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N E U R O S C I E N C E

Artificial intelligence–powered 3D analysis of 
video-based caregiver-child interactions
Zhenzhen Weng1†, Laura Bravo-Sánchez2, Zeyu Wang2, Christopher Howard3‡,  
Maria Xenochristou2§, Nicole Meister4, Angjoo Kanazawa5, Arnold Milstein6, Elika Bergelson7, 
Kathryn L. Humphreys8, Lee M. Sanders9*, Serena Yeung-Levy2,3,4,6*

We introduce HARMONI, a three-dimensional (3D) computer vision and audio processing method for analyzing 
caregiver-child behavior and interaction from observational videos. HARMONI operates at subsecond resolution, 
estimating 3D mesh representations and spatial interactions of humans, and adapts to challenging natural envi-
ronments using an environment-targeted synthetic data generation module. Deployed on 500 hours from the 
SEEDLingS dataset, HARMONI generates detailed quantitative measurements of 3D human behavior previously 
unattainable through manual efforts or 2D methods. HARMONI identifies longitudinal trends in child-caregiver 
interaction, including child movement, body pose, dyadic touch, visibility, and conversational turns. The inte-
grated visual and audio analysis further reveals multimodal trends, including associations between child conver-
sational turns and movement. Open-sourced for large-scale analysis, HARMONI facilitates advancements in 
human development research. HARMONI achieves 63 to 80% consistency on key attributes with human annota-
tors on SEEDLingS and 84 to 93% consistency on videos taken from a laboratory setting while achieving >100 
times savings in time.

INTRODUCTION
During the initial stages of human life, the brain undergoes notable 
developmental changes, marked by a pronounced plasticity that allows 
for it to be molded by experience, most often via child interactions with 
their caregivers (1). Examining the behaviors of infants and children in 
the context of caregiver interactions provides valuable insight into how 
these experiences may shape development (2). Developmental scientists 
have used the best available methods to document children’s developing 
competencies (3), and now advancements in video technology have 
facilitated a proliferation of child observations recorded for analysis. 
Despite progress in data capture, the review and quantification of data 
properties often encounter constraints due to the manual coding of 
extensive video footage, which demands considerable time and 
expense. This limitation hinders the capacity to conduct large-scale 
quantitative analysis, ultimately restricting the depth and scope of scien-
tific investigation achievable through video observation. Manual coding 
and smaller-scale studies also reduce the heterogeneity of samples, 
potentially impairing the insights to be gained from a more diverse set of 
children, caregivers, and families. As a result, it becomes more difficult 
to translate basic science to real-world settings, such as pediatric care, 
early childhood education, and the home.

In light of the challenges associated with manual video coding, 
innovative techniques for extracting and quantifying analyzable 

properties of human behavior in video recordings may offer alterna-
tive avenues for exploring scientific hypotheses. One such approach 
involves use of auxiliary sensors and devices, generating quantita-
tive streams of values, such as from wearable accelerometers or 
head-mounted cameras (4). However, these sensors can prove un-
wieldy and unfeasible for implementation across extensive study 
populations. More recent approaches (5–8) attempt to directly esti-
mate parameters from video data using artificial intelligence (AI) 
techniques. Applications of natural language processing have yielded 
phoneme, syllable, and word count estimates from audio recordings 
(9, 10), while computer vision has facilitated predictions of 2D ob-
ject and body keypoint locations in images (11–13). Nevertheless, 
such video analysis efforts remain rudimentary and brittle, failing to 
capture the intricacy and sophistication of human interaction with-
in a three-dimensional (3D) context.

Here, we introduce HARMONI (Holistic 3D Analysis of Respon-
sive Human Movements from Observational Video of Natural Inter-
actions), a 3D computer vision and audio method for the extraction 
and quantification of intricate properties of 3D human behavior and 
interaction from single-view videos featuring children and caregivers. 
Our approach is capable of operating at a granular temporal resolu-
tion in an automated manner, estimating detailed 3D mesh repre-
sentations (i.e., 3D digital reconstructions) of humans in video 
frames over time. HARMONI demonstrates robust adaptability to 
videos collected from challenging natural environments (e.g., home 
settings) through an environment-targeted synthetic training data 
generation module, eliminating the need for collecting extensive la-
beled training datasets in individual environments. The 3D human 
mesh estimates produced by HARMONI facilitate the computation 
and interpretation of features such as human movement, visibility, 
touch, and body pose at subsecond resolution.

