝜂ଶ ൌ
1
2
ቈ൫𝜂ఈଶ ൅ 𝜂ఉ

ଶ െ 𝜂ఊଶ൯ േ ට൫𝜂ఈ ൅ 𝜂ఉ െ 𝜂ఊ൯൫𝜂ఈ െ 𝜂ఉ ൅ 𝜂ఊ൯൫𝜂ఈ െ 𝜂ఉ െ 𝜂ఊ൯൫𝜂ఈ ൅ 𝜂ఉ ൅ 𝜂ఊ൯቉ 

(3-48) 

According to equation (3-48), there are four solutions of 𝜂. These four solutions will be 

expressed as 𝜂௡ and 𝜂௠ in the following part of the theses. Next, two variables 𝑅௡ and 𝑅௠ are 

defined by: 

𝑅௡ ൌ
𝐵௡
𝐴௡

ൌ
𝑖𝑘𝜂௡

൬
𝑘ଶ

𝑘ଶ
ଶ െ

𝜂௡ଶ

𝑘ଷ
ଶ െ 1൰ 𝑘ସ

ଶ
                               𝑅௠ ൌ

𝐵௠
𝐴௠

ൌ
𝑖𝑘𝜂௠

൬
𝑘ଶ

𝑘ଶ
ଶ െ

𝜂௠ଶ

𝑘ଷ
ଶ െ 1൰ 𝑘ସ

ଶ
 

(3-49) 

And the displacements can be written as: 

𝑈 ൌ ሺ𝐴̅ coshሺ𝜂௡𝑦ሻ ൅ 𝐵ത sinhሺ𝜂௡𝑦ሻ ൅ 𝐶̅ coshሺ𝜂௠𝑦ሻ ൅ 𝐷ഥ sinhሺ𝜂௠𝑦ሻሻ𝑒௜௞௫ 

𝑊 ൌ ሺ𝐴̅𝑅௡ sinhሺ𝜂௡𝑦ሻ ൅ 𝐵ത𝑅௡ coshሺ𝜂௡𝑦ሻ ൅ 𝐶̅𝑅௠ sinhሺ𝜂௠𝑦ሻ ൅ 𝐷ഥ𝑅௠ coshሺ𝜂௠𝑦ሻሻ𝑒௜௞௫ 

Where 

𝐴̅ ൌ
𝐴 ൅ 𝐵

2
   𝐵ത ൌ

𝐴 െ 𝐵
2

   𝐶̅ ൌ
𝐶 ൅ 𝐷

2
   𝐷ഥ ൌ

𝐶 െ 𝐷
2

 

(3-50) 

By substituting the solution (3-50) into boundary conditions given in equation (3-51), the 

dispersion equation can be expressed as: 

𝑦 ൌ േ𝐻,           𝜎௭௭ ൌ 𝜏௫௭ ൌ 0 

(3-51) 

tanh ሺ𝜂௡𝐻ሻ
tanh ሺ𝜂௠𝐻ሻ

ൌ
ሺ𝑖𝑘𝜁ଵଷ ൅ 𝜂௡𝑅௡𝜁ଷଷሻሺ𝜂௠ ൅ 𝑖𝑘𝑅௠ሻ
ሺ𝑖𝑘𝜁ଵଷ ൅ 𝜂௠𝑅௠𝜁ଷଷሻሺ𝜂௡ ൅ 𝑖𝑘𝑅௡ሻ

 

for the symmetric case and 
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tanh ሺ𝜂௠𝐻ሻ
tanh ሺ𝜂௡𝐻ሻ

ൌ
ሺ𝑖𝑘𝜁ଵଷ ൅ 𝜂௡𝑅௡𝜁ଷଷሻሺ𝜂௠ ൅ 𝑖𝑘𝑅௠ሻ
ሺ𝑖𝑘𝜁ଵଷ ൅ 𝜂௠𝑅௠𝜁ଷଷሻሺ𝜂௡ ൅ 𝑖𝑘𝑅௡ሻ

 

(3-52) 

for the antisymmetric case. In which, 

𝜁ଵଷ ൌ
𝐶ଵଷ
𝐶ସସ

ൌ
𝑘ଶ
ଶ

𝑘ସ
ଶ െ 1               𝜁ଷଷ ൌ

𝐶ଷଷ
𝐶ସସ

ൌ
𝑘ଶ
ଶ

𝑘ଷ
ଶ 

(3-53) 

Considering a three-layer symmetric composite structure, by applying a symmetric or 

antisymmetric boundary condition, the global matrix for a three-layer composite can be 

expressed by: 

𝑄ሺ𝑚ሻଵିସ,ଵିସ ൌ

⎣
⎢
⎢
⎡

𝜁௠ 𝜁௡ 𝜁௠ 𝜁௡
െ𝑖𝑘𝜂௠𝑘ଷ

ଶ െ𝑖𝑘𝜂௡𝑘ଷ
ଶ 𝑖𝑘𝜂௠𝑘ଷ

ଶ 𝑖𝑘𝜂௡𝑘ଷ
ଶ

െ𝐶ସସ𝜂௠ሺ𝜁௠ െ 𝑘ଶ𝑘ଷ
ଶሻ െ𝐶ସସ𝜂௡ሺ𝜁௡ െ 𝑘ଶ𝑘ଷ

ଶሻ 𝐶ସସ𝜂௠ሺ𝜁௠ െ 𝑘ଶ𝑘ଷ
ଶሻ 𝐶ସସ𝜂௡ሺ𝜁௡ െ 𝑘ଶ𝑘ଷ

ଶሻ
𝐶ଵଷ𝑖𝑘𝜁௠ ൅ 𝐶ଷଷ𝑖𝑘𝜂௠ଶ 𝑘ଷଶ 𝐶ଵଷ𝑖𝑘𝜁௡ ൅ 𝐶ଷଷ𝑖𝑘𝜂௡ଶ𝑘ଷଶ 𝐶ଵଷ𝑖𝑘𝜁௠ ൅ 𝐶ଷଷ𝑖𝑘𝜂௠ଶ 𝑘ଷଶ 𝐶ଵଷ𝑖𝑘𝜁௡ ൅ 𝐶ଷଷ𝑖𝑘𝜂௡ଶ𝑘ଷଶ⎦

