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ABSTRACT OF THE DISSERTATION

On Blowup of Jang’s Equation and Constant Expansion Surfaces

by

Kai-Wei Zhao

Doctor of Philosophy in Mathematics

University of California, Irvine, 2022

Professor Richard M. Schoen, Chair

In 1978, the physicist P.S. Jang introduced a quasilinear elliptic equation in an attempt to

generalize Geroch’s approach to the positive mass conjecture of general relativity. The first

existence and regularity result of Jang’s equation was obtained by R. Schoen and S.-T. Yau

through the capillary regularization procedure and stability-based a priori estimates. Yet,

the solutions produced by this procedure may blow up in some black hole regions.

Schoen–Yau showed that the graph of a blowup solution to Jang’s equation is asymptotic to

cylinders over apparent horizons. J. Metzger showed that such cylindrical asymptotics are

exponential, and he estimated the asymptotic rate by certain spectral properties of apparent

horizons, followed by Q. Han, M. Khuri, and W. Yu. Their estimates involve delicate barrier

construction and require the assistance of regularized solutions. We provide a simple proof

of the sharp estimates that also apply to general blowup solutions.

We prove the first analytic and geometric result of regularized solutions to Jang’s equation

in black hole regions by applying two natural geometric treatments: translation and dilation.

First, we show that the graphs of properly translated solutions converge subsequentially to

constant expansion surfaces. Second, we characterize the limits of properly rescaled solu-

tions. Third, we investigate the structure of black hole regions that arise in the Schoen–Yau

regularization procedure. Finally, we discuss a special case of low-speed blowup behavior.

viii



Chapter 1

Introduction

1.1 Geometry of spacetime

In special relativity, a flat spacetime is modeled by Minkowski spacetime R1,3 endowed with

the non-degenerate symmetric quadratic form

g0 = −dt2 +
3∑

i=1

(dxi)2, (1.1.1)

where t = x0 is the temporal coordinate, and xi’s are the spatial coordinates for i = 1, 2, 3.

Since the metric g0 has one negative eigenvalue and 3 positive eigenvalues, we say that g

has signature (−,+,+,+). In view of this structure, we have the following decomposition

of the tangent space of R1,3. Let v = (v0, v1, v2, v3) ∈ R1,3 be a vector.

1. If g0(v, v) < 0, then v is time-like, and is interpreted as the 4-velocity of a massive

object.

2. If g0(v, v) = 0, then v is null or light-like, and is interpreted as the 4-velocity of a

light ray (photon).
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Figure 1.1: Light cone with examples of time-like, null and space-like vectors.

3. If g0(v, v) > 0, then v is space-like , and is interpreted as a tangent vector of a

Riemannian submanifold of spacetime.

Furthermore, the light cone, a 3-dimensional hypersurface comprising all null vectors, de-

composes the set of all time-like vectors into two open connected subdomains, called the

future (with v0 > 0) and the past (with v0 < 0). This gives the spacetime causal structure,

which Riemannian geometry does not possess.

In general relativity, a curved spacetime is modeled by a 4-dimensional Lorentzian manifold

(S,g), where S is a smooth 4-dimensional manifold and g is a nondegenerate symmetric

quadratic form with signature (−,+,+,+). At each point p ∈ S, there exists a ”orthonor-

mal” basis e0, e1, e2, e3 with respect to g for the tangent space TpS such that g(e0, e0) = −1

and g(ei, ei) = 1 for i = 1, 2, 3. Analogous to Minkowski spacetime, any tangent vector

is time-like, null, or space-like. Likewise, we call a submanifold Nk of spacetime (S,g)

time-like, null, or space-like if all tangent vectors on Nk are time-like, null, or space-like,

respectively. Finally, we always assume that a spacetime (S,g) is time-orientable; that

is, there exists a global continuous unit time-like vector field η, i.e., g(η, η) = −1, which

designates causal relations (the future and past light cones) at every point in the spacetime

(S,g).

2



Figure 1.2: Time-like curve γ and space-like hypersurface M in spactime (S,g) oriented by
time-like vector field η

Let us recall the basic Riemannian geometry constructions which apply to the Lorentzian

setting. Let (S,g) be a 4-Lorentzian manifold. For simplicity, we also denote the Lorentzian

metric g by ⟨·, ·⟩. We assume that the indices 1 ≤ i, j, k, ℓ ≤ 3 and 0 ≤ a, b, c, d ≤ 3. In

addition, we take Einstein summation convention, i.e., when an index appears twice in a

single term, it automatically implies summation of that term over all the values of the index.

First of all, the metric naturally extends to all tensor bundles. For instance, if S,T are

(0, 2)-tensors, then

⟨S,T⟩ = gacgbdSabTcd.

The metric g uniquely defines a torsion-free and g-compactible affine connection D, called

the Levi-Civita connection. In local coordinates x0, x1, x2, x3, we write ∂a = ∂
∂xa for

simplicity. We define the Christoffel symbol Γc
ab by

D∂a∂b = Γc
ab∂c,

3



where one can compute

Γc
ab =

1

2
gcd
(∂gad

∂xb
+
∂gbd

∂xa
− ∂gab

∂xd
)
.

The Riemann curvature tensor is defined as for any vector fields X, Y, Z,

RX,YZ = DXDYZ −DYDXZ −D[X,Y ]Z,

where [X, Y ] = XY − Y X is the Lie bracket. In coordinates, we write

R∂c,∂d∂b = Ra
bcd∂a,

where one can compute

Ra
bcd = ∂cΓ

a
db − ∂dΓ

a
cb +

(
Γe

dbΓ
a
ce − Γe

cbΓ
a
de

)
.

We define the contractions of the Riemannian curvature tensor:

Ricci Tensor : Ric(∂b, ∂d) = Ricbd = Ra
bad,

Scalar Curvature : R = gbdRicbd.

1.2 Theory of General Relativity

Einstein’s general relativity is a theory of gravity compatible with special relativity. Unlike

Newton’s theory, gravity is a consequence of the curvature of the spacetime rather than

being considered as a force. There are three fundamental hypotheses in the theory of general

relativity (cf. [44] Section 4.3).

(H1) The spacetime is a 4-dimensional time-orientable Lorentzian manifold.

4



(H2) A freely falling test massive body travels along time-like geodesics.

(H3) Einstein’s equation holds:

G := Ric− 1

2
Rg = 8πT, (1.2.1)

where G is called the Einstein curvature tensor, and T is a symmetric (0, 2)-tensor,

called the stress-energy-momentum tensor, representing a continuous matter dis-

tribution in the spacetime.

When T = 0, (1.2.1) is called the vacuum Einstein equation, and can be reduced to

Ric = 0. Historically, Einstein discovered the vacuum equation before writing down the full

equation.

1.2.1 Dominant Energy Condition

For any observer in the spacetime with future-directed time-like 4-velocity u, −T(u, ·)♯ rep-

resent the energy-momentum 4-current density of matter as seen by the observer. Here

the musical isomorphism (·)♯ : T ∗S → TS is computed with respect to the Lorentzian metric

g. In a local orthonormal frame u = e0, e1, e2, e3 where the observer is stationary,

−T(u, ·)♯ = T00e0 −
3∑

i=1

T0iei,

where Tab = T(ea, eb) for any 0 ≤ a, b ≤ 3. In particular, the component T(u, u) represents

the energy density of matter and the component −T0iei represents the momentum den-

sity of matter in ei-direction measured by the observer. We say that (S,g) (or T) satisfies

the dominant energy condition if for any time-like vector u, −T(u, ·)♯ is a future-directed,

5



null or time-like vector, i.e.,

T00 ≥

√√√√ 3∑
i=1

(T0i)2. (1.2.2)

This means that the speed of energy flow of matter is always less than the speed of light.

We can see from Einstein’s equation (1.2.1) that the dominant energy condition is a certain

positivity condition on the Einstein curvature tensor G. There are other energy conditions

which are usually considered in different contexts involving pressures of matter, e.g., weak

energy condition, T(u, u) ≥ 0, and strong energy condition, T(u, u) ≥ −1
2
trgT for any

future-directed time-like vector u (cf. [44] Section 9.2).

1.2.2 Schwarzschild Spacetime

A few months after Einstein published his vacuum field equation (with T = 0), the solution

corresponding to the exterior gravitational field of a static, spherically symmetric isolated

body was discovered by Karl Schwarzschild. The Schwarzschild solution is an important

example to consider when discussing the notion of (total) mass and its related properties,

e.g., the positive mass theorem and Penrose inequality.

For m > 0, define the Schwarzschild spacetime with mass m to be

(
S := R×

(
R+ × S2

)
,gm := −

(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1
dr2 + r2dξ2S2

)
, (1.2.3)

where dξ2S2 denotes the standard round metric on S2. Note that r should be regarded as a

radial coordinate rather than a distance function to the singularity at origin in any sense. In

the weak field regime (r → ∞), the behavior of a test mass in the Schwarzschild spacetime

(S,gm) agrees with the behavior of a test mass in the Newtonian theory of gravity of an

isolated point mass m at the origin (cf. [44] Section 6.2). Thus, we interpret the parameter

m as the total mass of the Schwarzschild spacetime (S,gm). If m < 0, the metric gm is

6



incomplete; if m = 0, gm = g0 is simply the Minkowski metric, which can be viewed as a

special case of the Schwarzschild solution.

Under the coordinate transformation r = ρ(1+ m
2ρ
)2, the Schwarzshild metric can be written

as a warped product

gm = −

(
1− 2m

ρ

1 + 2m
ρ

)2

dt2 +

(
1 +

m

2ρ

)4 (
dρ2 + ρ2dξ2S2

)
. (1.2.4)

Note that dρ2 + ρ2dξ2S2 is the Euclidean metric in spherical coordinates. The induced Rie-

mannian metric gm on the time-slice {t = 0}, often called the Riemannian Schwarzschild

metric, in isotropic1 coordinates (t, x1, x2, x3) takes the form

gm =

(
1 +

m

2|x|

)4

δijdx
idxj. (1.2.5)

Thus, Riemannian Schwarzschild metric gm is conformally flat.

1.3 Initial Data Sets

1.3.1 Initial Value Problem for General Relativity

Let (S4,g) be a time-orientable spacetime governed by Einstein’s equation (1.2.1). Suppose

that there exists a space-like hypersurface M3 ⊂ S which intersects every inextendible

time-like curve, interpreted as a maximal worldline of a massive body, exactly once. Such

hypersurface M is called a Cauchy surface and is thought of as a ”snapshot {t = t0}”

of the spacetime (S4,g). A spacetime (S,g) that possesses a Cauchy surface is said to

be globally hyperbolic (cf. [44] Section 8.3). In fact, we can foliate globally hyperbolic

1Refer to [44] p. 93 in Section 5.1 for definition.
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Figure 1.3: A Cauchy surface in spacetime. η is a unit time-like normal vector field and ei
is a tangential space-like vector field.

(S,g) by Cauchy surfaces, Mt, parametrized by a global time function t with M0 = M (cf.

[44] Theorem 8.3.14). Thus, there exists a global unit vector field η (i.e., g(η, η) = −1) in

spacetime normal to the hypersurfaces Mt, interpreted as the ”flow of time” experienced by

a stationary observer.

In a well-posed initial formulation of general relativity, one is interested in finding the unique

solution (S,g), called maximal Cauchy development, to Einstein’s equation (1.2.1) sat-

isfying certain suitable initial conditions imposed on a given Cauchy surface M . Einstein’s

equation (1.2.1), in certain choice of gauge, i.e., choice of coordinates, is a quasilinear wave

equation (cf. [44] Section 4.4). In the initial value problem of linear wave equation, one

places initial conditions on displacement and velocity. In analogy, in initial value formula-

tion of general relativity, where the gravitational field is represented by g, given a Cauchy

surface M as the initial time-slice, one places the initial conditions on gravitational field g:

g
∣∣
M

= g (initial ”displacement”),
(
Lηg

)∣∣
M

= 2k (initial ”velocity”). (1.3.1)

Here Lη denotes the Lie derivative along η, and k = g(D(·)η, ·) denotes the second funda-

mental form of M with respect to η where D is the Levi-Civita connection with respect to

g. Note that g is a Riemannian metric and h is a symmetric (0, 2)-tensor on M .

Definition 1.1. A triple (M, g, k) is called an initial data set if M is a complete smooth

8



3-manifold without boundary, equipped with a symmetric positive-definite (0, 2)-tensor g

as Riemannian metric and a symmetric (0, 2)-tensor k representing the second fundamental

form of M in the maximal Cauchy development (S,g).

Pick a Lorentz frame adapted to M , i.e., e0 = η a unit time-like normal to M , and e1, e2, e3

tangent to M . As before, indices i, j, k, ℓ range from 1 to 3. Note that the tensor k and

the index k that appears in subscript or superscript carry totally different meanings and

should be treated individually. Let Ri
jkl and Ri

jkl denote the Riemannian curvature tensor

of (M, g) and (S,g), respectively. Let ∇ denote the Levi-Civita connection of (M, g). The

Gauss-Codazzi equations on the initial data set (M, g, k) provide the following relationships:

(Gauss Equation) Rijkl = Rijkl + kikkjl − kilkjk ,

(Codazzi Equation) ∇jk
i
k −∇kk

i
j = Ri

0jk.

Taking trace of the Gauss equation with respect to g twice, we get

R + (trgk)
2 − |k|2g =

3∑
i,j=1

Rijij

=

(
3∑

i,j=1

Rijij +
3∑

j=1

g00R0j0j

)
−

3∑
j=1

g00R0j0j

=
3∑

j=1

Ricjj +Ric00

= R+ 2Ric00 = 2G00.

Here R denotes the scalar curvature of g on M . Taking trace of the Codazzi equation, we

have

∇i

(
kik − trg(k)δ

i
k

)
= Ric0k.

Not every initial data set (M, g, k) gives physically suitable initial conditions for general

9



relativity. Recall that we always assume the dominant energy condition defined in Section

1.2.1 holds for the matter T in the right hand side of Einstein’s equation (1.2.1). Since we

assume that the Cauchy surface M is embedded in (S,g), the Gauss and Codazzi equations

on M together with Einstein’s equation (1.2.1) give constraint equations:

(Hamiltonian Constraint) T(η, η) = µ :=
1

16π

(
Rg − |k|2g + (trgk)

2
)
,

(Momentum Constraint) T(η, ·)
∣∣
M

= J :=
1

8π
div
(
k − trg(k)g

)
,

(1.3.2)

Here the scalar function µ agrees with the local mass density of matter T and the vector

−J ♯ agrees with local current density of matter T observed by a stationary observer in

the initial data set (M, g, k). Thus, if T satisfies the dominant energy condition (1.2.2), then

in particular on initial data set (M, g, k)

µ ≥ |J |g. (1.3.3)

By slight abuse of language, we still say that the initial data set satisfies the dominant

energy condition if (1.3.3) holds true.

An important special choice of initial data set satisfying the dominant energy condition is

when the Cauchy surface M is totally geodesic, i.e., k = 0. Then such M is called a time-

symmetric slice, since time reflection about M is an isometry of the maximal Cauchy

development (S,g) generated by (M, g). Furthermore, the dominant energy condition (1.3.3)

becomes a positivity condition on scalar curvature

Rg ≥ 0. (1.3.4)
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1.3.2 Asymptotic Flatness

Since gravity is attractive, it is physically reasonable to believe that matter is concentrated

in some bounded regions, e.g., galaxies. When we study the structure of a galaxy distance

from others, we may approximate it by an isolated system. Asymptotic flatness characterizes

the property that in an isolated system the gravitational field becomes weak and thus the

spacetime is asymptotic to the flat Minkowski spacetime near infinity.

Definition 1.2 ([39]). An initial data set (M, g, k) is asymptotically flat (with ℓ ends)

if there is a compact subset K ⊂ M such that M\K consists of finite number of connected

components M1, . . . ,Mℓ, called infinite ends, each of which is diffeomorphic to R3\B for a

closed ball B in R3 such that under these diffeomorphisms

gij − δij = O2(|x|−1), kij ∈ O2(|x|−2),
3∑

i=1

kii = O(|x|−3),

and

Rg = O1(|x|−4).

Here by f = Ok(|x|−p) we mean that

sup
M\K

k∑
|I|=0

|x|p+|I||∂If | <∞,

where ∂I = ∂xi1∂xi2 · · · ∂xij for multi-index I = (i1, i2, . . . , ij) and |x| =
√
x21 + x22 + x23 is the

Euclidean distance in these coordinates.

For instance, the time-symmetric slice {t = 0} of Schwarzschild spacetime in Section 1.2.2

is asymptotically flat.
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1.3.3 Mass

Defining an energy satisfying a conservation law in general relativity is very different from

pre-relativistic theories. The strategy of integrating local energy density over the background

space no longer works. The primary reason is that gravitational field g describes the spatial

property as well as the dynamical aspect of the spacetime (S,g). While Einstein’s equiv-

alence principle asserts that there is no observer who can be insulated by the influence of

gravity, and thus there is no canonical gauge-free decomposition of g into a background part

and a dynamical part. This leads to lack of local energy in general relativity. Moreover,

integrating the local energy of matter T over a space-like hypersurface is not enough, since

the gravitational field also contributes to the total energy. For instance, T is everywhere

zero in time-slice t = 0 of Schwarzschild spacetime with metric gm defined in (1.2.5), but the

total energy should be m. However, it is possible to define the notion of total energy of

an isolated system measured by an observer at infinity.

Motivated by the comparison between Schwarzschild spacetime and Newtonian model in

weak field regime, if the Riemannian metric g on time-slice is asymptotic to Schwarzschild

at an infinite end, i.e.,

gij =

(
1 +

m

2|x|

)4

δij +O(|x|−2), (1.3.5)

one may expect the total energy measured at this infinite end to be m. More generally,

for an asymptotically flat initial data set (cf. Definition 1.2) R. Arnowitt, S. Deser and

C.W. Misner [5] introduced the total energy at any infinite end Mp, now often called the

ADM-energy, defined by the flux integral over a coordinate 2-sphere near infinity

EADM(Mp, g) =
1

16π
lim
r→∞

3∑
i,j=1

∫
|x|=r

(∂xigij − ∂xjgii)
xj

|x|
dH2.

The ADM-formulation coincides with the weak field approximation in the asymptotically

12



Schwarzchild case.

Proposition 1.3. If (M, g) is asymptotically Schwarzschild, i.e., (1.3.5) holds, then E = m.

Proof. Write

gij =

(
1 +

m

2|x|

)4

δij + εij,

where εij = O1(|x|−2). Then

∂xigij = 4

(
1 +

m

2|x|

)3

· m
2

(
− xi

|x|3

)
δij + ∂xiεij,

∂xjgii = 4

(
1 +

m

2|x|

)3

· m
2

(
− xj

|x|3

)
δii + ∂xjεii.

Therefore, the integrand becomes

3∑
i,j=1

(∂xigij − ∂xjgii)
xj

|x|
= 4m

(
1 +

m

2|x|

)3(
1

|x|2

)
+O(|x|−3).

Integrate over the sphere |x| = σ, we have

3∑
i,j=1

∫
|x|=r

(∂xigij − ∂xjgii)
xj

|x|
dH2 =

{
4m

(
1 +

m

2σ

)3( 1

σ2

)
+O(σ−3)

}
4πσ2

= 16πm
(
1 +

m

2σ

)3
+O(σ−1).

Finally, let σ → ∞ and divide 16π, we get E = m.

Furthermore, the ADM-energy is gauge invariant [7]. Likewise, the ADM linear momen-

tum

P i
ADM(Mp, g) =

1

8π
lim
r→∞

3∑
j=1

∫
|x|=r

|x|−1
(
xjkij − xikij

)
dH2,

is well-defined [33]. The ADM 4-energy-momentum vector
(
P a
ADM

)
= (EADM, P

i
ADM),

treated as a 4-vector in Minkowski spacetime, is invariant under coordinate transformations
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preserving asymptotic flatness. Finally, we define the ADM mass mADM by

mADM =
√

−P a
ADM(PADM)a.

We will refer to the positivity of mass as EADM ≥ |P i
ADM|, i.e., −P a

ADM(PADM)a ≥ 0, and

refer to the positivity of energy as EADM ≥ 0.

The following density theorem allows one to conformally deform the initial data set, taking

an arbitrarily small cost of the ADM-energy, such that the dominant energy condition holds

strictly.

Proposition 1.4 (Density theorem, [39] Lemma 1 cf. also [40]). Let (M, g, k) be an initial

data set. Given ε > 0, there is a function u > 0 on M such that

u = 1 +
Ak

r
+O(r−2), |∂u| = O(r−2), |∂∂u| = O(r−3)

onMk and Ak < ε so that (M,u4g, u2k) is an initial data set with mass density µ and current

density J satisfying

µ > |J |.

1.3.4 Null Expansions and Trapped Surfaces

Following the settings in the beginning of Section 1.3, suppose (M, g, k) is an initial data set

in spacetime (S,g) carrying a future-directed normal η of M in S such that g(η, η) = −1,

and such that at any p ∈ M , k(X, Y ) = g(DXη, Y ) for all X, Y ∈ TpM . Let Ω3 ⊆ M be

an open region in M (not necessarily bounded), Σ2 = ∂Ω be a smooth embedded two-sided

surface, and let ν be the unit normal vector field on Σ pointing out of Ω in M . Let h denote

the second fundamental form of Σ in M with respect to ν so that hp(X, Y ) := g(∇Xν, Y )

for all X, Y ∈ TpΣ for all p ∈ Σ, and let H denote the mean curvature with respect to ν.
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Figure 1.4: Two canonical null normal vector fields n± on Σ.

Now we think of Σ as a space-like 2-surface embedded in S. There are two independent

canonical future-directed null normal vector fields n+ := η + ν and n− := η − ν on Σ in S

(see Figure 1.4). Then we can define the null second fundamental form h± of Σ in S with

respect n± by h±
p (X, Y ) := g(DXn

±, Y ) = (k ± h)(X, Y ) for all X, Y ∈ TpΣ, p ∈ Σ.

Definition 1.5. We define the outward(+)/inward(−) null expansion to be the mean

curvature of Σ with respect to n±,

θ±[Σ] := trΣh = K[Σ]± H[Σ], (1.3.6)

where K[Σ] = trΣk is the trace of k restricted on Σ and H[Σ] = divΣν is the mean curvature

with respect to the outward unit normal ν on Σ.

