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Abstract

The discovery of anion redox activity is promising for boosting the

capacity  of  lithium-ion  battery  (LIB)  cathodes.  However,

fundamental  understanding  of  the  mechanisms  that  trigger  the

anionic redox is still  lacking. Here, using hybrid density functional

study  combined  with  experimental  soft  X-ray  absorption

spectroscopy (sXAS) measurements, we unambiguously proved that

Li(2-x)FeSiO4,  a  widely-studied  cathode  material  for  LIBs,  performs

sequent  cationic  and  anionic  redox  activity  through  delithiation.

Specifically, Fe2+ is oxidized to Fe3+ during the first Li-ion extraction

per formula unit (f.u.), while the second Li-ion extraction triggered

the oxygen redox exclusively. The transition between cationic and

anionic redox activities happens exactly at LiFeSiO4, with electron

and  hole  polaronic  behaviors,  respectively.  For  other  polyanionic

transition-metal (TM) materials in this family, while Li2NiSiO4 shows

similar  sequent  redox  activity  as  Li2FeSiO4,  Li2MnSiO4 shows  the

multiple  cationic  redox  (Mn2+-Mn4+)  during  the  whole  delithiation,

and Li2CoSiO4 shows a simultaneous cationic and anionic redox. The

present finding not only provides new insights into the oxygen redox

activity  in  polyanionic  compounds  for  rechargeable  batteries,  but

also sheds light on the future design of high-capacity rechargeable

batteries.
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Introduction

Charge  compensation  of  transition  metals  (TM)  in  TM-based

compounds when the total charge of the compound is altered (e. g.,

through oxidation/reduction, carrier injection, chemical doping) is a

fundamental and intriguing topic both in physics and chemistry  1.

Classic  inorganic  chemistry  tacitly  assumes  that  most  of  the

changes of the total charge are accommodated by a change in the

charge  of  the  TM  ion  2,3.  Typically,  for  rechargeable  lithium-ion

batteries  (LIBs)  cathode materials,  TM-ions were regarded as the

sole sources of electrochemical activity in an intercalation cathode

to provide the charge-compensating electrons after Li-ion extraction

4-8. For example, when LiTMO2 is fully delithiated, the original TM3+

ion  is  thought  to  be  oxidated  to  a  TM4+ ion.  As  a  result,  the

theoretical capacity of these oxides has been limited by the number

of electrons offered by the TM redox reaction and its relatively high

atomic weight. 

Until  recently,  this  scenario  is  challenged  by  the  discovery  of

anionic  redox  activity  in  Li-rich  layered  TM  oxides  9-18,  such  as

layered  NMC  (Ni–Mn–Co)  14,19,20,  Li2MnO3 21-23,  Li1.2Ni0.2Mn0.6O2 24,

Li1.3Mn0.4Nb0.3O2 25, Li1.3Nb0.3Me0.4O2 (Me=Fe3+, Mn3+ and V3+) 26, Li2Ru1-

ySnyO3 9,12, Li4FeSbO6 11, Li8ZrO6 27, α-Li2IrO3 10, β-Li2IrO3 16, and Li3IrO4

28.  Recently,  the  discovery  of  anionic  redox  activity  has  been
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extended to other kinds of cathode materials beyond Li-rich layered

TM  oxides,  such  as  non-layered  TM  oxides  (e.  g.,  rock-salt-type

Li4Mn2O5 and  Li5FeO4)  29,30 and  metal–organic  compounds  (e.  g.,

CuTCNQ) 31. Anionic reduction not only extends our understanding of

the charge compensation process during delithiation in cathodes,

but also raises the opportunity  to boost the capacity and energy

density of  LIBs by combining both cationic  (transition metal)  and

anionic (oxygen) redox processes within the same material 13,32,33. 

However,  such  staggering  capacities  suffer  from  capacity  fade

with cycling 28, which is mainly due to the irreversible loss of lattice

oxygen during the anionic redox process 14,18,34. Thus, clarifying the

specific redox mechanism and fundamental  understanding of  the

local structure and electronic state evolutions during anionic redox

process, which are closely associated with the stability of the lattice

oxygen and the reversibility of the anionic redox, become crucial for

both experimentalists and theorists. Using advanced experimental

tools  (e.  g.,  synchrotron  radiation  technologies,  transmission

electron  microscope,  X-ray  photoemission  spectroscopy,  and

electron spin resonance) combined with density  functional  theory

(DFT) calculations, three types of redox processes are revealed in

the  reported  cathode  materials  with  anionic  redox  including:  1)

cationic redox first and anionic redox next, such as in layered NMC
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14,19,20; 2) simultaneous cationic and anionic redox, such as in Li5FeO4

