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Air quality impacts of crop residue burning
in India and mitigation alternatives

Ruoyu Lan1,2, Sebastian D. Eastham 1,3 , Tianjia Liu 4, Leslie K. Norford2 &
Steven R. H. Barrett 1,3

Crop residue burning contributes to poor air quality and imposes a health
burden on India. Despite government bans and other interventions, this
practice remains widespread. Here we estimate the impact of changes in
agricultural emissions on air quality across India and quantify the potential
benefit of district-level actions using an adjoint modeling approach. From
2003 to 2019, we find that agricultural residue burning caused
44,000–98,000 particulate matter exposure-related premature deaths
annually, ofwhichPunjab,Haryana, andUttar Pradesh contribute 67–90%.Due
to a combination of relatively high downwind population density, agricultural
output, and cultivation of residue-intensive crops, six districts in Punjab alone
contribute to 40% of India-wide annual air quality impacts from residue
burning. Burning two hours earlier in Punjab alone could avert premature
deaths up to 9600 (95% CI: 8000–11,000) each year, valued at 3.2 (95%
CI: 0.49–7.3) billion US dollars. Our findings support the use of targeted and
potentially low-cost interventions to mitigate crop residue burning in India,
pending further research regarding cost-effectiveness and feasibility.

Long-term exposure to ambient fine particulate matter (PM2.5) is
associated with elevated health risks such as respiratory and cardi-
ovascular diseases, resulting in more than four million premature
deaths globally each year1–3. Of these, 10–25% are estimated to occur
in India3–6. One source of direct PM2.5 emissions responsible for
Indian public health impacts is crop residue burning2–4. As the second
largest worldwide crop producer (Food and Agricultural Organiza-
tion of the United Nations), India generates ~500 million metric
tonnes (MT) of crop residue annually, of which 100 MT is burned
(Fig. 1a). The practice of residue burning primarily occurs following
the wheat harvest in April-May (pre-monsoon) and the rice harvest in
October–November (post-monsoon), and mostly in northwestern
India7,8. Densely populated areas located downwind of agricultural
fires in the Indo-Gangetic Plain (IGP), such as New Delhi, typically
experience an annual mean of ambient PM2.5 concentration of
50–200μgm−3 and episodic spikes reaching 200–1200 μgm−3 during

burning seasons, exceeding the World Health Organization (WHO)
PM2.5 guidelines by an order of magnitude (5 μg m−3 annual mean; 15
μg m−3 24-hour mean)9 (Supplementary Fig. 14). Ambient PM2.5

exposure due to crop residue burning is specifically associatedwith a
three-fold greater risk of acute respiratory infection in the general
Indian population10. Recent studies at local, urban and regional scales
have shown that PM2.5 emitted from crop residue burning affects air
quality not only in India but also across South Asia, including Paki-
stan, Nepal and Bangladesh, due to the transport by the pre-
dominantly northwesterly winds7,9,11.

Current regulations by the Indian government intended to
reduce agricultural fires, including crop residue management,
burning bans, and fines, have had limited efficacy12,13. Unlike other
crop residue, the low protein content (e.g. N, P, K) and poor digest-
ibility (e.g. high silicone and ash) of rice and wheat residue have
limited their potential for use in biofuel, animal fodder, fertilizer and
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paper production (Fig. 1b, Supplementary Data 1). In addition, the
tight schedule of the harvest-to-sowing transition under the pre-
dominant rice-wheat rotation cropping system in northwestern India
have limited the rate of adoption of alternatives12,13. Crop residue
burning allows cheap and fast disposal of crop residue and therefore
remains a recurring issue, as revealed by a ~60% increase in the
number of agricultural fires detected by NASA’s Aqua satellite from
2002 to 20169,14.

Studies which can attribute air quality impacts to specific
burning instances therefore help to inform targeted mitigation
strategies and optimize resources for effective action on burning
withminimal disruption to farmers15. Substantial work has been done
on air pollution from fire emissions in individual, heavily polluted
locations such as Delhi7,9,11,14,16. However, no work to date has related
burning in each individual district to the eventual premature mor-
tality risk and associated cost across India, where a large population
experiences increased levels of pollution from fires. In addition,
efforts to identify alternatives to burning have typically been quali-
tative or focused on national or regional measures such as adopting
mechanized approaches and alternative crops12,17,18. This neglects the
possibility that targeted changes in the timing and location of residue
burning may be able to yield significant improvements, and that
there might be large differences in the downwind health impacts
resulting from the same amount of residue burning from specific
locations. Such information is needed to support decision-making
which can place public benefits such as health costs alongside the
potential private costs to farmers13.

Here we aim to inform efforts to mitigate the adverse impacts of
crop residue burning by quantifying how small-scale and targeted
changes could affect the air pollution and health risks of the entire
Indian population. We use the Global Fire Emissions Database v4.1s
(GFEDv4.1s) to provide an estimate of emissions fromopen burning of
crop residue, combined with district-level crop production data for
India, to obtain a comprehensive map of the time and location of crop
production and residue burning. We then use a regional atmospheric
chemistry and transport model (GEOS-Chem adjoint) to perform
inverse (receptor-oriented) simulations, computing the sensitivity of a
given population’s exposure to PM2.5 with respect to emissions in any
location at any time, and date. In combination with an Integrated
Exposure Response (IER) function3 and an India-specific Value of Sta-
tistical Life (VSL)19, we use this data to estimate which burning events,
in what locations, and at what times are responsible for the greatest
increases in population exposure, premature mortality, and monetary
societal cost during the period 2003–2019.

Results and discussion
We use an adjoint modeling approach (GEOS-Chem adjoint) as our
primary tool for air quality impact attribution. We first perform three
sets of adjoint runs fromwhichweobtain sensitivities that quantify the
effect of emissions on population exposure for the whole Indian
population (cost function J). Each set of runs represents one typical
rainfall condition for a year (i.e. “flood” (2007), “drought” (2009), or
“normal” (2012) year), but all three use the same population distribu-
tion. We combine this sensitivity data with fire emissions for each year
from 2003 to 2019 to estimate the impact of agricultural residue
burning on India-wide population exposure. Modifying the emissions
dataset allows us to quantify the benefit of different targeted mitiga-
tion strategies, while using each of the three sensitivity datasets allows
us to quantify the role ofmeteorological variability. For each year from
2003 to 2019, one of the three sensitivity datasets is chosen based on
monsoon rainfall record in India (see Methods).

Two additional sets of adjoint simulations are performed for the
“normal”meteorological year, in which the cost function J is modified
to include only either urban or highly populated areas. Comparison of
results using these datasets to those using the full India-wide popula-
tion allows us to evaluate the distribution of impacts between urban
and rural areas.

For additional context, we perform 23 pairs of forward simula-
tions with the conventional GEOS-Chem Classic model. Each pair
simulates the post-monsoon burning season with and without India
agricultural emissions, and the 23 pairs collectively cover the period
from 1997 to 2019. This allows us to evaluate the impacts of Indian
residue burning on surrounding countries, and to gain a more com-
plete understanding of the interaction between population growth,
meteorological variability, and historical changes in fire emissions. See
Methods for a detailed description.