Recall that mean curvature is the first variation of volume form. Thus, the null out-

ward/inward expansion, respectively, measures the ”expansion” of area of outgoing/ingoing

light shells,
{
Σ±

s

}
s∈[0,ε), emanating from Σ, up to first order. Here the outward/inward light

shells are Σ±
s =

{
expy(sn

±(y)) : y ∈ Σ
}
for s ∈ [0, ε).

The existence of black holes is one of most fascinating prediction of Einstein’s theory of

general relativity. Roughly speaking, a black hole region of a spacetime is a region in

which the gravitational field is so strong such that even a light ray emanating from the black

15



Figure 1.5: Illustration of the Penrose-Hawking singularity theorem.

hole region can not escape to its complement at any future time, while from every point of

the complement, a light ray is able to escape to infinity. The boundary of the black hole

region is called the event horizon. From the definition, it seems very unlikely to define

black hole region on a initial data set without knowing the global structure of spacetime.

Penrose proposed the idea of locating black hole regions with trapped surfaces.

Definition 1.6. A 2-surface Σ in an initial data set (M, g, k) is said to be trapped if both

θ+[Σ] < 0 and θ−[Σ] < 0 hold true.

We typically expect θ−[Σ] < 0 because the inward light shells shrink, while θ+[Σ] < 0 is

saying that even outward light shells also shrink in area measure. This captures the idea of

”light not able to escape.” For instance, all coordinate spheres with 0 < ρ < m
2
at time-slice

t = 0 in Schwarzschild spacetime (1.2.5) are trapped surfaces. In fact, the Penrose-Hawking

singularity theorem states that under appropriate energy condition on matter, there exists a

light ray emanating from a closed trapped surface Σ that eventually runs into a singularity (cf.

[44] Theorem 9.5.3 and 9.5.4, also [22] Proposition 4.4.3). See Figure 1.5 for the illustration.

Furthermore, under certain global assumptions, one may show that the trapped region Σ is

indeed lies inside the black hole region (cf. [44] Proposition 12.2.2). The region Ω enclosed

by Σ is called a trapped region, which is interpreted as the intersection of a part of black

hole region with the time-slice (M, g, k).
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For ease of exposition, we also define one-sided conditions. The surface Σ is called outer

trapped or outer untrapped, if θ+[Σ] < 0 or θ+[Σ] > 0, respectively, without condition

imposed on θ−[Σ]. If the borderline case θ+[Σ] = 0 holds, then Σ is called a marginally

outer trapped surface (MOTS). Analogously, outer trapped, outer untrapped, and

marginally inner trapped surfaces (MITS) are defined with θ−[Σ]. We call Σ an apparent

horizon if it is either a MOTS or MITS. A compact apparent horizon can be interpreted as

the cross-section of the event horizon in the initial data set.

In time-symmetric slice (M, g, k = 0), an apparent horizon is just aminimal surface satisfying

mean curvature H = 0. In this case, MOTS can be realized by a variational problem of area,

and the existence and regularity theory is well-developed. Solutions can be constructed by

minimization or min-max procedure.

1.3.5 Stability Operator for Null Expansion

In this subsection, we extend the definition of initial data set (Mn+1, g, k) to all dimensions

n ≥ 1 by assuming that (Mn+1, g) is a (n + 1)-dimensional Riemannian manifold carrying

a symmetric (0, 2)-tensor k. Let Σn ⊂Mn+1 be a smooth embedded two-sided hypersurface

in an initial data set (Mn, g, k) and let ν be the normal vector field assigned to Σ. Let Φτ

be a smooth one-parameter family of diffeomorphisms of M for τ ∈ (−ε, ε) so that Φ0 is the

identity map. Then Στ := Φτ (Σ) defines variations of Σ such that d
dτ
|τ=0Φτ |Σ = X + φν,

where X is a tangential vector field and φ is a smooth function on Σ. We have the following

variation formulas (cf. [31] Lemma 5.1 and [1] section 2.2)

d

dτ

∣∣∣
τ=0

H[Στ ] = ⟨∇Σ H[Σ], X⟩ −∆Σφ−
(
|h|2Σ +Ric(ν, ν)

)
φ, (1.3.7)

d

dτ

∣∣∣
τ=0

K[Στ ] = ⟨∇Σ K[Σ], X⟩+ 2k(ν,∇Σφ) +∇ν

(
trM(k)

)
φ− (∇νk)(ν, ν)φ, (1.3.8)
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where ∇Σ and ∆Σ denote respectively the gradient operator and non-positive Laplacian

operator on Σ equipped with induced metric, |h|2Σ denotes the square norm of the second

fundamental form of Σ inM with respect to ν, and Ric andD denote ambient Ricci curvature

and Levi-Civita connection in M . Now let ξ :=
(
k(ν, ·)♯

)⊤ ∈ Γ(TΣ), we have

(Dν k)(ν, ν) = −H[Σ] k(ν, ν) + ⟨h, k⟩Σ + (divM (k))(ν)− divΣ (ξ).

Using the Gauss equation and the definition of local density mass µ in constraint equations

(1.3.2), we can compute

Ric(ν, ν) = µ+
1

2

(
− RΣ + |k|g −

(
trg k

)2 − |h|2Σ +H2
Σ

)
,

and using definition of local current density J of (M, g, k) in (1.3.2) we have

(
divM (k)

)
(ν) = J(ν) +Dν(trΣ k).

Combining all above identities, we obtain

d

dτ

∣∣∣
τ=0

θ±[Στ ] = ⟨∇Σ θ±[Σ], X⟩ −∆Σφ± 2⟨ξ,∇Σφ⟩

+

(
P± ± divΣξ − |ξ|2 − 1

2
θ±[Σ]

(
θ±[Σ]∓ 2trM (k)

))
φ,

(1.3.9)

where P± = 1
2
RΣ − 1

2
|h± k|2Σ − µ∓ J(ν). We define the stability operator of expansion by

L±
Σφ = −∆Σφ± 2⟨ξ,∇Σφ⟩+

(
P± ± divΣξ − |ξ|2 − 1

2
θ±[Σ]

(
θ±[Σ]∓ 2trM (k)

))
φ. (1.3.10)

If φ > 0, we have a simpler expression

φ−1LΣφ = divΣ(±ξ −∇Σ logφ)− | ± ξ −∇Σ logφ|2Σ

+ P± − 1

2
θ±[Σ]

(
θ±[Σ]∓ 2trM (k)

)
.

(1.3.11)
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Notice that the linear operator LΣ is not self-adjoint due to the first-order derivative con-

tributed by k. Thus, apparent horizons do not arise as stationary points of an elliptic

variational problem in initial data set (M, g, k). As discussed in [3], when Σ is closed, the

Krein-Rutman theorem in general elliptic operator theory implies that the principal eigen-

value λ1 = λ1(LΣ) is real and that there is a smooth positive eigenfunction β defined on Σ

satisfying LΣβ = λ1β. Recall that the principal eigenvalue of LΣ is the eigenvalue of LΣ

having the minimal real part. Moreover, λ1 is simple, that is, the dimension of the eigenspace

corresponding to λ1 is one. For more details refer to [3] Section 4. As a generalization of

stability of MOTS defined in [2, 3], a constant expansion surface Σ is said to be stable if the

principal eigenvalue λ1 of LΣ is nonnegative. A more general stability for surfaces related to

null expansion is defined in [12].

1.4 Jang’s Equation

1.4.1 Initial Data Sets of Minkowski Spacetime

One of the fundamental question in general relativity is whether or not the total mass of

an isolated system is positive if the local mass of matter is positive, called positive mass

theorem. More precisely, positive mass theorem states that if an initial data set satisfies

the dominant energy condition, then the total mass is nonnegative and vanishes only when

the initial data set is that for Minkowski spacetime. A weaker version involving only ADM-

energy is called positive energy theorem. Since the rigidity part of positive energy/mass

theorem characterizes the initial data sets in Minkowski spacetime, P.S. Jang [24] consider

the following two equivalent problems as he attempted to generalize Geroch’s argument in

time-symmetric slices to general initial data sets.

Proposition 1.7 ([24] Theorem I). An initial data set (M, g, k) is that for Minkowski space-
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time if and only if there exist a function f and a flat metric gflatij defined on M satisfying the

overdetermined system of equations


gij = gflatij −∇if∇jf

kij =
∇i∇jf√
1 + |∇f |2

(1.4.1)

The key observation of Proposition 1.7 is that a Riemannian manifold (M3, g) is a space-like

hypersurface in Minkowski space R1,3 if and only if M is a normal graph of a function f

defined on a space-like Euclidean hyperplane R3 in R1,3 with metric g given by

gij = gEij − ∂if∂jf,

where gEij is the flat metric on the chosen Euclidean hyperplane and |∇f |2 < 1 since (M, g)

is space-like. By pulling f and gE back to M , we then obtain the function and flat metric

stated in Proposition 1.7. For the detail of full derivation, refer to [24, Appendix]. Note that

the metric equation in 1.4.1 is equivalent to

gflatij = gij +∇if∇jf.

Note that the metric g + df ⊗ df on right hand side, often called the Jang’s deformation

of g, is precisely the induced metric of the graph of t = f(x) in Riemannian manifoldM ×R

with product metric g + dt2. As a corollary of Proposition 1.7, we have two equivalent

embedding problems.

Corollary 1.8. An initial data set (M, g, k) is that for Minkowski spacetime if and only if

there exist a function f on M such that the graph of t = f(x) in (M × R, g + dt2) has flat

induced metric and prescribed second fundamental form k.

The system of equations (1.4.1) is overdetermined and is usually unsovable. Thus, Jang
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considered the trace equation involving the defect of second fundamental form on the graph

of t = f(x) in (M × R, g + dt2) in Corollary 1.8:

∑
i,j

(
gij − f if j√

1 + |∇f |2
)( ∇i∇jf√

1 + |∇f |2
− kij

)
= 0,

where f i = gijfj and the first factor is exactly the inverse of induced metric on the graph of

t = f(x) in (M × R, dt2 + g). This equation is called Jang’s equation. We let

H[f ] :=
∑
i,j

(
gij − f if j√

1 + |∇f |2
) ∇i∇jf√

1 + |∇f |2
= divM

( ∇f√
1 + |∇f |2

)

denote the mean curvature of graph(f) with respect to downward unit normal and let

K[f ] :=
∑
i,j

(
gij − f if j√

1 + |∇f |2
)
kij = trGraph(f)k

be the trace of the tensor k on the tangent space of graph(f), where k is extended to M ×R

trivially in the vertical direction, i.e., k(∂t, ·) = 0 and ∇tk = 0. Then Jang equation is

actually marginally a MITS equation

H[f ]−K[f ] = 0

in the new initial data set (M × R, dt2 + g, k).

1.4.2 Schoen–Yau Regularized Solutions

Jang’s approach to proof of general positive energy theorem has not been developed because

of the lack of existence and regularity theory. The first existence and regularity result was

proved by Schoen–Yau [39] in which they gave the first complete proof of positive energy

theorem in a very different approach from one of Geroch and Jang.
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The main analytic difficulty with Jang’s equation is the lack of an a priori estimate of

supM |f |. To study the existence and regularity properties of Jang equation, Schoen–Yau in

[39, Section 4] (also cf. [16] for dimM ≥ 3) introduced an elliptic regularization procedure of

Jang’s equation by adding a capillary term. Combining the existence and regularity theory

of prescribed mean curvature equation together with continuity method, they showed [39,

Lemma 3] the following existence and regularity result for regularized solutions.

Proposition 1.9 ([39] Lemma 3). For every s > 0 there exists a unique smooth solution fs

of regularized equation

(
gij − f i

sf
j
s

1 + |∇fs|2
)( ∇i∇jfs√

1 + |∇fs|2
− kij

)
= sfs. (1.4.2)

satisfying limx→∞ fs(x) = 0 at each infinite end.

The key initial estimates to proceed the standard elliptic theory for fs are as follows. Thanks

to the extra capillary term, Schoen–Yau proved by maximum principle argument that there

are constants µ1 = maxM |trgk| and µ2 = µ2(|Ric|C0(M), |k|C1(M)) such that

|sfs| ≤ µ1 and |s∇fs| ≤ µ2 in M. (1.4.3)

As we see from (1.4.3) that the bound for (weighted) Hölder norm of fs is typically getting

worse as s → 0+. Therefore, Schoen–Yau further proved the following geometric estimates

for the general Jang’s equation (1.4.5) including the regularized equations (1.4.2) satisfying

bounds (1.4.3).

Proposition 1.10 ([39], Proposition 1 and 2). Let F ∈ C1(M) and µ1, µ2 be constants so

that

sup
M

|F | ≤ µ1, sup
M

|∇F | ≤ µ2. (1.4.4)
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Suppose f is a C2 solution to

H[f ]−K[f ] = F (x). (1.4.5)

Then

(1) There exists c1 = c1(M, g, k, µ1, µ2) such that the second fundamental form h of Graph(f)

is uniformly bounded:

|h|2 ≤ c1, (1.4.6)

(2) There is ρ = ρ(M, g, k, µ1, µ2) > 0 such that for every X0 ∈ Graph(f) and (y1, y2, y3, y4)

normal coordinates inM×R on which TX0Graph(f) is the y1y2y3-space, the local defin-

ing function w(y) for Graph(f) is defined on {y = (y1, y2, y3) : |y| ≤ ρ} with

Graph(f) ∩B4(X0;
ρ

2
) ⊆ {(y, w(y)) : |y| ≤ ρ}.

Furthermore, for any α ∈ (0, 1) there is a constant c2 = c2(M, g, k, µ1, µ2, α) > 0 such

that

∥w∥3,α;{y:|y|≤ρ} ≤ c2.

Here, B4(X0, r) denotes the geodesic ball in (M×R, g+dt2) and ∥w∥3,α;{y:|y|≤ρ} denotes

the C3,α-Holder norm in the Euclidean ball {y : |y| ≤ ρ} on the tangent space.

(3) There are constants c3, c4 depending on M, g, k, µ1, µ2 such that the following Harnack-

type inequalities hold

sup
Graph(f)∩B4(x0;

ρ
2
)

⟨ν,−∂t⟩ ≤ c3 inf
Graph(f)∩B4(X0;

ρ
2
)
⟨ν,−∂t⟩;

sup
Graph(f)∩B4(x0;

ρ
2
)

|∇ log⟨ν,−∂t⟩| ≤ c4.
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Here, ν is the downward pointing normal of Graph(f) in M × R and ∇ denotes the

Levi-Civita connection on Graph(f).

One key ingredient in the proof of Proposition 1.10 and further applications is the stability

inequality derived from spectral property of stability operator L. Let G = Graph(f) denote

the graph of t = f(x), let ν =
(
1 + |∇f |2

)−1/2
(∇f − ∂t) denote the downward unit normal

to Graph(f), and let β = ⟨ν,−∂t⟩ =
(
1+ |∇f |2

)−1/2
denote the vertical component of ν. We

then decompose −∂t = X + βν where X = −β2(∇f + |∇f |2∂t) is a bounded tangent vector

field. Note that since equation (1.4.5) is insensitive to vertical translations, ∂t gives a Jacobi

field on the graph of solution f to (1.4.5). Use the variation formula of null expansion θ−

(1.3.9), we get

0 = X(F )−∆Gβ − 2⟨ξ,∇β⟩+
(
P− − divGξ − |ξ|2 − 1

2
F
(
F + 2trM (k)

))
β.

Since β > 0, we may divide both sides by β and use the expression (1.3.11). Then we obtain

0 = β−1X(F )− divG(ξ +∇ log β)− |ξ +∇ log β|2G

+
1

2
RG − 1

2
|h− k|2 − µ+ J(ν)− 1

2
F
(
F + 2trM (k)

)
.

(1.4.7)

Note that the tangential derivative is bounded:

|β−1X(F )| = β|∇f(F )| ≤ |∇F | ≤ µ2.

Multiply (1.4.7) by a test function φ2, integrate over G, integrate the divergence term by

parts 2 together with pointwise Cauchy–Schwartz inequality

2|ξ +∇ log β| |∇ϕ||ϕ| − |ξ +∇ log β|2ϕ2 ≤ |∇ϕ|2,

2The boundary integral will decay to zero at infinity due to the decay rate estimate of f derived by barrier
argument.
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and absorb terms involving F by constant C(F,∇F ), then we obtain

∫
G

(µ− J(ν))φ2 +
1

2
|h− k|2φ2 ≤

∫
G

|∇φ|2 + 1

2
RGφ

2 + C(F,∇F )φ2, (1.4.8)

where the constant C(F,∇F ) depends also on (M, g, k), and C = 0 if F = 0. This in-

equality is analogous to the stability inequality for minimal surfaces. Schoen–Yau modified

the stability argument in [36] to derive the pointwise curvature estimate for G. Note that

this is where the dominant energy condition comes into the analysis of Jang’s equation. For

solutions of Jang’s equation, i.e., F = 0, we can drop the positive curvature term and get

∫
G

2(µ− J(ν)) ≤
∫
G

2|∇φ|2 +RG. (1.4.9)

This inequality is closely related to spectral property of the conformal Laplacian and plays

an important role of reduction argument (cf. Section 1.5.1).

The regularizes solutions 1.9 and a priori estimates Proposition 1.10 make the establishment

of existence and regularity of Jang’s equation, and yet the solutions may blow up in some

black hole regions enclosed by apparent horizons.

Proposition 1.11 (cf. [39] Proposition 4, also see [16] for 3 ≤ dimM ≤ 7). There exists a

positive sequence sj → 0 and disjoint open sets Ω+,Ω−,Ω0 with the following properties:

(1) fsj diverges to ±∞ on Ω± respectively and fsj converges to a smooth function f0 on Ω0

which satisfies Jang equation H[f0]−K[f0] = 0 and drops off at the rate f0 ∈ O3(|x|−1/2)

at each infinity of M .

(2) The sets Ω+ and Ω− have compact closures and M = Ω+ ∪ Ω− ∪ Ω0. Each connected

component Σ± of ∂Ω± is a closed properly embedded smooth apparent horizon in M

satisfying H[Σ±]±K[Σ±] = 0 where H[Σ±] is computed with respect to the unit normal

on ∂Ω± pointing out of Ω±. No two connected components of Ω+ (respectively Ω−) can
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Figure 1.6: Blowup solution to Jang equation and regularized solutions

share a common boundary.

(3) Graph(fsj) converges smoothly to a hypersurface S in M × R. Each component of S

is either a component of Graph(f0,Ω0) or a cylinder Σ × R over a component Σ of

∂Ω+ ∩ ∂Ω−. Any two components of S are separated by a positive distance.

The analysis of boundary ∂Ω0 ∩Ω± in Proposition 1.11 is based on the following argument.

Applying the uniform local C3,α estimate in Proposition 1.10 to the sequence Graph(f − aj)

as aj → ±∞, the hypersurfaces Graph(f0− a,Ω0) converge to the cylinder (∂Ω± ∩ ∂Ω0)×R

uniformly in the sense of C2,α
loc . As a corollary, we have the information about asymptotic

behavior of G0 := Graphf0 near ∂Ω0.

Corollary 1.12 (Rough convergence to cylinder, Schoen–Yau [39] Corollary 2). Let Σ ⊂

∂Ω+ ∩ ∂Ω0 (resp. Σ ⊂ ∂Ω− ∩ ∂Ω0 ) be a boundary component and let O be an open neigh-

borhood of Σ which does not intersect with other components of ∂Ω0, then for T sufficiently

large, the 3-manifold G0 ∩
(
O × [T,∞)

)
can be represented in the form σ = w(y, t) for a

smooth positive function w defined on Σ × [T,∞) (resp. Σ × (−∞,−T ]), where σ denotes
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the distance function to Σ×R in M ×R. Moreover, for any ε > 0, there exists Tε ≥ T such

that

w(y, t) + |Dw(y, t)|+ |D2w(y, t)|+ [D2w]α < ε (1.4.10)

for all y ∈ Σ and t ≥ Tε (resp. t ≤ −Tε). Here D denotes the covariant derivative on Σ×R.

As a consequence of Corollary 1.12, the stability inequality (1.4.9) propagates to boundary

of Ω0 through argument of separation of variable on cylinder. Assuming the strict dominant

energy condition, which is a generic condition by Proposition 1.4, one can show that the

first eigenvalue of the conformal Laplacian is positive. Thus, there exists a metric on ∂Ω0

admitting positive Gauss curvature. Then Gauss–Bonnet theorem implies that boundary

components of Ω0 are 2-spheres.

Proposition 1.13 ([39]). Assume the dominant energy condition holds strictly, i.e., µ−|J | ≥

δ > 0. The closed smooth apparent horizons arise as components of Ω0 in Proposition 1.11

are 2-spheres.

Following a similar argument with (1.4.9) replaced by (1.4.8) with C = 0, one can show that

for boundary component Σ of Ω0 the symmetrized stability operator of expansion Lsym
Σ φ :=

−∆φ+
(
1
2
RΣ− 1

2
|h+k|2−µ−J(ν)

)
φ on Σ has non-negative spectrum. Andersson–Metzger

proved by a delicate barrier argument that boundary components of Ω0 are stable in the

sense of LΣ, which is a stronger stability than symmetrized stability [19, Lemma 2.2].

Proposition 1.14 (cf. [4]). The closed smooth apparent horizons appear as components of

∂Ω±, ∂Ω0 in Proposition 1.11 are stable.
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1.5 Application to the Positive Mass Theorem

1.5.1 Positive Mass Theorem

In 1981, Schoen and Yau [39] proved the positive energy theorem (PET) for general initial

data sets by reducing the problem to the time-symmetric case, which they had proved in

1979 [37] using area minimizing hypersurfaces. For the simplicity, we assume that the initial

data set has only one infinite end.

Theorem 1.15 (Riemannian PET, Schoen–Yau [37]). Let (M3, g) be an asymptotically flat

Riemannian manifold satisfying Rg ≥ 0. Then EADM ≥ 0 and equality holds if and only if

(M3, g) is isometric to (R3, δ).

Recall that the dominant energy condition is equivalent to Rg ≥ 0 in time-symmetric slice.

Theorem 1.16 (Spacetime PET, Schoen–Yau [39]). Let (M3, g, k) be an asymptotically flat

initial data set satisfying the dominant energy condition. Then EADM ≥ 0 and equality holds

if and only if (M3, g, k) can be embedded in Minkowski spacetime R1,3.

