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ABSTRACT OF THE DISSERTATION

Essays in Econometrics

by

Daniel Steven Ober-Reynolds
Doctor of Philosophy in Economics
University of California, Los Angeles, 2024

Professor Andres Santos, Chair

This dissertation contains two chapters. The first chapter studies causal parameters
that depend on a moment of the joint distribution of potential outcomes. Such parameters
are especially relevant in policy evaluation settings, where noncompliance is common and
accommodated through the model of Imbens & Angrist (1994). The sharp identified set
for these parameters is an interval with endpoints characterized by the value of optimal
transport problems. Sample analogue estimators are proposed based on the dual problem of
optimal transport. These estimators are y/n-consistent and converge in distribution under
mild assumptions. Inference procedures based on the bootstrap are straightforward and
computationally convenient. The ideas and estimators are demonstrated in an application
revisiting the National Supported Work Demonstration job training program. Estimates
suggest that workers who would see below average earnings without treatment tend to see

above average benefits from treatment.

The second chapter proposes a methodology for studying the robustness of results drawn
from incomplete datasets. Selection is measured as the squared Hellinger divergence between

the distributions of complete and incomplete observations, which has a natural interpreta-
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tion. The breakdown point is defined as the minimal amount of selection needed to overturn a
given result. Reporting point estimates and lower confidence intervals of the breakdown point
is a simple, concise way to communicate a result’s robustness. An estimator of the break-
down point of results drawn from GMM models is proposed and shown y/n-consistent and
asymptotically normal under mild assumptions. Lower confidence intervals of the breakdown
point are simple to construct. The chapter concludes with a simulation study illustrating

the good finite sample performance of the procedure.
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CHAPTER 1

Estimating Functionals of the Joint Distribution of

Potential Outcomes with Optimal Transport

1.1 Introduction

Researchers studying the causal effects of a binary treatment see an observation’s treated or
untreated outcome, but never both. As a result, the data identify the marginal distributions
of each potential outcome, but not their joint distribution. This “fundamental problem
of causal inference” (Holland, 1986) leaves parameters depending on the joint distribution

partially identified.

This paper studies a wide class of parameters that depend on a moment of the joint
distribution of potential outcomes. The setting is the canonical potential outcomes frame-
work with binary treatment, a binary instrument satisfying a monotonicity restriction, and
finitely supported covariates (Imbens & Angrist, 1994; Abadie, 2003). In this setting, the
sharp identified set for such parameters is an interval with endpoints characterized by the
value of optimal transport problems. Sample analogue estimators based on the dual problem
of optimal transport are tractable, both for computation and asymptotic analysis. These
estimators are shown to converge in distribution through the functional delta method. This

allows for straightforward inference procedures based on the bootstrap.

The proposed estimators are especially attractive due to their wide applicability and
computational simplicity. The class of parameters under study is broad, including the corre-

lation between potential outcomes, the probability of benefitting from treatment, and many



more examples discussed in section 1.2. As argued in Heckman et al. (1997), such param-
eters are of particular interest to policymakers and economists carrying out econometric
policy evaluation. Noncompliance with the assigned treatment status is common in these
settings. Most studies accomodate noncompliance with the same framework adopted in this
paper, and could make use of these estimators with no additional identifying assumptions.
Computing the estimator and constructing confidence sets entails nothing more challenging
than solving linear programming problems, for which there are fast and efficient algorithms

readily available.

This paper contributes to a large econometrics literature studying parameters of the joint
distribution of potential outcomes. Many papers in this literature focus on a subset of the
parameters considered here, especially the cumulative distribution function (cdf) or quan-
tiles of treatment effects (Manski, 1997; Heckman et al., 1997; Firpo, 2007; Fan & Park,
2010, 2012; Firpo & Ridder, 2019; Callaway, 2021; Frandsen & Lefgren, 2021). This lim-
ited focus allows greater use of known analytical expressions when deriving sharp bounds,
especially the famed Makarov bounds on the cdf and Fréchet-Hoeffding bounds on the joint
distribution. Several recent works develop methods applicable to broad parameter classes
by employing procedures that do not require analytical expressions for the identified set.
Russell (2021) studies continuous functionals of the joint distribution of discrete potential
outcomes, through a computationally intensive (sometimes infeasible) search over all permis-
sible distributions of model primitives. Fan et al. (2023) study parameters identified through
moment conditions in several incomplete data settings — including potential outcome models
— by searching over an infinite dimensional space of smooth copulas. This paper occupies
a middle ground: by focusing on parameters that depend on a scalar moment of the joint
distribution and working with optimal transport, I obtain expressions for the bounds with
tractable sample analogues. This approach allows consideration of a wide variety of param-

eters while maintaining computational tractability.

This paper also contributes to a growing literature on applications of optimal transport



to econometrics; see Galichon (2017) for a survey. Several recent working papers utilize op-
timal transport for issues related to casual inference, including inverse propensity weighting
(Dunipace, 2021), matching on covariates (Gunsilius & Xu, 2021), and obtaining counter-
factual distributions (Torous et al., 2021). In concurrent and highly complementary work,
Ji et al. (2023) consider a very similar class of parameters to the present paper and also
propose inference based on the dual problem of optimal transport. Their focus, accomodat-
ing non-discrete covariates without resorting to parametric models, leads to theory based on
cross fitting and high-level assumptions on first stage estimators. The goal of the present
paper is to provide simple, low-level conditions and computationally convenient estimators
in the common case where covariates are discrete. This leads to theory based on Hadamard
directional differentiability and the functional delta method quite distinct from that of Ji
et al. (2023).

The remainder of this paper is organized as follows. Section 1.2 formalizes the setting and
introduces the class of parameters under study. Optimal transport is introduced in section
1.3, and used in identification in section 1.4. Section 1.5 proposes the estimators and contains
the asymptotic results. Section 1.6 explores the finite sample properties of the estimators in
a brief simulation study. Section 1.7 contains the application, showing suggestive evidence
that the the National Supported Work Demonstration job training program was especially
beneficial for workers who would see below average incomes without training. All formal

results are proven in the appendix.

1.2 Setting and parameter class

1.2.1 Setting

Consider a potential outcomes framework with binary treatment, a binary instrument, and
finitely supported covariates (Imbens & Angrist, 1994; Abadie, 2003). Let Y denote the

scalar, real-valued outcome of interest and D € {0, 1} indicate treatment status. Further let



Y] denote the potential outcome when treated and Y| the potential outcome when untreated.

The observed outcome Y is given by

Y = DY + (1 — D)Y,. (1.1)

The difference in potential outcomes, Y; — Yy, is called the treatment effect.

The binary instrument is denoted Z € {0,1}. Let D; denote the treatment status when

Z =1, and Dy the treatment status when Z = 0. The observed treatment status D is given
by

D =7D;+ (1 —Z)D,. (1.2)

It is assumed that the instrument itself does not affect the outcome.! Units with 1 = Dy >

Dy = 0 are known as compliers.

Assumption 1 formalizes the setting.

Assumption 1 (Setting). {Y;, D;, Z;, X;}1, is an i.i.d. sample with (Y,D,Z,X) ~ P,

YeYCR, De{0,1}, Ze{0,1}, XecX={a,...,2p}CR*™ (1.3)

where Y, D, and Z are related to (Y1,Yy, D1, Dy) through equations (1.1) and (1.2), and the
random vector (Y1,Yo, D1, Do, Z, X)) satisfies

(i) Instrument independence: (Y1,Yo, D1, Do) L Z | X,

(i1) Monotonicity: P(Dy > Dy) =1,
(111) Existence of compliers: P(Dy > Dy, X = x) > 0 for each z, and
(w) P(X =x,Z =z) >0 for each (x, z).

1One could hypothesize potential outcomes varying with the value of the instrument, i.e. Yy, for each
(d, z). The exposition here implicitly assumes instrument exclusion, also known as the Stable Unit Treatment
Value Assumption: that P(Yy = Yy0) = 1 for each d.



Assumption 1 is essentially equivalent to assumption 2.1 in Abadie (2003), with the ad-
dition that covariates are finitely supported. Instrument independence is sometimes referred
to as ignorability, and satisfied in most randomized controlled trials where Z indicates being

assigned to treatment. Monotonicity is typically a weak assumption in such settings.

It is worth emphasizing that this setting nests the case where treatment is exogenous.
Specifically, when Dy = 1 and Dy = 0 (degenerately), every unit is a complier. In this
case equation (1.2) shows treatment status equals the instrument: D = Z. Instrument

independence simplifies to (Y7,Yy) L D | X, and monotonicity is trivially satisfied.

Interest focuses on the distribution of compliers. Such focus is especially policy relevant
when “the policy is the instrument” i.e., the proposed change in policy is to assign Z = 1 to all
units. Abadie (2003) shows that assumption 1 suffices to identify the marginal distributions

of Y} and Yj for the subpopulation of compliers.

Lemma 1.2.1 (Abadie (2003)). Suppose assumption 1 holds. Then the marginal distribu-
tions of Yy conditional on Dy > Dy and X = x, denoted Py, are identified by

Ep,, [f(Ya)] = E[f(Ya) | D1 > Dy, X = 1
CE[fV){D=d} | Z=d, X =z]-E[fYV)I{D=d}|Z=1-d X =21
B PD=d|Z=dX=2)—PD=d|Z=1-d,X =uz)

(1.4)

for any integrable function f. Furthermore, the distribution of X conditional on Dy > Dy is

identified by

s = P(X =x| Dy > Dy)
 [PD=1|Z=1,X=2)-P(D=1|Z=0,X=2)]P(X =x)
> [PD=1|Z=1,X=2)-PD=1|Z=0,X =2)]P(X =2)

(1.5)

The joint distribution of potential outcomes is not identified. This is a result of the

fundamental problem of causal inference: there is no unit where both Y; and Y; are observed,



and as a result the joint distribution of (Y7, Yp) is not identified for any subpopulation. Let
P, o denote the joint distribution of (Y3, Y;) conditional on compliance, and P o), denote the
joint distribution conditional on compliance and X = z. These are related through the law

of iterated expectations; for any function c(y;,yo) with values in R,
Ep,o[e(V1,Y5)] = E[E[e(Y1,Y0) | Dy > Do, X] | Dy > Dol = 5, Ep, ;. [e(V3, Yo)].

This relation can also be expressed as Pig =) 5,P1 |-

A joint distribution with marginals P, and Py, is called a coupling of Py, and Fy,.
P, g, is such a coupling, and is otherwise unrestricted by assumption 1. It follows that the
identified set for Py g, is the set of distributions my g, for (Y1,Y;) with marginals my), = Py,

and 7|, = Py, denoted

H(P1|m> P0|x) = {7T1,0|x T = P1|z> Tolz = Po\x} . (1-6)

Moreover, the identified set for P g is {7r170 = 5Tl : Mo € H( Py, P0|x)}.

1.2.2 Parameter class

The idea at the core of this paper is to bound a moment of the joint distribution of potential

outcomes by optimization. Accordingly, the focus is on scalar parameters of the form

v =9(0.n) (1.7)

where g is a known function and § = Ep, [c(Y1,Y))] € R is a scalar moment of the joint
distribution of (Y7,Yp) conditional on compliance. The function ¢ is known, and referred
to as a cost function in connection with the optimal transport literature. This class of
parameters is broad, as illustrated by the examples given below. In each of these examples

7 is a finite collection of moments of the marginal distributions conditional on compliance:



n = (Ep,[m(Y1)], Ep,[n0(Ys)]) € RF1TE0. The formal results focus on this case, but could be

generalized to allow 7 to be other point identified nuisance parameters.

The following conditions are stronger than necessary for identification of the sharp iden-
tified set of v, but will be used when constructing and studying estimators. Assumption 2
places restrictions on the cost function to ensure optimal transport can be used characterize

and estimate the sharp identified set for 6.

Assumption 2 (Cost function). Either

(i) c(y1,v0) is Lipschitz continuous and Y is compact, or

(i1) c(y1,y0) = L{y1 —yo < 0} for a known 6 € R and the cumulative distribution functions
Fayo(y) = PYa <y | Dy > Dy, X = x) are continuous.

Assumption 2 covers every example listed below. Continuous cost functions ¢ are given
a unified analysis, but for reasons discussed in section 1.3 discontinuous cost functions must
be handled on a case-by-case basis. I focus on the leading case of interest in applications,
c(y1,90) = 1{y1 —yo < d}, corresponding to the cumulative distribution of treatment effects.
The approach developed in this paper could likely be generalized to cover other discontinuous
cost functions; for example, results in the appendix allow estimation of the sharp lower bound

of P((Y1,Yy) € C) for any open, convex set C' C R

Assumption 2 (ii) requires the cdfs Fy, be continuous. As discussed in section 1.4, this
ensures the set being estimated is the sharp identified set for the parameter of interest.
However, the estimation and inference results of section 1.5 hold regardless of whether the
cdfs are continuous or not; when the cdfs are not continuous, the estimand is a valid outer

identified set.

Under assumptions 1 and 2, the sharp identified set for 6 = E[c(Y1,Y)) | D1 > Do is an

interval [0F, 0%]. Assumption 3 contains conditions on g and 7.



Assumption 3 (Function of moments). The parameter is v = g(0,n) € R, where
0= Ec(Y1,Y0) | Dy > Do €R, 0= E |n(¥),m(Yp) | Dy > Do| € R

for known functions g, ¢, 11 and ng such that

(i) Elllna(Y)|]?] < o0 ford =1,0,
(i) g(-,m) is continuous, and

(iii) the functions

Ly L 4 H : H(L H
t7,t",e) = min t,e), t7, 17 ,e) = max t,e
g ( ) te[tL,tH}g( ) g7 ( ) te[tL,tH}g( )

are continuously differentiable at (t¥,t7 e) = (0%, 01 n).

Note that when 6 itself is of interest, assumption 3 is satisfied with g(6,n) = 6. Assump-
tion 3 (ii) ensures the identified set for « is the interval [y%, v7], and assumption 3 (iii) is
used to apply the delta method. It is straightforward to show assumption 3 (iii) holds when ¢
is continuously differentiable in both arguments and g(-, 1) is strictly increasing, as the latter
condition implies g© (6%, 0% n) = g(0*,n) and g* (0%, 07 n) = g(6",7n) and the former condi-
tion implies they are continuously differentiable. This argument applies to every parameter
listed below. When g is differentiable but g(-,7) is not monotonic, it is often possible to use
the implicit function theorem applied to first order conditions to derive sufficient conditions

for the corresponding arg min and arg max to be differentiable, and thus for assumption 3

(iii) to hold.

1.2.2.1 Examples

The following examples are intended both to fix ideas and illustrate the broad scope of the

parameter class described above.



Example 1.2.1 (Summary statistics). Many summary statistics can be rewritten in the
form v = g(0,n). For example, suppose interest is in the variance of treatment effects for

compliers: v = Var(Yy — Yo | D1 > Dy). This parameter can be rewritten as
v = Var(Y1 =Yy | Dy > Do) = Ep, ,[(Y1 = Yo)*] = (Ep,[Y1] — Ep,[Yo])*,

This parameter fits the form ~ = g(0,n) required of display (1.7), with 8 = Ep, ,[(Y1 — Yp)?],
n = (W, n?) = (Ep V1], B [Y0)), and g(6,n) = 6 — (n™ —n®)>. The cost function
c(y1,90) = (y1 — yo)? satisfies assumption 2 (i) when Y, the support of the outcome Y, is
bounded.

Stmilarly, suppose the researcher is interested in the correlation between Yy and Yy for

compliers. Set v = Corr(Y1,Yy | D1 > Dy), which can be rewritten as

= Corr(Y1,Yy | D1 > Dy) = Ep o[Y1Y0] — Ep, [Y1] Ep [Yo]
! B — (B )Py EnV¢) — (B ol

This parameter also fits the form v = g(0,n) in display (1.7), with § = Ep,  [Y1Yy], n =
(77(1)777(2)777(3)a 77(4)) = (EP1 [Yi]7 EP1 [}/12]’ EP() D/U]’ EPO D/OZ])’ and
g(0,n) = 6V xn® . The cost function c(y1,y0) = y1yo satisfies assumption 2

V1@ =)z —(5() )2
(i) when Y is bounded.

Example 1.2.2 (Expected percent change). The expected percent change in the outcome
can be written as 100 x E [Yi%oyb | D1 > Do| %. This is a unit-invariant causal parameter
that is a natural summary measure when Yy exhibits considerable variation. For example, a
treatment effect of Y1 —Yo = 5 is typically of greater economic significance when the untreated

outcome 1s small, say Yo = 10, than when Yy = 100.

The expected percent change is proportional to

Y1 - Yo
Yo

v=F

Y, - Y,
|D1>D0:| :Ep170|: ! 0:|,

Yo

9



which fits the form of display (1.7), with vy = 0 = Ep, [Ylgoyo} . The cost function c(y1,yo) =

yly;oy“ satisfies assumption 2 (i) when Y is bounded and bounded away from zero.

Example 1.2.3 (Equitable policies). Policy makers are often interested in whether a policy
1s equitable — that is, whether the benefits are concentrated among those who would have

undesirable outcomes without treatment.

One parameter that speaks to these concerns is the covariance between treatment effects
and untreated outcomes among compliers: v = Cov(Yy — Yo,Yy | D1 > Dy). Notice that
v < 0 implies those with below average Yy tend to see above average treatment effects. This

parameter can be rewritten as
Y= OOU(Yi - }/07}/0 ’ Dy > DO) = E’PLO[(Yv1 - }/0)}/0] - (Epl [Yﬂ - EPO[%])EPO[YE]]

and fits the form g(0,n) with 6 = Ep, ,[(Y1 — Yo)Yo], n = (Ep [Y1], ER[Y0]), and g(6,n) =
0 — (nM — @@ . The cost function c(yr,y0) = (y1 — Yo)yo satisfies assumpion 2 (i) when
Y is bounded.

Many related parameters share a sign with Cou(Y; — Yy, Yo | Dy > Dy) and are also

suitable for such an analysis. For example, consider the OLS slope when regressing Y1 — Yj

COU(Yl -Y ,YQ|D1 >D0)
Var(Y0|D1 >D())

on Yy and a constant: v = . This parameter can be rewritten as

_ COU(Yi — Y0, Yo | Dy > DU) _ EWPLO[(YV1 - YE))YE)] - (EPI [Yﬂ - EPO[%])EPO[%]
~ Var(Yo| D> Do) Ep[Y¢] — (Ep,[Yo])? ’

v

which fits the form of display (1.7) with 0 = Ep, ,[(Y1—Y0)Yo], n = (Ep,[Y1], ERr[Yol, Ep, [Y7)),

09— (n(1) —p(2))(2)
and g(0,n) = ST

Example 1.2.4 (Proportion that benefit). The share of compliers benefiting from treatment,
written

v=PY1>Yy| D> Dy),

10



s naturally of interest in applications where theory gives little indication whether the treat-
ment will have a positive or negative effect. For example, Allcott et al. (2020) study the
effect of deactivating facebook on subjective well-being. The authors find significant positive

average effects of deactivation, but find substantial heterogeneity in follow-up interviews.

This parameter fits the form of display (1.7), with v = 6 = Ep, [1{Y1 — Yy < 0}]. The
cost function c(yi,y0) = L{yn — yo < 0} satisfies assumption 2 (ii) if the cdfs Fy.(y) are

continuous.

The share benefiting from treatment is also of particular interest when the intervention
comes at a financial cost and the outcome of interest is a pecuniary return. Fxamples include
job training programs intended to increase a worker’s income (e.g. the National Supported
Work Demonstration studied in Couch (1992)) or management practices intended to raise a
firm’s accounting profit (e.g. the employee referral program studied in Friebel et al. (2023)).
To illustrate, suppose the researcher observes { R;, C;, D;, Z; Y|, where R is observed revenue
and C' is the observed cost. These are related to treatment status D € {0,1}, potential

revenues (R1, Ry), and potential costs (Cy,Cp) by

R = DRy + (1 — D)Ry, C = DCy + (1 — D)Cy.

The observed profit, Y = R — C, is related to treatment status by

T/ T/

The probability the change in revenue exceeds the change in cost is

P(Rl—R0>Cl—Co|D1>D0):P(}/1>YE)|D1>D0).

11



Example 1.2.5 (Quantiles). Suppose the parameter of interest is any q, solving

This parameter has a similar interpretation to the T-th quantile.> q, cannot be viewed as
v = g(0,m). However, by viewing 0(5) = P(Y1 — Yy <6 | D1 > Dy) = Ep, [1{Y1 — Yy < 6}]
as a function of §, the results below can be adapted to construct a confidence set for the

identified set of this parameter as described in appendiz 1.9.1.2.

1.3 Optimal transport

This section defines and discusses optimal transport, which is used to characterize the iden-
tified set and construct estimators. Given any marginal distributions P; and F, and a cost
function c(y1,y0), the Monge-Kantorovich formulation of optimal transport is the problem

of choosing a coupling = € II(P;, Py) to minimize the expected cost:

OT.(P,P) = inf Ee(Y,Yy)]. (1.9)

7T€H(P1 ,Po)

This minimization problem in (1.9) is referred to as the primal problem, and will be used to

characterize the identified set of 9.

The dual problem of optimal transport will be used to construct and analyze estimators.

Let ®. denote the set of functions ¢(y;) and ¥ (yo) whose pointwise sum is less than ¢(y1, yo):

.= {(0,0); @(y1) +¥(yo) < ey, v0)} - (1.10)

The dual problem chooses a pair of functions in @, to maximize the sum of the corresponding

2The 7-th quantile is usually defined as the unique value ¢, = inf{y ; P(Y; — Yy < y) > 7}. When the
7 level set of the cumulative distribution function P(Y; — Yy < -) is nonempty, the 7-th quantile has the
interpretation that 100 x 7% of the population has treatment effect less than or equal to ¢,. Every ¢, solving
(1.8) has the same interpretation.
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expectations:

sup - Ep [p(Y1)] + Ep [¢(Yo)]- (1.11)

(p,¥)€Dc

When the cost function is lower semicontinuous and bounded from below, the primal problem

is attained and strong duality holds:

OT.(P1, Fy) = min Ex[c(Y1,Yo)]= sup Ep[p(Y1)]+ Epr[v(Y0)]. (1.12)
well(P1,Po) (p))ED,

The dual problem is used to construct and analyze estimators. Indeed, the identification of
Py in lemma 1.2.1 suggests straightforward sample analogues of Ep, [f(Y3)] for a given f,
which makes it possible to form a sample analogue of the dual problem in a setting with

instruments.

Although it is clear how to form a sample analogue of the dual problem, it is not imme-
diately clear how to analyze the resulting estimator. Fortunately, the dual problem can be
simplified by restricting the maximization problem to a smaller set of functions. Estimators

based on this restricted dual problem can then be studied with empirical process techniques.

The feasible set of the dual problem is restricted with the concept of c-concavity. Notice

the dual problem’s objective is monotonic, in the sense that ¢(y;1) < @(y1) for all y; implies

Ep[p(Y1)] + Epy[¢(Yo)] < Ep[0(Y1)] + Epy[¢(Y0)].

Increasing v pointwise will also increase the dual objective. Speaking loosely, any function
pair (p,1) € ®. for which the constraint ¢(y1) + ¥ (yo) < c(y1,y0) is “slack” cannot be a
solution to the dual problem and can therefore be ignored. This motivates the definition of

the c-transforms of a function ¢:

©“(vo) = iillf{C(yla Yo) — 2(y1)}, ©“(y1) = i;tf{C(yl, Yo) — ¢“(o) }-

For any pair of functions (¢, 9) € ®., these definitions imply ¥ (yo) < ¢°(v0), ©(v1) < ©“(1),
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and ©“(y1)+¢°(yo) < ¢(y1,yo). Further c-transformations are irrelevant because (¢“)¢ = ¢°,
so a function ¢ is called c-concave if p°“ = . If the c-transforms are integrable, the dual
problem can be restricted to c-concave conjugate pairs, (¢, ¢¢). c-concave functions often
“inherit” properties of the cost function c¢. For example, if ¢ is Lipschitz continuous then
©° and p° are Lipschitz continuous as well. These properties can be used to define sets of

functions F. and F¢ (depending on the cost function ¢ but not on the distributions Py, )

such that
sup  Ep [p(Y1)] + Ep, [¢(Y0)] = sup Ep [p(V1)] + Er,[¢(Yo0)]. (1.13)
(p,h)ed () EPN(Fe X FE)

Two cases suffice for the parameters considered in this paper. When the cost function

¢(y1, yo) is Lipschitz continuous and ) is compact, define

Fo={p: Y= R; —|lcllee <o) < llellos, l0(y1) — W) < Liys — w1} (1.14)

Fo={v: Y = R; =2fcllo < 9(yo) <0, [(yo) — ¥ (yo)l < Llyo — o} (1.15)

where ||c[|c = sUp(,, 4o)|c(¥1,%0)| and L is the Lipschitz constant of c. When c(y1,v0) =
1{(y1,v0) € C} for an open, convex set C, let

Fo={¢: Y —=R; p(y1) = 1{yy € I} for some interval I} (1.16)

Fe={y:Y = R; ¥(y) = —1{yo € I°} for some interval I} (1.17)

Equation (1.13) shows the optimal transport functional OT.(P;, Fy) depends only on the
values of Ep, [p(Y71)] and Ep [v(Yy)] for (p,¢) € F. x FS. For any set A, let £>°(A) denote
the space of real-valued bounded functions defined on A, equipped with the supremum norm:

(2(A)={f: A= R; ||flloc =supgealf(a)| < oco}. Optimal transport can be viewed as the
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map OT, : (>°(F.) X {°(F5) — R given by

OT.(P1, Ry) = sup Ep[p(Y1)] + Ep,[v(Yo)]. (1.18)
()P N(FexFE)

This problem will be referred to as the restricted dual problem. Estimators formed with this

map can be studied with empirical process techniques.

In summary, OT.(P,, Py) will be viewed as the functional in (1.9) when considering
identification, and as the functional given in (1.18) when considering estimation. By ensuring
¢ is either Lipschitz continuous or the indicator of an open convex set, strong duality and

c-concavity ensures these functionals agree on the space of probability distributions.

1.4 Identification

This section derives expressions for the sharp bounds on the parameter of interest that make
use of optimal transport. Recall the parameter of interest is v = g(#,n), where 7 is a point

identified parameter, § = E[c(Y1,Yy) | D1 > Dy] is a scalar, and g and ¢ are known functions.

Begin by rewriting 6 with the law of iterated expectations:
0 = E[E[C(E,%) | D; > Do,X] | D > Do] = E[@X ’ D; > Do]

where 0, = Elc(Y1,Y0) | Di > Do, X = x| = Ep,, [c(Y1,Y0)]. As noted at the end of
section 1.2.1, the identified set for P |, is the set of couplings of P, and Py, denoted
H( Py, Pojz)- 1t follows that the identified set for 6, is the set of values that can be expressed
as I;[c(Y1,Ys)] for some m € (P, Po). The set II( Py, Pyj;) is convex, implying that
the identified set for 6, is an interval. Let 0% and 0% denote its lower and upper endpoint

respectively.

To ensure the restricted dual problem can be used for estimation, % and 6 are character-

ized through an optimal transport problem with a suitable cost function. When assumption
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2 (i) holds (c(y1,yo) is Lipschitz continuous and ) is compact), define

cr(y1,%0) = (Y1, Yo), cr (Y1, 90) = —c(y1, o)
HL(PI\QU; P0|:c) = OTCL(P1|a:7 Pﬂ\x)a QH(P1|$7 Pﬂ\x) = _OTCH(P1|J:7 Pﬂ\x) (]-]-9)

Note that ¢9£ = HL(PW, P0|$> and Qf = GH(PH:C, PO\x)

The cumulative distribution function of Y; —Y; corresponds to the cost function ¢(yy, o) =
1{y; — yo < d}, which is not lower semicontinuous. This challenge is circumvented by
a small change in the cost function. When assumption 2 (ii) holds (the cost function is

c(y1,y0) = L{y1 — yo < 6}) define

cr(y1,90) = L{yr — yo < 6}, cr(y1,90) = H{yr — yo > 0}

0" (Pijz, Poe) = OT.,(Pija, Poja), 0" (Pija, Poe) =1 — OT,, (Prja, Poja) (1.20)
It follows from definitions that 0 = QH(PHI, Pojz). Moreover, cr(y1,40) < ¢(y1,%0) implies
QL(PHI, Po)) is a valid lower bound for §,. It is sharp if Py|,, Py, have continuous cumulative
distribution functions, in which case 9£ = HL(PM, Fyje). It is worth emphasizing again that
the estimation and inference results of section 1.5 ahead hold regardless of whether the
cdfs are continuous or not; when the cdfs are not continuous, the estimand is a valid outer

identified set.

Under assumptions 1 and 2, the identified set for 0 = Ep, ,[c(Y1,Y0)] = Elc(Y1,Y)) | D1 >

Dy is the compact interval [#*, 0%] with endpoints

0F = E[0% | D1 > Dy, 0 = E[0Y | D1 > Dy)
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Under assumptions 1, 2, and 3, the identified set for v is [y%, y], with endpoints

v =gh0%, 0" . n) = inf g(t,n), AT =g"(0% 0" n)= sup g(t,n)  (1.21)
telol,0H] te[pl,0H)

The following theorem summarizes the discussion above. Let 0%(-,-) and 07(-, -) be given

by (1.19) or (1.20) depending on the cost function, and set

6£ = HL(P1|m7 P0|z>7 exH = QH(P1|277 P0|m)7 (122>
0F = E[0% | D, > Dy, 0" = E[0% | D, > Dy, (1.23)
v =g" (0", 6" n), =g (0", 0" n) (1.24)

Theorem 1.4.1 (Identification of functions of moments). Suppose assumptions 1, 2, and 3

are satisfied. Then the sharp identified set for v is [y%, v1].

All results are proven in the appendix.

It is worth pausing to consider the role of covariates. When covariates are available, ignor-
ing them leads to wider bounds that are not sharp. Specifically, the marginal distributions P,
and Py could be used to form a lower bound on 6 with 6% (P, Py) = infrenp,py) Exlen(Yr, Yo)].
This bound minimizes over the whole set II(P, Py) = {mo; m = P, mo = P}, but the
identified set for P, g is the subset given by {7?1,0 = . SaToj 5 M0l € H(Pyje, P0|x)}. The
bounds defined by equations (1.22) and (1.23) is found while enforcing the additional con-
straints that m g, € (P, Fojz) for each z. These additional constraints imply oL (P, Py) <
6L, and similarly 07 < 02(P;, ).

Extreme cases illustrate when covariates are informative. If X is independent of (Y}, Yy)
conditional on Dy > Dy, then Py, = F; for each x, II( Py, For,) = (P, Fy), and the
inequalities in the preceding paragraph hold as equalities. In the other extreme, suppose
Py, or Py, (or both) are degenerate. This would follow from Y, being a function of X.

When one or more of the distributions is degenerate, there is only one possible coupling.

17



Since II( Py, Poj,) is a singleton, 0% = 6 and 6, = E[c(Y1,Yy) | D1 > Do, X = 2] is point

identified. If this occurs for all z € X', # and v are point identified.

Remark 1.4.1 (Makarov bounds). The proof of theorem 1.4.1 given in the appendix uses
properties of optimal transport to argue that under assumptions 1 and 2 (ii), [#%, 6] is the
sharp identified set for P(Y; — Yy < & | D1 > Dy). Nonetheless, it is interesting to note that

the proof shows

9£ = OTCL (Pl\xa P0|oc) = Sup{Flkc(y) - FO\x(?/ - 6)}
Y

0, =1 = Oy (Puje, Poye) = 1= sup{Fopu(y = 9) = Fupa(y)} = 1+ inf{ Fipa(y) — Fopay — )}
y

which are the Makarov bounds on P(Y; — Yy < d | Dy > Dy, X = z) studied in Fan & Park
(2010).

Remark 1.4.2 (Pointwise vs. uniformly sharp CDF bounds). Under assumptions 1 and 2
(ii), [0F, 6] is the sharp identified set for P(Y; — Yy < § | D1 > Dy) at the point §. Viewing
these bounds as functions of §, 8X(5) and 67(§) are not uniformly sharp bounds for the
cumulative distribution function P(Y; —Yy < 6 | D1 > Dy), in the sense that not every CDF
F(-) satisfying 67(8) < F(6) < 67(6) for all § could be the CDF of Y; — Yj. See Firpo &
Ridder (2019) for a detailed discussion of this point.

1.5 Estimators

Sample analogues of the expressions identifying P, Fyj,, and s, in lemma 1.2.1 provide
convenient plug-in estimators of v* and v. This section formally defines the estimators

and studies their asymptotic properties.

The following notation simplifies expressions for the sample analogues. Let P denote the
distribution of an observation (Y, D, Z, X), and f be a real-valued function. Use P(f) to refer
to Ep[f(Y,D,Z,X)|. Similarly, let Py.(f) = Er, [f(Ya)] = E[f(Ya) | D1 > Do, X = z].
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Let P, denote the empirical distribution formed from the sample {Y;, D;, Z;, X;},, and
P.(f) = £ 3, f(Yi, D;, Z;, X;). The following indicator function notation also simplifies

expressions:

ld"r’z(D’X’ Z) = H{D = daX = $,Z = Z}a

1,.(X,2)=1{X ==x,7Z = z}, 1,(X)=1{X =z}

For example, P(D = d, X = x,Z = z) shortens to P(l4,,.), and + > 1{D; = 1, X; =
xZ, Zz = 0} to ]P)n(]ll,w,O)-

The probabilities pgy, . = P(Llasz), Ps = P(1; ), and p, = P(1,) are estimated with

empirical analogues:

ﬁd,z,z = Pn(]]-d,z,z)7 ﬁw,z = ]P)n(:n-a:,z)y ﬁa: = ]P)n(]-z)

In this notation, s, = P(X =z | D; > Dy) and its empirical analogue s, are

(pl,:v,l/pw,l - pl,z,O/p:c,O)pw " (]51@,1/]535,1 - 151,1,0/]535,0)]51

) Sy = ~ N N N N 125
Zz’ (pl,r’,l/px’,l - pl,x’,O/pm’,O)p/z ¢ zm/ (pl,x’,l/px’,l - pl,m’,O/px’,O)px’ ( )

Sy =

The maps P, and their empirical analogues are

P(1gza X [)/pea—PLazi—a X f)/Pzi1-a

Py, = ,
d| (f) pd,;r,d/p:p,d _pd,x,lfd/px,lfd
> ]P)n 1 T Ax _]P)n 1 z,1— Ax .
Pd|a:(f)E ( d, ,dxf)/P d ( d,z,1 dxf)/p 1 d. (1.26)

Pd.z.d/Dzd — Ddwi—d/Pei—d

Computing I5d|m( f) for a given f is straightforward:

. i it awa(Di, Xi, Z) f(Yi) = 50 2oy Lawa-a(Di, Xi, Zi) f (V)
Pd\x(f) - ~ ~ ~ ~
pd,x,d/pz,d - pd,x,l—d/pz,l—d
= Waai X fi
=1
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where f; = f(Y;) and the weights wg,; can be computed directly from data:

" Laza(Diy Xiy Z3) [ Pwa — Lawi—a(Diy Xi, Zi) [ Pui—a
ﬁd,m,d/ﬁm,d - ﬁd,m,l—d/ﬁm,l—d .

(1.27)

1
Wdzi = —
n

Under assumption 3, n = (n1,1m0) = (Ep, [m(Y1)], Ep,[10(Yo)]). Each vector ny € R¥4 has
coordinates nc(lk) =>. sde‘x(nfik)). Empirical analogues 7 = (71, 7)o) are formed by ﬁc(lk) =
A A k

The sample analogue estimators of v* and v are based on equations (1.22), (1.23), and

(1.24):

0L = 0L ( Py, Pope), 0 = 0" (Py,, Py.), (1.28)
0F =" 35,0%, 0" =" 35,0! (1.29)
§h = g"(6",6" %), §1 = g"(0", 0", 7) (1.30)

Where the functions 0 (-,-) and 67(-,-) are defined by either (1.19) or (1.20) depending on
the cost function. These expressions involve the optimal transport functional OT,(Py |5, Fojz)-

The sample analogue of the restricted dual problem discussed in section 1.3 is written

OT.(Pip, Pow) = sup Piu() + Po(9), (1.31)
(o) €D N(Fe X FE)

where the sets F. and F¢ are defined by displays (1.14) and (1.15) when assumption 2 (i)
holds, and by displays (1.16) and (1.17) when assumption 2 (ii) holds.

Computing OTc(pl‘x,fsz) is especially straightforward when treatment is exogenous.
Recall the claim of equation (1.13): the supremum of Py,(¢) + Fy.(1) over the larger set
®,. is the same value when restricted to ®. N (F. x F¢). The argument behind this claim
uses monotonicity of the maps Py,. When treatment is exogenous, pd‘x corresponds to a

probability distribution and is therefore also monotonic. The claim holds replacing Py, with
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pd‘m, implying the function classes F. and F¢ can be ignored in computation:

OTC(]51|x, 150|x) = sup p1|x(90) + 150|x(¢) = sup 151@(90) + 150|z(¢)
(2 ¢)€‘I’cﬁ(chfc) (p,h)ED,

= Sup Zwlxz()pz + ZWO :E,ij (132>

{pistis i=1

st @i+ <e(Y;,Y;) forall 1 <i,5 <n.

The final problem in this display is a linear programming problem with 2n choice variables
and n? constraints, and can be further simplified by removing choice variables (and the
corresponding constraints) whose weights w,,; equal zero. Many weights do equal zero, as

only observations with X; = x correspond to nonzero weights.

When there is noncompliance in the sample, If’d|x does not correspond to a probability
distribution. This can be seen by noting that for observations ¢ where Z; differs from D;, the
weight wg . ; defined in display (1.27) is negative. Nonetheless, it remains computationally
tractable to search over ®.N (F,. x FS). For example, when the cost function is continuous
oT, c(pl\xapopc) remains a linear programming problem with additional linear constraints

enforcing |, + ] < L|Y; = VI, llelloe < @i < llcllcs and ~2l|efloc < 5 < 0.

1.5.1 Weak convergence

The estimators proposed above are especially attractive because they are a (Hadamard direc-
tionally) differentiable map of the empirical distribution. Specifically, there exists a collection
of functions F and a map T : (*°(F) — R? described by equations (1.25), (1.26), (1.28),
(1.29), and (1.30) such that
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The set F consists of the functions in F., F¢, and the coordinate functions defining n, mul-
tiplied by various indicator functions. It is formally defined in appendix 1.9.3. Assumptions
1, 2, and 3, suffice to show F is Donsker and T'(-) is continuous at P, and therefore that the

esimators are consistent:
(3".4") = T(®,) & T(P) = (v".7") (1.33)

The map T'(+) is not only continuous, but Hadamard directionally differentiable. An applica-
tion of the functional delta method gives the conclusion /n((%%, %) — (4%, vH)) converges

in distribution, a result stated formally in theorem 1.5.2 below.

In order to build hypothesis tests or construct confidence intervals based on the asymp-
totic distribution of /n((3%,4%) — (v,+H)), one must be able to estimate the asymptotic
distribution. This is possible under assumptions 1, 2, and 3, with a procedure described in
section 1.5.2.2. Under an additional assumption, a straightforward bootstrap will do. For

each instance of the restricted dual problem used in defining 7'(-), the set of maximizers

Ve(Piz, Pojz) = argmax  Py,(¢) + P (¥) (1.34)
(@,¢)€@cﬁ(fc><]:g)

is nonempty. If the solutions are suitably unique for each instance, the map T'(-) is fully
Hadamard differentiable at P and a straightforward bootstrap will consistently estimate the
asymptotic distribution. Assumption 4 states this high-level uniqueness condition, while the
following lemma 1.5.1 gives low-level sufficient conditions for it to hold. Let Y;, be the
support of Y conditional on D = d and X = z, and 1y, (y) = 1{y € Va.} be the indicator

function for this set.

Assumption 4 (Unique solutions). For each x € X, each ¢ € {cp,cy}, and any
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(01,9¢1), (@2, v2) € Ye(Pija, Pojz), there exists s € R such that

Iy, X o1 =1y, X (p2 +5) and Iy, X ¢1 =1y, X (Y2 — s)
P-almost surely.

Lemma 1.5.1. Suppose that

(i) assumption 2 (i) holds, with cost function c(y1,yo) that is continuously differentiable,

and

(ii) for each (d,x), the support of Py i Vau, which is a bounded interval.
Then assumption 4 holds.

When treatment is exogenous, condition (ii) of lemma 1.5.1 simplifies to the assumption
that the distribution of Y3 | X = x has bounded support [y7,,v4,]. In a setting with
instruments, this condition requires the support of Y; for compliers is a bounded interval
containing the support of Y; for always-takers, and the support of Yy for compliers is a

bounded interval containing the support of Y for never-takers.

Assumption 4 can hold even when the conditions of lemma 1.5.1 do not. For example,
when the parameter of interest is the cumulative distribution function of the treatment
effects evaluated at a point and assumption 2 (ii) is satisfied, the dual problem is essentially
optimizing over the difference of CDFs (see remark 1.4.1). Although the cost functions are
not continuously differentiable, it is still plausible for this optimization problem to have
a unique solution. For further discussion of uniqueness of the dual solutions of optimal

transport, see Staudt et al. (2022).

The following theorem gives the main weak convergence result.

Theorem 1.5.2 (Weak convergence). Suppose assumptions 1, 2, and 3 hold, and let G be
the weak limit of \/n(P, — P) in £>°(F). Then T is Hadamard directionally differentiable at
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P tangentially to the support of G, and

If assumption 4 also holds, then T} is linear on the support of G and Tp(G) is bivariate

normal.

1.5.2 Inference

To make use of theorem 1.5.2 for inference, this section develops methods of estimating the
law of T1(G) by utilizing the bootstrap. The “exchangeable bootstrap” procedures discussed
in van der Vaart & Wellner (1997) are computationally convenient. These procedures define

a new map P € (*°(F) pointwise with

1 n
P*(f)=— W f(Y:, D;, Z;, X; 1.35
W) = zzj £ ) (1.35)
for nonnegative random variables {W;}?_; independent of the data {Y;, D;, Z;, X}, and
satisfying technical conditions omitted here. Two notable examples include the nonpara-
metric bootstrap of Efron (1979) and the “Bayesian” bootstrap of Rubin (1981). Either
bootstrap can be used to estimate the asymptotic distribution. The Bayesian bootstrap may

be preferable in small samples for reasons discussed below.

Definition 1.5.1 (Nonparametric bootstrap). Let (Wy, ..., W,) ~ Multinomial(n, (1/n, ...
,1/n)) be independent of the data {Y;, D;, Z;, X;}7_,. Define Pf € (>°(F) pointwise with
(1.35).

Definition 1.5.2 (Bayesian bootstrap). Let {&}, be i.i.d. exponentially distributed ran-
dom variables with mean 1, independent of the data {Y;, D;, Z;, X;}1,. Set
Wi =&/(nt Y00 &), and define P € (°(F) pointwise with (1.35).
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The map P in (1.35) can be used to compute (9**,4*) = T(P}) in much the same way

that T'(P,,) is computed. Specifically, bootstrap analogues of py ., Ps-, and p, are given by
D, —12n:WIL (D;, X3, Z3), D —1zn:W]l (X, Z;) A*—lzn:W]l(X)
pd,x,z - n - ild,x,z iy <Niy Li )y pm,z - n p iz z iy L) pq; - n o iz i)

and the bootstrap analogue of s, is

o BlanP — P /PR
’ Zx’(ﬁiaz’,l/ﬁ;’,l _ﬁiw’,O/ﬁ;’,O)ﬁ;’

The maps Pd‘m have bootstrap analogues

Py (f) = P (Liza X f)/Pea = Po(Laai—a X F)/Dr1a = zn:W* Ji
d|x ﬁ;kl,x,d/ﬁ::,d — ﬁjl,x,lfd/ﬁ;,lfd o d,z,ili

where f; = f(Y;) and wj, ; are bootstrap versions of the weights in (1.27):

W; y Lawa(Di, Xy Zi) [Py g — Lawa-a(Di, Xis Zi) [ D1 g

i = — — (1.36)
pd,x7d/px,d - pd,m—d/px,l—d
Finally, (4%, 4%*) can be computed with
T T g = S i (1.39)
Y= gt (0% 0" ), Y= gm0, 0" ) (1.39)

1.5.2.1 Simple bootstrap with full differentiability

Under assumption 4, estimating the distribution of T%(G) is straightforward.

Theorem 1.5.3. Suppose assumptions 1, 2, 3, and 4 hold, and let P} be given by definition
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1.5.1 or 1.5.2. Then conditional on {Y;, D;, Z;, X;} 4,
V(T (P,) = T(P,)) = Tp(G)

i outer probability.

It is worth emphasizing the computationally convenience of the bootstrap P given in

(1.35) when treatment is exogenous. The weights given in display (1.36) simplify to

Ak
px,d

* E—
d,x,i

(1.40)

As these weights are nonnegative and sum to one, P(jax is a probability distribution. Ac-
cordingly, the function classes F. and F¢ can be ignored when computing QL(Pl*'x, P5|x) and

0" (P

i ]56796) for the same reasons discussed above.

A researcher utilizing the nonparametric bootstrap in a small sample runs the risk of
a boostrap draw including no observations with (D;, X;) = (d,z). This would result in
the formula in (1.40) attempting to divide by zero. This problem cannot arise when using

the Bayesian bootstrap suggested in 1.5.2; in this procedure W; > 0 for each 7, and thus
Pra= %2?21 W;l{D; =d,X; =z} > 0 as long as ps, > 0.

1.5.2.2 Alternative for directional differentiability

The solutions to optimal transport may not be unique as assumption 4 requires. As empha-
sized in the statement of theorem 1.5.2, assumption 4 is not needed to obtain the asymptotic
distribution of the estimators — but a straightforward bootstrap may not consistently esti-
mate that limiting distribution. When in doubt, researchers can make use of an alternative

procedure based on the results of Fang & Santos (2019) and described below.

Additional notation is needed to describe this alternative. Let 776(;2 = Pd‘x(nék)), and 77 (-)
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denote the “first stage” function computing Py, Fojes 11,2, Moz, and s, for each x:

Tl(P) = ({P1|za PO\manl,:mnO,zasx}xex)

Here {a,}rexr = (auy,...,az,,). Let {k,}22, be a sequence in R satisfying x, T oo and

kn/v/n — 0. Define the set of empirical approximate maximizers:

~ R R R ) .
\ch,:c = {(@’¢) < (bc N (‘FC X ‘Fc(::) ) OTC(P”:E?PUl:E) < P1|:p(90) + P0|g;('¢) + %} .