Air quality impacts resulting from agricultural burning
We define air quality impacts due to crop residue burning in terms of
the premature deaths attributable to PM2.5 exposure and the asso-
ciated monetized cost. Figure 2 shows how crop residue burning on
each day contributed to the nationalmean PM2.5 exposure. From 2003
to 2019 we estimate that the annual mean population-weighted PM2.5

exposure due to burning activities in India averaged 6.7 μg m−3. Pre-
monsoon and post-monsoon residue burning contribute 28% and 64%
of this total, respectively. Geographically, more than 90% of the India-
wide fire-related exposure increase is due to agricultural fire emissions
from the northwest states, with 64% from Punjab, 11% from Haryana,
and 5.7% from Uttar Pradesh. It is consistent throughout 17 years that
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the pre-monsoon and post-monsoon fire seasons are responsible for
90% of PM2.5 exposure from residue burning, and that Punjab, Har-
yana, and Uttar Pradesh together contribute over two thirds of the
nation-wide exposure burden (see Supplementary Data 2 and 3 for a
breakdown by state and season). Demographically, urban and densely
populated areas, defined by regions with a population density above
400 and 1,000 people per km2, respectively, are exposed to 2.0 μgm−3

(31%) and 4.8 μg m−3 (73%) greater annual PM2.5 concentrations than
the national average due to residue burning (Supplementary Figs. 1,
31). This is supported by observations of elevated PM2.5 levels
during burning seasons in large cities downwind of agricultural
fires12,14,16,17,20–22.

By applying the IER and India-specific population distribution, we
estimate 69,000 (95% CI: 57,000–80,000) total prematuremortalities
on average across India resulting from ambient PM2.5 exposure due to
crop residue burning (Supplementary Data 4). Our estimate for 2015
(60,000, 95% CI: 50,000–70,000) is consistent with Global Burden of
Disease (GBD) 2018 India Special Report’s estimate of premature
mortality (66,000, 95 CI%: 57,000–79,000) attributable to agricultural
fires in India for the same year23. Our estimate for the same period is
4.7–14% of premature mortality attributable to total ambient PM2.5

presented by earlier studies covering 2010-20194–6,15,23–28. This fraction
is consistent with findings from GBD 2018, where 6.1% of premature
deaths in India due to ambient PM2.5 are attributed to agricultural
fires23. The central estimates of early deaths as well as confidence
intervals (CI) dependon the choiceof relative risk function29.While the
IER the has been applied worldwide, including India, to quantify
attributable deaths due to biomass burning episodes3,23–31, we compare
the IER-based results to those using othermethods in theMethods and
Supplemental Information.

Using a VSL adjusted for India, we estimate the annual,monetized
cost of prematuremortality due to crop residue burning as 23 (95%CI:
3.5–53) billion USD. This is equivalent to 38% of the total health
expenditure, or 7.8%of the gross value added fromagricultural activity
on average (Supplementary Data 4). These two ratios have increased
from 29% to 40%, and from 6.1% to 9.2%, respectively between 2003
and 2019 (Supplementary Data 4). We find that for any year in this
period, the three largest contributors to these impacts are consistently
Punjab (48–75%), Haryana (7.8–14%), and Uttar Pradesh (3.7–9.5%)
(Supplementary Data 2-4).

Contributions by district
Figure 3 shows the premature deaths per unit of emissions from
burning (vertical axis) against the emissions per unit of crop produc-
tion (horizontal axis) for each district in Punjab and Haryana. The
contribution toprematuremortalities per cropproduced for these two
states is larger than for the rest of India combined (Supplementary
Figs. 2, 3). Variations between these districts are due not only to

different crop production quantities but also different meteorology,
population distributions, and agricultural practices. For the 43districts
in the two states, we use the two dimensions (emissions per unit
production andmortalities per unit emission) shown in Fig. 3 to define
four categories (C1–C4). Punjab and Haryana, under the rice-wheat
rotation system, are collectively responsible for 60%of all rice and 30%
of all wheat entering the central grain pool in India12. This results in a
large amount of residue being burned per unit of crop production, as
these two crops produce relatively high quantities of residue per unit
of product compared to crops such as oilseed and sugarcane (Fig. 1b).

The contribution of crop residue burning in each district to total
premature mortality in India is a product of three factors: first, pre-
mature deaths per unit of agricultural burning emissions (meteorology
and population); second, agricultural burning emissions per unit of
crop production (choice of crops/varieties); and third, the total crop
production (Fig. 3). Districts in C1 rank high in the first two factors,
partly because they grow coarse varieties of rice that generate more
residue tobeburned for the sameamountof cropproduction32 and are
mostly upwind of densely populated regions. As a result, they are on
average responsible for 40% (27,000deaths, valued at 9.0 billion USD)
of the total air quality impacts in India due to burning, with Patiala and
Sangrur alone contributing 20%. Compared to C1, districts in C2 and
C3have lower emissions per unit of cropproduction (<1.3 KTMT−1) and
fewer premature deaths per unit of emissions (<1000 premature
deaths KT−1), respectively. The contribution to the total air quality
impact of residue burning is therefore 11% and 14% for districts in C2
and C3, respectively. The remaining districts (C4) are minor con-
tributors to the total impacts, among which Kaithal has the largest
contribution (2.4%) due to its cultivation of coarse rice (lower emis-
sions per unit of production), lower sensitivity (fewer premature
deaths per unit of emissions) and lower overall crop production
(Supplementary Fig. 3). All Haryana districts fall in C2 and C4, whereas
districts in C1 and C3 are all from Punjab, distinguished by the first
factor (x-axis). Although both states are large rice producers, Haryana
mainly grows basmati rice, the residue of which is used as animal feed.
Punjab instead mainly grows non-basmati rice, the residue of which is
not fed to livestock because of its high silica content and which is thus
more often burned in-field18,32.

Sensitivity of air quality impacts to spatial and temporal chan-
ges in emissions
Figure 4 shows the percentage change in annual air quality impacts
due to burning achieved by a 1% reduction in emissions from burning
(hereafter the efficacy of reducing burning) in each state or district
during two burning seasons averaged over 2003–2019. Specifically,
during post-monsoon season, the efficacy of reducing burning is
greatest in Punjab and Haryana, with a 0.57% and 0.065% reduction
respectively in total India-wide impacts from crop residue burning per
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1% reduction in burning emissions. This means 380 (95% CI: 320–450)
and 45 (95% CI: 37–52) averted premature deaths, valued at 130 (95%
CI: 20−300) and 15 (95%CI: 2.3−34)millionUSD, respectively, averaged
across 17 years. Considering only burning emissions from Punjab, two
thirds of the achievable benefit comes from reductions in burning in
Sangrur, Patiala, and Ludhiana,where a 1% reduction in emissions from
post-monsoon residue burning would result in a 0.18%, 0.05%, and
0.068% reduction, respectively, in India-wide burning-related air
quality impacts.

One reason that farmers choose to burn agricultural residue
rather than adopting (e.g.) mechanized alternatives is that there is a
limited window of time, around two to three weeks, to manage crop
residuebetweenharvesting and sowing9,13,16. Awater tablepreservation
policy instituted in Punjab and Haryana in 2009 to align rice irrigation
with the summer monsoon further shortened this window, whichmay
have further intensified burning activities as farmers seek to ensure
timely sowing for the next planting season17,22. This suggests that
promoting burning earlier or later in the seasonmaybe unattractive or
unachievable10,13,17.

It may instead be possible to burn earlier or later within a given
day without incurring the same difficulties for farmers, but no study to
date has quantified the potential benefits of such a change. We
thereforequantify the air quality impacts of shifting burningwithin the
day by applying different local time (LT) diurnal cycles of emissions
(Supplementary Fig. 4). Figure 5 shows the changes in attributable air
quality impacts resulting from shifts ranging from six hours earlier to
one hour later.