The full PMT was obtained by M. Eichmair, L.-H. Huang, D. Lee, and R. Schoen via a

reduction argument based on a density theorem [17, Theorem 18] analogous to Proposition

1.4 and the boost argument of D. Christodoulou and N. OḾurchadha [13].

Theorem 1.17 (Spacetime PMT, Eichmair–Huang–Lee–Schoen [17]). Let 3 ≤ n < 8 and let

(M, g, k) be an n-dimensional asymptotically flat initial data set that satisfies the dominant

energy condition. Then

E ≥ |P |

where (E,P ) is the ADM-energy-momentum 4-vector of (M, g, k).
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1.5.2 Reduction Argument of the Positive Energy Theorem

To focus on the reduction argument using Jang’s equation in [39] without introducing too

much technicality, we assume that there exists a smooth entire solution to Jang’s equation,

i.e., no blowup occurs.

Proof. Note that the induced metric on G = Graph(f) (Jang’s deformation of g) is g =

g + df ⊗ df and we may pull it back to M . Since f ∈ O3(|x|− 1
2 ), we have df ⊗ df ∈ O2(|x|3)

and hence g is still asymptotically flat. Furthermore, it follows directly from decay rate

analysis that EADM(g) = EADM(g).

In lieu of the dominant energy condition, the stability inequality (1.4.9) implies that

6

∫
M

|∇φ|2dVg ≤ 8

∫
M

|∇φ|2 dVg +
∫
M

Rgφ
2 dVg. (1.5.1)

The right hand side of (1.5.1) is exactly the integral form associate with the conformal

Laplacian L(g) = ∆gφ− 1
8
Rgφ. It follows from standard methods that the following equation

is solvable.

Lemma 1.18 ([39] Lemma 4). There exists a solution u > 0 satisfying

∆gu−
1

8
Rgu = 0 on M, (1.5.2)

and

u = 1 +
A

r
+O(r−2) as r → ∞, (1.5.3)

where A is a nonpositive constant.

The asymptotic form (1.5.3) can be derived from potential theory using Green’s function of

Laplacian. Yet, to see that A ≤ 0, we need to use (1.5.1) again. Substitute φ by u in (1.5.1),
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integrate by parts, and use the equation (1.5.2), then we have for any large σ > 0

6

∫
Bσ

|∇u|2dVg ≤ 8

∫
Bσ

|∇u|2 dVg +
∫
Bσ

Rgu
2 dVg

= 8

∫
∂Bσ

∂u

∂xj
xj

|x|
dAg

= −32πA+O(σ−1),

where Bσ is a coordinate ball with Euclidean radius σ. By taking σ → ∞, we get

A ≤ 3

16π

∫
M

|∇u|2 ≤ 0. (1.5.4)

It follows from (1.5.2) and Proposition A.1 that the conformal metric u4g has zero scalar cur-

vature. Finally, apply Riemannian positive energy theorem to (M,u4g) and use Proposition

1.3, we obtain

0 ≤ EADM

(
u4g
)
= 2A+ EADM(g) ≤ EADM(g).

When EADM(g) = 0 holds, we find that A = 0. The inequality (1.5.4) implies that u ≡ 1

and hence Rg = 0. Apply rigidity part of Riemannian positive energy theorem to (M, g),

we get gij = δij in certain coordinates (y1, y2, y3). Furthermore, integrate (1.4.7) on large

coordinate ball |y| ≤ σ and integrate the divergence term by parts, we find

∫
|y|≤σ

(
µ− J(ν)

)
+ |h− k|2dAδ ≤ −

∫
|y|=σ

⟨ξ +∇ log β, ν⟩dAδ.

Note that the scalar curvature term vanishes. In view of the dominant energy condition and

decay rates of k and f , taking σ → ∞ implies h = k onM . In conclusion, we have g = δ and

h = k. The embedding problem considered by Jang, Proposition 1.7, implies that (M, g, k)

is an initial data set of Minkowski spacetime.
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Since, in general, the solution f to Jang’s equation may blowup in some black hole regions,

the cylindrical ends near apparent horizons definitely require extra care. First of all, Schoen

and Yau blow down these cylindrical ends to finite cones with zero scalar curvature over

apparent horizons using conformal deformations. Since by Proposition 1.13 the apparent

horizons are 2-spheres, and these cones are topologically punctured balls. They showed

that, in appropriate coordinates, these cones are uniformly equivalent to Euclidean punctured

balls. Next, they conformally deform the entire new manifold such that the scalar curvature

vanishes as the model case. Finally, they blow up these punctured balls by Green’s function

of Laplacian to infinite ends, and estimate the contributions of these new ends to the ADM-

energy are ε-small.

1.5.3 General Cases

The Riemannian PET theorem has been extended to higher dimensions in different ways.

The minimal surface argument of Schoen and Yau to prove Riemannian PET in dimension

3 [37] extends to dimension up to 7 by a dimension reduction argument (see [38] and [43]).

The dimension restriction is to prevent the singularity of area minimizing surfaces. In 2017,

Schoen and Yau [42] extended their argument to all dimensions by minimizing slicing argu-

ment. This method has a subtle connection with the non-existence of a metric admitting

positive scalar curvature on the torus in dimension n ≤ 7 in [38].

The technical difficulties of the reduction argument using Jang’s equation shown in Section

1.5.2 in high dimensions are twofold. The apparent horizons that arise in the blowup of

Jang’s equation in high dimensions may have potential singularities and potentially com-

plicated topology. The stability-based regularity of apparent horizons in [39] is available

up to dimension 5. The singularity issue for dimensions up to 7 was resolved by Eichmair

[16] through his early work [14, 15] on the almost minimizing property of Jang’s equation.
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In the same paper, Eichmair overcame the topological issue through the conformal darning

method. In view of the result [42], it is natural to expect the extension of the Jang reduction

argument to dimension n > 7.

An independent approach to PMT using the Dirac operator method for spin manifolds was

done by Witten [45]. See also [34]. This method works in all dimensions without reduction

to the Riemannian case, while the spin structure is necessary and non-generic in high di-

mensions. Another independent approach to PMT addressing the singularity of minimizing

hypersurfaces in all dimensions was given by Lohkamp [25, 26, 27, 28, 29]. Recently, in 2021,

Sakovich [35] used the Jang reduction argument to prove the PMT in the asymptotically

hyperbolic setting.
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Chapter 2

Sharp Exponential Asymptotic

Estimates of Jang’s Equation

2.1 Introduction

Schoen–Yau showed that the graph of a blowup solution to Jang’s equation is asymptotic to

cylinders over apparent horizons. J. Metzger proved that such cylindrical asymptotics are

exponential and gave upper and (partial) lower estimates of the asymptotic rate in terms

of certain spectral properties of apparent horizons; Q. Han and M. Khuri gave a full lower

estimate; and W. Yu obtained the sharp upper and lower estimates. Their estimates involve

delicate barrier construction and require the assistance of regularized solutions. In Chapter

2, we will give a simple proof of the sharp estimates which also apply to general blowup

solutions (not necessarily limits of regularized solutions).

Now we recall Schoen-Yau’s rough asymptotic estimates, Corollary 1.12. For the sake of

simplicity, we will refer to Σ ⊂ ∂Ω+ ∩ ∂Ω0 and ν as the outward unit normal on Σ through-

out this present paper, and all arguments can be adapted to the case Σ ⊂ ∂Ω− ∩ ∂Ω0
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correspondingly. According to Proposition 1.11, Σ is a MOTS. We can assume that every

point in O in Corollary 1.12 is passed by a unique geodesic orthogonal to Σ. Let σ > 0 be

a number less than the minimum of injectivity radii of all points on Σ. We introduce the

normal coordinates y1, y2, σ adapted to Σ on O via the map

Υ : Σ× (−σ, σ) → O : (y, σ) → expy

(
σν(y)

)
(2.1.1)

where y1, y2 are coordinates on Σ. We denote basis vectors by ∂i =
∂
∂yi

for 1 ≤ i ≤ 2 and

∂σ = ∂
∂σ
. By properties of exponential map, we have ⟨∂i, ∂σ⟩(p) = 0 for 1 ≤ i ≤ 2 and

∇∂σ∂σ(p) = 0 for all p ∈ O. In normal coordinates, the metric g in O can be written as

n∑
i,j=1

γij(y, σ)dy
idyj + dσ2 = g(y, σ).

where γij = ⟨∂i, ∂j⟩. We define the parallel surfaces Σσ = {σ ≡ const} of distance σ away

from Σ, then

g
∣∣
Σσ

=
n∑

i,j=1

γij(y, σ)dy
idyj,

∂σγij(y, σ) = 2hij(y, σ),

∂2σγij(y, σ) = 2
(
h k
i hkj −Rjσiσ

)
(y, σ),

(2.1.2)

where hij(y, σ) := ⟨∇∂i∂σ, ∂j⟩(y, σ) is the second fundamental form of Σσ with respect to

∂σ. The normal coordinates nicely capture the geometry of Σ in M . Likewise, we parallelly

extend the normal coordinates (y, σ) on O to normal coordinates (y, σ, t) on O×R. For any

ε < σ, the graph G0 ∩
(
O × [Tε,∞)

)
in Corollary 1.12 can be express as

{(
y, w(y, t), t

)
: y ∈ Σ, t ≥ Tε

}

in normal coordinates for a positive function w defined on Σ×[Tε,∞). More precisely, w(y, t)
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satisfies for y ∈ Σ, t ≥ Tε,

f0(y, w(y, t)) = t, w(f0(y, s), y) = s. (2.1.3)

Let C denote the cylinder Σ × R+ and let D be the Levi-Civita connection on C. It is

easy to see that the stability operator on C is LC = −∂2t + LΣ. Observe that G0 (with

respect to upward normal) and Σ × R both satisfy MOTS equation H + K = 0, and that

G0∩
(
O× [T,∞)

)
is asymptotic to Σ×R in C2,α topology. By direct computation using the

properties of normal coordinates (2.1.2) (also c.f. [32]), one can show that if (1.4.10) holds

for sufficiently small ε > 0, then w satisfies

(−∂2t + LΣ)w(y, t) = Q(y, w,Dw,D2w),

where Q is of the form

Q(y, w,Dw,D2w) = w ∗ w + w ∗Dw +Dw ∗Dw + w ∗D2w +Dw ∗Dw ∗D2w,

where * denotes certain contraction with a bounded tensor depending only on the geometry

of Σ in (O, g, k) but independent of variable t. Therefore, w satisfies all the settings in

Theorem 2.4. Moreover, the coefficients of L and Q purely depend on the geometry of

(M, g, k) near Σ.

J. Metzger improved the rough asymptotic estimate, Corollary 1.12, to upper and (partial)

lower exponential decay estimates assuming Σ is strictly stable.

Theorem 2.1 (Weak exponential decay, Metzger [32] Theorem 4.2 and 4.4). Assume the

situation of Corollary 1.12. Suppose in addition that Σ is strictly stable with principal eigen-

value λ > 0. Then for all 0 < µ < λ there exists ε = ε(µ) > 0 depending only on the

geometry near Σ and µ such that if (1.4.10) holds with ε = ε, then there exists a con-
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stant c5 = c5(µ) > 0 depending only on the local geometry near Σ, µ, and λ such that for

(y, t) ∈ Σ× [Tε,∞),

w(y, t) + |Dw(y, t)|+ |D2w(y, t)| ≤ c5e
−√

µ(t−Tε). (2.1.4)

Moreover, for any µ > λ there is no constant C > 0 such that for (y, t) ∈ Σ× [Tε,∞),

w(y, t) + |Dw(y, t)|+ |D2w(y, t)| ≤ Ce−
√
µ(t−Tε). (2.1.5)

Q. Han and M. Khuri [21] gave both upper and lower asymptotic estimates for the generalized

Jang’s equation, which was introduced by H. Bray and M. Khuri [9, 10] in an attempt to

prove the spacetime Penrose inequality. In particular, when the static potential ϕ ≡ 1, their

result improves Metzger’s lower estimate (2.1.5). Translating the setting using the conversion

equation (2.1.3), the lower blowup rate estimate of Han-Khuri reads as follows.

Theorem 2.2 ([21], Theorem 1.1 for the case ϕ ≡ 1). Assume the situation of Theorem 2.1.

There exist constants µ and C such that for (y, t) ∈ Σ× [Tε,∞),

w(y, t) ≥ Ce−
√
µ(t−Tε). (2.1.6)

Despite the fact that they did not discuss the dependence of µ due to complexity of gener-

alized Jang’s equation, we know µ ≥ λ by (2.1.4).

W. Yu in his doctoral thesis further improved Metzger’s estimate to the sharp estimate by

using more involved barrier construction.

Theorem 2.3 (Sharp exponential decay, Yu [46] Theorem 4). Assume the situation of The-

orem 2.1. There exists ε0 > 0 depending only the geometry near Σ such that if (1.4.10) holds

with ε = ε0, then there exist constants c6, c7 depending only on the local geometry of Σ in
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initial data set (M, g, k) such that for (y, t) ∈ Σ× [Tε0 ,∞),

w(y, t) + |Dw(y, t)|+ |D2w(y, t)| ≤ c6e
−
√
λ(t−Tε0 ), (2.1.7)

and

w(y, t) ≥ c7e
−
√
λ(t−Tε0 ). (2.1.8)

Proof. We apply Theorem 2.4 by substituting w with w(·, t + Tε0) defined on C to get a

simpler proof.

All the upper estimates were obtained by delicate barrier construction using the stability

condition of apparent horizon Σ. To deliver asymptotic estimates to blowup solutions, this

barrier argument requires the assistance of finite regularized solutions. We will investigate

the asymptotic estimates of a general elliptic equation on a cylinder without the need for

regularized solutions. Furthermore, we can keep track of the constants’ dependence on the

geometry near Σ more explicitly and easily than Yu did.

2.2 Asymptotic Rate of Elliptic Equation on Cylinder

Let n ≥ 1 and let (Σn, γ) be a compact smooth n-dimensional Riemannian manifold without

boundary. Let D denote the Levi-Civita connection on Σ. Let

L = −aijDiDj + biDi + c

be a uniformly elliptic differential operator with coefficient functions satisfying aij ∈ C1,α(Σ)

positive-definite, bi, c ∈ C0,α(Σ). Define cylinder C = Σ× [0,∞) equipped with the product

metric γ + dt2. We let t be the (n + 1)-th coordinate and still let D denote the covariant
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derivative on C. Suppose w is a positive C3 solution on C to the quasilinear equation

(−∂2t + L)w = Q(y, w,Dw,D2w), (2.2.1)

where the quadratic source term Q : Σ × R × T ∗Σ ×
(
T ∗Σ ⊗ T ∗Σ

)
→ R is a differentiable

function satisfying

Q(y, w,Dw,D2w) = w ∗ w + w ∗Dw +Dw ∗Dw + w ∗D2w +Dw ∗Dw ∗D2w, (2.2.2)

where * denotes certain contraction with a bounded tensor independent of variable t. This

equation is saying that the linearized equation vanishes. Moreover, we assume that w satisfies

the rough decay condition

lim
T→∞

|w|2,α,Σ×[T,∞) = 0, (2.2.3)

where |w|2,α,Σ×[T,∞) denotes the unweighted Hölder norm on Σ× [T,∞). Since L and Q are

insensitive to translation in t, it follows from (2.2.3) that we may further assume that

|w|2,α,C ≤ ε0 < 1 (2.2.4)

by replacing w(·, t) with w(·, t+ T0) for a sufficiently large T0.

Theorem 2.4. Suppose that L has principal eigenvalue λ > 0. There exist constants ε0, c8,

c9 > 0 depending only on Σ, γ, aij, bi, c, Q and λ such that if w is a positive function defined

on C satisfying (2.2.1), (2.2.3), and (2.2.4) with ε0, then for any (y, t) ∈ C

|w(t, y)|+ |Dw(t, y)|+ |D2w(y, t)| ≤ c8e
−
√
λt, (2.2.5)

and

|w(t, y)| ≥ c9e
−
√
λt. (2.2.6)
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2.3 Proof of Main Result

For any t ≥ 1, we define cylinder Ct = Σ × (t − 1, t + 1). For any (y1, s1), (y2, s2) ∈ Ct, let

ρ(y1, y2) denote the distance in Σ induced by γ, let dt(s1) = min{|s1−t+1|, |s1−t−1|} denote

the minimum distance of (y1, s1) to ∂Ct = Σ×{t±1}, and let dt(s1, s2) = min{dt(s1), dt(s2)}.

For any α ∈ (0, 1), we define the weighted Hölder norm ∥w∥2,α,Ct on Ct by

∥w∥2,α,Ct = sup
1≤i,j≤n+1

sup
(y,s)∈Ct

(
|w(y, s)|+ dt(s)|Diw(y, s)|+ dt(s)

2|DiDjw(y, s)|
)
+ [w]∗2,α,Ct ,

where the weighted semi-norm [w]2,α,Ct is defined by

[w]∗2,α,Ct = sup
1≤i,j≤n+1

sup
(y1,s1) ̸=(y2,s2)

dt(s1, s2)
2+α |DiDjw(y1, s1)−DiDjw(y2, s2)|(

ρ(y1, y2)2 + |s1 − s2|2
)α

2

.

In addition, we define the weighted Hölder norm ∥w∥(2)0,α,C by

∥w∥(2)0,α,Ct = sup
(y,s)∈Ct

dt(s)
2|w(y, s)|+ sup

(y1,s1) ̸=(y2,s2)

dt(s1, s2)
2+α |w(y1, s1)− w(y2, s2)|(

ρ(y1, y2)2 + |s1 − s2|2
)α

2

.

Proposition 2.5. Suppose that L has principal eigenvalue λ > 0. For any 0 < µ < λ, there

exist constants ε = ε(µ), c10 = c10(µ) > 0 depending only on Σ, γ, aij, bi, c, Q, λ and µ

such that if w is a positive function defined on C satisfying (2.2.1), (2.2.3), and (2.2.4) with

ε0 < ε, then for any (y, t) ∈ C

w ≤ c10e
−√

µt. (2.3.1)

Proof. By Krein-Rutman Theorem, there exists a positive smooth eigenfunction β defined

on Σ of L corresponding to λ. We may assume by scaling β that

min
Σ
β = 1.
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Take A = e
√
µ. We claim that for all (y, t) ∈ C

w(y, t) ≤ Ae−
√
µtβ(y).

We first note from (2.2.4) that for all (y, 0) ∈ Σ× [0, 1]

w(y, t)

β(y)
− Ae−

√
µt < 1− 1 = 0.

and from rough decay condition (2.2.3) that

lim
t→∞

sup
y∈Σ

(w(y, t)
β(y)

− Ae−
√
µt
)
= 0.

Suppose the claim is not true, then there exist y0 ∈ Σ and t0 > 1 such that

w(y0, t0)

β(y0)
− Ae−

√
µt0 = max

C

(w(y, t)
β(y)

− Ae−
√
µt
)
=: B > 0.

This is equivalent to a global almost exponential bound of w

w(y, t) ≤ Ae−
√
µtβ(y) +Bβ(y) (2.3.2)

in which the equality holds at (y0, t0). Define F (y, t) := w(y, t)−Ae−
√
µtβ(y)−Bβ(y). Then

F (y, t) achieves maximum at (y0, t0). By derivatives tests, we have


F (y0, t0) = 0,

DF (y0, t0) = 0,

D2F (y0, t0) ≤ 0.

(2.3.3)
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It follows immediately from derivative tests (2.3.3) that

(−∂2t + L)F (y0, t0) = (−∂2t − aijDiDj)w(y0, t0) + 0 + 0 ≥ 0. (2.3.4)

On the other hand, equation (2.2.1) together with positivity of B, β and equality of (2.3.2)

gives

(−∂2t + L)F (y0, t0) = Q(y0, t0)− (λ− µ)Ae−
√
µt0β(y0)− λBβ(y0)

≤ Q(y0, t0)− (λ− µ)
(
Ae−

√
µt0β(y0) +Bβ(y0)

)
= Q(y0, t0)− (λ− µ)w(y0, t0).

(2.3.5)

By abuse of notation, Q(y, t) means Q
(
y, w(y, t), Dw(y, t), D2w(y, t)

)
.

We will exploit the structure of Q to bound Q(y0, t0) by w(y0, t0). In view of the structure

of Q (2.2.2) and (2.2.4), there exists a constant C1 such that for any t ≥ 1

∥Q∥(2)0,α,Ct ≤ ε0C1∥w∥2,α,Ct . (2.3.6)

For any t ≥ 1, by interior Schauder estimate there exists constant C2 depending only on

aij, bi, c, Σ and γ such that

∥w∥2,α,Ct ≤ C2

(
∥w∥0,Ct + ∥Q∥(2)0,α,Ct

)
Plugging (2.3.6) into the source term, we get

∥w∥2,α,Ct ≤ C2

(
∥w∥0,Ct + ε0C1∥w∥2,α,Ct

)
≤ C2∥w∥0,Ct +

1

2
∥w∥2,α,Ct .

provided that ε0 in (2.2.4) is sufficiently small such that ε0C1C2 ≤ 1
2
. This implies that for
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any t ≥ 1

∥w∥2,α,Ct ≤ 2C2∥w∥0,Ct . (2.3.7)

Plugging global almost exponential bound (2.3.2) of w into (2.3.7) to control the Hölder

norm ∥w∥2,α,Ct0 by w(y0, t0):

∥w∥2,α,Ct0 ≤ 2C2∥w∥0,Ct0 ≤ 2C2 sup
(y,t)∈Ct0

(
Ae−

√
µtβ(y) +Bβ(y)

)
≤ 2C2max

y∈Σ
β(y)

(
Ae−

√
µ(t0−1) +B

)
≤ 2C2max

Σ
β(y)e

√
µ
(
Ae−

√
µt0β(y0) +Bβ(y0)

)
=
(
2C2max

Σ
β(y)e

√
µ
)
w(y0, t0).