29 and 3) anionic redox only, such as in Li2MnO3 21-23, Li8ZrO6 27, and

Li3IrO4 28. Since most cathode materials are so-called charge-transfer

materials,  with  the  top  valence  bands  contributed  by  transition

metal-ligand hybridization, it is not quite surprising that the oxygen

O-2p states close to the Fermi level facilitates the reversible oxygen

redox  to  reach  extra  capacities.  However,  little  is  known  about

either  when the  anion redox is  triggered  in  certain  materials,  or

what is the physical origin behind the possible cation-anion redox

transition.  The  answers  to  these  questions  in  a  theoretical

perspective are challenging because especially  for  oxygen redox,

the notorious self-interaction error (SIE) of standard DFT (or even

DFT+U  35)  approach  often  leads  to  overestimated  delocalization

effect of the wavefunctions 36-38, and meanwhile, an unrealistic local

geometry  upon  introducing  addition  carriers.  Recently,  DFT

calculations with hybrid functional HSE06 (which could correct SIE to

some extent) claimed that the oxygen redox is originated from Li/TM

cationic disorder on the promotion of O-2p non-bonding orbitals at

the Fermi level 15. 

Using hybrid density functional study combined with the modern

perspective  of  doping  and  experimental  soft  X-ray  absorption

spectroscopy (sXAS) measurements, we proved that Li(2-x)FeSiO4 (0
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< x < 2), performs sequent cation and anionic redox activity upon

delithation. During delithiation, our results demonstrated that Fe2+

ions  changes  to  Fe3+ till  a  critical  Li  concentration  x =  1,  while

further  Li  extraction  triggers  oxygen  redox  instead  of  cation

oxidation. This oxygen redox is reversible and stable until nearly 1.8

Li-ions extracted, corresponding to an extra capacity of 0.8 Li-ions

induced by anionic redox activity. In order to uncover the physical

origin of the exact transition point (x = 1) of cationic/anionic redox,

we then focused on slight  lithiation  and delithiation  behaviors  of

LiFeSiO4.  Interestingly,  we  found  that  both  of  lithiation  and

delithiation processes result in a polaronic state, but with cationic

and  anionic  character,  respectively.  In  contrast  to  the  previous

reported oxygen clustering during oxygen redox in Li-rich layered

TM oxides, the oxygen polaron in Li(2-x)FeSiO4 is localized on a single

O-ion, which avoids the peroxo-like O−O bond formation to prevent

the lattice O loss. Moreover, we found that not all the polyoxyanion

Li(2-x)TMSiO4 (TM = Mn, Fe, Co and Ni) exhibit such polaronic oxygen

redox  activity  after  more  than  one  Li-ion  extracted,  but  show  a

strong  dependence  on  the  3d occupation  numbers  of  TM.

Specifically, Li2MnSiO4 shows the multiple cationic redox (Mn2+-Mn4+)

during  the  whole  delithiation;  Li2CoSiO4 shows  a  simultaneous

cationic  and anionic  redox  with  all  oxygen  ions  participating  the
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charge  transfer;  and  Li2NiSiO4 show the similar  polaronic  oxygen

redox activity as Li2FeSiO4 after cation redox until 1 Li/f.u. extracted.

Results

Electrochemical performance of Li2FeSiO4. In the polyoxyanion-

type  intercalation  Li(2-x)FeSiO4 structures,  each  iron,  lithium,  and

silicon atom is coordinated by four oxygen atoms, while the FeO4

tetrahedra are cross-linked by silicate groups. Based on the previous

studies  39,40,  two  phase  transformation  happens  from  the  initially

prepared  phase  (P21/n  for  prepared-Li2FeSiO4)  to  cycling  stable

phase  (βII phase,  inversed-Pmn21)  during  the  initial  charge  and

discharge processes. Here we mainly focus on the latter structure

for  Li2FeSiO4 (Supplementary  Fig.  1).  The  reversibility  of

lithiation/delithiation for Li2FeSiO4 compounds was examined versus

Li in Swagelok cells cycled between 1.5 and 4.8 V at a 0.05 C rate

(Fig. 1a). It can be seen that the 1st discharge specific capacity is

305 mAh/g, corresponding to 1.86 Li-storages per Li2FeSiO4 unit with

oxygen  redox  happening,  close  to  the  previous  reported

performance of  Li2FeSiO4 nanocrystals  41.  The initial  charge curve

showed two obvious voltage plateaus at 3.0 and 4.5 V and the 2nd

curve  was  largely  different  from  that  of  the  1st  cycle.  This

phenomenon is ascribed to structural rearrangements involving the
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exchange  of  lithium and iron  between  their  sites  during  the  1st

charge. Fig. 1b further illustrates the cycling performance conducted

at 0.05 C for 50 cycles, and a retention of 88% was obtained after

50  cycles,  revealing  a  relative  stable  long-term  performance

compared with the reported Li-rich TM oxides 10,16,26,29,30. 