Averaged over the period 2003–2019, burning earlier by one to
four hours could reduce the total air quality impacts of crop residue
burning by 0.5–19%, while burning too early or burning later could
instead increase the impacts by 2−30%. For any individual year in that
period, burning two to three hours earlier in November reduces the
total, annual, residue burning-related contribution to India-wide air

quality impacts by 15–23% (Fig. 5). If the target region is restricted to
Punjab only, burning earlier by two hours in November yields an
average (over 17 years) 14% reduction in air quality impacts resulting
from that region’s residue burning (Supplementary Fig. 5). This
means 9600 (95% CI: 8000–11,000) averted early deaths annually,
valued at 3.2 (95% CI: 0.49–7.3) billion USD. This is greater than the
sum from all other states if the same timing shift were applied.
Although these improvements could be subject to the specific diur-
nal cycles we use, our assumptions of diurnal fire activity agree with
previous findings that fires are typically set during early to mid-day
(07:00–11:00 LT) and burn out by the evening (17:00–20:00 LT),
lasting 13–15 hours20–22,33, and that fire activity generally peaks in the
afternoon22,32. Liu et al. 2020 collected survey data from households
in India, finding that despite regional variations, 97% of burning
activities happen between 10:00 and 23:00 LT, nearly 30% of which
happen in late evening (18:00–23:00 LT)22. While we do not have
district-level information about hourly diurnal cycles of fire activities
due to a lack of comprehensive in-field studies, our broad conclusion
is that there may be significant benefits yielded by encouraging fires
to be set earlier (10:00–13:00 LT) in the day rather than later
(14:00–17:00 LT).

One contributing factor to these changes couldbe natural, diurnal
changes in the depth of the planetary boundary layer (PBL). The PBL
height (PBLH) typically peaks at 13:00–14:00 LT and decreases rapidly
afterwards (Supplementary Fig. 6). It is a key meteorological para-
meter in pollutant dispersion34–36 because a higher PBLH favors dis-
persion and reduces aerosol accumulation34,36 (see Supplementary
Information for a detailed discussion). However, the PBLH is also
directly affected by aerosol loadingmeaning that the concentration of
pollution can itself affect dispersion35. The PBLH decreases with
increasing aerosol concentration, which enhances atmospheric stabi-
lity and in turn favors even higher pollutant concentrations––a posi-
tive feedback loop35. However, the diurnal variations of PBLH do not
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change significantly on heavily polluted days compared to clean
days34,37. Supplementary Fig. 6 also shows similar diurnal cycles of
PBLH in polluted and less polluted areas. Therefore, despite local
aerosol-PBL interactions, a shifted burning cycle on an hourly basis is
not likely to significantly affect the broad patterns of PBLH and the
timing effects of emissions. However, further investigation will be
needed to evaluate how a shift in the diurnal pattern of burning (i.e.
aerosol emissions) might in turn modify the diurnal pattern of
PBLH––and therefore pollution dispersion––compared to the effects
observed to date for existing emission patterns.

Other meteorological parameters including relative humidity
(RH), temperature, and wind speed also vary diurnally and may affect
the benefits of burning earlier34,38. Studies in India found higher pol-
lutant concentrations with higher RH due to incomplete combustion,
causing more secondary aerosol formation38. Supplementary Fig. 6

shows that, on average, RH is roughly constant from11:30 to 15:30 local
time. Our proposed shift moves the peak burning time from 14:30 to
13:30, suggesting that theRHeffect is not significant. In addition, lower
temperature and lower wind speed could trap more aerosols within
the PBL34,38. This is consistent with our finding of decreased air quality
benefits when the burning peak is too early or late (Fig. 5). Changes in
wind speed due to high aerosol loading should also be considered in
future online studies of specific interventions.

These findings suggest that aerosol-meteorology interactions are
unlikely to eliminate the benefit of a shift in the diurnal pattern of
burning. We recognize however that further studies involving sensi-
tivity experimentswill be needed to evaluate the degree towhich these
feedbacks suppress or enhance the benefit. In general, for any inter-
vention our approach is a first-order tool, and more modeling,
experiments and observations would be warranted before advancing
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any policy recommendation. However, our broad explanation is that
the aerosols emitted when meteorology favors dispersion are more
diluted and less harmful as they travel downwind (Supplementary
Figs. 6, 30).

This work focuses on how India-wide air quality impacts are
affected by any conceivable change in fire emissions using an “adjoint”
modeling approach. Rather than tracking the transport of pollution
and the distribution of air quality impacts for a single scenario, the
adjoint model tracks the sensitivity of exposure over a disperse
population with respect to changes in emissions sources. This is
essential for efficiently evaluating different cost-effective pollution-
abatement policies. We therefore do not calculate the local effects of
shifting the timing of burning, e.g. the evolution of air pollution to
downwind areas such as New Delhi.

Inter-annual variations in the air quality impacts of residue
burning
To provide context to the sensitivity-based results above, we use for-
ward modeling to simulate the post-monsoon residue burning season
over a 23-year period (Supplementary Figs. 8, 9). We first quantify
population exposure to BC and OC (carbonaceous PM2.5) from all
sources. For these simulations we include changes in residue burning
emissions, population (total), andmeteorology (seeMethods).We find
that, while the daily-mean population exposure varies, the geo-
graphical distribution of exposure and meteorological context (wind
fields) remain similar. From 1997 to 2019, the national average
population-weighted PM2.5 exposure has increased from 54 μg m−3 to
75 μgm−3, possibly due to increasing crop production (Supplementary
Figs. 7, 8). Northwest India (Punjab, Haryana, Uttar Pradesh, Delhi) is
the most polluted region during post-monsoon burning season, and
the daily-mean population-weighted PM2.5 exposure in these areas is
consistently higher than the national average. For every year from 1997
to 2019, we estimate that Delhi’s air consistently had levels of (carbo-
naceous) PM2.5 exceeding 120 μg m−3 when averaged over the two-
month post-monsoon burning period.

Wealsoperform23counterfactual simulations, covering the same
period, in which emissions from residue burning in India are not
included. While our sensitivity simulations show that our broad con-
clusions (e.g. contribution by state, season) are consistent throughout
17 years of differing fire emissions and three different meteorological
conditions (Supplementary Data), our extended set of forward simu-
lations show that the average air quality impacts attributable to agri-
cultural fires is 2.4% lower in drought years (e.g. 2009, 2015) and 4.8%
higher in flood years (e.g. 2007, 2019). For years with normal rainfall
(e.g. 2012, 2018), close (−0.8%) to the 17-year average, we estimate the
annual fire-related premature deaths at 68,000 (95% CI:
57,000–79,000), valued at 22 (95%CI: 3.2–50) billionUSD. Specifically,
crop residue burning in 2016 contributes to the largest enhancement
of nationwide PM2.5 exposure (9.6 μg m−3), resulting in the most pre-
mature deaths 98,000 (95% CI: 82,000-110,000). This is consistent
with the large number of agricultural fires observed by the Moderate
Resolution Imaging Spectroradiometer (MODIS) instrument in that
year, and the unprecedented enhancement in PM2.5 levels observed in
Delhi (648 μg m-3)16,38.

These results only include the post-monsoon burning season, and
rely on monthly emissions data. Using our sensitivity data with daily
emissions data and assigning each year from 2003 to 2019 an appro-
priate meteorological condition (flood year, drought year, normal
year), we can quantify the impacts of each full year’s residue burning.
From 2003 to 2019, along with an increase of food grain production
from 210 MT to 300 MT (Supplementary Fig. 7), the monetized cost
associated with burning increases from 7.2 (95% CI:1.1–17) to 44 (95%
CI:6.7–100) billion USD (Supplementary Data 4).