(2.3.8)

In the second inequality to the last, we use that fact that min β = 1. Since β is a positive

solution to Lβ = λβ on Σ, Harnack estimate implies that there exists C3 depending only on

aij, bi, c, Σ, γ and λ such that

max
Σ

β ≤ C3. (2.3.9)

Combined (2.3.6), (2.3.8), and (2.3.9), we get a pointwise estimate of quadratic term Q

|Q(y0, t0)| ≤ ∥Q∥(2)0,α,Ct0
≤ 2ε0C1C2C3e

√
µw(y0, t0), (2.3.10)

and hence (2.3.5) implies that

(−∂2t + L)F (y0, t0) ≤
[
2ε0C1C2C3e

√
µ − (λ− µ)

]
w(y0, t0).

Since λ > µ, we may take ε0 > 0 in (2.3.6) smaller such that ε0 < (2C1C2C3e
√
µ)−1(λ− µ),
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then we have

(−∂2t + L)F (y0, t0) < 0,

which contradicts to (2.3.4). Therefore, if ε0 < ε(µ) := (2C1C2C3e
√
µ)−1min{1, (λ − µ)} in

(2.2.4), then for all (y, t) ∈ C

w(y, t) ≤ Ae−
√
µtβ(y) ≤

(
AC3

)
e−

√
µt. (2.3.11)

Finally, we take c10 = AC3. Note that ε(µ), c10(µ) depends only on aij, bi, c, Q, Σ, γ, λ and

µ.

Now we will use the weak exponential decay to get the sharp decay.

Proof of Theorem 2.4. Let T > 1 and take A = e
√
λT . We claim that for all (y, t) ∈ C

w(y, t) ≤ A
(
2− 1

1 + t

)
e−

√
λtβ(y).

We first note from (2.2.4) that for all (y, 0) ∈ Σ× [0, T ]

w(y, t)

β(y)
− A

(
2− 1

1 + t

)
e−

√
λt < 1− 1 = 0

and from rough decay condition (2.2.3) that

lim
t→∞

sup
y∈Σ

(w(y, t)
β(y)

− A
(
2− 1

1 + t

)
e−

√
λt
)
= 0.

Suppose the claim is not true, then there exist y0 ∈ Σ and t0 > T such that

w(y0, t0)

β(y0)
− A

(
2− 1

1 + t0

)
e−

√
λt0 = max

C

(w(y, t)
β(y)

− A
(
2− 1

1 + t

)
e−

√
λt
)
=: B > 0.
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This is equivalent to the global bound

w(y, t) ≤ A
(
2− 1

1 + t

)
e−

√
λtβ(y) +Bβ(y) (2.3.12)

in which the equality holds at (y0, t0). Define F (y, t) := w(y, t)−A
(
2− 1

1+t

)
e−

√
λtβ(y)−Bβ(y).

It follows directly from derivative tests that

(−∂2t + L)F (y0, t0) ≥ 0. (2.3.13)

Choose µ = 1
2
λ such that 0 < µ < λ < 4µ. Let ε = 1

2
ε(µ) and c10(µ) be defined as in the end

of the proof of Proposition 2.5 depending only on aij, bi, c, Q, Σ, γ and λ. By Proposition

2.5, w ≤ c10(µ)e
−√

µt for all (y, t) ∈ C. Combine this with Schauder estimate (2.3.7), for

t ≥ 1

∥w∥2,α,Ct ≤ 2C2∥w∥0,Ct ≤ 2C2∥c10e−
√
µs∥0,Ct =

(
2C2c10e

√
µ
)
e−

√
µt,

where we let C4 = 2C2c10e
√
µ. Combine this with (2.2.2) to improve (2.3.6)

|Q(y, t)| ≤ C1C
2
4e

−2
√
µt, (2.3.14)

Since t0 ≥ T > 1, equation (2.2.1) gives

(−∂2t + L)F (y0, t0) = Q(y0, t0)−
2A

(1 + t0)3
e−

√
λt0β(y0)−

2A
√
λ

(1 + t0)2
e−

√
λt0β(y0)−Bλβ(y0)

≤ C2
4C1e

−2
√
µt0 − 2

√
λ

(1 + t0)2
e−

√
λt0

≤ 1

(1 + t0)2
e−

√
λt0
[
C2

4C1e
−(2

√
µ−

√
λ)t0(1 + t0)

2 − 2
√
λ
]

In the first inequality, we use the fact that A > 1 and drop two negative terms involving

faster decay and B with which we do not have nice control. Since 2
√
µ =

√
2λ >

√
λ, there
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exists T0 > 1 such that for all t ≥ T0

0 < e−(2
√
µ−

√
λ)t(1 + t)2 <

2
√
λ

C2
4C1

.

Take T ≥ T0, then

(−∂2t + L)F (y0, t0) < 0,

which contradicts to (2.3.13). Therefore, if T ≥ T0 and A ≥ e
√
µT , then for all (y, t) ∈ C

w(y, t) ≤ A
(
1 +

t

1 + t

)
e−

√
λtβ(y) ≤

(
2AC3

)
e−

√
λt.

Together with (2.3.7), we may take c8 = 4AC2C3 such that (2.2.5) holds true.

Using (2.3.14) and analogous minimum principle argument, one can show that there exists

c9 > 0 sufficiently small such that

w ≥ c9
(
1 +

1

t+ 1

)
e−

√
λtβ ≥ c9e

−
√
λt.

Theorem2.3 Sharp exponential decay. We apply Theorem 2.4 by substituting w with w(·, t+

Tε0) defined on C to get a simpler proof.
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Chapter 3

Solutions and Constant Expansion

Surfaces in Black Hole

3.1 Notation

3.1.1 Level Sets

Let u be a function defined on M and let C ∈ R be a number. Denote the super-level set

of u by

E+
C (u) := {x ∈M : u(x) > C}

and denote the sub-level set of u by

E−
C (u) := {x ∈M : u(x) < C}.
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3.1.2 Normal Coordinates

Recall the setting of normal coordinates introduced in Chapter 2. Let Σ ⊂ M be a smooth

embedded two-sided 2-dimensional surface assigned with unit normal vector field ν. We will

use the couple (Σ, ν) to denote the aforementioned data. Let σ > 0 be a number less than

the minimum of injectivity radii of all points on Σ. We introduce the normal coordinates

(y, σ) adapted to Σ on a neighborhood O of Σ via the map

Υ : Σ× (−σ, σ) → O : (y, σ) → expy

(
σν(y)

)
.

We denote half geodesic tubular neighborhood with thickness δ around Σ on the

±ν-side, respectively, by

N±
δ (Σ, ν) := {Υ(y,±σ) : x ∈ Σ, 0 ≤ σ < δ)},

and the (full) tubular neighborhood with thickness 2δ around Σ by

Nδ(Σ) := {y ∈M : dist(x,Σ) < δ}.

Sometimes we will analyze the properties of constant expansion surfaces near another. It

would be useful to consider graphs in normal coordinates. For w ∈ C∞(Σ) with |w| < δ, we

let Graph(w) = {Υ(y, w(y)) : y ∈ Σ} denote the graph of w in normal coordinates.

3.1.3 Past Directed Null Expansion

For the sake of simplicity, we will always use an unconventional past directed expansion

θ[Σ] := H[Σ]−K[Σ] with a specified choice of unit space-like normal vector field throughout
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this chapter. For a function f defined on M , we let θ[f ] denote the past directed null

expansion computed with respect to the downward normal vector field on Graph(f) ⊂M×R.

Similarly, for a function w defined on Σ, we let θ[w] denote the past directed null expansion

of Graph(w) computed with respect to ∂⊥σ /|∂⊥σ | in normal coordinates (y, σ), where ∂⊥σ is

the projection of ∂σ onto the normal bundle of Graph(w).

3.2 Limits of Regularized Solutions in Black Hole Re-

gions

3.2.1 Capillary Blowdown Limit

Recall that for every s ∈ (0, 1] there exists a unique smooth regularized solution fs such that

(gij − f i
sf

j
s

1 + |∇fs|2
)
( ∇i∇jfs√

1 + |∇fs|2
− kij

)
= sfs.

satisfying limx→∞ fs(x) = 0 at each infinite end. The capillary term us := sfs in regularized

equations will play an important role in our analysis. In [39] R. Schoen and S.T. Yau

proved by maximum principle argument that there are constants µ1 = maxM |trgk| and

µ2 = µ2(|Ric|C0(M), |k|C1(M)) such that in M

|us| = |sfs| ≤ µ1, |∇us| = |s∇fs| ≤ µ2.

Let sj → 0+ be any decreasing sequence such that f0 := lims→0+ fs is a smooth function, and

let Ω0, Ω+ and Ω− be disjoint black hole regions as stated in Proposition 1.11. By Arzela–

Ascoli theorem, a subsequence of functions usj converges uniformly on M to a Lipschitz
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function u ∈ C0,1(M) satisfying 
u = 0 in Ω0,

u ≥ 0 in Ω+,

u ≤ 0 in Ω−.

(3.2.1)

We call u a capillary blowdown limit of regularized solutions fs. Let Ω be a connected

component of Ω+, which is bounded by Proposition 1.11. For simplicity, throughout the

present paper we will prove most of the propositions only for connected components of Ω+

and all statements corresponding to Ω− hold analogously. From now on, we will fix the

selection of decreasing sequence sj → 0+, the Lipschitz blowdown limit u := limusj , and

the connected component Ω ⊂ Ω+ of black hole regions.

Recall that by definition fsj → +∞ in Ω. In order to study the limit behaviour of fsj

as j → ∞, it is necessary to translate down these regularized solutions in an appropriate

manner. It is natural to consider a sequence of reference points {xj} in Ω to keep track of the

evolution of regularized solutions. For every j, we define the translated solution according

to the reference point xj to be

f̃ (xj)
sj

(·) := fsj(·)− fsj(xj) so that f̃ (xj)
sj

(xj) = 0.

Thus, the regularized equation (1.4.2) reads

θ[f̃ (xj)
sj

] = sjfsj , (3.2.2)

since the left hand side of regularized equation is invariant under vertical translation. For

every sequence sj → 0+, the local estimates in Proposition 1.10 and Arzela–Ascoli theorem

allow us to find a convergent subsequence of Graph(f̃
(xj)
sj ) on the left hand side of (3.2.2) if

we select suitable reference points; the observation (1.4.3) and Arzela–Ascoli theorem allow

us to find a convergent subsequence of capillary terms (expansion functions) on right hand
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Figure 3.1: A graphical limit f̃ of properly translated regularized solutions f
(x0)
sj lies in the

cylinder over a level-set of capillary blowdown limit u.

side of (3.2.2) in closure of black hole region Ω.

The following basic lemma shows that any non-empty subsequential limit must take place

in a certain level-set of the capillary blowdown limit u.

Lemma 3.1. Suppose the reference point sequence {xj} ⊂ Ω converges to x0 ∈ Ω. Set

Θ := u(x0) as the value. Then

(1) Θ = limusj(xj).

(2) If x ∈ E+
Θ(u), then lim f̃

(xj)
sj (x) = +∞; If x ∈ E−

Θ(u), then lim f̃
(xj)
sj (x) = −∞.

Therefore, any subsequential limit of graph(f̃
(xj)
sj ) lies in EΘ(u) × R provided it exists

(cf. Figure 3.1).

Proof. (1) It follows immediately from the uniform convergence and equicontinuity of usj in

Ω.

(2) Suppose x ∈ E+
Θ(u), then a := u(x)−Θ > 0. Since limusj(x) = u(x) and limusj(xj) = Θ
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uniformly, for any sufficiently large j

usj(x) > u(x)− a

4
= Θ +

3a

4

and

usj(xj) < Θ+
a

4
.

If follows that for any sufficiently large j

f̃ (xj)
sj

(x) =
1

sj

(
usj(x)− usj(xj)

)
>

1

sj
[(Θ +

3a

4
)− (Θ +

a

4
)]

=
a

2sj
→ +∞.

If x ∈ E−
Θ(u), then limj→∞ f̃

(xj)
sj (x) = −∞ holds analogously.

3.2.2 The Shape of Limit of Regularized Solutions in Black Hole

Regions

In this subsection, we aim to characterize the geometry of the limits of translated regularized

solutions.

In the following theorem, we show that any limit graph of caps of fsj satisfies the constant

expansion equation, which is an analogue of the constant mean curvature equation in a

spacetime setting.

Theorem 3.2 (Shape of cap). Let Θ := maxΩ u ≥ 0. There exists a sequence of reference

points {xj} ⊂ Ω, a subsequence {j′} ⊂ N, and a non-empty maximal domain U ⊂ u−1(Θ)∩Ω
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such that f̃
(xj′ )
sj′ converges smoothly to a function f̃ in U satisfying the constant expansion

equation:

θ[f̃ ] = Θ and f̃(x) → −∞ as U ∋ x→ ∂U. (3.2.3)

Each connected component Σ̃ of ∂U is a closed properly embedded smooth surface in u−1(Θ)∩

Ω with constant expansion θ[Σ̃] = Θ computed with respect to the unit normal of Σ̃ pointing

into U .

Remark 3.3. (1) U is called the maximal domain of solution f̃ to constant expansion

equation (3.2.3) in the sense that f̃ blows up on approach to ∂U and hence f̃ can not

extend to any smooth solution to (3.2.3) defined in a proper superset of U .

(3) u has a constant value Θ in U .

(2) In general, Θ could be 0, i.e., u is identically 0 in the black hole region Ω. This corre-

sponds to a very special slow-speed blowup scenario. We will discuss more properties

of Ω in Section 3.5 when this special case occurs.

Proof. Recall that Ω is compact. For every j ∈ N, pick reference point xj ∈ Ω such that

fsj(xj) = maxΩ fsj . We can select a convergent subsequence xj′ with x0 ∈ Ω. Observe that

f̃
(xj′ )
sj′ is a solution to (3.2.2) and (xj′ , 0) ∈ Graph(f̃

(xj′ )
sj′ ) converges to (x0, 0). By the local

C3,α-estimate in Proposition 1.10 in a neighborhood of (x0, 0) and Arzela–Ascoli theorem, we

may assume by passing to a further subsequence that Graph(f̃
(xj′ )
sj′ ) converges to a properly

embedded submanifold in C2,α
loc -sense. Let S̃ denote the connected component of the limit

submanifold containing (x0, 0). Since f̃
(xj′ )
sj′ ≤ 0 in Ω for every j′, it follows from the Harnack

inequality in Proposition 1.10 that the component S̃ is a graph of a C2,α
loc function f̃ ≤ 0

defined in an open neighborhood U of x0 and approaching to −∞ on approach to ∂U .

Observe that lim f̃
(xj′ )
sj′ (x) = −∞ if x ∈ M\Ω+, so U is contained in Ω and x0 is away

from ∂Ω. Combining Lemma 3.1 together with the C2,α
loc convergence of f̃

(xj′ )
sj′ and uniform
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convergence of uj′ on two sides of equations (3.2.2), U is a subset of u−1(Θ) ∩ Ω and hence

f̃ satisfies equation (3.2.3) in U . By standard elliptic theory, f̃ is smooth.

Note that the equation (3.2.3) is invariant under vertical translation. For any a ∈ R, f̃ + a

satisfies equation (3.2.3). By local estimates in Proposition 1.10 and Arzela–Ascoli theorem,

there is a sequence ai → +∞ such that Graph(f̃ + ai) converge to a three dimensional

submanifold in M × R in C2,α-sense. Remark that we only need to consider a → +∞

since f̃ ≤ 0. By the Harnack inequality in Proposition 1.10, each component of the limit

submanifold is a cylinder over a closed surface in ∂U , denoted by Σ̃ × R. Since f̃ + ai

satisfies equation (3.2.3) for all i, C2,α
loc -convergence implies that Σ̃ with compatible unit

normal satisfies the same constant expansion equation: θ[Σ̃] = Θ.

Corollary 3.4. Let Θ ≥ 0. Suppose Z is a connected component of u−1(Θ) ∩ Ω in which u

attains local maximum (resp. minimum). Namely, there exists an open neighborhood O of

Z such that for all x ∈ O\Z.

u(x) < Θ (resp. u(x) > Θ).

Then there exists a sequence of reference points {xj} ⊂ Z, a subsequence {j′} ⊂ N and a

non-empty maximal domain U ⊂ Z such that f̃
(xj′ )
sj′ converges smoothly to a function f̃ in U

satisfying constant expansion equation:

θ[f̃ ] = Θ and f̃(x) → −∞ (resp. +∞) as U ∋ x→ ∂U. (3.2.4)

Each connected connected component Σ̃ of ∂U is a closed properly embedded smooth surface

in Z with constant expansion θ[Σ̃] = Θ computed with respect to the unit normal of Σ̃ pointing

inside of U (resp. pointing outside of U).

Remark 3.5. In Corollary 3.4, the assumption that u attains its strict local maximum Θ

in Z is equivalent to that Z is component of ∂E−
Θ(u)\∂E

+
Θ(u).
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Proof. We only point out the key steps for the case when u attains a strict local maximum

in Z. Note Z is a closed subset of compact set Ω, so Z is compact. We may assume O

is compact. For every j ∈ N, pick reference point xj ∈ O so that fsj(xj) = maxO fsj . By

Lemma 3.1, f̃
(xj)
sj (x) < 0 for all x ∈ ∂O for all suficiently large j. Since f̃

(xj)
sj (xj) = 0 for all

j, f̃
(xj)
sj attains maximum at interior point xj ∈ O and ∇f̃ (xj)

sj (xj) = 0 for large j. Apply the

argument of previous proof, there exists a subsequence xj′ converging to x0 and a solution

f̃ to (3.2.4) defined in the maximal domain U ⊂ Z containing x0. This implies that x0 is

an interior point of Z and xj′ ∈ Z for large j. Other results follow analogously as in the

previous proof.

Specifically, we can pick one fixed reference point x0 ∈ Ω and investigate the local limiting

behavior of translated regularized solutions to (1.4.2) around x0.

Theorem 3.6 (Local convergence). Let x0 ∈ Ω. Consider the sequence of translated func-

tions f̃
(x0)
sj satisfying f̃

(x0)
sj (x0) = 0 for all j. There exists a subsequence {j′} ⊂ N such that

one of the following statement is true.

(1) (Graphical convergence) There exists a maximal domain Ux0 ⊂ u−1(u(x0))∩Ω contain-

ing x0 such that f̃
(x0)
sj′ converges smoothly to a function f̃

(x0)
0 satisfying

θ[f̃
(x0)
0 ] = u(Ux0) and |f̃ (x0)

0 | → ∞ on approach to ∂Ux0 .

In particular,

lim
j′→∞

|∇fsj′ (x0)| = lim
j′→∞

|∇f̃ (x0)
0 (x0)| < +∞,
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and

lim
j′→∞

∇fsj′ (x0)√
1 + |fsj′ (x0)|2

exists and has length < 1.

Each component Σ of ∂Ux0 is a closed smooth surface satisfying

θ[Σ] = u(Ux0).

Here, θ[Σ] is computed with respect to the unit normal vector field ν which coincides

with

ν(y) = lim
j′→∞

∇fsj′ (y)√
1 + |∇fsj′ (y)|2

for all y ∈ Σ.

(2) (Cylindrical convergence) There exists a closed smooth surface Σx0 ⊂ u−1(u(x0)) ∩ Ω

passing through x0 such that Graph(f̃
(x0)
sj′ ) converges to Σx0×R smoothly. In particular,

lim
j′→∞

|∇fsj′ (x0)| = +∞,

and

lim
j′→∞

∇fsj′ (x0)√
1 + |∇fsj′ (x0)|2

exists and has length = 1.

The surface Σx0 satisfies

θ[Σx0 ] = u(Σx0).

Here, θ[Σx0 ] is computed with respect to the unit normal vector field ν which coincides
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with

ν(y) = lim
j′→∞

∇fsj′ (y)√
1 + |∇fsj′ (y)|2

for all y ∈ Σx0.

As a consequence of the convergence, there exists δ > 0 such that

(a) limj′→∞ f̃
(x0)
sj′ (x) = +∞ for x ∈ N+

δ (Σx0 , ν),

(b) limj′→∞ f̃
(x0)
sj′ (x) = −∞ for x ∈ N−

δ (Σx0 , ν).

Proof. Since f̃
(x0)
sj satisfies (3.2.2) and (x0, 0) ∈ Graph(f̃

(x0)
sj ) for all j, by the local estimate

in Proposition 1.10 we conclude that there exists a subsequence {j′} such that graph(f̃
(x0)
sj′ )

converges to a properly embedded submanifold in M × R in C2,α
loc -sense. Denote the com-

ponent of the limit submanifold containing (x0, 0) by S̃. By the Harnack-type inequality in

Proposition 1.10, S̃ is either graphical or cylindrical.

Notice that ∇f̃ (x0)
sj (x) = ∇fsj(x) for all j ∈ N, x ∈M , and the vector

∇fsj√
1 + |∇fsj |2

is the horizontal component of the downward unit normal vector field on Graph(f̃
(x0)
sj ). For

the graphical case, the results follow analogously as the proof of Theorem 3.2. For the

cylindrical case, by Lemma 3.1 and C2,α
loc convergence we have θ[Σx0 ] = u(x0). Lastly, to

check the compatibility of the unit normal of ∂Ux0 or respectively Σx0 at y, we may just pick

y as new reference point for the subsequence fsj′ , then the limiting behavior of f
(x0)
sj′ near y,

local estimate and Harnack inequality imply that any subsequence of Graph(f̃
(y)
sj′ ) converges

cylindrically to the component of ∂Ux0 ×R containing (y, 0) or respectively Σx0 ×R and the

original sequence converges in the same way.

As an immediate application of the local convergence, we can show the existence of smooth
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closed constant expansion surface in any level set of u containing a regular point.

Corollary 3.7. Suppose x0 is a regular point of u at value Θ. Then there exists a closed

smooth embedded surface Σx0 in u−1(Θ)∩Ω containing x0 with constant expansion θ[Σx0 ] =

Θ. The unit normal vector field ν of Σx0 chosen as in Theorem 3.6 coincides with ∇u(x0)/|∇u(x0)|

at x0.

Proof. From assumption, ∇u(x0) exists and ∇u(x0) ̸= 0. By local linear approximation

of u around x0, we can conclude that x0 ∈ ∂E−
Θ(u) ∩ ∂E+

Θ(u) and the tangent space

Tx0u
−1(Θ) = {∇u(x0)}⊥. Since x0 is not an interior point of u−1(Θ), Corollary 3.6 im-

plies that graphical convergence is impossible and there exists a closed smooth CES Σx0

containing x0 with expansion Θ. The direction of unit normal to Σx0 at x0 is determined by

local linear approximation of u, Lemma 3.1 and local limit behavior of f
(x0)
sj in Theorem 3.6

(2).