⎥
⎥
⎤
 

𝐸ሺ𝑚ሻ ൌ ሾ𝑒
ିఎ೘ு 0

0 𝑒ିఎ೙ு
ሿ 

𝐺𝑆 ൌ

⎣
⎢
⎢
⎢
⎡

𝑄ሺ1ሻଷସ,ଵଶ 𝑄ሺ1ሻଷସ,ଷସ𝐸ሺ1ሻ 𝟎 𝟎
𝑄ሺ1ሻଵଶ,ଵଶ𝐸ሺ1ሻ 𝑄ሺ1ሻଵଶ,ଷସ െ𝑄ሺ2ሻଵଶ,ଵଶ െ𝑄ሺ2ሻଵଶ,ଷସ𝐸ሺ2ሻ
𝑄ሺ1ሻଷସ,ଵଶ𝐸ሺ1ሻ 𝑄ሺ1ሻଷସ,ଷସ െ𝑄ሺ2ሻଷସ,ଵଶ െ𝑄ሺ2ሻଷସ,ଷସ𝐸ሺ2ሻ

𝟎 𝟎 𝑄ሺ2ሻଶଷ,ଵଶ𝐸ሺ2ሻ 𝑄ሺ2ሻଶଷ,ଷସ ⎦
⎥
⎥
⎥
⎤
 

𝐺𝐴 ൌ

⎣
⎢
⎢
⎢
⎡

𝑄ሺ1ሻଷସ,ଵଶ 𝑄ሺ1ሻଷସ,ଷସ𝐸ሺ1ሻ 𝟎 𝟎
𝑄ሺ1ሻଵଶ,ଵଶ𝐸ሺ1ሻ 𝑄ሺ1ሻଵଶ,ଷସ െ𝑄ሺ2ሻଵଶ,ଵଶ െ𝑄ሺ2ሻଵଶ,ଷସ𝐸ሺ2ሻ
𝑄ሺ1ሻଷସ,ଵଶ𝐸ሺ1ሻ 𝑄ሺ1ሻଷସ,ଷସ െ𝑄ሺ2ሻଷସ,ଵଶ െ𝑄ሺ2ሻଷସ,ଷସ𝐸ሺ2ሻ

𝟎 𝟎 𝑄ሺ2ሻଵସ,ଵଶ𝐸ሺ2ሻ 𝑄ሺ2ሻଵସ,ଷସ ⎦
⎥
⎥
⎥
⎤
 

(3-54) 

 

By using the searching method above, the solution for the composite sandwich panel can be 

computed and more studies can be done on sandwich composite. 
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3.5.2 Features of guided waves propagating in a honeycomb sandwich structure 

Consider an HSS with CFRP face sheets (1.78 mm, quasi-isotropic stacking sequence) and an 

aluminum honeycomb core (12.7 mm), as shown in the Figure 3-15. To simplify the modeling of 

the HSS and compute the dispersion curves easily, a homogenized three-layer model is used. The 

homogenized transversely isotropic material properties of both the face sheets and the core layer 

are computed based on mixture theories [27, 28]. The determined nominal values are 

summarized in Table 3-1. It should be noted that the 1- and 2-axes represent the in-plane 

directions, and the 3-axis points along the out of plane direction. 

 

Figure 3-15 Dimensions of the homogenized HSS model 

 

 𝐸ଵ 𝐸ଷ 𝜈ଵଶ 𝜈ଵଷ 𝐺ଵଷ 𝜌 

Skin 38.8 9.8 0.31 0.32 2.9 1276 
Core 3.43e-3 2.99 0.999 3.79e-4 0.413 114.4 

 

Table 3-1 Homogenized material properties: elastic moduli in [GPa] and densities in [kg/m3] 

The stiffness matrix for any orthotropic material needs to be positive-definite to guarantee that 

the strain energy is positive. In other words, the material properties should satisfy, among others, 

the following constraints: 

ห𝜈௜௝ห ൏ ඨ
𝐸௜
𝐸௝
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Δഥ ൌ 1 െ 𝜈ଵଶ𝜈ଶଵ െ 𝜈ଶଷ𝜈ଷଶ െ 𝜈ଵଷ𝜈ଷଵ െ 2𝜈ଶଵ𝜈ଷଶ𝜈ଵଷ ൐ 0 

(3-55) 

A sensitivity study is performed to evaluate the influence of the material constants of the 

honeycomb core on the guided wave characteristics for the HSS. The assumed uncertainty 

interval of the five constants of the assumed transversely isotropic core layer are summarized in 

Table 3-2. In each of the following studies, only one parameter is varied at a time while the 

others are kept constant. 

 Lower Bound Upper Bound Step 

𝐸ଵሾMPaሿ 30 400 10 

𝐸ଷሾGPaሿ 2.5 3.5 0.1 

𝜈ଵଶ 0.95 0.9999 log. 

𝜈ଵଷ 1e-5 4e-4 4e-5 

𝐺ଵଷሾMPaሿ 350 450 10 

Table 3-2 Considered variations in material properties for core layer 

Figure 3-16 shows the influence of 𝐸ଵ, 𝐸ଷ, 𝜈ଵଷ and 𝐺ଵଷ of the core layer on the group velocities 

of the two fundamental modes. The following observations can be made: 

1. Young's modulus 𝐸ଵ changes is varied by approximately 30% of its nominal value. 

However, only the 𝑆0 mode seems to be affected, predominantly in the region below 

50kHz, as shown in Figure 3-16 a). The maximum variation is approximately 3.6% of the 

group velocity at 5kHz. 

2. Young's modulus 𝐸ଷ is also varied by approximately 30%. Similar to 𝐸ଵ, 𝐸ଷ mainly 

affects the 𝑆0 mode, as shown in Figure 3-16 b). The majorly of the affected region is, 

however, slightly higher at around 50-100kHz. 

3. Poisson's ratio 𝜈ଵଷ is varied within the bounds discussed. As can be seen from Figure 

3-16 c), again only the 𝑆0 mode is affected. Significant changes occur in the range from 

approximately 25kHz to 100kHz. 
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4. Shear modulus 𝐺ଵଷ is also varied by approximately 30% of its nominal value. Unlike the 

other three material properties, 𝐺ଵଷ only substantially affects the 𝐴0 mode. At the same 

time, the changes in the group velocity are comparably small with a maximum deviation 

of approximately 15% at 5kHz.  