Use this set to define the maps

OT. ,(Hy, Ho) = sup Hi(p) + Ho(t)

(Qoﬂb) e\/ﬁc,m

and

2/,T1(P) ({H1,1'7 HO,:B7 h?’]l,Iv h’no,lw hs,m}xeé\?)

— —
= <{OTCL@(HLJ:7 HO,x)a _OTCH’;E(HLJ:’ HO,x); hm,am hno,xa hs,z}xex> .
The alternative procedure uses the conditional law of

DaDsTy 1, ) (VR(T1(P) = Ta(Pn)))
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given the data, where Dy and Dy are matrices given by

5 0 0 0 6k

A R . R . 0 s, 0 0 Qf
D3 = |:D3,xl Dgyy .. DMM], D, = 0 0 aJ 0 X )
Sz K 771,1:

(2+dy) x M (3+dy)

0 0 0 Sli 7o
(24+dy) x(3+dy)

Vgh (9", 0", q)
D4 = U )
Vg (0", 07, )T
2% (2+dy)
Theorem 1.5.4. Suppose assumptions 1, 2, and 3 hold, let P} be given by definition 1.5.1
or 1.5.2, and {k,}5>, C R satisfy £, — oo and k,/\/n — 0. Then conditional on
1Y, Di, Zi, Xi}iy,
DaDsToim, vy (VT3 (B) = Ta(Bn)) = Th(G)

i outer probability.

1.5.2.3 Confidence sets

Theorems 1.5.3 and 1.5.4 make it straightforward to conduct inference. For example, a

simple confidence set for the identified set [yX, v] is given by
['?L - qu—oz/\/ﬁa '?H + qu—oc/\/E}

where G;_, is a consistent estimator of the 1 — a quantile of max{Th(G)V), —T5(G)®}.
When assumptions 1 through 4 hold, let (§%*,4%*) = T'(P#). When assumptions 1 through
3 hold but assumption 4 is doubtful, let (5%, 47*) = (4%, 47)+ J= Da Dy Ty 1y (p) (v/n(T1 (P) —
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T1(P,))). In either case, compute

G1- = inf {g; P (max {vn(3"* —4"), —vn(3" = 4"} < q | {Vi, Di, Zi, Xi}ioy) 21— a}
through simulation:

1. Compute (3%, 4%) = T(P,) and, if necessary, Dy, and Dj.

2. Generate B boostrap samples, {W;,}, for each b = 1,..., B according to definition

1.5.1 or 1.5.2. For each bootstrap sample b, compute (4*,47*) as described above.

3. Let ¢1_o be the 1 — o quantile of {max{\/n(yf* —4%), —v/n(3* — 47 }2.,.
Under the further assumption that the cumulative distribution function of
max{Th(G)M, —TH(G)P} is continuous and strictly increasing at its 1 — a quantile,

lim P ([VL,VH] C ﬁL — Gi—a/Vn, AT + (jl—a/\/ﬁ]) =1l-a

n—oo

1.6 Simulations

This section explores the finite sample performance of the estimators through simulations,
with a focus on coverage rates of confidence sets for the identified set. For simplicity, the
data generating process is one of exogenous treatment with no covariates. An observation
consists of the vector (Y, D), where Y = DY) + (1 — D)Yy. Treatment status D € {0,1}
is independent of (Y7,Y)), and satisfies P(D = 1) = 0.5. Potential outcomes follow with
a Kumaraswamy distribution with positive parameters ay and by, having support [0, 1] and

cumulative distribution function

Faly) = P(Y; < y) =1 — (1 —y)h
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The parameter of interest is
y=60=P(Y; - Y, <),

This parameter is chosen to facilitate computation of the true identified set. As noted in
remark 1.4.1, the optimal transport problems involved in characterizing the identified set

have simple analytical expressions. Specifically, the identified set for v is [y%, ], where

o sup {Fi(y) — Fo(y —0)}, =1+ inf {£1(y) — Foly — 9)}

These expressions and the closed form cdfs Fj; allow the true values of v and v to be
computed precisely without simulation. The population cumulative distribution functions

of Y] and Y, as well as their difference, are displayed in Figure 1.1.

Figure 1.1: Simulation data generating process, cdfs and dual objective

1.0 1 Foly — 0) 0.15 — FAly)—Foly—0)
— Fily)
0.10 4
0.8
0.05 4
0.6
0.00 1
0.4 —0.05 4
02 —0.10 7
—0.15 A
0.0 -
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

As is clear from the right panel, there is a unique and well separated maximum and min-

imum of Fy(y) — Fy(y — §) that imply population bounds of v* = 0.156 and v = 0.828.
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The uniqueness of these optimizers indicate that T'(-) is fully differentiable, and thus the
straightforward bootstrap described by theorem 1.5.3 consistently estimates the asymptotic

distribution.

In each simulation, an i.i.d. sample {Y;, D;}" , is drawn according to the data generating

process described above. The estimators are computed as described in section 1.5:
it = OT., (P, By), i =1- 0T, (P, R)

where the cost functions are cr,(y1,yo0) = L{y1 —yo < 0} and ¢y (y1,v0) = L{y1 —yo > d} and

optimal transport is computed as
OT. (Pl, Po sup ZM ivi t Zwo,g%
{pistis i=1

st @i+ <e(Y;,Y;) forall 1 <i,5<n
3,000 bootstrap draws are used to compute the confidence set

CI=[" —éi-a/Vn A" +é1-a/ V0]

with a = 0.05, following the procedures outlined in section 1.5.2.3.

It is well known that estimators optimizing over sample averages are biased in small sam-
ples (Haile & Tamer, 2003; Kreider & Pepper, 2007; Chernozhukov et al., 2013). Specifically,
the expectation of a sup over a sample average is larger than the sup over its popoulation
counterpart due to convexity of the sup function. This suggests that in small samples 4%
is biased upward, and 4 biased downward, leading to estimated bounds that are tighter
than their population counterparts. Although theorems 1.5.2 and 1.5.3 guarantee correct

coverage asymptotically, this finite sample bias can lead to undercoverage in small samples.

Table 1.1 reports the empirical bias and standard deviation of the estimator, as well as
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the empirical coverage of the confidence set, from 300 simulations.

Table 1.1: Simulations without bias correction

Bias St. Dev. Emp. Coverage
1 ,S/L ,A}/H ;YL ,S/H C[
100 | 0.047 -0.051 0.065 0.066 0.900
200 | 0.031 -0.031 0.049 0.049 0.917
300 | 0.030 -0.021 0.040 0.040 0.893

The bias is notable in magnitude relative to the standard deviation in these small sample

sizes. Empicial coverage is slightly below the nominal value.

The bootstrap bias correction found in Efron & Tibshirani (1994) is simple to implement
in the current setting. The finite sample bias of the lower and upper bounds is given by
E[#*] —~+% and E[¥H] —~" respectively. These are estimated by bias — B! S AR 4T
and @H = B! Zszl Af* — 4" The bootstrap bias corrected estimate of the bounds are

given by

%éc :7L_M/‘1\3La &gc :WH—%H
The bootstrap bias correction is often found to reduce finite sample bias in simulations and to
offer a higher order refinement in various settings (Horowitz, 2001; Hahn et al., 2002). In the
context of smooth functions of sample moments, Horowitz (2001) notes that the asymptotic
distribution of the corrected estimator is the same as that of the uncorrected estimator when
B increases sufficiently quickly with n. The boostrap bias corrected confidence set for the

identified set is given by
Clpc = [ABc — C1-a/ V1, Ahe + E1-a/v/1]
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Table 1.2 reports the results from the same 300 simulations using this bias correction.

Table 1.2: Simulations with bias correction

N Bias St. Dev. Emp. Coverage
’AYzLac ’AYgC ’AVJ_Lac ’AVgC Clpc

100 | 0.021 -0.026 0.071 0.071 0.927

200 | 0.013 -0.015 0.052 0.051 0.953

300 | 0.015 -0.007 0.042 0.042 0.957

Empirical bias is approximately halved, and coverage is close to the nominal 95%. Efron &
Tibshirani (1994) warns that the bootstrap bias correction may increase the variance of the

estimator, but in this case the standard deviation increased only marginally.

1.7 Application: National Supported Work Demonstration

This section demonstrates the estimators by revisiting the famous National Supported Work
Demonstration program (LaLonde (1986)). This program was implemented in the 1970s
with the aim of helping socially and economically disadvantaged workers obtain job skills.
Those randomly selected into the program were guaranteed a job lasting six to eighteen
months, and frequently met with a counselor to discuss performance. There was no reported

noncompliance.

The “Lalonde” sample studied in Diamond & Sekhon (2013) consists of male participants
and includes 297 treated and 425 control observations. The outcome of interest is real
earnings in 1978. Observed covariates include age, years of education, real earnings in months
13 to 24 prior to randomization, and indicators for whether a participant is a high school
dropout, black, hispanic, or married. Averages and standard deviations of these covariates

by treatment status are reported in table 1.3:
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Table 1.3: Balance table

base inc.  age  yrs. educ. HS dropout black hispanic married

3672.49  24.45 10.19 0.81 0.80 0.11 0.16
control

(6521.53) (6.59) (1.62) (0.39) (0.40)  (0.32) (0.36)
treated 3571.00  24.63 10.38 0.73 0.80 0.09 0.17

(5773.13)  (6.69) (1.82) (0.44) (0.40)  (0.29) (0.37)

Note: Standard deviations in parentheses.

In this sample, the average treatment effect on 1978 real earnings is $886. It is natural
to ask whether the policy was more beneficial for those who would have low incomes in 1978
without treatment. One parameter addressing this is the OLS slope coefficient of regressing

treatment effects on a constant and Yj:

_ COV(YI — Yo, Yb) _ EPLO[(YV1 B YE])YE]] — (EPI [Yﬂ - EPO [YODEPO [Yb]
T T Varvo) Er[YZ] — (En,[Y0))?

As described in example 1.2.3, the sign of this parameter describes who receives larger
benefits from treatment. Specifically, v < 0 implies those with below average untreated

outcomes tend to see above average treatment effects.

Discretized versions of baseline income and age are found to be informative covariates.
Baseline income is binned as [0, 0], (0,4000], or (4000, 00) while age is binned as [16, 23],
or (23,00). X is the cartesian product of bins. The point estimates for the bounds are
(4%, 47) = (—1.725,—-0.003).2 The negative upper bound point estimate suggests that the
treatment was especially beneficial for participants who would otherwise have incomes below
average (for the eligible population). The bias-corrected point estimates based on 3,000

bootstrap draws are (Y50, 9Hc) = (—1.731,0.041), and the bias-corrected 95% confidence
set for the identified set is [—1.956,0.266]. These suggest that v may still be zero or slightly

3Covariates are found to be informative, especially for the upper bound. Ignoring covariates, the lower
bound point estimate is —1.783 and the upper bound point estimate is 0.190.
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positive once accounting for sample uncertainty:.

This parameter could also be considered conditional on each of the covariate values:

Cov(Y1 =Yy, Yo | X =2x)
Var(Yy | X = x)

Ve

Bias corrected point estimates and confidence intervals for each ~, are reported in Table 1.4.

Table 1.4: Estimates conditional on covariate values

‘ age base inc. ‘ yE. 4B Clpc n ‘
0 197 028  [2.26,056] 140
(16,23] (0, 4000] | -1.74 -0.15  [-1.9,0.01] 141
(4000, 00) | -1.45 -044  [1.63,-0.27] 90
0 -2.13 0.81 [-2.65, 1.33] 187
(23, 55] (0, 4000] -1.39 -0.16 [-1.93, 0.38] 56
(4000, 00) | -1.66 0.03  [-2.08,0.45 108

It is worth noting the upper bound on the confidence set is negative for young men with
baseline income above $4, 000, and essentially zero for young men with positive income below
$4,000. For these subpopulations, those who would have had below average incomes in 1978

tended to see above average benefits from treatment.

1.8 Conclusion

This paper studies a large class of causal parameters that depend on a moment of the joint
distribution of potential outcomes, in a setting with binary treatment, a binary instrument
satisfying a monotonicity restriction, and finitely supported covariates. The sharp identified
set of such parameters is characterized with the value of optimal transport problems. Es-

timators based on this identification are y/n-consistent and converge in distribution under
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mild assumptions, and inference procedures based on the bootstrap are straightforward and

computationally convenient.

1.9 Appendix

1.9.1 Appendix: identification

Following Kitagawa (2015), let T' denote the “type” of a unit:

;

a, always-taker, if (Dq, Dg) = (1,1)

¢, complier, if (D4, Dy) = (1,0)
T = A (1.41)

n, never-taker,  if (Dy, Dy) = (0,0)

df, defier, if (D, Dy) = (0,1)
\

Note that the primitives (Y3, Yy, D1, Dy, Z, X) are equivalent to (Y3, Yy, T, Z, X).

1.9.1.1 Main identification results

Lemma 1.9.1 (Identification of moments). Suppose assumptions 1 and 2 hold. Then the

sharp identified set for 0 is [0F,0H].

Proof. Let T be as defined in (1.41), and note that the primitives of the model
(Y1, Y0, Dy, Dy, Z, X) are equivalent to (Y1, Yy, T, Z, X). Moreover, the event D; > Dy is the
event T = ¢; thus Py, is the distribution of Yy | T = ¢, X = z.

In steps:

1. The identified set for (Pigjz,, .-, P10z ), the conditional distributions of (Y;,Yp) |
T=cX=uxforeachaw € X ={xy,...,2on}, is II( Pz, Pojay) X - - X I(Prjays, Pojans)-
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That (Poje,,- - Projes) € H(Pijay, Pojey) X - .. X H(Prjay,, Pojey,) is immediate. To see
that any element of II(Py|z,, Pojz,) X - - - X H( Pz, Foje,,) is possible given the assump-
tions and distribution of the observables (Y, D, Z, X), fix a distribution of the observ-
ables generated by a distribution of the primitives consistent with the assumptions.
Note that the distribution of observables is summarized by P(D = d,Z = z, X = x)

for each (d, z,z) and the conditional distributions

Y|D=d,Z=2,X=x

Use this observation and the claims of lemma 1.9.5 to see that any two distributions
of the primitives (Y1, Yy, T, Z, X) (consistent with the assumptions), sharing the same

distribution of (7', Z, X), and the same marginal, conditional distributions for

Yi|T=aX=x Yo|T=nX=x2x
Yi|T=c¢X=nx, Yo |T=c¢X=x
will produce this distribution of observables. Thus, replacing (Piojz;, - - - 5 P1,0/z,, ) from

the distribution of primitives with any

(71'5,;1, R 77er) € H(P1|11,P0|Il) X ... X H(P1|xM7PO|zM)

will generate the same observed distribution of (Y, D, Z, X), without violating assump-

tion 1 or 2. The claim follows.

. The identified set for (04, ...,0,,,) € RM is [0L 0H] x ... x [0L 6 ].

» T M 1) 71 Tprr? M

Recall that 0, = E[c(Y1,Y)) | X = ], and let O, denote its identified set. Note that
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the previous step implies
Or, = {t eR; t=E; [c(Y1,Y))] for some 7, € II( Py, P0|z)}

II( Py, Poj,) is convex. Notice that for any A\ € (0,1) and w72 € II(Py, Po),

Exriia-nmo[c(Y1,Y0)] = AE [e(Y1, Y0)] + (1 — X) Ero[c(Y1,Yp)]. Together these imply

O, is convex.

It suffices to show that for any z, ©;, = [0, 07| There are two cases:

7T

(i) If assumption 2 (i) holds, then for each z,

0L = OT.(Pyy, Poje) = inf E, [c(Y1,Y))]

WIGH(Plh:’PO\m)
95 = _OT—C(PH&E? PU|:L”) - Sup Eﬂz [C(Yi7 Yb)]
WIGH(P1|17PO|2:)
Since c¢ is continuous, lemma 1.9.30 implies the optimal transport problems are
attained, say by 7T£ and Wf respectively. It follows that 9£ , 95 € Oy, and it is

clear from their definitions that they bound ©;,. Since O, is convex, it follows

that ©;, = [0F, 617].

)T

(ii) If Assumption 2 (ii) holds, then

cL(y1,90) = Wy — yo < 0}, cu(y1,y0) = Hy1 — yo > 0},
0£ = OTCL(P1|CC7 P0|x)a ef =1- OTcH(P1|x7 P0|z)

Let 7%, 7l € II(Py,, Pyjz) be such that 62 = E L [1{Y1 —Y; < §}] = Po(Y1—Y) <

) x

6) and 0 =1— E u[1{Y1 =Y, > 0}] = P (Y1 — Y, < §). Notice that 0 € ©;,.

38



Furthermore, 1{y; —yo < 6} < 1{y1 — yo < ¢} implies

oL — inf E.1{Y; Y, <} < inf E. [1{Y;—-Y,<$§
T e€l(PyyPoj) YL = Yo < 0}] S raeti(Pr P LY — Yo <6}

and thus ¢9£ is a lower bound for ©;,. Since Oy, is convex, it suffices to show

that 9£ € @I,x'

Corollary 1.9.44 implies 65 = P, (Y — Yy < 0) = sup, { Fijo(y) — Fo(y — 6) }-
Moreover, Villani (2009) theorem 5.10 part (iii) implies the dual problem
sup,, {Fm(y) — Fo(y — 5)} is attained as well, say by y*. Thus

/ﬂ{yl—yo < SYdrl(yr,y0) = /ﬂ{w < y*}dPu(yl)—/ IH{yo < y"—9}dPo(vo)
(1.42)
Next, notice that

Hy <y} —{yo <y* — 0} < I{pn — w0 < 6} (1.43)

which holds for all (y;, o), must hold with equality wZ-almost surely. Indeed, let

N be the set where the inequality in (1.43) is strict and suppose N is wZ-non-
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negligible. Since 72 € II(Py),, Py,

/ 1{y; < y*}dPy.(y1) — / Hyo < y* — 6}dFoj(o)
:i/umgy?—ﬂwmﬂﬁ—ﬂﬁﬂmwd
- /N Wy <y} — 1{yo < y* — }dml(y1,yo)
i / Wy <y} — 1{yo < y* =}l (y1, %)

</ﬂm—%<ﬂmmmm+/ﬂw_%<ﬂmmmw
N

= / 1y — yo < S}k (y1, wo)

contradicts (1.42). This implies that 72 concentrates on

{(v,y0) ;s vi <y yo >y —0,y1 —yo < I}

(.

-~

both sides of (1.43) equal 1

U{(y1,90) s 91>y 50 > y" — 6,51 — yo = 5}

both sides of (1.43) equal 0

Ui wo) s syt Sy yo Sy — 6,1 —yo 2 6}

both sides of (1.43) equal 0

Notice the only point in the set {(y1,%0) ; y1—y0 = 6} where L could put positive

mass is the point (yi,40) = (y*,y" — ). But since P;|, has a continuous CDF,

0<m({(y"y" —0)}) <m({y'} x W) = Pua({y"}) = 0

Thus Py (Y; — Yo = 8) = 0, and s0 Poy(Y; — Yy < 8) = Pr (Y1 — Yy < 6) = 0% (x).
Thus 6% € ©;,, and hence O;, = [0F(x), 0% (x)].

Therefore the identified set for 6, is [0L, 6], Tt follows from this and step one above

)T

that the identified set (0,,,...,0,,,) is [0% 07 x ... x [9L HH 1.

Y TM T17 77X TM UM
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3. Recall that 0 = Efc(Y1,Yy) | T = ¢] = E[E[c(Y1,Y)) | T = ¢, X]] = >, 5.0, Since
sy = P(X = | T = ¢) is point identified for each z, it follows from step two above

that the identified set for 6 is [67, 6] where
0" => 5,00, 0" = " s,0)

This concludes the proof. O

Theorem 1.4.1 (Identification of functions of moments). Suppose assumptions 1, 2, and 3

are satisfied. Then the sharp identified set for v is [y%, v1].

Proof. Lemma 1.9.1 shows that under assumptions 1 and 2, the sharp identified set for 6 is

(0L, 6H]. Let I'; be the identified set for «, and note that

[r={yeR;y=g(tn) for some t € [0",0"]}

Assumption 2 implies ¢ is bounded; under assumption 2 (i) the continuous ¢ : Y x Y — R
takes a maximum and minimum on the compact set ) x ), while under assumption 2 (ii) the
cost function only takes values 0 or 1. It follows that 0% and 87 are finite and thus [6F, 0]

is compact.

Assumption 3 (ii) is that g(-,n) is continuous, and thus the extreme value theorem implies
v = infieppr gmy g(t, 1) and v7 = sup,cpe guy g(t, 1) are both elements of I';. The intermediate

value theorem then implies I'; = [y%, yH]. O

1.9.1.2 Quantiles

Example 1.2.5 considers the parameter ¢, solving
PY, =Yy <q, | Dy >Dgy) =71
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As noted in that example, the sharp identification results for P(Y; — Yy < 6 | Dy > D)
can be adapted to characterize the sharp identified set for ¢,.. First view the bounds on the

cumulative distribution function as functions of §:

CL,a(yhyo) = 1{y1 —yo < 6}, CH,(S(QI)MJ) = 1{y1 — yo > 6},
05(6) = OTCL,5 (Pllxﬂ PO\GC)? 05(5> =1- OTCH,& (Pllﬂm PO\?C)

04(5) = 3 5,04(6) 07(5) = 3 5,07 (9)

Let )7, denote the sharp identified set for g;.

Lemma 1.9.2 (Identification of ¢,). Suppose assumptions 1 and 2 (ii) hold. Then q € Qr,
if and only if 0% (q) < 7 < 67 (q).

Proof. By definition, ¢ € 'y if and only if there exists a distribution of the primitives, ,
consistent with the observed distribution, such that P,(Y; — Yy < ¢) = 7. Lemma 1.9.1
shows that 0% (q) < 7 < 6 (q) if and only if there exists a distribution of the primitives, 7,
such that P,(Y; — Yy < ¢q) = 7. This concludes the proof. O

Lemma 1.9.2 implies that inverting a test of Hy : 0%(q) < 7 < 6% (q) against the alterna-

tive Hy : 7 < 0%(q) or 67 (q) < 7 will lead to valid confidence sets for g,.

Consider instead defining ¢, to be the closed subset of R given by
¢ = [inf{y; P(Y1 =Yy <y) > 7}hinf{y; P(Yi - Y, <y) > 7}]

Note that this ¢, is the singleton inf{y ; P(Y; — Yy <y) > 7}, unless P(Y; — Yy < -) is flat
when equal to 7, in which case it equals the 7-level set {y ; P(Y; — Yy <y) = 7}. (Compare
Ehm et al. (2016), who define the 7-th quantile equivalently as ¢, = [sup{y ; P(Y; — Yy <

y) <7hsup{y; P(Y1 — Yy <y) <7}.)
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Lemma 1.9.3 (Identification: 7-th quantile). Let q. be defined as
¢ = [inf{y ; P(V1 = Yo <y) > 7} inf{y; P(Y1 - Yy <y) > 7} (1.44)

Suppose assumption 1 and 2 (ii) hold, and let Q. denote the identified set of q. defined
by (1.44). Then q € Qr., if and only if 0 (q) < 7 < 0% (q).

Proof. Suppose 0X(q) < 7 < 0"(q). Lemma 1.9.1 implies there exists a distribution 7 of
the primitives consistent with assumption 2 (ii) such that P.(Y; — Yy < ¢) = 7. Thus
q € [inf{ly; P(Y1 =Yy <y)>r7}inf{y; P.(Y1 — Y, <y) > 7}] and hence ¢ € Q..

Before showing the other direction, we next show that assumption 2 (ii) implies #%(9) is
continuous. Specifically, apply corollary 1.9.44 to find 6£(4) = sup, { F1j2(y) — Foje(y — 0)}.
So for any 9, ¢,

95(5) - 9£<5,) = Sup{Fl\x<y> - F0|x(y - 5)} - Sup{F1|x(y) - F0|:c(y - 5,)}
) Yy
< sup { Fope(y — 0') — Foa(y — 0) }
y
< sup |Fou(y — 0') — Fou(y — 0)]
Y
and thus |0£(0)—6%(8")| < sup, |Foje(y — &) — Fojo(y — 6)|. Recall that any continuous CDF
is in fact uniformly continuous, and so Fp, is in fact uniformly continuous. Let € > 0, choose

n > 0 such that for any y,y" € R with |y — 4| < 7, one has |Fy.(y) — Fo.(y')| < €/2, and

notice that
0 =& <n = sup|Fou(y — &) — Fou(y —0)| <e/2 < e
y

This shows 6£(8) is continuous, and so 6%(5) = Y s,0% is continuous.

Return to showing the other direction, through the contrapositive. Suppose it is not the
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case that 07(q) < 7 < 0%(q). There are two possibilities:

1. Suppose 67 (q) < 7. Then there is no distribution 7 of the primitives such that P, (Y; —
Yy < q) > 7, hence there is no distribution where ¢ € [inf{y ; P(Y; — Yy < y) >

7} inf{y ; P(Y1 =Yy <y) > 7}] and thus ¢ € Q-

2. Suppose 7 < 0%(q). If one further supposes that ¢ € Qr.,, then 6%(-) would have a

jump discontinuity at ¢, contradicting the continuity shown above.

Specifically, if 7 < 6%(¢) and ¢ € Q;., then there exists a distribution 7 of the
primitives such that P (Y; — Yy < ¢q) > 7 and ¢ € [inf{y ; P (Y1 =Yy, < y) >
T} inf{y ; P.(Y1 =Yy <y) > 7}], implying that P,(Y; —Y, < ) jumps at g from below

7 to above 0% (q):
lir%Pﬂ(Yl—YUSq—e) <7<0q) < P,(Y1-Yy<q)
€—

This jump discontinuity at ¢ is at least of size ¢ = 6X(¢g) — 7 > 0. But then 6%(.)
would have a jump discontinuity of at least size € at ¢ as well, a contradiction of the

continuity of % (-) shown above.

Thus if 7 < 6%(q), then ¢ & Q..

In either case, ¢ € Qr-. This completes the proof. O

1.9.1.3 Additional identification lemmas

The lemmas below contain results well known in the literature. They are included here with

proofs for completeness.

Lemma 1.9.4. Let P, be any distribution and Py be degenerate at o € R. Then the only
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possible coupling of Py and Py is characterized by the cumulative distribution function

PY1 <w1) ifyo > 9o
PY1 <y, Yo <o) =

0 if Yo < Yo
Proof. First suppose 3o < go. Then 0 < P(Y; <y, Yy < yo) < P(Yy <o) =0.

Next suppose yo > 7o. Then 1 > P{Y; < y1} U{Yy < 5o}) > P(Yy < o) = 1 implies
that

-~

=1

PY1 <y, Yo <wo) = P(Ys <) + P(Yo < o) = P({Y1 <91} U{Yo < wo})
-1
=P(Y1 <y1)

which completes the proof.

m
Lemma 1.9.5 below summarizes the empirical content of the model described in assump-

tion 1. In particular, it implies that any two distributions of the primitives consistent with

assumption 1 that share the same marginal distribution of (7', Z, X') and marginal, condi-
tional distributions of

Vi|T=aX==x Yo|T=nX=ux
Vi|T=¢X=uz,

Yo|T=c¢X=x

will produce the same distribution of observables
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Lemma 1.9.5. Suppose assumpion 1 holds. Then

PD=1|Z=0,X=uz

P(T=a|X =2

PD=1|Z=1,X=2)=P(T €{a,c} | X =2x)

( )= P(
PD=0|Z=1,X=2)=P(T=n| X =1x)

( ) = P(

( )= P(

P(D=0|Z=0,X=2)=P(T € {c,n} | X =12)

and for any integrable function f,

ElfY)|D=1,Z=1,X=z|=E[f(Y1)|T € {a,c}, X = z]

EfY)|D=0,Z=0X=ua]=E[f(Yo) |T € {c,n}, X = 1]
Furthermore,

ifP(D=1]Z=0,X=2x)>0,
then E[f(Y) | D=1,Z=0,X=x]=FE[f(Y1) | T =a,X =z
fP(D=0|Z=1,X=2x)>0,

then E[f(Y)| D=0,Z=1,X=x]=FE[f(Yo) | T =n,X = z]

Proof. Assumption 1 (ii) implies 1{D; = 0, Dy = 1} = 0. The definition of 7" in (1.41) then

implies

1{Dy = 1} = 1{Dy =1, Do = 1} + 1{Dy =655 = 1} = I{T = a}
1{D; =0} = 1{Dy =0, Dy = 0} + 1{Dy = 6B = 1} = I{T = n}

:H_{Dl = 1} = ]]_{Dl = 1,D0 = 1} + :H_{Dl = 1,D0 = 0} = ]].{T S {a, C}}

1{Dy = 0} = 1{Dy =1, Dy = 0} + 1{D; = 0, Dy = 0} = 1{T € {c,n}}
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These observations, equation (1.2), and assumption 1 (i) imply

PD=1|Z=0,X=x PT=a| X =2),

(D ) = P( =z) =
PD=0|Z=1,X=2)=P(D;=0|X=2)=P(T=n|X =1,
PD=1|Z=1,X=2)=PD1=1|X=2)=P(T €{a,c} | X =1z), and
P(D )= P( )= P(

=0|1Z2=0,X=x P(T € {ce,n} | X =2)

Note the first two equalities can be summarized as P(D =d | Z =2, X =x) = P(D, = d |
X =ux).

Next, let f: R — R be integrable. Assumption 1 (i) and equations (1.1) and (1.2) imply
that for any (d, z, x),

P(D=d|Z=2,X=x)E[f(Y)|D=d,Z =2 X =z

=P(D.=d[ X =z)E[f(Ya) | D. = d, X = 1]
and since P(D=d | Z =2, X =xz) = P(D, =d| X = z), this implies

O:P(D:d|Z:z,X:x)(E[f(Y) I D=d, Z=2X =] - E[f(Y)) | Dz:d,X:xD
(1.45)

Assumption 1 (iii) implies

PD=1|Z=1,X=2)=PT c{a,c} | X=2)>PT=c|X=12)>0

PD=0|Z=0,X=2)=PTe{e,n} | X=2)>PT=c|X=2)>0
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Use strict positivity of P(D=1|Z=1,X =xz)and P(D=0|Z =0,X = z) to see that

EIf(Y)|D=1,2=1,X =a] = Bf(Vi) | Dy = 1, X = a] = B[f(V}) | T € {a,c}, X = a]

E[fY)|D=0,2=0X=ua]=E[f(Yo) | Do =0,X =z] = E[f(Yo) | T € {¢,n}, X = 1]

Similarly, (1.45) implies

itP(D=1[Z=0X=21)>0,
then E[f(Y) | D=1,Z=0,X=z|=E[fV1) | T =a,X = x]

ifP(D=0|Z=1X=2x)>0,

then E[f(Y) | D=0,Z=1,X=2]=E[f(}Yo) | T =n,X = 1]
this concludes the proof. O

Lemma 1.2.1 (Abadie (2003)). Suppose assumption 1 holds. Then the marginal distribu-
tions of Yy conditional on Dy > Dy and X = x, denoted Py, are identified by

Er, [/ (Y2)] = E[f(Y) | Dy > Dy, X = 1]

CEB[fY){D=d}|Z=d, X =a] - E[f(Y)I{D=d} | Z=1~-d,X =]
B PD=d|Z=d,X=2)-P(D=d|Z=1-d,X =x)

(1.4)

for any integrable function f. Furthermore, the distribution of X conditional on Dy > Dy is
identified by

s = P(X =x| Dy > Dy)

P(D=1|Z=1,X=2)-PD=1|Z=0,X =2)]P(X =2) r
Y [PD=1|Z=1,X=2)-PD=1|Z=0,X=2/)]P(X =2') (15)
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Proof. First notice that using 7" as defined in (1.41),

BIF(YS) | Dy > Do, X =] = ELJ(Y) | T = e, X =2 = S0 o 22

(1.46)

Now notice that
Dy —Dy=(1—Dy) —(1=Dy)=1{Dg=d} — 1{Dy_q =d}

for either d € {1,0}. Monotonicity (assumption 1 (ii)) implies that this is an indicator for

T =c:
Dl—DOZ]]_{Dlz]_,Dg:O}::ﬂ_{T:C}
So,

Ef(Y)YI{D=d} | Z=d, X = a] — E[f(Y)I{D =d} | Z =1 —d, X — 1]
— BIF(LDy = ) | X =] - B[f(Y)1{Ds_s = d} | X = a]
= Elf(Ya)(M{Dg = d} = 1{D1_q = d}) | X = ]

— E[f(Y)UT = ¢} | X =] (1.47)

Lemma 1.9.5 shows that

PD=1|Z=1,X=2)-P(D=1|Z=0,X =2)

=PTe{ac} | X=2)—PT=a|X=2)=PT =c|X=n2)
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and similarly,

P(D=0|Z=0,X=2)-P(D=0|Z=1X=a2)

=PTe{en} | X=2)—PT=n|X=2)=P(T=c|X=nx)

Thus for either d € {1,0},

P(D=d|Z=dX=2)—-PD=d|Z=1-dX=2)=P(T=c|X=x). (148)

It follows from (1.46), (1.47), and (1.48) that

Ep, [f(Ya)] = E[f(Ya) | D1 > Do, X = 1]
EfV{D=d} | X =2,Z=d - E[fY)I{D=d} | X =2,Z =1 —d|
N PD=d|X=2,Z2=d) - P(D=d| X =a,Z=1—d) ’

and from (1.48) that

S$o=P(X=x|Dy>Dy)=PX=x|T=c)= ZIIDEJT(T::C L),(X:jj)gi;gy)

P(D=1|X=2,Z2=1)—P(D=1|X=27=0)]P(X =xz)
Y PD=1|X=a',Z=1)—PD=1|X=2,Z=0)]|P(X =2a')

This concludes the proof. O

1.9.2 Appendix: properties of optimal transport

Suppose that strong duality holds:

inf /C(yhyo)dﬂ(yhyo) = sup /<P(?/1)dpl(yl)+/¢(yo)dpo(?/0) (1.49)

mell(P1,Fo) () EPN(Fex FE)
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for sets of universally bounded functions F, C L'(P;) and F¢ C L'(F). See lemmas 1.9.38
and 1.9.42 for examples.? Then for suitable sets F; and Fy with F. C F; and F¢ C Fy, the

map OT,(Py, Py) = infren(p, py) J ¢(¥1, yo)dm(y1, yo) can be viewed as

OTC : goo(fl) X goo<./t‘0) — ]R, OTC(Pl, Po) = sup Pl(QO) + Po(@b) (150)
(L) EPN(Fe X FE)

where Py(f) = [ f(ya)dPa(ya) = Ep,[f(Ya)].
The functional in (1.50) is defined over the familiar Banach space ¢°°(F;) x £>°(Fy). This
makes it straightforward to show that optimal transport, as a functional from this space to

R, has certain desirable properties.

1.9.2.1 Continuity

Lemma 1.9.6 (Optimal transport is uniformly continuous). Suppose that for some uni-
versally bounded F. C L*(Py) and F¢ C L'(P,), (1.49) holds. Then the optimal transport

functional, given by (1.50), is uniformly continuous.

Proof. Define

S 07(Fr) x £2°(Fo) — £°(F1 x Fo), S(Hy, Ho)(p,v) = Hi(p) + Ho(1)

. 0°(F x Fo) — R, =[G = sup G(p,v)
(‘Pa"z))E@cm(]:c X-Fcc)

and notice that OT,(Hy, Hy) = Z.(S(Hy, Hy)). Since s : R? — R given by s(h1, hy) = hy+ho

4 F, and F¢ are typically found with the following steps:
(i) Start with a known strong duality result; for some ®.s C P,

inf /C(ylvy(l)dﬂ—(yhyo) = sup /‘P(yl)dpl(yl)+/w(yo)dp()(yo)

well(Py,Py) (o) EP.s

(ii) Compute F.(P.s) and FS(P.s) defined by (1.85).
(iii) Notice that F.(®.s) C Fe and FS(Pes) C FS for known and easy to study sets Fe, FS

c

Lemma 1.9.36 and remark 1.9.2 are useful to ensure F, and F¢ are universally bounded.
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is uniformly continuous, we have that S is uniformly continuous (see lemma 1.9.47). Lemma
1.9.49 shows that =, is uniformly continuous. The composition of uniformly continuous
functions is uniformly continuous, implying OT, is uniformly continuous. This completes

the proof. n

1.9.2.2 Directional Differentiability

The optimal transport functional given by (1.50) is Hadamard directionally differentiable.
The formal result, stated below, requires that F. and F¢ each be equipped with a semimetric.
The semimetrics chosen must be such that P, € (*(F.) and Py € (>°(F¢) are continuous
and the product space F. x F¢ and its subset ®. N (F. x F¢) are compact.

The setting suggests a very convenient semimetric. Let P be the distribution of an

observation, i.e. (Y, D,Z, X) ~ P. Note that under assumption 1, the distributions Py, are

dominated by P with bounded densities dg—;ﬂz. Specifically, recall that

Ep, [f(Ya)] = E[f(Ya) | D1 > Do, X = 1]
E[f0V)I{D=d}|Z=d X =a] - E[f(Y)I{D =d} | Z=1—d, X = 1]
PD=d|Z=dX=2)-P(D=d|Z=1-d,X =)

Let 1g,.(D,X,Z) = I{D = d, X = x,Z = 2}, pan. = P(D = d, X = z,Z = z), and
Pz = P(X = x,Z = z). Observe that

Yiowa(D, X, Z)/prd — Lagr-a(D, X, Z) /Dy 1-
Elf(Ya) | D1 > Dy, X =z]=F {f(Y) dar.d( )/ P da,1-d( )/ Dz d:|
Pd,e.d/Ped — Pda,1—d/Pe,1—d

Da X? Z)/pa:,d - :H-d,a:,l—d<D7 Xa Z)/pa:,l—d | Y:|:|
pd,x,d/px,d - pd,x,l—d/px,l—d

vy [t

(V) =E [ﬂd,z,d(DvX:Z)/pz,d*ﬂd,z,lfd(Dvxvz)/pz,lfd | Y}
dP :

.. dP,
reveals the densities to be —4=
Pd,z,d/Pz,d—Pd,z,kd/Pz,kd

We now drop the subscript x for the remainder of this appendix. Because P dominates
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both P, and F, with bounded densities, the Ly p semimetric works very well:

LQP f17f2 \/ fl f2 \/EP fl f2<Y))2] (151>

Equip the product space F; x Fy with the product semimetric:

Lo((f1 1), (2 92)) = \/Lap(fr, )2 + Lo.p(g1, ) (1.52)

To apply the Lo p semimetric, each f € F; and f € F, are defined on whole domain Y.

Lemma 1.9.7 (Hadamard directional differentiability of optimal transport). Letc: Y x) —
R be lower semicontinuous, Fi,Fo be sets of measurable functions mapping Y to R, and

Fe C Fr and F: C Fy be universally bounded subsets. Suppose that

1. Strong duality holds:

inf /c(yl,yo)dﬂ(yl,yo) = sup )/90(3/1)05131@1) +/¢(yo)dpo(yo)>

well(P1,Po) (P, EPN(Fe X FE

2. P dominates Py and Py with bounded densities,
3. Fy is P-Donsker and sup;cz, |P(f)| < oo for each d = 1,0, and

4. (Fi x Fo, La) and the subset

N (Fex Fo) ={(p. ) € Fo x F7 5 p(y1) + ¥ (yo) < c(y1,90)}
are complete.

Then OT, : >°(Fy) x £>°(Fo) — R defined by

OT.(Pr, ) = sup Pi() + Po(¢)
() ERN(Fex F)

93



is Hadamard directionally differentiable at (Py, Py) tangentially to
DTan = C(.Fl, Lg’p) X C(F{), LQ,P). (153)

The set of maximizers W.(P1, Fy) = arg max,, y)co.n(F.xre) L1(¢) + Fo() is nonempty, and

the derivative OT;(Pl’PO) : Dran — R is given by
OT,(p, py(Hy Ho) = sup — Hi(g) + Ho(¥)

(p)eW(P1,Py)

Proof. For legibility, the proof is broken down into four steps:

1. Define

S: goo<./t-1) X KOO(FD) — goo<./t-1 X Fo), S(Hl,HQ)((,O,@ZJ) = Hl((p) + H()(w)
EC : goo(JT_'l X fo) — R, EC[G] = sup G(()Ou ¢>

(p)ePN(FeXFE)
and notice that OT,.(Hy, Hy) = Z.(S(H1, Hp)). This suggests application of the chain

rule.

2. S is linear and continuous at every point of ¢>°(F;) x ¢>°(Fy), which implies it is
(fully) Hadamard differentiable at any (Hy, Hy) € (°(F;) x (°(Fp) tangentially to
(>°(Fy) x °(Fp), and is its own derivative. Indeed, for any (Hy,, Hon) — (Hi, Ho) €
(>°(Fy) x °(Fp) and any t, | 0,

lim
n—oo

HS((Hl,HO) 10 (Han, Hon)) = U Ho)  gopp

tn

FexFE
= nh_)r{.lo HS(Hlnv HOn) - S(Hb HO)H]—"CX}'g =0
3. Consider =.. Verify the conditions of lemma 1.9.55:
(a) (F1 x Fo, Lo) and the subset . N (F. x F¢) are compact.
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First recall that a subset of semimetric space is compact if and only if it is totally
bounded and complete.® Completeness of both sets is assumed, so it suffices to
show they are totally bounded. Since &, N (F, x F¢) is a subset of F; x Fy, it

[

suffices to show the latter set is totally bounded.

Using the assumption that Fy is P-Donsker and sup;.r |P(f)| < oo, we have
that sup ez |P(¢)| < oo and (Fg, Lo, p) is totally bounded (see van der Vaart &
Wellner (1997) problem 2.1.2.). It follows that the product space (F; X Fy, Lg) is
totally bounded.®

(b) S(Pl,Po) c C(./T"l X .Fo,Lg).

Notice that

‘Pl(fl)_Pl<f2>’— |f1 \/ fl f2 L2P1 f17f2)

where the second inequality is an applications of Jensen’s inequality. This implies

P, € C(F1, Lo p,). Moreover, since P, < P and dPl < K; < o for some K; € R,

1/2
Lo p (f1, f2) = (/(fl f2)? ﬁclP>

1/2
< K’ (/(f1 - fQ)ZdP) = K11/2L2,P(f17f2)

shows that C(Fi, Ly p,) € C(Fi,Lop) and so P, € C(Fi, Ly p). A similar argu-
ment shows Py € C(Foy, Lo p).

®See van der Vaart & Wellner (1997), footnote on p. 17.

6For e > 0, let (fi,...,fx) be the centers of Ly p-balls of radius £/+/2 that cover Fi, and (g1,...,9m)
be the center of Ly p-balls of radius e/ V2 that cover Fy. Then for any (f,g) € F1 x Fo, there exists f, and
gm such that Lo p(f, fr) < ¢/v/2 and L p(g, gm) < £/V/2, and so

La((£,9). (s m) = \/L2.o(fs fu)? + La.p(g.90)? <\ (/V2)? + (/V2)? = ¢

and thus the KM balls in (F; x Fy) of radius € centered at (fx, gm) for some k, m cover F; x Fp.

95



Use the inequalities above to see that

S(Pr, Bo)(f1,.91) = S(Pr, Bo)(f2, 92)| = [Pa(f1) — Pi(f2) + Po(g1) — Po(g2)]
< Lo (fi f2) + Lopy(91,92) < Ky P Lop(fi, fo) + Ko Lap (81, 0)
< 2max{K,"?, K)*Y max{Ly p(f1, f2), L2.p(g1, 92)}
— 2 max{K?, K3/2}\/max{L2,p(f1, f2)2, La.p(g1, 92)2}
< 2max{K."*, K3/2}\/L2,P(flu f2)? + Lap(g1, 92)?

= Qmax{Kll/Q, KS/2}L2((f1, 1), (f2,92))

hence Ly((f1, g1), (f, g2)) < &/(2max{K."*, K;/*}) implies

IS(P1, Bo)(f1,91) — S(Pr, Po)(f2,92)| < €

and therefore S(Py, Fy) € C(F; X Fo, La).

Lemma 1.9.55 shows that =. is Hadamard directionally differentiable at S(Py, Fp) tan-
gentially to C(Fy X Fo, Lo), with derivative

pp)eWc (1,10

where W (P, o) = argmax, » eao,n(xxre) F1(¢) + Po(¥) is nonempty, because P +
Py =S8(P,, Ry) is continuous and &, N (F. x FS) is compact.

Cc

. Now consider the tangent spaces to ensure the composition of the derivatives is well de-
fined. Observe that if (Hy, Hy) € C(Fi, Lo p) XC(Fo, Lo p) then S(Hy, Hy) = H1+Hy €
C(Fy x Foy, Ly).™ It follows from the chain rule (lemma 1.9.50) that OT, is Hadamard
directionally differentiable at (P, Py) tangentially to C(Fi, Lo p) X C(Fo, Lo, p) with

TFix (f,g) € F1 x Fo and let §; > 0 and dy > 0 be such that Ly p, (f, f) < d; implies Hy(f, f) < £/2 and
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derivative OT,. : C(F1, Lo p) x C(Fo, Lo p) — R given by

OT; (p, py)(H1, Ho) = ZL s(p, 1) (S(py,py) (H1, Ho)) = sup Hi(¢) + Ho(v)
()€Y (PL,Py)

1.9.2.3 Full differentiability

The property distinguishing directional from full differentiability on a subspace is linearity of
the derivative (Fang & Santos (2019), proposition 2.1). In the case of optimal transport, the
derivative found in lemma 1.9.7 is linear on a large subspace of the tangent space when the
solution to the dual problem is suitably unique. When it holds, this is sufficient for simpler

bootstrap procedures to work for inference.