3.2.3 Stability of Constant Expansion Surfaces

We will end this section by showing the stability of all closed smooth embedded CESs in

M that arise as boundary components of maximal domains or base sections of cylinders in

subsection 3.2. The stability result for MOTS Proposition 1.14 was first proved by Andersson

and Metzger in [4]. In the excellent survey paper [1], a simplified geometric argument was

provided, but the constructed barrier functions did not work well. In the communication

with Michael Eichmair, one of the authors of [1], he suggested a different model function to

fix the glitch. The proof here essentially follows the idea for MOTS in [1] with Eichmair’s

modification.

Proposition 3.8 (Stability of CES). The closed smooth CESs which arise in Theorem 3.2,

Corollary 3.4, and Theorem 3.6 (1) as boundaries of maximal domains and in Theorem 3.6

(2) as bases of cylinders are stable.
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Proof. Suppose (Σ, ν) is a unstable closed smooth surface in (M, g, k) with constant expan-

sion Θ and λ1(LΣ) = −α2 < 0 for some α > 0. We will construct barrier functions in an

open neighborhood of Σ. By Krein-Rutman theorem, there exists a strict positive function

ϕ ∈ C∞(Σ) such that LΣϕ = −α2ϕ. If ν is extended by parallel transportation and k is

extended trivially in vertical direction, then the stability operator of (Σ×R, ν) with respect

to (M, g, k) is LΣ×R = −∂2t + LΣ. If we feed the stability operator with a test function of

the form T (t)ϕ(x) where T ∈ C2(R), then

LΣ×R
(
T (t)ϕ(x)

)
= −(T ′′ + α2T )ϕ(x).

In the model case α = 1, consider the smooth function η(t) =
(
arctan(t + 1) − arctan(1)

)
.

By numerical analysis, η has the following properties: (1) Range(η) = (−3π
4
, π
4
) and η is

strictly increasing with η(0) = 0. (2) η′′+η has a unique real root tr ≈ 0.6456. In particular,

for t ∈ (−∞, 1/2], η′′(t) + η(t) < 0 and the maximum is η′′(1/2) + η(1/2) ≈ −0.0866. For

general α > 0, we may consider T (t) = η(αt). Then

LΣ×R
(
T (t)ϕ(x)

)
≥ −

(
η′′(1/2) + η(1/2)

)
α2min

Σ
ϕ > 0 for t ∈ (−∞, 1/(2α)]. (3.2.5)

For any sufficiently small ε > 0, the hypersurface

{
exp(x,t)

(
εT (t)ϕ(x)ν(x)

)
∈M × R : (x, t) ∈ Σ× (−∞, 1/(2α)]

}
is a smooth hypersurface with boundary in M × R whose expansion is strictly greater than

Θ everywhere. Notice that T is monotone, so the hypersurface can be expressed as the

graph of a function f∗ : V → (−∞, 1/(2α)) where V =
{
expx(sϕ(x)ν(x)) ∈ M : s ∈

(−3πε/4, εη(1/2)), x ∈ Σ
}
is a open neighborhood of Σ such that 0 < f∗ < 1/(2α) in the

part of V with 0 < s < εη(1/2) and f∗ → −∞ as s → −3πε/4+. Moreover, f∗ satisfying

θ[f∗] > Θ is a sub-solution to equation θ[f ] = Θ. Analogously, we may construct a super-
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solution f ∗ satisfying θ[f ∗] < Θ associated with the hypersurface

{
exp(t,x)

(
− εT (−t)ϕ(x)ν(x)

)
: (x, t) ∈ Σ× [−1/(2α),+∞)

}
defined in an open neighborhood of Σ.

If the CES (Σ, ν) that arises in the regularization procedure as in the assumption is un-

stable, then the barrier functions constructed in the first paragraph prevent the translated

regularized solutions from blowing up exactly at Σ. This contradicts the formation of such

a CES.

3.3 Characterization of Capillary Blowdown Limit

3.3.1 Capillary Blowdown Limit as Viscosity Solution

We begin by replacing fs by us/s in regularized equations (1.4.2). Then us satisfies

(gij − uisu
j
s

s2 + |∇us|2
)
( ∇i∇jus√

s2 + |∇us|2
− kij

)
= us. (3.3.1)

Let u be a blowdown limit of regularized solutions to Jang’s equation. Now we make some

heuristic assumptions that u is C2 and ∇usj → ∇u for one sequence sj → 0+. In the region

{x : ∇u(x) ̸= 0}, the sequence of regularized equations (3.3.1) converges to the geometric

equation

divM

( ∇u
|∇u|

)
− trg(k) + k

( ∇u
|∇u|

,
∇u
|∇u|

)
= u. (3.3.2)

In addition, Corollary 3.7 is another clue that u satisfies (3.3.2) in {x : ∇u(x) ̸= 0}. This

geometric equation can be interpreted as follows: Any regular level set of classical solution,
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u, has constant expansion equal to the evaluation of u. By simple calculations, (3.3.2) is

equivalent to

−divM(∇u) +∇2u
( ∇u
|∇u|

,
∇u
|∇u|

)
+ |∇u|

{
u+ trg(k)− k

( ∇u
|∇u|

,
∇u
|∇u|

)}
= 0. (3.3.3)

It is obvious that the equation is singular in the set {∇u = 0}, which is inevitable according

to the existence of interior of level set at extremal value by Theorem 3.2. It is necessary to

find a weaker notion of a solution. Since u has already been a Lipschitz continuous function

by construction, inspired by the work on level-set formulation of mean curvature flow done

by L.C. Evans and J. Spruck [18], we may expect viscosity solution is suitable notion of

weak solution. Before we define viscosity solutions to (3.3.3) on manifolds, we recall several

terminologies introduced in [6].

Definition 3.9. (1) Let f : M → [−∞,∞) a lower semi-continuous function. Define the

second order superjet of f at x by

J2,+f(x) = {(dφ(x), d2φ(x)) : φ ∈ C2(M ;R), f − φ attains a local maximum at x}.

(2) Let f : M → (−∞,∞] a upper semi-continuous function. Define the second order

subjet of f at x by

J2,−f(x) = {(dφ(x), d2φ(x)) : φ ∈ C2(M ;R), f − φ attains a local minimum at x}.

Remark 3.10. Let x ∈M , ζ ∈ T ∗
xM , A ∈ L2

sym(TxM). Then the followings are equivalent:

(1) (ζ, A) ∈ J2,+f(x)

(2) f(expx(η)) ≤ f(x) + ⟨ζ, η⟩x + 1
2
⟨Aη, η⟩x + o(|η|2x)

(3) (ζ, A) ∈ J2,+(f ◦ expx)(0x) where 0x is the origin in TxM
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(4) (ζ, A) ∈ −J2,−(−f)(x)

Let xn → x, ζn ∈ T ∗
xn
M and An ∈ L2

sym(TxnM). We denote by ζn → ζ ∈ T ∗
xM if ⟨ζn, V ⟩xn →

⟨ζ, V ⟩x for all smooth vector field V near x and we denote by An → A ∈ L2
sym(TxM) if

⟨AV, V ⟩xn → ⟨AV, V ⟩x for all smooth vector field V near x.

Definition 3.11. (1) Let f :M → [−∞,∞) a lower semi-continuous function. Define

J2,+f(x) = {(ζ, A) ∈ T ∗
xM × L2

sym(TxM) : ∃xn → x, ∃(xn, An) ∈ J2,+f(xn)

such that (xn, f(xn), ζn, An) → (x, f(x), ζ, A)}

(2) Let f :M → (−∞,∞] a upper semi-continuous function. Define

J2,−f(x) = {(ζ, A) ∈ T ∗
xM × L2

sym(TxM) : ∃xn → x, ∃(xn, An) ∈ J2,−f(xn)

such that (xn, f(xn), ζn, An) → (x, f(x), ζ, A)}

Now we are ready to define viscosity solutions to (3.3.3). Let x ∈ M , r ∈ R, ζ ∈ TxM ,

A ∈ L2
sym(TxM). Define

F(x, r, ζ, A) := −trgA(x) + ⟨A ζ

|ζ|
,
ζ

|ζ|
⟩x + |ζ|x

{
r + trgk(x)− k(

ζ

|ζ|
,
ζ

|ζ|
)(x)

}
and its degenerate form

G(x, ζ, A) := −trgA(x) + ⟨Aζ, ζ⟩x.

Definition 3.12. u ∈ C0(M) ∩ L∞(M) is a viscosity subsolution of equation (3.3.3) if

for all x ∈M either for all (ζ ̸= 0, A) ∈ J2,+u(x)

F(x, u(x), ζ, A) ≤ 0,
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or for all (0, A) ∈ J2,+u(x) there exists ξ ∈ TxM with |ξ|x ≤ 1

G(x, ξ, A) ≤ 0.

Similarly, u ∈ C0(M) ∩ L∞(M) is a viscosity supersolution of equation (3.3.3) if for all

x ∈M either for all (ζ ̸= 0, A) ∈ J2,−u(x)

F(x, u(x), ζ, A) ≥ 0,

or for all (0, A) ∈ J2,−u(x) there exists ξ ∈ TxM with |ξ|x ≤ 1

G(x, ξ, A) ≥ 0.

u ∈ C0(M) ∩ L∞(M) is a viscosity solution of equation (3.3.3) if u is both a viscosity

subsolution and supersolution.

In the following theorem, we apply the argument in the proof of existence of weak mean

curvature flow in viscosity sense using elliptic regularization by L.C. Evans and J. Spruck

[18] to show that any blowdown limit of regularized solutions is a viscosity solution.

Theorem 3.13. Let u be a capillary blowdown limit of fs. Then u is a viscosity solution to

the geometric equation (3.3.3).

Proof. Let φ ∈ C2(M) and suppose u − φ has a strict local maximum at a point x0 ∈ M .

Choose usj → u uniformly near x0, then usj − φ has a local maximum at a point xj with

xj → x0 as j → ∞. Since usj and φ are twice differentiable, we have

∇usj(xj) = ∇φ(xj),

∇2usj(xj) ≤ ∇2φ(xj).
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Thus, equation (3.3.1) implies for all j at xj

− trg∇2φ+∇2φ
( ∇φ√

s2j + |∇φ|2
,

∇φ√
s2j + |∇φ|2

)

+
√
s2j + |∇φ|2

{
usj + trgk − k

 ∇φ√
s2j + |∇φ|2

,
∇φ√

s2j + |∇φ|2

} ≤ 0. (3.3.4)

Suppose ∇φ(x0) ̸= 0. Then ∇φ(xj) ̸= 0 for all sufficiently large j. Passing to limit, we get

F
(
x0, u(x0),∇φ(x0),∇2φ(x0)

)
≤ 0.

Suppose ∇φ(x0) = 0. Set ηj :=
∇φ(xj)√

s2j+|∇φ(xj)|2
∈ Txj

M such that (3.3.4) becomes

− trg∇2φ(xj) +∇2φ
(
ηj, ηj

)
(xj)

+
√
s2j + |∇φ(xj)|2

{
usj(xj) + trgk(xj)− k

(
ηj, ηj

)
(xj)

}
≤ 0.

Since |η|xj
≤ 1, we may assume up to subsequence ηj → η ∈ Tx0M with |η|x0 ≤ 1. Letting

j → ∞, since u and k are bounded we obtain

G(x0, η,∇2φ(x0)) ≤ 0.

If u− φ has a local maximum which may not be strict, we repeat the argument above with

φ̃(x) = φ+ d(x, x0)
4

satisfying ∇φ̃(x0) = ∇φ(x0) and ∇2φ̃(x0) = ∇2φ(x0) in place of φ. Here, d is the distance

function defined on (M, g). Therefore, u is a viscosity subsolution.

It follows analogously that u is a viscosity supersolution.

63



3.3.2 A Priori Estimates of Foliation of Stable Constant Expan-

sion Surfaces

In this subsection, we will prove the a priori estimate of foliation of stable constant expansion

surfaces. The proof will follow the stability argument leading to the a priori estimates of

the regularized Jang’s equation in [39] and the one of stable minimal hypersurfaces in [36].

Here, we only comment on the key ingredients adapted to the assumptions that we consider.

Recall that (M, g, k) is an asymptotically flat initial data set satisfying the dominant en-

ergy condition. Given positive constants T and B, suppose Σ assigned with unit normal

ν is a closed smooth stable CES with constant expansion Θ0 ∈ [−T , T ] having the second

fundamental form |hΣ|2 ≤ B. Suppose Ψ : (a, b) × Σ → M is a smooth foliation of closed

stable CES initiated from Σ with expansion in the range [−T , T ]. Let Στ = Ψ(τ,Σ) and

let ντ = Ψ∗(∂τ )/|Ψ∗(∂τ )| where Ψ∗ is the pushforward of Ψ, then Ψ satisfies the following

properties:

(1) Ψ(τ0, ·) = IdΣ(·) on Σ for some τ0 ∈ (a, b) and ντ0 = ν.

(2) The expansion Θτ := θ[Στ ] of Στ with respect to unit normal ντ is a constant in

[−T , T ] for any τ ∈ (a, b).

(3) λ1(LΣτ ) ≥ 0 for any τ ∈ (a, b).

Now fix arbitrary τ ∈ (a, b). Let e1, e2, e3 be a local orthonormal frame for Στ with e1, e2

tangent to Στ and e3 normal to Στ . Let ω1, ω2, ω3 be the corresponding dual orthonormal
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coframe of one-form. The structure equations of M are given by

dωi = −
3∑

j=1

ωij ∧ ωj, ωij + ωji = 0;

dωij = −
3∑

k=1

ωik ∧ ωkj +
1

2

3∑
k,l=1

Rijkl ωk ∧ ωl.

Let ∇ and ∇ denote the Levi-Civita connections on M and Στ respectively. In this subsec-

tion, the indices range 1,2 and constant C may change from time to time but depend only on

the initial data set (M, g, k), given constants T and B. The first important ingredient of the

a priori estimate is Simon’s inequality. By virtue of the asymptotically flatness of (M, g, k),

the background Riemannian curvature tensor and its covariant derivatives are bounded. This

is a key assumption to derive the lower bound of Laplacian of second fundamental form hij

of Στ as in [39] on page 236

∆hij ≥ ∇i∇jH− (
∑
m,k

h2mk) + H
∑
m

himhmj − C(|h|+ 1)δij.

Following the same computation in [39] on page 236-237, one can obtain the Simon’s in-

equality (cf. [39] (2.16))

|h|∆|h| ≥ c(2)
∑
i,j,k

(∇khij)
2 − |h|4 − |H||h|3

+
∑
i,j

hij∇i∇jH− C|∇H|2 − C(|h|2 + 1) (3.3.5)

where c(2) is a constant that depends only on dim(Σ) = 2.

The second important ingredient is stability inequality. In [39], they derive the stability

inequality by observing that vertical translations generate a Jacobi field. Now in our setting

we assume the stability directly. Let β > 0 be a smooth eigenfunction of LΣτ corresponding

65



to non-negative principle eigenvalue λ1. Using (1.3.11), we have

0 ≤ λ1 =
LΣτβ

β
= −divΣτ (ξ +∇ log β)− |ξ +∇ log β|2Στ

+
1

2
RΣ − 1

2
|h− k|2Στ

− µ+ J(ν)− 1

2
Θτ (Θτ + 2trgk).

(3.3.6)

Note that the dominant energy condition implies −µ + J(ν) ≤ 0. Let φ ∈ C∞(Σ). Multi-

plying (3.3.6) by φ2, integrating by part and applying Young’s inequality to the first term,

we find

0 ≤
∫
Στ

|∇φ|2 + 1

2

∫
Στ

{
RΣτ − |h− k|2Στ

−Θτ (Θτ + 2trgk)
}
φ2. (3.3.7)

Using Guass equation and cancelling out H2 terms in RΣ and Θ2
τ , we get

∫
Στ

|h|2φ2 ≤
∫
Στ

|∇φ|2 + C

∫
Στ

(|h|+ 1)φ2. (3.3.8)

Combining (3.3.5) and (3.3.8) together with the control |∇H[Σ]|2 = |∇K[Σ]|2 ≤ C(|h|2 + 1)

on constant expansion surface, following the argument in [39] replacing φ by |h|φ2 and then

absorbing |h|3φ4 by |h|4φ4 and φ2, we may derive

∫
Στ

|h|4φ4 ≤
∫
Στ

|∇φ|4 + C

∫
Στ

φ4. (3.3.9)

The third ingredient is the local area bound for Στ . We will follow the calibration argument

in [39] on page 243 with minor modification. Observe that in the region sweep by the foliation

Ψ we have

divM(ντ ) = Θτ + trg(k)− k(ντ , ντ ) (3.3.10)

where |Θτ | ≤ T . Let x0 ∈ Στ , Bσ(x0) be the geodesic ball in (M, g) centered at x0 and let

W be the region enclosed by Σ and Στ . Let 0 < ρ0 ≤ 1 such that ρ0 ≤ inj(M, g). Integrating

identity (3.3.10) over the regionW ∩Bσ(x0) for 0 < σ ≤ ρ0 and applying divergence theorem,
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we obtain

Area(Στ ∩Bσ(x0)) ≤ Area(Σ ∩Bσ(x0)) + Area(∂Bσ(x0) ∩W ) + CT σ3.

Since we have |hΣ|2 ≤ B for the initial sheet, there exists a constant ρ1 depending on

M,Σ, g, k, B, T such that for 0 < σ ≤ ρ1

Area(Στ ∩Bσ(x0)) ≤ Cσ2. (3.3.11)

With the area bound (3.3.11) the results of Hoffman and Spruck [23] imply that there is a

number ρ2 ≤ ρ1 such that the Michael-Simon type Sobolev inequality holds:

(∫
Στ

φ2
)1/2

≤ C

∫
Στ

|∇φ|+ |φ||H|. (3.3.12)

for any Lipschitz φ vanishing outside of Στ ∩ Bρ2(x0). Using the bounds for expansion, k

and area (3.3.11) together with Hölder inequality, we obtain

(∫
Στ

φ2
)1/2

≤ C

∫
Στ

|∇φ|

and hence for arbitrary p > 2

(∫
Στ

|φ|p
)1/p

≤ C

∫
Στ

|∇φ|2. (3.3.13)

Fixing the geodesic distance cutoff function to x0 depending on ρ2, (3.3.9) and (3.3.11) imply

|hΣτ |2 ∈ L2
(
Bρ2/2(x0)

)
. (3.3.14)

Let q = |hΣτ |2 + 1. Following the argument in [39], q is a positive weak subsolution to

certain elliptic equation. De Georgi-Nash-Moser iteration technique together with the L2-
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bound (3.3.11) and (3.3.14) for q now gives pointwise curvature bound for extrinsic curvature

sup
Στ

|hΣτ |2 ≤ C. (3.3.15)

Note that the Sobolev inequality (3.3.13) for large p > 2 is sufficient for iteration technique

for dimension 2. Also, (3.3.14) where 2 > 1
2
dim(Στ ) = 1 guarantees the structural conditions

are satisfied.

Lastly, following the argument in [39], (3.3.15) implies the uniform local C3,α estimate. We

conclude the results of this subsection in the following proposition.

Proposition 3.14. Let (M, g, k) be an asymptotically flat initial data set satisfying dominant

energy condition. Given positive constants T and B, suppose Σ assigned with unit normal

ν is a closed smooth stable CES with constant expansion Θ0 ∈ [−T , T ] having the second

fundamental forms |hΣ|2 ≤ B. Suppose Ψ : (a, b) × Σ → M is a smooth foliation of closed

stable CES initiated from Σ with expansion in the range [−T , T ]. Given α ∈ (0, 1), then

there exist constants ρ and Cα depending on M,Σ, g, k, T , B such that for any τ ∈ (a, b), for

every x0 ∈ Στ if (x1, x2, x3) normal coordinates in M on which Tx0Στ is the x1x2-space, then

the local defining function w(x) for Στ is defined on {x = (x1, x2) : |x| ≤ ρ} with

Στ ∩B3(x0;
ρ

2
) ⊆ Graph(w)

and satisfies

∥w∥3,α,{x:|x|≤ρ} ≤ Cα.
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3.3.3 Existence of Smooth Solutions

Proposition 3.15. Suppose (Σ, ν) is a closed smooth embedded strictly stable CES in (M, g, k)

with θ[Σ] ≡ τ0 in (M, g, k). Then there exists a constant ε > 0 and a smooth CES foliation

Ψ : (τ0 − ε, τ0 + ε) × Σ → M satisfying the following properties. Let Στ denote the sheet

Ψ(τ,Σ). We have

(1) Ψ(τ0, ·) = IdΣ(·) on Σ.

(2) θ[Στ ] ≡ τ for all τ ∈ (τ0 − ε, τ0 + ε).

(3) (Local uniqueness) If Σ̃ is a closed smooth CES in Ψ
(
(τ0 − ε, τ0 + ε)× Σ

)
and can be

expressed as a graph of w ∈ C∞(Σ) in normal coordinates around Σ, then Σ̃ = Στ̃ for

some τ̃ ∈ (τ0 − ε, τ0 + ε).

Proof. We begin with proving local existence of smooth foliation by using implicit func-

tion theorem. Let Υ : Σ × (−δ, δ) → M : (y, σ) 7→ expy(σνy) be the normal coordinates

around Σ with respect to the unit normal ν. For a function w ∈ C∞(Σ), denote the graph

{expy

(
w(y)νy

)
: y ∈ Σ} of w in normal coordinates by Graph(w). We also let θ[w] simply

denote the expansion of Graph(w) in the unit normal ∂⊥σ /|∂⊥σ | where ∂⊥σ is the projection of

∂σ onto the normal space of Graph(w). Observe that the operator

T : C∞(Σ)× R → C∞(Σ)

defined by

T (w, τ) = θ[w]− τ

is a Frechet smooth mapping and T (0, τ0) = 0. The linearization of T with respect to the
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first argument at (0, τ0) is given by

(D1T )|(0,τ0)(w′) = LΣw
′

for w′ ∈ C∞(Σ). Since λ1(LΣ) > 0, the linearization operator D1T (0, τ0) is an isomophism

from C∞(Σ) onto C∞(Σ). By implicit function theorem, there exists ε > 0 and a unique

Frechet smooth mapping

S : (τ0 − ε, τ0 + ε) −→ C∞(Σ) (3.3.16)

such that

S(τ0) = 0

and for τ ∈ (τ0 − ε, τ0 + ε)

T (S(τ), τ) = 0. (3.3.17)

Define the smooth one-parameter family of embeddings

Ψ : (τ0 − ε, τ0 + ε)× Σ −→M

by

Ψ(τ, y) = expy

(
S(τ)(y)νy

)
for τ ∈ (τ0 − ε, τ0 + ε), y ∈ Σ0. Denote the sheet Ψ(τ,Σ) by Στ . It follows that {Στ : τ ∈

(τ0 − ε, τ0 + ε)} is a smooth one-parameter family of closed smooth embedded surfaces with

constant expansion τ . Thus, (1) and (2) has been established. The local uniqueness property

(3) follows from the contraction principle in the proof of implicit function theorem.