We note  that  almost  all  of  the  previous  experimental  41-45 and

theoretical  studies  36,37 held  that  during  the  whole  delithiation

process in Li(2-x)FeSiO4, i.e., from x = 0 to x = 2, the cation valence

Fe2+ → Fe3+ → Fe4+ should account for the redox activity. Recently,

Orikasa et al. performed sXAS measurements and reported that the

difference  in  edge  shift  for  the  Fe  K-edge  X-ray  absorption  near

edge  structure  (XANES)  during  the  charging  and  discharging

processes between LiFeSiO4 and FeSiO4 is very small, while the pre-

edge  peak  for  the  XANES  spectra  at  the  O  K-edge  increases

significantly  when  going  from  LiFeSiO4 and  FeSiO4.  Thus,  it  is

concluded that during delithiation from LiFeSiO4 to FeSiO4, oxygen

ligand  holes  are  formed  rather  than  Fe3+ → Fe4+ oxidation  46.

However, previous DFT studies (with standard exchange-correlation

functionals and Hubbard-like U correction) even predict a metallic

state for Li(2-x)FeSiO4 during delithiation 36,47, in sharp contrast to the

semiconducting phase as reported by experiments 48,49. Clearly, the

uncertainty  about  the  Fe  valence  state  and  whether  there  is  an
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oxygen redox activity is imperative for the full understanding of the

whole delithiation process in Li2FeSiO4. 

Sequent cation and anion redox in Li(2-x)FeSiO4.  To reveal the

underlying mechanism of the redox process during delithiation, we

next perform DFT calculations to revisit different delithiation stages

of  Li(2-x)FeSiO4,  and  compare  the  results  with  our  sXAS

measurements.  We apply  hybrid  functional in  the  form of  Heyd–

Scuseria–Ernzerhof (HSE06)  50, which mixes the exact exchange in

Hartree-Fock  theory  with  the  semilocal  exchange-correlation

functionals to correct the SIE. The evolution of the density of states

for the unit cell (Li4Fe2Si2O8) of partially delithiated Li(2-x)FeSiO4 (x =

0, 0.5, 1.0, and 1.5) is shown in Fig. 1a (the corresponding crystal

structures is shown in Supplementary Fig. 2). It is found that when x

goes from 0 to 1.5, the band gap Eg changes from 2.91 eV (x = 0) to

3.60 eV and 0.57 eV for  x = 1 and  x = 1.5, respectively, in sharp

contrast with the previous DFT+U results  36,47 and consistent with

the  semiconducting  phase  as  reported  by  experiments  48,49.  Our

results  naturally  explain  that  Li(2-x)FeSiO4 always  keeps  a  poor

electronic  conductivity  and  rate  capability  during  electrochemical

cycling 51. From top three panels of Fig. 2a, we can see that the Fe-

3d peak right below the Fermi level is gradually shifted upward after

the  first  Li  extraction  per  f.u.,  indicating  the  redox  couple  of
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Fe2+/Fe3+. However, the second Li-ion extraction shifts valence states

with  pure  O-2p character  cross  the  Fermi  level  (Fig.  2a,  bottom

panel), indicating that instead of Fe3+/Fe4+, it is O anion playing an

active  role.  Interestingly,  the  upward  shifted  O-2p states  form a

localized,  polaron-like hole  state inside the band gap of  LiFeSiO4.

Such a hole-localized state is confirmed by the isosurface of the spin

density of partially delithiated Li(2-x)FeSiO4 (x = 1 and 1.5), as shown

in Fig. 2b. We observe large spin density from two oxygen ions with

the shape of an isolated O-2p orbital for Li0.5FeSiO4, indicating that

this polaron state is localized on two O ions belonging to one SiO4

tetrahedron.  The  calculated  magnetic  moments  of  Fe  and  O  in

partially  delithiated  Li(2-x)FeSiO4 (Fig.  2c)  also  support  the  whole

redox  process  analyzed  above.  From  Li2FeSiO4 to  LiFeSiO4,  the

magnetic  moments  of  the  two Fe  cations  changes  from 3.61  μB

(Fe2+,  eg
3t 2g

3 )  to  4.17  μB  (Fe3+,  eg
2 t2g

3 )  by  sequence,  indicating  a

cationic redox process. For the further delithiation (from x = 1 to x =

1.5),  the  magnetic  moments  of  Fe  ions  keep  nearly  unchanged,

while  the  magnetic  moments  of  two  O  ions  (unchanged  from

Li2FeSiO4 to LiFeSiO4) start to change to -0.25 μB in Li0.5FeSiO4. 