A point of interest is the impacts in 2018 and 2019. In 2018, a
subsidy was introduced to encourage mechanization as an alternative

to burning13. Despite this policy change, we find air quality impacts
attributable to crop residue burning to be similar between 2018 and
2019 at 86,000premature deaths each year. To understand this, we re-
derived impacts for 2015-2019 using fixed meteorological data. Under
these conditions, mortalities in 2018 and 2019 are 4.2% and 11% lower
than the previous three-year average, but 15%and6.9%greater than for
2017, respectively (Supplementary Data 9). For just Punjab, Haryana,
and Uttar Pradesh, the average exposure resulting from burning
(assuming fixedmeteorology) in 2018 and 2019was 16% lower than the
2015–2017 average, but still 18% greater than the 2017 value alone
(Supplementary Data 9).

This does not necessarily imply that the initiative was unsuc-
cessful. Prior work has suggested that overall post-monsoon residue
burning was decreased, showing a 18% reduction in fire counts
observed by the MODIS satellite in northwest India in 2019 compared
to the previous year (Supplementary Data 10). The GFEDv4.1s dataset
suggests that the total drymatter burned inPunjab, Haryana, andUttar
Pradesh in 2018 and 2019 was only 9 and 3% less than the 2015–2017
average (Supplementary Data 11), respectively––but this masks two
compensating changes. Focusing on the post-monsoon period only,
the total dry matter burned in the three states in 2018 and 2019 was
36% below the 2015–2017 average, and only 1% greater than the 2017
value. Dry matter burned during the pre-monsoon period, however,
was 52% and 130% greater in 2018 and 2019 respectively than the
2015–2017 average (Supplementary Data 11). With fixed meteorology,
pre-monsoon residue burning contributed 38% of the total premature
mortality resulting from fire emissions in these three states in 2019,
compared to 9% in 2015 (Supplementary Data 9).

Although more data are needed to determine the significance of
this trend, our results suggest that health benefits due to a reduction in
emissions during the post-monsoon period in 2017-2019 have been
offset by an increase in emissions during the pre-monsoon period and
that the effectiveness of interventions should be considered across
both seasons.

Impacts of Indian agricultural residue burning on neighboring
countries
The IGP is home to millions of people residing in not only northern
India but also Nepal, Bangladesh and Pakistan. Agricultural fires in
India are not subject to political borders and may have air quality
impacts on neighboring countries as well. Using data from 23 years of
forward simulations we find that PM2.5 exposure in Bangladesh, Nepal
and Pakistan resulting from Indian crop residue burning is 0.24–12% of
that in India (Supplementary Figs. 9, 10). Of these countries, impacts
are lower in Bangladesh and Nepal (1.3–2.2%), whereas Pakistan’s PM2.5

enhancement averages 6.9% of that in India. We show that over 23
years, annualmean total increase in population exposure due to Indian
crop residue burning is 4.5 × 109 people�μg m−3 in India, 2.6 × 108

people�μgm−3 in Pakistan, 7.8 × 107 people�μgm−3 in Bangladesh and
4.2 × 107 people�μg m−3 in Nepal. Therefore, the majority (88–95%) of
burning-related population exposure is experienced by the Indian
population. This is partly due to large-scale meteorological winds that
carry pollution into, rather than away from, India (as shown in Sup-
plementary Figs. 8, 9) as well as the high population density in this
region.

Implications of targeted interventions
In India, the total amount of crop residue (dry matter) generation has
increased from80MT in 1950–1951 to 520MT in 2017-2018 (Economic
Survey of India, 2020). In recent years, crop residue burning has
contributed to levels of PM2.5 concentrations that are 15–45 times
higher than the WHO safety guidelines in northern India9,16,21. Our
results suggest that this burning has a monetized annual cost of 23
billion USD averaged from 2003 to 2019, which has grown by a factor
of six over the same period. Existing governmental efforts, including
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the National Policy for Management of Crop Residues, the National
Green Tribunal Act, and the StrawManagement System, are in place to
reduce the practice of burning12. However, in-field burning remains
prevalent, especially in the states of Punjab and Haryana12–14,17. The
results of our work have several implications on mitigation strategies.

First, we find that under similar meteorology and rice-wheat
cropping system, the attributable air quality impacts from Punjab are
six times as much as those from Haryana, partly because Haryana
districts mainly grow basmati rice, which is more utilizable than non-
basmati rice cultivated in Punjab (Fig. 3)18. Therefore, in addition to
diversifying rice with crops that produce less residue such as pulses
and oilseeds (Fig. 1b), adopting rice varieties that are less burning-
intensive could also reduce the amount of burned residue and even-
tual attributable fire-related impacts. Second, current regulations,
including bans and fines, are mainly implemented at national or state
levels, whichmay overlook the possibilities that local-scale actions can
bring significant benefit. Our study shows that a small number of
administrative areasmay be prioritized for interventions to effectively
reduce the attributable impacts from fires (Fig. 4), with burning in six
districts in Punjab responsible for 40% of India-wide exposure to fire
related PM2.5. Such information is helpful for spatially targeted
decision-making. Third, we alsofind that burning earlier by a fewhours
within a day could avert up to 14% of the air quality impacts resulting
from residue burning, over 90% of which is borne by Indians. Such
temporally targeted interventions may therefore allow effective and
potentially low-cost reductions in harmwhile local effects on pollution
distribution can be further investigated. In addition, a combination of
targeted decision-making and more permanent solutions, such as
mechanization, may help to optimize resources and minimize dis-
ruption to farmers.

While this study implies that significant societal benefits can
potentially be achieved by small-scale actions, a comprehensive cost-
benefit analysis and consideration of extra incentives for farmers is
needed for actionable planning andwide adoption of alternatives. Our
hope is that work such as ours can provide quantitative data for near-
term measures to effectively reduce the harms of agricultural residue
burning while more holistic solutions can be pursued.

Comparison with other approaches and studies
In the case of crop residue burning, most existing work focuses on air
pollution at local and urban scales, highlighting the influence of agri-
culturalfires on regional air quality7,9–11,14,16,20,21. However, impacts offire
emissions are likely to extend over a much larger area due to disper-
sion and transport1,4,11,16. Epidemiological studies show that any addi-
tional exposure to PM2.5 causes an increased mortality risk even when
baseline exposure is very low3,39. This means that small exposure
increases over large regions should be considered equally with
focused increases over smaller regions39. Our study equitably evalu-
ates the impacts on everyonewho is subject to fire-related air pollution
in India, not just those in a typical pollution hot-spot.

In addition, while severe air pollution has been observed in cities
suchasDelhi7,9,16,22, we acknowledge that crop residueburning is oneof
several factors in urban air pollution, rather than necessarily the
dominant factor. For example, although agricultural emissions can
contribute up to 50% of PM2.5 in Delhi during post-monsoon fire sea-
son, the dominant (70%) emission sources of year-round PM2.5 are
vehicle, industrial and energy emissions5,23. For population in suburbs
or rural areas, crop residue burning is a greater year-round contributor
in absolute or relative terms. By using an adjoint modeling approach,
our study relates the eventual impacts across the country back to
burning in each hour and individual district, and shows that crop
residue burning can be controlled independently to achieve the
greatest reduction of aggregate exposure at the lowest cost.