It remains to show that Φ is a foliation. Observe that Ψ(τ, ·) satisfies the evolution equation

d

dτ
Ψ = ψτνΣτ (3.3.18)
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where ψτ ∈ C∞(Στ ) satisfies

LΣτψτ = 1. (3.3.19)

To see that Ψ is a foliation, it suffices to show the velocity function ψτ > 0 for all τ ∈

(T−, T+). Toward contradiction, suppose ψτ (x) ≤ 0 for some τ ∈ (T−, T+) and x ∈ Στ . Let

βτ > 0 denote the (unique up to scaling) eigenfunction of LΣτ associated with the principal

eigenvalue λ1(LΣτ ). There exists bτ ≥ 0 such that minΣτ (ψτ +bτβτ ) = 0. At minimum point,

by (3.3.19) we obtain

0 ≥ −∆Στ (ψτ + bτβτ ) = LΣτ (ψτ + bτβτ ) = 1 + bτλ1(LΣτ )βτ ≥ 1.

This is a contradiction.

Corollary 3.16 (Maximal smooth stable foliation). Suppose (Σ, ν) is a closed smooth em-

bedded strictly stable CES in (M, g, k) with θ[Σ] ≡ τ0 in (M, g, k). Then there exists an open

interval (T−, T+) containing τ0 and a smooth CES foliation Ψ : (T−, T+)×Σ →M satisfying

the following properties:

(1) Ψ(τ0, ·) = IdΣ(·) on Σ.

(2) θ[Στ ] ≡ τ for all τ ∈ (T−, T+).

(3) λ1(LΣτ ) > 0 for τ ∈ (T−, T+).

Furthermore, if |T+| <∞ (resp. |T−| <∞), then Στ converges to a smooth marginally stable

CES ΣT+ (resp. ΣT−) as τ → T+ (resp. τ → T−).

Proof. It is known that the principal eigenvalue depends (Lipschitz) continuously on the

coefficients of the elliptic operator (cf. [8]). By the local existence Proposition 3.15 and local

estimate Proposition 3.14, Ψ can be extended uniquely to an open neighborhood of the slice
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Στ as long as Στ has finite constant expansion and λ1(LΣτ ) > 0. Thus, there is a maximal

interval (T−, T+) such that Ψ remains smooth and satisfies θ[Στ ] ≡ τ and λ1(LΣτ ) > 0 for all

τ ∈ (T−, T+). In particular, if |T+| <∞ (resp. |T−| <∞), then Στ converges smoothly to a

CES ΣT+ (resp. ΣT−) as τ → T+ (resp. τ → T−). In either case, ΣT+ or ΣT− is marginally

stable; otherwise, the foliation Ψ continues by the local construction, which contradicts the

maximality of the interval (T−, T+).

Proposition 3.17 (Local smooth solution). Suppose (Σ, ν) is a closed smooth strictly stable

CES with θ ≡ τ0 in (M, g, k). Let Ψ be the maximal stable foliation constructed in Corollary

3.16. Define

v
(
Ψ(τ, y)

)
= τ (3.3.20)

for all τ ∈ (T−, T+), y ∈ Σ. Then v is a smooth solution to equation (3.3.2) in the region

Ψ
(
(T−, T+) × Σ

)
such that ∇v is nowhere vanishing. Moreover, for all τ ∈ (T−, T+) there

exists 0 < C(τ) <∞ depending continuously on local geometry of Στ and k such that

C(τ)−1λ1(LΣτ ) ≤ |∇v|Στ ≤ C(τ)λ1(LΣτ ). (3.3.21)

In particular, if |T+| < ∞ (respectively |T−| < ∞), then ∇v(x) converges to zero uniformly

as x on approach to ΣT+ (respectively ΣT−).

Proof. By definition, v is a smooth function since Ψ is a smooth foliation. Let τ ∈ (T−, T+).

In view of (3.3.18) and (3.3.19) we have

1 =
d

dτ
v = ⟨∇v, ψτνΣτ ⟩ = |∇v| · ψτ on Στ .

From the proof of Proposition 3.15, we find 0 < ψτ <∞. Thus,

0 < |∇v| = 1/ψτ <∞ on Στ . (3.3.22)
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It follows that the level set v−1(τ) = Στ is regular and has constant expansion τ . Therefore,

v is a classical solution to (3.3.3) in Ψ
(
(T−, T+)× Σ

)
.

Let βτ > 0 denote the (unique up to scaling) eigenfunction of LΣτ associated with the

principal eigenvalue λ1(LΣτ ). Remark that the following argument is independent of the

choice of scaling of βτ . By Harnack inequality, there exists C(τ) such that

max
Στ

βτ ≤ C(τ)min
Στ

βτ (3.3.23)

for all T− < τ < T+. Here C(τ) depends on the coefficients of LΣτ and intrinsic diameter of

Στ and therefore depends on local geometry of Στ and k. Since both ψτ and βτ are positive

and Στ is compact, there exists a constant bτ > 0 and a point xτ ∈ Στ such that

max
Στ

(ψτ − bτβτ ) = ψτ (xτ )− bτβτ (xτ ) = 0.

It follows from (3.3.19) that

0 ≤ LΣτ (ψτ − bτβτ )(xτ ) = 1− bτλ1(LΣτ )βτ (xτ ).

Thus,

bτβτ (xτ ) ≤ λ1(LΣτ ).

Then the maximum of ψτ − bτβτ at xτ and the Harnack inequality (3.3.23) imply that for

any x ∈ Στ

ψτ (x) ≤ bτβ(x) ≤ bτC(τ)β(xτ ) ≤ C(τ)λ1(LΣτ ). (3.3.24)

By considering minΣτ (ψτ − aτβτ ) = 0 for suitable constant aτ > 0, we can analogously show

that

C(τ)−1λ1(LΣτ ) ≤ ψτ . (3.3.25)
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Putting (3.3.22), (3.3.24) and (3.3.25) together, we conclude (3.3.21).

If |T±| <∞, then by Corollary 3.16 Στ converges smoothly to ΣT± smoothly as τ → T± and

therefore C(τ) can extend continuously to τ = T±. In view of (3.3.21) and Corollary 3.16:

λ1(LΣT±
) = 0, we find that |∇v|(x) converges to 0 uniformly as x goes to ΣT± .

When (Σ, ν) is a compact, smooth, marginally stable CES, we are not able to construct

a local foliation of CESs around Σ with the operator in Proposition 3.15. Nevertheless,

Galloway [19] constructed a local foliation of CESs around Σ by considering the operator

T0 : C
∞(Σ)× R → C∞(Σ)× R, T0(w, ℓ) =

(
θ[w]− ℓ,

∫
Σ

w
)
.

The fact that the principal eigenvalue is simple allows him to apply the inverse function

theorem with this operator. The drawbacks of the foliation are that the expansion function

θ is implicit and that the sheets are not necessarily stable so that we can further extend the

foliation.

Proposition 3.18 (cf. [19] the proof of Theorem 3.1). Suppose (Σ, ν) is a compact smooth

marginally stable CES with θ ≡ τ0 and λ1(LΣ) = 0 in (M, g, k). Then there exists ε > 0

and a smooth CES foliation Ψ0 : (−ε, ε) → M satisfying the following properties. Denote

Ψ0(τ,Σ) by Στ . We have

(1) Ψ0(0, ·) = IdΣ(·) on Σ.

(2) If Σ̃ is a compact smooth CES in Ψ
(
(−ε, ε)×Σ

)
and Σ̃ can be expressed as a graph of

w ∈ C∞(Σ) in normal coordinates around Σ, then Σ̃ = Στ̃ where

τ̃ =

∫
Σ

w. (3.3.26)
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3.3.4 Comparison Theorem

Theorem 3.19. Suppose Σ0 ⊂ ∂Ω is a compact, smooth, strictly stable MOTS. Let u be a

capillary blowdown limit and let v be the local smooth solution constructed on the annular

region Ψ
(
[0, T+],Σ0

)
in Proposition 3.17. Then u ≤ v in Ψ

(
[0, T+],Σ0

)
.

Proof. Let A denote the annular region Ψ
(
(0, T+),Σ0

)
. Suppose the statement is not true,

that is, u − v > 0 at some point in A. Since u − v is continuous and A is compact, there

exists x0 ∈ A such that (u− v)(x0) = maxA(u− v) > 0.

Suppose x0 ∈ A is an interior point. Let ρ(x) = d(x, x0). Note that u− v − ρ4 has a strict

maximum in A at x0. Since usj converges to u uniformly on A, there exists xj ∈ A such

that usj − v − ρ4 has a local maximum at xj and xj → x0. For all sufficiently large j, we

have xj ∈ A. Since usj and v are twice differentiable, the derivative test at xj shows that

∇usj(xj) = ∇v(xj) +∇ρ4(xj), ∇2usj(xj) ≤ ∇2v(xj) +∇2ρ4(xj).

In view of regularized equation (3.3.1), at xj we have

0 = −∇2usj
(
I −

∇usj√
s2j + |∇usj |2

⊗
∇usj√

s2j + |∇usj |2
)

+
√
s2 + |∇usj |2

{
usj + k

(
I −

∇usj√
s2j + |∇usj |2

⊗
∇usj√

s2j + |∇usj |2
)}

≥ −∇2vj
(
I −

∇usj√
s2j + |∇usj |2

⊗
∇usj√

s2j + |∇usj |2
)

−∇2ρ4
(
I −

∇usj√
s2j + |∇usj |2

⊗
∇usj√

s2j + |∇usj |2
)

+
√
s2 + |∇usj |2

{
usj + k

(
I −

∇usj√
s2j + |∇usj |2

⊗
∇usj√

s2j + |∇usj |2
)}
.
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We remark that

lim
j→∞

∇ρ4(xj) = ∇ρ4(x0) = 0,

lim
j→∞

∇2ρ4(xj) = ∇2ρ4(x0) = 0,

lim
j→∞

usj(xj) = u(x0).

Moreover, by Proposition 3.17 we know v(x0) ̸= 0 for x0 ∈ A and hence

lim
j→∞

∇usj(xj)√
s2j + |∇usj(xj)|2

=
∇v(x0)
|∇v(x0)|

.

Therefore, by letting j → ∞ we obtain at x0

0 ≥ −∇2v(x0)
(
I − ∇v(x0)

|∇v(x0)|
⊗ ∇v(x0)

|∇v(x0)|
)

+ |∇v(x0)|{u(x0) + k
(
I − ∇v(x0)

|∇v(x0)|
⊗ ∇v(x0)

|∇v(x0)|
)
}

= |∇v|{u(x0)− v(x0)}

where the last equality follows from the fact that v satisfies equation (3.3.3). We then

conclude that

0 < |∇v(x0)|{u(x0)− v(x0)} ≤ 0

which is a contradiction.

Next suppose x0 ∈ ∂A. Note that u = v = 0 on ∂Ω, so x0 ∈ v−1(T+). We claim that

A ⊂ E−
u(x0)

(u) and therefore x0 ∈ ∂E−
u(x0)

(u). To confirm this, we observe that if x ∈ A,
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Figure 3.2: The situation excluded by maximum principle where Σ and Σ̃ are CESs such
that θ[Σ̃] > θ[Σ] with respect to the common normal vector ν at the contact point.

then v(x) < T+ and by maximality of u− v

u(x) = u(x)− v(x) + v(x) ≤ u(x0)− v(x0) + v(x) < u(x0).

By Theorem 3.7, there exists a closed smooth properly embedded surface Σ̃ in u−1(u(x0))

passing through x0 having constant expansion u(x0) with respect to the unit normal vector

pointing outside of E−
u(x0)

(u). In addition, the above clam implies that Σ̃ ⊂ u−1(u(x0)) ⊂

Ω\A. Therefore, Σ̃ is enclosed by ΣT+ and two surfaces contact each other at x0. Since

the chosen unit normal vectors νΣT+
and νΣ̃ of these two surfaces agree at x0 and Σ̃ lies

on the +νΣT+
-side of ΣT+ , the maximum principle implies that H[Σ̃](x0) ≤ H[ΣT+ ](x0).

Consequently, we conclude that

u(x0) = θ[Σ̃](x0) ≤ θ[ΣT+ ](x0) = v(x0)

which contradicts the assumption that u(x0) > v(x0).
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3.4 Structure of Black Hole Regions and Capillary Blow-

down Limit

3.4.1 Thin Maximal Domains

For any open subset S of M , we can define the thickness of S by

τ(S) = sup{diamB : B is an open geodesic ball in S}.

Proposition 3.20. There exists a constant R0 = R0(M, g, k) > 0 satisfying the following

property. Let Θ ∈ [−µ1, µ1] and let f be a smooth solution to constant expansion equation

θ[f ] = Θ on maximal domain U in (M, g, k). If U is thin in the sense that τ(U) < R,

then f has no critical point. Moreover, U is homeomorphic to f−1(0) × R with exactly two

boundary components ∂−U = ”f−1(−∞)” and ∂+U = ”f−1(∞)” which are closed smooth

CES with expansion Θ.

Proof. Suppose x0 ∈ U is a critical point of f . For x ∈ U , we define

β(x) := ⟨νf , ∂t⟩|(x,f(x)) = (1 + |∇f(x)|2)−1/2.

Thus, β(x0) = 1. By Harnack-type inequality in Proposition 1.10 (3),

c4 ≥ |d log β|2g̃ = |d log β|2g −
⟨df, d log β⟩2g
1 + |∇f |2g

≥ β2|d log β|2g = |dβ|2g,

where g̃ = g + df ⊗ df is the induced metric on the graph of f . Let γ : [0, ℓ] → U be a
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geodesic emitting from γ(0) = x0. Then for s ∈ [0, ℓ],

|β(γ(s))− β(γ(0))| =
∣∣ ∫ s

0

d

dτ
β(γ(τ)) dτ

∣∣
≤
∫ s

0

∣∣⟨∇β(γ(τ)), γ′(τ)⟩g∣∣ dτ
≤ c4

∫ s

0

dτ = c4s.

If ℓ < c−1
4 , then |β(γ(s)) − 1| < 1 for any s ∈ [0, ℓ]. It follows that β(x) > 0 for any point

x in the closed geodesic ball Bℓ(x0), and hence ∇f is bounded in the geodesic ball Bℓ(x0).

The domain U is maximal, so U contains the closed geodesic ball Bℓ(x0) for any ℓ < c−1
4 .

Therefore, τ(U) ≥ 2c−1
4 . Take R0 = 2c−1

4 , then we will get a contradiction.

The second statement follows immediately from Morse theory and Theorem 3.6.

The following proposition states that any thin maximal domain contains a (part of) marginally

stable CES.

Proposition 3.21. Let f, U with τ(U) < R0 be assumed as in in Proposition 3.20. Let ν

and ν ′ be unit normal vector field on ∂−U and ∂+U respectively chosen as in Theorem 3.6.

Suppose ∂−U and ∂+U are stable. There exists R > 0 depending on the geometry of ∂U in

(M, g, k) such that if τ(U) ≤ R, then there exist closed smooth marginally stable CESs Σ̃1

on the +ν-side of ∂−U and Σ̃2 on the −ν ′-side of ∂+U such that Σi∩U ̸= ∅ for both i = 1, 2.

Proof. By Proposition 3.20, ∂U has exactly two component ∂−U = ”f−1(−∞)” and ∂+U =

”f−1(∞)” with the same constant expansion Θ. Let ν and ν ′ be unit normal vector field

on ∂−U and ∂+U respectively chosen as in Theorem 3.6. Thus, ∂+U is on the +ν-side of

∂−U . We simply denote ∂−U by Σ. There exists ρ0 depending on the geometry of Σ in

(M, g) such that the normal coordinates Υ : Σ × (−ρ0, ρ0) → M : (x, σ) → expx(σν(x)) is

bijective. For w ∈ C2,α(Σ) with ∥w∥0 < ρ0, let Graph(w) denote the graph of w in normal
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coordinates adapted to Σ and let θ[w] denote the expansion of Graph(w) with respect to

∂⊥σ /|∂⊥σ | where ∂⊥σ is the projection of ∂σ onto the normal bundle of Graph(w). By the nature

of linearization operator LΣ, we define the deviation Q of θ[w] from its linear approximation

around Σ:

Q[w] :=
(
θ[w]−Θ

)
− LΣw. (3.4.1)

The quadratic term Q depends also on ∇w and ∇2w. Here the notation Q[w] is treated as

a functional. There exist constants R0, A depending on geometry of Σ in (M, g) and k such

that 0 < ρ1 < ρ0 and for ∥w∥2,α ≤ ρ1

∥Q[w]∥0,α ≤ A∥w∥22,α. (3.4.2)

The standard Schauder estimates applied to (3.4.1) implies that there exists a constant C

depending on geometry of Σ in (M, g) and k such that

∥w∥2,α ≤ C
(
∥w∥0 + ∥θ[w]−Θ∥0,α + ∥Q[w]∥0,α

)
. (3.4.3)

Put (3.4.2) into (3.4.3), we obtain

∥w∥2,α ≤ C
(
∥w∥0 + ∥θ[w]−Θ∥0,α

)
+ AC∥w∥22,α.

Let δ ∈ (0, 1). If ∥w∥2,α ≤ δA−1C−1, then we have estimates

∥w∥2,α ≤ (1− δ)−1C
(
∥w∥0 + ∥θ[w]−Θ∥0,α

)
, (3.4.4)

and

∥Q[w]∥0,α ≤ η
(
∥w∥0 + ∥θ[w]−Θ∥0,α

)
(3.4.5)
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where η := δC
1−δ

∈ (0, 1) if δ is chosen small enough. Take 0 < ρ2 < ρ1 such that

ρ2 < δ(1− δ)A−1C−2. (3.4.6)

Then (3.4.4) and (3.4.5) hold true as long as ∥w∥0 + ∥θ[w]−Θ∥0,α ≤ ρ2 by using continuity

argument along the family {sw}0≤s≤1. In particular, suppose ∂+U can be expressed as the

graph of v > 0 with ∥v∥0 ≤ ρ2, then θ[v] = Θ implies

LΣv = −Q[v]. (3.4.7)

In this case, (3.4.4) and (3.4.5) can reduced to

∥v∥2,α ≤ (1− δ)−1C∥v∥0, (3.4.8)

and

∥Q[v]∥0,α ≤ η∥v∥0. (3.4.9)

Now since Σ is strictly stable, by Corollary 3.16 there exists a maximal foliation Ψ of CES

initiated from Σ toward the +ν-side. Let τ be a small positive number, and let wτ > 0

represent the sheet Ψ(Θ + τ,Σ) in the maximal foliation Ψ satisfying θ[wτ ] = Θ + τ . Then

wτ satisfies

LΣwτ = τ −Q[wτ ]. (3.4.10)

Since wτ and v are both positive, there exists a number a > 0 and a point z ∈ Σ such that

av ≤ wτ and the equality holds at z. (3.4.11)
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By derivative tests,

0 ≥ LΣ(w − av)(z) = τ −Q[wτ ](z) + aQ[v](z)

≥ τ − η(∥wτ∥0 + τ)− aη∥v∥0 by (3.4.5) and (3.4.9)

≥ (1− η)τ − 2η∥wτ∥0 by (3.4.11)

This implies that

τ ≤ 2η(1− η)−1∥wτ∥0. (3.4.12)

Again by continuity argument, (3.4.12) holds true so long as ∥wτ∥0 ≤ {1+2η(1−η)−1}−1ρ2 :=

ρ3. In this case, the Schauder estimates (3.4.4) can be further reduced to

∥wτ∥2,α ≤ (1− δ)−1{1 + 2η(1− η)−1}C · ∥wτ∥0. (3.4.13)

Combining (3.4.5) and (3.4.12), we have

∥LΣwτ∥0 ≤ 3η∥w∥0. (3.4.14)

Then the Harnack inequality applied to (3.4.10) implies that there exists a constant Λ de-

pending on geometry of Σ in (M, g) and k such that

∥wτ∥0 ≤ Λ
(
minwτ + ∥LΣwτ∥0

)
≤ Λminwτ + 3ηΛ∥wτ∥0. (3.4.15)

If δ is chosen small enough (and so is η) such that 3ηΛ < 1, then

minwτ ≥ (1− 3ηΛ)Λ−1∥wτ∥0. (3.4.16)

Set ρ4 :=
1
2
(1−3ηΛ)Λ−1ρ3. From (3.4.13), we find the sheet Ψ(Θ+τ,Σ) is C2,α if ∥wτ∥0 ≤ ρ3.

If the sheets remain stable, then the foliation Ψ would continue and by (3.4.16) sweep the
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Figure 3.3: Thin maximal domain U containing parts of marginally stable CES Σ̃1. If ∂−U
is stable, then the foliation of stable CESs, Στ , coming out of ∂−U must terminate before
fully immerging in ∂+U .

region [0, ρ4]×Σ in normal coordinates. On the other hand, the Harnack inequality applied

to (3.4.7) implies that

∥v∥0 ≤ Λ
(
min v + ∥LΣv∥0

)
≤ Λmin v + ηΛ∥v∥0. (3.4.17)

Thus,

∥v∥0 ≤ (1− ηΛ)−1Λmin v. (3.4.18)

We set R := (1 − ηΛ)Λ−1ρ4. If τ(U) ≤ R, then min v ≤ τ(U) and (3.4.18) implies that

∂+U ⊂ (0, ρ4]× Σ. It follows that there exists a sheet Στ := Ψ(Θ + τ,Σ) in the foliation Ψ

for some positive number τ such that Στ lies on the +ν ′-side of ∂+U and contacts ∂+U at a

point, say p. By maximal principle,

H[Στ ](p) ≥ H[∂+U ](p). (3.4.19)
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But this contradicts the fact that θ[∂+U ] = Θ < Θ + τ = θ[Στ ]. This means that the

foliation Ψ towards the +ν-side of Σ must terminate at a marginally stable CES Σ̃1 which

has nonempty intersection with U . See Figure 3.3. Analogously, the maximal foliation Ψ′

of CES initiated from ∂+U towards the −ν ′-side must terminate at a marginally stable CES

Σ̃2 which has nonempty intersection with U .