5. Common across all four cases, the convergence velocity of neither of the fundamental 

modes is affected by a variation of these parameters within the given bounds. 

 

Figure 3-16 Group velocities of the fundamental modes for varying core material properties: a) for Eଵ b) 
for Eଷ c) a) for νଵଷ d) for Gଵଷ 

 

It should be noted that Poisson's ratio 𝜈ଵଶ is calculated to be 𝜈ଵଶ ൌ 1  based on mixture theory. 

However, this is in violation of the constraint from (3-55). Thus, in previous publications [29] 
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[30] a value of 𝜈ଵଶ ൌ 0.999 had been assumed. As shown in the following, this rather arbitrary 

assumption may lead to incorrect calculation of the dispersion curves. 

 

To begin the discussion, the dispersion curves are calculated for 𝜈ଵଶ ൌ 0.95 and the results are 

shown in Figure 3-17. 

 

Figure 3-17 Dispersion curves and convergence velocities for 𝜈ଵଶ ൌ 0.95 

 

 

Figure 3-18 Dispersion curves for the HSS with nominal material properties 

 

First it should be noted that a deviation of only approximately 5% from the nominal value for 𝜈ଵଶ 

leads to substantial differences. To highlight these effects, the longitudinal bulk velocity 𝑐ଵ of the 
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homogenized core layer is shown as a green dashed line in addition to the black dashed line 

representing the Rayleigh wave velocity 𝑐ோ  of the face sheet material. As can be seen from the 

figure, now the velocities for all modes only “converge” towards the Rayleigh wave velocity for 

a short frequency range before finally converging towards the longitudinal bulk velocity.  

This trend can be further visualized by artificially combining all modes within their “short-

range” convergence region, as shown as a black line in Figure 3-17. The trend that highlighted is 

very close to the 𝐴0 mode of the case that 𝜈ଵଶ ൌ 0.999, and is one of the main targets for the 

following research. 

In a next step, the value of 𝜈ଵଶ is slowly increased from 0.95 to its nominal value of 0.999, and 

its effects on the group velocities of the fundamental modes is analyzed. The results are shown in 

Figure 3-19. 

 

Figure 3-19 Phase velocity of the fundamental modes for varied values of 𝜈ଵଶ 

 

As compared to all other material constants, significantly different trends can be observed. In 

particular, the convergence velocity significantly changes with changes in 𝜈ଵଶ. Most importantly, 

for most values of 𝜈ଵଶ a substantial drop in velocity occurs after intermittently converging 
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towards 𝑐ோ. For a comparison between the results for the extreme values and their effects on all 

modes. 

In summary, from Figure 3-19, it can be seen that 𝜈ଵଶ strongly affects the pattern of the 

dispersion curves for an HSS. In fact, a critical point is reached when 𝑐ଵ of the core is equal to 

the 𝑐ோ of the face sheet. The critical point is visualized in Figure 3-20, showing the dependence 

of the bulk velocities [31] on the value of 𝜈ଵଶ of the homogenized core.  

 

Figure 3-20 Bulk waves velocities of the core for different values of 𝜈ଵଶ 

 

By inspection, it can be seen that 𝑐ଵ ൌ 𝑐ோ at 𝜈ଵଶ ൌ 0.9931. In other words, when 𝜈ଵଶ ൏ 0.9931, 

the dispersion curves show an intermittent pseudo-convergence behavior towards 𝑐ோ of the face 

sheet while ultimately converging towards 𝑐ଵ of the core, while for 𝜈ଵଶ ൐ 0.9931, the dispersion 

curves directly converge towards 𝑐ோ of the face sheet as shown in Figure 3-18. 

3.6 A model of lamb wave damping 

3.6.1 Q-factor based damping model 

In 1964, experiment observed that for an isotropic solid, following conclusions can be dropped 

[32]: 
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1. 𝛼ො,𝛽መ ,𝑄ఈ ,𝑄ఉ are independent of frequency in a broad frequency range. 

2. Where 𝛼ො,𝛽መ  are the Bulk wave velocity and 𝑄ఈ ,𝑄ఉ are the quality factor. 

3. 𝑄ఈ ,𝑄ఉ are proportional to the wave speeds 𝛼ො,𝛽መ . 

4. The numerical values of 𝑄ఈ ,𝑄ఉ are very large (>100). 

Where 𝛼ො is the velocity of longitudinal Bulk wave while 𝛽መ  is the velocity of shear Bulk wave. 

𝑄ఈ and 𝑄ఉ are the corresponding quality factors and are defined by: 

𝑄 ൌ
𝑘෠

2𝑘௜௠௔௚
 

(3-56) 

Where 𝑘෠ is the real wave number and 𝑘௜௠௔௚ is the imaginary wave number that leads to the 

decaying of the waves. Based on the observations that 𝑄 ∝ 𝑐̂, one can drop the conclusions that 

2𝑄ఉ ൌ
𝑘෠

𝑘௜௠௔௚
∝ 𝛽መ ൌ 𝑐𝛽መ ൐ 200 

𝑘௜௠௔௚ ൌ
𝑘෠

2𝑄ఉ
 

(3-57) 
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Where c is a constant that shows the proportionality of the 𝑄ఉ with respect to the shear wave 

velocity 𝛽መ . Calculation can be done to relate the shear modulus with the constant: 

𝜇௖௢௠௣௟௘௫
𝜌

ൌ 𝛽ଶ ൌ
𝜔ଶ

𝑘ଶ
 

𝑘ଶ ൌ ൫𝑘෠ ൅ 𝑖𝑘௜௠௔௚൯
ଶ
ൌ 𝑘෠ଶ ቆ1 ൅ 𝑖

1
2𝑄ఉ

ቇ
ଶ

ൌ 𝑘෠ଶ ቆ1 ൅ 𝑖
1

2𝑄ఉ
െ

1
4𝑄ఉ

ଶቇ 

ൎ 𝑘෠ଶ ቆ1 ൅ 𝑖
1

2𝑄ఉ
ቇ ൌ 𝑘෠ଶሺ1 ൅ 𝑖𝑝ሻ 

𝜇௖௢௠௣௟௘௫ ൌ
𝜇̂

1 ൅ 𝑖𝑝
 

(3-58) 

Where 𝑝 ൌ
ଵ

ଶொഁ
.  