The dual solutions

(90, ¢) € \ch(Ph PO) = arg max Pl(@) + PO(@U)
(o) EPN(Fe X FE)

are referred to as Kantorovich potentials. Notice that for any s € R,

Pi(p+s)+ Po(¥ —s) = Pi(p) + Bo(v)

shows the most one can hope for is uniqueness up to a constant; if (p,¢) € V.(Py, ), then

(p+ 5,19 —s) € WP, Py) as well.® Tt is well known in the optimal transport literature that

Lo p,(g,g) < o implies Hy(g,§) < /2. The inequality

L2,P(f7 f~) + LQ,P(gag) S 2maX{L2,P(fa fN)’LQ,P(gvg)}

— 2\/max{La.p(f, )% L2.p(9,3)2} = 2La((f,9), (F.9))

implies that if Lz ((f, 9), (f, ) < min{é1,62}/2 then |S(Hy, Ho)(f,9)~S(Hy, Ho)(f.9)| < |Hi(f)—Hi(f)|+
[Ho(g) — Ho(g)| <e.
8See Staudt et al. (2022) for extended discussion on uniqueness of Kantorovich potentials.
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when the distributions P, Py have full support on a convex, compact subset of R and c is
differentiable, the Kantorovich potential is indeed unique in this way on the supports of P

and F.

Lemma 1.9.8. Suppose that

1. c(y1,90) is continuously differentiable.

2. Py has compact support Vg = [y5,y4] C R, and

Let F. and F¢ be defined by (1.14) and (1.15) respectively, and

U.(P, Py) = argmax  Pi(¢) + Po(v)
(P )EPN(FeXFE)

Then for any (¢1,v1), (@2,%2) € Vo(Py, Fy), there exists s € R such that for all (y1,y0) €
Vi x Mo

©1(y1) — w2(y1) = s, 1(yo) — Yal(yo) = —s

Proof. The proof is quite similar to that of Santambrogio (2015) proposition 7.18.

Let (¢1,vn), (w2, 92) € V.(P1, Py). For k= 1,2, ¢ and 9, (being elements of F. and F¢
respectively) are L-Lipschitz and hence absolutely continuous. This implies all four functions

are differentiable Lebesgue-almost everywhere, and that for any (y1,y0) € Y1 X o,

er(y) = i(y) + /y1 o (y)dy Ur(yo) = i(ys) + jo Pr(y)dy

s Y

Notice that the subset of )); where both ¢; and ¢y are differentiable also has full Lebesgue
measure. It suffices to show that ¢} (y1) = ¥5(y1) on this set (and ¥ (yo) = ¥5(yo) on the

subset of )V where both v, and v, are differentiable, which also has full Lebesgue measure),
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from which it will follow that for any (y1,40) € Y1 X Vo,

er(n) = ealon) = 1) — 2+ [ (61 0) — )y = 1 (01) — o)

Yi(yo) — Ya(yo) = ¥a(y") — va(y’) + /jo (1 (y) = ¥a(y))dy = 1(yo) — Valyo)

Finally, observe that Pi(p2) + Po(p2) = Pi(p1) + FPo(v1) = Pi(p2 + 5,) + Po(¥e + sy4) =
Pi(p2) + Po(¢2) + s, + sy implies s, = —sy.

The remainder of the proof shows that for any 7; in the set where both ¢, and ¢y are
differentiable, ¢} (71) = ¢5(71). The same arguments work to show the corresponding claim

regarding 1y and 5.

There exists m € II( P, Py) that solves the primal problem (see lemma 1.9.30). For any

such m,

1. Supp(P1) = {y1 € Y1 ; Fyo € Vo s-t. (y1,90) € Supp(w)}

This follows because Pry(Supp(m)) = {y1 € V1 ; Jyo € Vo s.t. (y1,%0) € Supp(m)} is
dense in Supp(P;), and Pr;(Supp()) is closed because ) is compact.?

9Specifically, for any A C Yy x Yo C R? let Pri(A) = {y1 € Y1 ; o € Vo s.t. (y1,%0) € A} be the
cartesian projection of the set A onto the first coordinate. Let P, € P(Qh), Po € P(Qb), and 7 € II(Py, Fy).
As noted in Staudt et al. (2022) (Remark 1), Pry(Supp(w)) C Supp(P;) with the possibility that inclusion
is strict.

However, Pry(Supp(w)) is always dense in Supp(Py): let y; € Supp(Py) and 6 > 0 be arbitrary, and
suppose for contradiction that Bs(y:) N Pri(Supp(r)) = @. Then (Bs(y1) x Vo) NSupp(r) = & follows from
the definition of Pri(Supp(n)), and thus

0 =7 ((Bs(y1) x Yo) N Supp(m)) =7 ((Bs(y1) x Yo)) + 7 (Supp(m)) — 7 ((Bs(y1) x Vo) USupp(r))
=7 ((Bs(y1) x Jo)) = Pr(Bs(y1)) >0

a contradiction showing Bs(y1) N Pri(Supp(n)) # @. Thus Pry(Supp(r)) is dense in Supp(P;).

Moreover, if YV is compact then the map Pr; is closed: suppose A C Vi x Vo € R? is closed, and
{y1n}22; C Pri(A) converges to y;. Then there exists {yon}22; C Vo such that (yin,yon) € A for each n.
Since ) is compact, there exists a subsequence {yon, }7>, and yo such that limy_,o yon, = yo. Then notice
that limg—s 00 (Y1n,s Yon, ) = (Y1, %0). Since A is closed, (y1,y0) € A.

Supp(7) is closed by definition, hence Pry(Supp(r)) is closed and dense in Supp(Py), from which it follows
that Supp(7) = Supp(Py).
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2. For all (y1,v0) € Supp(7), @r(y1) + Ur(yo) = c(y1, o).

It is easy to see that the equality holds m-almost surely. To see it holds specifically on

the support, notice that optimality of © and (@, ¥x) implies that

/ ey, vo)d (1, o) = / ou(y1)AP (1) + / G (90)dPo(30)

and recall that ¢r(y1)+ Uk (yo) < ¢(y1,yo) holds for all (y1,y0) € Y x V. If the inequality
were strict for some (y1,y,) € Supp(m), then continuity of ¢, 1, and ¢ would imply
the inequality is sharp on a ball centered at (yi, o) of some positive radius, denoted

B, leading to the contradiction

/ (w1, y0)d (1, 40) = /B (g1, yo)dm (1, 30) + / (1, y0)d (1. 0)

c

> / ou(u1) + (o) dm (g1, o) + / or(un) + V(o)A (1, 40)

c

= /@k(yl)+wk(yo)d7f(?/1,yo) Z/@k(y1)dp1(y1)+/¢k(yo)dpo(y0)

3. For any 7; € Supp(Fy), the above implies there there exists gy € )V such that (g1, 7o) €

Supp(r), and hence ¢i(71) + Vi (Jo) = c(1,%o). For any such g,

y1 — wr(y1) — c(y1, Yo) is maximized at g (1.54)

Indeed, if there were y; € YV such that ¢k (y)) — c(v], Yo) > ¢r(91) — (91, Yo), then by
adding ¥ (7o) to both sides we find

wr(vh) + V(o) — c(yr, %o) > @r(91) + Yi(Ho) — c(F1,%0) = 0

This implies o (y;) + ¥r(%0) > (¥}, o), which contradicts k(7)) + Yr(%0) < c(y1, 7o)
for all (y1,v0) € 1 X V.
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4. Now observe that if 3j; € (y¢,y¥) is a point at which ¢y is differentiable, then (1.54)
implies ¢} (1) = 86_;1(3?1’ 0).10 Thus if 4, € (v, y") is a point at which both ¢; and ¢,

are differentiable, then

Oc
o1(ih) = 8_y1(gl’g0) = ©2(7h)

This completes the proof. n

To specify the subset of the tangent space on which OT(;( Pr.Ro) is linear, let V; C YV
and 1y,(y) = 1{y € Va}. Let G denote a set of real-valued functions g : ) — R with the
following property: if g € G, then 1y, x g € G.'' Let £57(G) be the set of bounded, linear
functions H : G — R that evaluate constant functions to zero and “ignore” the value of

functions outside of ));. Specifically, define

(5.(G) = {H € (=(G); foralla,bcRand f,g €,
(i) H(f) = H(1y, x f), (it) if a € G then H(a) =0, and

(i13) if af +bg € G then H(af +bg) = aH(f) + bH(g)} (1.55)

Here we slightly abuse notation; a € G refers to the function mapping each point in ) to the
constant a € R. Equip (5 (G) with the supremum norm, ||H|lg = [|H|[oc = sup,cg|H (g)|- As
shown in appendix 1.9.3, first stage estimators of (P}, Py) based on the empirical distribution

have weak limits concentrated on {5 (F.) x {35 (F¢) where Yy is the support of Py.

Lemma 1.9.9. (55 (G) defined by (1.55) is closed.

Proof. Let {H,};2, C {5 (G) be Cauchy, and let H be its limit in the Banach space (>°(G).
It suffices to show H € (5 (G).

Toward this end, first notice that ||H, — H||g — 0 implies that for any f € G, |H,(f) —

H(f)] — 0. Next observe that if the constant function a € G, then 0 = lim,,_,|H,(a) —

9Notice that the “choice” of 7 or 7 doesn’t matter, because ¢} (1) can take only one value.

1Tf we have a set G that does not satisfy this property, the set G = G U {Ilyd Xg; g€ Q} will satisfy it.

61



H(a)| = lim, 0| H(a)| = |H(a)|. For any function f € G, since H,(f) = H,(1y, x f),
0 <|H(f) = H(Ty, x /)l < H(f) = Hu())] + [H(Ly, X [) = Ha(Ly, x f)] =0

and thus H(1y,x f) = H(f). Finally, suppose a,b € Rand f, g € G are such that af+bg € G.
Similar to the argument above, since H,(af + bg) = aH,(f) + bH,(9g),

0<|[H(af+bg) —aH(f)—bH(g)|
<[H(af +bg) — Hu(af +bg)| + |aH,(f) + bH,(f) — aH(f) — bH.(9)]

< [H(af +bg) — Hn(af + bg)| + |al[Ha(f) — H(f)| + [b][Hn(g) — Hn(g)| = 0

and thus H(af + bg) = aH(f) + bH(g).

This shows H € (55 (G), and completes the proof. O

Lemma 1.9.10 (Full differentiability of optimal transport). Let ¢ : Y x Y — R be lower
semicontinuous, Fi,Fy be sets of measurable functions mapping Y to R, and F. C F; and

FS C Fo be universally bounded subsets. Suppose that

1. Strong duality holds:

inf / c(y1, yo)dm(y1, yo) = sup / @(y1)dPri(y1) + / ¥(Yo)dFo(vo),

WEH(PLP()) ((p,’d))e‘bcﬂ(]:cX]:cc)

2. P dominates P, and Py with bounded densities,
3. Fa is P-Donsker and sup;cz,|P(f)| < oo for each d = 1,0, and

4. (Fi x Fo, Lg) and the subset

Q. N (Fex Fo) ={(p, ) € Fe x F¢ i (1) +(yo) < c(y1,%0)}

are complete.
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Let Y1, Y0 €Y and W .(P1, By) = arg max,, y)co.n(F.xre) L1(¢) + Po(¥), and further assume

5. For any (¢1,v1), (pa,a) € U.(P1, Py), there exists s € R such that
Iy, X o1 = 1y, X (po+5), P-a.s. and Ty, x 1Py = 1y, x (Yo — 5), P-a.s.
Then OT, : {=°(Fy) x £°(Fo) — R defined by

OT.(P, Py) = sup Pyi(p) + Po(v)
(o) EPN(FeXFE)

is fully Hadamard differentiable at (Py, Py) tangentially to
]D)Tan,Full = <€§Z (.FC) X g;%(fg)) N (C(.Fl, LQyp) X C(FQ, Lg’p)) (156)
with derivative OT;(PLPO) : Dranpun — R given by

OTC,,(Pl,Po)(Hla Ho) = sup HI(SO) + Ho(%b)
()W (P1,Py)

Proof. The first four assumptions allow application of lemma 1.9.7 to find that OT, :
(°(Fy) x °(Fo) — R given by

OT (P, Ry) = sup Pi(p) + Po(v)

(p,0)ERN(Fe X FE)

is Hadamard directionally differentiable at (P, Fy) tangentially to Dpg, = C(Fi, Lop) X
C(Fo, La,p). The set of maximizers W (P, Fy) = argmax, yeo.n(rxre) F1(p) + Po(t) is

nonempty, and the derivative OT 6'7( PLPy) - Dran — R is given by

O (py .y (Hr. Ho) = sup  Hi(g) + Ho(v)
()W (P1,P)

Next observe that for any (Hy, Hy) € Dran pun, Hi+ Hy is flat on V. (P, ). Specifically,
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for any (@17 ¢1)7 (¢27¢2) S \I]c(Pla P0>7 let s be such that

Ty, X o1 =1y, X (2 +s), P-as. and Ly, X 1 = Ly, X (Yo — s), P-as.

Then

Hi(¢1) + Ho(¢1) = Hi(ly, X 1) + Ho(Ly, X 1)

1 ]13?1 X (902 + S)) + HO(ILQVO X <w2 - 8))

1(2) + Hi(s) + Ho(v2) — Ho(s)

H
H
H
i (p2) + Ho(ts)

(
(
1(p2 + 8) + Ho(t2 — s)
(
(

where the first, third, fourth, and fifth equalities hold because (Hy, Hy) € €55, (Fe) x {55 (Fs),
and the second because (Hy, Hy) € C(Fi, Lap) x C(Fo, Lap).

Now use this “flatness” to observe the derivative is linear. Let (Hy, Hy),(G1,Go) €

Dran,puns ¢, b € R, and (@, LE) € U (P, By), and notice that

OTC,,(PLPO)(G’(HD Ho) + b(Gl, Go)) = sup (CLHl + bG1>(g0) + (CLHO + bGo)(¢>
(p)e¥(P1,1)

= aHy () +0G1 (@) + aHo(¥) + bGo(v) = a(H1(p) + Ho(v)) + b(G1(9) + Go(¢)

=ax  sup  {H(p)+ Ho(¥)} +bx  sup  {Gi(p) + Go(¥)}
(p)€V(P1,Po) (P EU(PLF)

= aOTC/,(Pl,Po)(H17 HO) + bOTC/,(Pl,Po) (Gl? GO)

Since OTC”( PuRy) is linear on the subspace Dygy, pun, Fang & Santos (2019) proposition 2.1

implies OT. is fully Hadamard differentiable at (P, Py) tangentially to Dray puu- O
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1.9.3 Appendix: weak convergence

Recall that

9£ = QL(PllilZ? PO\m)a 95 = H(Pl\xa P0|m)
0 => 5.0, 0f = 5,00
L= inf gt = t
te[(lle,GH]g( ’77) ! te;%g’f]g( 77])

where n = (11, 10), with 1y € RE¢ having coordinates

ny = Y P(X =x|Dy>Do)Eny(Ya) | Dy > Do, X =] =Y sunl)

T

Here ngf) = Pd|x(77((f)), which are collected as 14, = (77(1) o ,ngid)).

T d,x?

Define the following sets of functions:

]:"1:{]‘:)/—>R; f = ¢ for some ¢ € F., Orf:n§k) forsomek:zl,...,Kl} (1.57)
]:"o:{f:y—ﬂR; f =1 for some ¢ € F¢, Orf:n(()k) forsomekzl,...,Ko}
}"d@:{f:y—)R; f:gor]lyd,ﬁngorsomege]:"d}

where Y, is the support of Y | D = d, X =z, and 1y, (y) = 1{y € V4.}. The additional
functions of the form f(y) = Ly,,(y)g(y) are used to characterize the support of the weak
limit of \/ﬁ(pdu — Py,) in £°°(Fy,). The maps Py, can be written as

Pap: Fao =B, Py(f) = Dt XD/ PUat) = Pllasa X )/ P o)

d
P(lgza)/P(lea) — P(Lgei—aq)/P(Lei1_a) (1.58)
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and finally, define the set

F = U {]ld,x,z X f ; f € er,x} U {]ld,z,zu ]lx,za ]lz} (159)

d,z,z

This appendix defines and studies the map T : Do C £°(F) — R? given by (v%,v) =
T(P). The coming results show that F is P-Donsker, and the map 7" is Hadamard direc-

tionally differentiable at P. Together these imply, through the functional delta method, the
weak convergence of \/n(T(P,) — T(P)) (Fang & Santos (2019)).

Several operations in the definition of the map T are repeated for each z € X =
{z1,..., 2}, leading to large expressions. These are shortened with the notation {a,},ex,

which refers to (a,,...,as,,). For example,

({P1|m> P0|x7 M,zs 70,z Sft}xeX)

= (P1|:Jc1> P0|w1>771,x1a No,z1s Sy -+ Pl\xM> PO|:EM7 M,zars 10,200 socM)

is an element of [, €°(Fia,.) X £2°(For,) x RE x RFo x R.

The function T is viewed as the composition of four functions: T'(P) = Ty(T5(T>(T1(P)))).

1. T is the map to the conditional distributions and 7, ,:
Tl(P) - ({P1|x7 PUI:IZ’ M,zs 10,z s:c}a:EX)a
2. Ty involves optimal transport:

TQ({(PHQ:’ POIam M,z 70,z Sm)}rEX) = ({8;];7 857 M,zs 70,z Sm}zeX)7

3. Tj takes expectations over covariates: T3({(6%, 0% ny o, 10, S2) beex) = (05,69 1),
4. Ty optimizes over t € [9F, 01]: T4(0F 07 n) = (v&,~H).
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1.9.3.1 Verifying Donsker conditions

Before studying this map, this subsection shows the relevant sets are Donsker. The function
classes F. and F¢ given by (1.14) and (1.15), or by (1.16) and (1.17), are well known Donsker
classes as noted below. The results of van der Vaart & Wellner (1997) chapter 2.10 allow
these to be extended to show F , and Fq , are Donsker. It follows quickly that F is Donsker.

Lemma 1.9.11. Suppose that Y C R is compact and ¢ : Y x Y — R is L-Lipschitz. Let F,,

F¢ be given by (1.14) and (1.15) respectively. Then F. and F¢ are universally Donsker.

[

Proof. Note that any distribution defined on the compact ) has a finite 2 + 6 moment. The
result follows from the bracketing number bound given by van der Vaart & Wellner (1997)
corollary 2.7.4. O

Lemma 1.9.12. F. and F¢ given by (1.16) and (1.17) are universally Donsker.

Proof. The intervals (convex subsets of R) form a well-known VC class with VC-dimension
at most 3. Consider an arbitrary set of three real numbers {y1, y2, ys} with y; < yo < y3, and
notice that no interval can pick out the set {y;,ys}; that is, there does not exist an interval
I with {y1,y3} = {y1,y2,y3} N I. Since the intervals cannot shatter finite sets of size 3, the

VC-dimension of the intervals is at most 3.

Similarly, the complements of intervals form a VC class of VC-dimension at most 4.
Consider {y1, y2, y3, ya} With 11 < y2 < y3 < y4 and notice that no complement of an interval
can pick out {y1,ys}. Since the complements of intervals cannot shatter finite sets of size 4,

the VC-dimension of the complements of intervals is at most 4.

The claim follows, because any (suitably measurable) VC class is Donsker for any prob-

ability measure (van der Vaart & Wellner (1997) section 2.6.1). O

Lemma 1.9.13. Let G be P-Donsker and 14 be the indicator function for the set A. Then
the set {14 x g; g € G} is P-Donsker.
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Proof. The proof is an application of van der Vaart & Wellner (1997) theorem 2.10.6. Specifi-
cally, let ¢ : Gx{14} — R be the map ¢(g, 1,) = 14xg. Notice that for any f, g € Gy x{1a},

(@0 f(w) = ¢og(w)]’ = [La(w) x fi(w) = La(w) x gi(w)[*

= La(w) x | fi(w) — ga(w)|?
k

< filw) = ()] = Y (fo(w) = ge(w))*

(=1

and thus van der Vaart & Wellner (1997) condition (2.10.5) holds. Moreover, notice that for
any g € G, (14 x g)? < g* and P-square integrability of g € G implies 14 x g is P-square
integrable. Thus van der Vaart & Wellner (1997) theorem 2.10.6 implies {14 x g; g € G}
is P-Donsker. ]

Lemma 1.9.14 (F;, are P-Donsker). Suppose assumptions 1, 2, and 3 hold. Let F. and
F¢ be given by (1.14) and (1.15), or by (1.16) and (1.17). Let Fu. be as defined in (1.57).
Then Fy is P-Donsker and supycr, |P(f)] < oc.

Proof. 1. We first show F, is P-Donsker and sup e, | P(f)| < oo. The argument shows

the argument for Fi, as the same argument works when applied to Fy.

Begin by noticing that

fa:{f:y—wRa; f = ¢ for some ¢ € F, orf:ngk) forsomekzl,...,Kl}

K
=F.U {n%l),...,ng 1)}

Since {779), o ,ngKl)} is a finite number of functions which, by assumption 3 (i), have

finite second P-moment: P((nik))Q) < 00. Thus {77%1), . ,n%Kl)} is Donsker. F. is
Donsker by lemma 1.9.11 or 1.9.12, and so .7:"1 = F. U {7751), . ,ngKl)} is the union of
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two P-Donsker sets. Since

1P|z, = max{sup |[P()|, [P, ..., [P{" )]} < o0

peFe

van der Vaart & Wellner (1997) example 2.10.7 shows F; is P-Donsker. Note we have

also shown that sup . [P(f)] < oco.

. Now notice that

-Fd,z

{f:y_”R;f:gor]lyd)zngorsomege]:"d}

:fdu{ﬂymxg; gEﬁd}

Lemma 1.9.13 shows {ﬂyd’x Xg; g€ fd} is P-Donsker. Moreover, since F, is uni-

formly bounded,

||P||{1yd,ac Xg; ge]:—d}

1 K
_ max{sgymm < O Py x )]s 1P Ly, % 1 1’>|} <o
%2 c

It follows that

1P| 7. = Sup [P(f)] = max ¢ sup [P(f)], sup [P(f)] ¢ < o0

€Fdx fEF, fe{ly, %9 s g€Fa}

Thus van der Vaart & Wellner (1997) example 2.10.7 implies F; is P-Donsker.

Lemma 1.9.15 (F is P-Donsker). Suppose assumptions 1, 2 and 3 hold. Then F is P-
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Donsker, implying
Vi, —P) 5 G in ((F),

where G is a tight, mean-zero Gaussian process with P(G € C(F, Ly p) = 1.

Proof. Lemma 1.9.13 shows {14, X f; f € Fy.}is P-Donsker. Moreover, Fg, is the union
of a subset of universally bounded functions (in either F, or F¢) and a finite subset of square

integrable functions. It follows that

| P|| 1 e S U sup (PNl < o0
{ d,x,zX9; g€ d’”} fe{]ldyzyzxg ; ge]:dvl}

Next notice that

JF = U {:H-d,:v,z X f ; f € fd,z} U {]]-d,z,za :H-:v,z) ]]-.t}

d,x,z
is the union of a finite number of P-Donsker sets, with

IP|| 7 = max q max sup [P P (Laae)l, [P(La2), [P(L2)], o p <00

d.z,z fe{]ld,x,z Xg; ge}—dyx}

It follows from van der Vaart & Wellner (1997) example 2.10.7 that F is P-Donsker,
which implies v/n(P, — P) L Gin (>°(F), where G is a tight, mean-zero Gaussian pro-
cess. Moreover, van der Vaart & Wellner (1997) section 2.1.2 and problem 2.1.2 imply that
P(G € C(F, Lop) = 1. O
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1.9.3.2 Conditional Distributions, 7\(P) = ({ Pijz, Pojz: M,2> M0,0+ Sz }ecx)

Lemma 1.2.1 shows that the distributions of Yy | D1 > Dy, X = x, denoted Py, are identified

by

Fae(f) = Ep, [f(Ya)]l = E[f(Ya) | D1 > Do, X = 2
CE[fYV){D=d}|Z=d, X =a] - E[f(Y)I{D=d} | Z=1—d,X =]
B PD=d|Z=dX=2)—-PD=d|Z=1-d,X =2)

and the distribution of X conditional on D; > Dy is identified by

sz = P(X =2 | D; > Dy)
_ [PD=1|Z=1,X=2)-P(D=1|2Z=0,X =2)]P(X =2z)
Y [PD=1|Z=1,X=2)-PD=1|Z=0,X=2/)] P(X =2')

Recall the notation shortening indicators

lizo(D, X, 2) = {D =d, X = 2,7 = 2},

1.(X,Z2) = 1{X = 2,7 = 2}, 1,(X) = 1{X = 2}

and notice that Py, : £>°(F;) — R and s, € R, given by

P ) = PO % £)/P(las) = Plaza-a X 1)/ P(Leo)
h P(lg2a)/P(1ra) — P(lazi—a)/P(Tr1_a)

5. — [P(HLIJ)/P(]LEJ) - P(ﬂl,x,O)/P(]lx,O)]P ﬂm)

S Y P(Miw)/P(Lea) = P(L1w0)/P(Lyo)|P(1y)

Y

are functions of P € (*°(F). Moreover, 776(;2 = E[nc(lk)(Yd) | D1 > Do, X =z| = Pd‘x(nc(lk)) and

Nizw = (770(12«’ . ,ngil) ) is simply an evaluation of Py, at the points nc(lk) € Faz-
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This map is given by

M
Ty : Do CL°(F) = [ °(Fran) x €(Foz,) x RED x RED x R

m=1

Tl(P) = ({P1|17P0|:Jca771,:c7770,xa SI}xeX)

= (P1|:E17 P0|x1>771,x17 770,5!317 85617 ceey Pl‘(mu) PO|:E]\/17 nl,xjua UO,IMa SxM>
where the domain, Do C ¢°°(F), ensures the map never divide by zero:

Do = {G € (>*(F); forall (d,z,z2), G(1,) >0, G(1,.) >0, and

G(142,4)/G(1sg) — G(Lazi1-4)/G(1p1-a) > 0} (1.60)

Note that assumption 1 implies P € D¢, a claim shown in the proof of lemma 1.9.17 below.

Lemma 1.9.51 shows that Hadamard differentiable functions with the same domain can
be “stacked”. Moreover, the coordinates corresponding to the n terms are evaluations of
Py, at specific coordinates; since evaluation is linear and continuous, the map defining these
terms is fully Hadamard differentiable if the other maps are fully Hadamard differentiable.
Thus it suffices to ensure the maps Cy, : Do — R and Cs, : Do — R given by Cy(P) = Py,
and Cs,(P) = s, are fully Hadamard differentiable at P tangentially to £>°(F).

Lemma 1.9.16 (Maps to conditional distributions are fully Hadamard differentiable). Let
F be defined by (1.59), and D¢ be defined by (1.60). Define the functions Ci ., Co., and
Cs. with

X 00 . G(l X, X f)/G(lz, ) - G(l x,1— X f)/G(lm,l— )
Cd,x . ]D)C — 4 (Fd,m>7 Cd,x(G)<f) - dGY(d]ld,z,d>/G(]lx,Z) _ G(]liz,l—j>/G(lz,1—d) a )
[G(11,0,1)/G (L) = G(Li0)/G(Lap)]G(La)

Cs,x : ]D)C — Ra CSJ(G) =

2| G(l1a1)/G(Lar1) = G(1100)/ G (1 0)] G (1)

All three functions are fully Hadamard differentiable at any G € D¢ tangentially to £°°(F),
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with derivatives Cyy , ¢ : 05°(F) = £2(Faz) and Cf , o : £2(F) — R described in the proof.
Proof. In steps:

1. We first show differentiability of C ;. The argument applies the chain rule. An in-
ner function “rearranges” elements of Do C ¢°°(F), which can be viewed as a fully
Hadamard differentiable mapping (see lemma 1.9.52). An outer function maps that
rearrangment to ¢>°(F;), and is shown fully Hadamard differentiable at G € D¢ by

applying corollary 1.9.54.

In detailed steps:

(a) Define D, = {(n1,p11,P1, M0, P10, P0) € R®; p1 >0, po > 0, p11/p1 — p1o/po > 0}

and

Tl1/P1 - no/Po
P11/P1 — P1o/Po

q:D, — R, q(n1, p11, p1, o, P10, Do) =

Recall the following notation from corollary 1.9.54:

>(F1,D,) = {r : F1 = RO r(p) €Dy, supllr(f)| < oo} C1=(F)"

pEF1
(2(F1,D,) = { € (5(F,D,) s supla(r(F)] < oo}

feFr

For elements r € (*°(F;,D,), the composition ¢(r(y)) is well defined for any
¢ € F1. For elements r € (5°(F1,D,), composition defines a bounded map; that

is, ¢ — q(r(p)) defines an element of ¢*°(F;). Finally, define
Q: £ (F1, D) — €2 (F), Qr)(y) = a(r(p))

(b) For the rearrangement, define .7:"1@71 ={l1.1x f; feF}
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(c) To apply corollary 1.9.54, observe that q(ni,pi1, p1, 7o, P10, Po) =

]:—1@,0 ={ligz0x f; feF}, and

Rig:Do = (°(Fian) X £2°({T121}) X £2({141})
X 0 (Fi0) X °({L140}) x €°({Lso})
Rl,x(G)<11,a:,l X fa ]11,1,17 190,17 ]11,1,0 X fa ]ll,x,[)a ]133,0)

= (G(ﬂl,m x f), G(ﬂl,x,l),G(ﬂm), G(ﬂl,z,o X f),G(ﬂl,z,o)7 G(]lz,())>

Lemma 1.9.52 shows that RM is fully Hadamard differentiable tangentially to

/
lLz,9

De CU2(F) to £°(F1, D), i.e. define Ry, : Do — £:°(F1,Dy) pointwise with

(>°(F) and is its own derivative; i.e. R = él,m- Now view Rm as a map from

Rl,az(G)<f) = Rl,x(G)(]ll,x,l X f, Tiz1, 001, 1120 X g, 1140, ILgc,o)

= (G(ll,m X f), G(ﬂl,x,l),G(ﬂm), G(]]-l,x,(] X f),G(ﬂl,z,o)7 G(]]-x,())>

Note that G € D¢ implies

~w G(L1pn X f)/G(1z1) — G(L1g0 X f)/G(1ep) -
SUpa(Bra( ) = S0 | == g () = Glliao) /O g) |

and thus Ry .(G) € (5°(F1, D).

ni1/p1—no/po_
— 1
p11/p1—p1o/po
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continuously differentiable on D, with gradient Vq : D, — R® given by

T
— dq dq Jq Jq Jq Jq
VQ(nlypllaplanmplO,pO) = (8_711’ Bpii’ Opi’ Ong’ Opio’ Opo)

dq 1/p1

ony B ]911/291 —plo/Po

Oq _ m/pi—mo/po 1 _ { 1/p1 ] B
Opu1 N (pn/Pl —Plo/p0)2p1 B p11/p1 —p10/p0

9q _ (pu/p — P1o/Po) (=11 /%) — (1 /p1 — 1o/po)(—p11/pi)

op1 (pu/pl - p10/p0)2

_ _nl/p% + Q(pll/p%) _ [ 1/py } qpin —
p11/P1 — Pro/Po - P11/P1 — Pio/Po p11/P1 — P1o/Po n

dq —1/po

dng B pll/pl —plo/po

O0q¢  mi/p1—no/po (_l) _ { —1/po } (—q)

dp1o B (pn/Pl —plo/po)2 Do B p11/]71 - plo/po 4

@ _ (p11/p1 — pm/PO)(”O/P%) — (n1/pr — no/po)(Plo/P(Q))

Ipo B (pn/pl —Plo/p0)2
_ o/ B a(po/p3) [ —1/po } qp1o — No
Cpu/pL—pw/p0 pu/pr—po/pe pu/pL—Dp/po] o

Furthermore, there exists § > 0 such that

RiAG)F) = {r e B i |- RGN <5} €,

and so lemma 1.9.54 implies @ is fully Hadamard differentiable at R; ,(G) tan-

gentially to (>°(F)° with derivative Q7 ) 1 £7(F1)® — (>°(F1) given pointwise

by

Qry ) (D) = [Va(Rio(G) ()] ()

(d) Finally, observe that C.(G) = Q(R1.(G)) and apply the chain rule (lemma
1.9.50) to find that C), is fully Hadamard differentiable at G tangentially to
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(>°(F) with derivative
Ci,x,G H(F) = 0 Fra), Ci,x,G<H) = QIRLx(G)(RLfE(H))
Writing out an evaluation clarifies the notation of the derivative:

Claoc(H)(f) = @, () (Rra(H))(f) = [Va(Ria(G) () Ria(H)(f)  (1.61)

1/G(]1x71>
[G(]h,m)/G(llx,l) — G(HL%O)/G(L@,O)} H(Lyz1 X f)

1/G(1x,1) i
¥ [G(L,x,l)/G(ﬂx,l) - G(ﬂl,x,())/G(ﬂx,o)} OGN HL1z)
N { I/G(Ile) }
G(L1,1)/G(1s1) — G(1120)/G(1syp)
" Cra(G)(f) x G(L1z1) — G(L1z1 X f)

G<ﬂx,1) H(]lx,l)
_1/G(1m,0) T y
T CM1a0)/C (M) — G(1120)/G(1a0) | H(lyz0 % f)
' —1/G(Lso) 1,
i | G(1141)/G(1,1) — G(11,40)/G(1sp) | (=Cr(G)(f)H (11 20)
L —1/G(1p) -
_G(]h,z,l)/G(Jlx’l) - G(ﬂl,x,o)/G(Jlx,o)_

« Cl,z<G)(f> X G<11,x,0) - G(ﬂl,x,o X f)

G(ﬂg&o) H(]la:,O)

2. The same arguments imply the claim regarding Cg ,.

Specifically, notice that Cj, is the same outer transformation applied to a different

rearrangement: let

Ri.(G)(p) = (G(1121 X ¢), G(1121), G(121), G(L120 X ), G(1120), G(120))
Roo(G)(¢) = (G(Logo x ), G(Logo), G(1s0), G(Log1 X V), G(Loz1), G(1z1))
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observe that

G X f)/G(Ley) = G(Lieo X f)/G(1ap)
Cl:l"(G)(f) - G(]J-lm 1)/G(]lx’1) _ G<1]_1 :BO)/G(]LT,O) Q<R1,I(G)(f))
G(Lozo X f)/G(Luo) = G(Louy X [)/G(Lan)

Thus, the same argument shows Cp, : Do — (°(F,) is fully Hadamard differen-
tiable at any G € D¢ tangentially to (°°(F), and Cy , o(H)(f) can be found with the

appropriate substitutions in (1.61) above.

3. Finally consider Cs,. Notice that

]Dqsyz = {{pl,x,lap:c,lapl,a:,Oapx,Oapz}xeX S R5M ;
px,l > Oapx,O > Oapl,:c,l/px,l - pl,x,O/px,O > Oapx >0 fOI' au T e X}

Osz ]D)qw — R,

s o ({P1,0m,1> Pl D1 05 P 0 o) = i (P1.5.1/Po ~ Pro0/Poo)Ps
Zm:l (pl,xm,l/pxm,l - pl,xm,O/pxm,O)pxm

is continuously differentiable at any point in D, , with gradient

VCI({Pl,xm,h P15 Plxm,05 Prm,0s sz}nﬂle) c RM

Furthermore, notice that for any G € D¢, C; .(G) = ¢5..(Rs »(G)), where

Ry : (2(F) — ROM,

RS,JL“<G) = <{G(]11,xm,1)7 G(ﬂxm,l)v G<11,zm,0)7 G(]lzm,O)u G<ﬂxm)}£n/[:1)

It follows that C;, : Dc — R is fully Hadamard differentiable at any G € D¢ tangen-
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tially to £°°(F). The derivative is

M
aqsx aQSx
' eo(H) = — " (Rs(G)) x H(11,, 1) + ~—(Rs.(G)) x H(1,,,
) = 3 G (R H(rn) + B (R G)) X HLz, )
28 (R (G)) X H(L1a0) + o2 (R o(G)) x H(L,,0)
apLxm,o S, X 1,2m,0 apzm,(] S,T Tm,,0
0Gs
~(Rs (G H(1,
+ S (RL(G) x H{L,,)
This completes the proof. n

Lemma 1.9.17 (7 is fully Hadamard differentiable). Let F be defined by (1.59) and D¢ by
(1.60). Let Cy, and Cs, be as defined in lemma 1.9.16, and

flaz : Do — RA, 10(G) = (Caal QW) -, Canl D i)

Further define

M
Ty : Do = [[ 6°(Fran) x €(Fos,) x RF x RF xR
m=1

T1 (G) == ({Ol,z(G)7 CO,:E(G)ﬂ ﬁl,m(G)a ﬁO,I(G)7 CS,I(G)}QCEX)

Ty is fully Hadamard differentiable at any G € D¢ tangentially to £°(F).

Proof. Lemma 1.9.16 shows that Cy, and C;, are fully Hadamard differentiable at any
G € D¢ tangentially to £°(F).

Define the evaluation maps
€v, ) 0 (Faz) — R, evng@)(H) = H(nc(lk))
Note that each ev, (i) is continuous and linear, and is therefore fully Hadamard differentiable
d
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at any H € (*°(F,.) tangentially to (*°(F,,) (and is its own derivative). Moreover,

ﬁd,z(G) = (61}77&1) (Cde<G)), e ’evnEIKl) (Cd@(G)))

is the composition of an inner function that is fully Hadamard differentiable at any G € D¢,
and an other function that is fully differentiable at any H € ¢*°(F,,). Therefore 7, is fully
Hadamard differentiable at any G € D¢ tangentially to £°°(F).

Next apply lemma 1.9.51 to find that

M
Ty : Do — [[ £°(Fran) X €°(Foz,) x RF x RF xR

m=1

Tl (G) = ({Cl,az(G)> CO,x(G)? ﬁl,x(G)’ ﬁo,az(G)a CS,x(G)}xeX)

is fully Hadamard differentiable at any G € D¢ tangentially to £°°(F). O]

Support of the weak limit of /n(71(P,) — T1(P))

The next few lemmas study the support of the asymptotic distribution of v/n (71 (P,)—T1(P));

in particular, it concentrates on the tangent set of the next map studied in appendix 1.9.3.3.

Lemma 1.9.18 (Continuity of C}, o(H)(-)). Let Cy. be as defined in lemma 1.9.16. If
G, H € C(F, Lop), then Cl, o(H) € C(Fua, Lo p).

Proof. Consider C] , o(H) first. Fix f € Fy, and let ¢ > 0. Let

B 1/G(1,1)

Coef (G) = {G(HLM)/G(EM) — G(ll,x,O)/G(ﬂmvo)}
B —1/G(1,p)

Coefy(G) = {G(]ll’x’l)/c(ﬂmyl) — G(Ih,x,o)/G(]lx,o)}
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and use display (1.61) to see that

|C1aa(H)(f) = C1p(H)(9)]

= |Coefy(G) x [H(Liz1 % f) — H(L1z1 % )]

+ Coef1 (G) X (= [Cr2(G)(f) — C1:(G)(9)]) H(L1,4,1)
G)

+ Coef (

% [Cl,x<G)(f) - Cl,z<G)(g)] X G(]ll,x,l) - [G<11,x,1 x f)— G<]11,x,1 X g)]H(IL )
G(1,,) ol

+ Coefy(G) x [H(L1a0 X f) — H(L120 X g)]
+ Coefy(G) X (= [(CLe(G)(f)) = C1(G)(9)]) H(11,2,0)
+ Coefy(G)

[C12(G)(f) = Cra(G) (9] X G(T120) = [G(L1w0 X f) = G(L120 X g)]
X G(]lxyo) H(]lx,l))

G(11,» G(1z,1)—G(11,¢ Gy
Recall that C1(G)(f) = S 2 ehatn =5 e and thus

C1.(G)(f) = Cr2(G)(g)
[G(L1o1 X f) = G(L1z1 X 9)]/G (L) = [G(L100 X f) = G(L120 X 9)]/G(Lap)
G(lig1)/G(Lzn) — G(L140)/G(Lap)

use this to see that

|Cl e (H)(f) = C . c(H)(9)]
<A x |H(Ligr X f) = H(L1 51 X g)| + A2 x |G(L1 51 X f) = G(L121 X 9)|

+ A X |H(L150 %X f) = H(Li 40 X g)| + As X |G(L1 450 X f) — G(L1,2,0 X g)]
(1.62)

for finite constants Ay, Ay, A3, and A, that depend on G and H, but not on f or g. Now
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use G, H € C(F, Lo p) to choose 0, g > 0 and J, ¢ > 0 such that

Lop(Lign X filign X g) <hmg = [H(Liz1xf)—H(1i.1xg)| <e/(44;)
Lop(L1z10 X f,l121%x9) <de = |G(LizaX[f)—G(Liz1%g)|<ce/(44)
Lop(Liz0 X filigo X g) <dom = |[H(Liz0xf)—H(Li.0Xxg)| <e/(443)
LQ P(]llmo X f ]lle X g) < 5O,G — |G<]]_17x’0 X f) — G(]].l,%() X g)l < 8/(4144) (163)
Finally, notice that
LZ,P(ﬂl,x,z X f7 ]11,1,2 \/P IL1:1:2 X f - ]llxz X g \/P ﬂlxz (f g) )

< VP((f=9)?) = Lap(f.9) (1.64)

It follows from (1.62), (1.63), and (1.64) that

Lyp(f,9) <min{orm, 616,000,006} =[O, a(H)(f) = Cla(H)(9)| <e

ie., O], q(H)(-) is continuous at f. Since f € F1, and G, H € C(F, Ly p) were arbitrary,
this shows that G, H € C(F, Ly,p) implies C] , o(H) € C(Fi14, Lo p).

The same argument shows that G, H € C(F, Ly,p) implies Cf, o(H) € C(Foz, La,p).
This completes the proof. O

Lemma 1.9.19 (Support of 17 x(G)). Let F be defined by (1.59) and Ty be as defined in
lemma 1.9.17.

1. If assumption 1 holds, P € D¢ and hence Ty is fully Hadamard differentiable at P
tangentially to £°(F).
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2. If assumptions 1, 2, and 3 hold,
Va(Ti(B,) = Ty(P)) 5 T p(C)

where G is the Gaussian limit of \/n(P, — P) in (>°(F) discussed in lemma 1.9.15.

3. If assumptions 1, 2, and 3, then P(T{ p(G) € Drap,pun) = 1 where

M
Dranrur = | | <£§Z’mm (Fram) X 05, (]:o,xm)) N (C(‘Flﬂﬂva?,P) X C(Foam L2,P)>
m=1

x REL x REo x R (1.65)

Proof. In steps:

1. P € D¢ and differentiability of T} at P.

Assumption 1 implies P € D¢, given by (1.60). To see this, recall that assumption 1
(iv) is that P(1,,) = P(X =,Z = z) > 0 (implying P(1,) = P(X =z2) = P(X =
x,Z =1)+ P(X =x,Z =0) > 0). Furthermore,

P(1yza)/P(Lya) — P(Lawi—a)/P(1yi1—a)
—P(D=d|X=2,Z=d) - P(D=d|X=u2,Z=1—d)

The second equality is shown in the proof of lemma 1.2.1, and the inequality is as-
sumption 1 (iii). Lemma 1.9.17 thus shows that 7} is fully Hadamard differentiable at
P tangentially to £>°(F).

2. Functional delta method.

Under assumptions 1, 2, and 3, lemma 1.9.15 shows that /n(P,, — P) 5 Gin (2 (F).
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The functional delta method (van der Vaart (2007) theorem 20.8) then implies

M
V(T (Py) = Ti(P) S T) p(G), in ] 6(Fra,) x (Fou,) x RF x R x R

m=1

. Support of T} p(G).

Notice that Th(G) = ({C1, p(G). Cop(G), 71 (G, yp (6), Clar p(G)}, )

where 7);, are defined in lemma 1.9.17. Let
S, = (@jm (Fran) <65, (;fo,xm)) N (C(]—“me, Lo p) X C(Fom LQ,P)) X RF1 X RFo xR

and note that it suffices to show

P (Ci,x,P(G)a C(/),:U,P(G)aﬁ,l,x,P(G)aﬁE),x,P(G)a C;,x,P(G) € Sx) =

for each x. Moreover,
P ((ﬁll,x,P(G)’ﬁé)w,P(G)’ C;,x,P(G)) € Rt x R0 x R) =1

is immediate. To complete the proof we must show P(C, p(G) € (5 (Faz)) =
P(Cy,.p(G) € C(Fia, Lap)) = 1.

(a) To see that P(Cy, p(G) € C(Fyu, Lap)) = 1, first note that for any functions
fi, f2 € F,

|P(f1) — P(f2)]l < P(lfr — fol) = P(V(f1 — f2))
< VP((fi = f2)?) = Lap(f1, f2)

where the second inequality is an application of Jensen’s inequality. Thus P €

C(F, Lap).
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Next apply lemma 1.9.18 to see that G € C(F, Lo p) implies
Cl2.p(G) € C(Faa, La,p). 1t follows that

1=P(GeC(F,Lyp)) < P(Cy, p(G) € C(Fua, Lop))

(b) To see that P(Cy, p(G) € (5, (Fax)) = 1, we show that P(v/n(Cqu(P,) —
Cax(P)) €5, (Fax)) = 1.

First recall the definition given in (1.55):

(3, (Faz) = {H € (Fa,); foralla,beRand f,g € Fy,.
H(f)=H(Ly,, x f), if a € Fg, then H(a) =0, and

if af +bg € Fyq then H(af +bg) = al(f) +bH(g) }

1. vV/n(Cyz(Py) — Cy.(P)) is linear and evaluates constants to zero.
This follows because Cy,(P,,) and Cy,(P) are linear and “return constants”.
To see this, recall that Cy . (P) € £>°(F,,) is given pointwise by

P(lgga x f)/P(1ea) — P(Laggi—a X f)/P(1s1-a)
P(Laza)/P(Lea) — P(Lagi—a)/P(1si-q)

Cax(P)(f) =

Use this to see that for any a,b € R and f,g € Fu,. if af +bg € Fy,,
then linearity of P implies Cy,(P)(af +bg) = aCq(P)(f)+bCy.(P)(g) and
Caz(Pn)(af +bg) = aCyr(P,)(f) + bCaz(Py)(g). Similarly, if a € Fu, is
the constant function always returning a, then Cy,(P)(a) = a. The same

observations apply to Cy.(IP) € (>°(Fy.).
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Therefore

Vn(Cay(Pn) — Cap(P))(af + bg)
= Vn(Caz(Py)(af +bg) = —Car(P)(af +bg))
= Vn(aCau(Py)(f) + bCa(Pn)(g) — aCau(P)(f) — bCau(P)(9))
= a X v/n(Caz(Pn) = Cau(P))(f) + b x Vn(Cqu(Pr) — Caul(P))(9)

and furthermore, if a € F,,, then

V(Cau(Pr) — Caa(P))(a) = Vn(a —a) =

ii. Cg.(P) “ignores values outside Vy,”; i.e. Cyo(P)(f) = Cao(P)(1y,, X f).