3.4.2 Structure Theorem

In the subsection, we will investigate the structure of component Ω of Ω+. We begin by

considering D = {rk}∞k=1 ⊂ Ω a dense countable subset. We will apply Theorem 3.6 multiple

times without explicitly mentioning it throughout this subsection. Use diagonal argument

and relabeling index j, we may assume for all rk ∈ D the sequence Graph(f̃
(rk)
sj ) converges

in C∞
loc to either a maximal graph or a cylinder over a closed smooth surface. We then

decompose N as A ⊔B where

k ∈ A : f̃
(rk)
sj converges in C∞

loc to f̃
(rk)
0 on maximal domain Urk ⊂ u−1(u(rk)) ∩ Ω,

k ∈ B : Graph(f̃
(rk)
sj ) converges in C∞

loc to a cylinder over Σrk ⊂ u−1(u(rk)) ∩ Ω.

Lemma 3.22. {Urk}k∈A and {Σrℓ}ℓ∈B satisfy avoidance property. More precisely,

(1) For k ∈ A and ℓ ∈ B, Urk ∩ Σrℓ = ∅ ;

(2) If Urk ∩ Urℓ ̸= ∅ for k, ℓ ∈ A, then Urk = Urℓ ;

(3) If Σrk ∩ Σrℓ ̸= ∅ for k, ℓ ∈ B, then Σrk = Σrℓ .

Proof. To prove (1), suppose p ∈ Urk ∩ Σrℓ . By Theorem 3.6, as p ∈ Urk

lim
j→∞

|∇fsj(p)| < +∞
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and as p ∈ Σrℓ

lim
j→∞

|∇fsj(p)| = +∞.

It leads to a contradiction.

To prove (2), suppose p ∈ Urk ∩ Urℓ . By definition, we have the conversion identity

f̃ (rk)
sj

(x)− f̃ (rℓ)
sj

(x) = f̃ (rk)
sj

(rℓ) (3.4.20)

for all j, k, ℓ ∈ N and x ∈M . It follows that by letting sj → 0+

f̃
(rk)
0 (rℓ) = f̃

(rk)
0 (p)− f̃

(rℓ)
0 (p),

and thus

f̃
(rk)
0 (x)− f̃

(rℓ)
0 (x) = f̃

(rk)
0 (rℓ)

for all x ∈ Urk ∪Urℓ . This means that f̃
(rk)
0 , f̃

(rℓ)
0 only differ by a constant. By Theorem 3.6,

u ≡ u(p) in Uk ∪ Urℓ and f̃
(rk)
0 , f̃

(rℓ)
0 are both solutions to θ[f ] = u(p). Since Urk and Urℓ are

maximal domains in the sense that solutions blow up on the boundary, we immediately have

Urk = Urℓ .

To show (3), suppose p ∈ Σrk ∩ Σrℓ . We first claim that Σrk and Σrℓ contact at p but can

not cross each other. By Theorem 3.6, limj→∞
Dsj (p)√

1+|Dsj (p)|2
is the common unit normal to

Σrk and Σrℓ along which the expansions are both u(p). Suppose Σrk crosses Σrℓ , then there

are points q± in N±
δrk

(Σrk , νΣrk
) ∩ N∓

δrℓ
(Σrℓ , νΣrℓ

) respectively. It follows from Theorem 3.6

and the conversion identity (3.4.20) at q± that limj→∞ f̃
(rℓ)
sj (rk) is both +∞ and −∞, which

is a contradiction. Therefore, Σrk and Σrℓ contact each other from one side and both have

constant expansion u(p). By strong maximum principle, we find Σrk = Σrℓ .

Theorem 3.23 (Structure Theorem). Assume that any compact subset of M contains only
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Figure 3.4: Structure of black hole region. The region Ω enclosed by the outermost black
circle represents a component of black hole regions Ω+; The regions Ui’s enclosed by red
curves represent maximal domains; The blue dotted curves Φi(τ,Σi)’s represent foliations of
CESs; The purple line γ represents a curve crossing Ω. The nontrivial topology occurs in
the maximal domain U1.

a finite number of marginally stable CESs. Let u be a capillary blowndown limit of fs and let

Ω ⊂ Ω+ be a component of black hole region, say fsj → +∞ on Ω and sjfsj → u uniformly

on Ω. Then there exists a partition

Ω =

(
N1⋃
m=1

Um

)
∪

(
N2⋃
n=1

Φn([0, bn]× Σn)

)

where 1 ≤ N1, N2 < ∞, Um is a maximal domain of a solution to constant expansion

equation θ[f ] = u(Um), and Φn : [0, bn]× Σn → M is a smooth foliation of closed CES with

θ[Φ(·,Σn)] = u|Φ(·,Σn) with bn ≥ 0 (if bn = 0 the foliation degenerates to one sheet of CES).

See Figure 3.4 and Figure 3.5.

Proof of Theorem 3.23. For simplicity, we identify and then relabel the objects in {Urk} as
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Figure 3.5: Profile of a capillary blowdown limit u over the curve γ in Figure 3.4. The
black curve represents the capillary blowdown limit u, which vanishes outside of Ω, changes
monotonically along foliations Φi’s, and stagnates in maximal domains Ui’s.

{Um}N1
m=1 such that Um ∩ Un = ∅ if m ̸= n.

We prove that 1 ≤ N1 < ∞. Theorem 3.2 implies that N1 ≥ 1. Suppose N1 = ∞. By

compactness of Ω, avoidance property of Um and local estimates in Proposition 1.10, there

exists a subsequence {Um′} and an accumulation CES Σ∗ such that τ(Um′) < R0 as in

Proposition 3.20 and boundary components ∂±Umk
converge to Σ from one side smoothly

as m → ∞. Proposition 3.21 gives the constant R depending only on the geometry of Σ∗

in (M, g) and k. For large enough m′, components ∂±Um′ can be written as graphs over Σ∗

with very small sup-norm, say less than R. This means that τ(Um′) ≤ R. By the virtue

of estimate (3.4.13), we may assume R is also applicable to ∂±Um′ for sufficiently large

m′. By finiteness of the number of marginally stable CES in Ω, components of ∂±Um′ are

strictly stable except finitely many. By Proposition 3.21, for every sufficiently large m′ there

exists a closed smooth marginally stable CES Σ̃m′ which lies between Σ∗ and the further

boundary component of Um′ such that Um′ ∩ Σ̃m′ ̸= ∅. These CES Σm′ are distinct because

of avoidance property of {Um′} and Σ̃m′ ’s relative position to Um′ and Σ∗. This means that

there are infinitely many distinct closed smooth marginally stable CES in Ω, a contradiction
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to our assumption. Thus, N1 < ∞. As a consequence, we have rather simple topological

relations: Int(Ω−
⋃N1

m=1 Um) = Ω−
⋃N1

m=1 Um and ∂(Ω−
⋃N1

m=1 Um) =
⋃N1

m=1 ∂Um ∪ ∂Ω.

By Proposition 3.8, for every rk ∈ Ω−
⋃N1

m=1 Um where k ∈ B, Σrk is a stable with expansion

u(rk). Then we can use Proposition 3.15 for strictly stable CES or 3.18 for marginally stable

CES to construct a unique local foliation of CESs around Σrk . Since D ∩ (Ω −
⋃N1

m=1 Um)

is a dense subset in Ω −
⋃N1

m=1 Um, we conclude that each (open) connected component of

Ω −
⋃N1

m=1 Um is a foliation of CESs. All such foliations can be uniquely and smoothly

extended to CES in
⋃N1

m=1 ∂Um ∪ ∂Ω by connectness of Ω. There may also exist some

isolated CESs which are either the common boundaries of two adjacent maximal domains or

components of ∂Ω. These isolated CES can be expressed as degenerate foliations. Therefore,

the total number of components of foliations of CES is bounded by the number of components

of
⋃N1

m=1 ∂Um ∪ ∂Ω.

Remark 3.24. (1) Without the assumption of finite marginally stable CES in compact

sets, there may be infinitely many disjoint maximal domains. This would greatly

increase the complexity of the topology of the black hole region and capillary blowdown

limit.

(2) Despite the fact that we have u ∈ C0,1 from the construction in Section 3, u is generally

not C1.

Corollary 3.25. Under the assumption of Theorem 3.23, there exists a sequence sj → 0+

such that the sequence of graphs of translated functions f̃
(x0)
sj converges to a smooth subman-

ifold in an open neighborhood of (x0, 0) ∈M × R for every x0 ∈ Ω.

Proof. We will check that the subsequence sj obtained by diagonal argument satisfies the

claim. Suppose p ∈ Urk for k ∈ A, then it follows from the argument in the proof of Lemma

3.22 (ii) that f̃
(p)
sj converges to f̃

(rk)
0 + C in Urk for some constant C.
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Suppose p ∈ Ω−
⋃N1

m=1 Um. By passing to a further subsequence sj′ , Graph(f̃
(p)
sj′ ) converges

to either a graph on maximal domain Up or a cylinder over a closed smooth CES Σp, either of

which satisfies avoidance property together with {Urk ,Σrℓ}. Note (
⋃

k∈A Urk)∪ (
⋃

ℓ∈B Σrℓ) is a

dense subset of Ω. Thus, the limit submanifold of Graph(f̃
(p)
sj′ ) must be a cylinder over a closed

smooth CES Σp containing p. Then we may encounter two scenarios: p ∈ ∂(Ω−
⋃N1

m=1 Um)

and p ∈ Int(Ω−
⋃N1

m=1 Um). In the first scenario, either p ∈ ∂Um for some m or p ∈ ∂Ω. By

avoidance property, Σp lies outside of Um but inside of Ω and contacts ∂Um or ∂Ω respectively

at a point p. It follows from Theorem 3.6 that at the point p the unit normal vectors of Σp

and ∂Um or ∂Ω respectively are identical. Since Σp and ∂Um or ∂Ω respectively both satisfy

H−K ≡ u(p) with a contact point, strong maximum principle implies that Σp is a connected

component of ∂Um or ∂Ω respectively. In the second scenario, p lies in the interior of one

foliation of CESs, Φn

(
(0, bn) × Σn), in Theorem 3.23. The avoidance property and local

uniqueness of foliation around stable CES imply that Σp is a sheet of the foliation Φn. In

both scenarios, we found that Σp is uniquely determined. Thus, we can drop the dependence

of the choice of subsequence and the convergence holds true for the original sequence sj.

The pair (u, η) of capillary blowdown limit and its companion vector field preserve the

geometric information of regularized solutions when the blowup occurs.

Corollary 3.26. Assume that any compact subset of M contains only a finite number of

marginally stable CESs. Let u be a capillary blowdown limit of regularized solutions. Then

there exists a continuous, piecewise smooth vector field η on M satisfying the following prop-

erties.

(1) |η(x)| ≤ 1 for all x ∈M .

(2) If x lies in a maximal domain U of a solution f to constant expansion equation in the

Structure Theorem 3.23 or Ω0 associated with Jang’s equation, then η is the horizontal
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projection of Gauss map on Graph(f):

η(x) =
∇f(x)√

1 + |∇f(x)|2
.

(3) If x lies in a foliation of CESs in the Structure Theorem 3.23, then η(x) is the unit

normal to the CES which contains x.

(4) The pair (u, η) satisfies the equation

divM(η)− trgk + k(η, η) = u in M. (3.4.21)

Proof. We know from Proposition 1.11 that both Ω+ and Ω− have only finitely many con-

nected components (black hole regions). Applying Corollary 3.25 to all black hole regions,

there exists a decreasing subsequence sj′ → 0 such that

η(x) := lim
j′→∞

∇fsj′ (x)√
1 + |∇fsj′ (x)|2

exists for all x ∈ Ω+ ∪ Ω−.

Proposition 1.11 implies that the above limit η(x) also exists for x ∈ Ω0 with the same

subsequence sj′ and

η(x) =
∇f0(x)√

1 + |∇f0(x)|2
(3.4.22)

where f0 is the solution to Jang’s equation in Proposition 1.11. Claim (1) is clear. Claim

(2) and claim (3) follow from Proposition 3.6. Therefore, η is continuous everywhere, and

smooth except across boundaries of maximal domains and ∂Ω0. Claim (4) records the fact

that the solution f in (2) and CES in (3) satisfy constant expansion equation θ = u(U).

Corollary 3.27 (Volume estimate for black hole regions). Let

I = I(M, g) = inf
Ag(∂R)

3
2

Vg(R)
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be the isoperimetric constant of (M, g) where A and V are area and volume measure with

respect to g, and R is any bounded domain whose boundary is nice enough to define area.

Suppose Ω is a component of Ω− or Ω+. Then we have the volume estimate for Ω:

V (Ω) ≥ I2∥k∥−3
0;Ω (3.4.23)

and the area estimate for ∂Ω:

A(∂Ω) ≥ I2∥k∥−2
0;Ω. (3.4.24)

Proof. Suppose Ω ⊂ Ω+ is a connected component. Integrating (3.4.21) over Ω and use

divergence theorem,

A(∂Ω) +

∫
Ω

u = −
∫
∂Ω

⟨η, ν⟩+
∫
Ω

u = −
∫
Ω

{
trk − k(η, η)

}
.

Since u ≥ 0, by isoperimetric inequality we have

I
2
3A(Ω)

2
3 ≤ A(∂Ω) ≤ V (Ω)∥k∥0;Ω.

Thus,

V (Ω) ≥ I2∥k∥−3
0;Ω

and

A(∂Ω) ≥ I2∥k∥−2
0;Ω. (3.4.25)

If Ω is a connected component of Ω−, then we have

−A(∂Ω) +
∫
Ω

u = −
∫
Ω

{
trk − k(η, η)

}
where u ≤ 0 in Ω. Thus, we conclude the same result as for Ω+.
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3.5 Trival Capillary Blowdown Limit

This section contributes to the discussion of a very special blowup phenomenon. Given a

blowup sequence of regularized solutions, if the speed of caps escaping to infinity is much

slower than the contractive rescaling factor s, then it is likely that the rescaled sequence ends

up with the trivial capillary blowdown limit, which is identically zero. There is no obvious

evidence to exclude this possibility. Nevertheless, the trivial capillary blowdown limit is rigid

and gives a topological restriction on black hole regions.

3.5.1 Rigidity of Trivial Capillary Blowdown Limit

In general, the uniqueness of capillary blowdown limits on a given black hole region is not

clear. Whereas the trivial capillary blowdown limit has the following rigidity property.

Proposition 3.28. If there exists a sequence sj → 0+ such that

lim
j→∞

sup
x∈M

|usj(x)| = 0,

then

lim
s→0+

sup
x∈M

|us(x)| = 0.

The proof is based on the monotonicity property of maxM |us|. To show this, we need the

following gap estimate:

Lemma 3.29 (Estimate of gap). Suppose 0 < t < s and suppose fs, ft are solutions to

(1.4.2) and converge to 0 at each infinite end. Denote us = sfs and ut = tft.

(1) If min{maxM us,maxM ut} > 0, then supM(ft − fs) ≤ s−t
st

min{maxM us,maxM ut}.
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(2) If max{minM us,minM ut} < 0, then s−t
st

max{minM us,minM ut} < infM(ft − fs)(x).

Proof. We may assume supM(ft − fs) > 0; otherwise, there is nothing to prove. Since

ft − fs is smooth and decays to zero near infinity, there is x0 ∈M such that (ft − fs)(x0) =

maxM(ft − fs). By derivative test, we have

∇(ft − fs)(x0) = 0, ∇2(ft − fs) ≤ 0.

By subtracting regularized equations (1.4.2) associated with s and t, we obtain

0 ≥
(
gij − f i

sf
j
s

1 + |∇fs|2
)∇i∇j(ft − fs)√

1 + |∇fs|2
(x0) = tft(x0)− sfs(x0). (3.5.1)

There are two ways to split the difference. Firstly, we have

0 ≥ tft(x0)− sfs(x0)

= tft(x0)− tfs(x0) + tfs(x0)− sfs(x0)

= t
(
ft(x0)− fs(x0)

)
+ (t− s)fs(x0).

Thus,

ft(x0)− fs(x0) ≤
s− t

t
fs(x0) ≤

s− t

t
max fs =

s− t

st
maxus. (3.5.2)

Secondly, we have

0 ≥ tft(x0)− sfs(x0)

= tft(x0)− sft(x0) + sft(x0)− sfs(x0)

= (t− s)ft(x0) + s
(
ft(x0)− fs(x0)

)
.
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Thus,

ft(x0)− fs(x0) ≤
s− t

s
ft(x0) ≤

s− t

s
max ft =

s− t

st
maxut. (3.5.3)

Therefore, ft(x)− fs(x) ≤ ft(x0)− fs(x0) ≤ s−t
st

min{maxus,maxut}.

The result (2) follows analogously.

Corollary 3.30. Suppose 0 < t < s and suppose fs, ft are solutions to (1.4.2) and converge

to 0 at each infinite end. Denote us = sfs and ut = tft. Then

(1) If maxM us > 0, then maxM ut ≤ maxM us.

(2) If minM us < 0, then minM us ≤ minM ut.

Proof. Suppose ut achieves its maximum at x. We may also assume that maxM ut > 0;

otherwise, there is nothing to prove. Then Lemma 3.29 implies that

max
M

ut = tft(x) = t(ft(x)− fs(x)) + tfs(x)

≤ s− t

s
maxus +

t

s
us(x)

≤ max
M

us.

The result (2) follows analogously.

Proof of Proposition 3.28. It follows from Corollary 3.30 that supM |us| is increasing in s.

Therefore, supM |us| converges to zero as s→ 0+ if one sequence does.
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3.5.2 Topology of Black Hole Regions with Trivial Capillary Blow-

down Limit

The main theorem of this subsection asserts that when the dominant energy condition holds

strictly for the initial data set, if a capillary blowdown limit of fs is trivial in some black

hole region Ω, then Ω has rather simple topology.

Theorem 3.31. Suppose the dominant energy condition holds strictly, i.e., µ − |J |g > 0.

Let u be a capillary blowdown limit of fs and Ω be a connected component of Ω+ or Ω−

with boundary components Σ1, . . . ,Σl. Suppose u = 0 in Ω. Then the compactification Ω ∪

{P1, . . . , Pl} by adding a point to each boundary component is homeophorphic to a connected

sum of finite number of spherical space forms S3/Γ and S2 × S1.

We begin with the model case where the entire black hole region Ω = U is one maximal

domain of a solution f to Jang’s equation.

Proposition 3.32. Let U be a bounded maximal domain of solution f to Jang’s equation with

boundary components {Σ1, . . . ,Σl}. Suppose the dominant energy condition holds strictly,

i.e., µ − |J |g ≥ δ for some δ > 0. Then every boundary component of U is a 2-sphere

and the compactification U ∪ {P1, . . . , Pl} by adding a point to each boundary component is

homeomorphic to a smooth manifold of positive Yamabe type, i.e., the manifold admits a

metric such that the scalar curvature is positive (cf. Proposition A.2).

Remark 3.33. The claim that every boundary component of U is a 2-sphere will follow

from the same argument of Proposition 1.13.

To construct a compact smooth manifold out of U , we need the following gluing lemma

to cap off the openings ∂U by topological half 3-spheres. Note that the function u in the

conformal factor here no longer represents a blowdown limit.
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Lemma 3.34. Suppose (Σ, γ∗) is a 2-dimensional compact manifold with or without bound-

ary. Let γs(x) = e2w(x,s)γ∗(x) for s ∈ (a, b) be a smooth path in the conformal class of

γ∗. Suppose for each s ∈ (a, b) the first (Neumann if Σ has boundary) eigenvalue of the

2-dimensional conformal Laplacian λ1(−∆γs + κ(γs)) ≥ λ∗ for some λ∗ > 0 where κ(γs) is

the Gaussian curvature of Σ with respect to γs. Suppose w satisfies the boundary condition

d

ds

∣∣∣
s=a+

e2w(s,x) =
d

ds

∣∣∣
s=b−

e2w(x,s) = 0 for all x ∈ Σ, (3.5.4)

and

sup
s∈(a,b),x∈Σ

∣∣∣ d2
ds2

e2w
∣∣∣ <∞.

Then the first Neumann eigenvalue of the 3-dimensional conformal Laplacian λ1(−∆g+
1
8
Rg)

on the cylinder C := Σ×(a, b) equipped with the warped product g(x, s) = γs(x)+ds
2 is positive

(≥ λ∗
4
> 0).

Proof. Let is : Σ ↪→ Σ × (a, b) denote the inclusion map is(x) = (x, s) for s ∈ (a, b) and

x ∈ Σ. Then

∫
C
|dϕ|2gdVg =

∫ b

a

∫
Σ

{
|i∗sdϕ|2γs + |ϕ′|2

}
dAγsds

=

∫ b

a

∫
Σ

|i∗sdϕ|2γsdAγsds+

∫ b

a

∫
Σ

|ϕ′|2e2wdAγ∗ds

where ·′ denotes d
ds
·. By direct computation (see Proposition A.3), the scalar curvature R(g)

of the warped product metric is

R(g) = 2κ(γs)− 4(w′′)− 6(w′)2.
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Let ϕ ∈ C1(C) be bounded. Then

1

8

∫
C
R(g)ϕ2dVg

=
1

4

∫ b

a

∫
Σ

κ(γs)ϕ
2dAγsds+

∫ b

a

∫
Σ

{
− 1

2
w′′ϕ2e2w − 3

4
(w′)2ϕ2e2w

}
dAγ∗ds

=
1

4

∫ b

a

∫
Σ

κ(γs)ϕ
2dAγsds+

∫ b

a

∫
Σ

{
w′ϕϕ′e2w +

1

4
(w′)2ϕ2e2w

}
dAγ∗ds.