From (3-58), if we assume that the proportional ratio 𝑐 remains constants for the same material, 

the Q factor related to the longitudinal wave can be expressed as: 

2𝑄ఈ ൌ 2𝑄ఉ
𝛼ො

𝛽መ
 

And therefore: 

𝜆௖௢௠௣௟௘௫ ൅ 2𝜇௖௢௠௣௟௘௫ ൌ
𝜆መ ൅ 2𝜇̂

1 ൅ 𝑖𝑝
𝛽መ
𝛼ො

 

(3-59) 

These results can be applied to a transversely isotropic solid with four independent Bulk waves 

velocities [33]. With a stiffness matrix given by (3-39), the complex stiffness can be expressed 

by: 
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𝐶ଵଵ ൌ
𝐶ଵଵ෢

1 ൅ 𝑖𝑝ඨ
𝐶ସସ෢

𝐶ଵଵ෢

 

𝐶ଷଷ ൌ
𝐶ଷଷ෢

1 ൅ 𝑖𝑝ඨ
𝐶ସସ෢

𝐶ଷଷ෢

 

𝐶ସସ ൌ
𝐶ସସ෢

1 ൅ 𝑖𝑝
 

𝐶ଵଷ ൌ
𝐶ଵଷ෢ ൅ 𝐶ସସ෢

1 ൅ 𝑖𝑝ඨ
𝐶ସସ෢

𝐶ଵଷ෢ ൅ 𝐶ସସ෢

െ 𝐶ସସ 

(3-60) 

To obtain the imaginary part of the root, Newton’s iteration is used. 

𝑘௡ାଵ ൌ 𝑘௡ െ
𝑓ሺ𝑘௡ሻ∆𝑘

𝑓ሺ𝑘௡ ൅ ∆𝑘ሻ െ 𝑓ሺ𝑘௡ሻ
 

(3-61) 

3.6.2 Experimental validation of the damping model 

To validate the damping factor, both the spreading effect and Q-factor damping are considered. 

Similar to the well-known inverse square law, the intensity for the Lamb wave follows the 

inverse law since Lamb wave has a 2D circular wave front, as shown in Figure 3-21. 
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Figure 3-21 Energy dissipation due to spreading effect 

 

The amplitude of the signal is inversely proportional to the square-root of the propagating 

distance. Besides, as stated in the previous subchapter, the q factor has an exponentially decaying 

effect to the amplitude of signal. Therefore, the amplitude of the signal can be expressed by the 

formula: 

Aሺxሻ ൌ
𝐴଴

ඥ𝑥 െ 𝑥଴
𝑒ିఈሺ௫ି௫బሻ 

(3-62) 

𝐴଴ is the initial amplitude of the signal and 𝑥଴ is the starting location where the wave forms. By 

taking the logarithm of (3-62), and substituting 𝑥 ൌ 𝑥ଵ, 𝑥ଶ, 𝑥ଷ … which is the distance between 

the source and the receiver measured in experiment, (3-62) becomes an optimization problem: 

Find 𝑥଴ 

 Minimize ‖𝑨𝒄 െ 𝒚‖ଶ   

 Subject to 𝒄 ൌ ሺ𝑨்𝑨ሻିଵ𝑨்𝒚  (least square fit) 

Where: 
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𝑨 ൌ ൦

െሺ𝑥ଵ െ 𝑥଴ሻ 1
െሺ𝑥ଶ െ 𝑥଴ሻ 1

⋮ ⋮
െሺ𝑥௡ െ 𝑥଴ሻ 1

൪  𝐜 ൌ ቂ
𝛼

െln ሺ𝐴଴ሻ
ቃ   𝐲 ൌ ൦

ln ሺ𝐴ሺ𝑥ଵሻ ൅ 0.5ln ሺ𝑥ଵ െ 𝑥଴ሻ
ln ሺ𝐴ሺ𝑥ଵሻ ൅ 0.5ln ሺ𝑥ଶ െ 𝑥଴ሻ

⋮
ln ሺ𝐴ሺ𝑥ଵሻ ൅ 0.5ln ሺ𝑥௡ െ 𝑥଴ሻ

൪ 

(3-63) 

The optimized result obtained from equation (3-63) includes the damping coefficient 𝛼, which 

will be compared to the theoretical result 𝑘௜௠௔௚. To extract the experimental damping 

coefficient, several signals at different receiving locations are recorded. The maximum amplitude 

of each modes(maximum value of the packet envelope), the time of arrival (TOA) and the 

distance between the source and receiver are recorded. The slope of the curve in the ToA-

distance plot is considered as the group velocity of the mode at this frequency. Since different 

modes are hard to be separated when the source and receivers are too close to each other, data 

with only constant group velocity is selected. 

 

Figure 3-22 Selected data that forms constant group velocity 
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Figure 3-23 Sample of obtaining the 𝛼 value from the optimization problem, blue curve is the optimized 
(3-62) and the red dots are the experimental amplitudes 

 

After obtaining the damping coefficients 𝛼 for 𝐴0 and 𝑆0 modes at different frequencies, the 

results are compared to the theoretical model. Both the group velocity (related to the real wave 

number) and the damping coefficient (imaginary wave number) are included in the comparison 

in the result. 