To see this, notice

Caz(P)(f) (1.66)
ElfVYI{D=d} | X =2,Z=d| - E[fY)I{D=d} | X =2,Z =1—d]
- P(liga)/P(Lza) — P(Lazi—a)/P(lz1-q)
PO =d|X=2,Z=dE[f(Y)|D=dX =17=d
P(1lgza)/P(1sa) — P(Lazi—a)/P(lz1-a)
PD=d|X=0,Z2=1-dE[f(Y)|D=d, X =2,Z=1—d
P(liza)/P(lsa) — P(Lazi—a)/P(1z1-q) '

Since Yy, is the support of Y | D =d, X =z,

E[fY)|D=d X =x,7Z = Z]

=EBfY)I{Z=2}|D=d,X=2]/P(Z=2|D=d,X =2)
_ B{Y € Vi /(V){Z =2} | D=d, X = 2]
B P(Z=z2|D=d,X =)

— E[{Y € Vo }f(Y) | D=d,X =2,Z = 2]
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Along with (1.66), this implies Cgn(P)(f) = Cam(P)(Ly,, X f).
Now notice that with probability one the sample is a subset of the support,
and when this is so, Cy,(P,) ignores values outside of V.

Specifically, observe that

Caa(Pn)(f) (1.67)

Y HDi=d, X =2} {Z =d}f (V)] / [ XL HXi =, Z, = d}}]
Pn(ﬂd,x,d)/Pn(]lw,d) — I[Dn(I[d,av,lfd)/Pn(]l:p,lfd)
Ly 1YDi=d,X;=}1{Z;=1-d} f(¥)
Ly M Xi=w,Z;=1-d}

1=

Pn(ﬂ-d,x,d)/Pn(ﬂ-x,d) - ]:Pn(:n-d,x,l—d)/Pn(ﬂ-w,l—d)

Note that because V. is the support of Y | D = d, X = z, we have that
with probability one, {Y;, D;, Zi, Xi}iy €S =, , Yo x {d} x {2} x {z}.

Indeed, since YV, . x {d} x{z} x{z} C R* are disjoint for each distinct (d, z, z),

P((Y;, Di, Z;, X;) € S) = P <(Y¢,Di,Zi,Xi) € | Y x {d} x {2} x {x})
d,z,x
=Y P(Y; €Yo Di=d, X; =1,Z; = 2)
d,z,x

P(Yzeyd,zaZZ:Z|DZ:daX’L:x)

Since {Y;, D;, Z;, X;}7-, is 1.i.d.,

P{Y:, D, Zi, Xi}iy €S) =P <ﬁ{(Yz‘>Dz‘,Zi,Xz‘) € 5}>

i=1

P

~
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When {Y;, D;, Zi, X}, € S holds, 1{D; = d, X; = 2} < 1{Y; € Vy,} =
ly,.(Y;) and thus 1y, (Y;) x I{D; = d, X; = 2} = 1{D; = d, X; = z}. This
and (1.67) implies that when {Y;, D;, Z;, X;}*, C S holds,

Cd,x(Pn>(f) = Cd:x(Pn)(ﬂyd,z X f)
iv. Use the facts established above to see that

P(\/E(Cd,x(lpn) - Cd,m(P)) € ESZ’Z (Fl,a:))
= P(Vn(Caa(Pn) = Cau(P)) € L5, (Faa) | {Yi, Di Zi, Xi}iy € 5)

=1

Lemma 1.9.9 is that (5 (F1,) is closed, so Portmanteau (van der Vaart &

,T

Wellner (1997) theorem 1.3.4) implies

1 = limsup P(v/n(Cy.(P,) — Cy.(P)) € (.. (Fi,z))

n—oo

< P(Co.p(G) €5, (F1a))
In summary, we have

=P ((ﬁll,x,P(G)7 ﬁé,x,P(G)7 C;,x,P(G)) € RKI X RKO X R)
= P(Ciep(G) € 05, (Fua))
=P (Cc/l,x,P(G) € C(fd,arv LQ,P))

From which it follows that

1= P( 1,:2,P(G>’ (/),(L',P(G)7 ﬁll,m,P(G)u ﬁé},m,P(G>a ;,w,P(G) S SI)
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for each x, and therefore

P<T1/,P(G) S DTan,Full)

=P (ﬂ {Ci,x,P(G)v O(/),x,P(G)v ﬁll,x,P(G)v ﬁ[/),x,P(G)v Cé,x,P<G) S Sz}) =1

rzeX

This completes the proof. O

1.9.3.3 Optimal transporta TQ({PHmy P0|x7 771,:1:7 770,967 Sx}:ceX) = ({957 efa 771,:(:7 770,907 S:c}a:EX)

The second map applies the directional differentiability of optimal transport shown in ap-
pendix 1.9.2.2. There are three assumptions in lemma 1.9.7 to verify: strong duality, Donsker
conditions, and completeness. Strong duality is shown by lemmas 1.9.38 and 1.9.42, and the
Donsker conditions are shown by lemma 1.9.14. It remains to verify the completeness as-

sumptions.

Verifying completeness

Lemma 1.9.20 (Completeness of dual problem feasible set in Ly for smooth cost functions).
Suppose Y C R is compact and ¢ : Y x Y — R is L-Lipschitz. Let F., F¢ be given by (1.14)

and (1.15) respectively:

Fe={o: Y =R; —|clle < 0(11) < |lcllos, 1) — W) < Ly — |},

Fo={: Y = R; =2|clloe <¥(y) <0, [¥(y) =) < Lly =9I},

Further let ®. be defined by (1.80), and F4 defined by (1.57). Let Lo p be given by (1.51),
and Lo be given by (1.52). Then (Fy . X Foz, L) and its subset . N (F. x FE) are complete.

[

Proof. In steps:
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1. (F., Lop) and (FS, Lo p) are complete.
The proof that (F., Ly p) is complete is broken into steps:

(a) Let {on}re, € F. be Ly p-Cauchy. The L, semimetrics are complete for any
probability distribution (Pollard (2002) section 2.7 and chapter 2 problem [19]),
thus there exists ¢ such that Ls p(p,,9) — 0. Convergence in Ly p implies
convergence almost surely along a subsequence (Pollard (2002) section 2.8). Thus

there exists a subsequence {¢,, }72; such that limj_, ¢n, (y) = @(y) for P-almost

every y. Let N7 C Y be the P-negligible set where this fails.

(b) Observe that on N{ = Y\ Ny, @ obeys the bounds and Lipschitz continuity of F..

Specifically,

_HCHOO < khm _”CHOO < lim ‘Pnk(y) < lim HCHoo < ||C||oo
—00 k—o0 k—ro0
&(y)

Furthermore, for any y,y’ € N¥,

|o(y) — oY) = | Jim o (y) — lim on, (Y] = Jim fon, (y) = @y )]

< lim Lly —y/| = Ly — /|
k—o0
(¢) Now define functions @, ¢ : Y — R with

@(y1) = sup {@(1) — Llys — w1 l}, o(y1) = max{p(y1), —llclloo}

Yy ENF

Then Ly p(¢n, ¢) — 0 and ¢ € F., which shows (F., Lo p) is complete.

i. Lo p(pn,p) — 0 follows from ¢(y) = @(y) for all y € Nf. To see this, let
y € N{. Since ¢ is L-Lipschitz on NY, it follows that for any y' € Ny,

o) — Ly —y'| < o(y)

89



and thus ¢(y) = @¢(y). This implies p(y) = &(y) > —||¢|loo, and thus p(y) =
o(y) = ¢(y). Thus p(y) = ¢(y) for P-almost all y, implying Lo p(@,¢) = 0
and thus Ly p(¢n, @) — 0.

ii. To see that ¢ € F¢, first notice that ¢(y) = sup,ene{P(Y) — Ly — ¢y'[} <
SUD,/ ¢ e 2(y) < |l¢||s, and hence @ obeys the upper bound for F.. It then
follows easily that ¢(y) = max{@(y), —||¢||« } obeys both the upper and lower
bound. Next notice that ¢ is L-Lipschitz on all of V:

o(y) — oY) == sup{@(7) — Lly — |} — sup {&(7) — LIy’ = 7|}

JENT y'eNy
< sup{@(g) — Lly — gl = (#(9) — LIy’ —9])}
yeNyt

=sup L(ly =gl =y —9) < Lly — |
FENE

where the last inequality follows from the reverse triangle inequality. It follows

that o(y1) = max{@(y1), —||¢||o} is also L-Lipschitz, and thus ¢ € F..

2. Very similar steps show that (F¢, Ly p) is complete; the only substantial changes are

replacing the lower bounds with —2J|c|| and the upper bounds with 0.

3. Note that since (F. x F¢, Lo) is the product space of (F., L p) and (F¢, Lo p), it follows
that (F. x F¢, Ls) is complete.

4. @, N (Fe x FF) is complete.

Cc

To see that ®. N (F. x FE) is complete, let {(pn, ¥n)}e2, C &, N (F,. x FE) be Lo-

c

Cauchy, and follow the same steps shown above to define (p,1) € F. x FS such that

La((6n: ), (0, %)) — 0. It remains to show that ¢(y1) + ¥(yo) < c(y1,yo0) for all
(y17y0> S y X y g RQ-
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Since ¢ is L-Lipschitz,

c(y1,90) — c(y1,v0) > =Ll (y1,90) — (1, ¥o)ll = —Lly1 — ¥4 — Llyo — vo

which implies ¢(y}, y) — Llyr — vi| — Llyo — y5| < ¢(v1, o). Thus
ly1) + @(yo) = sup {2(y1) — Llys — 441} + sup { (o) — Llyo — vol}

y1ENT YoENG

= s {30 + D) — Ll — il — Ll — ol }
(y1:90) ENT X NG

< sup  {e(yr,v0) — Liyi — ¥4l — Llyo — yol}
(v} W) ENE XN

< sup {c(y,v)} = c(y1,v0)
(Y1 .96)ENT X N§

Finally,

p(n) + ¥ (yo) = max{@(y1), —|lclloc } + max{(yo), 2] e[}
= max{p(y1) + &(¥0), ¢(y1) — 2llcllos; —llelloe + P(y0), —llelloc — 2ell}
< max{c(y1,90), = llelloe, =llefloo; =3ll¢lloc}

S C(yl) yO)

where the first inequality follows from @(y;) < ||¢||e and ¥(yo) < 0.

5. (Fiz X Foz, Lo) is complete.

As this is the product space of (Fi ., Lo p) and (Fo ., Lo p), it suffices to show these

individual spaces are complete.
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Now recall that F,, is defined by (1.57):

ﬁlz{f:y—HR; f = ¢ for some ¢ € F, orf:ngk)forsomekzl,...,Kl}
ﬁoz{f:y—HR; f = for some ¢ € F¢, orf:n((]k) forsomekzl,...,KO}
fd,x:{f:y%R; f:gorﬂydyzngorsomege]}d}

Recall that the union of a finite number of complete sets is complete. Since (F., Lo p)
and F¢, Lo p) are complete and any finite set is complete, F, is complete. Next recog-
nize that 5y, = fd U {]].ydyz Xqg; g€ ]:"d} is the union of a finite number of sets, and

thus it suffices to show {]lyd’m Xg; g€ ]:"d} is complete.

Let {1y,, X gntney C {]13;“ Xg; g€ fd} be Ly p-Cauchy. Lemma 1.9.14 shows that
Fa, is Donsker and sup ez, | |P(f)| < oo, which implies (Fg, L2 p) is totally bounded
(see van der Vaart & Wellner (1997) problem 2.1.2.). Since Fy is a complete subset of
a totally bounded set, it is compact. Thus {g,}°>, C F, is a sequence in a compact
semimetric space, and therefore has a convergent subsequence {g,, }%>,. Let g € Fy

be its limit, and notice that

0< LQ,P(]lyd,z X Gy ]]'yd,z X g) = \/P((I]'yd,z X Gny, — ]'yd,z X 9)2)
</ P((gn, — 9)%)

= Ly p(gn,,9) = 0

and thus 1y, X ¢, — 1y, g. It follows that 1y, X ¢, — 1y, g, and thus

{ﬂyd,z Xqg; g€ ﬁd} is complete.

This completes the proof. O

Lemma 1.9.21 (Completeness of dual problem feasible set in Ly for indicator cost func-

tions). Let Y C R, C C Y x Y be nonempty, open, and convez, and let ¢ : Y x Y — R be
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given by c(y1,y0) = Le(v1,y0) = 1{(y1,90) € C}. Let F., FS be given by (1.16) and (1.17)

respectively:

Fe={p: Y —=R; o(y1) = 1;(y1) for some interval I},

Fo={Y: Y —=>R; ¥(yo) = —1se(yo) for some interval I},

Further let ®. be defined by (1.80), and Fu. defined by (1.57). Let Ly p be given by (1.51),
and Lo be given by (1.52). Then (Fi . X Foz, La) and its subset . N (F. x FE) are complete.

[

Proof. The proof is similar in structure to that of lemma 1.9.20.

1. (Fe., La,p) is complete.

Let {¢n}32, € F. be Ly p-Cauchy. Note that ¢,(y) = 11, (y) for some interval I,,.
Just as in the proof of lemma 1.9.20, there exists ¢ such that Ly p(¢,,$) — 0, and
a subsequence {¢,, }22, such that limy . ¥n, (y) = $(y) for P-almost every y. Let

N C Y be the P-negligible set where this convergence fails.
Let y € N¢ and notice that ¢, (y) = 1, (y) € {0,1} for all k and {¢,, (y)}72,
converging in R implies that ¢, (y) is eventually constant as k grows. This implies

o(y) € {0,1}, and hence for some set A C Y,
o(y) = 1a(y) for all y € N°¢

We will show that for some interval I, A NN = 1N N Let y1,y2,ys € N satisfy
Y1 < Y2 < y3 and y1,y3 € A, but be otherwise arbitrary. It suffices to show that y, € A;
we can then define I to be the interval with endpoints inf A and sup A (including
the lower endpoint if inf A = min A > —oo, and including the upper endpoint if

sup A = max A < o), and define the function ¢ : J; — R with ¢(y;) = 17(y;)."?

12Explicitly, I is defined as follows: (a) I = (¢,u) if neither ¢ = inf A nor u = sup A is attained in R
(b) I = [¢,u) if { = inf A = min A, but v = sup A is not attained in R (¢) I = (¢,u] if £ = inf A is not
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Notice that limy o 17, (y3) = La(ys) = 1 and limyg_,o, 1,, (y3) = La(ys) = 1 implies
that 17, (y1) and 1y, (y3) are eventually constant and equal to 1, i.e. there exists

K, K3 € N such that
y1 € I, for all k > Ky, and ys € I, for all k > K3
Since I, is an interval, this implies
Yo € I, for all £ > max{K;, K3}

i.e. 1y, (y2) = 1 for all such k, and therefore 14(y2) = limj 00 La,(y2) = 1. Thus
Yo € A.

It follows that ¢(y) = ¢(y) = 1;(y) for all y € N°¢ Thus Ly p(p,¢) = 0, and
Ly p(n, ) — 0. Since ¢ € F., this completes the proof that (F., Ls p) is complete.

2. (F¢, Ly p) is complete.

The argument is similar. Let {¢,}72, C F. be Ly p-Cauchy. Note that 1, (y) = 17¢(y)
for some interval I,. There exists ¢ such that Loy p(z/)n,z/;) — 0, and a subsequence

{tn, }32; such that limy_, ¥, (y) = ¥(y) for P-almost every y. Let N C ) be the

P-negligible set where this convergence fails.

Since ¥y, (y) = 1r; (y) € {0,1} for all k and y, and limy, ¥, (y) = U (y) for all
y € N¢, we have zZ(y) € {0,1} for all such y and thus for some set A C ),

Y(y) = 1ac(y) for all y € N°

Once again, it suffices to show ANN¢ = INN€ for some interval I. Consider yy,yo,y3 €

N¢ y1 < yo <y, with y1,y3 € A. limy_o0 ¥, (11) = ¥(y1) = 0 and limy_o0 ¥y, (y3) =

attained in R, but u = sup A = max A (d) I = [¢,u] if both £ = inf A = min A and u = sup A = max A.
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Y(ys) = 0 implies that ¢y, (y1) = ]l]fzk (y1) and ¥y, (y3) = ]chlk (y3) are eventually

constant and equal to 0, i.e. for some K, K3 € N,
y1 € I, forall k > K, ys € I, for all k > K3
since I, is an interval for every k, this implies
Yo € I, for all k > max{K;, K3}

thus &(yg) = limg 00 ¥, (y2) = 0. It follows that AN N¢ = I N N¢ where I is the
interval defined by endpoints inf A and sup A, which are included if attained and finite.

Define ¢ (y) = 1¢(y) and notice ¢» € FS. We have ¢(y) = ¢(y) for all y € N¢ and
hence Lg,p(@;,w) = 0. Thus Ly p(¢n, ) — 0, showing (F¢, Ly p) is complete.

. Note that (F. x F¢, L) is the product space of the complete spaces (F., Lo p) and

(F¢, Lo p), and so is complete.

. We next show ®. N (F. X F5) = {(,¥) € Fo x FE 5 o(y1) + ¥ (yo) < ¢(y1,y0)} is com-

plete.

Let {(¢n, ¥n)}2, € @, N (F. x FC) be Ly-Cauchy, and let ($,1) be a limit in
F. x FE. Since Ly p(¢n, ) — 0 there exists a subsequence {(pn,, ¥n, )22, such that
limy o0 @n,, (Y1) = @(y1) for P-almost all y;. Let N; be the negligible set where this

fails. Furthermore, Lo p(¢n,,1%) — 0 as k — oo and so there is a further subsequence

{(SOnkj ) %ﬁnkj)};”:l such that lim;_, wnk,]_ (yo) = ¥(yo) for P-almost all yy. Let Ny be the
negligible set where this fails. It is then clear that if (y1,y0) € Ny x N§, then

P(y1) +P(yo) = Jim {n,, (y1) + ¥y, (90)} < lim c(yr,50) = Loy, m0) - (1.68)
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Note that ¢ = 1;_, and 1& = _1[3) for some intervals Iz and I;. Let
br=inf Iz NNy, wi=suplzN Ny, {lo=inf[;NNg,  up=supl;NNg

and define ¢ = 1;, where I, is the interval with endpoints ¢, u; (included if the
inf/sup are finite and attained), and ) = —1 I where I is the interval with endpoints
lo, uo (included if the inf/sup are finite and attained). Notice that I, = I, P-almost
surely and Iy, = I;, P-almost surely.

Notice that for (y1,50) € (Nf x N§)° to satisfy o(y1) + ¢ (yo) = Lz, (y1) — Lr5(vo) >
Lc(y1,90), it would have to be the case that (y1,40) € (15 % 1) N (Nf x N§)¢\ C. Let
(y1,90) € (I, x I,) N (N§ x N§)¢, and note that there exists y%, y¥ € I, N N with y§ <
y1 <yt and yf, y¥ € I, N N§ with y§ < yo < y¥. Notice that [yf, yt] % [y5, v4] C C, be-
cause C'is convex and (1.68) holds for the “corners”: (¢1,4y), (1, uo), (u1, o), (u1,u9) €
(I, x Iy)N(NTx Ng). Thus (Ipx I;)N(NTx N5)\C = @, showing that (y1)+1(yo) <
c(y1, yo) holds for all (y1,y0) € V1 X Vo. This shows ®.N (F. x FE) is complete.

[

5. The argument thet (Fi, X Fo., L2) is complete is identical to the argument given in

step 5 of the proof of lemma 1.9.20.

This completes the proof. n

1.9.3.4 Differentiability of T;

We first apply lemma 1.9.7 to show show that 0%(-,-) and 67(-,-), given by either (1.19) or

(1.20) depending on the function ¢, are Hadamard differentiable.

Lemma 1.9.22. Suppose assumptions 1, 2, and 3 hold. Then 6L(-,-) and 0%(-,-) given
by (1.19) or (1.20) are Hadamard directionally differentiable at (P, Po.) tangentially to
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C(Fiz, Lop) x C(Fox, Lap). The argmax sets

Ve, (Pia, Poe) = argmax  Pyu(¢) + Po(¥)
(‘Pﬂ/’)e‘bch(]:cX]:g)

Ve, (Pije, Poje) = arg max Py () + Po(v)

() €Pey N(Fe X FE)
are nonempty, and the derivatives Q(L-Iljl\zvpmz)?Q(I{ID,l\szO\z) : C(Fra, Lap) X C(Fou, Lop) = R

are given by

08,1,y (H1 Ho) = sup Hi(p) + Ho(v) (1.69)

(307"11)6\1}51, (P1|17P0\z)

le‘x,PW)(Hl,Ho) =— [ sup Hy(p) + Ho(l/f)] (1.70)

(Sovw)e‘l/CH (P1|17P0\z)

If assumption 4 also holds, then % and " are fully Hadamard differentiable at (Pijz, Pojx)

tangentially to

Dran putte = (65, (Fia) % 655, (Fou) ) O (C(Frs Lap) % C(Foas Lap) )

with the derivatives G(LI/DHZ,PO\I)’&{IQMMPO\I) : Dranpunz: — R also given by (1.69) and (1.70).

Proof. We apply lemma 1.9.7. It is clear from inspection that the cost functions ¢y and cy
are lower semicontinuous, the sets F,;, defined by (1.57) consists of measurable functions
mapping Y to R, and that the subsets F. and F¢ given by (1.14) and (1.15), or by (1.16)

and (1.17), are universally bounded. Moreover,

1. Strong duality holds.

(i) If assumption 2 (i) holds, then lemma 1.9.38 shows that strong duality holds.

(ii) If assumption 2 (ii) holds, then lemma 1.9.42 shows that strong duality holds.
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dP,

5=, Indeed,

2. Assumption 1 implies P dominates Py, with bounded densities

Ep, [f(Ya)]
B MDD =d} | X =2, Z=d] - Ep[f(VI{D=d} | X =2,Z =1 —d]
N PD=d|X=2,Z=d)—PD=d|X=z,Z=1-4d)
D, X, Z)/pza — Lazi-a(D, X, Z)/px,l—d:|
pd,w,d/px,d - pd,z,l—d/px,l—d
Liwa(D, X, 2)/Pra— Lawi-a(D, X, Z)/Pz1-a | Y”
pd,x,d/pm,d - pd,x,l—d/pa:,l—d

=LK

) Tt

v

|
— Bp [ f(Y)E [

: Py, Ly 2.a(D,X,Z) /Ps.a—Naw—a(D,X,2)/pui
Notice that —2*(Y) = Ep |-% a( /P 4 La.1—a LZREL | Y| must be nonneg-
dp Pd,w,d/Pe,d—Pd,w,1—d/Ps,1—d
dPy,

ative P-almost surely; if the set A = {y; 5 (y) < 0} was P-non-negligible, the

displays above would imply the contradiction P(Yy; € A | Dy > Dy, X = z) < 0.

Py,
dpP

Moreover, is bounded because the integrand of this conditional mean is bounded.

3. Lemma 1.9.14 shows that under assumptions 1, 2, and 3, F;, is P-Donsker and

supser, |P(f)| < oo for d =1,0, and
4. The set (Fy x Fo, Ly) and its subset &, N (F, x FE) are complete.

(i) If assumption 2 (i) holds, then lemma 1.9.20 shows these sets are complete.

(ii) If assumption 2 (ii) holds, then lemma 1.9.21 shows these sets are complete.

It follows from the chain rule that 6% and 0 are Hadamard directionally differentiable with

the claimed directional derivatives.

Now suppose assumptions 1, 2, 3, and 4 hold. Lemma 1.9.10 implies 6% and 6% are fully

Hadamard differentiable at (P, Py|,) tangentially to

Drpute = (65, (Fia) % 655 (For ) 1 (C(Fias Lap) X C(Fous L) )

with derivatives given by the same expressions. O
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We can now show the differentiability properties of T5.

Lemma 1.9.23 (75 is Hadamard differentiable). Let Dy, and Drap, puy be given by

—=

Dran = | | C(Fie, Lop) X C(Fon,,, Lop) x REL x RF0 x R
m=1
M
Dranrur = | | (@OLW (From) X 65, (]:o,a:m)> A (C(fl,zw Lap) X C(Foz,, L2,P)>
m=1
x REL x RFo xR
and define

M M
Ty: [] 0 (Fra) x £°(Fou) x RF x RF xR — J] R x R x R¥t x RF® xR,

m=1 m=1

T2({P1|:Ea PO\xa M,z 70,z SI}IEX) = ({QL(PI\QU; P0|x)7 QH(Pl\ma P0|x)7 M,z 710,z Sx}xeX)

Under assumptions 1, 2, and 3, Ty is Hadamard directionally differentiable at
T1(P) = ({Pijz, Pojzs S22 2> Moz eex) tangentially to Dpg,, with derivative
M

Ty 5 py  Dran — [ R xR xRF x RF x R

m=1

TQI’TI (P) ({HI,IE7 HO,:EJ hnl,wa hn0,27 hs,z}mEX)

= ({G(LJIDHWPO”)(HLJH HU,x)a Ogjjgllx’Po‘m)(Hl,xa H0,$>7 hm,xa hno,acy hs,m}ﬂgé){)

If assumption 4 also holds, then Ty is fully Hadamard differentiable at Ty(P) tangentially

to Dran, pun, with deriative Ty (py @ Dran, pun — H%Zl R x R x RE1 x R0 x R given by the

same 61’])7"6882.077,.

Proof. Lemma 1.9.22 shows that under assumptions 1, 2, and 3, #*(-) and 6% (-) are Hadamard

directionally differentiable at (P, Py|;) tangentially to C(Fi z, Lo p) X C(Foz, Lo p) for each
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x € X. If assumption 4 also holds, lemma 1.9.22 shows these derivatives are linear on the
subspace Drgp rui, and hence 6% (+) and 67 (+) are fully Hadamard differentiable tangentially
to Dpgn pun- The other coordinates are the identity mapping, which is fully Hadamard

differentiable. Apply lemma 1.9.51 to obtain the result. O]

1.9.3.5 Expectations, T3({0%, 07 0, .. 0.4, Sz zex) = (0F,609 1)

Lemma 1.9.24. Define

M
Ty HRxRxRKl x REO x R — R x R x RET x R¥0
m=1
T5({07, 0,7, 100, N2> Sawer) = (Z 05, ) 5O Y " samian > 5:(:770,90)
reX rxeX reX xeEX

Ty is fully (Hadamard) differentiable at any V = ({0%, 02 n1 .m0 2, Sz teex) € Hn]\le R x
R x R x R¥t x RE° tangentially to H%zl R x R x RFt x REo x R with derivative

M
Ty J[I R xR x RFt x RFO x R — R x R x RF x R0

m=1

TS/»,V<{h£7 hf, hm,xa hT]o,x; hs,az}xeX)

— (Z Sk + Dot (1), Y sl + ho o™ (), sah o+ halia, Y Saliggs + hs,xno,x)

reX zeX reX reX

Proof. The inner product
IP:RM x RM 5 R, IP(ry,ra) = (ry,m) = ngm)rém)

is fully Hadamard differentiable at any (ry,75) € RM x RM tangentially to RM x RM with
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derivative

1P, ) R xRY - R,

[P, oy (hi ho) = (11 ho) + (ha,ra) = 3 ™ RS 4 R rg"

iMi

Apply lemma 1.9.51 to obtain the result. n

1.9.3.6 Optimization over t € [0F,07]: T (0L, 01 n) = (4L, ~H)

Lemma 1.9.25. Let g%, g% : R x R x REt x R0 5 R be as defined in assumption 3:

gL(eLaeHv,rh?nO) inf g(t 77177]0> gH(0L76H77]17770) = sup g(t777177]0)
te[oL,0H) te[oL,0H)

Define

Ty RxRxRFt x RFO S Rx R

T4<0L7 0H7 m, 770) = (gL(9L7 0H7 M, 7]0)7 gH(eLu 0H7 m, 770))

Under assumption 3, g* and g" are continuously differentiable at (6F,0% ny,n0) =

T3(T5(T1(P))) with gradients
Vgt = Vgl (0", 67 ny,ny) € R gl — g (0% 07y, ny) € R¥FETEo

Therefore Ty is fully Hadamard differentiable at (0%, 0% 1y, m0) tangentially to R x R x RE1 x
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REo with derivative

immmey) t RXRXRT xR 5 R xR

41,T3(T2(T1(P)))<hL7 hH7 hm7 hﬂo)

= (<v9L> (hL> hHa hm, hno)> ) <ng7 (hL7 hH’ h771? h770>>)

Proof. Assumption 3 (iii) is that ¢g* and ¢g" are continuously differentiable. The result

follows. O

1.9.3.7 The map T(P) = (%, v), consistency, and weak convergence

Lemma 1.9.26. Let T}, T, T3, and Ty be as defined in lemmas 1.9.17, 1.9.23, 1.9.2/, and

1.9.25 respectively. Let

be the empirical analogue estimators. If assumptions 1, 2, and 3 hold, then each of these

estimators are consistent.

Proof. Lemmas 1.9.17, 1.9.23, 1.9.24, and 1.9.25 show that T}, Ts, T3, and T, are Hadamard
(directionally) differentiable at P, T} (P), To(T1(P)), and T5(T»(T1(P))) respectively, tangen-
tially to sets that include zero. It follows that these functions are continuous at P, T} (P),

To(T1(P)), and Ts(Ty(T1(P))) respectively. Lemma 1.9.15 implies that P, 2 P in ¢>°(F),
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so it follows from the continuous mapping theorem that

Lemma 1.9.27 (T is Hadamard directionally differentiable). Let Do be defined by (1.60),

and
T :Do — R, T(G) = Ty(T3(Tx(T1(G))))

If assumptions 1, 2, 3 holds, then T is Hadamard directionally differentiable at P tangentially

to C(F, Ly p) with derivative given by

Tp : C(F, Lyp) = R?, Tp(G) = zi,Tg(Tg(Tl(P)))(T?:,Tz(Tl(P))(TZ/,Tl(P) (TI/,P(G))))

If assumption 4 also holds, then T is fully Hadamard differentiable at P tangentially to the

support of G as defined in lemma 1.9.15.

Proof. Lemma 1.9.17 shows that 77 is fully Hadamard differentiable at any point in D¢
tangentially to ¢*°(F). Lemma 1.9.23 shows that under assumptions 1, 2, and 3, T, is

Hadamard directionally differentiable at T (P) tangentially to

M
Dran = | [ C(Fran: Lap) X C(Fou,,, Lap) x RF x RF x R

m=1

Lemma 1.9.18 implies that if H € C(F, Lo p), then T} p(H) € Drgy,. It follows from the chain
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rule (lemma 1.9.50) that 75 o T} is Hadamard directionally differentiable at P tangentially
to C(F, Lap). Lemma 1.9.24 shows T3 is fully differentiable at any point in its domain
tangentially to the entire relevant space, and lemma 1.9.25 shows T} is fully differentiable
at T3(T5(T1(P))) tangentially to the entire relevant space. The chain rule thus implies the
first claim: under assumptions 1, 2, and 3, T' = T, o T3 o T5 o T} is Hadamard directionally

differentiable at P tangentially to C(F, Ly p) with the claimed derivative.

If assumption 4 also holds, lemma 1.9.23 implies that T5 is fully differentiable at T (P)
tangentially to Drap pun. Lemma 1.9.19 shows the support of 77 p(G) is contained within
Dran,pu- It follows that Tp(-) = T} ¢ iy oy (py)) (Ls (v () (Lo () (T1,p(0)))) 1S linear on the
support of G, and hence Fang & Santos (2019) proposition 2.1 implies 7" is fully Hadamard
differentiable at P tangentially to the support of G. m

Lemma 1.5.1. Suppose that

(i) assumption 2 (i) holds, with cost function c(yi,yo) that is continuously differentiable,

and

(ii) for each (d,x), the support of Py i Vau, which is a bounded interval.
Then assumption 4 holds.

Proof. Note that both cr(y1,y0) = ¢(y1,%) and cu(y1,v) = —c(y1,y0) are continuously
differentiable. Moreover, since the support of Py, is V;, which is a bounded interval, the
support can be written as [yfm, Yi ) So for any z € & and either ¢ € {cz,cy}, lemma 1.9.8

shows that for any (¢1,v1), (¢2,%2) € Yo(Pijs, Fojz), there exists s € R such that for all

(Y1,%0) € V1w X Vou

1(y1) — w2(y1) = s, 1(yo) — a(yo) = —s
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and thus
Iy, x 1 =1y, X (p2+s), P-as. and 1y X =1y, x (P2 —s), P-as..

Therefore assumption 4 holds. O

Theorem 1.5.2 (Weak convergence). Suppose assumptions 1, 2, and 8 hold, and let G be
the weak limit of \/n(P, — P) in (>°(F). Then T is Hadamard directionally differentiable at

P tangentially to the support of G, and

If assumption 4 also holds, then T} is linear on the support of G and ThH(G) is bivariate

normal.

Proof. The result is an application of the functional delta method (see Fang & Santos (2019)
theorem 2.1) and lemma 1.9.27.

Indeed, £>°(F) and R? are Banach spaces, and under assumptions 1, 2, and 3 lemma 1.9.27
shows T' is Hadamard directionally differentiable at P tangentially to C(F, Ly p). Lemma
1.9.15 shows that \/n(P, — P) L Gin (>(F), where G is tight and supported in C(F, Ly p).
Fang & Santos (2019) theorem 2.1 gives the result that /n(T(P,) — T'(P)) N TH(G).

If assumption 4 holds as well as assumptions 1, 2, and 3, then lemma 1.9.27 shows that
T is fully differentiable on the support of G. Since G is Gaussian and 7T} is continuous and

linear on the support of G, Th(G) € R? is Gaussian. O
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1.9.4 Appendix: inference
1.9.4.1 Bootstrap

Lemma 1.9.28. Suppose assumptions 1, 2, and 3 are satisfied. Let P}, be given by definition
1.5.1 or 1.5.2. Then Fang & Santos (2019) assumption 3 is satisfied:

(i) P¥ is a function of {Y;, D;, Z;, X, Wity , with {W;}I, independent of
{3271%,227)Q}£:r

(ii) Py, satisfies supepr, |E [f (VP = Pn)) [ {Yi, Di, Zi, Xi}i, ] = E[f(G)]] = 0,(1).
(111) /n(P* —P,) is asymptotically measurable (jointly in {Y;, D;, Z;, X;, Wi, ).

(iv) f(/n(P: —P,)) is a measurable function of {W;}1_, outer almost surely in
{Y;, Dy, Z;, X;}1 for any continuous and bounded real-valued f.

Proof. Note that assumption 3(i) is satisfied by construction. van der Vaart & Wellner
(1997) example 3.6.9, 3.6.10, and theorem 3.6.13 implies assumpion 3(ii) holds:

sup |E [f(Va(BL — B.)) | {Yi, Dy, Zi, XYy ] — E[f(G)]| 5 0

feBLy

and further that

E[f(Vn(P}, = Pn))"] = E [f(Vn(P], = Pn)).] = 0,(1)

for any f € BLy, where f(y/n(P:—P,))* and f(y/n(P:—P,)). denote the minimal measurable

*

majorant and maximal measurable minorant of f(y/n(P*

—P,)), respectively. Note that for
any continuous and bounded f, f(yv/n(P: —P,)) is continuous in {W;}™,, and is hence
measurable satisfying Fang & Santos (2019) assumption 3(iv). Fang & Santos (2019) lemma

S.3.9 then implies assumption 3(iii) is satisfied as well. O
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Theorem 1.5.3. Suppose assumptions 1, 2, 3, and 4 hold, and let P} be given by definition
1.5.1 or 1.5.2. Then conditional on {Y;, D;, Z;, X;} 4,

Va(T(B) — T(B,)) & Th(G)

i outer probability.

Proof. By application of Fang & Santos (2019) theorem 3.1. There are three numbered

assumptions:

1. Fang & Santos (2019) assumption 1 is satisfied; ¢>°(F) and R? are indeed Banach
spaces, and lemma 1.9.27 shows that under this paper’s assumptions 1, 2, and 3, the

map T is Hadamard directionally differentiable at P tangentially to C(F, L p).

2. Fang & Santos (2019) assumption 2 is satisfied; lemma 1.9.15 shows that /n(P,— P) EN
G in £°(F), where G is tight and supported in C(F, Lo p).

3. Lemma 1.9.28 shows that Fang & Santos (2019) assumption 3 is satisfied.

Finally, note that G is Gaussian and mean zero; it follows that its support is a vector
subspace of £*°(F). Thus Fang & Santos (2019) theorem 3.1 implies 7" is (fully) Hadamard

differentiable tangentially to the support of G if and only if

Sup B [f (Va(T(P,) = T(Pn)) | {Yi, Dis Zi, Xi}ioa] = E[f(Tp(G))]] = 0,(1)

Since lemma 1.9.27 shows that under assumptions 1, 2, 3, and 4, T is fully Hadamard

differentiable tangentially to the support of G, this completes the proof. O
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1.9.4.2 Alternative for directional differentiability

Lemma 1.9.29. Let assumptions 1, 2, and 3 hold, and {r,}5°; C R satisfy k, — oo
and K, /y/n — 0. Forc € {cp,cy}, let

\IIC(PHQH PO\x) = argmax P1|:1:(§0) + PO\x(,QZ})
()P N(FexFE)

~ ~ o ~ o K,
\ch,x = {(907¢) € (I)c N (Fc X Fcc) ) OTC(Pl\zaPOkE) < P1|m(<p) + P0|I(¢) + %}

and OTé7(p1|z7p0‘z)aﬁIc,z : C(]:l,za L2,P) X C(]:O,zu L2,P) — R, be given by

OT (p,,,.py,) (H1, Ho) = sup Hi () + Ho(¥)
Y (‘P:¢)€\IIC(P1\z7PO|z)

OT. . (Hy, Hy) = sup H(p)+ Ho(t))

(p0)€Ve s

Then for any (Hi, Ho) € C(Fi e, Lo,p) X C(Foz, La,p),
v ' P
OTc,z(Hh HO) - OTc,(Pl,‘m,PDM)(Hh HO) =0

Proof. The proof is similar that of Fang & Santos (2019) lemma S.4.8. As the subscript «

plays no role, we drop it from the notation.

In steps:
1. We first esteablish an inequality used several times below. Note that for any

(3.9), (9, ) € D N (Fo x FC),

1P — Pill7 +11Po — Pollm > Pip) — Pily) + Bo(t) — Po(th)

1Py = Pill7 + | Bo — Bl > Pi(@) — Pu(@) + Po(¥)) — Bo(1))
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Add these to obtain

A

> Pi(p) — Pa(p) + Po() = Po(v) + Pa(@) — (@) + Po()) — Po(),  (1.71)

2. We next show

lim P (\I!(Pl, Py C @) —1 (1.72)

n—oo

Let (¢,1)) € W(Py, By), and rearrange (1.71) to find

2 <||P1 — Pl + | B - P0||fo>

A

> Pi(p) + Po(v) = Pu(9) = P(9) + Pi(@) + Po(¥)) = Pilp) = Po(¥)

J/

~—
>0

~ A ~

Pi(y) + By(v) — Py(@) — P(¥)

v

and therefore

~ ~

s Pi(e) + Pow) < Pul@) + PD) +2 (11 = Pills + 1B ol
()P N(FexFE)

Kn

Jn

holds for any (,4) € W.(Py, Py). It follows that 2 (||1f71 — Pill5 + || By — P0||f0) <
eV

implies (, 1) ¢, and hence

n

n A~ A ~
j2 (2/{£ (||P1 — Pl + Py - P0||;O> < 1) <p (\I!(Pl,PO) C qf>

Lemma 1.9.26 implies |2, — Py, + | Bo — Pyl 5, = 0. Since X2

%~ — 0, this implies that
2\&/_3 (le —Pillz + 1P — POH]-'O> = 0,(1) and therefore

n—oo

i 2 (97,7 € 52) 2 fim P (22 (171 = Pl + 10— Rlln) <1) =1
n—oo Rn
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as was to be shown.

3. We next show that for any § > 0,

lim P (\Tf c (\If(Pl,PO))5> ~1 (1.73)

n—0o0

where (U(Py, Py))° is an open d-enlargement of W(P;, Py) under L; i.e.

(P, By)) = {<f, O b Lal(e ) (fg)) < 5}

(g&,w)e\Ij(PLP())

Toward this end, note that

n= sup {Pi(e) + Po(¥)} - sup {Pi(e) + Po(v)}| >0

() EPN(Fex FE) () E®N(Fex FEO\(W(P1,Pp))°

n > 0 follows from compactness of ®.N(F.x F¢) and continuity of P, + Py with respect

to Ls (see the proof of lemma 1.9.7).

Rearrange (1.71) to find

Pi(¢) + Po(v) — Pi(p) — Po(2)

<2(I1 = Pl + 1B — RBllz ) + Pi(9) + Bo(@) - Pi() = Polv)

Take suprema over (¢, ) € ®, N (F, x F¢) to find

. sup Pi(@) + Po(¥) — Pi() — Po(v))
(@) €D N(Fe X FE)

<2(I7 - Pillz + 1% - Pollz,) (1.74)

+  sup Pi(@) + Bo(¥) — Pri(p) — Po(¥)
((ﬁ,TZJ)G‘IDCﬂ(fCX]:f.)
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Suppose there exists (i, 1) € &, N (F, x F2)\ (U(Py, Py))° such that

A

~ ~ ~ K
sup P(p)+ Po(¢) < Pi(p) + Po(¢) + —.
(GD)EPN(Fex FE) v

For any such (¢, ), (1.74) implies

~ sup Pi(@) + Ro(v) — Pi(p) — Po(v)
(@) EPN(Fe X FE)

N A Kn
<2 (1B = Pillz + 1B = Bl ) + %

from which it follows that
~ ~ Kn,
2(I2 = Al + 170 = Rl )+

> sup Pi(@) + Po() — sup {Pi(p) + Ro(¥)}
(B)ERN(Fex FE) () EDN(Fex FON(T(P1,P))°

="

To summarize: if there exists (@, 1) € ®. N (F. x F) \ (¥(Py, Py))° such that

~ A ~ A

~ A~ K
sup Pi(@) + Po(v) < Pi(p) + Po(v) + —,
(.8) €@ (FoxFe) v
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then 2 <H]51 — Pi|ls + ||P) — POH;O) + 7% =1, from which it follows that

P (T g (2P, R)’)

A A~ A N K
=P sup Pi(@) + Po(¥) < Pa(p) + Po(v) + —=
(@) EBN(Fex FE) \/ﬁ

for some (p,1) € &N (Fe. x Fo)\ (‘I’(Pl,PO))a)

~ ~ K
<p(2(In-P Py=Rllz)+ = >n) =0
<P (2(IA - Pils + 1R - Rils) + 7% 2 )

where the final limit claim follows from 5 > 0, k,,/\/n — 0, and |P, — Py|| 7 + || Po —
Boll 7 = 0p(1).

4. (1.72) and (1.73) imply that for any 6 > 0, P <\IIC(P1,PO) CVU,C \Ifc(Pl,PO)5> —
1. It follows that there exists a sequence {J,}°>, C R, with §, | 0 such that
P (\Il(Pl, Py) C . C (P, P0)5"> 1. When U(P,, Py) C ¥, C U(Py, Py)% holds,

—
‘OTc,x(Hla Ho) — OT, p, p,)(Hi, Ho)

< sup {Hi(e) + Ho()} — sup  {Hi(p) + Ho(v)}
(o) €V (P, Po)0nN®N(Fex FE) (p,¥)EV(P1,Py)

< sup {H1(p1) + Ho(y1) — Hi(p2) — Ho(vo) }
(01,91),(p2,92) ERLN(Fe X FE); La((p1,1%1),(p2,92))<on

= Op(l)

where the 0,(1) claim follows from H; + H, being continuous and ®.N (F. x F¢) being

compact, implying H; 4+ Hj is in fact uniformly continuous.
This concludes the proof. O]
Theorem 1.5.4. Suppose assumptions 1, 2, and 3 hold, let P; be given by definition 1.5.1

or 1.5.2, and {k,}5>, C R satisfy £, — o0 and k,/\/n — 0. Then conditional on
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{Y,,D;, Z;, X;}7q,

DaDsTo gy (py (VT3 (L) — Ty (P))) & Th(G)

i outer probability.

Proof. The overall strategy is to apply Fang & Santos (2019) theorem 3.2, viewing T} (P,,) as
the estimator for 71 (P), T1(IP}) as the bootstrap, and 71 = T, 0 T3 0 75 as the directionally

differentiable function. There are four assumption to verify.

1. To see that Fang & Santos (2019) assumption 1 holds,
(i) the map
M
TyoTyoTy: [[0°(Fia) x €°(Fou) x RN x RO x R — R?
m=1

is a map between Banach spaces.

(ii) by lemmas 1.9.23, 1.9.24, 1.9.25 and the chain rule (lemma 1.9.50), T_; = Ty o
T3 o Ty is Hadamard directionally differentiable at 77(P) tangentially to

M
Dran = [ [ C(Fram: Lap) X C(Fou,, Lap) x RF x RF xR,

m=1

2. To see that the estimator T)(IP,,) satisfies Fang & Santos (2019) assumption 2, note

that
(i) Ti(P) € [TM_, 6°(Fi.) x £2(Fop) x REY x RE0 x R and lemma 1.9.19 shows
M
Ty(Py) : {Yi, Dy, Zi, Xidpoy — [] €°(Fra) x €°(Fou) x RF xR0 x R

m=1

satisfies /(T (B,) — T1(P)) = T} p(G).
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(ii) 77 p(G) is tight because G is tight and 7] p is continuous. Lemma 1.9.19 also

shows the support of T} 5(G) is included in Dryy,.
3. The bootstrap T3 (P}) satisfies Fang & Santos (2019) assumption 3:
(i) T1(P%) is a function of {Y;, D;, Z;, Xi, W}, with {W;}"_, independent of
{}/ia Di7 Zi7 X’L}?:l
(ii) Ty is fully Hadamard differentiable at P tangentially to ¢>°(F), and hence the
functional delta method implies /n(71(P,) — T1(P)) EX 1] p(G). Lemma 1.9.28

shows that PP} satisfies Fang & Santos (2019) assumption 3, and thus Fang &
Santos (2019) theorem 3.1 implies

fsé%lz |E [f(\/ﬁ(Tl(P:;) - Tl(]Pn))) | {Yiu D, ZiaXi}?:l} - E[f(Tll,P(G))H - Op(1>

(iii) Condition (iv) below holds, and hence Fang & Santos (2019) lemma S.3.9 implies
Vn(Ti(P:) — T1(P,)) is asymptotically measurable.