The structural response to the creation of hole polarons is shown

in Fig.  2d.  From Li2FeSiO4 to LiFeSiO4,  both of  the Fe-O and Si-O
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coordination remain tetrahedral symmetry, but the volumes shrink

because of  the  losing  electron,  in  agreement with  the picture  of

cationic oxidation expected from the above results. For the sequent

anionic oxidation process (from Li1FeSiO4 to Li0.5FeSiO4), the oxygen

network is now strongly modified with symmetry breaking. Two Fe-O

bonds (far from the extracted Li-ion) of the FeO4 tetrahedra keep

unchanged (1.88 Å), while for the other two Fe-O bonds next to the

extracted Li-ion, one is shortened to 1.79 Å, but the other one shows

longer  bond  length  of  1.85  Å.  Moreover,  one  of  the  six  O–O

distances  of  the  SiO4 tetrahedron  decreases  from  ca.  2.70  Å  in

Li1FeSiO4 to  ca.  2.32  Å  in  Li0.5FeSiO4.  We  note  that  these  two

adjacent O ions are just the localization centers of the hole-polaron

state of Li0.5FeSiO4, indicating a 2O2-/(O2)3- process, which is similar

to the peroxo-like oxygen redox process in layered TM oxides  10,15-

18,28.

To further confirm the above theoretical  calculations,  the Fe  L-

edge and  O  K-edge sXAS  of  samples  Li2FeSiO4,  Li1FeSiO4,  and

Li0.15FeSiO4 are  tested,  as  shown in  Fig.  3a  and 3b,  respectively.

According to the previous study 52-54, the relation between the Fe L-

edge spectra and the Fe oxidation state is well defined. Our results

show that the Fe valence state of Li1FeSiO4, and Li0.15FeSiO4 are both

nearly pure Fe3+, which means that the balance of the Li- extraction
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from Li1FeSiO4 to  Li0.15FeSiO4 is  not  from the  evolution  of  the  Fe

oxidation  state.  On the other hand, the O  K-edge XAS difference

between Li1FeSiO4 and Li0.15FeSiO4 has been clearly shown in Fig. 3b,

in which a new feature located at 534 eV shows up for Li0.15FeSiO4

compared  with  the  Li1FeSiO4.  Such  character  indicates  that  the

oxygen  valence  state  would  change  to  balance  the  Li-extraction

from Li1FeSiO4 to Li0FeSiO4. We note that the 535.8 eV feature on

the Li2FeSiO4 is likely related to the –OH bonding  55, which may be

from the sample preparation progress. Our sXAS results are also in

accordance with the previous reported experiment on Li(2-x)FeSiO4 46,

providing a solid support to the physical picture suggested by our

theoretical calculations.

Cation/anion transition at the critical point  x = 1. A general

discussion on the origin of anionic redox activity in Li(2-x)FeSiO4 can

be  found  in  Supplementary  Note  1.  In  the  following,  to  get  a

microscopic  picture on how the switch between cation and anion

redox is triggered at the transition point  x = 1 for Li(2-x)FeSiO4, we

focused on lithiation and delithiation behaviors of LiFeSiO4 at a small

concentration,  which  corresponds  to  a  doping  perspective.  The

challenge of such prediction of dilute doping lies in that especially

for  delithiation,  the  localized  hole  states  are  often  incorrectly

described  in  standard  DFT  exchange-correlation  functionals  as
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rather delocalized states that spread over all oxygen ligands  56-58.

Such “delocalization error  59” originates from the convex bowing of

the total energy E(N) with respect to electron occupation number N,

a  manifestation  of  SIE  leading  to  energy  gain  by  spreading the

wavefunction.  Since Hartree-Fock theory exhibits  concave bowing

E(N) versus N, hybrid functional with a predefined mixing parameter

(0.25 is used here) can incompletely restore the linearity of  E(N).

Indeed,  a  perfect  correction  is  required  to  fulfill  the  so-called

generalized Koopmans condition

∆nk = E(N+1) - E(N) + eig(N) = 0, (1)

where  E(N+1)  -  E(N)  denotes  ther  total  energy  cost  to  add  an

electron from the hole-doped system, and eig(N) the single-particle

energy of the lowest unoccupied state in the electron-doped system.

Here we use the Lany-Zunger approach 38 to restore the generalized

Koopmans condition, by introducing a potential operator that acts

only on the doping states within the DFT+U regime (parametrized

by a single onsite potential coefficient λh, see Methods for details). 