        

Figure 3-24 Comparison between the theoretical value and the experimental value for a)group velocity 
and b)imaginary wave number 

 

By adjusting the 𝑝 factor mentioned in the previous chapter, the theoretical values can match the 

experimental value when 𝑝 ൌ 0.035. From Figure 3-24, it can be seen that 𝐴0 mode damping 
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coefficient increases linearly with increasing frequency, and 𝑆0 mode has way less damping 

coefficient compared to 𝐴0 mode, which means they are less likely be affected in long range 

detection when the frequency increases. For higher modes, the damping coefficient is large when 

it is close to the cut-off frequencies.  
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Chapter 4 Experiments on Waves Propagating in 

Honeycomb Sandwich Structures 

NDE using guided wave has several advantages. Compared to other NDE method, using guided 

waves can greatly reduce the cost and the amount of time required for obtaining data. Research 

has been done to determine the damage index to detect a crack in an aluminum plate [34], to 

detect facesheet damage in a honeycomb sandwich panel [35], to monitor the cure process [36], 

to determine the damage size in a plate [37] and to locate the barely visible impact damage 

(BVID) in a composite plate [38]. Other researches have focused on signal processing in order to 

obtain better signal to noise ratio [39, 40]. In this chapter, an experiment is done to quantify the 

features of core-skin disbond in honeycomb sandwich structures and a new damage index is 

proposed to obtain a damage graph with better resolution. Besides, the feasibility of using non-

contact transducers pair to detect damages in HSS is studied. 

4.1 Experiments on the core-skin disbond in a honeycomb sandwich structure 

4.1.1 Experimental setup 

The honeycomb sandwich structure(HSS) specimens used in this study have face sheets of 

woven carbon fiber composites while the core is made of cylindrical aluminum hexagons with 

cell size of approximately 9 mm and cell wall thickness of 0.12 mm. The face sheets are 1.78 

mm thick and the core is 12.7 mm thick. The excitation signals used in the experiments are 5-

cycle Hann windowed sine waves and a chirp signal covering the frequency range of 20 kHz to 

220 kHz. To generate the signals, an NI PXI-5402 function generator is used. The actuators and 

receivers used in the experiment are broadband transducers, B225, from Digital Wave 
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Corporation. An Agilent 54624A oscilloscope is used for recording and transmitting the signals. 

The recording interval of time is 0.4 ms with a sampling frequency of 5 MHz. As shown in 

Figure 4-2, the transducers are mounted onto the surface of the specimen via C-clamps to 

guarantee uniform force on the contact surfaces. The disbonds at the top and bottom interfaces 

are created in 1-cm increments with ultrasound recording between the disbond extensions. 

Responses at different frequencies are also compared by extracting the narrowband signals from 

the broadband chirp signal. 

 

Figure 4-1 Spectra from a face-to-face experiment and Hann windowed signal used in the experiments 

 

 

Figure 4-2 Experimental setup for a disbond at the bottom interface 
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4.1.2 Response of honeycomb sandwich structure 

Before extracting the damage feature, the Lamb waves’ modal response was studied at different 

excitation frequencies extracted from a broadband signal. The narrowband signal extracted from 

the broadband signal is affected by the transducer response. As shown Figure 4-1, the face-to-

face transducer response has a peak at around 125 kHz and therefore this frequency is chosen for 

further analysis.  

 

Figure 4-3 Wavelet transform of the signals for a)broadband source after pulse compression and b)top 
surface response c)bottom surface response 

 

Pulse compression [41] is widely used in radar signal processing to improve time-domain 

resolution of broadband signals. By applying pulse compression to the signals and applying the 

wavelet transform, the time-frequency domain results for the signals at the top and bottom 

surfaces are shown in Figure 4-3. The source (auto-correlation of the chirp signal) is a broadband 

signal from 20 kHz to 220 kHz. The input signal has a maximum response at about 160 kHz 

while the output signals for the top and bottom surfaces show complicated patterns at different 

excitation frequencies. As can be seen in Figure 3b), there are two modes for the top surface. The 

first mode is represented by a wider vertical ellipse and the second mode by the narrower vertical 
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ellipse. This indicates that the first mode has a longer time duration and a higher velocity (shorter 

in time of arrival) with a maximum response at around 160 kHz. The second mode has a shorter 

time duration and a lower velocity (later time of arrival). However, the waves are dispersive, and 

coda waves caused by the natural vibration of the specimen appear at the bottom surface. This 

indicates that the time of arrival of the bottom surface modes has a frequency-dependent change 

due to the core structure. 

 

Figure 4-4 Recorded response on the top surface at different frequencies 

 

In Figure 4-4, comparing the signals for different frequencies, there is more distinct mode 

separation at 125kHz, and this frequency is more convenient for monitoring the two different 

packets independently when the disbond is introduced. 

4.1.3 Damage feature extraction 

Disbonds are introduced outside the path of the directly waves between the source and the 

receiver while the sensors are placed on the reflection side behind the disbonds. Any damage 
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features observed from these three sets of data are attributed to the reflected waves from the 

disbond.  

      

Figure 4-5 Damage features from reflected signals for a)top interface disbond and b)bottom interface 
disbond 

    

Figure 4-6 Damage features from transmitted signals for a)top interface disbond and b)bottom interface 
disbond 

 

Figure 4-5 a) and b) show that the signal is insensitive to disbonds outside the propagation path, 

making it difficult to detect disbonds using the reflected waves. Figure 4-6 shows that the second 

packet is sensitive to both top and bottom interface disbonds. The damage features include 

changes in both phase and amplitude of the signals. The velocity of the mode is calculated from 

the experiment to be 1538 m/s, with an error of less than 6.5%. The calculations show that the 
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materials of the specimen are highly heterogeneous and anisotropic, especially under high 

frequency excitations. In order to address this issue, a time window is constructed by first finding 

the main packet that has the highest amplitude. Then, the time of arrival for this packet is 

obtained from the time of the envelope’s peak. Finally, the window width is 95% of the 

excitation burst period, which is expressed in mathematical form: 

𝑤 ൌ ሾ𝑇𝑂𝐴 െ
0.95𝑘

2𝑓௖
,𝑇𝑂𝐴 ൅

0.95𝑘
2𝑓௖

ሿ 

(4‐1) 

where ToA is the time of arrival, fc is the central frequency of the source and k is the number of 

cycles. With this window, the packet containing the damage features can be selected as shown in 

Figure 4-7. 