(iv) Note that for any continuous and bounded function f, f(y/n(Ti(P¥) — T1(P,)))

is continuous in {W;}?_; and hence is a measurable function of {W;}7 .

4. Fang & Santos (2019) assumption 4 is about the estimator of the derivative.

Notice that TLLTI(P) = T47T3(T2(T1(P))) o Té,Tz(T1(P)) o Tz’le(P) is given by
T 1 7y (p) : Dran — R?, T\ 1y (py(h) = DaD3T; 1, (py(h)
Estimate this derivative with
T’ 2(p) : Dran — R?, DyD3Ty g, ) ()

The estimator 7" 1.7,(py Satisfies the conditions of Fang & Santos (2019) lemma S.3.6,

and therefore Fang & Santos (2019) assumption 4. These conditions are
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~

(a) Modulus of continuity: |[T”, 7 p)(h1) — fLLTl(P)(h?)” < Cpllhy — hal| for some
Cn = O,(1).

(b) Pointwise consistency: for any h, | T1.1,p)(h) — T-1.1,(py(h)]| = 0,(1).
To see these claims in detail:

(a) For any matrix A, let ||Al|, = sup,,,,—1/|Az||l2 be the operator norm.

1T,y (1) = Ty oy (o)) = | DaDs Ty gy (py (h1) — DaD3T} g (py (ha) |
<N\ DaDsllo % || Ty 7y (py(h1) — Ty (py (h2)

< |[DuDjslo % [|h1 — hol|

where the last claim follows because T\QI,T1( py is 1-Lipschitz (shown below). Next
notice Dy % Dy and D3 £ Dy by the CMT, which implies || DyDs]|, = O,(1) as

required.

To see that 7/—\12/7T1 (py is 1-Lipschitz, recall from appendix 1.9.3.3 that

T2/7T1(P) ({Hl,x7 HO,x; hm,aza hno,x7 hs,x}mGX)

— _—
= ({OT., . (Hi s, How), ~OT, (Ho s o) o i hm}m)
The maps ﬁcbx; —5?%@ are 1-Lipschitz. Specifically, note that

— —/
0T, .(Hiz,Hox) — OT,, (G1z, Gog)l

sup  {Hio(p) + Hoo())} —  sup {G1,x(¢)+Go,x(w)}'

(‘p7¢)€\i}6,m (‘pvqﬁ)e{l\lcﬂf
< sup [Hio(p) — Gia(p)| + sup [Hoo(¥) — Goo ()]
PYEF1 x YEF0,z

= [|Hio — Giell7 . + [Hoe — Goell7.
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and similarly, —ﬁcH,z is 1-Lipschitz. The other maps in fQ,Tl( p) are the identity

map, which is also 1-Lipschitz. It follows that T 9,1 (P) 18 1-Lipschitz.

(b) To show pointwise consistency, fix h = ({H1 4, Ho z, iy s Pong 35 Pos o fae ) and note
that

1T 1,y (h) = Tovy oy | = 1DaDsTo gy (py (h) — DaDsTamy (py(h) |
< |[(DaDs = DaD3)Ty 1, py ()| + | DaDs(Toy (py (h) — Toy(py (R)) |

< |D4Ds — DiDslo X |T5 1,y (W)I| + | DaDsllo X | o) (h) — Toy () (1)
Since 154153 2 DD, by the CMT, it suffices to show

| T2,y (h) — Tor(py(R)|| = 0p(1)

——Ls
The only nonzero coordinates correspond to OT',, . (Hy ., Ho,) and

—H/
—OT (Hl,xa Ho,x)l

CH,X

1 To1,(p) (B) — Tory(py(R)|)?
— 2
= (0T, o(Hia, Hou) = OT., () (i Ho))

— 2
+ (0T, o (s How) = OT,, (1 gy (e, o) )

= 0p(1) +0p(1)

where the last 0,(1) claim follows from lemma 1.9.29.

We conclude through Fang & Santos (2019) lemma S.3.6 that Fang & Santos (2019)

assumption 4 is satisfied.
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Finally, apply Fang & Santos (2019) theorem 3.2 to find that

sup | E [f(D@gfz,Tl(P)(\/ﬁ(Tl(PZ) —Ti(Pn)))| — E[f(Tp(G))]| = 0p(1)

feBLy

as was to be shown. O

1.9.5 Appendix: duality in optimal transport

This appendix contains terminology, notation, and results regarding optimal transport used
in this paper. Many of these results can be found in the monographs Villani (2003), Villani
(2009), or Santambrogio (2015).

1.9.5.1 Primal and dual problems

Let Y1, Yo be Polish subsets of R, equipped with their Borel sigma algebras. Let P(Yy) be
the set of probability distributions defined on Y,;, and Py € P(),). Let P(Y1 X Vo) be the

set of probability distributions on the product space Y; x ).

A probability measure m € P(); x }) has marginals P, and P, if

For all A C Y, measurable, m(A x My) = P1(A) = / Ta(y1)dPy(y1) (1.75)

For all B C ) measurable, 7(); x B) = Py(B) = / 15(yo)dPo(yo) (1.76)
The collection of such joint distributions with marginals P, and F, is denoted
(P, Py) = {m € P(V1 x W) ; 7 satisfies (1.75) and (1.76)} (1.77)

The cost function is a measurable function ¢ : Y x Yy — R. The functional I : P()1 x V) —
R U {400} is defined as
L[] = /C(yh Yo)dm (Y1, Yo) (1.78)
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The optimal cost OT,(Py, Fy) is the infimum of I.[r] over II( Py, Fp):

OT.(P,Py) = inf I[r]= inf /c(ybyo)dw(yl,yo) (1.79)

7TEH(P1,P0) WEH(Pl,Po)

This minimization problem in (1.79) is known as optimal transport. When attained, a so-
lution to (1.79) is called an optimal transference plan or optimal coupling. Attainment is

common; Villani (2009) theorem 4.1 implies:

Lemma 1.9.30 (Optimal transport is attained). Let ¢ : Yy x Yy — R be lower semicontin-

uous and bounded from below. Then there exists 7 € II(Py, Py) such that

Ec(Y1,Yy)]= inf /C(yl, Yo)dm (Y1, Yo)

WGH(Pl,PU)

The dual problem will require some additional notation. For any probability measure P

let L'(P) denote the P-integrable functions. Define
O, = {(p,¥) € L'(P1) x L'(Py) 5 o(y1) + ¢ (yo) < c(y1,90) }, (1.80)
and J : L'(P) x L'(Py) — R by
J@zw>=3£ﬁwwadpmm>+- ¥ (yo)dPo(yo) (1.81)

Yo

The dual problem of optimal transport is

sup J(p,9) = sup /w@ma@o+/¢mw%@@ (1.82)

(CRDIS 2 (py)ede
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1.9.5.2 Duality

For any topological space Z, let Cp(Z) denotes the set of functions f : Z — R that are

continuous and bounded, and
. NC = {(p. 1) € Co(X1) X C(Mo) : @(y1) + Y(yo) < c(yr, 40)} (1.83)

The following weak duality statement is Villani (2003) proposition 1.5.

Lemma 1.9.31 (Weak duality).

sup  J(g,¥) < sup J(p,9) < inf I [7]
(0:%)€PNCy (P ) EPe mell(P1,Fo)

The following strong duality statement can be directly inferred from Villani (2009) the-

orem 5.10, or Santambrogio (2015) theorem 1.42; and so is presented without proof.

Theorem 1.9.32 (Strong duality). Let ¢ : Yy x Vo — R be lower semi-continuous and

bounded from below. Then

inf I [r]= sup J(p, )= sup J(p, ) (1.84)

mell(P1,P) 0 pED, () EDNC,

Moreover, the infimum of the left-hand side of (1.84) is attained.

1.9.5.3 c-concave functions

For any function ¢ : )y — R and cost function ¢(yi,y0), define the c-transform of ¢ as the

function ¢°: )y — R given by

©°(yo) = ylig,l{C(yl, Yo) — @(y1)}-
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Similarly, ¢°(y1) = infy ey, {c(y1,¥0) — ¥ (yo)} is the c-transform of . ¢ is called c-concave

if o = (¢°)° = p. If p is c-concave, then (p, ¢°) is called a c-concave conjugate pair.

The following lemma 1.9.33 is exercise 2.35 found in Villani (2003) and presented without

proof.

Lemma 1.9.33 (Villani (2003) exercise 2.35). Let Y and Yy be nonempty sets and c :

Vi X Yo — R be an arbitrary function. Let ¢ : Yy — R. Then

(i) e(y1) + ¢“(yo) < c(yr, vo) for all (y1,y0) € V1 x Vo
(i1) (1) > p(y1) for all y; € Y, and

(ii) ©““(yo) = ¢°(yo) for all yo € Vo
It follows that ©°“ = @ if and only if ¢ is c-concave.

FOI'HQ{(f,g), f:y1_>R7 andg:yo—HR},let

Fi(H) = {gpc : Yo —= R 3A(f,9) € Hs.t. ¢(yo) = ng)l{c(yl’yo) — f(yl)}} (1.85)

Feo(H) = {80 V= R 3ot € F(H) st p(yn) = ygggf;o{c(yl’y(’) - SOC(?JO)}}

F.(H) is called the c-concave functions generated by H, and F¢(H) the c-conjugates generated
by H.'3 Notice that not every (p,v) € F.(H) x FS(H) is a c-concave conjugate pair.

Lemma 1.9.34 (Restricting the dual to c-concave functions). Let ®.; C ®. be such that

1. strong duality holds: inf er(p, py) L[7] = Sup(, y)ca., J (¥, ¢), and

13H is a typically a subset of L'(P;) x L'(P). As defined the sets F.(H) and F¢(H) only depend on the
functions in H that map ) to R. This notational choice is more natural with the reasoning of lemma 1.9.34
below.

120



2. the c-concave functions generated by ®., are integrable: F.(Pes) x F&(Pes) C LY Py) x
LY (Py).

Then

EHi(I}DfP)Ic[W] = sup J(p,¢%) = sup J (@, 7).
T 1,50 PEFce(Pes) (<p,¢)€<1>cﬁ(fc(écs)xfg(@cs))

Proof. Let (o, 1) € ®us. ¥(yo) < c(y1,y0) — ¢(y1) implies ¥(yo) < ¢°(yo), and lemma 1.9.33

shows both that p(y1) < ¢“(y;1) and the pair (¢, ¢°) is a c-concave conjugate pair; thus
(9%, ¢%) € BN (Fo(Pes) X FE(Des)).

Since ¢ and ¢ are integrable by assumption, J(p, 1) < J(p, ¢°) and hence

inf  I[r]= sup J(p, )< sup  J(¢%, %) < sup J(p, 1)
71—61_1(1317P0) (gD,’lﬁ)G@cs chefc(‘i)cs) (QD,’L/J)ECI)CQ(]‘—C(‘I)CS)X.Fcc(cbgs))

Finally, since ®. N (Fo(Pes) X FE(Pes)) C P, it follows that

sup  J(p, %) < sup J(p, )= inf I.|mw
o (0, %) S (pv) = _inf  Ielr]
with the final equality following from strong duality. m

Lemma 1.9.35 (Continuous cost function implies measurability of c-concave functions). If

c: Y1 x Yo — Ris continuous, then for any ¢ : Yo = R, o(y1) = infy ey, {c(y1, y0) — ¥ (o)}

and ¢°(yo) = infy, ey, {c(y1,y0) — p(y1)} are upper semicontinuous and hence measurable.

Proof. The pointwise infimum of a family of upper semicontinuous functions is upper semi-
continuous (Aliprantis & Border (2006) Lemma 2.41). Since ¢(y1,yo) is continuous, for any

fixed yo € Yy the function y; — ¢(y1,y0) — ¥ (yo) is continuous and hence

o(y1) = yggo{ff(yl, Yo) — V(o) }
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is upper semicontinuous. Similarly, ¢°(yo) = infy, ey, {c(y1, yo) — ¢(y1)} is upper semicontin-

uous. Being upper semicontinuous, ¢ and ° are measurable. O

Remark 1.9.1. Compare lemma 1.9.35 with Villani (2009) Remark 5.5 discussing measur-
ability of c-concave functions. Note that continuity of ¢ is sufficient but not necessary for

measurability of c-concave functions; see section 1.9.5.5 for counterexamples.

Lemma 1.9.36 (Universal bound on the the dual problem feasible set). Suppose ¢ : Y X

Yo — R is bounded. Let cr, = inf(y, yo)ey <y, (Y1, %0) and cg = SUD (1 y0) €M1 x Vo c(y1,Yo)-

1. For any bounded functions ¢ : Yy — R and ¥ : Yy — R, ©° and Y° are bounded.
2. For any bounded, measurable c-conjugate pair (p, ) there exists ¢ such that

(i) @ and @° satisfy the bounds:
cr <@(y) <cm cp —cag < @°(yo) <0

for all (y1,y0) € Y1 X Vo.
(i1) J(p,¢°) = J(, 5°).

Proof. For claim 1, let ¢ be bounded and note that

cr, —supp < yig} {cyr,90) — (1)} < ey —supyp (1.86)
1 1

J/

-~

=¢°(yo)

are finite bounds on ¢°. The upper bound on ¢° follows from the existence of a sequence

{yi}520 with o(y1;) — supy, ey, p(y1), because ¢°(yo) = infy ey {c(y1,90) — w(y1)} <
c(y15,Y0) — p(v1j) < cw — p(y1 ) for all j. The same argument shows ¢ is bounded, specifi-

cally,
cp —supth < yigg {e(yi,90) = ¥(yo)} < ey —sup (1.87)
0 0
:d;?yﬂ
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For claim 2, let (¢, ¢°) be a c-conjugate pair, i.e. ¢(y1) = inf, ey, {c(v1,v0) — ¥°(v0)}-
Notice that for any s € R,

(¢ +5)(v0) = ng,l{C(yu Yo) — p(y1) — st = ¢“(yo) — s
(¢ +8)“(v0) = y(i)ggo{cf(yl, Yo) — ¢ (y1) + st =p(y1) + 5

Define ¢(y1) = ¢(y1) — supy + cp, and notice that supp = cy. Thus (1.86) implies
0

cr —cg < @%(yo) < 0 for all yo € Vo, and so (1.87) implies ¢, < ¢*“(y1) = @(y1) < cq.

Finally,
Heu#) = [ elmdriton) + [ o w)iri
= /gp(yl) —sup @ + cydPi(y1) + / ©°(yo) + sup ¢ — cgdPy(yo)
= J(@7 @C)
which completes the proof. O

Remark 1.9.2. Lemma 1.9.36 shows that it is often without loss of generality to restrict the
dual to classes of functions sharing universal bounds. For an example, see lemma 1.9.38

below.

Note that when ¢, = 0, the bounds simplify to

0 <o) < [lefloos — llelloe < &*(30) <0

as in Villani (2003) Remark 1.13. Also note that, when any universal bound suffices, one

can take

= llellse < @(11) < lleloo, — 2lclloc < #(yo) <0
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which depend only on ||¢[|s = Sup(yhyo)eylxyok(yl; Yo)|-

1.9.5.4 c-concave functions of smooth cost functions

For a € (0,1] and L > 0, ¢: Y1 x Yo — R is called (a, L)-Hélder continuous if

[

lc(y1, o) — ey, vo)| < Ll (1, v0) — (¥, %o)

for all (y1,40), (Y1, ¥5) € Y1 x Wb.

Lemma 1.9.37 (Holder cost implies Holder c-concave functions). Let ¢ : Yy X Vo — R be

(e, L)-Hélder continuous. For any g : Yo — R,

o(y1) = y(i)ggo{C(yh o) — 9(vo)}, ©°(yo) = y}g&{dyl, Yo) — p(y1)}

are (o, L)-Hélder continuous.

Proof. Hélder continuity implies ¢(y1,y0) < c(y, o) + L|y1 — y1|* holds for any yo € Vo and
any y1,y; € V1. It follows that

o) = ggggo{c(yl, o) — 9(Wo)} < c(y1,10) — 9(yo) < c(y1,y0) — 9(yo) + Llyr — 1 |*

implying ¢(y1) — (c(¥1,v0) — 9(v0)) < L|yn — 94 |*. Therefore
|a

() — oY) = ely1) — yggo{c(y’l, Y0) —9(wo)} < Llys — v

holds for any yi,y; € V1. Reverse the role of y; and ¥ to find ¢(v]) — ¢(y1) < L|y; — 11]%,
and hence ¢ is («, L)-Holder. The same argument implies ¢° is («, L)-Holder. O

Lemma 1.9.38 is relevant for compact V;,), C R, and L-Lipscthiz ¢ : )1 x Vo — R.

124



Under these conditions, define

Fe={o: 1 =R =l < 0(11) < llclloos l0w1) — 0(y1)] < Llys — 441} (1.88)

Fe={Y: Yo = R; =2||clloc < ¥(y0) <0, [¥(yo) — ¥(yo)| < Llyo — yol} (1.89)

Lemma 1.9.38 (Strong duality for smooth cost functions). Let Y;,Yy C R be compact,
c: Y1 x Yo — R be L-Lipschitz, and F., F¢ be given by (1.88) and (1.89) respectively. Then
strong duality holds:

inf I.[n] = sup J(p, ¥
n€(Py,Py) ] () EPN(Fe X FE) ( )

Proof. First notice lemma 1.9.37 implies F.(®. N Cy) and FS(P. N Cp), the set of c-concave
functions and c-conjugates generated by ®. N C, respectively, consist of L-Lipschitz func-
tions." Since ¢ is continuous and Yy x Yy is compact, ||c/lsc = SUD,, oy, 5y, %0)| < 0.

Continuity implies these c-concave functions are measurable, and lemma 1.9.36 shows they

are bounded. Thus F.(®.NCp) x F¢(®.NCy) C L' (Py) x L' (P), and so lemma 1.9.34 implies

inf I x| = sup J (@, ¢°
well(P1,Po) [ ] peFc(PeNCy) (go 90)

Lemma 1.9.36 and remark 1.9.2 further shows that for every ¢ € F.(®.N (), there exists
a shifted function ¢ such that sup, ¢y, [P(y1)] < [lclloo; —2[c]l < ¢°(y0) < 0, ¢ and ¢° are
L-lipschitz, and J(¢, ¢°) = J(@, ¢°). Thus

sup  J(p, ¢%) = sup J(p, ¢°)

PEFe(PeNCh) pEFe
Finally,
sup J(p, ) < sup J(p,0) < sup J(p,p)= inf I[7]
pEFe (P ) EDN(Fex FE) (p)ede m€L(P1,Po)

“Note that F.(®. N Cy) and FE(P. N Cp) are not necessarily F. and F¢ defined in the statement of the
lemma.
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completes the proof. n

Remark 1.9.3. Suppose Y and ), are compact and ¢(y1,¥o) is continuously differentiable

on an open set containing )y X Yy. Then c restricted to Y; x ) is bounded and Lipschitz.

That ¢ : Y1 x Vo — R is bounded follows from ¢ being continuous, ); x ), being
compact, and the extreme value theorem. To see that c restricted to )y x )y is L-Lipschitz,
let (y1,%0), (Y1, 45) € V1 X Yo be arbitrary and note that the mean value theorem applied to
g(t) = c(t(y1,y0) + (1 — t)(v}, y4)) implies there exists s € (0,1) such that

(c(y1,90) — c(y1,v)) = 9(1) — g(0) = ¢'(s)

= (Ve(s(yr, yo) + (1 —8)(y1, %)), (1, ¥0) — (w1, %0))

Notice that Cauchy-Schwarz then implies

le(yr, yo) — c(yr yo)| < IVels(yr, yo) + (1 = )y yo)) Il (w1, wo) — (w1, %o

< osup (Ve yo)lll(ws vo) — (w1, wo)
(WY wiH)evixdo

Finally, notice L = sup,» ,mey, xy, V(w1 y)| 1s finite because Y1 x )} is compact and

(y1,%0) — ||Ve(y, yo)|| is continuous.

1.9.5.5 c-concave functions when c¢(y1,v0) = 1{(y1, %) € C'}

Theorem 1.9.39 (Strong duality with indicator costs). Let C' be a nonempty, open subset
of Vi x Yo, and ¢ : Y1 x Yo — R given by c(y1,y0) = Lc(y1,y0) = 1{(v1,%) € C}. Then

inf /ﬂc(yl,yo)d7<3/1,yo) = sup /ﬂA(yl)dpl(yl)—/ﬂB(yo)dV(yo)

ﬂ‘EH(Pl,Po) (A,B)E‘bé
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where

<I>£ = {(A, B); A C ) is closed and nonempty, B C Yy is measurable,

and 1a(y1) — 1p(yo) < 10(3/173/0)}'

Proof. Villani (2003) Theorem 1.27 implies

inf /ﬂc(yl,yo)dﬂ(yl,yo) = sup /ﬂA(yl)dPl(yl)—/ﬂAc(yo)dPo(yo)

m€ll(P1,Po) A closed

where AY = {y € Yo ; Jy1 € A, (y1,40) € C} is the projection of (A x V) \ C onto V. It is
clear that

sup /ﬂA(yl)dpl(yl)—/ﬂAC(yo)dPO(yo) < sup /ﬂA(yl)dpl(yl)—/ﬂB(yO)dV(?Jo)

A closed ACY1,BCYo

with A, B measurable. Notice it is without loss to exclude A = &, because J(1y, —1p) <

0= J(]ly17 ]13)0) and ]13)1 (yl) - ]lyo(y0> =0< ﬂc(y17y0> for all (yl,yo) S yl X yﬁ‘ Thus

sup / 1u(3n)dPy (1) — / La(yo)dv(y) = sup / 1u(n)dPy () — / 15 (o) (30)

ACY1,BCYo (A,B)ed!

Weak duality (lemma 1.9.31) implies

sup / () Py (1) — / 15(yo)dPo(yo) < inf / 16 (51, y0)dn (91, 30)

(A,B)ed! mE€Il(PL,P)

and the result follows. O

The strong duality result of theorem 1.9.39 is especially useful when combined with a

careful characterization of the corresponding c-concave functions. To describe these, let
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A C ), be nonempty, and define

AC:{yOEyO; 33/1 EA? (3/173/0) ¢C}7 ACC: {yl Gyl ; VZ/O eyO\AC7 (yhyO) 60}7

(1.90)

Com ={vo € Vo; Yy1 € V1, (y1,%) € C}, Cim={mn € I1; Yyo € Yo, (y1,9) € C}
(1.91)

Cim  if Cop = @ Com if Crpp =@
: cY = (1.92)
@ if Com # O o ifC, # D

C _
COm_

Note that A® is well defined whenever A # @, and to ensure A““ is well defined we require

A® #£ Y. Cop is denoted as such because 1y, (yo) = infy, ey, 1o (y1,yo) is the subset of Yy

found by minimizing 1¢(y1, yo) over y; € V.

Lemma 1.9.40 (c-concave functions for indicator costs). Let C' be a nonempty, open subset
of Y1 X Yo, ¢: Y1 X Vo — R given by c(y1,y0) = Lo(y1,90), A C Y1 be closed and nonempty,
and p(y1) = La(y1) = L{y1 € A}. Then

1. ¢(yo) = =14 (Yo),
2. if AC # Wy, then (i) = 100 (y1), and

3. If A =Y, then J(p*, ¢°) = J(1¢,, ,0)

Proof. 1. Notice 1¢(y1,90) — La(y1) € {—1,0,1}, and

©°(yo) = ng;l{]lc(yl’yo) —1a(y1)}

will never take value 1 because any y; € A implies the objective is at most 0. Further-
more, if there exists y; € A such that (y1,y0) € C, then the infimum attains —1. If
there does not exist such yi, then ¢°(yo) = 0. Thus ¢°(yo) = —Lac(¥o)-
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2. Suppose A # Y. Notice that 1o (y1,v0) + Lac(yo) takes values in {0, 1,2}, and

©“(y1) = inf {Io(yr, yo) + Lac(yo)}
YoENo

will never equal 2 because )My \ A # @. Moreover, the infimum will equal 1 if and

only if (y1,y0) € C for all yo € Vo \ AY; thus ©*(y1) = 1 4c0(y1).

3. If AC = )), then ¢*(y1) = infyoey{Le(y1, wo) + 1} = 1¢y,, (y1) + 1 and

ccce (

©““(yo) = inf {Ic(y1,%) — Loy, (y1) — 1} = Lee (o) — 1
y1€N m

To see that (1¢,,, )¢ = 0 if Cy,, # @, notice the objective 1¢(y1,v0) — Ley,, (Yo) takes
values in {—1,0,1}, and because Cy,, # @ will never take value 1. For the objec-
tive to take value —1 at a given y;, it must be the case that 1¢,, (y1) = 1 and

there exists yo such that 1o(yi,v0) = 0, but this contradicts the definition Cy,, =
{y1 € Y15 Yyo € Vo, (y1,0) € C}.

However, recall that ¢““(yo) = ¢°(yo) as shown in lemma 1.9.33. Since ¢°(yo) =

—140(y0) = —1y,(yo) = —1, this implies (I )(yo) = 0. Then notice that
J(@%¢%) = J(oy, + 1, -1) = J(1o,,, 0)
[

Remark 1.9.4. Compare theorem 1.9.39 and lemma 1.9.40 with Villani (2003) theorem 1.27.

Lemma 1.9.41 (Convex C' implies c-concave functions defined with convex sets). Let C' be a
nonempty, open, convez subset of Y1 X Vo, and ¢ : Y1 x Yy — R given by c(y1,v0) = Le(y1, o)-
Let A C Yy be nonempty.

1. A% equals Yy \ B for some convex set B.
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2. If AC £, then A°C is convex.

3. C,, is conver.

Proof. For claim 1, notice that

AC — {yo €Vo; Iy € A, (11,y0) € (yl > yo) \C}
= U {w0€Vo; ,m0) € (1 x )\ C}

y1€A
= J Y\ {wo € D05 (v1,30) € C}
y1€A
=X\ ﬂ {wo € Vo5 (y1,90) € C}
y1€A

Since C'is convex, {y € Vo ; (y1,y0) € C} is also convex for any y;. The intersection of an

arbitrary collection of convex sets is convex, so AY = ), \ B for some convex B.

Consider claim 2 next. Notice that

ACC = {p€Vi; Vo € Yo\ AC, (y1,90) € C} = m {yeXs () € O}
Yo€Vo\AC

Since C'is convex, {y1 € V1 ; (y1,%0) € C} is convex as well, and thus A“C is convex.

ACC

Finally, we show claim 3. Similar to , notice that

Cim ={v1 € Y15 Yyo € Yo, (y1,y0) € C} = ﬂ {y € (y,y0) € C}

YoE€No

is the intersection of convex sets and therefore convex. O]

Refer to the convex subsets of R as intervals; specifically, I C R is called an interval if [
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takes the form
(4, u) [0, u) (€, ul 4, u]

where ¢ = —oo is allowed for (¢,u) and (¢, u] and u = oo is allowed for (¢,u) and [¢,u). I°

is the complement of the interval I.

Lemma 1.9.42 is relevant when the cost function is ¢(y1,yo) = 1{(y1,y0) € C} for some

nonempty, open, convex C' C )y x ). When this is so, define

Fe=H¢: Y1 = R; ¢o(y1) = 1;(y1) for some interval I} (1.93)

Fe=A{: Yo — R ¥(yo) = —Lre(yo) for some interval I} (1.94)

Lemma 1.9.42 (Strong duality for indicator cost functions of a convex set). Let V1, Vo C R,
C C Y x Yy be nonempty, open, and convez, and let ¢ : Yy X Yo — R be given by c(y1,y0) =
Le(yr,v0). Let Fo and FS be given by (1.93) and (1.94) respectively. Then strong duality
holds:

in / Loy, yo)dn(y o) = sup / () dP () + / b(yo)dPo(yo) (1.95)

rell(Py,Po) ()€ (FoxFe)

Proof. Recall that theorem 1.9.39 shows

in / Loy, yo)dn(yr, 50) = sup / 1a(yn)dPy () — / 15 (yo) (o)

m€IL(Py,Py) (A,B)e®]
where
o = {( A,B); AC ) is closed and nonempty, B C ) is measurable,

and La(y1) — Lp(yo) < ﬂc(yl,%)}
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Next apply lemma 1.9.34. Let ¢(y1) = La(y1) for some closed and nonempty A C ). There

are two possibilities:

1. A® =), in which case J(¢*, ¢¢) = J(1¢,,,,0), or

2. AC 2 Y, in which case J(p%, ¢¢) = J(1 400, =1 40).
Since C is convex, Cl,,, and A“C are convex subsets of R (i.e., intervals), as shown in
lemma 1.9.41. A® is the complement of an interval, and 0 = 14(yp) is the indicator of the

complement of R, which is the interval (—oo, 00). Since all functions involved are bounded,

they are all integrable, and lemma 1.9.34 implies

inf /lC(ylayO)dﬂ-(ylayO) = sup /@(?Jl)dpl(yl) +/w(y0)dP0(y0)

mell(Py,Po) (@, h)ePN (fc(<1>£)xf€(<1’£))

Finally, note that F.(®!) C F, and F¢(®!) C F¢, which implies the strong duality claim in
display (1.95) holds. O

1.9.5.6 Special cases: cr(y1,y0) = 1{y1 — yo < 0} and cy(y1,y0) = L{y1 — yo > 0}

Lemma 1.9.43. Let Fi(y) = P(Y1 < y) = [1{y: < y}dPi(y1) denote the cumulative
distribution function (CDF) of Py, and let Fy the CDF of Py. Let cp(y1,vy0) = 1{y1—yo < d}.
Then

OT., (PR = inf / Ly — o < 8}dn(y1, o)

ﬂ'EH(PLPo)

= max {Sup{Fl(y) — Fo(y —0)}, A(Yr <min{)p} + 5)} (1.96)

Yy

Proof. Let C' = {y1 — yo < 0}. Apply theorem 1.9.39 and lemma 1.9.40 to find that

OTCL(P17 Po) = max{sup Pl(Yl S ACC> — P(](% c AC>,P1(§/1 c Clm)}
AeA

132



where

A ={yo€Vo; In €A, (y1.y0) €CY, A“={y1€ V1 ; Vyo € Yo\ A%, (y1,%0) € C},

Cim = {y1 € Vi ; Yy € Mo, (yhyO) € C}‘

and A is the collection of closed, nonempty subsets of V; such that A¢ # ).

First consider supc 4 P1(Y1 € AYY) — Py(Yy € A9). Let A € A and ¢(y1) = La(y1).
Thus

AY={yedo; e A (y,5) ¢ Ct=1{yw € Vo; yo < max{A} — 4},

ACC — {yl e Yy € yO\AC, Y1 — Yo < 5} ={y €15 y1 <max{A}}

where we've used the fact that A # ), implies sup{A} < oo and so sup{A} = max{A}

because A is closed. Therefore

J(g, %) = Pi(Y1 € A%Y) — Py(Yp € A)

= P (V) <max{A}) — Py (Yo < max{A} — )

which takes the form Fy(y) — Fo(y — 0) for y = max{A}.

Now consider P;(Y; € Ci,,), and notice that

Cim={y €V1; Yyo € Yo, (y1,%0) €CY={y1 € V1 ; Yyo € Vo, y1 — %o < 6}
={y1 € V1 ; Yyo € Yo, y1 <min{Yp} + 0}

Thus P (Y; € Ci) = Pi(Y: < min{),} + 9). The result follows. O

Remark 1.9.5. C4,, may be closed; e.g., let Y, = [0,1] U [3,10], let Yy = [2,10], and § = 0.
Then Clm = {yl eV ;U < 2} = [O, 1]
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Corollary 1.9.44. Let cr(y1,y0) = L{y1 —yo < d} and Pi, Py have continuous cumulative
distribution functions Fy(y) = P1(Y1 < y) and Fy(y) = Py(Yo < y) respectively. Then

OT, (P P)) = inf / 1 — yo < S}dm(yr, o) = sup{F1(y) — Foly — &)} (1.97)
well(P1,Po) y

Proof. Continuity of the cumulative distribution functions implies P (Y; = 0 + min{)y}) =
Py (Yo = min{)y}) = 0, and thus

Pi(Y1 <6 +min{dh}) = Pi(Y1 <6+ min{dp}) — Po(Yo < min{dp})

Which takes the form Fi(y) — Fo(y — 0) for y = § + min{d)p}. It follows that

max {sup{Fl(y) — Fo(y —9)}, Pi(Yr <min{)p} + 5)} = SSP{FK?J) — Foy(y —0)}

Y

and lemma 1.9.43 gives the result. O]
Lemma 1.9.45. Let cy(y1,y0) = 1{y1 — yo > 0}. Then

o1, (P, Py) = inf /ﬂ{yl —yo > 0}dm(y1,Y0)

WEH(Pl,P())

~ nax {sgp{a([y, 50)) — Polly — 6,00))}, Pu((max{J} + 5. oo>>} (1.98)

Proof. The proof is similar to that of lemma 1.9.43. Let C' = {y; — yo > d}. Apply theorem
1.9.39 and lemma 1.9.40 to find that

OT,, (P, Py) = max{sup P,(Y; € A9C) — Py(Yy € A%), Pi(Y; € C1)}
AecA
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where

A ={yo€Vo; In €A, (y1.y0) €CY, A“={y1€ V1 ; Vyo € Yo\ A%, (y1,%0) € C},

Cim = {y1 € Vi ; Yy € Mo, (yhyO) € C}‘

and A is the collection of closed, nonempty subsets of V; such that A¢ # ).

Consider sup e 4 P1(Y1 € A9C) — Py(Yy € AY). Let A € A and p(y1) = La(y1), and

notice that

AY={yedy; I €A (y,5) ¢ CY={y € Vo; yo > min{A} — 6},

ACC _ {y1 € Y1 : Yo eV \A%, 1 —yo < 6} ={y1 € Y1'; y1 > min{A}}

Where as in the proof of lemma 1.9.43, AY # ), implies inf{A} > —oo and so inf{A} =
min{A} because A is closed. Thus

J(g%, %) = Pi(Y1 € A°Y) — Py(Yp € A°)

= P (Y7 > min{A}) — Py (Yo > min{A} —9)

which takes the form P;([y, 00)) — Py([y — d,00)) for y = min{A}.

Now consider P;(Y; € Ci,,), and notice that

Cim ={y1 €15 Yyo € Yo, (y1,%0) € CY={1 € V15 Yyo € Vo, th —yo > I}

={y1 € V1 ; Yyo € Mo, y1 > max{Wp} + 0}
Thus P (Y; € Cy) = Pi(Y1 > max{),} + 0). The result follows. O

Corollary 1.9.46. Let cy(y1,y0) = 1{y1 — yo > 0} and Py, Py have continuous cumulative
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distribution functions Fy(y) = P1(Y1 < y) and Fy(y) = Py(Yo < y) respectively. Then

OT,, (P, Fy) = inf /1{% — Yo > 0}dm(y1,y0) = sup{Fo(y —0) — Fi(y)}  (1.99)
well(P1,Po) y

Proof. Continuity of the cumulative distribution functions implies that for any y,

Pi(ly,00)) — Po(ly — 9,00)) = Pi((y,00)) — Po((y — 6,00))
=1 -F(y) - (1-Fly—9))
= Fo(y —9) — Fi(y)

and furthermore,

Pl(Yl >0+ max{yo}) =1- F1<(5 + mlﬂ{y0}> — (1 — Fo(HlaX{yg})
= Fo(max{)p}) — F1(d + max{)p})

equals Fy(y — 0) — Fi(y) for y = max{)} + 0. Finally, lemma 1.9.45 gives

OT,,(P;, Py) = max {sup{my, 5)) = Py([y — 6.50))}, Pr((max{ D} +3, oo>>}

Yy

= sgp{Fo(y —0) = Fi(y)}

1.9.6 Appendix: miscellaneous lemmas

1.9.6.1 Continuity

Lemma 1.9.47 (Continuity of maps between bounded function spaces). Let f : Dy C RF —

RM be uniformly continuous. Define the subset of bounded functions on T taking values in
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]Df.'
(T, Dy) = {g ;T — R"; g(t) € Dy, supllg(t)]| < OO} C (T
teT

Let F: (T, Dy) — £°(T)M be defined pointwise as F(g)(t) = f(g(t)). Then F is uniformly

continuous.

Proof. To see that F : (>(T,D;) — ¢(T)M is well defined, recall that uniform continuity
of f implies f is bounded on bounded sets. Since {g(t) ; t € T} is bounded for any
g € (>=(T,Dy), this implies sup,||f(g())|| < oo and hence F(g) € £>(T)™.

To see uniform continuity of F', let &€ > 0 and use uniform continuity of f to choose § > 0

such that for all z,z € Dy,
lo =zl <6 = [If(z) = f(@)] <e/2

Now let 9,7 € (T, Dy) satisfy lg — dllr = supierllg(t) — #(¢)]| < 8. Then [lg(t) — (5] < 6
for all ¢ € T, and hence || f(g(t)) — f(g(t))]| < /2 for all t € T, and therefore

N _ €
1F(g) = F(9)llr = iggllf(g(t)) —fEMll =5 <e
which completes the proof. n

Corollary 1.9.48. Let f : Dy C RE — RM pe continuous and bounded on bounded subsets
of Dy. Let gy € 0°(T,Dy) where £>°(T,Dy) is as defined in lemma 1.9.47. Suppose that for

some 6 > 0,

5 _ K. B
o1 = {o € R inflon() - ol <0

is a subset of Dy. Then F : £°°(T, D) — (>°(T)M defined pointwise by F(g)(t) = f(g(t)) is

continuous at go.

Proof. For any g € (*(T,Dy), we have F(g) € (>(T)™ because {x ; x = g(t) for some ¢ €
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T} is bounded and f is bounded on bounded subsets.

Let {gn}32, C ¢=(T,D;) be such that g, — go in (*(T)%. Tt suffices to show that
F(g,) — F(go) in £2(T)M. Let f : g(T)° — RM be the restriction of f to go(T)%; i.e.,
f(x) = f(z). Note that because go(T)° is a closed and bounded subset of R¥ it is compact,

and hence f is uniformly continuous by the Heine-Cantor theorem. Apply lemma 1.9.47 to

find that

F - 02(T, g(T)’) — ((T)™, Fg)(t) = f(g(t)) = f(g())

is continuous. Since g, — go in £>°(T)% there exists N such that for all n > N, ||g, —goll7 =

supserllgn(t) — go(t)|| < 6. Let g = grn. Notice that
Gu(T) = {z € R ; 2 = g4(t) for some t € T} C 90(T)°,
and hence g, € £>°(T, go(T)?). Continuity of F and g, — go implies F(f]k) — ﬁ(f}o). Thus
0= lim | F(@) ~ F(g)llr = lim [ Fgisn) — Flgo)lr = lim |1F(g.) — Flao)llr
which completes the proof. O]

Lemma 1.9.49 (Uniform continuity of restricted sup). For any set X, subset A C X, and
bounded real-valued functions f,g € (°(X),

sup f(x) — iggg(fv) <sup|f(z) — g(z)| (1.100)

€A T€EA

and therefore o4 : £2°(X) — R given by c4(f) = sup,ea f(z) is uniformly continuous.
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Proof. Observe that

sup f(x) —sup g(x) < sup{f(z) — g(x)} <sup|f(z) - g(z)|

€A €A €A €A

and

— [sup f(x) —supg(x)| = supg(z) —sup f(z) < sup{g(z) — f(z)} < sup|f(x) — g(v)]
reA z€A z€A z€A z€A z€A

Together these inequalities imply

—sup|f(z) — g(x)| < sup f(z) —supg(x) < sup|f(z) — g(z)|
z€A z€A z€A €A

which is equivalent to (1.100).

To see uniform continuity, let € > 0 and choose 6 = . Whenever || f—g||x = sup,cx|f(z)—

g(z)] <4,

joa(f) = aa(g)] = |sup f(z) —sup g(z)| < sup|f(z) — g(z)| < sup|f(z) —g(z)| <d=¢
€A €A €A zeX

which completes the proof. O

1.9.6.2 Differentiability

This appendix reviews definitions and various facts related to Hadamard directional differ-

entiability. The following definitions can be found in Fang & Santos (2019).

Let D, E be Banach spaces (complete, normed, vector spaces), and ¢ : D, C D — E.

(i) ¢ is (fully) Hadamard differentiable at xy € Dy tangentially to Dy C D if there exists
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a continuous linear map ¢, : Dy — [E such that

lim

n—o0

H o(xg + thhn) — ¢(x0)
ln

for all sequences {h,}5°; C D and {t,}>>, C R such that h, — h € Dy and t,, — 0 as

n — oo, and xg + t,h, € Dy for all n.
(ii) ¢ is Hadamard directionally differentiable at xy € D, tangentially to Dy C D if there

exists a continuous map ¢}, : Dy — [ such that

lim

n—o0

H P(xo + thhn) — d(x0)
ln

for all sequences {h,}2°, C D and {¢,}5>, C R, such that h, — h € Dy and t,, L 0 as

n — oo, and xg + t,h, € Dy for all n.

Fang & Santos (2019) proposition 2.1 shows that linearity is the key property distin-
guishing directional and full Hadamard differentiability. Specifically, if ¢ is Hadamard di-
rectionally differentiable at xo tangentially to a subspace Dy, and ¢/, is linear, then ¢ is in

fact fully Hadamard differentiable at xy tangentially to D.
Hadamard directional differentiability obeys the chain rule.

Lemma 1.9.50 (Chain rule). Let Dy, Dy, and E be Banach spaces and ¢y : Dy, C Dy — Dy,

@2 : Dy, €Dy — E be functions. Suppose

(Z) ¢1(D¢1> = {y € Dy Y= ¢1($) fOT some x € D¢>1} C ]D)¢>27

(ii) ¢1 is Hadamard directionally differentiable at xo € Dy, tangentially to D C Dy, with

derivative ¢ , (h), and

(iii) @9 is Hadamard directionally differentiable at ¢1(x¢) € Dy, tangentially to DI C Dy,

with derivative ¢ 4, (h)
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Let DT = {z € DT ; ¢}, (x) € DI}. The composition function

1,20
(b : qul — E? ¢($) = ¢2(¢1<9))

is Hadamard directionally differentiable at zo tangentially to DT, with

¢y : DT 2 E, P2y () = 5.6, (20) (D120 (P)

Proof. That ¢ is well defined is clear from assumption (i). To show its Hadamard directional
differentiability, let {h,}>°, C Dy, and {t,}3>; C R, be such that h, — h € DT, ¢, | 0,
and zg + t,h, € Dy, for all n. Assumption (ii) implies that

lim
n—oo

— 1, ()| =0 (1.101)

D2

‘ 1 (IO + tnhN) - Gbl(%)
tn

Let g, = i [¢1(20 + tahn) — ¢1(20)], g = ¢ ,, (h), and notice that (1.101) implies g, — g in
Ds,.
Assumption (i) implies ¢1(zo) +tngn = ¢1(x0+tnhy) € Dy, for each n, and the definition

of DT implies g € DI. Assumption (iii) implies that

$2(01(20) + tngn) — P2(P1(70))
tn

lim
n—oo

=0 (1.102)
E

= Gg1(20)(9)

Substitute ¢a(p1(z0) + tngn) = G2(@1(x0 + thhy)), and g = ¢}, (h), into (1.102) to find

1,20

tnhy)) —
nh_{&‘ P21 (w0 + t)) $2(p1(x0)) _ <Z5/2,¢1(x0)(¢/1,x0(h)) —0
n E
which completes the proof. O]

Remark 1.9.6. When defining and differentiating composition of functions, the outer func-

tion’s properties determine restrictions that must be placed on the inner function to ensure
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the composition function is well defined and differentiable.

A familiar example of this is that the domain of the “inner function” ¢; may need to be
restricted to ensure the composition map is well defined. For a simple example, 22 is well
defined and differentiable for any = € R, but log(z?) is only well defined (and differentiable)
for z € (0, 00).

A less familiar example shows up only when considering Hadamard differentiability tan-
gentially to a set. The tangent spaces of each function jointly determine the tangent space

of the derivative of the composition map.

The next lemma shows that Hadamard directionally differentiable functions can be

“stacked”.

Lemma 1.9.51 (Stacking Hadamard differentiable functions). Let D, E,, and Ey be Banach

spaces, and Dy C D. Suppose oW Dy — E; and o Dy — Eo are Hadamard directionally

differentiable tangentially to Dy C D at xy € Dy with derwatives gbé?l Dy — E; and
gc%)/ : Dy — E5. Define

61Dy > By x B, o) = (60 (z), 6 (x))
Then ¢ is Hadamard directionally differentiable tangentially to Dy at xqo, with derivative

&, Do Ex x Ea. W) = (4 (1), 02 (m))

Proof. Hadamard directional differentiability of ¢(1) and ¢®) tangentially to Dy at z, implies
that for any sequences {h,}>*, C D and {t,} € R, such that h, — h € Dy, t, | 0, and
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xo + tphy, € Dy for all n,

o) £ ) — 6D
lim H¢ (IO—i_ n n) ¢ (.Z'()) _(bg(pl)/(h) _ O, and
n—00 tn 0 E,
@) Y — 6@
lim H¢ (o & tnln) = 0700) _ oy =
n—00 tn E,
Since ||(e1, e2) — (€1, €2)||r, xE, = ||€1 — €1l|r, + ||e2 — €2||g, metricizes E; x Eo (Aliprantis &

Border (2006) lemma 3.3), we have

[otentitn) —s)

tn

]E1 ><]E2

D (2o + toh), 6 (x0 + tohy)) — (6D (zo), 6@ (24
| (6960 + taha). 02 +;h ) = (600), 69 ))—(;?m), o)

El XEQ
n n Eq1xEo
gzﬁ(l)(xo + thn) — 925(1)(1:0) ¢(2) (To + tahn) — ¢(2) (20)
- t —om)|| + : — o)
n E; n Eo
Taking the limit as n — oo gives the result. [

Hadamard differentiability in bounded function spaces

It is common to “rearrange” Donsker sets; i.e. view them not as scalar-valued but vector-
valued with each coordinate occuring over a particular subset of functions (see van der Vaart
(2007) p. 270). The following lemma shows that one direction of the equivalence can be

viewed as an application of the delta method.