In developing HARMONI, we specifically selected features grounded 
in well-established developmental science research. These fea-
tures are intended to capture essential aspects of child-caregiver 
interactions that substantially influence child development. For 
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example, 3D spatial understanding facilitates the measurement of 
key metrics such as location, distance traversed (14), caregiver-child 
proximity (15), touch (16), and field of view (17). Research has 
shown that these physical dynamics—such as the proximity of a 
child to their caregiver, the child’s orientation, and their movement 
patterns—are critical indicators of developmental progress and have 
been linked to various developmental outcomes. Additionally, child 
pose (18) relates to motor development milestones (19), while audio 
features, including child-initiated conversations (20), conversation-
al turn counts (CTCs) (21), and adult speech counts (22), are crucial 
for assessing shared attention and language learning. By incorporat-
ing these features into the tool, we ensure that it provides outcomes 
that are relevant and valuable to both developmental scientists and 
social scientists. While a subset of these outputs has been previously 
studied for child development (e.g., caregiver-child distance and 
adult word counts), HARMONI augments previous work by ex-
tracting multiple multimodal features with a single method. More-
over, HARMONI’s approach to feature definition based on mesh 
representations presents an opportunity for researchers to redefine 
or augment features for their use case (e.g., subtypes of behaviors). 
There are further possibilities that have not been studied in this 
work but could be facilitated by HARMONI. Similarly to (23), 
HARMONI’s mesh-based representation could be used to anony-
mize videos depicting sensitive data.

We validate HARMONI using two datasets comprising video of 
caregiver-child interactions, SEEDLingS (24) from natural home 
environments, and CMU Panoptic-Toddlers (25) from a laboratory 
setting. The SEEDLingS dataset encompasses >500 hours of longi-
tudinal interaction videos from 44 children, and their caregivers, 
recorded monthly between child age 6 to 17 months. Here, we ex-
plore whether and to what extent child movement, body pose, 
caregiver-child touch (i.e., any body part of one person being in 
contact with any body part of the other), and caregiver-child visibil-
ity (i.e., whether the other party is in their view) change across de-
velopment, given that we expect there may be change, although not 
previously tested, in each of these domains in relation to chrono-
logical age. Our approach not only analyzes this substantial volume 
of video data without incurring human labor costs, but also gener-
ates detailed quantitative measurements of 3D human behavior and 
interaction, previously unattainable through manual efforts or exist-
ing methods. Previous works that quantify human interactions have 
relied on self-reported measures (26–29), sensor data from elec-
tronic devices (30, 31), and 2D or semiautomatic 3D outputs from 
computer vision algorithms (11, 32). HARMONI stands apart by 
introducing a fully automated approach that goes beyond these con-
ventional methods. By harnessing the power of 3D computer vision 
and state-of-the-art audio processing methods, HARMONI enables 
the extraction and analysis of highly detailed quantitative indicators 
from video recordings of natural human interactions. We include 
CMU Panoptic-Toddlers as an additional validation set to demon-
strate that HARMONI’s performance can be enhanced with optimal 
video capture settings, where the ideal camera position offers a clear, 
unobstructed view of both individuals.

We demonstrate how HARMONI’s visual analysis can be inte-
grated with automated audio analysis to explore multimodal, audio-
visual trends, such as the interaction between increased child CTCs 
and child movement. HARMONI can be an effective instrument 
for producing scientific insights and verifying hypotheses across di-
verse populations, developmental phases, and cultural backgrounds. 

We make HARMONI publicly available as a tool for facilitating 
large-scale quantitative analysis of human behavior in video record-
ings, paving the way for innovative advancements in human devel-
opment research.

RESULTS
AI-based extraction of 3D mesh representations of children 
and caregivers from video
HARMONI, an AI-based method, automates the extraction of 3D 
mesh representations of humans from video, enabling the computa-
tion of objective measurements that describe human behavior and 
interaction. Figure 1 shows a visualization of a video sequence with 
child and caregiver human meshes extracted from the visual data and 
audio features extracted from the audio data, and example caregiver-
child interaction measurements that can be extracted. Specifically, 
given a video as input, HARMONI produces a set of 3D human 
meshes for every video frame, corresponding to detected children 
and caregivers. First, it performs body tracking and body type classi-
fication to detect children and caregivers in video frames, using only 
a few user-provided bounding boxes of each individual as guides. 
Subsequently, using the SMIL (33) body model for children and the 
SMPL (34) body model for adult caregivers, it employs a deep neural 
network to estimate the parameters corresponding to the respective 
body model for each detected human. These parameters include a 
10D vector for body shape, a 72D vector for 3D body joint locations 
in axis-angle representation, and a 6D vector for camera parameters. 
Combined, the parameters specify a 3D human mesh through a for-
ward generative process.

The deep neural network used by HARMONI for estimating 3D 
human mesh parameters is pretrained on a set of widely used public 
computer vision datasets (35,  36), not from human development 
studies. These datasets include those collected with 3D ground truth 
using motion capture, as well as naturalistic image datasets of hu-
mans manually annotated with 2D keypoints. However, training on 
these datasets alone may not transfer to previously unseen video 
data distributions, such as those in human development research. 
Therefore, HARMONI includes an environment-targeted synthetic 
training data generation module, which, given raw, unannotated 
video from a new environment (e.g., an unseen home setting), au-
tomatically generates synthetic training data representative of that 
environment to fine-tune the 3D mesh estimation model. Since 
SEEDLingS, like many in-the-wild video captures, lacks the anno-
tated labels required for supervised training of a human pose esti-
mator, this kind of training paradigm helps us create synthetic 
training data that mimic the real data distribution, allowing us to 
train an effective human pose estimator. Last, HARMONI uses an 
optimization algorithm to refine estimated body parameters based 
on physical plausibility constraints, such as adjusting the body to be 
above the ground plane and smoothing predictions across frames.