 

Figure 4-7 Selected signals containing damage features for different damage size, T1, T2 and T3 are 1, 2 
and 3 cm respectively 

 

The phase of the signal changes progressively due to an increase in the disbond size. Since signal 

amplitude is affected by many other factors such as electrical impedance, acoustic coupling and 

mechanical pressure, it is not an ideal damage index. To quantify the phase change of the signal, 

the delay in the cross-correlation of two signals is used. The damage index (DI) is defined as: 
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𝐷𝐼 ൌ ൬
𝜏௜

𝜏௠௔௫  
൰
ఈ
 

𝜏௜ ൌ ቚ𝑖𝑛𝑑𝑒𝑥ሺmax ቀ𝑥𝑐𝑜𝑟𝑟൫𝑓ௗ̅௔௠௔௚௘ሺ𝑤ሻ, 𝑓௕̅௔௦௘௟௜௡௘ሺ𝑤ሻ൯ቁሻቚ 

(4-2) 

where w is the selected time window, 𝑓 ̅is the time domain signal, 𝜏௠௔௫ is the measured peak 

delay from the experiment, which is set to be 5 here and 𝛼 is the coefficient to increase the 

sensitivity of the damage index. With this improved DI, the existence of a disbond between the 

detection transducer pair can be detected. 

4.1.4 NDE using damage index 

Once the DI is determined, an imaging method is applied. Reflection-based methods such as the 

delay-and-sum method or time reversal method, are not applicable for HSS because of the weak 

reflections. As pointed out in the introduction, to image the damage using transmitted signals, the 

RAPID method is used. The method uses a spatial function 𝐹ఉሺ𝑥,𝑦ሻ to indicate the influence of 

the direct signal path: 

𝐹ఉሺ𝑥,𝑦ሻ ൌ

⎩
⎨

⎧
𝛽 െ 𝑟ఈሺ𝑥,𝑦ሻ

𝛽 െ 1
    𝑟ఈሺ𝑥, 𝑦ሻ ൏ 𝛽

0                       𝑟ఈሺ𝑥, 𝑦ሻ ൒ 𝛽

  

𝑟ఈሺ𝑥,𝑦ሻ ൌ
𝑟௔ሺ𝑥,𝑦ሻ ൅ 𝑟௦ሺ𝑥,𝑦ሻ

d
 

(4-3) 

where 𝑟ఈ is the distance between the sensor and the actuator, 𝑟௔ሺ𝑥,𝑦ሻ is the distance between the 

imaging point and the actuator, and 𝑟௦ሺ𝑥,𝑦ሻ is the distance between the imaging point and the 

sensor. The function describes the probability of damage in the path and 𝛽 is the constant that 

decide the size of the influence region. When 𝑟ఈሺ𝑥,𝑦ሻ is large (far from the path), the 𝐹ఉሺ𝑥,𝑦ሻ is 
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close to zero, indicating a small influence. When 𝑟ఈሺ𝑥, 𝑦ሻ is close to one (on the path), 𝐹ఉሺ𝑥,𝑦ሻ 

is close to one.  

However, the sensor point is normally a crossing point of several paths, which introduces a 

statistical possibility of concentration. To avoid this, another spatial function 𝐹ఊሺ𝑥, 𝑦ሻ is 

introduced to improve the current RAPID implementation: 

𝐹ఊሺ𝑥, 𝑦ሻ ൌ

⎩
⎪
⎨

⎪
⎧minቆ1, ቀ1 െ ቀ𝑟௔ െ

𝑟ఈ
2ቁ

ఊ
ቁቇminቆ1, ቀ1 െ ቀ𝑟௦ െ

𝑟ఈ
2ቁ

ఊ
ቁቇ

ቀ
𝑟ఈ
2 ቁ

ଶఊ             𝑟௔ ൏
𝑟ఈ
2

  𝑜𝑟 𝑟௦ ൏
𝑟ఈ
2

                               1                                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(4-4) 

Graphical representations of 𝐹ఉሺ𝑥,𝑦ሻ and 𝐹ఊሺ𝑥,𝑦ሻ are presented in Figure 4-8. 

        

Figure 4-8 Plot for 𝐹ఉሺ𝑥, 𝑦ሻ and 𝐹ఊሺ𝑥,𝑦ሻ when 𝛽 ൌ 1.005 and 𝛾 ൌ 6 

Using these two spatial distribution functions, the path probability, 𝑃ఈ, and the final probability, 

𝑃ሺ𝑥, 𝑦ሻ , are defined as: 

 

𝑃ఈሺ𝑥,𝑦ሻ ൌ 𝐷𝐼ఈ𝐹ఉሺ𝑥,𝑦ሻ𝐹ఊሺ𝑥,𝑦ሻ 

and  
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   𝑃ሺ𝑥,𝑦ሻ ൌ 𝑃௜ሺ𝑥, 𝑦ሻ⋃𝑃௝ ሺ𝑥,𝑦ሻ ൌ 𝑃௜ ൅ 𝑃௝ െ 𝑃௜𝑃௝  

(4-5) 

𝑃ሺ𝑥, 𝑦ሻ can be represented as a contour plot in the spatial coordinate system for the inspect 

region as will be shown later.  

4.1.5 Damage detection demonstration on a aircraft structure 

This method is applied to a section of an Airbus 330 elevator with a hexagonal sensor array 

using PZT patches. The elevator is made of a woven CFRP skin and a nomex core of thickness 

similar to that of the aluminum core used in the experiment. The sample and the sensor array are 

shown in Figure 4-9. 

 

Figure 4-9 HSS from an elevator of Airbus 330, hexagonal array of PZT patches and introduced damage 

 

The damage is introduced by first drilling a small hole and then using an L-shape tool to produce 

a disbond at the core-skin interface around the hole. The area of the disbond is about 2 cm2, on 

the crossing point of two paths. Baseline signals are taken after the hole is drilled and damage 

signals are taken after the core has been damaged further. 

After applying the wavelet transform, a packet with a peak at around 110 kHz is obtained as 

shown in Figure 10. The coda waves are present when the frequency is close to or higher than 

110 kHz. Low-frequency components are present when the frequency is lower than 60 kHz. 
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Signals for the nomex core shows similarities to the aluminum core in the time-frequency 

domain. It is likely that the signal packets are due to wave propagation in a cellular structure and 

are relatively independent of the core material. 