  Starting from the cation/anion transition point (x = 1), we use a 2

× 2 × 2 supercell (16 Li atoms per cell) of LiFeSiO4 and remove or

add  one  Li  atom  to  achieve  a  relative  low  carrier  doping

concentration  (~  6%).  By  removing  one  Li  atom,  the  projected

14



density of states (PDOS) of Li0.94FeSiO4 (Fig. 4a, top panel) exhibits a

localized  O  accepter  state  inside  the  fundamental  band  gap

between  Fe-like  Hubbard  band  and  O-like  charge-transfer  band,

similar with Li0.5FeSiO4 (Fig. 2a). Note that here we choose λh to be

λc = 4.5 eV, at which point the generalized Koopmans condition Eq.

(1) is exactly fulfilled, i.e.,  ∆nk = 0 (Fig. 4c). However, the charge

density of the localized state (Fig. 4b) shows that the small oxygen

polaron in Li0.94FeSiO4 is localized on a single O-ion, rather than a

(O2)3- cluster for high delithiation concentrations as discussed above

and  previous  studies  10,15-18,28 or  the  recently  reported  large-size

polaron in (PbBr3)- based halide perovskites  60. Such a scenario of

single-O polaron is further verified by the structural and magnetic

properties  around  the  Li  vacancy.  As  shown  in  Fig.  4d,  when

exceeds  a  critical  value  of  4.0  eV,  a  breaking of  the tetrahedral

symmetry occurs, evidenced by that one Fe-O1- bond is apparently

elongated compare with the other three Fe-O2- bonds and so as Si-O

bonds. In contrast, a standard DFT+U calculation (λh = 0) or with

small λh predicts a high-symmetry extended acceptor state with an
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equal amplitude of all Fe-O and Si-O bonds. The polaronic state also

suggests the emergence of a local magnetic moment at the O1− ion

that traps the hole. Since our λh that fulfills Eq. (1) (4.5 eV) is higher

than the transition value (4.0 eV), the stabilized single-O polaronic

state  is  predicted  to  be  the  physical  reality  at  the  delithiation

process  with  low  concentration.  This  means  that  in  LiFeSiO4,

delithiation starts by forming single-O1- polaron, while the O clusters

begin to form when an amount of elongated Fe-O bonds are close

enough at a relatively high concentration (e.g., x = 1.5). 

  On  the  other  hand,  adding  one  Li  to  LiFeSiO4 (leading  to

Li1.06FeSiO4) exhibits an electron polaron state dominated by Fe-3d

orbitals, as shown in Fig. 4a (bottom panel). As a result, associated

with  this  lithiation  process,  a  Fe3+ ion  is  reduced  to  Fe2+,

corresponding to traditional cation redox activity. Note that we did

not  apply  any  onsite  potential  on  the  donor  state  here  because

similar to other Fe3+ system such as Fe2O3, DFT+U already satisfies

the  generalized  Koopmans  condition  in  good  approximation  61.

Overall,  by dilute doping approach we observe exact cation/anion

redox  transition  at  LiFeSiO4 (x =  1),  with  the  formation  of

electron/hole  single  polaron  formation  for  the  cation/anion  redox

process.
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Redox  activity  in  other  Li(2-x)TMSiO4 compounds. We  next

consider other Li(2-x)TMSiO4 (TM = Mn, Co, and Ni) materials 36,62-66 to

see  whether  the  existence  of  oxygen  redox  activity  is  universal

among  these  polyanionic  materials.  For  Li(2-x)MnSiO4,  PDOS  plots

show that upon delithiation from  x = 0 up to  x = 1.5 the cation

valence  Mn2+ → Mn3+ → Mn4+ accounts  for  the  redox  activity

(Supplementary Fig. 4). It should be noted that there is also a small

portion  of  oxygen  redox  activity  accompanied  with  the  main  Mn

redox.  The  calculated  magnetic  moments  of  Mn  in  partially

delithiated  Li(2-x)MnSiO4 also  support  the redox of  Mn2+ → Mn3+ →

Mn4+, with the magnetic moment of Mn changing from 4.51 μB in

Li2MnSiO4,  to  3.69  μB  in  LiMnSiO4,  and  finally  to  2.83  μB  in

Li0.5MnSiO4 (Fig. 5a). In contrast, the magnetic moment of O keeps

nearly  unchanged,  indicating  the  small  portion  of  oxygen  redox

activity observed in the PDOS can be neglected (Fig. 5a). Similar to

Li2MnSiO4,  Li2CoSiO4 also  exhibits  the  dominated  cationic  redox

accompanied by a little degree of oxygen redox activity during the

whole  delithiation  process  (Supplementary  Fig.  5).  The  only

difference is that the oxygen redox in Li2CoSiO4 can’t be neglected,

as indicated from Fig. 5b that the magnetic moments of both O1

and O2 in Li2CoSiO4 increases from 0.04 to 0.26 μB from Li2CoSiO4 to

Li0.5CoSiO4. While going to Li2NiSiO4,  the redox process resembles
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the case of Li2FeSiO4 again: Ni2+/Ni3+ redox couple for the first Li-ion