Lemma 1.9.52 (Rearranging Donsker sets). Suppose F = Fi1U...UFg is P-Donsker, and
Vn(P, —P) LG in (>®(F). The map ¢ : £°(F) — >°(Fy) X ... x {>*(Fk) defined pointwise
by

() (frs-- - fx) = (9(f), - 9(fx))
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is fully Hadamard differentiable at any P € (>°(F) tangentially to (>°(F), and is its own

derivative:

Op : (2(F) = (2(F) % ... x 0(Fi), ¢p(h) = 6(h)
and hence

Vi($(P,) = 6(P)) = ¢(G) in (°(F1) % ... X 02(F)

Proof. The map ¢ is linear; let a,b € R and g, h € ¢°°(F) and notice that for any (f1,..., fx) €
Fi X ... X Fg,

¢(ag +bh)(fi, ..., fx) = ((ag + bR)(f1),. .., (ag + DR)(fK))
= (ag(f1) +bh(f1),- .., ag(fx) + bh(fK))
=a(g(f1), -, 9(fk)) + b(h(f1) .., h([fK))
= ad(9)(f1, -, fx) +bo(R)(f1, .-, fK)
= (ad(g) +bo(h))(f1,-- -, fK)

hence ¢(ag + bh) = (ap(g) + bp(h)), as these functions agree on all of Fy X ... x Fk.

Next observe that ¢ is continuous. Recall that the product topology on £*(F;) X ... x

(> (FF) is generated by the norm

H(gh s 7gK) - (hl? SRR hK)H]:1><~--><-7:K = maX{Hgl - hl”]:u SRR HgK - hKH]'—K};
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see Aliprantis & Border (2006) lemma 3.3. Thus

16(9) — S| rmcrn = max{ sup [g(f) = B, sup Jg(fic) — h(fK)\}

fieF fKEFK

= llg = hll=

and hence ¢ is continuous.

Since ¢ is linear and continuous, it is (fully) Hadamard differentiable at any point tan-
gentially to ¢>°(F) and is its own Hadamard derivative; indeed, for an: for all sequences

hy, — h € (*(F) and t, | 0 € R, one has g + t,h,, € (>°(F) and

— ¢(h)

lim
n—oo

= lim [[¢(hn) = 6(M) 7, =0
F1X..XFg

HM9+%ZJ—¢@>

Finally, since /n(P,, — P) 54 G in (>(F), the functional delta method (van der Vaart
(2007) theorem 20.8) implies v/n(¢(P,) — ¢(P)) N d(G) in 0°(Fy) x ... x 0°(Fk). O

Although the following lemma and its corollary are stated for functions taking values in
R, by combining it with lemma 1.9.51 a similar result can be obtained for functions taking
values in R similar to the setting of lemma 1.9.47. Compare van der Vaart & Wellner

(1997) lemma 3.9.25.

Lemma 1.9.53 (Hadamard differentiability of maps between bounded function spaces). Let
f: Dy CRE — R. Suppose that

1. f is continuously differentiable, and

2. the gradient of f,
Vf:D; — RE, Vf(x)=<ﬁ(a:) ﬂ(@)T,

1s uniformly continuous.
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Define the subset of £>°(T)X taking values in Dy,
0.0 = {g: T R gft) € Dy supla(t] < o0 b € ()"
and the subset of (°(T,Dy) such that composition with f defines a bounded function:
G(0.07) = {g € C5(1.Dy)  supl(g(0)] < o0}

Then F : AF(T,Dy) — (T defined pointwise with F'(g)(t) = f(g(t)) is (fully) Hadamard
differentiable tangentially to (>(T)* at any go € (¥ (T, Dy), with derivative Fj : (°(T)% —

0>°(T) given pointwise by

Ep, (W) (t) = [V f(go (O] h(t) = D 5 (g0(t) (1)

Proof. The domain of (3°(T,Dy) ensures that F': £3°(T,Dy) — (>°(T') is well defined.

Let {h,}>2, C (°(T)% and {r,}>, C R such that h, — h € (~(T)%, r, — 0, and
go +rnh, € Z?O(T, Dy) for each n. For each n and each t € T', apply the mean value theorem
to find A\, (t) € (0,1) such that g,(t) == X\ (£)(go(t) + rnhn(t)) + (1 — Au(t))go(t) satisfying!®

f(@o(t) + rhn(t) — fzo(t) = [V f(gn(t))]" (2o(t) + rnhn(t) — z0(t))
=7 [V (gn(1))]" I (t)

15The mean value theorem being invoked here is the standard result: for any x, 7 € Dy, let g,z : [0,1] = R
be given by ¢,z (A) = f(AZ+(1—A)z). Then g, (0) = f(x) and g, z(1) = f(&), and the mean value theorem
tells us that there exists A € (0,1) such that

f@) = (@) = g2.5(1) = 92.2(0) = g, (N1 = 0) = [Vf(AZ + (1 = N)a)]" (& — )
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Use this to see that for all n and all t € T,

f(go(t) + Tnhn(t)) - f(go(t))

T'n

< [VF(gn(8)Tha(t) =V F(g0(8))Tha()] + |V (g0 (8))Thn(t) =V f(go(2))Th(2)]
< IV F(gn() = VF (go@) X [[Pn N + [V £ (go ()] X [1n(t) = A(H)]]

= VI {go@)Th(t)] = [V [ (gn(£))Thn(t) = V f(go(t))Th(?)]

where the first inequality is by the triangle inequality and the second by Cauchy-Schwarz in
RE. It follows that

f(g0(t) + rnhn(t)) = f(g0(t))

Sup . — V£(g0(t))Th(2)
< iggHVf(gn(t)) — V f(g0(t))]| < igthn(t)ll (1.103)
+ ilelgHVf(go(t))H X Stlelthn(t) —h(t)|l (1.104)

Consider the term in (1.103). Recall that for some A, (t) € (0,1),

gn(t) = Aa(t)(90(t) + rnhin(8)) + (1 = An(t))90(?)

= A ()T nhn(t) + go(t)

and so

lgn = gollz = sup|An(E)rnhn (@) < [ra X supl|hn(t)]] = 0
teT teT

where the limit claim follows from sup,cp||hn(t)|| = [|Anllz = [|2]|r < co (implying
{supser|lhn ()]}, is bounded) and r, — 0. Thus g, — go in £>°(T)%. Using this and
uniform continuity of Vf : Dy — RX lemma 1.9.47 implies V f(g,) — V f(go) in £>°(T)%,
le.

HVf@H-Vf@dWr=§gﬂvfwdﬂf—vf@dﬂﬂﬁﬁo
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Using once again that {sup,cp||h.()||}52, is bounded, this implies

lim supl|V f(ga(t)) = V f(g0(t))[| x Stgllhn(t)ll =0 (1.105)

n—oo teT

Now consider the term in (1.104). sup,ep||V f(go(t))]] < oo because ||V f(-)]| is uniformly
continuous and sup,cp|/go(t)|| < oo, just as in the proof of lemma 1.9.47. Furthermore,

lim,, 00 SUPsep||hn(t) — R(E)]| = 0, so
lim supl|V f(go(t))|| X supl|h,(t) — h(t)|| =0 (1.106)
n—=00 tcT teT

Combining (1.103) through (1.106) we obtain

f(go(t) + ruha(t)) — f(g0(t))

T'n

lim sup

- Vf(go(t))Th(t)‘ 0

which concludes the proof. ]

Remark 1.9.7. Lemma 1.9.53 specifies the domain of F' as

(1.0 = { € P(T.D) s suplfa(o)] < oo

It is often straightforward to clarify the space E?"(T, Dy) in particular cases; for example,
(2(T,Dy) = £°(T,Dy) if f satisfies any one of the following: (i) f is bounded, (ii) f is
Lipschitz, or (iii) f is bounded on bounded subsets (e.g., f(x) = x is bounded on bounded

subsets) See also lemma 1.9.16.

Lemma 1.9.53 requires V f(+) be uniformly continuous, but this often stronger than neces-
sary. When hoping to argue F' : £7°(T,Dy) — (°°(T') defined pointwise with F'(g)(t) = f(g(t))
is (fully) Hadamard differentiable at go € (7°(T,Dy), it suffices that f is continuously dif-
ferentiable on a closed set slightly larger than the (bounded) range of go. Compactness of

this expanded range and the fact that continuous functions on compact sets are uniformly
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continuous allow us to apply the preceding lemma. This logic is formalized in the following

corollary.

Corollary 1.9.54 (Hadamard differentiability of maps between bounded function spaces,
corollary). Let f : Dy CRX — R be continuously differentiable.

Define the subset of £°°(T)X taking values in Dy,
ET,Dy) = {95 - R 5 g(0) € Dy, suplalt)] < o0} € ()"
and the subset of (°(T,Dy) such that composition with f defines a bounded function:
(7 (T, Dy) = {g € (>(T,Dy) ; ig;!f(g(t))\ < OO}
Let go € (¥(T,Dy), and suppose that for some § > 0,
w(1) = {a € B infle - (9] <3} €Dy,

Then F : AF(T,Dy) — (T) defined pointwise by F(g)(t) = f(g(t)) is (fully) Hadamard
differentiable at go tangentially to (>(T)X, with derivative F, : (*(T)* — ((T) given

pointwise by

Fo00(0) = V1o h(0) = 3 L gotomce

Proof. Let f : go(T)? — R be the restriction of f to go(T)°. Note that f is continuously
differentiable on the compact go(T')° € RX, hence V f is in fact uniformly continuous by the

Heine-Cantor theorem. Apply lemma 1.9.53 to find that

F - 02(T, go(T)°) — £(T), F(g)(t) = f(g(t) = f(g(t))
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is (fully) Hadamard differentiable at g, with derivative Fg’o c °(T)E — (>°(T) given
pointwise by Fg’o(h)(t) = [V f(go(t))]"h(t). By definition, this means that for any se-
quences {h,}°°, C °(T)X and {7,}°>, C R such that h, — h € (>(T)%, 7, — 0,

and go + Fnhy € (°(T, go(T)?) for all n,

F(go + b)) — Flgo)

Tn

— Fy ()

—0 (1.107)
T

lim
n—oo

Let {h,}>2, C =°(T)%, {r,}>, C R be such that h, — h € (>(T)%, r, — 0, and

n=1

go + rphy, € 0°(T,Dy) for all n. It suffices to show that

HF(QO +Tnhn) - F(gO) _F (h)H
_ Stgg f(go(t) + Tnh;@)) — f(g0(t)) — [V £(g0(t)]" h(t)

has limit zero.

Notice that go + 7.k, — go in £2°(T)%, so for some N we have that for all n > N,
llgo + nhn — gollr = rnsupepl|lhnl| < 0. It follows that for & € N, gy + resnhein €
(>(T, go(T)°) and hence 7, = 14y and hy = hi+n are sequences for which (1.107) applies.

Therefore,

F —F F —F
lim H (90 + nhn) (90) FL(h)| = lim H (90 + T+ NP ) (90) F! (h)
n—o00 Tn T k—o00 Tk+N T
k—oo Tk
T
=0

Where the second equality follows from F (90 + fkﬁk) = F(go + resnhgrn) and F (90) =
F(g0)- ]
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The following lemma is lemma S.4.9 from Fang & Santos (2019), but the authors state it
for a metric space. The same proof works to show that statement holds in semimetric spaces

as well.

Lemma 1.9.55 (Hadamard directional differentiability of supremum). (Fang € Santos
(2019) lemma S.4.9)

Let (A, d) be a compact semimetric space, A a compact subset of A, and

P lF(A) =R, Y(p) = sup p(a)

acA

Then v is Hadamard directionally differentiable at any py € C(A,d) tangentially to C(A,d).

U 4(po) = argmax, 4 po(a) is nonempty, and the directional derivative is given by

Y, C(A,d) = R, Y, (p) = sup p(a)

a€W 4 (po)
1.9.7 Appendix: extensions

This appendix briefly describes a few simple extensions.

1.9.7.1 Conditioning on X € A

In many applications parameters conditional on a covariate taking a particular value are of
interest. For example, the share of compliers of a particular demographic benefiting from
treatment is P(Y; > Yy | D1 > Dy, demographic). Such parameters can be written in the

form

Ya = 9(0a,1M4)
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where for a known set A C X,

O0a = E[c(Y1,Y0) | D1 > Do, X € A, na = E[m(Y1),m0(Yo) | D1 > Do, X € A]

The identified set for v, is straightforward to characterize and estimate. First note that

1
Oa=E[0x | D1 > Do, X € A= —> 5,0,

S
A T€EA

where s4 = Y, 5,. The proof of theorem 1.4.1 shows that the sharp identified set for
Oy, -, 0,,,) isin fact [0F 07 ] x ... x [0k 0H 1. Tt follows that the sharp identified set for

x1) YT TM? T M
04 is [0%, 05], where
1 1
L Z L H Z H
9‘4:8_ Sxex, HA :S_ SIGI
A Zea A ea

and the sharp identified set for v, is [y%, v¥] where

vi= min_g(t,na), v = max g(t,na),

te[0f.04] te[0.07]

Let 5., 0}1, and éf be as defined in section 1.5. Let 54 = > _, 8, and
B = L3 500 6 (A) = =3 5,00
A §AmeA Vx> §AxeA agr
~L . ~ ~H A
= min ¢g(t,na), Y4 = max g(t,na),
R (t:724) A (t:724)

Under assumptions 1, 2, and 3, v/n((%%,44) — (v}, %) will converge weakly. With assump-

tion 4 the straightforward bootstrap will consistently estimate its asymptotic distribution.
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1.9.7.2 Multiple treatment arms with exogenous treatment

The results above are easily extended to a setting with multiple treatment arms and exoge-
nous treatment. Let d € {0,1,...,J}, index the mutually exclusive treatment arms, with
d = 0 indicating control. Let Y; be the potential outcome with treatment d, and Dy equal

one if the unit has treatment d and zero otherwise. The observed outcome is

J
Y = Z D,Y;
d=0

Let D = (Dy, Dy, ...,Dy) and assume (Yy,Y7,...,Y;) L D | X. The marginal distributions
of Yy | X =z, denoted Py, are identified with the relation

Elf(Y)Dq | X = a]

Bry [f0a)] = B (Ya) [ X = 2] = 5ip =<5

Let v4 = g(04,m4) where 04 = E[c(Yqy, Yy)]. Consider estimating the sharp identified set
for (71,...7s). For example, an RCT with two treatment arms may have similar average
treatment effects. The treatment arms may be further distinguished by comparing P(Y; —
Yy > 0) with P(Y; — Yy > 0), or Cov(Y; — Yy, Yy) with Cov(Ys — Yo, Yo).

Let 04, = Flc(Y1,Yy) | X = z]. The sharp identified set for (61 ,,...,0,,) is given by

(o7

1,17951] X ... X [Hﬁm,ﬁfx]

where 0, = 0"(Pyq, Poe) and 0, = 0" (Py,, Poj,) as in section 1.4.' The sharp identified
set for 0y is [0, 0] where 07 = 3" 5,07, and 07 = >~ 5,0}, and the sharp identified set

for (y1,...7y) is

] % ox [

16This follows from existing results and the gluing lemma, found in Villani (2009) (pp. 11-12).
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Sample analogues (4, 4%,..., 4% 4%) can be formed just as in section 1.5. Under natural

adjustments to assumptions 2, 3, and 4, the same arguments work to show

V(54740 = -9 75)

is asymptotically Gaussian and the bootstrap consistently estimates its asymptotic distribu-

tion.
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CHAPTER 2

Robustness to Missing Data:

Breakdown Point Analysis

2.1 Introduction

Virtually every economic dataset is plagued by missing and incomplete records. Survey
nonresponse is the most visible cause, and appears to be worsening over time. Bollinger
et al. (2019) report that the Current Population Survey’s Annual Social and Economics
Supplement item and whole nonresponse has been increasing, reaching 43% in 2015. By
linking these data with the Social Security Administration Detailed Earnings Record, the
authors show that the distribution of nonreponders differs from that of responders even after

conditioning on a large set of covariates.

Samples with missing or incomplete observations fail to identify the population distribu-
tion (Manski, 2005). To make progress, researchers commonly apply standard procedures
to the complete observations. This practice is typically justified by assuming the data are
“missing completely at random” (MCAR); that is, incomplete observations follow the same
distribution as that of the complete observations. In many settings such an assumption is
implausible. Without it, the conclusions drawn are uncomfortably qualified as being about

the distribution of the complete observations, rather than the actual distribution of interest.

This paper proposes a method to investigate the robustness of a conclusion when as-
serted about the whole population. Results are more robust when overturning them would

require more selection. To make this intuition precise, selection is measured with the squared
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Hellinger divergence between the distribution of complete observations and that of the in-
complete observations. Although many different statistical divergences could be used to
measure selection, squared Hellinger is interpretable as a measure of how well the variables
under study would predict an observation being complete. This gives the values of the se-
lection measure context, allowing researchers to guage how much selection can be expected

in a given setting.

The breakdown point is the minimum amount of selection needed to overturn a conclu-
sion. Readers who doubt the setting exhibits that much selection will find the conclusion
compelling. In models identified with the generalized method of moments (GMM), the
breakdown point is the constrained minimum of the value function of a convex optimization
problem. Estimators of the breakdown point are constructed from the dual of this convex
inner problem, and shown to be y/n-consistent and asymptotically normal. Lower confidence
intervals are simple to construct. Reporting the point estimates and lower confidence inter-

vals of the breakdown point is a simple, concise way to communicate a result’s robustness.

This approach has a number of advantages over existing methods for incomplete datasets.
Sample selection models consider regressions with samples where the dependent variable is
sometimes missing, and obtain point identification by modeling the selection process (Heck-
man, 1979; Das et al., 2003). These models require the data include a variable changing
the probability of observation but not the dependent variable. This “exclusion restriction”
is difficult to satisfy in many applications. The breakdown point approach proposed here
can be used on most common GMM models (including but not restricted to regressions with
missing outcomes), and requires no additional data. The breakdown point can be estimated
even if the incomplete observations are in fact completely missing, a distinct possibility when

using survey data.

The econometric literature on missing data has also explored bounding the parameter of
interest based on the support (Manski, 2005; Horowitz & Manski, 2006). If all parameter

values within these “worst-case” bounds satisfy the researcher’s conclusion, then the conclu-
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sion is undoubtedly robust. Unfortunately, the bounds may be uninformative in practice.
Proponents of this approach are well aware these bounds are conservative, and propose this
exercise as a place to begin an investigation rather than end one. Additional identifying
assumptions should then be considered, in order to make plain to readers what needs to be
assumed to reach a given conclusion (Manski, 2013). The breakdown approach proposed
here is a simple version of this exercise, as the assumption that selection is less than the

breakdown point leads one to conclude the hypothesis under investigation.

A growing literature advocates for breakdown analysis as a general, tractable method
to assess the sensitivity of a result to relaxations of identifying assumptions. The term
“identification breakdown point” can be found as early as Horowitz & Manski (1995) in the
context of corrupted data. Masten & Poirier (2020) advocates for the approach generally,
and illustrates it with the potential outcomes framework. Diegert et al. (2022) define and

study breakdown points in linear regressions suffering from omitted variable bias.

This paper is not the first to notice the appeal of breakdown point analysis in the context
of missing data. Kline & Santos (2013) consider a setting with a missing scalar, propose
measuring selection with the maximal Kolmogorov-Smirnov (KS) distance between the con-
ditional distributions of complete and incomplete observations across all values of covari-
ates, and advocate for “reporting the minimal level of selection necessary to undermine a
hypothesis,” (p. 233). The methodology proposed here has some notable advantages. First,
measuring selection with the maximal KS distance limits researchers to the case where only a
scalar is missing, while measuring selection as proposed here allows any number of variables
to be missing. Second, in a given setting it is easier to gauge whether the variables under
study are likely to be good predictors of missingness than what share of the missing data is
missing at random. This makes squared Hellinger a more natural measure of selection than
KS distance. Which approach is more tractable will depend on the parameter of interest.
Kline & Santos (2013) derives sharp, closed form bounds to the conditional quantiles of

the missing variable, and frame the conclusion to be investigated in terms of those quan-
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tiles. This paper assumes the parameter of interest is identified with GMM and uses the
model directly, giving up closed form solutions. In thoery this could lead to computational

difficulties, but the simulations in section 2.5 present no issue.

The remainder of this paper is structured as follows: section 2.2 formalizes the setting,
the proposed measure of selection, and the breakdown point. The dual problem is presented
and discussed in section 2.3. Section 2.4 defines the estimator and states the main results on
estimation and inference, which are proven in the appendix. Section 2.5 presents a simulation

study investigating the finite sample performance of these estimators. Section 2.6 concludes.

2.2 Measuring selection and breakdown analysis

Suppose the available data is the i.i.d. sample {(D;, D;Y;, X))}, where Z; = (V;, X;) €
R% x R% contains the variables of interest and D; € {0, 1} indicates whether Y; is observed.
Note that Y; may be a vector, and X; may be empty. Let pp = P(D = 1) denote the
probability of observing Y, P; the distribution of Z conditional on D = 1, and P, the
distribution of Z conditional on D = 0. P; and P, are called the complete case and incomplete
case distributions respectively. The distribution of interest is the unconditional distribution
of Z, given by ppP, + (1 — pp)Py. When X is nonempty, the marginal distribution of X
conditional on D = 0 is denoted Fyx. For simplicitly, X is assumed to have the same finite
support when D = 0 as when D = 1, which greatly simplifies asymptotic analysis. Remark

2.2.3 below discusses this assumption further.

To fix ideas, consider data collection via survey. Y is a vector of data the survey hopes
to collect, which is observed only if the recipient responds (D = 1). The survey’s response
rate, pp = P(D = 1), is essentially always less than one in practice. It is common for
administrative data to provide basic information about a survey recipient (such as age,

occupation, etc.), which is collected in X.

Analyses based on the complete observations may not convince researchers who worry
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that P, differs from P;. Such concerns are common, as few settings plausibly satisfy the
missing completely at random assumption. However, it is often similarly implausible that
Py differs greatly from P;. Researchers who convincingly argue that Py is not too different

from P, can still convince their audience of conclusions drawn from an analysis of P;.!

A quantitative measure of the difference between P; and P, is needed to make this
argument formal and convincing. The statistics literature provides a natural solution in
the form of divergences: functions mapping two probability distributions to the nonnegative
real line that take value zero if and only if the two distributions are the same. There are
many such functions. To be useful as a measure of selection, a divergence should have a
tractable interpretation, so that researchers can gauge whether a given amount of selection

is reasonable for their setting.

2.2.1 An interpretable measure of selection

Missing data cause greater concern when researchers expect the variables of interest (Z) to
be a good predictor of incompleteness (D). Consider again the example of data collection via
survey. Researchers are rightfully more concerned about survey nonresponse when asking
about the respondent’s arrest record than when asking for opinions on recent television
programming. People with criminal records may be less willing to answer questions about
that record.? This suggests that the distribution of responders may look quite different from
the distribution of nonresponders, and that criminal records would be a good predictor of

nonresponse.

To illustrate this more formally, let f; and f, be densities of P, and F, with respect to

'Tn some cases, such as correctly specified regression models, it suffices that the conditional distributions
Jy|x=z,p=0(y | x) are the same as the identified fy|x—y p=1(y | ). This weaker “missing at random”
(MAR) assumption is also rarely plausible in practice, and analyses based on this assumption often rely
heavily on the model being correctly specified.

2For example, Brame et al. (2012) estimate the cumulative prevalence of arrest from ages 8 to 23 from a
survey directly asking about prior arrests. The authors report upper and lower bounds derived by assuming
the entire set of nonresponders had or had not been arrested, essentially the worst-case bounds advocated
for by Manski (2005).
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pp Py + (1 — pp) Py respectively:

o PO=112=2) f() - LPD=112=2)

PD I—pp

An optimist may assume D is independent of Z, implying that P(D =1|Z =z2) = P(D =
1) =pp and fy = fi1 = 1. In contrast, a pessimist may assume D is close to a deterministic
function of Z, allowing Z to predict D well. This would imply P(D = 1| Z = z) is close to

1 or 0 for many values of z, and that f; differs greatly from f.

As in the survey example, the setting often makes it clear whether Z would be a good
predictor of D. This hueristic is useful to identify and discuss selection concerns. The
following lemma shows that measuring selection as the squared Hellinger distance between
Py and P, captures this intuition, with larger values corresponding to Z having greater

capability of predicting D.3

Lemma 2.2.1. Let (Z,D) € R% x {0,1} be random variables with pp = P(D = 1) € (0,1).
Let Z|D=1~P, and Z| D =0~ Py. Then

E [ Var(D | Z)}

H?(Py,P)=1—
(Fo, £1) Var(D)

(2.1)

where the expectation is taken with respect to pp Py + (1 — pp) Py, the marginal distribution
of Z.
All results are proven in the appendix.

Equation (2.1) states that the squared Hellinger distance between Py and P; is the ex-

pected percent of the standard deviation of D reduced by conditioning on Z. In the extreme

3The Hellinger distance between probability measures @ and P is

H(Q,P) = (; / W 2 - ¢ ﬁ@))zdm))

where ) is any measure dominating both P and Q.

1/2
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case where Var(D | Z) = Var(D), equation (2.1) implies H?(Py, P;) = 0 and the condi-
tional distributions are the same. As the ability of Z to predict D grows, the variance of D

conditional on Z decreases and H?(Py, P;) grows toward one.

Remark 2.2.1. It’s straightforward to see that Var(D | X) > Var(D | X,Y) implies

E Var(D | Y, X) E v D X
H2<P0,P1) =1 |: :| Z 1 — [ ar( | )] _ HQ(P0X7P1X>
Var(D) Var(D)
where Pyyx, Pix are the marginal distributions of X conditonal on D = 0 and D = 1

respectively. This lower bound on the selection is identified from the sample, and motivates
the common practice of comparing the distribution of X conditional on D = 0 with that of

X conditional on D = 1; the distributions Py and P; can only be “further” apart.

2.2.2 Divergences

Squared Hellinger provides an intuitive measure of selection, but there are many other op-
tions. A function d(-||-) mapping two probability distributions P and @ to R is called a
divergence if 1. d(Q||P) > 0, and 2. d(Q||P) = 0 if and only if P = Q. Divergences need not
be symmetric nor satisfy the triangle inequality. The set of f-divergences are particularly
well behaved. Given a convex function f : R — [0, 00| satisfying f(t) = oo for ¢t < 0 and

taking a unique minimum of f(1) = 0, the corresponding f-divergence is given by

f(%)arp itQ< P
dp(Q[|P) = I7 ) (2.2)

00 otherwise

Many popular divergences are equal to f-divergences when P dominates ().
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Table 2.1: Common f-divergences

Name Common formula f(t)

Squared Hellinger H*(Q,P)=3[ (\/%(z) — 1>2dP(z) LWt —1)?

Kullback-Leibler (KL) | KL(Q||P) = [log (22(2)) dQ(2) tlog(t) —t +1

“Reverse” KL KL(P||Q) = [log (%(z)) dP(z) —log(t) +t—1
. tY—~t4+vy—1

Cressie-Read - ﬁ, v <1

Although squared Hellinger has intuitive appeal outlined in Section 2.2.1, the breakdown
point analysis proposed in this paper remains tractable for any f-divergence listed in Table

2.1.% Precise assumptions regarding the f-divergence are collected in Assumption 5 below.

Remark 2.2.2. Measuring selection with an f-divergence facilitates estimation and inference,
as the space of distributions ) with d¢(Q||P1) < oo corresponds to the set of densities with
respect to P;. In substance, this assumes Fy < P, and rules out selection mechanisms that

“truncate” data.

2.2.3 Breakdown analysis in GMM models

Suppose a preliminary analysis supports an alternative hypothesis H; over a null hypothesis
Hy.> The breakdown point is the minimum amount of selection needed to overturn such
a conclusion. When selection is measured in terms of the squared Hellinger distance, the

breakdown point translates the claim that Hj is true into a claim about the ability of Z to

4Tt is worth noting that the Cressie-Read divergence nests the other three as special cases. Squared
Hellinger corresponds to % f1/2- 'Hopital’s rule shows that Kullback-Leibler corresponds to lim.,; f, and
Reverse Kullback-Leibler to lim,_,q f,. See Broniatowski & Keziou (2012) for additional discussion.

5For example, such an analysis may be based on the complete observations assuming MCAR, or using
imputation and assuming Y is MAR conditional on X.
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E[y/Var(D|Z)]
Var(D)

predict D. Specifically, if Hy were true then 1 — f would be weakly larger than

the breakdown point. If this is implausible, then Hj is similarly implausible.

This section formalizes this idea for generalized method of moment (GMM) models.
Suppose the parameter of interest 3 € B C R% is characterized as the unique solution to a

finite set of moment conditions,
Elg(Z.B)] =0 € R

where the expectation is taken with respect to the unconditional distribution, ppP; + (1 —
pp)Py. The conclusion to be investigated is that g falls outside a particular set By C B,

motivating the null and alternative hypotheses

HolﬁEB(), le,BGB\BO

Recall that the observed data is {(D;, D;Y;, X;)}",, where D; = 1{Y; is observed}. The
sample identifies P, pp, and Fyx. A hypothetical distribution of the incomplete observations
@ rationalizes the parameter b if it has the identified marginal distribution of X, Qx = Fyx,
and the implied unconditional distribution ppP; 4+ (1 — pp)@Q solves the moment conditions

for b. The set of such distributions implying finite selection is

P’ = {Q: Q<K P, Qx = Pox, ppEp [9(Z,b)] + (1 —pD)EQ[Q(Za b)] = 0}. (2.3)

The breakdown point 537 is the minimum selection needed to rationalize the null hypothesis:

68" = inf inf d;(Q|P1) (2.4)

beBg QePb
where the infimum over the empty set is understood as co. A simple example illustrates the

idea.
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Example 2.2.1. Let Y € R and 8 = E[Y]| = ppEp,[Y]+ (1 —pp)Ep,[Y]. Let pp = 0.7 and
Py be U[0,1]. The claim to support is Hy : [ > 0.4, and selection is measured with squared

Hellinger. PP is the set of continuous distributions on [0, 1] with ezpectation w, so that

1-pp
Q € P’ implies

b—pD/2 _

b
I —pp

PoER Y]+ (1= pp)EolY] = 2 + (1 - pp)

The inner minimization in (2.4) chooses the distribution that minimizes selection while ra-
tionalizing b. The outer minimization chooses the parameter that minimizes selection while
rationalizing Hy : [ < 0.4. Unsurprisingly, the outer minimization is solved by b = 0.4.
The breakdown point 657 is slightly above 0.2. A researcher convinced H?(Py, P) < 0.2
should conclude 3 > 0.4.

Figure 2.1: v(b) and ppP; + (1 — pD)Q*, where Q* € P** minimizes selection.

T
05 — v(b) —— pp X U[0, 1] density
Ho 1751 po +(1-pp)Q
1.50 -
0.4 1
1.25 -
0.3 1
1.00 -
02 4 0.75
0.50 -
0.1
0.25 -
0.0 & ‘ . ; : . . 0.00 ‘ ; . :
0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.0 0.2 0.4 0.6 0.8 10
b y

Breakdown analysis can also be framed as an exercise in partial identification, as in
Kline & Santos (2013), Masten & Poirier (2020), and Diegert et al. (2022). In this framing,

the researcher considers assumptions of the form d(F, 1) < ¢ for some 6 > 0, which
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continuously relax the assumption Py = P;. The identified set for 5 grows with §. As long
as the identified set is a subset of B \ By, it is clear the researcher’s conclusion holds. The
breakdown point d5F can then be defined as either the largest § for which the identified
set is contained in B \ By, or the smallest § for which the identified set has nontrivial
intersection with By (the latter of which corresponds to the definition given in (2.4)). For

further discussion of this equivalent framing of the breakdown point, see appendix 2.7.2.2.

The remainder of this paper constructs a y/n-consistent and asymptotically normal esti-
mator of 677, and constructs a lower confidence interval for 7. Researchers working with
partially complete datasets should discuss the plausible amount of selection in their setting,
and report the point estimate and the lower confidence interval for §27 for each asserted
conclusion. This will make plain to readers which conclusions are more sensitive to missing

data concerns, and whether crucial results are sufficiently robust.

2.2.4 Preview of results

The estimation proceeds by separating the optimizations in (2.4). Define the primal problem

V(o) = ink, ds(Q|1P) (2:5)

and notice that 687

= infyep, ¥(b). The first step is to estimate the value function v over a
set B C B large enough that inf,cg, v(b) = infyepnp, ¥(b), while the second step estimates

dBF through a simple plug-in estimator.

The primal problem is an infinite dimensional convex optimization problem over the space
of probability distributions, but one that is very well studied in convex analysis. In particular,
when P’ defined in (2.3) is characterized by a finite number of moment conditions, (2.5) has
a well behaved, finite-dimensional dual problem with the same value function (Borwein &
Lewis, 1991, 1993; Csiszar et al., 1999; Broniatowski & Keziou, 2006). Section 2.3 discusses

this dual problem and the assumptions needed to make use of it. Under regularity conditions
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discussed in section 2.4, sample analogue estimators based on this dual problem are uniformly
consistent and asymptotically Gaussian on compact sets. Differentiability of the infimum

then implies convergence in distribution of the plug-in estimator.

To conclude this section, Assumption 5 collects conditions on the setting, the GMM

model, and the f-divergence used to measure selection.

Assumption 5 (Setting). {(D;, D;Y;, X))} is an i.i.d. sample from a distribution satis-

fying

(i) pp = P(D =1) € (0,1),
(1)) X | D=1 and X | D =0 have the same finite support {xy,...,xx},
(i) B [suppeglo(Z,B)]| | D = 1] < oo, where Z = (Y, X), and

(iv) f: R — [0,00] is closed, proper, strictly convex, essentially smooth, takes its unique
minimum of f(t) = 0 at t = 1, and satisfies f(t) = oo for all t < 0. The interior
of dom(f) ={t € R; f(t) < oo}, denoted (¢,u), satisfies { < 1 < u, and f is twice

continuously differentiable on (¢, u).

The finite support condition in (i) ensures that P’ defined in (2.3) is characterized by a
finite number of moments (see remark 2.2.3 below for additional discussion). Condition (iv)
ensures the f-divergence used to measure selection is well behaved, and is satisfied by every
divergence in Table 2.1.% In particular, strict convexity of f ensures the primal problem (2.5)
has a unique solution (Pj-almost surely). f is required to be essentially smooth to ensure
the dual problem has a unique solution. The requirements that f(z) take a unique minimum

of 0 at x =1 and f(z) = oo for < 0 ensures that d;(Q||P) is a well defined f-divergence.

Remark 2.2.3. If X is not finitely valued, it is easy to see that requiring () x match a finite

number of moments of Pyx will estimate a value no larger than §2°. If this value is large

6See appendix 2.7.3 for definitions of the convex analysis terms used in Assumption 5 (iv).
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enough to assuage missing data concerns, the breakdown point can only be larger. When
the distribution of X is characterized by a countable set of moments, it may be possible to
increase the number of moments with the sample size to estimate d8F directly. This is left

for future research.

2.3 Duality

As defined in display (2.5), v(b) is the value function of an infinite dimensional convex
optimization problem. Fortunately, when selection is measured with an f-divergence, (2.5)
becomes a well-studied problem known by various names: maximal entropy (Csiszar et al.
(1999)), partially finite programming (Borwein & Lewis (1991)), or simply f-divergence
projection (Broniatowski & Keziou (2006)). The convex analysis results in these papers
connect the primal problem in (2.5) to a finite dimensional dual problem that is much easier
to study and estimate. Under mild conditions, the value function of this dual problem

coincides with the value function of the primal.

To state the dual problem, first note that the primal can be viewed as a problem over
the set of densities with respect to P;:
(b) =inf B [f(a(Y, X)) | D =1]

st. E[MY, X,b)q(Y,X) | D = 1] = c(b)

where

9(y,2,b) =2 Elg(Y, X,0) | D =1]

h(z,b) = h(y,z,b) = l{x::xl} ’ _ P(X=x|D=0)

[
—~
S
~
I

(2.6)

Iz =xk} P(X =z | D=0)
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The dual problem corresponding to the problem in display (2.5) is given by

V(b)= sup Ne(b) — E[f* (ATh(Y,X,b)) | D =1] (2.7)

AeR4g+E

where f* is the convex conjugate of f, given by f*(r) = sup,cp{rt — f(¢)}. For convenience,

table 2.2 summarizes the convex conjugate for several common divergences.

Table 2.2: Common f-divergence conjugates and effective domains

Name f(t) lu fx(r) 0, u

Squared Hellinger %(\/f —1)? (=0,u=00 %(Z 1) £=—o0,u"=1/2

Kullback-Leibler | tlog(t) —t+1 (=0,u=o00 exp(r)—1 {*=—00, u* =00

“Reverse” KL —log(t)+t—1 (=0,u=00 —log(l—7r) ¢*=—o0,u*=1

Remark 2.3.1. To ensure ¢ corresponds to a probability density, the constraints must enforce

[ q(2)dP(z) = 1. This is implied by the constraints ensuring Qx = Pyx when X is present.
T

If there are no always-observed variables, set h(z,b) = (g(z,b)T 1) € R%*! and ¢(b) =

< 22 Flg(Y,X,b) | D = 1T 1)T,

(1-pp)
2.3.1 Weak and strong duality

Assumption 5 suffices to show V(b) < v(b). This fact is known as weak duality, and implies
that
inf V(b) < inf v(b) =F (2.8)

beBNBy ~ beBNBg

for any B C B. This inequality shows that using the dual problem for estimation of the
breakdown point is at worst conservative: if inf,epnp, V' (b) is large enough to assuage selec-

tion concerns, researchers are assured that the breakdown point can only be larger.
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Assuming only slightly more ensures strong duality holds, that is, V(b) = v(b). Recall
from Assumption 5 (iv) that the interior of dom(f) = {t € R; f(t) < oo} is denoted (¢, u).

Assumption 6 (Strong duality). B C B is convex, compact, and satisfies infyep, v(b) =

infye pnp, v(b). Furthermore, for each b € B,
(i) there exists Q® € P’ such that { < %(z) < u, almost surely Py, and
(ii) A(b) solving (2.7) is in the interior of {\; E[|f*(A\Th(Z,b))| | D = 1] < co}.
That strong duality holds under these conditions is a well known result.”

Theorem 2.3.1 (Strong duality). Suppose assumptions 5 and 6 hold. Then for each b € B,
v(b) =V (b), with dual attainment.

The first order condition of the dual problem (2.7) provides intuition. Exchanging ex-

pectation and differentiation, the first order condition is

=22 Ep [g(Y, X, b)] ' gV, X,0) \|
PA=n D=0 g ey oo x| 77
P(XZZ’K‘D:O) i ﬂ{X:$K} ]

where \(b) € R%*X golves the dual problem. Consider (f*)'(A(b)Th(y,z,b)) as a density
with respect to P;. Notice that the first d, equations of the first order condition ensure
ppEp [g(Y,X,0)]+ (L —pp)Ep [(f*) (AD)TR(Y, X, b)) g(Y, X, b)] = 0, while the remaining K
equalities ensure the marginal distribution of X matches Fyx. In fact, the proof of theorem
2.3.1 shows that under assumptions 5 and 6, (f*)" (A(b)Th(y, z,b)) is the P;-density of the

solution to the primal.

"To the authors knowledge, the first to show strong duality holds under similar conditions was Borwein &
Lewis (1991). The proof of theorem 2.3.1, found in appendix 2.7.4, uses a result due to Csiszér et al. (1999).
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Assumption 6 ensures the set on which v is estimated is large enough to estimate the
breakdown point, but not so large as to contain parameter values that cannot be rationalized
with a well behaved Pj-density. To illustrate, consider again example 2.2.1: Y is a scalar,
B = ElY]| = ppEp Y]+ (1 — pp)Ep[Y], and P, is U[0,1], but for tractability suppose
that Kullback-Leibler is used to measure selection. Since P, takes values on [0, 1], the
Manski bounds for 5 are [%D, 1— ”TD] . Appendix 2.7.6.1 shows that strong duality is satisfied
whenever b € (%D, 1-— %D) Thus for this example, B can be any convex, compact set in the

interior of the Manski bounds.

Assumption 6 is maintained throughout the remainder of the paper. Accordingly, the

notation v will be used for the value function of the dual problem as well.

2.4 Estimation

2.4.1 The estimator

The sample analogue of the dual problem provides an estimator of the value function, and
suggests a simple plug-in estimator of the breakdown point. The asymptotic properties of
these estimators are easier to study if the objective of the dual problem is expressed with a

single unconditional expectation, which comes at the cost of additional notation.

-DI 0
First define the matrix J(D) = 4o where I;, and Ix are identity
0  (1-D)g
matrices. Notice that F [W} = ¢(b) and
PD)
ANJ(D)h(DY, X, b Df* (A\Th(DY, X, b
v(b) = sup E{ JIDRDY, X,b) _ Df* NTh(DY, X, b)) (2.9)
A€RIg K 1 —pp Pp
Define
ATJ(D)h(DY,X,b) D
o(D, DY, X, b\, p) = 2LDMDY LD Doy py vy (2.10)

I—p P
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and observe that the dual problem is sup,pis+x E[p(D, DY, X, b, X\, pp)]. The estimator of

the value function is defined pointwise by

n

1
ﬁn(b) = Ssup _Z@(DivDiY:iaXiabakaﬁDnﬂ (211)

d n
AeRgTE i=1

where pp, = 13" | D; estimates pp. Finally, 657 = infyeprp, o (b) estimates the break-

down point.
2.4.2 Asymptotic normality

The following assumption suffices for 55;13 to be y/n-consistent and asymptotically nor-
mal. First observe that the estimands 6y(b) = (v(b), A(b), pp) solve the moment conditions

E[6(D, DY, X, b, 0,(b))] = 0, where

QO(D,D}/,X,Z), )‘>p) —-v
¢(D7DY7X7 b7 0) = ¢(D7DY7X7 bav7>‘ap> = V)\(,O(D,D}/, X, b,)\,p) ) (212)
D—p

Let Gr(6y) = {(b,0(b)) ; b € B} denote the graph of §y. For n > 0, the closed n-expansion
about this graph is Gr(6)" = {(b,0) € B x R% ™2 infy gnecuion) | (b, 0) — V', 6)]| < n}.

Assumption 7 (Estimation). Suppose that
(i) By is closed,
(7) minpepnp, V(b) has a unique solution,
(7i) the matriz E[h(Y, X,b)h(Y, X,b)T | D = 1] is nonsingular for each b € B,

(iv) g(y,z,b) is continuously differentiable with respect to b for each (y,x), and
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(v) there exists a convex, compact set ©F containing Gr(6y)" for some n > 0 satisfying

max{ E | sup |¢(D,DY,X,b,0)|?

2
7E ( sup HV(@@)d)(D,DKX,b,G)H) < 0.
(b,0)c0B

(b,0)e0B

As previewed in section 2.2.4, 657 is viewed as a two-step estimator where 7, estimates

5513 = infyepnB, Pn(b) is a simple plug-in estimator for 657 =

v in the first step, and
infye gnp, ¥(b). Conditions (iii), (iv), and (v) imply \/n(2, —v) converges weakly in the space
of bounded functions on B, to a limiting process that is almost surely continuous. This is
shown by linearizing 0 = = 3" | ¢(D;, D;V;, X;, b, 0,,(b)) uniformly over b € B. Conditions
(i) and (ii) ensure minimization over B N By is a differentiable map on the set of continuous

functions of B. The delta method then implies /7 (037 — §8F) converges in distribution to

a normal distribution.

Assumption 7 (i) and (iv) are easily verified by inspection of By and g respectively.
Conditions (iii) and (v) are similar to conditions required of generalized empirical likelihood
estimators (see, e.g., Antoine & Dovonon (2021) assumption 1 (v) and assumption 3 (iv),
(vii)). Assumption 7 (ii) deserves additional scrutiny. When By is a convex set, condition
(i) holds when v is a strictly convex function. The following lemma shows that this is the

case when ¢(y, z,b) describes a linear model with an occasionally missing outcome.

Lemma 2.4.1 (Convex value function, linear models). Suppose assumptions 5 and 6 hold,
the sample is {D;, D;Y;, Xi, Xio}y where Y; € R, X;; € R%& | and X € R%2, and the
parameter (B is identified by

E[Y = X]B)Xs] =0

Then v, and v are convex. If in addition E[X,X]] has full column rank, then v is strictly

CONVET.

Lemma 2.4.1 covers instrumental variable models directly, and ordinary least squares as a
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special case (by setting Xy = X). It also covers parameters of the form g = E[g(Y, X)], be-
cause the OLS regression of §(Y, X) on a constant recovers E[g(Y, X)|. Simulation evidence
presented in appendix 2.7.6 suggests data generating processes and models not covered by
lemma 2.4.1 also produce convex v. Remark 2.4.1 below discusses an approach to relaxing

assumption 7 (ii), at the cost of additional complexity.

Theorem 2.4.2 below formally states the convergence in distribution result along with

consistency of an estimator of the asymptotic variance. The variance depends on the jacobian

term ®(b) = E[Veo(D, DY, X, b,00(b))], which is estimated with

b, (b) = %ivm@,px X, b,6,(b)), (2.13)
=1

where 0,,(b) = (0,(b), A (b), Bp.n) and A, (b) = arg max, cgag+x = S0 o(Dy, DiYi, X4, 0, A, o)
Equations (2.21) and (2.22) in appendix 2.7.1.1 contain expressions for Vyo(D, DY, X, b, ).

Theorem 2.4.2 (Asymptotic normality). Suppose assumptions 5, 6, and 7 hold. Let b, =

arg minye pnp, U (b) and

2

A 5BP763P)

where (0, (b,) ™)WY is the first row of the matriz ®,(b,)™. Then */H(T 4 N(0,1).

2.4.3 Inference

A large breakdown point implies the incomplete distribution Py would have to differ greatly
from P, to rationalize the null hypothesis. If 6%P is larger than the plausible amount of se-
lection in the setting, the null hypothesis is similarly implausible. Skeptical readers following
6BP

this argument may worry the point estimate is larger than 627 due to sample noise —

but the force of the argument is only strengthened if Sfp falls below §27.
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To address these concerns, researchers should report lower confidence intervals along with
point estimates of the breakdown point. Theorem 2.4.2 implies that under assumptions 5,

6, and 7,
on

\/ﬁclfa

satisfies lim,,_ o P(C/’\IL < §BP) =1 — a when ¢;_, is the 1 — a quantile of the standard

Cl, =6, — (2.14)

normal distribution.