 

Figure 4-10 Comparison of the captured signals for a)nomex core and b)aluminum core 

 

Traditional RAPID method uses the correlation coefficient between the baseline and damaged 

signal as a DI for imaging and considers the changes in signal. However, the Lamb wave 

scattering due to disbond would also introduce many small wave packets that cannot be filtered 

by the time window and would cause inaccurate damage location prediction. The DI proposed in 

this paper contains only the desired features and therefore, increases the accuracy. 
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Figure 4-11 Damage index plot for a)correlation coefficient and b)proposed DI 

4.2 Feasibility study of non-contact nondestructive evaluation of a honeycomb 

sandwich structure 

Using guided ultrasonic waves for damage detection relies on the fact that any anomalies in the 

waves' path between actuator and sensor result in alterations that can be measured at the sensor. 

The evaluation and comparison of all measure wave paths is implemented via damage indices. 

The DI used in this paper is based on the energy of the signal. To this end, the relevant portion of 

the signal 𝑓 is selected (𝑡௞ ൑ 𝑡 ൑ 𝑡௞ାே) and transformed into frequency domain using 

𝑭ሺ𝜔ሻ ൌ ෍𝑓௞𝑒௜ఠ௞௧
ே

௞ୀଵ

 

Taking the square of the Euclidean norm of the array F, i.e. 

𝐸 ൌ 𝑭∗ ∙ 𝑭 

(4-6) 

for both the baseline signal (denoted by UD ) and the signal recorded on the damaged specimen 

(denoted by D), the DI is determined by 



74 
 

𝐷𝐼 ൌ ฬ1 െ
𝐸஽
𝐸௎஽

ฬ 

(4-7) 

If there is no damage present in the ``damaged'' wave path, the norm will be equal to that of the 

baseline, i.e. 𝐸஽ ൌ 𝐸௎஽, and the 𝐷𝐼 will be zero. Hence, any non-zero 𝐷𝐼 indicates an anomaly, 

such as a delamination or disbond. The 𝐷𝐼 is calculated and related to the ሺ𝑥,𝑦ሻ coordinates. 

Then a 2D interpolation algorithm is applied to generate a heat map for visualizing the damages. 

4.2.1 Experimental setup 

Two specimens are investigated in this work: 1) a sandwich panel with an aluminum honeycomb 

core and CFRP face sheets and 2) a CFRP plate. The CFRP plate is 17.32 𝑖𝑛 ൈ 17.32 𝑖𝑛 and has 

a stacking sequence of ሾ0,േ45, 90, 90,∓45, 0ሿ௦, leading to a total thickness of 0.106 𝑖𝑛. The 

HSP, is 355.98 𝑖𝑛 ൈ 355.98 𝑖𝑛, with a core thickness of 0.5 𝑖𝑛 and a skin thickness of 0.07 𝑖𝑛, 

thus leading to total thickness of 0.64 𝑖𝑛. The geometrical material properties for the panel and 

plate are shown in Table 4-1. Effective material properties are determined with the use of 

classical lamination and mixture theories [28]. 

 

Table 4-1 Geometry and effective material parameters for the skin and core of the HSP and a CFRP plate 
with quasi-isotropic stacking sequence 

 𝐿 ሾ𝑖𝑛ሿ 𝑊 ሾ𝑖𝑛ሿ 2𝐻 ሾ𝑖𝑛ሿ 𝐸ଵଵ ሾ𝑀𝑠𝑖ሿ 𝐸ଷଷ ሾ𝑀𝑠𝑖ሿ 𝜈ଵଶ 𝜈ଵଷ 𝐺ଵଷ ሾ𝑀𝑠𝑖ሿ 𝜌 ሾ𝑙𝑏/𝑓𝑡ଷ ሿ 

HSP-Skin 35.98 35.98 0.07 5.63 1.4 0.314 0.324 0.43 79.66 

HSP-Core 35.98 35.98 0.5 0.0004 0.43 0.999 0.33 0.06 7.12 

CFRP 17.32 17.32 0.106 6.44 1.96 0.29 0.33 0.67 96.33 

 

The induced damage in the HSP is a 2 𝑖𝑛 ൈ 2 𝑖𝑛 disbond between the top skin and the core, 

while the damage for the woven, quasi-isotropic CFRP plate consists of a 2 𝑖𝑛 ൈ 2 𝑖𝑛 

delamination. Both are at the center of the plates. 
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The data generation and acquisition are performed with an NI PXI-5402 function generator with 

a sampling frequency of 100 MHz and Agilent 54624A scope, respectively. 

The utilized transducers and sensors are broadband contact transducers (CT, Digitalwave 

B225), air-coupled transducers (ACT, Sonotec CF200) and a laser Doppler vibrometer 

(LDV, Fiber Interferometer Polytec OFV 512 and controller OFV 3001). 

The plates are actuated with a 200kHz 10cycles Hann window signal, which corresponds to the 

excitation frequency of the ACT. The data is recorded with a 10 MHz sampling frequency in 0.2 

ms to avoid boundary reflection. The sensing velocity range is 5mm/s/V for LDV. A 20kHz to 

500kHz bandpass Bessel filter was applied to denoise the raw acquired signals before they were 

used to calculate the damage index. 

In order to study the detectability of defects in HSP with non-contact actuators and sensors, the 

ACT excitability was first determined. To find the optimal angle, the HSP was actuated at 

different angles ranging from 9° to 18° and the signal was sensed with the LDV located 2 inches 

from the ACT, as shown in Figure 4-12. 

 

Figure 4-12 ACT optimal angle 

 

The optimal angle for ACT actuating is obtained by calculating the energy of the signal and the 

maximum amplitude of the signal. 
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The scanning area in HSP and CFRP experiment is limited to 4 in × 6 in in a rectangular 

array. Figure 3 shows the position of the actuator(red dots), the receiver(black dots), and the 

damaged area. For accurate placement of the contact transducers, a Plexiglas 

template is used. To improve the energy transmission, Sonics ultrasonic coupling gel 

was applied between the transducers and the composite plate. In addition, an auto- 

control system is applied for positioning the ACT, showed in Figure 4-14. 

 

 

Figure 4-13 Scanned area with actuator position(red dots) and receiver position(black dots) 

 

             

Figure 4-14 Experimental setup for scanning 
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4.2.2 Results and conclusion 

The results are shown in Figure 4-15. Both results show a peak at 12° to 13°. With the 

sound speed in air 334 m/s and the Snells law, the phase velocity in HSS is computed to 

be around 1480 to 1600 m/s. 