Quantification of individual child and caregiver behaviors
The sequence of 3D child and caregiver human meshes output by 
HARMONI for each video frame enables the computation of ob-
jective measurements that describe human behavior and interac-
tion. For instance, 3D distance and movement across a physical 
space can be computed. The relative positioning of body parts 
can be filtered or clustered to quantify the presence of body pos-
es and behaviors. Head orientation can also be used to determine 
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field-of-view and e, and distance between child and caregiver 
meshes can be used to determine touching and proximity over 
time. Additional measurements may be composed using the hu-
man mesh as the starting point.

As HARMONI is a fully automated approach, it can extract mea-
sures of interest from large amounts of video without requiring hu-
man labor. We deployed HARMONI on 500 hours of video from 
SEEDLingS. This dataset comprises hour-long recordings each month 
for 44 caregiver-child dyads, from ages 6 to 17 months. Figure 2 
shows the longitudinal distribution of measures characterizing indi-
vidual child and caregiver behaviors, computed over these months. 
Specifically, Fig. 2 (A and B) displays child and caregiver distance 
traversed (in meters), respectively. Figure 2C shows an example of 
one caregiver-child pair movement trajectory in 3D, during a re-
cording period. Metrics obtained from HARMONI reveal an in-
crease in child distance traversed across development (β  =  0.30 
[95% confidence interval (CI) 0.21, 0.40], P = 1.417 × 10−12) and a 
decrease in caregiver distance traversed across child development 
(β = −0.14 [95% CI −0.22, −0.06], P = 4.454 × 10−4).

Figure 2D presents changes in child pose over time. We clustered 
the poses into four poses of interest for children based on the orien-
tation of the reconstructed 3D human bodies and plotted the per-
centage of time the child spent in each pose, after filtering out frames 

where no child is detected as well as frames where the child pose is 
ambiguous (only the upper half of the body is detected). We observe 
that across development, children spend increasing amounts of time 
in an upright pose (β = 0.34 [95% CI 0.26, −0.42], P = 4.686 × 
10−16). Note that SEEDLingS contains complex scenarios where the 
child may be in an upright position with assistance (such as being in 
a chair or being carried by a caregiver), and to distinguish between 
upright with and without assistance, we would need to detect and 
localize the objects in the scene in addition to the HARMONI-
produced poses, as a child could be assisted by a baby bouncer or 
walker. Therefore, we leave that for future work. However, we con-
ducted a sensitivity analysis by filtering out frames where the child 
is not on the ground plane and found no notable difference in the 
trend compared to Fig. 2D. Across SEEDLingS, we did not detect 
statistically significant trends in the proportion of child time spent 
in the other considered poses (i.e., seated, prone, and supine), as a 
function of age.

Quantification of dyadic child and caregiver behaviors
Next, we quantified dyadic child and caregiver behaviors. Figure 3A 
displays the proportion of time over hour-long recording periods that 
the child and caregiver touched, over all families and months of devel-
opment. Touching decreased across child development (β  =  −0.27 

Visual feature extraction process1

Audio feature extraction process2

Common
child-poses

Visual featuresTracking

3D human mesh

Conversational turn
counts

Adult word, syllable, and
phoneme count

Audio features

Child-caregiver
proximity over time
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Child-caregiver visibility
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Syllables
2432
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Fig. 1. Overview of key capabilities of HARMONI. Visualization of a video sequence with extracted caregiver-child human meshes, and example measurements that can 
be extracted with HARMONI.
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[95% CI −0.37, −0.17], P = 4.945 × 10−10). Figure 3B demonstrates 
touching computed from 3D mesh representations. Given the 3D 
estimation, the same caregiver-child dyad can be visualized from 
different perspectives for additional clarity (e.g., camera view and 
view from above). Whether two humans are touching can be com-
puted based on the distance between the corresponding 3D meshes. 
Some of the deviations from the overall longitudinal trend in touch-
ing are partially due to special cases of behavior observed during 
some months. For instance, month 8 and 9 recordings for one par-
ticipating family consisted of long play sessions, which led to spikes 
in touching.