Remark 2.4.1. Assumption 7 (ii) can be relaxed at the cost of additional complexity. Without
assumption 7 (ii), /n(2, — v) still converges in ¢>°(B) to G,, a tight Gaussian process
on B, and minimization of a function over B N By remains a (Hadamard) directionally
differentiable map on the set of continuous functions of B. The delta method continues to
imply /n(687 — §8P) converges in distribution to infyem@) Gu(b), where m(v) is the set of

minimizers of v over B N By.

Given a bootstrap % such that /n(f — 1) converges weakly in probability conditional
on {D;, D;Y;, X;}_, to G,, confidence intervals can still be constructed by utilizing the tools
developed in Fang & Santos (2019). One approach is to estimate the set m(v) through
“near minimizers” of 7, and using this estimated set to form an estimator of the map
h — infpem(,) h(b). The confidence interval for 677 is formed by replacing ¢;_, in equation
(2.14) with the 1 — « quantile of this estimated function applied to the bootstrap sample;
see Fang & Santos (2019) theorem 3.2 and appendix lemma S.4.8. As most cases of interest

appear to satisfy assumption 7 (ii), this extension is left for future research.

2.5 Simulations

This section presents simulation results on a variety of different data generating processes.
This serves both to illustrate the wide scope of models which can make use of breakdown
point analysis and to investigate the finite sample properties of the proposed estimators. In

each case, selection is measured using squared Hellinger divergence.
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2.5.1 Expectation

Recall example 2.2.1. The parameter of interest is the mean of a scalar random variable Y,
f=E[Y|=ppEp[Y]+ (1—pp)Ep]Y], and the sample is {D;, D;Y;} ;. The distribution
of Y | D = 1 is the uniform distribution on [0,1]. The probability of observing Y is
pp = P(D =1) =0.7. To support the claim H; : > 0.4, let Hy : § < 0.4. Recall that

the true breakdown point, §2F, of this example is just over 0.2.

The following table summarizes 1,000 simulations for several different sample size.®

Table 2.3: Simulations, expectation

n Bias St. Dev. Coverage Ave. CI Length
1,000 | 0.005  0.056 98.5 0.090
3,000 | 0.002  0.032 96.3 0.051
5,000 | 0.001  0.025 95.8 0.039
10,000 | 0.001  0.017 95.8 0.028

The simulations show little bias. Coverage is slightly above the targeted 95% significance

level in smaller samples.

2.5.2 Linear models

Linear models are the among the most common tools used by empirical researchers. This

subsection uses simulations to investigate linear regression with exogenous regressors.’

Counsider the model

Yi=00+ 51 X1+ BoYo+ B3 Xo +e=WTB +¢, (2.15)

8Here Ave. CI Length = - Ziiol(gﬁf - C/ETL’S).
9Lemma 2.4.1 shows that when the outcome of a regression is the only missing variable, v/(-) is convex.
Appendix 2.7.6.2 shows simulation evidence that the v(-) of the following DGP is convex.
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T
where W = (1 X, Y X2> are the exogenous regressors: E[We] = 0. Here Y; is a
continuous outcome variable, X; = {0,1} is the regressor of interest, Y5 is a continuously
distributed control, and X5 € {0, 1,2} is a discrete control. The conclusion to be investigated

is that the coefficient on X, is positive:
H() : 51 < O, H1 : /31 >0 (216)

The researcher observes the sample {D;, D;Y1;, D;Ya;, X1:, Xo;}7-; and uses squared Hellinger

to measure selection.

The data generating process specification takes inspiration from mincerian wage equa-
tions. For worker 4, let Y; be i’s log-income, X7; an indicator for ¢ being a college graduate,
Ys; be i’s work experience, and Xy; the number of parents with college degrees (0, 1, or 2).
Specifically, let X5 be multinomial, X; ~ Binomial (%), and Y; ~ Beta(3 — X1, 3).1% Let
€ ~ U[-1,1] (independent of all other variables), and ¢ = (X; + 1)é. The coefficients are
specified as By = 6, = P2 = 1 and pB3 = 0.5. Finally, Y] is generated according to equation
(2.15). Notice the support of (Y7, Ys, X3, X5) is compact, ensuring the moment conditions in

assumption 7 (v) are satisfied.

For the missing data process, let D = 1{eX; + 10X, + 5(Xs — 1) > n}, where n ~
N (Mm(’%)- The population value of the breakdown point is approximated as the point
estimate obtained from a sample with one million observations. This sample reveals P(D =

1) is about 0.71, and suffers from selection. Specifically, ignoring the incomplete observations

is equivalent to solving £ > | ﬁg =Y — WTBMCARY . — 0 for SMCAR which results in

BATJLWCAR = (1.04,1.37,1.02,0.42). This large sample suggests the breakdown point of the

conclusion 8; > 0 is about 0.163.

The following table summarizes 1,000 simulations for several different sample sizes.

OP(X, =0) =05, P(X, =1) = 0.3, and P(X5 = 2) = 0.2
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Table 2.4: Simulations, OLS

n Bias St. Dev. Coverage Ave. CI Length
1,000 | 0.016  0.049 98.7 0.076
3,000 | 0.007  0.026 95.8 0.041
5,000 | 0.004  0.019 95.5 0.031
10,000 | 0.003  0.013 94.5 0.022

Once again the simulations show little bias, with coverage slightly above the targeted 95%

significance level in smaller samples.

2.5.3 Logistic regression

The logistic model is a popular choice for estimating the conditional probability of an event.
Let Z = (Z1,Z_1) € {0,1} x R? and suppose that P(Z, = 1 | Z_) = A(Z7,[3), where

At) = 1?22&)0' Since the log-likelihood is concave, estimating this model through maximum

likelihood is equivalent to solving the first order condition

E[(Zy = MZ1,8))Z 4] = 0

and so can be viewed as nonlinear GMM, with moment function g(z,b) = (23 — A(z7,0))z_1.

This simulation considers the model’s prediction for P(Z; = 1| Z_; = z) = A(Z753) for a
known Zz, and investigates the robustness of the conclusion that this conditional probability

is at least 0.5. The corresponding null and alternative hypotheses are

Hy : A(Z78) < 0.5, Hy : A(Z'B) > 0.5 (2.17)

Simulation evidence presented in appendix 2.7.6.3 suggests the data generating process de-

scribed below produces a convex value function. Since Hj is equivalent to z75 < In(0.5) —
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In(1 — 0.5) = 0 and is therefore convex, this suggests that assumption 7 (ii) holds.

The data generating process is one where the outcome is always observed, and the ex-
planatory variables are sometimes missing. Specifically, Y = Z_; € R?® is constructed
by drawing Y ~ N(0,Q) and setting YY) = 2 x (®&(Y@)) — 0.5); the result is that each
Y ") has uniform marginal distributions on [—1, 1], and nontrivial covariance matrix. The
always-observed variable is the outcome, X = Z;. The true underlying coefficients are
B =(1,-1,0.1), and the missing data process is conditionally binomial with P(D =1 | X =
2,Y =y) = max{0.8 — X,Y® /2 + 0.5}; that is, the probability of a complete observation

is at least 0.8 when X = 1 and grows weakly with Y.

The resulting samples suffer from selection. A sample with one million observations
suggests that P(D = 1) is about 0.65. Ignoring the incomplete observations is equivalent
to solving %Z?:l %Q(Diy;,Xi, ,@yCAR) = 0, which results in B%CAR = (1,-1,0.79). The
estimated squared Hellinger distance between FPyx and P;x is 0.076. The covariate value of
interest is y = (—0.35,—0.25,0.5). The true value for A(y73) is 0.488, while the estimate
assuming using the complete observations of the large sample above is A(gy7 B% CARY = (0.573.
The point estimate for the breakdown point described by (2.17) using this large sample is

0.108. This is treated as the truth when evaluating the 1,000 simulations per sample size

summarized in the following table:

Table 2.5: Simulations, logistic

n Bias St. Dev. Coverage Ave. CI Length
1,000 | 0.003 0.018 94.5 0.029
3,000 | -0.000  0.010 96.1 0.017
5,000 | 0.001 0.008 94.8 0.013
10,000 | -0.000  0.005 95.9 0.009

These simulations shows essentially zero bias and approximately correct coverage.
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2.6 Conclusion

This paper proposes breakdown point analysis as a tractable approach to assessing the sen-
sitivity of a researcher’s conclusion to the common MCAR assumption. When defined with
squared Hellinger, the breakdown point 4?7 has a natural interpretation: if the result were
false, the variables under study (Z) would have to predict an observation being selected into

the sample (D) at least well enough that H?(Py, P) = 1—E[y/Var(D | Z)]/+/Var(D) > 657.

Estimators based on the sample analogue of the dual problem are shown +/n-consistent and
asymptotically normal, which facilitates the construction of lower confidence intervals. Re-
searchers working with incomplete datasets should report the breakdown point estimate and
lower confidence interval along with standard results, making transparent to their audience

how robust the conclusion is to relaxing the MCAR assumption.

2.7 Appendix

2.7.1 Appendix: notation

This appendix summarizes notation and facts used throughout the paper and appendices.

2.7.1.1 Calculations

A number of expressions are useful for verifying conditions in proofs and programming

estimators. These are collected here for convenience.

Recall that 6y(b) = (v(b), A(b), pp), where v(b) is the population value of the value func-

tion, A(b) is the corresponding Lagrange multiplier, and pp = P(D = 1). The notation
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0 = (v,\,p) € R&+E+2 pefers to a vector in Euclidean space.

ATJ(D)h(DY,X,b) D

-Pp p
o(D, DY, X,b,\,p) —v
¢(D, DY, X,b,0) = ¢(D,DY, X,b,v,\,p) = | Vap(D,DY,X,b,\,p) |, (2.19)
D—p

(;O(da dya z, b7 Aap) -v
v9¢(d7 dy’ ZL', b7 9) = VUJMP V)\(;O(da dya ba )\>p)
d—p

—1 V)\QO(d, dy7x7b7 )‘7p)T vp@(d7 dy7x7b7)‘7p)

=0 Vip(ddy,z,b\p) V,Vie(d dy z,b\Dp) (2.21)
0 0 —1
d)h(dy,z,b) d
Vao(d, dy, z,b,\, p) = J(d)h(dy,x,b) Z(f*) (A\Th(dy, z, b))h(dy, z, D) (2.22)

I-p P

d
Vip(d,dy, z,b,\, p) = —2—j(f*)”()\Th(dy,x, b))h(dy, x,b)h(dy, x,b)T
C(dh(dy, z,b) | d

= *(\T
Vpg0<d, dy,l’,b, A»p) (1 _p)2 + pzf (/\ h(dy,.f,b))
J(d)h(dy,z,b)  d , ..,
VTl b ) = LU (Y (\Th(dy D)y .

2.7.1.2 Graphs

Let X C R% and Y C R%. For a function f : X — Y, the graph of the function refers to
the set Gr(f) = {(z, f(z)); x € X} C X x Y. Define the closed d-expansion of the graph
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of f:

Gr(f)Y={(z,y) e X xY ; inf ) — (2 )| <6
(1) = { w0 L) - @) <0

Note that Gr(f)? is closed, and bounded if Gr(f) is bounded.

Given Z C R% and g : X — Z, one can view (f, g) as a function from X to (Y, Z):

(f.9): X = (Y, 2), (f,9)(x) = (f(x), g(x))

Define the graph of this function, Gr(f, g) = {(z, f(x),g9(z)) ; v € X} C X x Y x Z, and

the closed d-expansion about this graph:

&uyfz&L%@eXxsz; in u@wwwwaydmsa}
(' y',2")eGr(f,g)

Several easily constructed subsets of Gr(f, g)° imply useful inequalities. For example,

inf x,y,9(x)) — (2,9, 2] < inf z,y,9(x)) — (2, vy, g(x
<my¢m&umu( y,9(z)) — (2" y H"cmmzm&umu( y,9(x)) — (@, g(2))]

= inf x,y) — (2,9
Lt ) - @)l

implies {(z,y,9(z)); (z,y) € Gr(f)°} € Gr(f,9)°. It follows that for a function h : X x
Y x Z =R,

sup  h(z,y,g(z)) < sup h(z,y, z).
(z,y)€Gr(f)° (x,y,2)€Gr(f,g)°

Similarly,

||(ZL',y7Z) - (I/,y,,Z,)H < ||(:L‘,y,2) - (l’/,y/, Z)H + ||(x',y', Z) - (l’/,y/, Z/)H

= (z,y) = (@ )l + ]z = |
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implies that

inf x,y,2)— (2, y, 7
(2',y")€Gr(f)%/2, 2'€Cr(g)®/? lie,9,2) = (@9, 2)l
< inf r,y)— (2, )|+ inf [z — 2.
< w2

It follows that {(z,y,2); (z,y) € Gr(f)"/?, (z,z) € Gr(g)°*} C Gr(f,g)°, and hence for a
function h : X x Y x Z — R,

sup h(z,y,) < sup  h(x,y,2).
(z,y)€Cr(f)%/2, 2eGr(g)®/2 (,y,2)€Gr(f,9)°

Finally, note that any constant ¥ € Y can be viewed as a trivial function of X. The

graph of this function is the set Gr(y) = {(x,%) ; z € X} and Gr(y)° is the set

{(z,y); z e X, |ly -yl <5}

2.7.1.3 Spaces of bounded functions

For any set T, (>*(T) = {f:T — R ; sup,ep|f(t)] < oo} denotes the set of real-valued

bounded functions on T. ¢>°(T) is equipped with the sup-norm: for f € (>°(T), || fll =
£l = sup,er|f(#)

is the product space £>°(T)X = (*(T) x ... x £*(T), but can also be viewed as a process

. The space of bounded functions taking values in R¥ for some K € N

K tivmes
on (T x {1,..., K}). The latter notation makes it clear that standard empirical process

results, typically stated for scalar-valued processes, apply.

If (T,d) is a compact metric space, the extreme value theorem implies the set of contin-
uous functions on 7" are also bounded and hence form of a subpace of ¢>°(T"). This subspace

is denoted

C(T,d)={f:T —R; fis continuous}
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the notation C(7") will be used to mean C(T,d) when the metric d is clear from context.

Some results will refer to subsets of bounded functions whose graphs falls into a particular
set. Specifically, let E* C R for each t € T, ET = {(t,e) ; e € E'}, and ¢=(T, ET)% be
the subset of £>°(T)% whose graph is a subset of E”:

(T, BTyt {g TR ; g(t) € B, supllg(t)] < oo} C oyt
teT

For an example of how this will be used, let & > 0 and note that the function f(¢,e) = In(t+e)
is uniformly continuous on the set {(¢,e) ; ¢t + e > z}. Defining E' ={e € R; e > 7 —t}
and ET as above, we have that f(¢,e) is uniformly continuous on this set. This implies that
[ 0°(T, ET) — (T given by f(g)(t) = f(t,g(t)) = In(t + g(t)) is continuous (see lemma
2.7.4).

2.7.1.4 Matrices

For a matrix A € R, let ||All, = sup, . ,,1/lAz[]2 be the operator norm of A, and
| Allmax = max;;|a;;|, where a;; € R is the entry in the i-th row and j-th column of A. Let
01(A) > ... > 0x(A) > 0 be the ordered singular values of A. For a square K x K real

matrix A, let ag(A) > ... > ax(A) be the ordered eigenvalues of A.

Recall that all norms on finite dimensional real vector spaces are strongly equivalent,
meaning that if ||-||; and ||-||2 are any norms on R7*¥ there exist constants ¢, C' > 0 such
that c[|A]l; < ||Allz < C||A||; for any matrix A € R7*K. If A : T — R7*K for some set
T, it follows that F[sup,||A(t)|]] < oo for any norm if and only if E[sup,||A(t)||max] < 0.
Notice that strong equivalence with ||-||max implies that, for any submatrix A(t) of A(t),
Elsup,[|A(t)|]] < oo implies Efsup,[|A(#)]] < oo.

Recall that the singular values of a matrix A € R7*X are related to the eigenvalues of
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the K x K square matrix ATA by o0x(A) = \/ar(ATA). The operator norm of a matrix

is equal to its largest singular value, ||Al|, = 01(A), and for invertible matrix A and any

E=1,...,K, m is a singular value of A~!. These imply [|[A7Y, = UKl(A). Finally, for a

vector x € RE |lzxT||, = ||27z||, = |||z

2.7.2 Appendix: measuring selection and breakdown analysis
2.7.2.1 Measuring selection

Lemma 2.2.1 is found in subsection 2.2.1.

Lemma 2.2.1. Let (Z,D) € R% x {0,1} be random variables with pp = P(D = 1) € (0,1).
Let Z|D=1~P and Z | D=0~ Fy. Then

E [ Var(D | Z)}

H*(Py,P)=1—
(Fo, 1) Var(D)

(2.1)

where the expectation is taken with respect to pp Py + (1 — pp) Py, the marginal distribution

of Z.

Proof. The marginal, unconditional distribution of Z is P = ppP; + (1 — pp)Py. This

distribution dominates P, and F,, which have densities

fy - PO=112=2) f( - L=PD=112=2)

DD I—pp

Y
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with respect to P. This implies

(P = 5 [ (VA - VED) P = | [ 56+ 5i(e) - 2V AETREIPE)

[VP(D=1[Z=20-P(D=1]Z=2)dP(2)
pp(1 —pp)

=1

Ep [ Var(D | Z)}
Var(D) '

—1—

2.7.2.2 Nominal identified sets

The exercise proposed in section 2.2.3 can also be understood with a framework of nomi-
nally identified sets. This approach to exposition is used in Kline & Santos (2013), Masten
& Poirier (2020), and Diegert et al. (2022), and described for the current setting in this

appendix.

Under the assumption d(Fp||P) < 6 and Py < P, the identified set for fp is a function
of 4:

Bin(6) = {be B 3Q, poBalo(Z,b)] + (1~ po)Balo(Z,5)] = 0, and d(@Q | Py) < 4
(2.23)

Notice B;p(0) is always growing with ¢, in the sense that 6 < = B;p(d) € Bp(d').
The researcher is primarily interested in testing Hy : 8 € By against H; : € By =
B\ By. Naturally, if B;p(d) has trivial intersection with By she is confident in rejecting
Hy. This leads to the question “what is the largest value of § such that B;p(0) has empty

intersection with By?” Formally, define the breakdown point as

6P =sup{§ € R, ; B;p(6)NBy = @} (2.24)
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if B;p(0) N By = &, otherwise define 62 := 0.

2.7.2.3 Characterization through a value function

Let
P’ ={Q; Q < P, Qx = Pox, ppEp [9(Z,0)] + (1 — pp)Eqlg(Z,b)] = 0},

be the set of distributions that “rationalizes” 3 = b. Notice that if there exists Q € P? such
that d(Q || P1) <6, then b € B p(d). This suggests the identified sets can be characterized

through the value function

v(b) = oest o) d(@Q || A), (2.25)

where the infimum over the empty set is defined to be +oo. Observe that v(b) < ¢ implies

b € B;p(6), and if the infimum is attained at some minimum, then v(b) < ¢ if and only if

be B[D(d)

Lemma 2.7.1 shows that the definition of the breakdown point given in (2.24) is equivalent
to that given by (2.4).

Lemma 2.7.1 (Characterization of breakdown point).
inf v(b) = 6°P

beBy

Proof. Define the “robust region” as the set of § € R, where the identified set has trivial

intersection with the null hypothesis:
RR={6 Ry ; Bip(d)NBy =2}

and let RR° =R, \ RR = {0 € Ry ; B;p(d) N By # @} be its compliment in R;. Notice
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that
58D _ supRR if RR#©
0 otherwise

The proof consists of two steps:

1. Showing that
§PP = inf RR° (2.26)

where the infimum over the empty set is defined to be oco.

2. Arguing that

inf v(b) <inf RR", and inf v(b) > inf RR",

beBy beBy

Step 1. is a consequence of Brp(d) being a growing set (in the sense that 6 < § —
Bip(6) € B;p(d)). Define §* = inf RR® = inf{6 € R, ; B;p(d)N By # @}. There are three

possibilities:
(i) 6P = 0. Then RR contains (0, 00), hence 0 < §* = inf RR® < inf(0, 00) = 0.
(ii) 6BP € (0,00). Notice that § < & == Bip(d) C B;p(¢) implies that § < § =

(Brp(d) NBy) € (B;p(d") N By), from which it follows that

0<¢ and & € RR 0 € RR

l

d <¢ and 6 € RR® 8 € RR*

!

since 08P € (0,00), we have RR contains [0,65P). Similarly, RR® contains (§*, o),
0,

and since RR N RR® = @, we have 6P < §*. For n € N, let 6, = 6" — % > 0, and
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notice that B;p(d,) N B = &, equivalently, 6, € RR. Therefore

6*_l<5BD<6*
n

let n — oo to see that 68P = §*.

(iii) 0P = co. Then the argument above implies RR contains [0,00), so RR® = & and

0* = oo.

Therefore (2.26) holds.

For step 2., first notice that

inf v(b) = inf inf d(Q | P)=inf | J {dQ | P); Q€ P} (2.27)

beBy beBo QeP? beB
0

If § is such that B;p(6) N By # @, then there exists b € By and @ € PP such that
d(Q || Pr) < 6. This implies

inf RR® = inf {6 € Ry ; Bp(6) N By # @} > inf | | {d(@Q | P); K € P}

beBg

Conversely, for each real number a satisfying a = d(Q || P,) for some Q € P°, b € By, we
have that a € {J ; B;p(d) N By # @}. This implies

inf J {d(Q || Pr); Q €Py} >inf{5; Byp(d) N By # @} = inf RR

beBg

Putting (2.26), (2.27), and these two inequalities together we obtain

inf v(b) =inf | J {d@ | Pr); Q€ P’} =inf{5; Bip(5) N By # &} = 67

beBy beB
0

as was claimed. [ O
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2.7.3 Appendix: additional duality discussion

This short appendix contains no original results, but collects definitions and useful facts

related to convex analysis.

2.7.3.1 Definitions

For reference, see Broniatowski & Keziou (2012), or Rockafellar (1970).
Let f: R — (—o0,o0]. The effective domain of f is dom(f) = {x € R; f(z) < oc}. f
is called proper if dom(f) is nonempty. f is called conver if dom(f) is a convex set. For a

convex f: £ C R — R, f can be extended to R by setting f(z) = oo for all z ¢ E. This

extended function is still convex.

Now consider a convex f : R — (—o0,00|. Notice that convexity implies dom(f) is a
subset of R with interior of the form (¢,u). ¢ or uw may be infinite, and lim,, .+ f(x) or
lim, ,,- f(u) may be finite. f is called closed if 1. lim, .+ f(z) = oo if £ > —o0, and
2. lim, - f(z) = oo if u < oco. f is called essentially smooth if 1. f is differentiable
on ({,u), 2. lim, 4+ f'(z) = —o0 if £ > —o0, and 3. lim, .- f'(z) = oo if u < co. The
convez conjugate or Legendre-Fenchel transform of a convex function f is defined as f*(y) =

supger{zy — f(2)}-

2.7.3.2 Results

Now let f be closed, proper, and convex. The following are results not proven here; see

footnotes for references.

e f*is a closed, proper, convex function.!!

e (f*)* = f; that is, the convex conjugate of f* is f.1?

HRockafellar (1970), p. 104.
12Rockafellar (1970) p. 104, theorem 12.2
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e f is strictly convex if and only if f* is essentially smooth.!?

e f is essentially smooth if and only if f* is strictly convex.'4

If f is strictly convex and essentially smooth, then f’ is one-to-one and (f')~!(y) =

(f*)(y) for all y € dom(f*).'?

If f is strictly convex, essentially smooth, and twice differentiable, then f* is twice

differentiable and (f*)"(y) = m.m

If f is strictly convex and essentially smooth with dom(f) C [0,00), then (f')~(z) >
0.17

If fis convex, f(z) =0 at x = 1, and f is strictly convex on a neighborhood of 1 then

[ f(k(2))dP(z) = 0 if and only if k(z) = 1, P-a.s..”®

2.7.4 Appendix: proofs of duality results

Lemma 2.7.2 (Unique primal solution). Suppose f is strictly convex on its domain, pp €
(0,1), and the infimum in (2.5) is finite. Then any solution attaining the infimum in (2.5)

15 unique, Py-almost surely.

Proof. Let Q°, Q" € P’ attain the finite infimum in (2.5), and let ¢° and ¢' denote their densi-
ties with respect to 1. We have that =225 Ep [g(Y, X, b)] = Eqolg(Y, X, b)] = Eqi[g(Y, X, b)]
and Q% = Q% = Pyx. For any a € (0,1), the measure Q* = aQ' + (1 — a)Q" € P’ is

feasible in (2.5), and characterized by the Pj-density aq' + (1 — ).

13Borwein & Lewis (1993) p. 251, or Rockafellar (1970) theorem 26.3 on p. 253.

14This follows from the two preceding facts.

15Broniatowski & Keziou (2012) p. 2559. See also Rockafellar (1970) corollary 23.5.1 on p. 219, corollary
26.3.1 on p. 254, and theorem 26.5 on p. 258.

6 Broniatowski & Keziou (2012), p. 2559. See also the preceding fact.

1"Broniatowski & Keziou (2012), p. 2557.

18 Broniatowski & Keziou (2012), p. 2556.

190



Suppose for contradiction that Q° and Q! differ on a set of positive P;-measure. Strict

convexity implies that for any (y,x) in that set,

flag (y,z) + (1 — )¢ (y, x)) < af(q'(y,x)) + (1 — )¢ (y, x)

Integrating with respect to P reveals dj(aQ' + (1 — a)Q°||P1) < ady(QY||Py) + (1 —
a)d;(Q°|| Py), contradicting optimality of Q°, Q*. O

Lemma 2.7.3 (Weak duality). Let v(b) and V(b) be as defined in (2.5) and (2.7), respec-
tiwely. If assumption 5 holds, then V (b) < v(b) for any b € B.

Proof. First note that if v(b) = oo the inequality holds trivially.

Suppose v(b) < oco. Then P’ # @, hence there exists at least one density g(z) =
j—g(z) satisfying [ h(z,b)q(z)dPi(z) = c(b). Notice that f*(r) = sup,cp{rt — f(t)} implies

f(t)+ f5(r) > f(t) +rt — f(t) = rt. Use this to see that for any Q € P’ with Pj-density ¢,

f(q(2)) + [ (ATh(z,0)) = ATh(z, b)q(=)
= [flq(2)) = ATh(z,0)q(z) = [*(ATh(z,b))

integrating over z with respect to P gives

/f VdPy(2) > )\T/h(z, D)g(2)dP (= /f (ATh(z,0))dPy ()

v~

=c(b)

= d(QllPr) = ATe(b) — E[f*(ATh(z,0)) | D = 1]

the left hand side of the last inequality doesn’t depend on A € R% X while the right hand
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side doesn’t depend on @ € PP. Hence,

v(b) = inf d;(Q|P1) 2 sup {ATe(b) = E[f*(ATh(Z,0)) | D =1]} = V(b).

Q AeRIgHE

]

Theorem 2.3.1 (Strong duality). Suppose assumptions 5 and 6 hold. Then for each b € B,
v(b) = V(b), with dual attainment.

Proof. Let M be the set of measurable functions mapping z = (z,y) — R. Consider the

relaxed problem

o) = int, [ flaly.2)dPi(y.2)

qeP

P’ = {q eM,; /h(y,x,b)q(y,x)dPl(y,x) = c(b)}

for any ¢ € f’b, K@) = [¥(y,2)q(y, 2)dPi(y, z) is a (possibly signed) measure with total
measure one. Notice this problem has the same objective as the primal problem (2.5), but

a larger feasible set (the set of finite signed measures with total measure one).

Now apply Theorem II1.2 of Csiszar et al. (1999), with trivial I = {¢(b)}. The dual of the
relaxed problem is (2.7). Assumption 6 (i) is the “constraint qualification” of Csiszér et al.
(1999) Theorem II.2, implying strong duality holds for the relaxed problem, v(b) = V(b),
and the dual problem’s value is attained at a maximum. Let A(b) solve the dual problem.
Assumption 6 (ii) allows application of the second part of Theorem I1.2, implying the solution

to the relaxed problem is given by

¢(y,x) = (f) ' (AO)h(y, z,b)) = (f*) (Ab)Th(y, z,b))
By assumption 5 (iv) and Lemma 2.7.2; this solution is unique P;-almost surely.
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Now we show that ¢® in fact solves the primal problem, (2.5). Notice ¢* is nonnegative,

because f’ is only defined on the non-negative reals. Furthermore,

[@nan ) = [ Y1 =nddw)inay)

— Z/IL{:C = 21 }¢" (2, y)d Py (z, y)

k=1

P(X =, | D=0)

M)~

B
Il

1

I
—

where the third equality follows from [ h(y, z,b)¢"(x,y)dPi(z,y) = c(b). So the measure Q°
given by Q°(¢) = [(y,x)¢"(y,x)dPi(y,x) is a probability distribution dominated by P;.
Therefore Q* € P’ is feasible in the primal problem (2.5). Being feasible in the primal and

solving the relaxed problem, Q® must also solve the primal problem. O

2.7.5 Appendix: proofs of estimation results
2.7.5.1 Technical lemmas

These results are self contained, with notation not related to the present paper.

Lemma 2.7.4 (Uniform continuity of maps between bounded functions). Let T be a set,
E' CR¥* for eacht € T, ET = {(t,e) ; t € T,e € E'}, and (*°(T, ET)% be the subset of
(>°(T)%e whose graph is a subset of ET:

Eﬂﬂﬂﬁz{wT%W%g@eﬂmmmw<w}cﬁﬁw

teT
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Let f : ET — R be such that sup,cp|| f(t, g(t))|| < oo for any g € (>(T, ET)E and define

fo(T, ET)" — 0>(T)%, f(9)(t) = f(t, g(t)).
If {f(t, ) }ier is uniformly equicontinuous, then f is uniformly continuous.

Proof. Let ¢ > 0, and use uniform equicontinuity to choose d > 0 such that
|61 — 62| <0 — |f(t,€1) — f(t,€2)| < 8/2

for any t € T'. Notice that if g1, ga € £>°(T, ET)% with ||g1 — ga||7 = supserlgr(t) — g2 (t)| < 6,

then
1 (1) = flgo)llr = supl/ (1, 1() = f (¢, ga(t)] < €/2 < €
and hence ||gy — goll7 < 6 = [|f (1) — F(g2)ll7 < e. L

Remark 2.7.1. Lemma 2.7.4 implies many simpler special cases. For example, suppose that
for all t,¢' € T, f(t,e) = f(t',e) and E* = E C R. Then lemma 2.7.4 simplifies to:
if f: F — R is uniformly continuous, then f : ¢*(T) — ((T) defined pointwise by

f(g) (t) = f(g(t)) is continuous.

Lemma 2.7.5 (Restricted infimum is uniformly continuous). For any A C T and any
frge>(T),

inf f(¢) — inf g(t)| < igg!f(t) —9(t)]

as a result, v : {°(T) — R given by t(h) = infycq h(t) is uniformly continuous.
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Proof. Notice that

sup f(t) —sup g(t) < sup{f(t) — g(t)} <sup[f(t) - g(t)|, and
teA teA teA teA

— [sup f(t) — sup g(t)} = sup g(t) —sup f(t) < sup{g(t) — f(t)} <suplg(t) — f(t)]
te A teA teA teA teA teA

= sup|f(t) — g(1)],

teA

hence —sup,c4|f(t) — g(t)| < supyeq f(t) —sup,eq 9(t) < sup,ealf(t) — g(t)|, or equivalently

sup £ () — supg<t>\ < suplf(t) — 9(0)].
teA teA teA

Use this to see the claimed inequality:

inf £() - infg<t>\ = |- sup-s0) - (- supt-at0) )| -

inf Sup 335{—g(t)} - fgg{—f ()}

< sup|—g(t) = {=f()}| = sup|f(t) — g(1)]-
teA teA
Regarding the continuity claim, let ¢ > 0 and set 6 = . Then
|e(f) = tg)] < sup|f(t) — g(£)| < supl|f(t) —g(®)] = [[f = gllr,
teA teT
hence ||f — g|lr < § implies [¢(f) — ¢(g)| < e. O

Lemma 2.7.6 (Restricted infimum is Hadamard directionally differentiable). Let (T, d) be

a metric space, A a compact subset of T', and
L 02(T) — R, o(f) = inf f(t)

teA

Then ¢ is Hadamard directionally differentiable at any f € C(T,d) tangentially to C(T,d).
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U4(f) = argmin,. 4 f(t) is nonempty, and the directional derivative is given by

' C(T,d) — R, '(h) = inf h(t

(s C(ra) G = it b

If WA(f) is the singleton {t;}, then ¢ is fully Hadamard differentiable at f tangentially to
C(T,d) and Vs(h) = h(ty).

Proof. The result is essentially a corollary of Fang & Santos (2019) Lemma S.4.9, which shows
that ¢ : (°°(A) — R given by ¢(f) = sup,c4 f(t) is Hadamard directionally differentiable at
any f € C(A,d) tangentially to C(A, d), with directional derivative

¢ :C(A,d) = R, ¢s(h) = sup h(t).
teWA(f)
See Fang & Santos (2019) definition 2.1 for definitions of Hadamard directionally differen-
tiable and fully Hadamard differentiable.

Let f € C(T,d) and note that W4(f) = arg min, 4 f(¢) is nonempty by the extreme value
theorem. Let {h,}>2; C ¢>°(T) and {r,}>2, C R, be such that h,, — h € C(T,d) and r,, | 0.
For g € £>°(T), let g4 : A — R be the restriction of g to A, given by ga(t) = g(t). Observe
that g € C(T,d) implies g4 € C(A,d). Now notice that

WS +rahn) — ()

T _La(h)
_ |nfiealf() + ruhn(®)} —infiea f() h<t>‘
T tev A (f)

| = supiea{ = f () = raha(t)} = (= supea{=f(O)}) _ <_ sup {—h(ﬂ})‘
T tev A (f)

_ [suiea{ =S (1) + o (“ha(D)} = (supiea{=F(O}) ‘( sup {—h(tﬂ)‘
T tev 4 (f)

— rn(—hny — Q(— /
= | ALt oA 2 In) gy ),
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where the last equality follows from the definitions and the fact that U 4(f) = argmin,., f(a) =
arg max, e 4{—fa(a)}.

h, = h € h € C(T,d) implies —h, 4 = —ha € C(A,d). Thus Fang & Santos (2019)
Lemma 5.4.9 and the definition of Hadamard directional differentiability implies

A —

lim L(f + tnhn) — L(f) . L;(h)' — lim ‘Cb(_fA + tn(_?mA)) — ¢(_fA)

Finally, if W,(f) = {t;} then inf,cy,(s(h) = h(ty) is linear in h, and hence ¢ is fully
Hadamard differentiable at f. m

Lemma 2.7.7 (Uniform consistency of estimated moments). Let X C Réx T C RIr,

E'C R ET ={(t,e); teT,ec E},
A,y i T — R and f: X x ET - RE

Suppose that

(1) {Xi}1y isii.d.,
(ii) suprer|9a(t) = ()] 5 0,
(1)) Gr(y) ={(t,y(t)); t € T} is bounded, and

(iv) there ezists a finite € > 0 such that (t,e) — f(x,t,e) is continuous on

Gr(v)® = {(t, e)e ET; inf  ||(t,e) — (,€)] < 5}

(t,e")eGr(v)

forallz € X, and
E

sup || f(X,t, e)||] < 0.

(t,e)e Gr(v)¢
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Then

n

1 > F(Xit A1) — E[f (X1, 7(75))]‘

n <
=1

P,

sup —0

teT

Proof. The triangle inequality implies

1 D (Xt Aa(t) — E[f (X, ,5(1))] H

n <
=1

sup
teT

< sup
teT

l Zf(Xiat7 :)/n(t)) o E[f(‘X?t’;Yn(t))]H

n 4

+sup | ELf (X, 1,9 (8)] = ELF(X, 6,7 (0))]]

teT

Consider the second term first. The dominated convergence theorem, (t,e) — f(z,t,¢e)

being continuous, and E [sup; o\ a1/ (X, £, €)[|]] < oo implies that
¥ Gr(y)® — R, U(t,e) = E[f(X,t,e)]

is continuous. Gr(7)¢ is a closed and bounded subset of R x R hence compact by the
Heine-Borel theorem. Thus 1 is in fact uniformly continuous by the Heine-Cantor theorem.

Lemma 2.7.4 then implies
U2 (T, Gr(v)7) — £2(T)", W(g)(t) = (t, g(t))

is continuous. sup,cp |E[f(X,t, 4. (t)] — E[f(X,t,v(t)]]| 2 0 follows from sup,cp||5n(t) —

v(t)|| & 0 and the continuous mapping theorem.

Now consider the first term. Compactness of Gr(y)®, continuity of (¢,e) — f(z,t,e) on
Gr<7)87 and E [Sup(t,e)EGr(A/)EHf(X7t7€)|H < 00 1mphes that {f(X7 t 6) ; (tv 6) < GI'(fY)g} 18
Glivenko-Cantelli by van der Vaart (2007) example 19.8. With probability approaching one,
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sup,er||¥n(t) — v(t)]] < € and when this holds,

su Xm t, Yn - F X7 t, An t
Sup || Zf s A (Xt A ))]H
< sup Zf X, t,e) — E[f(X,t,e)]|| 0.
(t,9)€Gr(7)®
This concludes the proof. O

Lemma 2.7.8 (Uniform consistency of matrix inverses). Let (iDn, ST — REXK_[f
(i) ®(t)~" exists for allt € T,
(ii) sup,er||®(t)|lo < 0o and sup,cr||®(t) 7|, < oo, and
(iii) supger||®n(t) — D(1)]lo 0,

then with probability approaching one, the function mapping T to Ci)n(t)*l 1s well defined and

sup|| @, ()"t — (1)1, B0

teT

Proof. 1t suffices to show that the singular values of (iDn(t) converge in probability to the

singular values of ®(t), uniformly over ¢t € T

sup mgx]ak(@n(t)) —ox(B(1))] B 0. (2.28)
teT
To see why, notice that co > sup,cr||®(t) 7, = sup,er UK(}D(t)) = infteTalK(cb(t)) implies

e = infier ox (P(t)) > 0. Condition (2.28) implies that with probability approaching one,

stél%) max or(Pn(t)) — on(®(1))] < /2,
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and on this event the function mapping 7" to @n(t)_l is well defined. Then notice that

(1)~ — (1) &, (1) 7H(@(t) — D (1)) 2(t)

o e}

< (i)n<t)_1 o q)(t)_(i)n(t) OH(I)(t)_lHO
implying
sup || @, () — @(1)"Y| < sup ||, (1) suqu>(t)—<i>n(t) sup [@(6) 7| (2:29)
teT o teT o teT o teT

sup,cr || () o < oo and sup,cp||Pn(t) — ®(t)]l, = 0 are assumed, the latter imply-
ing sup,er||®n(t)]lo = O,(1) by the continuous mapping theorem. Thus (2.29) implies
&, (1)~ — (1)

p
SUp;cr ‘ — 0.
o

The argument that (2.28) holds is broken into three steps:

1. Show that @, (¢)T®,(¢) is uniformly consistent for ®(¢)Td(t).

Notice that

sup Hcin(t)@n(t) —a(1)T0(t)

teT

(]

< sup [[ @, (670, (1) — &, ()7 @(0)|| + sup [ @, (1)@ (1) — B(1)T (1)
teT o teT o

< sup [[6,(0)7]| sup [ @u(t) = 21)|| +sup|. ()7 — B(0)7|| sup 1),
teT o teT o teT o teT

Recall that for any square matrix A € RE*K

[ AT [max = [[Allmax < [|Alle < K[ Allmax = K[ AT [[max-
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Use this to see that

sup|[ @, ()Tl < K sup|[ @ (1)
teT teT

D ()T — (1)T

< Ksup Hi)n(t) — ®(t)

o teT

and sup
teT

I

and therefore

()T D(t) — R(1)TE(1)

o

< i (supla (0] + suplo()] ) suplién (0~ o)) (230

sup,cr||®(t) 71| < 00 and sup,ep||Pn(t) — ®(t)]lo = 0 by assumption, implying

sup,p||Pn(t)]lo = O,(1) by the continuous mapping theorem, and thus
b, (1)Tdn(t) — <I>(t)T<I>(t)H 20 by (2.30).

SUPger

. Show the eigenvalues of ®,,(£)T®,,(t) converge to the eigenvalues of ®(¢)T®(t) uniformly

overt € T.

Apply Weyl’s perturbation theorem, found in Bhatia (1997) as corollary II1.2.6: for

Hermitian matrices A and B,
max|ag(A) — ax(b)] < [|A = Bll,

For real matrices Hermitian is equivalent to symmetric, so Weyl’s perturbation theorem

implies

sup max| o (0, ()T (1)) — ai(@(£)2 (1))

teT
< sup|d,, ()T, (t) — D()TR(1)], 5 0
teT

In other words, the eigenvalues of ®,,(¢)7®,,(t) converge to the eigenvalues of ®(¢)Td(t)
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uniformly over ¢ € T'. These eigenvalues are the squared singular values of ®,,(¢).

3. Apply the continuous mapping theorem to conclude (2.28) holds.

Let ¢>°(T, [0, 00)) denote the subset of £>°(T") consisting of functions h taking nonnega-
tive real values: h : T — [0,00). Lemma 2.7.4 shows that if f : [0, 00) — R is uniformly
continuous, then f : ((T,[0,00)) — ¢>°(T') given pointwise by f(h)(t) = f(h(t)) is
continuous. It is well known that the square root funtion x — /x is uniformly contin-

uous on [0, 00). Thus (2.28) follows by the continuous mapping theorem.

2.7.5.2 Consistency

Lemma 2.7.9 (Unique dual solution). Suppose assumptions 5 and 6 hold, b € B, and
E[RY, X, 0)h(Y, X,0)T | D = 1] is nonsingular. Then M(b,\) = Elp(D, DY, X, b, \,pp)] is

strictly concave in X\ and A\(b) = argmax,cga,+x M (b, \) is unique.

Proof. Let \ # Aand a € (0,1). Since f is essentially smooth, f* is strictly convex and as

a result,

ff((aA+ (1 —a)N)Th(y, x,b)) < Ozf*(S\Th(y,x, b))+ (1 —a)f*(ATh(y,x,b)) (2.31)

for any (y, ) where Xh(y,z,b) # Xh(y,z,b), equivalently, where (A — \)Th(y,z,b) # 0.
Since A — A # 0, nonsingularity of E[h(Y, X,b)h(Y,X,b)T | D = 1] implies

0< (A= NTE[R(Y, X,b)h(Y, X,0)T | D = 1](A = A) = E[(A = )Th(Y, X,b))* | D = 1]
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implies {(y, z): (A= N)Th(y, z,b) # O} is a Pj-nonnegligible set. It follows that

E L% F*((aX+ (1 — a)A)Th(DY, X, b))}

< oE L% F(3Th(DY, X, b))] +(1—a)E L% FOTRY, X, b))]

and hence

M (b, oX+ (1 —a)X) = E[p(D, DY, X, b, aX + (1 — a)\, pp)]

_p |- O‘>1A)_T‘;§JDWDY’ Xb) ]%f*((a:\ + (1 - a)\)Th(DY, X, b))]
5 [:\TJ(D)h(DY, I 1-o)B l)\TJ(D)h(DY, X, b)}
1—pp I —pp

W L%f*(XTh(DY,X?b))] —(1—a)E L%f*(,\Th(KX,b))}

= aM(b,\) + (1 — a)M(b,\)

Therefore M (b,-) is strictly concave. M (b,-) attains a maximum by Theorem 2.3.1, and

strict concavity implies this maximizer is unique. O]

Lemma 2.7.10 (Continuous dual solution and value function). Suppose assumptions 5, 6,

and 7 hold. Then A\(b) = argmax, pag+x M(b,\), v(b) = M (b, A\(b)), and V3M (b, \(b)) are

all continuous.

Proof. Jensen’s inequality and assumption 7 (v) imply that

E sup ||v(b,u,)\,p)¢(D7DY7 X7 b7 V7)‘7p)|| < 00
(b,v,A\,p)€Gr(00)"
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and, therefore, the following inequalities as well:

E sup HV)\SO(D,DY,X, b7>\7pD)|| < o0, and
_(b,A)EGr(X)” ]

E sup HV§\90(D7DY7X>Z77>\;I7D)H < o0
(b,A)eGr(A)n

where Gr(\) = {(b,A\(b)) ; b € B} and Gr(\)" = {(b, \) ; infy xyecrn || (b, A) — (0, )] < n}.
The dominated convergence theorem implies M (b, \) = E[p(D, DY, X, b, A\, pp)] is twice con-
tinuously differentiable with respect to A in a neighborhood of A(b) for every b € B, with
VM (b,\) = E [Vap(D, DY, X,b,\,pp)| and V3M(b,\) = E [Vip(D, DY, X,b,\,pp)].

A(b) must therefore solve the first order condition
0= VaM(b,A(b)) = E[Vap(D, DY, X, b, A, pp)] .

Apply the implicit function theorem to this equation. The maps (b, \) — VM (b, \) and
(b, \) — V3 M (b, \) exist and are continuous on an open neighborhood of (b, A(b)). Moreover,
strict concavity of M(b,-) shown in lemma 2.7.9 implies V3 M (b, A(b)) is negative definite
and hence invertible. It follows from the implicit function theorem (found in Zeidler (1986)
as theorem 4.B) that A\(b) is continuous in a neighborhood of b. Since this holds for every

b € B, the function X\ : B — R%*X is continuous.

Assumption 7 (v) and the dominated convergence theorem implies
M(b,\) = E[p(D,DY,X,b,\,pp)] and (b, \) +— ViM (b, \) are continuous. This implies
v(b) = M(b,\(b)) and b — V3 M (b, \(b)) are the composition of continuous functions and

hence continuous. O

Lemma 2.7.11 (Uniform consistency of the dual objective). Suppose assumptions 5, 6, and
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7 hold, and let M, (b,\) = S0 o(Dy, D;Yy, Xi,b, X\, pp.n). Then

sup [ M,(b,\) — M(b,\)] 50
(b,A)EGr(\)n/2

where

Gr)? = {(b, N mE0.0) = ()] < 77/2}

b N )EGr(N)

and Gr(X) = {(b, \(b)) ; b € B}.