The main contribution of this work is the quantification and dis-
aggregation of air quality impacts across India due to agricultural

emissions, and the identification of a potential new form of impact
mitigation. However, our baseline estimates of attributable premature
deaths in India also compare well with existing health impact assess-
ment studies. GBD MAPS Working Group attributed 66,200 (6.1%)
ambient PM2.5-related premature deaths to open burning of agri-
cultural residue in 201523, which is similar to our calculations for 2015
(60,000, 95% CI: 50,000–70,000). The total premature deaths attri-
butable to ambient PM2.5 exposure in India range from 570,000 to
1,450,000 in previous studies covering years from 2010 and
20191,2,4–6,15,23–28, with which our estimate is consistent (assuming a ~6%
contribution from agriculture fires).

Sources of uncertainty
Although we include an uncertainty analysis in the Supplementary
Discussion (e.g. inventory uncertainty), our study is subject to several
other sources of uncertainty that wedo not quantify. First, we focus on
premature mortality risk changes resulting from changes in exposure
to primary PM2.5 released from residue burning and do not quantify
exposure to other species such as ozone29. Second, the IER function
used in this study assumes equal toxicity for all PM2.5 species and
ignores differences in composition, which still requires further
investigation3. We also recognize that the IERs, as with other com-
monly used concentration response functions, were not developed
specifically for India. However, without comprehensive epidemiolo-
gical studies and available established models for India, the IER func-
tion is still a practical solution to represent our best at-present
understanding of relative risks attributable to PM2.5 exposure (see
Methods). As Indian epidemiological evidence grows and concentra-
tion response function models are being developed and improved,
futureworkmaybenefit from the adoption of a newmethod. Third, we
assume a single diurnal cycle for burning emissions based on satellite
information due to limited data of hourly burning activities from local
sources (Supplementary Discussion, Supplementary Figs. 4, 28, 29).
Lastly, since this study focuses on the broader air quality impacts over
a large dispersion population, we do not specifically look at individual
pollution hot-spots such as Delhi. We do however provide additional
assessments for densely populated (urban) areas, whereDelhi is amain
recipient of pollution from agricultural fires (Supplementary Fig. 1).

Future research
Our approach allows any proposed emissions change to be related to
the eventual air quality impacts for the Indian population and sets the
stage for future research into crop residue burning. Since we have
focused most of our analysis on a single intervention, it would be a
natural next step to examine the effects of such interventions in
downwind locations (e.g. the spread of pollutants in New Delhi) using
conventional forward modeling techniques. Online modeling con-
sidering aerosol-meteorology interactions (e.g. aerosol effects on PBL
variations) is also needed to better understand whether these feed-
backs would suppress or enhance reductions in exposure. Further-
more, since our assumed diurnal pattern of burning may not reflect
true fire activities, focused observational work on burning practices is
needed to verify that these benefits are realizable. In addition, a deep
assessment (e.g. cost-benefit analysis) of any single alternative is nee-
ded to determine how plausible such an intervention would be in
practice.

Our study estimates the total annual premature deaths and the
value of mortality risk reduction attributable to PM2.5 exposure from
crop residue burning in India over 2003–2019. We also estimate the
efficacy of marginal changes to reduce these impacts at the district
level, finding that a small number of administrative regions could be
prioritized to provide the maximum air quality improvement. We find
that sixdistricts in Punjab are responsible for 40%of the nationwide air
quality impacts as a result of meteorological factors, the size of the
downwind population, and the use of residue-intensive crops. Our
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work provides additional insights into potentially low-cost interven-
tions that may significantly reduce the air quality impacts, such as
shifting to burning in the morning rather than afternoon and pro-
moting less residue-intensive crops (e.g. basmati rice instead of non-
basmati rice). Thesefindings provide aquantitative basis for thedesign
and optimization ofmitigation strategies for crop residue burning on a
broad scale, as well as providing new opportunities for future regional
and local studies on agricultural fires in India.

Methods
Agricultural residue burning emissions
Consistent with GBD 2018 India Special Report, we calculate emissions
from agricultural residue burning using the Global Fire Emissions
Database v4.1s (GFEDv4.1s) from 2003 to 2019 (daily emissions for
adjoint simulations) and from 1997 to 2019 (monthly emissions for
forward simulations)24,39. GFEDv4.1s is a hybrid emissions inventory
that incorporates satellite and ground-based measurements to esti-
mate fire emissions of various types (including open burning of agri-
cultural residue). In particular, it includes a small fire boost based on
active fire detections outside the burned area extent, which improves
estimation of emissions from frequent and/or short-lived burning
events (e.g. agricultural fires)40,41. A comparison using alternative fire
emissions inventories is provided in the Supplemental Information.
Similar to Koplitz et al. 2016, we define burning-attributable PM2.5 as
the sum of black carbon (BC) and organic carbon (OC), the primary
components of fire smoke-related PM2.5

31
.

The diurnal pattern of fire activity in the standard GFEDv4.1s
product is estimated using an emissions redistribution approach. The
diurnal cycles of burning are estimated based on observational data
from geostationary satellites over the Americas, which are then
applied to other parts of the world bymatching three broad fuel types
(crop/grass, shrub/savanna, and forest)40,42. While appropriate for
many applications over North and South America, this method is not
likely to accurately reflect agricultural residue burning in India because
the crops grown, crop cycles, field size, and crop practices are
different40. We therefore apply an alternative diurnal cycle for agri-
cultural residue burning in India based on satellite information from
prior literature. The fire activity in sub-tropical areas is typically more
intense in the early- to late-afternoon33,42. Over India, the fire counts
fromMODISAqua (13:30 LT) are three to four times greater than those
from Terra (10:30 LT) during periods of crop residue burning14,17,22,42.
Based on this information, and in the absence of more reliable and/or
accurate observational data specific to agricultural burning, we
assume that agricultural burning emissions have a triangular profile
(Supplementary Fig. 4), where 95% of emissions occur between 06:30
LT and 19:30 LT, with a peak at 14:30 LT. Sensitivity to this assumption
is explored in Supplementary Discussion.

Air quality modeling with the adjoint model
We use the adjoint (version 35) of the GEOS-Chem atmospheric
chemistry and transport model to quantify the sensitivity of annual
mean population exposure to PM2.5 in India with respect to emis-
sions sources in the extended Asia domain (70 °E – 150 °E, 15 °S-55
°N)43. Adjoint simulations are performed at a resolution of
0.5° × 0.667° (latitude × longitude), with 47 uneven vertical layers
from the surface up to 80 km altitude. Boundary conditions are
saved fromglobal runs at a resolution of 2° × 2.5°. The adjointmodel
quantifies the effect of changes in any emissions species (e.g. BC) at
any time and any grid cell in India on a scalar quantity (cost func-
tion) J. In our case, the cost function is the India-wide population-
weighted exposure to PM2.5. The adjoint approach has been widely
applied in inverse (receptor-oriented) problems such as air quality
impact attribution, which suits the need of this study29,43. We use
GEOS-5 meteorological fields from the Goddard Earth Observing
System of the NASA Global Modeling Assimilation Office and non-

fire anthropogenic emissions from the Emissions Database for
Global Atmospheric Research v4.3.244. Each adjoint simulation first
requires a conventional, forward simulation to be performed; the
data from these forward simulations is compared against observa-
tional data in our model validation (below).