Figure 3C presents the change in dyadic visibility over months of 
development. In this case, visibility is defined as “in the visual range 
(i.e., field of view),” with a 180-degree field of view based on head 
orientation. Figure 3D illustrates how this visibility property can be 
computed using the head orientation of a 3D human mesh. Here, no 
statistically significant change is observed for (i) caregiver being in 
the visual range of the child, (ii) child being in the visual range of the 
caregiver, or (iii) both in each other’s visual range, as a function of 
child age. Finally, Fig. 3E displays change in relative caregiver-child 
distance over recording periods, building on the individual room 
traversal measures in Fig. 2. Again, no statistically significant change 

is observed. See Fig. 3F for an example of how the relative caregiver-
child distance can be computed from a video.

Quantification of multimodal audiovisual interactions
In a final analysis, we used HARMONI to quantify multimodal au-
diovisual interactions within the 500 hours of SEEDLingS data. 
Here, HARMONI’s visual analysis is integrated with an existing au-
dio analysis pipeline that extracts audio from video recordings and 
outputs speaker diarization (i.e., who is talking when) along with 
associated word, phoneme, and syllable count estimates. Further de-
tails on our audio analysis implementation can be found in Materi-
als and Methods. Figure 4A shows an example of the multimodal, 
interleaved visual and audio outputs produced by HARMONI. Figure 
4B illustrates the relationship between the amount of time (seconds) 
the child is engaged in a self-initiated conversational turn and child 
movement, revealing a correlation between increased verbal initia-
tion and a concurrent rise in independent movement, as gauged by 
the distance traversed in the room. Child-initiated conversation 
duration was associated with distance traversed, r = 0.126 [95% CI 
0.040, 0.210], P = 4.186 × 10−3. The association remained, though 
was attenuated, after co-varying for child age, rpartial = 0.089, 
P = 4.351 × 10−2. Correlation and partial correlation are computed 
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over all videos. This trend is particularly pronounced among 3 of the 
44 families, where the correlation between child-initiated conversa-
tion duration and distance traversed is greater than 0.5 (Fig. 4C). 
Nevertheless, no such pattern is observed for caregiver distance tra-
versed or caregiver-child visibility measures.

HARMONI consistency with human annotation
The sequences of 3D meshes generated by HARMONI, representing 
children and caregivers, exhibit strong consistency with indepen-
dent human annotation of both 2D body keypoint locations and 
measures of visibility, touch, and body pose.
SEEDLingS dataset
To evaluate the accuracy of the reconstructed 3D meshes, their 2D 
projections were compared with independent human annotation of 
2D keypoint locations for 23 major body joints per person. The eval-
uation set consists of 1400 video frames, where 3 frames were ran-
domly sampled from each video. On the entire evaluation set, the 
model achieves 63.8% and 80.0% consistency with manual annota-
tion (treated as the “ground truth”), as measured by percentage of 
correct keypoints (PCK), for children and caregivers, respectively. 
Figure 5A shows examples of 3D mesh estimations corresponding 
to different measured PCK consistency values. While a comparison 
with 3D annotations is not feasible due to the impracticality of hu-
man annotation in 3D, the consistency of 2D projections with 2D 
annotations provides a useful assessment, as the 3D representation 
is also constrained by the known structure and articulation of hu-
man bodies modeled in the SMPL and SMIL body representations.

Using the generated 3D meshes to extract example objective mea-
sures of interest, we observe high consistency with human annotations 

of visibility, touch, and body pose. On the 784 images from the evalu-
ation set where there exist both caregiver and child, the determination 
of whether touching occurs is consistent between the computer vision 
model and the human 66.6% of the time, and the determination of 
visibility is consistent 66.4% of the time. Precision/recall for touch and 
visibility is 67%/68% and 66%/67%, respectively. In this context, visi-
bility is defined as one of four categories: Both child and caregiver are 
in each other’s field of view, only one is in the field of view of the other 
(either caregiver or child), and neither are in the field of view of each 
other. The task was more challenging for younger, smaller children; for 
ages 14 to 17 months, touch consistency rises to 75.3% and visibility 
to 71.2%.

We note that our accuracies are calculated on frames where both 
annotators agree with each other and that the model detects both 
adult and child. Even for human coders, accurately determining 
whether a dyad is in contact or visible to each other solely from 2D 
images can be difficult (annotators agree with each other 92% of the 
time). Figure 5B shows examples of manual annotation versus 
HARMONI outputs. It includes instances with discrepancies be-
tween HARMONI and the annotators’ assessment that illustrate 
failure modes. However, HARMONI often produces relatively rea-
sonable outputs even when different from the manual annotation 
(Fig. 5B). We also highlight that SEEDLingS contains nonstandard-
ized, unconstrained home environments with substantial occlu-
sions, and video capture was not optimized for AI-based video 
analysis. Higher consistencies would likely be observed in more 
controlled environments, or when video capture settings are opti-
mized for AI analysis. This is as demonstrated through our second 
validation set, CMU Panoptic-Toddlers (25).
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CMU Panoptic-Toddlers dataset
We evaluated HARMONI on the toddlers subset of the CMU Pan-
optic dataset (25). This dataset was captured in Pittsburgh, USA. It 
features a 2-year-old Asian toddler and is captured in a motion cap-
ture laboratory with high-resolution cameras. This dataset contains 
videos from dense viewpoints—given that some of these viewpoints 
contain extremely cropped humans, we retained those where both 
caregiver and child are fully visible. Our final test set contained 
30,000 frames from a total of 40 videos (10 distinct scenes, with four 
videos per scene corresponding to different viewpoints). For five of 
the scenes, the original dataset included ground truth 2D keypoints 
that we used to evaluate our model output. For the other five scenes, 

we randomly sampled two frames from each video and human an-
notators manually labeled ground truth 2D keypoints in these frames.