Proof. Note that

sup |ﬁn<b’ /\) _V<b7 /\)|
(b,X)EGr(No)7/2

n

1
= sup _ng(DiaDinithb?)\?ﬁD,n) _E[SO(D7DK X> ba )\:PD)

(byecr(n/2 | T T

and so the claim can be shown by applying technical lemma 2.7.7, with 7' = Gr())"/? indexed
by t = (b, A), and the constant map (t) = pp for all ¢ € T'. Verify the conditions of lemma
2.7.7:

(i) {D;, D;Y;, X;} is i.i.d. by assumption 5.
(ii) supwreaeyn2|Po.a — Ppl = [Ppn — Po| % 0 by the law of large numbers.

(iii) Gr(pp) = {(b,\,pp) ; (b,A) € Gr(\)"?} = {(b, \(b),pp) ; b € B} is bounded because

A is continuous (by lemma 2.7.10) and B is compact by assumption 6.
(iv) pp € (0,1) implies € = min{min{pp,1 —pp},n}/2 > 0. Let

Gr(pp) = {(b,\,pp) ; (b,\) € Gr(A\)"?} and

£ = { (b, A\, p) inf (6, A, p) = (U, N, )| < 5}

(", N,p")eGr(pp)

:{b)\p A) € Gr(A )n/Q lp — pD|<5}
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Observe that

ATJ(d)h(dy, z,b)  d

(b7>\7p) = ¢<d7 dyaxu b7 )\7p> = 1 - _f*()‘Th(dyuzab))
- D p

is continuous on Gr(pp)® for each (d, dy, x). Moreover, (b, A\, p) € Gr(pp)® implies

inf b,\,p)— (', N, p)| < inf b, \) — (U, \)]| + |p —
e MO AD) =GN d(0,3) = 0 X)] [ - o)

<n/24+e<n

and hence {(b,v(b),\,p); (b, \,p) € Gr(pp)*} C Gr(6y)". This implies

E sup (D, DY, X, b\, p)|| < E sup (D, DY, X, b, A, p)|
(b,)\,p)EGI‘(pD)E (b,’u,k,p)EGr(@O)"
<E| swp [|o(D,DY.X,b)\p)| <.
(b,v,\,p)€OB
Thus the result follows from lemma 2.7.7. OJ

Lemma 2.7.12 (Uniform consistency of the first stage). Suppose assumptions 5, 6, and 7

hold, and let M, (b) = arg max, g, +x My (b, \). Then

sup|| (2 (b), An(b), o) = (#(0), A(b), pp)|| 0

beB

Proof. Let A(b) = {\; ||A = A(D)|| <n/2} and \,(b) = arg Maxye ) M, (b,\). The proof
consists of three steps:
1. Show supyeg||An(b) — A(B)|| 2 0.

The following argument shows that for any ¢ > 0 there exists & > 0 such that
supye M (b, A(b)) — M (b, A\, (b)) < & implies sup,egl|An(b) — A(b)| < €, and the prob-

ability of the former event converges to one. Let £ > 0, and recall that M (b, \) and
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A(b) are continuous by lemma 2.7.10. This implies M (b, A(b)) — M (b, \) is continuous
in (b, \) and

AP=={(b,N) € Gr(N)"? 5 |IX = Ab)|| > ¢/2}

is compact. It follows by the extreme value theorem that sup, yeas.e M(b, A(b)) —
M (b, \) is attained, say by (b%, A\°). Lemma 2.7.9 shows A(b) is the unique maximizer
of M(b,-) over A(b), which is a subset of {\; (b,A) € Gr(A)"?}, and therefore { =
M5, \(b%)) — M(b*,2*) > 0. Observe that M (b, (b)) — M (b, \,(b)) < & implies
[An(b) — A(b)|| < /2, and thus

sup M (b, A\(b)) — M (b, \,(b)) <& = sup[|[h.(b) = AD)|| <e/2<e (2.32)

beB

Now notice that

sup M (b, \(b)) — M (b, A, (b))

beB

< sup {M(b, A(B)) — N (b, )\(b))} + sup {Mn(b, A(B)) — N (b, xn(b))}

beB beB

J/

-~

<0 by defn of A\ (b)

+ sup {Mn(b, (b)) — M (b, j\n(b))}

beB

< sup | My (b, A(b)) — M (b, A(b))‘ + sup | M, (b, An(b)) — M(b, Xn(b))‘

beB beB

<2 sup
(b,\)EGr(N)/2

V(b \) — M(b, A)’ . (2.33)

~

N (b, \) — M(b, /\)’ < €/2 holds with prob-

Lemma 2.7.11 implies that sup, yyeqr (a2
ability approaching one. When it does, (2.32) and (2.33) imply supyc /| A () = A(b)|| <
e. Therefore sup,c ||\ (b) — A(b)|| = 0.
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2. Show supy g| M, (b, An (b)) — M (b, A(b))]| 2 0.

The claim follows from lemma 2.7.11, because

sup| M, (b, An (b)) — M (b, A(b))| = sup | sup M, (b, A, (b)) — sup M (b, )\n(b))‘

beB beB |\eAb AEAP
< sup sup | M1, (b, ) = M(b, )|
beB \eAb
< sup | M,(b,N\) — M(b,N)| 0.
(b,\)EGr(A)7/2

3. Show that with probability approaching one, supyeg||An(b) — An(b)|| = 0.
This follows from an argument similar to the proof of Theorem 2.7 in Newey & Mc-
Fadden (1994). With probability approaching one, sup,.g||A.(b) — A(b)|| < 1/2 and on
this event, A, (b) € int(A(b)) = {X\; [|X — A(b)|| < n/2} for every b € B. Since

~

1 n
Mu(b,A) =~ @(Di, DiY;, Xi.b, A, o)
i=1

13-4 J(D)h( R NI )

1 - ﬁD,n pD,n

n
i=1

is concave in A, no A outside of int(A(b)) could make the objective larger than A, (b).
Thus when supycg||An(b) — A(B)|| < 1/2 holds, A,(b) = A (b) for every b € B or

equivalently, supbeBHS\n(b) — 5\n<b>H =0.

]

Theorem 2.7.13 (Consistency of §%7). Suppose assumptions 5, 6, and 7 hold. Then 5513 LS

§BP.

Proof. Lemma 2.7.12 implies 7, converges in probability to v in ¢>°(B), and lemma 2.7.5
shows ¢ : £°(B) — R given by (f) = infyepnp, f(b) is continuous. Since 65F = 1(i,) and

§PP = 1(v), the result follows from the continuous mapping theorem. O
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2.7.5.3 Inference

Lemma 2.7.14 (Bounds on Jacobian terms). Suppose assumption 5, 6, and 7 hold. Then

supye || P(0)[lo < 00 and supyep||P(b)~"[lo < oo.

Proof. Recall that ®(b) = E[Vyp(D, DY, X,b,6y(D))]. Jensen’s inequality and convexity of

norms implies
sup||®(b) “0 = Sup||E[V9¢(D, DY, X, bv 9)] HO <FE |:Sllp||V9gZ§(D, DY, X, bv 9)”0
beB beB beB

)

< E| sup ||Veo(D,DY,X,b,0)|,
(b,0)c0B

and E [sup, gycor||Vod(D, DY, X,b,0)||] < oo is implied by assumption 7 (v) and Jensen’s

inequality. Therefore sup,c || P(b)||, < 0.

To establish sup,cg||®(b) ||, < oo, first use expression (2.21) to see that

q)(b) =F [V@¢(D, DY’ Xv b? V(b>7 /\(b>7pD)]

-1 0 E[VPSO<D>DK X> b7)‘<b)7pD)]
= |0 E[Vp(D,DY,X,b,\(b),pp)] E[V,Vip(D, DY, X,b,\(b), pp)]
0 0 —1

where E[V,p(D, DY, X, b, \(b),pp)]T = 0 is the first order condition of the dual problem.

The middle matrix, F[Vi¢(D, DY, X, b, A(b),pp)], is invertible for each b € B. To see
this, first recall that lemma 2.7.10, this matrix equals V3 M (b, A\(b), which is also continuous
in . The mapping from matrices to eigenvalues is continuous (see Bhatia (1997) corollary
[11.2.6 or its application in the proof of lemma 2.7.8), so the extreme value theorem implies
supye 1 (V3M (b, A(b))) is attained by some b € B. Lemma 2.7.9 argues that M (b, \) is
strictly concave in \, hence VM (b, A\(b)) is negative definite and thus a1 (V2 M (b, A(b))) < 0.
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To summarize,

sup o (VAM (b, A(1))) = a1 (VM (b, A())) < 0

beB
which implies VM (b, \(b)) = E[V3ip(D, DY, X,b,\(b),pp)] is invertible for each b € B.
With this invertibility claim, it is straightforward to verify that for each b € B, ®(b)~! exists

and is given by

-1 0 Az
PO =10 Ay A
0 0 -1

where

A13 = _E[VpSO(Dv DY7 Xa b7 /\(b)7 pD)]
Agy = E[V3p(D, DY, X,b,\(b), pp)]

Asy = E[Vip(D, DY, X, b, A(b), pp)| " E[V,V¢(D, DY, X, b, \(b), pp)]

To see that sup,eg||®(b) ||, is finite, first recall that for conformable matrices,

All A12
< |l Anllo + | Asallo + || A21llo + || A2zo, and
A21 A22

IABllo < [[Allol Bllo-
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Apply these inequalities to find that

sup|®(b) [l
beB
< 2 +sup | E[V,p(D, DY, X, b, A(b), pp)]| + sup|| E[Vip(D, DY, X, b, A(b), pp)] [l
beB beB

+sup|| E[V3e(D, DY, X, b, \(0), pp)] [l X sup IEIV,Vap(D, DY, X, b, A(b), pp)]|
S

beB

(2.34)

|E[V,0(D, DY, X,b,\(b),pp)]| and || E[V,Vap(D, DY, X, b, \(b), pp)]|| are the operator norms

of submatrices of ®(b). Thus sup,c||P(b)]|, < oo, argued above, implies

sup | E[V,p(D, DY, X, b, \(b), pp)]| < oo, and sup | E[V,Vp(D, DY, X, b, A(b), pp)]|| < o0.
beB beB

(2.35)
Finally, since E[V3ip(D, DY, X,b,A(b),pp)] = V3M (b, \(b)) is symmetric and negative def-
inite, | E[Vi@(D, DY, X, 0, A(b),pp)I ™ llo = IVAM (b, A(0) "M lo = rmrmigagy and

T Jea(

iugllE[Viso(D,DK X, b, A(0),p0)] o
S

1
= sup||V3M (b, \(b)) "], = su
VAN (0 AB) ™l = $up T

B 1 1

= Mhealar (VOO upeen ar( MGG~ )

where the final claim follows from sup,cp a1 (V3M (b, A(b))) < 0 as argued above. Taken

together, (2.34), (2.35), and (2.36) show that sup,cz||®(b)~], < oo. O

Lemma 2.7.15 (Donsker influence functions). Suppose assumptions 5, 6, and 7 hold. Then

the class of functions

{#(D,DY, X,b,0); (b,0) € ©F}

1s Donsker.
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Proof. By verifying the conditions of van der Vaart (2007) example 19.7.

©28 is a compact subset of a finite dimensional space, hence bounded. Let (by,6,), (by, 0,) €

©8 and apply the mean value inequality (e.g., Coleman (2012) Corollary 3.2) to find

||¢<da dyv z, b17 01) - ¢<da dy, z, b27 92)”

< Szlp |V 8(d, dy, x, thy + (1 — )by, 161 + (1 — t)65)]| ] (b1, 01) — (b2, 05)]|
teOl

IA

sup ||V o(d, dy,z,0,0)|| ] (b1, 01) — (b2, 65)]]
| (b,0)e0F

Assumption 7 (v) includes E [(sup(bﬂ)e@B Hv(b,0)¢(d7 dy,x,b, 9)”0)2} < 00. Therefore the
class {¢(D,DY7 X,0,0); (b,0) € @B} is a special case of van der Vaart (2007) example
19.7, and thus Donsker. O

Lemma 2.7.16 (Weak convergence of the first stage). Suppose assumptions 5, 6, and 7 hold.
LetT ={1,....d,+ K +2}, and view 0,,(b) = (0(b), \u (D), Pp.n) and 0o(b) = (v(b), A(D), pp)
as functions mapping B x I to R. Then

\/ﬁ(én - 90) i G

where G is a tight, mean zero Gaussian process in {>°(B x I). The covariance function of

G s given by

Cov(G(by,11), G(ba,i2))
= E[(@(b) ") é(D, DY, X, by, 6(b1)) {(@(b2) ") ™ 6(D, DY, X, bz, G (b2)) }] -

where (®(b) 1)@ is the i-th row of the matriz ®(b)~! = E[Vyé(D, DY, X, b, 05(b))]

Proof. For legibility, the proof is presented in six steps:
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1. Mean value theorem.

For each b € B, apply the mean value theorem to each coordinate of

0= %2?21 &(D;, D;Y;, X;, b, én(b)) and stack the results to obtain

1 n
= — D;, D;Y;, X;,b,0(b
0 n;qs( iy o dgy, gy Uy O( ))

% Z:'L:l v0¢(1)(Dz7 Dzy;a Xi7 b? é%(b))
+ : (0 () = 00(b)  (2:37)
LS VpdtEE(D, DY, X, b, 000 (1))

v~

=3, (b)

where V40 (D;, D;Y;, X;,b,0) is the j-th coordinate of the vector Vyé(D;, D;Y;, X;, b, 0),
and 07 = 0o(b) + ai (b) x (0,(b) — Bo(b)) € REHE+2 for some af,(b) € (0,1)." Notice

182.0) — 6o(B)| = || Go(B) + (1) x (Bu(b) — 60(0)) — 60 (0)
— ) (b) % [10(b) ~ 66(0)]
< 10a(6) = 600

and sup,e |0, (b) =00 (b)|| = 0, shown in lemma 2.7.12, implies sup, 5|67 (b) — 6o (b)|| 2
0.

2. Show supycp||®n(b) — ®(b)|| 2 0.

First, notice that

dg+K+2 1 n
(bn(b) = Z ejjﬁZVGQS(DiaDiY;aXiaba 9%<b))
j=1 i=1

where e;; is the square (dy + K +2) x (dy, + K + 2) matrix whose (7, j)-th entry is one

19See Newey & McFadden (1994) footnote 25.
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and all other entries are zero.?°
Apply lemma 2.7.7 to £ 3% | Voo (D;, D;Y;, X;,b, 07 (b)) for each j € {1,...,dg+K+2}
to argue this is consistent for E[Vy¢(D, DY, X,b,00(b))] uniformly over b € B.

(i) {D;, D;Y;, X;}, is i.i.d. by assumption 5.

(i) supyepl|@i(b) — Oo(b)|| 2 0 is shown in step 1.

(iii) 6o(b) = (v(b), A(b), pp) is bounded, since B is compact by assumption 6 and v(-),

A(+) are continuous as shown by lemma 2.7.10.
(iv) (b,0) — Voo(d,dy, z,b,0) is continuous at any (b, ) € Gr(6p)", by examination of

Vop(D, DY, X,b,0)|,]
is finite; Voo(D, DY, X,b,0) is a submatrix of V9 ¢(D, DY, X,b,0), while as-

equations (2.21) and (2.22). Moreover, E [sup(b’g)egﬂgo)n

sumption 7 (v) and Jensen’s inequality imply

E sup  |[|Vpno(D, DY, X,b,0)|,

(b,0)eGr(6p)"

<FE

sup ||V(b,0)¢(Da DK X7 ba 0)”0] < OQ.
(b,0)c0B

So by Lemma 2.7.7,

1 _ p
sup || = > Vod(Di, DiYy, Xi,b,65(b)) — E[Vep(D, DY, X, b,60(b))]|| 0
beB || T i=1 o
20When premultiplying a square matrix A, ej; “selects” the j-th row. For example,
0 0 O 0 ail ai12 ais Lo Qlyg 0 0 0 . 0
01 0 0 a21 a2 a3 ..o Qoyg a21 Q22 A23 ... Q32j
622A — 0 0 O 0 asi asz2 ass B3 A — 0 0 0 e 0
00 0 ... 0 aj1 a2 a3 ... ajj 0 0 0 0
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for each j € {1,...,d, + K + 2}, from which it follows that

sup|| @, (b) — 2(0)

beB
dg+K+2 1 n
=sup|l > ey (E > Vod(Di, D;Y;, X;,b,05,(b)) — E[Vee(D, DY, X, b, eo(b))]>
beB - -
7=1 =1 o
dg+K+2 1
S Z sup _ZVQ(ZS(D”MD?,Y;JwaJ éﬁL(b)) - E[V@gb(D,DY, X7 b7 eo(b))]
j=1 beB || 0
< (dyg+ K +2)
1 & -
x maxsup || = Y~ Vo(Ds, DiY;, Xi,b,65(b)) — E[Ved(D, DY, X, b, 6(b))]
I beB || .
20

3. Uniform linearization.

Lemma 2.7.14 shows supycp||®(b)||, < oo and sup,cg||®(b) ||, < oco. Since with
supye g || Pn () —®(b)]|o = 0 is shown in step 2, lemma 2.7.8 implies that with probability
1

approaching one, ®,(b)~! is well defined as a function on B. When it is, rearrange

expression (2.37) to find

Vi(Bn(b) — Bo(b)) = @(b)l% > 6(Ds DY, X1, 60(8)

= Gn(b) + R,(b)
where Gy (b) = <I>(b)‘1% i (D, DiYa, X, b, 60()),
and Ry, (b) = [©n(b)™" — @(b) ] % Z &(Di, DiYi, X;,b,00(D)).

4. Show G, 5 G in (B x I).
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Define G,, : B — R%+EK+2 pointwise as
. 1 &
n b _- —= DZ',DiY;,Xi,b,Q b
) = 3ot A(0)

{#(D, DY, X,b,00(b)) ; b € B} is a subset of the class considered in lemma 2.7.15, and
is therefore Donsker (see van der Vaart & Wellner (1997) theorem 2.10.1). Thus, G, 4
G in (>(B)%+E+2 where G is a tight, mean-zero Gaussian process with covariance

function
Cov(G(by),G(by)) = E [¢(D, DY, X, by, 00(b1))d(D, DY, X, b, 6 (by))T]
Now define

L : (>(B)% K+ (=(B x 1), L(H)(b,7) = (®(b)"H) D H(b)

and observe that G,, = L(G,,). Note that L is a linear operator on H. Lemma 2.7.14

shows supyc || ®(b) ||, < oo, which along with

ILH || 5 = supl|®(b)~" H (b)|| < supl|®(b)~"{|o supl|| H (b)]| = (Supll@(b)1||o> 1515
beB beB beB beB

shows that L is bounded, hence continuous. The continuous mapping theorem then
implies

L(G,) & L(G)

where L(G) is a tight, mean-zero Gaussian process on /(B x T). Letting (®(b))® be

the i-th row of the matrix ®(b)~!, the covariance function of L(G) is

Cov(G(by,i1), G(bs,i2))
= B [(@(b) )W é(D, DY, X, b1, bo(b1)) { (®(b2) ) 2)(D, DY, X, by, bu(b2)) }]
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Notice that the marginals of L(G) are equal in distribution to those of G. By van der
Vaart & Wellner (1997) lemma 1.5.3, this implies the two distributions are the same
and hence G, = L(G,,) L G.

. Uniform linearization remainder control.

Since {¢(D, DY, X, b,00(b)) ; b € B} is Donsker and E[¢p(D, DY, X,b,0,(b))] = 0 for all
\/iﬁ Yoo o(Di, D;Y:, X, b, Gg(b))H = O,(1) by the continuous mapping
theorem. Lemma 2.7.14 shows ||®(b)|l, < oo a;d step 2 that ||®(b)7!|, < oo, and
|, (b) —@(b)[| & 0, so lemma 2.7.8 implies sup,c [|,(b) ™ — ®(b) || = 0,(1). Thus,

b€ B, supycp ’

[®,(0)~" — ®(b)™"] % Z ¢(Di, D;Y;, Xi, b, 90(6))H

sup|| R, (b)]| = sup
beB beB

< sup || @, (b) " — @(b)~"|| sup
b

beB €B

% Z ¢(Ds, D;Y3, X, b, 00(D)) H
i=1

0.

. Conclusion.

As elements of (*(B x I), Gy, L G and R, B 0, so
(G, Ry) 5 (G, 0) in (B x T)

by van der Vaart (2007) theorem 18.10. The continuous mapping theorem (van der
Vaart (2007) theorem 18.11) then implies

Vil —60) = Gy + R, 5 G +0

which concludes the proof.

217



Lemma 2.7.17 (Support of G,). Suppose assumptions 5, 6, and 7 hold, let G be the the
random element of (*°(B x I) from lemma 2.7.16, and let G, € (>°(B) be the mean-zero
Gaussian process on B defined pointwise by G,(b) = G(b,1). Then /n(v, — v) L G, in
(>(B) and P(G, € C(B)) = 1, where C(B) is the set of continuous functions defined on B.

Proof. Lemma 2.7.16 and the continuous mapping thoerem implies v/n (2, — v) R G,. The
Portmanteau theorem (van der Vaart & Wellner (1997) theorem 1.3.4) shows that this is

equivalent to

limsup P(v/n(9, —v) € F) < P(G, € F)

n—oo

for all closed sets F' C (*°(B). Since C(B) is closed and v(-) is continuous by lemma 2.7.10,

it suffices to show that 7, is continuous with probability approaching one.

The argument is based on the Berge maximum theorem (Aliprantis & Border (2006)
theorem 17.31). Recall A,(b) = arg Max, cpdg+K M, (b, \) and 0, (b) = M, (b, A\, (b)). Let
A(b) = {X; [|A = A()| £n/2}. Lemma 2.7.12 implies sup,cp ) An (D) — )\(b)H < /2 holds

with probability approaching one, and when it does,

sup M, (b, \) — max M, (b, \)

AERd9+K )\GA(b)

sup| i, (b) — max M, (b, \)| = sup =0

beB AEA(D) beB

~

It thus suffices to show that b — maxyea@p) M, (b, A) is continuous with probability approach-
ing one. This will follow from the Berge maximum theorem, once it is shown that A(-) is a

continuous correspondence and M, is continuous on Gr(A). Since

C 77/25 X . R < _ Lo . / <
A0 B ={as - N </zh = eIy 2l <2

we can view A : B = A\(B)"?2, and thus

Gr(A) = {(0,)) € BxA(B)"*: A€ Ab)} = {(0,A); A= A®)I <n/2}.
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1. Consider continuity of the objective first.

Assumption 7 (iv) implies h(y, z, b) is continuous in b, and assumption 5 (iv) includes

that f*(-) is essentially smooth. It follows that

. 1 <= \J(D))h(D;Y;, X; D,
1, (0,3) = & 5 AIPIMOL T D gy, X, b))

~

i=1 1- PD.n PbDn

is continuous at (b, A) if and only if ATh(D;Y;, X;,b) € (£*,u*) for every i, which holds
if and only if M, (b, \) < co. Notice that

Gr(N)"2 = {(b,A) ; inf ayeaoy (B, A) — (B, N)|| < n/2} contains Gr(A) because
(b, N) = (b,\(b)) is an element of Gr(\) = {(b,A(b)); b€ B}. Assumption 7 (v)
implies sup, yyegeynz| M (b, A)| is finite, and lemma 2.7.11 shows that M, is uni-
formly consistent for M on Gr(\)"?2, thus the continuous mapping theorem implies
sup(bA)eGr(A)n/ﬁMn(b, NS SUP(p, nyecr(nyn/2| M (b, A)| and therefore

SUp p, A)eGr()\)"/Q‘Mn(ba A)| is finite with probability approaching one. When it is,

~ ~

sup M, (b,\) < sup  |M,(b,\)| < 0.
(b,\)eGr(A) (b,\)E€GT(A)1/2

and M, is continuous on Gr(A).

2. Now consider continuity of A : B = \(B)"2.

Upper hemicontinuity will follow by application of the Closed Graph Theorem, Alipran-
tis & Border (2006) theorem 17.11. B is compact by assumption 6 and 2.7.10 shows
that A(-) is continuous, therefore A(B) = {\(b) ; b € B} is compact, and hence \(B)"/?
is compact. Suppose {(bn, A\n)}o2; € Gr(A) converges to (b, A). Then b € B because
B is closed. Since A(-) is continuous, ||[A(b,) — A(D)|| — 0, and therefore

A =20 < A= Anll + A = Al || + [[A() = AD)]
——— ~~ ~~

—0 <n/2 —0
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shows that [|A — A(b)|| < n/2, i.e. A € A(b). Thus (b, \) € Gr(A), so Gr(A) is closed.
Aliprantis & Border (2006) theorem 17.11 then implies A : B = A(B)"? is upper

hemicontinuous.

Regarding lower semicontinuity, note that B C R% and \(B)"? C R%*X are both
metric spaces and hence first countable. Thus Aliprantis & Border (2006) theorem
17.21 implies A is lower hemicontinuous at b € B if and only if for any sequence
{bn} € B with b, — b and any A € A(b), there exists a subsequence {b,, }?2; and
elements A\, € A(by,) for each k such that \y — A. For the subsequence we can take

the sequence itself. Notice that A\, = A(b,) + A — \(b) satisfies
[An = Abn) [l = [[A(0n) + A = A(b) = A(bn)[| = [IA = AB)]| < n/2
and therefore A\, € A(b,). Continuity of A(-) and b, — b implies A, — A, and thus A

is lower semicontinuous.

To summarize,

~ ~

An(b) — )\(b)H < /2 and sup  My(b,\) < 00
(b,\)EGr(A)

sup
beB

hold with probability approaching one. When both hold, 7,,(b) = maxyea) Mn(b, A) is

continuous by the berge Maximum theorem, implying \/n(, — v) € C(B). Thus

~

An(b) — )\(b)H <p/2and  sup  M,(b,\) < oo> Sl

beB (b,2)eGr(A)

P(v/n(o, —v) €C(B)) > P <sup
As argued above, the Portmanteau theorem implies P(G, € C(B)) = 1. O

Lemma 2.7.18 (y/n-consistency and convergence in distribution). Suppose assumptions 5

and 6 hold, and 7 (i), (i), (), (v) hold, but do not assume m(v) = argmin,cp~p, v(b) is
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unique. Then

Vn(6BP — §BP) & int G, (b)

bem(v)
where G, is the weak limit of \/n(v, — v) in £>°(B).
Proof. Let v : £>°(B) — R be given by «(f) = infpepnp, f(b). Then
V(P — 677) = Vi(u(d) — 1(v)
suggests applying the Delta method, found in Fang & Santos (2019) as theorem 2.1. There

are two assumptions to verify:

1. On the map ¢:

(i) ¢ maps (£>°(B),]|"||s) to (R, |:]), which are both Banach spaces.

(ii) Lemma 2.7.6 implies that ¢ is Hadamard directionally differentiable at any f €
C(B) tangentially to C(B), and lemma 2.7.10 shows that v € C(B).

2. On the estimator 7,,:

(i) As noted in lemma 2.7.17, \/n(0, — v) = G, in £2(B).

(i) G, is tight. Lemma 2.7.17 shows that P(G, € C(B)) = 1, i.e. the support of G,
is included in C(B).

Fang & Santos (2019) theorem 2.1 then implies

V() = 1) = 4, (Vn(on = v)) + 0p(1)
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Lemma 2.7.6 shows the directional derivative of ¢ at v is given by

u,:C(B) = R, u,(h) = inf h(b)

v bem(v)

and therefore

V(BB = 657) = i(u(i) — o(v) = inf {Va(o () — v(0)} +o0p(1) 5 inf G, (b).

bem(v) bem(v)

O

Theorem 2.4.2 (Asymptotic normality). Suppose assumptions 5, 6, and 7 hold. Let b, =

arg minye pnp, U (b) and

where (0, (b,) ™)WY is the first row of the matriz ®,(b,)~. Then m 2 N(0,1).

n

Proof. Since m(v) is a singleton, say m(v) = {b,}, lemmas 2.7.16 and 2.7.18 imply /n (057 —

§BP) KN N(0,0%) where

o> = B[((@(b,))V6(D, DY, X, by, 60(b))’]

= €] ®(b,) 'E[¢(D, DY, X, b,,0(bo))d(D, DY, X, b, 00(bo))T] (B(by,) ") e

and e; = (1,0,...,0) € R%T5+2 Now notice that 62 is the sample analogue:

= e.{q)n(bn)il [; Z ¢(Dza Dzy;a X’L'7 bn: en(bn))¢(Dza Dzy;a Xi7 bn7 en(bn))T (Cpn(bn>71).rel
i=1
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It suffices to show @, (b,) = ®(b,) and

1 & A s A s
=" $(Di, D;Ys, Xi, b, (b)) $(Di, DY, X, b, O (b))
n
=1
= B¢(D, DY, X, by, 00(bo))¢(D, DY, X, by, 0 (bo))"] - (2.38)

With these, the continuous mapping theorem will imply 6, 2 o, hence (y/n(6B7—68), 6) 2

(N(0,0?),0), and another application of the continuous mapping theorem gives the conclu-

sion YROET=0"0) 4 N0, 1),

To show ®,(b,) & ®(b,) and (2.38), first notice that

{¢(D, DY, X,b,0)p(D, DY, X,b,0) ; (b,0) € Gr(6)"}
{Vyp(D,DY,X,b,0): (b6) € Gr(6y)"}

are special cases of van der Vaart (2007) example 19.8 and thus Glivenko-Cantelli. Specif-
ically, Gr(6y)" is closed and bounded and hence compact. (b,0) — ¢(D, DY, X,b,0) x
&(D, DY, X,b,0)T and (b,0) — Veo(D, DY, X, b,0) are continuous by inspection of (2.19),
(2.21), and (2.22). Finally, E [sup, g\eqroonl| Voo (D, DY, X, b,0)||] < co and

E

sup |lo(D, DY, X,b,0)p(D, DY, X,b,0)7,
(b,0)€Gr(6p)"

=F
(b,0)€Gr(00)n

sup  [[¢(D, DY, X. b,e>u2] < o0

are implied by assumption 7 (v).

Next, observe that (by,0,(bn)) = (by,00(b,)). First, b, = b, follows from a standard
extremum estimator argument. The function v : B — R is continuous, uniquely minimized
over the compact BN By at b,, and supy. |2y (b) — v(b)| 2> 0 by lemma 2.7.12. Thus Newey

& McFadden (1994) theorem 2.1 implies b, = arg min, BB, Vn(b) are consistent for b,. Use
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the triangle inequality, b, — b,, continuity of 6y(b) = (v(b), A(b), pp) (lemma 2.7.10), and
supyep|0n (b) — 0o(D)|| = 0,(1) (lemma 2.7.12) to see that

16, (Bn) = Bo(b,)]| < ilelg\!én(b) —00(0) ]|+ ||60(ba) — bo(b,)]| = 0,(1)

N ~~ 4 =o0p(1) by CMT
=op(1)

Note that (b,0) — E[Veo(D, DY, X,b,0)] is continuous on Gr(6y)” by the dominated
convergence theorem and continuity of (b,60) — Veo(D, DY, X, b,6) visible in equations
(2.21) and (2.22). (by, 0n(bn)) 2 (by,00(Dy)), 50 (by, 0, (by)) € Gr(6)" holds with probability

approaching one and when it does,

A

1@ (bn) — @(by)|| = % > Vod(Di, D;Y;, X, by, 0 (b)) — E [Vo$(D, DY, X, by, 05(b,))] H
=1

1 & A oA s foa s
< |- 3" Vob(Di, DYi, Xy b, O (b)) = E [ Voo(D, DY, X, by, 00(5) | H
n
=1
+||B[Vad(D, DY, X, b, 0())]| = E[Vos(D, DY, X, by, 60(5,)) |
1 n
< sup ||= ) Vep(Di, DiY;, X;,b,60) — E[Vy(D, DY, X, b,0)]
(b,0)€Gr(60)" || TV
=o0p(1) by Gﬁgenko-Cantelli
+||E [Voo(D, DY, X,5,.6,(6))| = E[Vos(D, DY, X. by, 60(6,))]|
) —op(1) by CMT ’
= 0,(1).
Essentially the same argument implies (2.38) holds, which completes the proof. O

2.7.6 Appendix: examples
2.7.6.1 Expectation

This simple example is useful primarily to illustrate the ideas in a concrete setting.
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Suppose the parameter of interest is § = E[Y]| € R, and the sample is {D;, D;Y;}"_;. The

conclusion to be supported is that 3 > b, motivating the null and alternative hypotheses

Hy : B<b, H : B>b

.
The model is characterized by g(y, b) = y—b. For the dual problem, set h(y,b) = (y —b 1) )
The dual problem is

sup ATe(b) — Ep [f*(ATh(Y,b))] (2.39)

AER2

1-pp

where ¢(b) = ( 0 ([, [Y] — b) 1)T.

Dual solution when d; is Kullback-Leibler and P; is U]0, 1]

Suppose that P;, the distribution of Y | D =1, is U[0,1]. Let u; = E[Y | D = 1] = 1/2.
Note that, since the support of Fy is contained within [0, 1] as well, we have § = E[Y] €
[ppp, popr + (1 — pp)]. The endpoints are only attained if Py concentrates degenerately at

0 or 1 respectively, distributions which violate Py < P;.

For tractability, let the measure of selection be Kullback-Leibler. For this divergence we
let f(t) = tlog(t) —t+ 1, which has convex conjugate f*(r) = exp(r) — 1. The dual problem

has first order condition

0= c(b) — Ep, [(f*) (ATh(Y, b)) 1 (Y, b)]

(TG oxp (M (Y —b) + Ao) =)
1 1

From the second equation we have

Ay = —log (Elexp(A (Y —b))]) (2.40)
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Suppose b = % Then the first equation requires

0=E {exp()\l(Y —B) £ ) (Y - %)} (2.41)

Notice that if Ay = 0, then (2.40) implies Ay = 0, and (2.41) holds.

Now suppose b # 1/2. Consider the dual objective, and notice that

Ep, [f*(\h(Y, b))] = / exp(ATh(y, b)) — 1dy

Since b # 1/2, it follows that {£2-(1/2 —b) # 0 and so A; # 0. Thus the integral above can

be solved with u-substition, setting u = A;(y — b) + A

Al(l—b)-i-)\z

1
1
Ep [f*(\Th(YB))] = / exp(\Thy, b)) — 1dy = — exp(u)du — 1
0 A a0

~ exp(AThy) — exp(AThy)

-1
)\Tel

where b; = (1 —b 1>T, by = <_b 1>T, and e; = (1 ())T. Thus (2.39) becomes

22 (1/2-5))  exp(AThy) — exp(Ahy)

1-pp

sup AT +1

AER2 1 ATeq

from which we can compute the first order conditions

—LD(1/2 —b) B exp(ATb; )by — exp(ATbg)bg N exp(ATby) — exp(AThyg)

0= [ "7 e
1 )\T61 ()\T61)2 !

Once again, the second equation can be solved for A\y. The following form will be more
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useful:

exp(A1(1 —b) + Ao) — exp(Ai(=b) + Ao)
At

=exp(A (1 — b)) — exp(A(=D)) (2.42)

0=1-

A
exp(Aq)

The first equation is

—pb <1 B b) _ exp(M (1 =) 4+ Ag)(1 — b) — exp(Mi(=b) + A2) (D)
I—pp \2 A1
_exp(Ai(1 = b) + Ag) — exp(Ai(=D) + Ao)
A

- [expulu - )~ blosp(Au(1 - ) ~ exp(ha (b))

_expM(1 = b)) —exp(Mi(=b))

A1
_ exp(A1(1 —b)) b 1 exp(A) 1
exp(A1(1 — b)) — exp(A1(—b)) A1 oexp(A) —1 A1

where the second to last equality uses (2.42) above. Rearranging gives

exp(A1) 1 _ —pp(1/2—=0b)+ (1 —pp)b _ 2b — pp
exp(A)—1 N\ 1—pp 2(1 - pp)
exp(A1) 1

— < is well defined and continuous whenever \; # 0, takes

Now notice that PO~ M

values between 0 and 1, with limits

exp(Ar) 1 1 lim exp(Ar) 1

9
n——coexp(A) — 1 N

li — ==
)\11£>noo exp()\l) —1 )\1

Repeated applications of I’'Hopital’s rule shows that

exp(A1) I aexp(A) —exp(M)+1 1

sooexp(h) — 1 A aso A(exp(h) —1) 2
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Therefore there exists a solution whenever -2—22_ ¢ (O, l) U (l 1). Given this solution,
2(1-pp) 2

(2.42) can be rearranged to obtain

A
A = log (exp()q(l —b) - exp(M(—b”)

Now notice that

2b —
—pD>O:>b>127
2(1—29D) 2
2b=pp o PD
2(1 - pp) 2

and recall that b = 1/2 implies Ay = Ay = 0 solves the dual problem. Therefore the dual

problem has a solution whenever b € (%D, 1— ”TD)

Py has compact support, and f*(Ai(y —b) + A2) = exp(A(y — b) + \y) — 1 is continuous
in y for any (Ay, Ag). Thus the extreme value theorem implies the solution is in the interior
of {\ e R*; E[|f*(Nh(Y,D))[] < oo} = {A € R?; [lexp(Ai(y —b) + X2) — 1|dy < 0o}. The
implied solution to the primal, ¢°(y) = (f*) (ATh(y,b)) = exp(A1(y — b) + o) satisfies 0 <
¢°(y) < oo on the support of P, and solves the moment conditions. Thus assumption 6 is

satisfied for any convex, compact B C (%D,l — %D)

2.7.6.2 Linear models

Lemma 2.4.1 (Convex value function, linear models). Suppose assumptions 5 and 6 hold,
the sample is {D;, D;Y;, Xi1, Xio}? where Y; € R, X3 € R and Xy € R%2, and the
parameter (5 is identified by

E[Y - X{B)X5] =0

Then 0, and v are convex. If in addition E[XsX{] has full column rank, then v is strictly

conver.
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Proof. Let b°,b! € B, be distinct, a € (0,1), and b* = ab' + (1 — a)b°. The proof of theorem
(2.3.1) shows that the primal problem at »° and b' is attained by Q° and Q! with densities ¢°,
¢". The moment conditions are 0 = E [Xo(Y — XT3)] = E[XoY] — E[X,X]] 3, so Q° € P
and QePb1 implies

o1 [XaY] = Bpyy [XoX]]0! = < . (Ep, [XoY] — Ep, [XoX]]0") (2.43)
— VD
Ego [XoY] — Ep,, [XoXT] 10 = 1_?’;’ (Ep, [XoY] — Ep, [XoXT]0°) (2.44)
— VD
implying that
—PD

Eoqi+(-a)qo [X2Y] = Epyy [Xo XT] 0

= 2 (B [XoY] - B, [XaX])0°)
— Pbp

Similarly, Ego[1{X = x}] = Eqi[1{X = 24} = Ep[I{X =a3}| forall k =1,..., K. It
follows that Q* = aQ' + (1 — a)Q" is feasible for b* = ab' + (1 — «)b°. This implies

dp(Q%[|Py) = inf dp(Qf 1) = v(b7)
QeP

Q° has P-density ¢® = aq' + (1 — a)q°. Convexity of f implies that for any (y, ),

af(¢'(y,2) + (1 —a)f(¢°(y,2)) > f(ag' (y,2) + (1 — a)¢(y,z)) = f(¢"(y, x))

integrating with respect to P; shows that
adg(Q[|P1) + (1 — a)dp(Q°||P1) = dp(Q%[| 1) = v (b®)

Since the left hand side equals av(b') + (1 — a)v(8Y), this shows v is convex. Notice that no
properties of Py, Pyx were specified in the argument above, so the same argument works to

show 7, (b) is convex in b by replacing Py, Pyx with their empirical counterparts.

Finally, to see that v is strictly convex when E[X5X7| has full column rank, use equations
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(2.43) and (2.44) to see that

(1 =pp) [Equr [XoY] = Eqon [XoY]] = [ppEp [XoX[] + (1 — pp) Ep, [XgXlT]l(bl — by)

-~
=E[X2X]]

Since F[X,X]] has full column rank and b' — 0% £ 0,
(1 —pp) [Eqr [XoY] — Eqo [XaY]] # 0

and thus Q! differs from Q°, implying ¢' differs from ¢” on a set of positive P, measure. For

(y,x) in that set, strict convexity of f assumed in (5) (iv) implies

af(q'(y.x)) + (1= a)f(a’(y,2)) > flaq'(y,2) + (1 — )" (y. 2)) = f(a"(y, 2))

integrating with respect to Py implies ad (Q'||P1) + (1 — a)ds(Q°||P1) > d;(Q%||Py), and
thus av(b) + (1 — a)v(b°) > dp(Q%|| P1) > v(b%). O

Simulations suggest that OLS more generally produces convex v(b). Consider the data

generating process described in section 2.5.2. Here the data is of the form

{D;, D;Yi1,D;Yio, Xi1, Xio}? 1, and the model is given by

Yi = Bo + 1 X1 + BoYo + B3Xs + ¢, E el =0

The following figure investigates convexity of the v(b) (where d;(Q||P) = H*(Q, P)) numer-
ically, by looking for convexity along random line segments. Specifically, let by and by be
points in the sample space and compute 2, (Ab; + (1 — X)by) for many values of A between 0

and 1. The following figure shows the results of this exercise for 10 randomly selected (by, b;)
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pairs, and shows that no deviation from convexity was detected.

Convexity of v(b) in OLS

0.22
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0.12 1
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_--"_-_-—'===__
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0.0 0.2 0.4 0.6 0.8 1.0
A
—— bp=[0.83,1.18, 0.87,0.43] tob;=[1.0,1.4,1.18, 0.48] — bp=[0.77,1.12, 1.1, 0.37] to by =[1.16, 1.58, 0.74, 0.49]
—— bp=[1.06, 1.72, 1.26, 0.37] to by =[0.99,1.23, 1.13, 0.41] —— bp=[0.93, 1.53, 1.22, 0.49] to by =[1.41, 1.27, 1.13, 0.38]
— bp=[1.05, 1.64, 1.16, 0.47] to by =[1.37, 1.05, 0.9, 0.31] — bp=[1.27, 1.45, 0.92, 0.31] to b1 =[0.67, 1.37, 0.86, 0.35]
—— bp=[1.42, 0.57, 1.21, 0.42] tob;=[1.31, 1.47, 1.37, 0.42] by=1[0.96, 1.07, 1.15, 0.33] to b; =[1.45, 1.61, 0.95, 0.46]
—— bp=[1.19,1.11,0.72, 0.18] to b;=[0.98, 1.69, 1.03, 0.45] —— bp=[0.98, 1.62, 1.1, 0.37] to b1 =[1.19, 0.99, 1.14, 0.37]

2.7.6.3 Binary choice models

Let V € {0,1}, W € R?, and suppose interest is in P(V = 1| W = w). A common choice
of model assumes

PV =1|W=w)=F(w'p)
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for a known CDF F(-). This model can be derived from a latent variable model of the
form V = 1{W'p > £}, where conditional on W, the unobserved “latent variable” ¢ has
distribution F'(z).

P(V=1|W=uw)=PE<WS|W=uw)=Fwp)

exp(z)
1+exp(z)’

For example, the logistic regression uses F(z) = A(z) = while the probit model

uses F(z) = ®(z) = [ \/%7 exp(—t%/2)dt.

Given i.i.d. data of the form {V;, W;}" |, the model can be estimated through maximum
likelihood. The likelihood of an observation (V, W) is F(WTb)V (1 — F(WTb)'~" | implying a
population log-likelihood of

((b) = E[VIn(F(WTb)) + (1 — V) In(1 — F(WTH))]

Assuming F'(z) is differentiable with density f(z) and that differentiation and expectation

can be interchanged, the score is given by

(V — F(WTb)) W

_ _ f(WTb)
s(0) = Vllb) = E | iy

(WTb) (1 — F(WTh))
and supposing f(z) is differentiable with derivative f’(x), the Hessian can be calculated and
shown negative definite when E[WWT] is full rank. This implies the log-likelihood is strictly
concave, and hence the first order condition suffices for maximization. Therefore the model

could also be viewed as a GMM model solving

0=F

T iy V- FOVa) W

FW5) (1= F(WT5))
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Logistic model

For the logistic model, F(x) = A(z) = —1f§(px(i;)’ we can compute that
exp(z)
o) = ) = P - Fo)

and thus the score simplifies to
s(b) = E[(V — A(WTb)) W]
This makes it straightforward to compute the Hessian of the log-likelihood as

Vil(b) = E[-AWTb)(1 — AWTh))WWT]

Let U = /A(WTb)(1 — A(WTb))W and observe that V2¢(b) = —E[UUT] is negative definite
if E[WWT] is full rank. Thus, the logistic model can be viewed as a GMM model, where

solves

0=E[(V—-AWTSE) W]

This model can be put into the form used in assumption 5 with Z = (Zy), Z_1) = (V, W),
g(z,0) = (21 — A(z11D))z_1, and Vyg(z,b) = —A(27,0)(1 — A(27,0))z_127,.

Simulations suggest that the logistic model may also produce a convex v(b). Consider the
data generating process described in section 2.5.3. The logistic model can also be investigated
for convexity. The same numerical exercise described above results in a figure that again

shows no deviation from convexity.
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v(Ab1 + (1 — A)bo)

Convexity of v(b) in logistic DGP
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— hp=[0.67, 0.43, 0.77] to by =[1.08, 0.51, 1.04] — bp=[0.57, 0.4, 1.12] to b1 =[0.85, 0.64, 1.25]
—— bp=[1.01, 0.78, 1.37] to by =[0.85, 0.5, 0.85] —— bp=[0.82, 0.66, 1.32] to b1 =[1.31, 0.86, 0.89]
— bp=[1.0, 0.73, 1.23] to b1 =[1.22, 0.82, 0.64] — bp=[1.33, 0.61, 0.84] to b1 =[0.62, 0.24, 1.01]
—— bg=[1.55, 0.04, 1.29] to by =[1.02, 0.77,1.12] by=1[0.87, 0.37, 1.21] to b1 =[0.67, 0.89, 1.28]
— hp=[1.21, 0.39, 0.53] to b1=[0.12, 0.49, 1.38] — bp=1[0.89, 0.72, 1.13] to b1 =[0.82, 0.67, 0.57]
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