Two sets of simulations are run with the GEOS-Chem adjoint
model. First, we perform three sets of simulations for three full
years (2007, 2009, 2012) which respectively represent a typical
rainfall condition for a “flood”, “drought” and “normal” year, based
on 20-year monsoon rainfall data in India (Supplementary Fig. 7).
Each set includes an adjoint run and a forward run (necessary for
adjoint simulations). For each year we calculate the sensitivity of
annual population-weighted exposure to PM2.5 across all of India
(cost function J) with respect to emissions from December 1st the
previous year to January 31st the year after. The first and the last
month are discarded due tomodel spin-up and down, such that data
for the whole year are used in the analysis. We then classify
2003–2019, where daily fire emissions are available, into three
categories bymeteorology type (Supplementary Fig. 7). By applying
adjoint sensitivities with gridded agricultural fire emissions corre-
sponding to their rainfall (meteorology) condition, we estimate the
total change in population-weighted exposure for the entire Indian
population due to emissions from crop residue burning for
each year.

Second,weperform twoother full-year adjoint simulations,where
the cost function is modified to annual population-weighted PM2.5

exposure for population in urban areas and highly populated areas, for
a typical “normal” year (Supplementary Fig. 1). We define urban and
densely populated areas as locations in which the population density
exceeds 400 and 1,000 people per km2, respectively. Besides esti-
mating impacts on India as a whole, this allows us to separately
quantify the impact of residue burning ondifferent population groups,
as people living in densely populated areas (e.g. IGP) may be exposed
to different exposure levels than those living in rural areas (e.g.
southern India).

Air quality modeling with the forward model
To inform estimates of long-term trends in exposure and the spatial
distribution of impacts, we use the “forward” model GEOS-Chem
Classic (version 13.0.2) and perform 23 sets of conventional,
forward-running simulations for September 1st to December 31st for
each year between 1997 and 2019, where monthly fire emissions are
available. September is discarded due to model spin-up, and only
October to November are considered for the “post-monsoon sea-
son”. Each simulation is performed over the extended Asia domain
(60° E-150 °E, 15 °S-55 °N) at a resolution of 0.5° × 0.625° (latitude ×
longitude), with 73 uneven vertical layers from the surface up to
80 km altitude. Similar to adjoint simulations, boundary conditions
are saved from global runs at a resolution of 2° × 2.5°. Each set
includes two simulations with and without Indian agricultural resi-
due burning emissions, which provides information on the long-
term impact of Indian post-monsoon crop residue burning on
population living in neighboring countries including Bangladesh,
Nepal and Pakistan. We use meteorological data from the Modern-
Era Retrospective analysis for Research and Applications, Version 2
(MERRA-2) and monthly (rather than daily) agricultural residue
burning emissions data fromGFEDv4.1s. This data is also used in our
model validation.

Calculation of population exposure and source contribution
The adjoint sensitivities are partial derivatives of a cost function (PM2.5

exposure) with respect to various control parameters (emissions).
Here the cost function for the adjoint simulation, J, is the annualmean
population-weighted exposure to PM2.5 within India, including
29 states and sevenunion territorieswhich are further divided into 666
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administrative districts. The cost function j is defined as

J =
XNlon

i= 1

XN lat

j = 1

XT
t = 1

ρij�χ ijt
h i

ð1Þ

where i and j are indices for the longitude and latitude, respectively;
Nlon and Nlat are the number of grid cells in the longitudinal and lati-
tudinal directions; t is the time step; T is the number of time steps in
the simulation; χ ijt is the surface-level PM2.5 in μg m-3 at time step t in
grid cell (i,j); and ρij is the number of people in grid cell (i,j). Gridded
population data are taken from the Global Rural Urban Mapping
Project Gridded Population of the World v4 for 2020, available at
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-
rev11.We do not vary the population distribution between years as this
would not be a relevant control variable for emissions impact
reduction, such that the estimate of exposure depends only on
variations in the emissions inventory and in the meteorology data (i.e.
the sensitivity data).

The three-dimensional sensitivity matrices we obtain from the
adjoint at every time step t are of the form

Sijt =
∂J

∂Eijt
ð2Þ

where J is the previously defined cost function, and Eijt is the
emission (in kg per time step) of a species in the three-
dimensional grid at time step t. Sijt is therefore the change in
annual-average population exposure to PM2.5 that results from a
single additional kilogram of the given species at location (I,j) at
time t.

We calculate the impact of crop residue burning on the change of
annual population PM2.5 exposure in India as the summation

ΔPijt = Sijt � Eijt ð3Þ

where the operator “�” is the inner product sign. ΔPijt is the change
in annual-average PM2.5 exposure across all of India (units of
person · μg m−3) due to agricultural burning emissions Eijt (in kg) at
location (i,j) and time t.

The adjoint method quantifies a linearized relationship between
emissions and PM2.5 exposure. This makes it well suited for computing
the impact of marginal emissions changes of a particular type at a
particular location or time. Although there may be non-linearities that
are not captured by this approach, the atmospheric processes relevant
to PM2.5 (BC +OC)––wet deposition and advection––are accurately
represented as linear operations in the GEOS-Chem model. As such,
the error due to atmospheric non-linearities is expected to be small29.

Atmospheric chemistry-transport models depend on emissions
inventories to compute air quality impacts, and our estimate and
attribution of population exposure is subject to the specific choice of
emissions inventory. While various global fire emissions inventories
have been developed, differences across inventories such as satellite
image interpretation and adjustment for small fires can result in large
regional differences in emissions estimates40. We select six global
emissions inventories, including five commonly used (e.g. Fire Inven-
tory from the National Center for Atmospheric Research, Quick Fire
Emissions Dataset) and one newly-developed for Indian agricultural
residue burning, and make an inter-comparison by calculating PM2.5

exposure due to post-monsoon crop residue burning using eachof the
emissions inventories (Supplementary Discussion). We find that
exposure estimates vary by up to a factor of seven due to uncertainty
in emissions inventories (Supplementary Figs. 15–18). However, we
find that this does not significantly affect our conclusions, which are
focused on the relative reduction in harm which could be achieved
through targeted interventions. Detailed comparison and discussion
can be found in Supplementary Discussion.

Model validation
To validate the model’s performance in simulating the impacts of
residue burning, we compare estimated PM2.5 concentrations and
aerosol optical depth (AOD) from the model output generated in the
course of against satellite-and ground-based measurements in India.
For surface PM2.5 we compare to annual estimates from the NASA
Socioeconomic Data and Applications Center45,46. For AOD, we com-
pare to estimates based on MODIS instruments on NASA’s Terra and
Aqua satellites (https://ladsweb.modaps.eosdis.nasa.gov/archive/
allData/61/), respectively. We also compare model-simulated AOD
with observations from three available Aerosol Robotic Network
(AERONET) sites in India (https://aeronet.gsfc.nasa.gov/cgi-bin/draw_
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Fig. 6 | Model validation against satellite observation of PM2.5. a Comparison
between ground-level PM2.5 from GEOS-Chem forward simulation which informed
the adjoint runs andNASAMODIS satellite-derived observations for a drought year.
b, c are same as a. but for flood and normal rainfall years, respectively. The black

lines depict y = x, the yellow lines are linear regression using a least-squares fit
between all available model and satellite PM2.5 values. Coefficients of linear fitting
and root mean squared error (RMSE) are depicted at top-left of each sub-figure.
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map_display_aod_v3). In addition, we comparemodel outputs from the
extended 23-year set of GEOS-Chem forward simulations against
ground observations from India Central Pollution Control Board
(https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/
caaqm-data-availability) and US Embassy Air quality Monitors in India
(https://www.airnow.gov/international/us-embassies-and-
consulates/#India$New_Delhi) for recent years, where complete
record of PM2.5 observations are available.