On this evaluation dataset, HARMONI achieves 97% PCK for care-
givers and 74.3% PCK for children. HARMONI achieves 84% and 93% 
accuracy on touch and visibility, with corresponding precision and re-
call of 93% and 93% for touch, and 96% and 90% for visibility.

DISCUSSION
Here, we have demonstrated the efficacy of HARMONI’s 3D computer 
vision and audio analysis to automatically extract fine-grained, objec-
tive, and multimodal measures of human behavior from extensive 
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single-view video data with minimal human intervention. By using 
HARMONI to analyze 500 hours of video from the SEEDLingS dataset, 
we showcased the capability to acquire subsecond resolution mea-
sures of touch, visibility, and pose, and to integrate these with audio 
analysis to quantify multimodal audiovisual interactions, using a server 
equipped with a consumer-grade graphical processing unit (GPU). 
Leveraging eight such GPUs in parallel enabled us to complete the anal-
ysis in 132 hours of server computation time, substantially reducing hu-
man labor costs. Assuming that highly trained human annotators can 
annotate a frame in 5 s, while HARMONI takes 0.25 s per frame, paral-
lelizing HARMONI over eight GPUS can lead to 160:1 savings in time. 
This innovative approach has the potential to greatly expand the scope 
and scale of quantitative child development research by enabling the ex-
amination of a broad range of detailed objective measures and substan-
tially increasing the number of caregiver-child dyads under study.

While many existing datasets of caregiver-child interactions, in-
cluding SEEDLingS, are limited in terms of population diversity as 
well as sample size, the scalability of HARMONI’s analysis capabilities 
facilitates the expansion of child development research across a larger 
and more diverse range of subjects, incorporating typically underrep-
resented populations. The model requires only standard video capture 
as input, easily obtainable from consumer-grade cameras or mobile 
phones, eliminating the need for additional instrumentation. Conse-
quently, HARMONI can serve as a robust tool for generating scientific 
knowledge and testing hypotheses on a wider population across devel-
opmental stages, cultures, and other factors. This approach may 
enhance our understanding of patterns of human interaction and pro-
mote equity in child development research by incorporating greater 
diversity and enabling the assessment of human interaction as an out-
come in experimental and pragmatic clinical trials.

Furthermore, our approach has the potential to catalyze new re-
search endeavors across a range of fields where human behavior 
analysis is of value. Beyond the realm of caregiver-child dyads, 
HARMONI can be readily adapted to various settings involving dif-
ferent numbers of caregivers and children. This versatility renders it 
a valuable asset for investigating scientific hypotheses in domains 
such as behavioral pediatrics, other subfields of behavioral science, 
population health, and clinical care. In conclusion, the widespread 
adoption of HARMONI and similar methods could lead to a para-
digm shift in the study of human behavior, expanding the boundar-
ies of research and enabling the discovery of novel insights into the 
complexities of human interaction.

MATERIALS AND METHODS
SEEDLingS dataset
We used the SEEDLingS longitudinal dataset (24) to conduct de-
velopmental comparisons between children as approved by the 
Stanford University Institutional Review Board (IRB No. 56740) adher-
ing to the data use guidelines from the data repository Databrary (37). 
The sample consisted of predominantly white, middle-class children 
(N = 44), with two identifying as mixed-race, one as Latino, and the 
remainder as white. Participants represented a range of incomes, 
with generally above-average maternal education levels. All children 
were exposed to English (>75%) in their homes and reported no 
visual or auditory impairments at birth. Videos were collected at a 
time of day that was convenient for parents within a week of their 
birth date each month (e.g., the 7-month visit was within a week of 
the child turning 7 months old). This was typically between 9 a.m. 

and 6 p.m. Monday to Friday, but within that range was up to the 
parents to schedule in a way that did not interfere with naptime. 
This included playtime, meals, etc. at the parents’ discretion. The 
videos featured one to four camera viewpoints stitched together, 
with the number of camera angles dependent on each child’s will-
ingness to wear the camera headset and human-related error (Fig. 6).

Preprocessing the SEEDLingS videos involved downsampling to 
one frame per second and cropping to display only the third-person 
viewpoint. Downsampling aimed to expedite inference while main-
taining granularity, while cropping sought to minimize noise and 
complexity. To accurately assess the model’s generalizability to in-
the-wild videos without multiple viewpoints, videos were cropped 
accordingly. The audio was stripped from the video, converted to a 
mono channel, and resampled at 16 kHz.