extraction (per f.u.)  and polaron-like oxygen redox couple for the

second  Li-ion  extraction  (Supplementary  Fig.  6).  This  is  also

supported by the calculated magnetic  moments  of  Ni  in  partially

delithiated Li(2-x)NiSiO4 (Fig. 5c), changing from 1.73 μB (Ni2+,  eg
4t 2g

4 )

in Li2NiSiO4 to 2.11 μB (Ni3+, eg
4t 2g

3 ) in LiNiSiO4 and then keeps nearly

unchanged (2.11 μB for  Ni in Li0.5NiSiO4).  On the other hand, the

magnetic moments of one O ion (O1) increase a little by 0.13 μB

from Li2NiSiO4 to LiNiSiO4 and then sharply change to -0.69 μB in

Li0.5NiSiO4 (Fig.  5c).  The  isosurfaces  of  the  spin  density  for  the

partially delithiated Li(2-x)TMSiO4 (x = 1 and 1.5) further confirm the

above calculations: We observe no spin density for all the oxygen

ions in Li(2-x)MnSiO4, nonzero spin density for all the oxygen ions in

Li(2-x)CoSiO4, and large spin density with the shape of an isolated O-

2p orbital on O1 in Li0.5NiSiO4 (Fig. 5d). 

From the above results, we can conclude that the redox activity in

Li(2-x)TMSiO4 (TM = Mn, Fe, Co and Ni) shows a strong dependence on

the 3d occupation numbers of TM. Specifically, Li2NiSiO4 exhibits the

same polaronic oxygen redox activity as Li2FeSiO4 after more than

one  Li-ion  extracted,  while  Li2MnSiO4 shows  the  multiple  cationic
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redox (Mn2+-Mn4+) during the whole delithiation, Li2CoSiO4 shows a

simultaneous cationic and anionic redox with the universal (but not

equivalent)  charge  transfer  on  each  oxygen  ions.  A  detailed

discussion  on  the  evolution  of  energy  orbitals  during  delithiation

explaining the above differences of the redox activity for Li(2-x)TMSiO4

family is provided in Supplementary Note 2 and Note 3. 

Discussion.  We  would  like  to  comment  the  corresponding

experimental  capacity  for  different polyanionic  materials  with our

calculations discussed above. Li2MnSiO4 is reported to show a high

capacity  of  290  mAh/g  (corresponding  to  1.7  Li  per  f.u.)  at  a

discharge rate of  0.02 C (1  C = 333mA/g)  66,  a  little  lower  than

Li2FeSiO4 with 305 mAh/g (corresponding to 1.86 Li per f.u.)  at a

discharge rate of 0.05 C, while Li2CoSiO4 only shows a capacity of

170 mAh/g (corresponding to 1.1 Li per f.u.) at a discharge rate of

0.03 C  62. The high capacity of Li2MnSiO4 can be attributed to the

multiple cationic redox (Mn2+-Mn4+) during the whole delithiation. So

there is no significant charge transfer from lattice oxygen, which

ensures the stability of lattice oxygen and also the whole structure

stability during delithiation. For Li2CoSiO4, though the cationic redox

accounts for the main activity during the whole delithiation process,

the  accompanied  oxygen  redox  can’t  be  neglected.  Unlike  the

sequent cationic and anionic redox process in Li2FeSiO4, it is more
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like a simultaneous cationic and anionic redox in Li2CoSiO4 according

to  our  calculations.  Moreover,  unlike  Li2FeSiO4,  the  accompanied

oxygen redox in Li2CoSiO4 doesn’t show a polaronic state with one

Li-ion  extracted but  show the universal  charge transfer  on  every

oxygen ions, which make it easy to form (O2)n- (0 < n < 4) clusters.

As  a  result,  the  loss  of  lattice  oxygen  would  be  easily  triggered

during  delithiation,  which  explains  that  only  1.1  Li-ions  can  be

delithiated for Li2CoSiO4.