Figure 6 and Supplementary Fig. 11 show the comparison
between simulated and satellite-derived annual mean ground-level
PM2.5 concentrations over India. The GEOS-Chem forward model
captures the broad spatial pattern and magnitude of annual mean
ground-level PM2.5 across India. We find a positive bias of 4.3 μg m−3

for flood, 1.8 μg m−3 for drought, 2.0 μg m−3 for normal years when
averaged over all India, respectively. The model also captures high
values (80-120 μg m−3) over IGP from New Delhi eastward, with a
mean bias from −0.53 to 2.6 μg m−3 compared to satellite data. The
model performs best in the normal year (R = 0.97) as compared to
flood (R = 0.90) drought (R = 0.91) years. Disagreement is greatest in
northeastern and eastern states (Supplementary Data 5). Compared
to satellite-derived data, the model underestimates PM2.5 by 4.0–10
μg m−3 in northwestern Uttar Pradesh, Sikkim, and Tripura, over-
estimates by 5.0–16.7 μg m−3 in West Bengal, Bihar and Jharkhand,
and overestimates by 4.6–9.7 μg m_3 in Odisha and Chhattisgarh. The
bias between simulated and satellite estimate is smaller in relative
terms in southwestern and southern states (e.g. Maharashtra, Kar-
nataka, Tami Nadu), with a mean overestimation at 1.7–4.6 μg m−3.
Further discussion about the causes of these discrepancies is inclu-
ded in Supplementary Discussion.

We also compare the model output to satellite AOD averaged
between Level 3 MODIS/Aqua (13:30 LT) and MODIS/Terra (10:30 LT)
on a monthly basis (Supplementary Fig. 12), since agricultural residue
burning mostly occurs over the April-May and October–November
periods. Prior to averaging, GEOS-Chem’s data is sampled at the same
times as the valid observations from MODIS to ensure a consistent
comparison. The simulated AOD shows overall seasonal variations
consistent with MODIS over most regions in India when satellite data
are available (January–June, October–December). In central and
southern India (Maharashtra, Odisha, and Andhra Pradesh), GEOS-
Chem has a positive bias of ~0.04–0.2 compared to MODIS estimates
(~0.4–0.6). In northern India, the model has a negative bias of
~0.05–0.1 compared to MODIS (~0.7–0.9), especially in winter months
(December, January and February). These biases are smaller (~±0.1) in
March–April and October–November, showing a better model per-
formance when agricultural burning occurs.

Simulated daily AOD is also compared with three AERONET sites
located in New Delhi, Kanpur and Gandhi College (Supplementary
Fig. 13). Accounting for available data points, model AOD correlates
well with ground-based measurement (0.76≤ R ≤ 0.82, 0.20 ≤ RMSE
≤ 0.30), with a mean difference ranging from −0.21 to −0.07. During
wheat residue and rice residue burning seasons, the difference
between model and AERONET is smaller by 0.02. Model performance
in New Delhi (northwest India) shows a larger mean bias of -0.21,
relative to a mean observed value of 0.81. Potential reasons for these
differences are discussed in Supplementary Information.

The Central Control Pollution Board in India provides hourly
ground observations of PM2.5 at 197 stations throughout India,
including 37 stations in Delhi. We compare results from our extended
set of forward simulations to ground observations from Central Con-
trol Pollution Board for 2018 and 2019 after performing data quality
control procedures as detailed in Supplementary Discussion). Com-
pared to ground-observations, our simulations capture the temporal
variations and magnitude of local PM2.5 in Delhi in the post-monsoon
season for both years, but have ameannegative bias of 6.9μgm−3. Our
simulation also underestimates daily PM2.5 by as much as half on peak

days (e.g. Nov 8th 2018 and Nov 12th 2019) during the post-monsoon
residue burning period (Supplementary Fig. 14). However, our simu-
lation considered only primary, carbonaceous PM2.5 (BC and OC). The
peaks during this period are likely to include other/secondary PM2.5

components (e.g. sulfate aerosol) from non-fire sources which are not
captured by our simulation. We make model-observation comparison
and provide statistical metrics to evaluate city-level model perfor-
mance where observed PM2.5 data are available (Supplementary
Fig. 15), finding a reasonable correlation (R ~0.4–0.8) at 82% locations,
including Delhi, Patiala and Chandigarh (Punjab), Kaithal and Far-
idabad (Haryana) (Supplementary Fig. 15, Supplementary Data 6).
Despite the discrepancies at a few cities (e.g. R ~0.3 in Panchkula,
Punjab), we focus on the average increased air quality impacts across
India due to burning. Therefore, local biases are unlikely to sig-
nificantly impact our estimates for population exposure and sub-
sequent health impacts.

Finally, we verify that the forward and adjoint simulations are
consistent by using both models to estimate population-weighted
PM2.5 exposure under different burning scenarios (Supplementary
Fig. 16, Supplementary Data 7). Details are provided in Supplementary
Notes, but overall the inconsistency between forward and adjoint
modeling in estimated exposure is less than 10% for all tests (Supple-
mentary Data 7).

Overall, the GEOS-Chem model performs reasonably well in cap-
turing the broad distribution, magnitude and variability of PM2.5 and
AOD in India comparing with observations from various sources
(shown and quantified in Fig. 6, Supplementary Figs. 11−15, 20, and
Supplementary Data 6). This provides a reasonable and quantitative
evaluation of the model’s accuracy and the robustness of our findings

Estimation of premature mortality
Consistent with GBD 2018 India Special Report23, we use the Integrated
Exposure Response (IER) function to quantify mortality risk changes
due to annualmean PM2.5 exposure attributable to agricultural residue
burning3,22 (Supplementary Fig. 16). The IERwas developed to estimate
the relative risk of premature mortality (early deaths) from each cause
of death over the entire global range of long-term exposure to PM2.5

29.
This study considers five causes of mortality, including chronic
obstructive pulmonary disease, ischemic heart disease, lower respira-
tory infections, lung cancer, and cerebrovascular disease. The IER
function is expressed as

RRhðχbaseÞ=
1 +αh × f1� e�βhðχbase�χoÞδh g ðχbase> χoÞ

1 ðχbase ≤ χoÞ

(
ð4Þ

where RRh is the relative risk for disease h given some exposure
change between the observed baseline PM2.5 level χbase and the theo-
retical minimum-risk PM2.5 concentration χo (range: 2.4–5.9 μg m−3) at
grid cell (i,j) and time t. We adopt values of four IER parameters
αh,βh,δh, χo for eachdisease fromGBD 2017 and conduct 1000 sets of
Monte Carlo simulations to determine the mean and 95% uncertainty
intervals of prematuremortality. We also use India-specific population
age distribution and baseline mortality rates data from GBD 2019 and
the United Nations, Department of Economic and Social Affairs,
Population Division to calculate attributable premature mortality with
the consideration of varying relative risk of a disease, such as ischemic
heart disease and cerebrovascular disease on different age groups
(Supplementary Figs. 17−19). A detailed description for applying the
IER to adjoint sensitivities is given in the Supplementary Notes.

As with cohort studies on air quality impacts assessment and
attribution, our estimates of premature mortality depend on the
choice of concentration-exposure function. If instead of the IER we
assume a log-linear relationship between PM2.5 exposure and pre-
mature mortality, and apply a log-linear function for short-term
exposure47, our estimated annual premature deaths are reduced by
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approximately 56%. Using the Global Exposure Mortality Model3 or
meta-regression-Bayesian, regularized, trimmed splines1 for long-term
exposure risks would increase the estimated mortality by up to 45%
(Supplementary Figs. 25–26, Supplementary Discussion). This reflects
uncertainty about the true size of attributable mortality.