HARMONI visual analysis model
The components of the HARMONI visual analysis model are shown 
in Fig. 7. HARMONI first preprocesses the videos to extract track-
lets of humans in the videos. Then, for each tracklet, a deep neural 
network predicts the human meshes from the tracklets, and post-
processing is applied to refine and smooth the meshes. Last, the 
caregiver-child features are extracted from the predicted meshes us-
ing predefined rules.

As SEEDLingS videos were obtained in a less structured setting 
and had more camera movement, we performed multiple prepro-
cessing steps. Note that the ideal camera position provides a clear, 
unobstructed view of both individuals with minimal pitch angle 
(angle between the camera view and the floor). To preprocess the 
videos, PySceneDetect (38) is first used to segment videos into dis-
tinct scenes (i.e., shot detection). The transition of a scene is identi-
fied by thresholding the amount of change in image-level features 
(RGB histograms) across two frames. Scenes shorter than 60 s are 
discarded, as these typically result from the photographer moving 
the camera. For the SEEDLingS dataset, this eliminated 5.5% of the 
total frames. We subsequently use OpenPose (39) on the downs-
ampled frames to acquire the 2D keypoints of each person in each 
frame. Tracklets are identified using PHALP (40), which is a track-
ing algorithm that is robust on closely interacting humans. This is 
because it takes not only the location of the person in the image but 
also the appearance of the person. Therefore, even when two per-
sons are overlapping, tracks can be robustly differentiated based on 
the appearance of the person (derived from the masked region of 
the person). Note that although OpenPose has its limitations as a 2D 
keypoint detector, here we use it primarily as a human detector for 
tracklet association at this step. We noticed that OpenPose can reli-
ably detect the existence of the child if the child is not being oc-
cluded; thus, the positive detections are solid for tracking.

As many SEEDLingS videos featured multiple household mem-
bers, we annotated the dyad of interest with 10 bounding boxes and 
used a pretrained person reidentification network [TransReID (41)] 
to filter out irrelevant individuals such as other people in the family 
other than the main caregivers and child enrolled in the study. Note 
that child of interest in SEEDLingS wears a hat, which helps to iden-
tify the target child during this filtering stage. In general, the person of 
interest needs a marker only when easily confused with others. Filter-
ing occurred in two stages, with cleaner tracklets and fewer identity 
switches resulting from the application of a lenient threshold during 
tracking. After obtaining tracklets, a second round of tracklet-level fil-
tering is conducted using majority voting on individual detections in 
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the tracklet. Finally, we performed a last round manual tracklet 
correction, filtering out noisy tracklets with numerous identity 
switches and those not involving the target dyad. This step re-
quired approximately 100 s per video. For CMU Panoptic-Toddler, we 
did not need these preprocessing steps as it is captured in a clean mo-
tion capture room with static cameras and there were no extra people 

in the room. In general, if the dataset contains only the dyads of interest, 
no additional marking (e.g., hats) or excessive filtering will be needed.

After obtaining clean tracklets of the dyads, we classify each 
tracklet to be either child or adult, which is necessary due to the dif-
ferent body models used for reconstructing children [SMIL (33)] 
and adults [SMPL (34)]. Children in SEEDLingS all wear a hat with 

Fig. 6. Example snapshot from one of the caregiver-child interaction videos in the 6-month partition. The three different camera angles stitched together in the 
video include two baby egocentric cameras and one third-person camera. Since HARMONI is designed to analyze third-person video, video feeds were cropped accord-
ingly to keep only the third-person camera view.

HARMONI visual analysis model

Video pre-processing1

Shot detection Person re-identification
Tracklet extraction
Body type classificationGround plane estimation

3D body estimation2 Refinement3 Caregiver-child interaction
visual attributes4

Mesh optimization with temporal and
ground plane constraints

Caregiver-child touching

Gaze direction

Infant pose estimation

Caregiver-child proximity

Distance traversed

Adult

Child

Person 3

t-2 t-1 t t+1 t+2

Adults of interest

Child of interest

Discard

Fig. 7. System figure of the HARMONI visual analysis model. HARMONI processes the video in four steps: (1) preprocessing to identify the tracklets of the dyads of inter-
est. (2) Estimation of 3D human meshes for each person of interest. (3) Refinement of 3D meshes via constrained optimization to improve the accuracy of the predictions. 
(4) Determining visual attributes from the estimated 3D meshes.
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head-mounted cameras, so it is easy to train a customized body type 
classifier to determine whether the tracklet represents a child or an 
adult (i.e., caregiver). The body type classifier is trained using a 
semisupervised method [MixMatch (42)] with 200 labeled child im-
ages from SyRIP (43), 200 adult images randomly sampled from 
MPII (36), and 5000 unlabeled images from SEEDLingS. The classi-
fier achieves 88% accuracy on a held-out test set with manually an-
notated bounding boxes and ground truth body type labels. For 
CMU Panoptic-Toddlers, we use Grounding DINO (44), which is 
capable of open-set object detection.