In the last equality, we integrate the second term by parts and use the boundary condition

(3.5.4). Putting above computations together gives

∫
C

{
|dϕ|2g +

1

8
R(g)ϕ2

}
dVg

≥ 1

4

∫ b

a

∫
Σ

{
|i∗sdϕ|2γs + κ(γs)ϕ

2
}
dAγsds+

∫ b

a

∫
Σ

e−
w
2 [(ϕe

w
2 )′]2dAγsds

≥ 1

4

∫ b

a

λ1(−∆γs + κ(γs))

∫
Σ

ϕ2dAγsds

≥ λ∗
4

∫
C
ϕ2dVg.

Consequently, λ1(−∆g +
1
8
R(g)) ≥ λ∗

4
> 0.

Remark 3.35. The boundary condition (3.5.4) is weaker than the condition that lims→a+ H[is(Σ)] =

lims→b− H[is(Σ)] = 0 where H[is(Σ)] is the mean curvature of is(Σ) in C with respect to ∂
∂s
.

In the following application of this lemma, we will take the cylinder S2 × (0, b) to be a flat

punctured 3-ball in spherical coordinate near the origin. In this case, w(x, s) = log s near

s = 0 and the mean curvature of sphere actually blows up near the origin, whereas d
ds
e2w

converges to zero near the origin.

Proof of Proposition 3.32. Let G = Graph(f, U) ⊂ (M × R, g + dt2) endowed with induced

metric g = g + df ⊗ df . Observe that vertical translations generate a Jacobi vector field
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whose normal component is

β := ⟨−∂t, νG⟩ = (1 + |∇f |2g)−
1
2 .

Using identities LGβ = 0 and (1.3.11) we find

2(µ− J(ν)) + |h− k|2g = −2divG(ξ +∇ log β)− 2|ξ +∇ log β|2g +R(g) (3.5.5)

where ξ =
(
k(ν, ·)♯

)⊤
. Choose t0 > 0 sufficiently large to be determined. Let ϕ ∈ C1(G).

Multiplying (3.5.5) by ϕ2, integrating by parts and using the pointwise Cauchy–Schwartz

inequality

2⟨X,∇ϕ⟩gϕ− |X|2gϕ2 ≤ 2|X|g |dϕ|g|ϕ| − |X|2gϕ2 ≤ |dϕ|2g,

we find∫
G∩
(
M×(−t0,t0)

) 2(µ− J(ν))ϕ2dVg ≤ 2

∫
G∩({±t0}×M)

ϕ2|⟨ξ +∇ log β, η±⟩g|dAg

+

∫
G∩
(
M×(−t0,t0)

) 2|dϕ|2g +R(g)ϕ2dVg

(3.5.6)

where η± = ± ∇f+|∇f |2∂t
|∇f |

√
1+|∇f |2

is the conormal on the section G ∩ (M × {±t0}) pointing out of

G ∩
(
M × (−t0, t0)

)
and dAg is the area element induced by g|G∩(M×{±t0}). Translating G

vertically as in Proposition 1.11 (2), G has infinite ends that are C2,α-asymptotic to (∂U×R).

Therefore, G∩(M×{±t0}) converges uniformly to ∂U as t0 → +∞. Then the trace theorem

implies that there exists constants C, T > 0 depending only on geometry of ∂U such that

for all t0 > T

∫
G∩
(
M×{±t0}

) ϕ2dAg ≤ C

∫
G∩
(
M×(−t0,t0)

) |dϕ|2g + ϕ2dVg.
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Since limt0→∞ η± = ±∂t and |∇ log β| ≤ c4 in Proposition 1.10, we have

lim
t0→∞

⟨ξ +∇ log β, η±⟩g = k(ν∂U ,±∂t)± ∂t log β = 0.

We also perturb G to exact cylinders ∂U ×R with a new metric g̃ = g|∂U + dt2 for t0 − 1 ≤

|t| ≤ t0 and keep g̃ = g for |t| ≤ t0 − 2. By choosing t0 > 0 large enough, the error term

due to perturbation and the boundary integral in (3.5.6) are bounded by ε times W 1,2-norm

of ϕ on G ∩
(
M × (−t0, t0)

)
for a very small ε > 0. By using the strong dominant energy

condition µ− |J |g ≥ δ, the inequality (3.5.6) implies

δ

∫
G∩
(
M×(−t0,t0)

) ϕ2dVg̃ ≤
∫
G∩
(
M×(−t0,t0)

) 3|dϕ|2g̃ +R(g̃)ϕ2dVg̃. (3.5.7)

Let Σi ⊂ ∂U be a connected component and let γ(i) = g
∣∣
Σi
. By Proposition 1.14, we know

that Σi is a closed stable apparent horizon. Following the same computation for (3.5.6)

without the presence of boundary integral (since Σi is closed), we have for any ξ ∈ C1(Σi),

δ

∫
Σi

ξ2dAγ(i) ≤
∫
Σi

(µ− J(ν))ξ2dAγ(i) ≤
∫
Σi

|dξ|2γ(i)dAγ(i) + κ(γ(i))ξ2dAγ(i) . (3.5.8)

It follows that the first eigenvalue of the 2-dimensional conformal Laplacian on (Σi, γ
(i)) is

positive. Taking ξ ≡ 1, we find

0 <

∫
Σi

κ(γ(i))dVγ(i) .

By Gauss-Bonnet theorem, Σi is homeomorphic to S2.

Next we will fill up the opening of G ∩
(
M × (−t0, t0)

)
by gluing a 3-ball to obtain a closed

manifold homeomorphic to U ∪ {P1, . . . , Pl} using the trick of path of conformal metrics in

[30]. Recall that each Σi is homeomorphic to S2. By abuse of notation, we will identify Σi as
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S2 equipped with metric γ(i) in the following discussion. By uniformization theorem, there

exists wi ∈ C∞(S2) such that γ(i) = e2wiγ∗ where γ∗ is the standard round metric on S2. Let

η(s) and a(s) be smooth functions on (0, 3) such that 0 ≤ η(s) ≤ 1 for all s ∈ (0, 3),

η(s) =

 0 , if s ∈ (0, 1],

1 , if s ∈ [2, 3),

and a(s) ≤ 0 for all s ∈ (0, 3),

a(s) =

 log s , if s ∈ (0, 1
2
],

0 , if s ∈ [2, 3).

Set

γ(i)s (x) = e2η(s)wi(x)+2a(s)γ∗(x)

so that γ
(i)
s = γ(i) for s ∈ [2, 3). Then the cylinder Ci := S2×(0, 3) equipped with the warped

product γ
(i)
s + ds2 coincides with flat punctured 3-ball in spherical coordinates for s ∈ (0, 1

2
),

and coincides with (G∩
(
Σi× (−t0, t0)

)
, g̃) for s ∈ (2, 3) with the orientation ∂s pointing into

G ∩
(
M × (−t0, t0)

)
. In such a way, we can patch up the opening by gluing a 3-ball Ci ∪ Pi

where Pi is the origin in spherical coordinates. We repeat the surgery at other cylindrical

ends and then we obtain a new smooth closed manifold (M̂, ĝ) which is homeomorphic to

G ∪ {P1, . . . , Pl} ∼= U ∪ {P1, . . . , Pl}.

To complete the proof, we need to show that (M̂, ĝ) is of the positive Yamabe type. It

suffices to show that λ1(−∆ĝ + 1
8
R(ĝ)) is positive, since this implies that there exists a

smooth positive eigenfunction u of −∆ĝ +
1
8
R(ĝ) on M̂ such that

R(u4ĝ) = 8u−5(−∆ĝu+
1

8
R(ĝ)u) = 8u−4λ1(−∆ĝ +

1

8
R(ĝ)) > 0,

and therefore M̂ admits a metric u4ĝ with positive scalar curvature. Let ϕ ∈ C1(M̂). The
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relevant bilinear form can be split into the sum of integrals on several portions:

∫
M̂

|dϕ|2ĝ +
1

8
R(ĝ)ϕ2dVĝ =

ℓ∑
i=1

∫
Ci∪Pi

+

∫
M̂\

⋃
j(Cj∪Pj)

|dϕ|2ĝ +
1

8
R(ĝ)ϕ2dVĝ.

For each integral on Ci∪Pi, we will use Lemma 3.34 to get a positive lower bound. By defini-

tion of γ
(i)
s , it is clear that the conditions for Lemma 3.34, d

ds

∣∣
s=0+

e2(ηwi+a) = d
ds

∣∣
s=3−

e2(ηwi+a) =

0 and supCi

∣∣ d2
ds2
e2(ηwi+a)

∣∣ <∞ hold true. By Proposition A.1, for any φ ∈ C∞(S2) the Gaus-

sian curvature of conformal metric e2φγ∗ on S2 is given by

κ(e2φγ∗) = e−2φ
(
κ(γ∗)−∆γ∗φ

)
. (3.5.9)

Let ξ ∈ C∞(S2). Using (3.5.9), for s ∈ (0, 3) the bilinear form related to the 2-dimensional

conformal Laplacian on (S2, γ
(i)
s ) can be rewritten as

∫
S2

|dξ|2
γ
(i)
s

+ κ(γ(i)s )ξ2dA
γ
(i)
s

=

∫
S2

|dξ|2γ∗ +
{
κ(γ∗)−∆γ∗

(
η(s)wi(x) + a(s)

)}
ξ2dAγ∗

=

∫
S2

|dξ|2γ∗ +
(
1− η(s)∆γ∗wi

)
ξ2dAγ∗

= η(s)

∫
S2

{
|dξ|2γ∗ +

(
1−∆γ∗wi(x)

)
ξ2
}
dAγ∗ + (1− η(s))

∫
S2

{
|dξ|2γ∗ + ξ2

}
dAγ∗

=: I + II.

To estimate I, we use (3.5.9) and (3.5.8) to obtain

I = η(s)

∫
S2

{
|dξ|2γ∗ +

(
1−∆γ∗wi(x)

)
ξ2
}
dAγ(i)

= η(s)

∫
S2

{
|dξ|2γ(i) + κ(γ(i))ξ2

}
dAγ(i)

≥ η(s)δ

∫
S2

ξ2dAγ(i)

≥ η(s)δ inf
Ci
e2(1−η)wi−2a

∫
S2

ξ2dA
γ
(i)
s
.
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To estimate II, we use the fact that λ1(−∆γ∗) = 2 to obtain

(1− η(s))

∫
S2

{
|dξ|2γ∗ + ξ2

}
dAγ∗

≥ 3(1− η(s))

∫
S2

ξ2dAγ∗

≥ 3(1− η(s)) inf
Ci
e−2ηwi−2a

∫
S2

ξ2dA
γ
(i)
s
.

Then we can conclude that

∫
S2

|dξ|2
γ
(i)
s

+ κ(γ(i)s )ξ2dA
γ
(i)
s

≥
(
η(s)δ inf

Ci
e2(1−η)wi−2a + 3(1− η) inf

Ci
e−2ηwi−2a

) ∫
S2

ξ2dA
γ
(i)
s
.

Since a ≤ 0 and 0 ≤ η ≤ 1, the coefficient of the integral on the right is positive for all

s ∈ (0, 3). It follows that there exists λ∗ > 0 such that λ1(−∆
γ
(i)
s

+ κ(γ
(i)
s )) ≥ λ∗ for all

s ∈ (0, 3). We repeat the argument on all Ci ∪ Pi’s and we may assume λ∗ is a lower bound

of λ1(−∆
γ
(i)
s

+ κ(γ
(i)
s )) for all Ci ∪ Pi’s. Using Lemma 3.34, we conclude that

ℓ∑
i=1

∫
Ci∪Pi

|dϕ|2ĝ +
1

8
R(ĝ)ϕ2dVĝ ≥

λ∗
4

ℓ∑
i=1

∫
Ci∪Pi

ϕ2dVĝ.

From (3.5.7), we find

∫
M̂\

⋃
j(Cj∪Pj)

|dϕ|2ĝ +
1

8
R(ĝ)ϕ2dVĝ ≥

1

8

∫
M̂\

⋃
j(Cj∪Pj)

3|dϕ|2ĝ +R(ĝ)ϕ2dVĝ ≥
1

8
δ

∫
M̂\

⋃
j(Cj∪Pj)

ϕ2dVĝ.

Putting all together, we conclude that there exists α = α(λ∗, δ) > 0 such that

∫
M̂

|dϕ|2ĝ +
1

8
R(ĝ)ϕ2dVĝ ≥ α

∫
M̂

ϕ2dVĝ.

The following topological classification theorem of connected, orientable, closed, Yamabe-
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positive 3-manifolds is the final component of our proof. This theorem is a byproduct of

Perelman’s proof of the geometrization theorem, together with the early classification results

of Schoen–Yau [38] and Gromov–Lawson [20]. The assertion can be found in the survey paper

[11, Theorem 2.1].

Proposition 3.36 (Gromov–Lawson, Schoen–Yau). Let X3 be a connected, orientable, com-

pact manifold without boundary with positive Yamabe type. Then X is homeomorphic to a

connected sum of finite number of spherical space forms S3/Γ, where Γ is a finite subgroup

of SO(4) acting freely on S3, and S2 × S1.

Now we are ready to combine Proposition 3.36 for the special case, the Classification Theorem

3.36 together with the Structure Theorem 3.23 of black hole regions to prove Theorem 3.31.

Proof of Theorem 3.31. Without the assumption that there are only finitely many closed

smooth marginally stable CES in compact sets in (M, g, k), the Structure Theorem 3.23

implies that

Ω =

(
N1⋃
m=1

Um

)
∪

(
N2⋃
n=1

Φn([0, bn]× Σn)

)

where 1 ≤ N1, N2 ≤ ∞, Um is a maximal domain of solution to Jang’s equation for all m

and Φn is a smooth foliation of closed MOTS or MITS for all n. There may be infinitely

many maximal domains Um’s. But since the black hole region Ω is bounded, all except

finitely many Um’s are thin as defined in Proposition 3.20. Proposition 3.20 implies that

each thin Um is homeomorphic to a cylinder over its boundary component and Proposition

3.32 implies that the boundary components of thin Um are 2-spheres. Therefore, all thin

Um’s are homeomorphic to round cylinder S2 ×R and contribute nothing to the topological

structure of entire connected sum.

Every boundary component of Φn([0, bn]×Σn) is a connected component of ∂Um or ∂Ω which
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is a 2-sphere by Proposition 3.32 and Remark 3.33. Thus, each foliation Φn([0, bn]× Σn) is

homeomorphic to a round cylinder [0, bn]× S2 (which may degenerate to {0} × S2).

The main contributions to the topological structure of the black hole region come from

finitely many thick maximal domains. Combining Proposition 3.32 and Proposition 3.36,

the compactification of each thick maximal domain Um by adding a point to each boundary

component is homeomorhpic to a connected sum of finite number of spherical space forms

S3/Γ and S2 × S1. On the other hand, we may view thin maximal domains and foliations

as cylindrical necks connecting finitely many thick maximal domains in the entire connected

sum. Consequently, the compactification Ω ∪ {P1, . . . , Pl} is homeomorphic to a connected

sum of finite number of spherical space forms S3/Γ and S2 × S1.

Corollary 3.37. Suppose the dominant energy condition holds strictly, i.e., µ > |J |. Let

u be a capillary blowdown limit of fs and Ω ⊂ Ω+ with boundary components Σ1, . . . ,Σl.

If the compactification Ω ∪ {P1, . . . , Pl} by adding a point to each boundary component is

not homeophorphic to a connected sum of finite number of spherical space forms S3/G and

S2 × S1, then u is not trivial in Ω.

104



Bibliography

[1] L. Andersson, M. Eichmair, and J. Metzger. Jang’s equation and its applications to
marginally trapped surfaces. In Complex analysis and dynamical systems IV. Part 2,
volume 554 of Contemp. Math., pages 13–45. Amer. Math. Soc., Providence, RI, 2011.

[2] L. Andersson, M. Mars, and W. Simon. Local existence of dynamical and trapping
horizons. Physical Review Letters, 95(11), sep 2005.

[3] L. Andersson, M. Mars, and W. Simon. Stability of marginally outer trapped surfaces
and existence of marginally outer trapped tubes. Adv. Theor. Math. Phys., 12(4):853–
888, 2008.

[4] L.-E. Andersson and J. Metzger. The area of horizons and the trapped region. Com-
munications in Mathematical Physics, 290:941–972, 2009.

[5] R. Arnowitt, S. Deser, and C. W. Misner. The dynamics of general relativity. In
Gravitation: An introduction to current research, pages 227–265. Wiley, New York,
1962.

[6] D. Azagra, J. Ferrera, and B. Sanz. Viscosity solutions to second order partial differential
equations on Riemannian manifolds. J. Differential Equations, 245(2):307–336, 2008.

[7] R. Bartnik. The mass of an asymptotically flat manifold. Comm. Pure Appl. Math.,
39(5):661–693, 1986.

[8] H. Berestycki and L. Rossi. Generalizations and properties of the principal eigenvalue of
elliptic operators in unbounded domains. Comm. Pure Appl. Math., 68(6):1014–1065,
2015.

[9] H. L. Bray and M. A. Khuri. A Jang equation approach to the Penrose inequality.
Discrete Contin. Dyn. Syst., 27(2):741–766, 2010.

[10] H. L. Bray and M. A. Khuri. P.D.E.’s which imply the Penrose conjecture. Asian J.
Math., 15(4):557–610, 2011.

[11] A. Carlotto. A survey on positive scalar curvature metrics. Boll. Unione Mat. Ital.,
14(1):17–42, 2021.

[12] X. Chai. Hypersurfaces of prescribed null expansion. arxiv: 2107.12782, 2021.

105
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Appendix A

Deformation of Scalar Curvature

Proposition A.1 (Conformal transformation of scalar curvature, [41] Chapter 5). Let

(Mn, g) be a smooth Riemannian manifold with dimension n ≥ 2. If n = 2, then for any

smooth function u

R(e2ug) = e−2u
(
R(g)− 2∆gu

)
,

or equivalently, using the Gauss curvature κ = 2R,

κ(e2ug) = e−2u
(
κ(g)−∆gu

)
;

if n > 2, then for any positive smooth function u

R(u
4

n−2 g) = c(n)−1u−
n+2
n−2Lgu,

where Lg := −∆g + c(n)R(g) is call the conformal Laplacian and c(n) = n−2
4(n−1)

.

Let Mn be a compact manifold with n ≥ 3 equipped with a background metric g0. Define
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the conformal class of g0 by

[g0] =
{
g = e2fg0 : f ∈ C∞(M)

}
.

The Yamabe invariant of this conformal class is defined to be

Y([g0]) = inf

{∫
M

R(g) dVg : g ∈ [g0], V (M, g) = 1

}
.

Using the conformal Laplacian, for a conformal metric g = u
4

n−2 g0 with u > 0

∫
M

Rg dVg = c(n)−1

∫
M

|∇g0u|2 + c(n)R(g0)u
2 dVg0 .

It follows from the variational characterization of the first eigenvalue of the Schrödinger

operator, Lg0 , that we have the following trichotomy theorem.

Proposition A.2 (Trichotomy theorem, cf. [43]). Let (M3, g0) be a closed, compact, smooth

Riemannian manifold with n ≥ 3. Then the conformal class of g0 belongs to one of the

following three classes:

(1) Y([g0]) > 0 ⇐⇒ ∃g ∈ [g0],R(g) > 0 ⇐⇒ λ1(Lg0) > 0.

(2) Y([g0]) = 0 ⇐⇒ ∃g ∈ [g0],R(g) = 0 ⇐⇒ λ1(Lg0) = 0.

(3) Y([g0]) < 0 ⇐⇒ ∃g ∈ [g0],R(g) < 0 ⇐⇒ λ1(Lg0) < 0.

Lemma A.3. Suppose (Σ, γ) is a 2-dimensional smooth manifold. Let C := Σ × (a, b) and

let w be a smooth function on C. Consider the warped product g(x, s) = e2w(x,s)γ(x)+ ds2 on

C. Then

R(g) = 2κ(e2w(x,s)γ(x))− 4(w′′)− 6(w′)2,
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where ′ means the derivative in s, κ(e2w(x,s)γ(x)) is the Gauss curvature of the slice Σ× {s}

equipped with the conformal metric e2w(x,s)γ(x).

Proof. Let x1, x2 be coordinates on Σ such that γij = δij at a point, and let x3 = s be the

coordinate on (a, b). Take indices 1 ≤ i, j, k, ℓ ≤ 2 and 1 ≤ a, b, c, d ≤ 3. We only need

to take extra care of the components involving x3. We let Ric and R denote the geometric

quantities of the slice Σ × {s} equipped with the conformal metric e2wγ. Recall the the

Christoffel symbol of g is given by

Γc
ab =

1

2
gcd
(
∂dgad + ∂agbd − ∂dgab

)
.

One can compute

Γ3
a3 = 0, Γ3

ij = −w′e2wγij, Γk
33 = 0, Γk

i3 = w′δki .

Recall the Riemanian curvature tensor is given by

Ra
bcd = ∂cΓ

a
db − ∂dΓ

a
cb +

(
Γe
dbΓ

a
ce − Γe

cbΓ
a
de

)
.

Thus, one can compute

Ricij = ∂aΓ
a
ji − ∂jΓ

a
ai + Γe

jiΓ
a
ae − Γe

aiΓ
a
je

= Ricij + ∂3Γ
3
ji −���∂jΓ

3
3i +�

���Γe
jiΓ

3
3e − Γe

3iΓ
3
je + Γ3

jiΓ
k
k3 − Γ3

kiΓ
k
j3

= Ricij +
(
− w′′ − 2(w′)2

)
e2wδij

− (w′δki )(−w′e2wδij) + (−w′e2wδji)(w
′δkk)− (−w′e2wδki)(w

′δkj )

= Ricij − (w′′ + 2(w′)2)e2wδij,
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and

Ric33 = �
��∂aΓ

a
33 − ∂3Γ

a
a3 +����Γe

33Γ
a
ae − Γe

a3Γ
a
3e

= −∂3(w′δkk)− (−w′δℓk)(−w′δkℓ )

= −2w′′ − 2(w′)2.

Therefore, we have

R = gabRicab

= R− e−2wδij(w′′ + 2(w′)2)e2wδij +
(
− 2w′′ − 2(w′)2

)
= 2κ(e2wg)− 4w′′ − 6(w′)2.
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