Burnett and Cohen, 2020 evaluated different concentration-
exposure functions and suggested that the IER remains a useful and
preferred method30. For example, the log-linear model and the
Global Exposure Mortality Model are sensitive to high levels of
PM2.5, which is the case for India3,30. The IER has been continuously
updated and improved since its introduction over a decade ago, and
applied by both GBD investigators and WHO at different scales1–3,30.
Although not specifically developed for India, the applicability of
the IER in the Indian context has been supported by the Steering
Committee on Air Pollution and Health Related Issues of the Indian
Ministry of Health and Family Welfare23. We thus believe the IER
represents our best at-present understanding of exposure-
attributable mortality risks.

The estimate of premature mortality is also subject to how we
apply the concentration-exposure function. When calculating changes
in attributable deaths due to burning, we use a uniform country-level
baseline mortality rate (BMR) specified by disease, age group and year
for India adopted fromGBD 20191. Chowdury andDey, 2016 suggested
using a state-specific BMR, adjusted as a function of gross domestic
product (GDP) in India24. Using a GDP-based proxy of BMR, we find a
10–12% increase in calculated early deaths (Supplementary Fig. 27,
Supplementary Information). While we would ideally use a BMR that
accounts for the socioeconomic heterogeneity in a country like India,
the accuracy of a GDP-based proxy is not clear and risks introducing
additional error.We thereforedonot use this adjustment inour central
analysis.

Quantification of monetized cost
Finally, we multiply the number of estimated burning-related pre-
mature deaths with the VSL to monetize the impacts of air pollution.
The VSL is widely used in the US and European countries to assess the
benefits of prevented premature deaths29,30. As original country-scale
studies on VSL in India are limited, we use a benefit transfer method to
adjustVSL fromtheUS to India33.Weestimate the India-specificVSL for
each year between 2003 and 2019 as:

V INy
= VUS1990

×
GUSy

GUS1990

 !ε1

×
Dy

D1990

" #
×Rε2

y ð5Þ

where V INy
is the VSL for India in year y; VUS1990

is the VSL for the US in
1990,which is translated intoVSL for theUS in a target year y (in square
brackets); GUSy

is the real GDP per capita in the US for year y; ε1 is the
income elasticity for the US between different years; ε2 is the income
elasticity between the US and India; Dy is the GDP implicit price
deflator for year y; and Ry is the income ratio of GDP per capita in
purchasing power parity between India and the US in year y.

The US Environmental Protection Agency (EPA) provides an
estimate for the VSL in the US in 1990 that follows a Weibull dis-
tribution (US EPA 2014). We use this as our base estimate of VUS1990

,
propagating the estimated uncertainty (in 95% CI) through all sub-
sequent calculations using a Monte Carlo approach. The GDP per
capita and GDP deflator in each year for the US is obtained from the
Federal Reserve Bank of St Louis (https://fred.stlouisfed.org/series/
A939RX0Q048SBEA#0). For the US-specific income elasticity ε1 we
assume a value of 0.7, based on estimates from the US EPA guideline.
We also assume a value of 1.5 for the US-India income elasticity ε2,
based on previous research into countries with mean incomes sub-
stantially lower than theUS20,48,49.R is calculated as the ratio ofGDPper
capita in purchasing power parity between India and the US, which we

obtain from World Bank (https://data.worldbank.org/indicator/NY.
GDP.PCAP.PP.KD).

Using this approach, we estimate a mean VSL of 0.16–0.51
million USD for India over 2003–2019. Specifically, the World Bank
Group and the Institute for HealthMetrics and Evaluation estimated
a VSL of 0.6 million USD in 2013, which falls within the uncertainty
range of our estimation for the same year (0.052–0.76million USD).
The VSL is an aggregation of individuals’ willingness to pay for a
small reduction of their own mortality risk (e.g. 1 in 10,000
decreases in the chance of dying prematurely)48, therefore the
monetary value of mortality risk reduction becomes the VSL value
multiplied by the number of early deaths. The monetized cost of
premature mortalities 4M due to PM2.5 exposure from agricultural
burning emissions in grid cell (i, j) at time t is

C =V IN × 4M ð6Þ

Uncertainty quantification
We use Monte–Carlo simulations to account for multiple sources of
uncertainty. We perform 1,000 simulations, and in each simulation
perform one random draw for each random variable. For the health
response, we choose randomly from the 1,000precalculated shapes of
each IER functionwith ranges of four parameters. Thismeansonedraw
and one function for each cause of premature death, as described
previously. In each simulation, we also draw randomly from the Wei-
bull distribution described by the EPA for the 1990 US VSL, which we
assume to be the dominant uncertainty in calculation of the trans-
ferred VSL for India (Supplementary Data 4). Other sources of uncer-
tainty, such as uncertainty in the satellite observations and agricultural
fire emissions inventory, are not quantified in the central calculation
but are investigated using inter-comparison and sensitivity analyses
(Supplementary Figs. 21–24, Supplementary Discussion).

Data availability
The fire emissions data from GFEDv4.1s is available at the Global Fire
Emissions Database (https://www.globalfiredata.org/data.html). India-
specific IER curves by age group are available at http://ghdx.
healthdata.org/record/ihme-data/gbd-2017-burden-risk-1990-2017.
Gridded India population data is available at the Socioeconomic Data
and Applications Center (https://sedac.ciesin.columbia.edu/data/set/
gpw-v4-population-count-rev11). India-specific population distribution
by age group is available at United Nations, Department of Economic
and Social Affairs, Population Division (https://population.un.org/
wpp/Download/Standard/Population/). India-specific baseline mortal-
ity rates are available at http://ghdx.healthdata.org/gbd-results-tool.
Satellite-derived PM2.5 data is available at the Socioeconomic Data and
Applications Center (https://sedac.ciesin.columbia.edu/data/set/sdei-
global-annual-gwr-pm2-5-modis-misr-seawifs-aod-v4-gl-03). Observed
PM2.5 at Indian ground stations is available at the Central Pollution
Control Board of India (https://app.cpcbccr.com/ccr/#/caaqm-
dashboard-all/caaqm-landing/caaqm-data-availability). Observed
PM2.5 by US Embassy monitors in India is available at https://www.
airnow.gov/international/us-embassies-and-consulates/#India$New_
Delhi. The data forMODIS AOD is available at https://ladsweb.modaps.
eosdis.nasa.gov/archive/allData/61/. The data for AERONET AOD in
India is available at https://aeronet.gsfc.nasa.gov/cgi-bin/draw_map_
display_aod_v3. India yearly, crop-wise and district-level crop produc-
tion data and rainfall data are available at the Ministry of Statistics and
Program Implementation,Ministry of Agriculture and FarmersWelfare
(https://agricoop.nic.in/en), Indiastat (https://www.indiastat.com/
data/agriculture) and Open Government Data Platform India (http://
data.gov.in). The data for the US and India historical GDP is available at
https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.KD. All other
processed data produced for analysis in this work can be found in
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Supplementary Discussion and Supplementary Data, or is available
upon reasonable request to the first author (RL).

Code availability
The code for the adjoint of GEOS-Chem atmospheric chemistry and
transport model is available at http://adjoint.colorado.edu:8080/
(registration for Gitlab needed). The code for the GEOS-Chem for-
ward model is available at https://doi.org/10.5281/zenodo.4681204.
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