As we know, Ni is widely accepted to be responsible for the main

reactive species in layered Ni-containing oxides, acting as a double

redox-active center  7,67-69 with Ni2+ → Ni3+ → Ni4+.  However,  in our

calculation of Li2NiSiO4, Ni3+ → Ni4+ is forbidden during the second Li-

ion  extraction.  Although Li2NiSiO4 has  never  been reported to be

synthesized  successfully,  our  results  suggest  that  it  would  be

interesting to revisit the validity of the double redox-activity for Ni in

layered Ni-containing oxides in the future.

To summarize, by systematical study of the delithiation process of

Li(2-x)FeSiO4 with the combination of  first-principle calculations and

sXAS  measurements,  we  demonstrated  a  reversible  sequent

cationic and anionic redox process in Li(2-x)FeSiO4. Namely, the first

Li-ion extraction (per f.u.) is attributed to the cation valence change

from Fe2+ to Fe3+, while the second Li-ion extraction activates almost
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exclusively the oxygen redox. This full delithiation is reversible and

stable until nearly 1.8 Li-ions extracted, corresponding to an extra

capacity of 0.8 Li-ions induced by anionic redox activity. We then

focused on slight lithiation and delithiation behaviors of LiFeSiO4 in a

doping perspective and demonstrated the exact transition point of

cation/anion  redox at  LiFeSiO4 (x =  1).  Interestingly,  both  of  the

lithiation  and  delithiation  processes  around  the  transition  point

result in electron and hole polaronic states with cationic and anionic

character, respectively. In contrast to the previous reported oxygen

clustering in Li-rich layered TM oxides, the oxygen polaron in Li(2-

x)FeSiO4 is  localized  on  a  single  O-ion  when  the  anion  redox  is

triggered. Finally, the series of polyoxyanion Li(2-x)TMSiO4 (TM = Mn,

Fe,  Co  and  Ni)  compounds  do  not  exhibit  a  universal  feature  of

oxygen redox in general, but a dependence on the 3d occupation

numbers of TM. This work provides new insights of the anionic redox

activity in the traditional polyanionic cathode materials, and paves

the  way  for  the  future  design  of  high-capacity  rechargeable

batteries.

Methods

  First-principles calculations. All DFT calculations are performed

using  the  plane-wave  projector-augmented  wave  method  70,71,  as
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implemented in the Vienna  ab initio simulation package  72,73.  The

initial  supercell  is  built  according to the experimentally measured

lattice  constants  49.  Then  it  is  fully  optimized  (including  atomic

positions and lattices) to get the Li2FeSiO4 structure. The Li(2-x)FeSiO4

structures were obtained by fully optimizing the Li2FeSiO4 structures

with different degrees of  delithiation.  To obtain reliable optimized

structures, the maximum residual force is less than 0.01 eV/Å and

energies are converged to within 10-5 eV per atom. An energy cut-off

of 520 eV was used in all cases. A ferromagnetic high-spin Fe state

is assumed, and the energetic effects of the magnetic ordering are

very small (below 0.005 eV per formula).

  To  predict  the  realistic  behavior  of  the  polyanionic  cathode

materials,  we  applied  two  different  methods  to  correct  the  self-

interaction errors. For Li(2-x)TMSiO4 (two TM atoms per cell), hybrid

functional  calculations  with  the  form  of  Heyd–Scuseria–Ernzerhof

(HSE06) 50 is employed, in which 25% Fock exchange is used in both

structure optimization and electronic structure calculations. For the

lithiation/delithiation process with a dilute concentration, we use a

2×2×2 supercell (16 TM atoms per cell) and add electron potentials

on certain lm decomposed orbitals on top of the DFT+U framework,

in which the Dudarev’s approach 74 is used for Fe-d states (U – J = 4

eV).  The  onsite  potential  is  implemented  as  the  combination  of
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DFT+U and non-local external potentials method from Ref.  75.  For

hole doping, the corresponding electron state potential is given by

V h=λh(1−nm ,σ /nhost ),  (2)

where  nm ,σ and  nhost denote the occupation of the  m sublevel of

spin σ , and the occupation of the host material without doping. We

determine nhost in Eq. (2) to be 0.595 from the partial charge of the

O-p orbitals of the occupied states. The parameter  λh is tuned to

perfectly fulfil the linearity of  E(N), i.e., the generalized Koopmans

condition Eq. (1). For charged states, the image charge corrections

due to the periodic supercells are considered by using the method

of Lany and Zunger  76. The comparison of results between hybrid

functional and Lanyu-Zunger approach is shown in Supplementary

Note 4.