We then use human mesh recovery models to predict the human 
meshes. As many caregivers from the SEEDLingS videos were kneel-
ing on the floor, we used DAPA (45), a deep neural network that we 
train adaptively to generalize well to SEEDLingS, through the use of 
its environment-targeted synthetic training data generation module, 
to produce initial estimates of each person. For CMU Panoptic-
Toddlers, we use CLIFF (46) and modify it to handle child body 
models. The initial estimates comprise body model parameters and 
camera parameters, enabling the reconstruction of the 3D body 
mesh. Next, the body parameters are refined using an optimization 
routine (47), with several objectives: (i) ensuring consistency be-
tween the reconstructed 3D human and the 2D keypoint predictions 
from OpenPose; (ii) maintaining smoothness of the 3D keypoints 
and their 2D projections within a moving time window; and (iii) 
constraining child’s position in 3D space to be above the ground 
plane, as estimated using a panoptic segmentation model (48) and 
depth estimation model (49) from five randomly sampled frames 
per scene. Note that when we refine the meshes using OpenPose’s 
2D keypoint detections, we weigh the per-keypoint loss terms by 
the predicted confidence scores to minimize the effect of spurious 
keypoint predictions, as we observe that high-confidence predicted 
keypoints tend to be reliable. Finally, the One Euro Filter (50) is 
applied to the predictions on each tracklet to remove jittering 
across frames.

Speed
To improve efficiency of video processing, we group preprocessed 
data into batches (16 persons within a track) and run HARMONI 
on batched data. On a single NVIDIA TITAN V GPU, it takes 0.2 s 
per batch to perform 3D body estimation, and 4 s per batch to 
run the refinement optimization routine for 10 iterations. When vi-
sualizing 3D meshes is desired, instead of simply computing quanti-
tative features, rendering 3D humans takes approximately 1 s per 
video frame.

Determining dyadic visibility and touch
HARMONI determines caregiver-child visibility and touch labels a 
rule-based way from the estimated 2D and 3D positions of caregiv-
ers and children. Specifically, person A’s visibility to person B was 
defined by whether person A’s head was within person B’s 180-degree 
field of view. HARMONI approximates the field of view by the vol-
ume separated by the plane passing through person B’s left/right ear 
and neck joints.

Touching is defined as the state in which any part of the 
caregiver’s body comes into contact with the child’s body. When 
HARMONI detects both caregiver and child in a frame, it deter-
mines touching using two thresholds. If the minimum 2D distance 
(ignoring the z axis) between the sets of keypoints falls below a 
predefined 2D threshold (3% of image height), we compute the 

minimum 3D distance between keypoints from caregiver and child. 
If the 3D distance is also below the established 3D threshold (25 cm), 
we consider the dyad as touching. If either check fails, we deter-
mine that the dyad is not touching. The 2D and 3D tiered approach 
is used to mitigate reduced reliability in depth calculation for key-
point prediction.

To assess consistency of HARMONI visibility and touch outputs 
with manual annotation, two annotators are asked to annotate each 
frame in the validation set (1500 frames) individually, and consis-
tency between HARMONI and human annotators (Fig. 5) is reported 
on frames where two annotators agree with each other, which is 92% 
of the total frames. Annotators followed the same definition for vis-
ibility and labeled each image as “child is in the visual range of care-
giver, but not vice versa,” “caregiver is in the visual range of child, 
but not vice versa,” “caregiver and child are in each other’s visual 
range,” “caregiver and child are not in each other’s visual range,” or 
“N/A” (when the image did not contain both child and caregiver). 
For touching, annotators annotated each image as “touching,” 
“not touching,” or “N/A” (when the image did not contain both 
child and caregiver).

Audio model
The audio model, working with mono-channel, 16-kHz audio tracks, 
comprises two open-source models: VBHMM x-vectors Diarization 
(VBx) (51) and Automatic LInguistic Unit Count Estimator (ALICE) 
(9), with ALICE using Voice Type Classifier (VTC) (52) for broad-
class speaker diarization (Fig. 8). The speaker diarization label indi-
cates when speakers of the following classes are speaking: adult male, 
adult female, key child, or other child.

The VTC model, an open-source alternative to LENA (10), shows 
a notable performance improvement of 10.6 F-measure averaged 
across the five classes on the ACLEW-Random test set (52), as com-
pared to LENA. As depicted in Fig. 8, the VTC model pushes fixed-
length, overlapping subsequences of preprocessed audio through 
SincNet (53) to generate descriptive, low-level audio representa-
tions. These representations are fed through a stack of bidirectional 
Long Short-Term Memory (LSTM) models (54) and fully connected 
layers to produce diarization output with voice type classification. 
The VTC model is pretrained on a large corpora of child-centered 
audio recordings covering various environments, conditions, and 
languages. We use the speech labels of the diarization output file 
from the VTC model to create a speech activity prediction file, 
which is fed into the VBx model along with the original prepro-
cessed audio file.