 

    

Figure 4-15 Excitability of different angles in terms of a)maximum amplitude b)signal energy 

 

The results of scanning the woven composite plate show that the energy based damage index is 

capable to detect delamination and the signal energy decreases significantly compared to the 

healthy path after the wave front passes the damage, as shown in Figure 4-16. 
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Figure 4-16 Results for CT to CT damage detection in CFRP plate a)raw signals from pristine and 
damaged paths and b)heat map of DI 

 

In this case, the path that is furthest from the damaged area is chosen to be the healthy path, with 

7 inches in y coordinate. It should be noticed that the damage index is very sensitive to the 

choice of healthy path, or in another word, baseline signal. 

The HSP sample with an induced disbond was studied by a CT to CT scanning sensor array, the 

results are shown in Figure 4-17. 

    

Figure 4-17 Results for CT to CT damage detection in HSP 
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The results show that the HSP for 200 kHz frequency cannot use the time windowed energy as a 

DI. One of the reason may be that lamb wave in HSP contains a lot more information than 

CFRP. Those information may come from the geometry and mode complexity of the core. For 

200 kHz frequency, the honeycomb geometry may not be considered as a homogeneous 

anisotropic material. Therefore, to simplify the geometry effect, a lower frequency is suggested 

for energy based DI damage detection. The second reason may be the choice of healthy path. As 

mentioned above, the energy based DI is very sensitive to the baseline signal. CTs are less robust 

to disturbance from changing coupling every time. Using CTs for NDE with any with-baseline 

DI can be complicated. Therefore, in this paper, the feasibility for using non-contact transducers 

on HSP detection are studied. 

  

Figure 4-18 Results for ACT to LDV damage detection in HSS in a)raw signals from pristine and 
damaged paths and b)heat map of DI 

 

The results for ACT are shown in Figure 4-18. The energy-based DI works for the HSP. The 

healthy path has smaller amplitude than the damaged path. However, the results are a lot noisy 

when the distance from source and sensors are more than 3 inches. 
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In conclusion, the results have shown that the DI is an effective indicator of delamination in 

composite plates with contact transducers. However, the results for detection of disbond in HSP 

using contact transducers, with a excitation frequency 200kHz, are inconclusive. A possible 

explanation for these results can be the lack of knowledge of the propagation mechanism for 

lamb waves in HSP. Finally, one alternative to improve the detection of disbond in HSP could be 

using non-contact transducers in a smaller detection area. Experiment using ACT and LDV has 

indicated that within 3 inches, disbond can be detected in HSP. The results showed an alternative 

scanning method using lamb wave for HSP without contact transducers, and with more than 10 

times efficient than C-scan. 
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Chapter 5 Concluding Remarks and Future Work 

5.1 Concluding remarks 

In this dissertation, an improved theory is provided to solve the dispersion equations for large 

values of the frequency-thickness product is developed. With the tool, the dispersion curves and 

the response in high frequency domain are studied. The solution at one point is compared to 

FEM simulation at the same point. The theory of calculating Lamb wave mode shapes and theory 

of calculating Lamb waves in layered media are improved. These theories are used to solve 

several problems including studying the Lamb wave group velocity changes due to changes in 

the HSS core material properties. In addition, a Lamb wave damping model introduced earlier 

for composite structures was applied to honeycomb structures and damping factor was 

determined experimentally. An improved method for using damage indices in detecting core-skin 

disbond in HSS is developed based on several experiments. And the feasibility study of non-

contact NDE in HSS is carried out experimentally. 

In Chapter 2, for a 2-D plane strain Lamb wave problem, a new method is developed for finding 

the real roots of the dispersion equations efficiently. The tool considered a polar local domain 

with a new root-judging method, which provides a better convergence to the solution. With this 

tool, a wider range of dispersion curves can be studied. An approximate explicit form of 

dispersion curves when the frequency-thickness product is high enough is provided. The 

response of an aluminum plate under high frequency excitation is studied and compared with 

FEM simulation. Results show that with high frequency excitation, instead of studying the effect 

of a single mode, studying the total effect of certain region of all the modes provides a better 

physical meaning. 
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In Chapter 3, based on the traditional global matrix theory, a matrix form solution of the wave 

equations with removing the singularities is provided. A new method to obtain mode shapes 

based on singular value decomposition is proposed. New indices to quantify the quality of the 

dispersion data obtained by numerical tools are provided. A new study is conducted to explore 

how changes in the core material properties change the dispersion curves of a sandwich structure. 

The results show that different core properties dominate different part of the dispersion curves, 

which potentially can be a way for material characterizing. Finally, an experiment is conducted 

to validate the Q-factor based damping model and the corresponding “p” value is measured in 

experiment. 

In Chapter 4, several experiments related to damage detection in honeycomb sandwich structures 

are conducted. First, an experiment is set up by introducing delaminations in HSS and compare 

the signals in the damaged and undamaged specimens. The results show that the transmitted 

signals are sensitive to the delamination at certain frequencies, while the reflection signals are 

not sensitive. Based on this fact, a new damage index is introduced to improve the damage image 

resolution. The same damage index is used on a sample HSS of an Airbus 330 and it shows 

result that the method is capable of estimating the damage location. In another experiment, the 

feasibility of using air-coupled transducers to detect the damage in HSS is studied. The result 

shows that although the air-coupled transducers have relatively low signal-to-noise ratio, it can 

potentially be introduced into NDE of HSS. 
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5.2 Future work  

For the high frequency response, to separate different packet in the time domain, the cluster 

effect needs to be further studied. In the future, the searcher can be combined with global-local 

method in order to obtain the defect response. 

The HSS is a very complicated structure. In this thesis, the core material is homogenized to 

simplify the study. To fully study the waves’ behaviors in HSS, the discretized model needs to be 

considered. It is found in experiment that when the disbond is introduced, the waveform will not 

change a lot, which is difficult to be explained by the homogenized model. One of the possible 

explanations is that the honeycomb core plays a role that only absorbing energy for certain 

modes. More theoretical modeling and experiments need to be done on providing and validating 

the model. Besides, the thesis employed only 2D models. Certain aspects of this work can be 

improved through the use of 3D models. 
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