Soft X-ray Spectroscopy (sXAS). The Fe L-edge and O K-edge X-

ray absorption spectroscopy (XAS) on Li2-xFeSiO4 (x = 0, 1, and 2)

were  both  performed  at  beamline  8.0.1  of  the  Advanced  Light

Source (ALS) at Lawrence Berkeley National Laboratory (LBNL). The

undulator and spherical grating monochromator supplied a linearly

polarized  photon  beam  with  resolving  power  up  to  6000.  The
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experimental energy resolution was better than 0.15 eV. All the XAS

experiments were performed at room temperature. All the spectra

were collected in the total electron yield (TEY). All the spectra were

normalized to the photon flux measured by the photocurrent of an

upstream gold mesh.

Synthesis  of  Li2FeSiO4.  lithium  acetate  (1.02  g),  ferric  nitrate

(2.02 g),  tetraethoxysilane (1.32 g),  graphene oxide (50 mg) and

P123  (1.00  g)  were  dissolved  in  ~100  ml  ethanol/water  mixed

solution  and  then  transferred  to  Teflon  lined  stainless  steel

autoclave  and  heated  at  140  °C  for  24  h  to  form  precursor.

Subsequently, the precursor was dried at 100 °C and then heated at

600 °C for 9 h under Ar to obtain Li2FeSiO4 sample.

Electrochemical  measurements.  The  battery  performance  was

tested  with  coin  cells  assembled  in  a  glove  box  filled  with  pure

argon. Lithium pellet was used as the anodes, a 1.0 M solution of

LiPF6 in ethylene carbonate/dimethyl carbonate (1/1) (bought from

Shenzhen new main bond technology co., LTD. China) was used as

the electrolyte, and the cathode electrodes were produced with 75%

active  material,  15%  conducting  agent  (Ketjen  Black)  and  10%

poly(tetrafluoroethylene)  binder.  Galvanostatic  charge/discharge

measurement was performed in the potential range from 1.5 to 4.8

V vs. Li/Li+.
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Figures and Captions

Figure  1.  Electrochemical  performance  of  Li2FeSiO4

nanoparticles. (a) Discharge–charge curves at a current rate of

0.1 C (1 C = 333mA/g). (b) Cycling performance at 0.1 C.
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Figure 2. HSE calculated electronic structures for Li(2-x)FeSiO4

during delithiation. (a) Projected density of states (PDOS) of Fe-
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3d and O-2p states in Li(2-x)FeSiO4 (x = 0, 0.5, 1.0, and 1.5). (b) The

isosurface of the spin density in the unit cell of partially delithiated

Li(2-x)FeSiO4 (x = 1.0 and 0.5). Green, Li; red, O; dark blue, Si; brown,

Fe. The isovalues for the isosurfaces of the spin densities were 0.05

e Å-3 for all cases. (c) The calculated magnetic moment of Fe and O

in Li(2-x)FeSiO4 at different delithiation states. O1 and O2 denote two

kinds of O ions with different variations of magnetic moment in Li(2-

x)FeSiO4. O2 are denoted in (b), and all the left unidentified O ions in

(b)  are  O1.  (d) Direct  visualization  of  oxo  to  peroxo  2O2-/(O2)n-

transformation upon delithiation: local environment of the Fe and Si

cations (O–O distances and average Fe–O and Si-O distances).

Figure 3. The Fe L-edge and O K-edge XAS on samples of Li2FeSiO4,

Li1FeSiO4, and Li0.15FeSiO4.
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Figure 4. Cation/anion transition at the critical point  x = 1.

(a) PDOS of Fe-3d and O-2p states in Li15Fe16Si16O64 (delithiation, top

panel)  and  Li17Fe16Si16O64 (lithiation,  bottom  panel).  (b)  The

isosurface of the charge density of the O polaron state in the cell of

Li15Fe16Si16O64,  showing  localization  on  a  single  O  ion.  (c) The

electron  addition  energy  Eadd=E(N+1)−E(N)  and  the  energy

eigenvalue ei(N) of the initially unoccupied acceptor state of Li. (d)

Structural and magnetic properties of the O1- in Li15Fe16Si16O64, as a

function of the hole-state potential strength λh. The polaronic state

35



is stable above a value λh > 4.0 eV, while the critical value λc  that

fulfills the generalized Koopmans theory is marked by the dashed

line. m: local magnetic moment of O1−.
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Figure 5. Redox activity in other Li(2-x)TMSiO4 compounds. (a

to c) The calculated magnetic moment of TM and O in Li(2-x)TMSiO4

(TM  =  Mn,  Co,  and  Ni)  at  different  delithiation  states.  O1  are

denoted in (d), and all the left unidentified O ions in (d) are O2. (d)

The  isosurface  of  the  spin  density  in  the  unit  cell  of  partially

delithiated Li(2-x)TMSiO4 (x = 1.0 and 0.5).  Green, Li;  red,  O; dark

blue, Si; purple, Mn; light blue, Co; silver, Ni.
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