The VBx model, winner of the DIHARD II challenge (51), first 
extracts X-vectors (55, 56) using the Kaldi toolkit (57), followed by 
agglomerative hierarchical clustering (AHC) with two distinct in-
terpolated PLDA (58) models trained on separate datasets [VoxCeleb 
(59) and the DIHARD development set]. These AHC clusterings are 
used for initial assignment of X-vectors to speaker clusters. Iterative 
variational inference on a Bayesian Hidden Markov Model (BHMM) 
(55) is then applied to the X-vectors to generate final clusterings and 
outputs. Information from both diarization outputs is leveraged to 
generate an individual speaker diarization with broad-class classifi-
cations. Subsequently, we calculate CTCs by counting the turns for 
each speaker from the diarization results. Finally, we use ALICE to 
extract the child vocalization count, and adult word, syllable, and 
phoneme counts. The open-source audio model (ALICE) we are us-
ing was optimized for a multilingual corpus and was validated 
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through cross-language generalization experiments. On the other 
hand, LENA is optimized for only American English.

To validate the accuracy of the speaker diarization model in the 
domain of at-home child speech, we randomly sampled 309-min-long 
audio clips from the SEEDLingS videos. The audio clips were tran-
scribed by a paid, accredited third-party transcription service (https://
www.transcribeme.com/). We report diarization error rate (DER), 
the standard metric to assess the accuracy of a speaker diarization 
system. DER is computed by comparing the reference speaker labels 
(ground truth) with the diarization system’s output labels and calcu-
lating the percentage of errors. These errors can include speaker false 
alarms (when a speaker is incorrectly detected) and missed detections 
(when a speaker is not detected). A lower DER indicates better per-
formance, as it signifies a closer alignment between the diarization 
output and the reference speaker labels.

The DER on the sampled audio clips is 32.3%. Albeit slightly 
higher than the reported 27.11% of the same model on the DIHARD 
evaluation set, it is important to note that the evaluation set of 
DIHARD includes multiple domains much easier than an in-the-
wild child speech setting. Error analysis suggested that most mis-
classified speech comes from challenging environments with music 
or television playing in the background. On the CTC predictions, 
our model achieves a Pearson coefficient of 22.3% as compared 
to LENA’s CTC coefficient of 36% (60). Pearson’s coefficient for 
adult word count predictions is 72.8%. Last, we see a 56.2% me-
dian absolute relative error on the adult word count predictions, 
which is comparable to LENA’s performance on other English lan-
guage datasets.

Statistical analysis
We assessed changes in each outcome variable across development 
through growth model analyses. First, to test whether age was a statis-
tically significant predictor of each outcome variable, we used mixed-
effects models to test the statistical significance of the change in each 
variable over time. Then, we added quadratic and cubic terms of age 

to test whether any change over time was nonlinear. We have also pro-
vided spline models in the Supplementary Materials. We elect to keep 
the mixed-effects models in the main text due to their interpretability. 
However, we direct those interested in exploring additional models to 
the Supplementary Materials. These models offer a wider range of op-
tions when considering the balance between interpretability and the 
degree of freedom.

We consider three types of mixed-effects models: those with ran-
dom intercepts, random slopes, or both. (Formulas for the models 
are in the Supplementary Materials.) Mixed-effects model with ran-
dom intercepts allows each family to have its own baseline value of 
the dependent variable. In other words, it accounts for variability in 
the starting points of the variable across families. This is the simplest 
random effect structure and assumes that the effect of time (slope) is 
constant across families. Mixed-effects model with random slopes 
allows the effect of time on the dependent variable to vary across 
families, which means that each family can have a different rate of 
change over time. Mixed-effects model with both random intercepts 
and random slopes allows for the most flexibility in the model. It 
accounts for variability in both the baseline value of the dependent 
variable and the rate of change over time across families.

We used AIC (Akaike information criterion) and BIC (Bayesian 
information criterion) for model selection. For three outcome vari-
ables (touch, proportion of time the child spent in upright position, 
and child distance traversed) that showed statistically significant 
trend across child development, the best models were with random 
slopes. For caregiver distance traversed, the best model was with 
random intercepts. In addition, for all outcome variables, the linear 
model provides the best fit for the data according to AIC and BIC, 
meaning the relationship between these outcome variables and 
child development can be best described as linear. For each model, 
we reported the standardized betas along with their corresponding 
CIs, as well as P values, which provide information about the statis-
tical significance of the predictor variables in our selected models. 
Last, to measure the relationship between child distance traversed 
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and child-initiated conversation duration, we calculated the correla-
tion between these two variables. In addition, we calculated partial 
correlation between child distance traversed and child-initiated 
conversation duration, holding child age constant.
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