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CHAPTER 1: Mapping the Terrain: An Overview of the Dissertation 

Today we celebrate almost two centuries of theoretical advancements in soil-water interactions, 

particularly soil infiltration. This effort has resulted in sophisticated mathematical models and 

experimental techniques that mark a rich history that has deepened our understanding of infiltration 

processes, contributing to more effective water management strategies, soil conservation, and 

environmental practices. 

Looking ahead, I truly believe there is no better time to study soil infiltration than today with all 

the exciting modeling advancements, technologies, and applications. The proliferation of models 

has indeed advanced our collective ability to understand infiltration processes.  However, this wide 

array of modeling options has presented a real challenge for researchers to select which model to 

use, and what procedures to follow for analyzing experimental infiltration data and extracting soil 

hydraulic properties. While many reviews have covered different aspects of infiltration processes 

and modeling, until now there has not been a comprehensive and objective examination of 

infiltration models in the literature. 

This gap motivated me to develop a detailed review that summarized and mapped conceptual and 

empirical infiltration models’ development through historic and theoretical lenses over the last two 

centuries. First, I started by tracing the evolution of the basic and fundamental physical flow 

models for rigid (non-swelling) soils that researchers have built on and used as steppingstones to 

model infiltration. Then I extended my review beyond the rigid soil’s theory to encompass the 

characterization of water movement through deformable (swelling) soils. Moving from these 

pioneering concepts, I collected and identified 138 infiltration models spanning from early theories 

to the most recent models, including their mathematical equations along with their underlying 

philosophies and concepts. These infiltration models were categorized into a wide spectrum of 
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formats and applications from conceptual to empirical equations, rigid to non-rigid swelling soils, 

one-dimensional to multi-dimensional infiltration, from pre-ponding to completely saturated 

porous media.  

Despite the hundreds of infiltration models that were developed, they all clustered theoretically 

around major milestones that were achieved by six or seven major contributions, starting with the 

early theoretical work of Navier-Stoke and Hagen-Poiseuille at the pore scale moving into Darcy 

and Richard-Richards-Buckingham at the core scale, then opening into dual and multiple domains. 

Around the 1990’s, as models started to build on each other for advancing models’ ability to predict 

infiltration, they tended to treat earlier classic models like Darcy and Richard as absolute laws. 

This paradigm was clearly evidenced by a decline in citations of these foundational models within 

papers introducing new theoretical models. At this stage, we take our review as an opportunity to 

reopen a dialogue in the soil physics and soil science community, inspiring researchers to ask 

critical questions, as well as to challenge and improve the current theory as we aspire to advance 

modeling of infiltration. Achieving this requires treating all theories with the critical lens of a 

curious scientist and becoming less “comfortable” with some of our assumptions, theories, and 

boundary conditions.  

At this stage, my review offers a unique examination of the evolution of infiltration modeling, 

guiding researchers in selecting the most appropriate infiltration model tailored to their specific 

application, as well as inspiring them to challenge existing theories. However, the uncertainty 

researchers encounter when determining appropriate procedures for analyzing experimental 

infiltration data and extracting soil hydraulic properties has not been addressed yet. Put simply, 

it’s essential to address the accuracy of extracting soil hydraulic properties, such as saturated 

hydraulic conductivity 𝐾𝑠 (LT-1) and sorptivity 𝑆 (LT-0.5) across different infiltration models. These 
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properties play crucial roles in infiltration modeling as they govern movement and retention of 

water through soil.  

The accuracy of 𝐾𝑠 (LT-1) and 𝑆 (LT-0.5) estimates depends on various factors, including the degree 

to which steady flow is attained within the system being studied, ability of each experimental 

method to account for various theoretical and practical constraints associated with representing the 

physical system using a particular infiltration model, and robustness of the parameter estimation 

techniques employed. Using experimental infiltration data, researchers often employ various 

extraction methods, such as inverse modeling or curve fitting algorithms to estimate 𝐾𝑠 (LT-1) and 

𝑆 (LT-0.5). When employing the same extraction method, different infiltration models may yield 

similar estimates of 𝐾𝑠 (LT-1) and 𝑆 (LT-0.5), particularly if they are based on comparable 

theoretical frameworks and parameterization techniques. However, variations in model 

complexity, input data requirements, and applied extraction techniques, especially given the 

evolving landscape of infiltration databases, as well statistical and numerical data analysis, can 

lead to differences in estimated 𝐾𝑠 (LT-1) and 𝑆 (LT-0.5) values. A comprehensive and unbiased 

assessment of these similarities and discrepancies has been lacking till now.  

Given these aspects, I carried out a metadata analysis using a global infiltration database of 5,023 

cumulative infiltration curves to assess variability of the estimated infiltration characteristics, 𝐾𝑠 

(LT-1) and 𝑆 (LT-0.5) across eleven one-dimensional (1D) and four three-dimensional (3D) 

infiltration models, considering different extraction techniques applied to estimate those 

characteristics. By examining the differences in predictions of 𝐾𝑠 (LT-1) and 𝑆 (LT-0.5) among 

infiltration models using diverse data analysis methods, we gained insight into the robustness of 

available applied practices in estimating soil hydraulic parameter through multi-dimensional 

infiltration modeling. 
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My PhD journey focused on discovering and assessing infiltration modeling, one key observation 

that I found very interesting, yet insightful, is the significant absence of and the need for theoretical 

frameworks studying the impacts of soil structure on water infiltration. Soil structure plays a 

crucial role in governing the movement and distribution of water within the soil profile, yet there 

is a notable gap in the existing literature in terms of theoretical frameworks specifically addressing 

this aspect of infiltration modeling. 

Motivated by growing availability of large databases of soil properties, I further explored how soil 

structural properties control soil infiltration capacity, while using statistical modeling methods 

through a meta-analysis systematic review. My systematic review again highlighted the dominance 

of field-scale experimental studies comparing field responses under different soil practices or 

treatments over the modeling efforts studying the effects of soil structure on water infiltration.  

To conduct this meta-analysis systematic review, I formulated the following question: “How does 

soil structure affect water infiltration?”. From there, I built a literature search strategy, applying 

specific inclusion and exclusion criteria to collect and analyze data from the most relevant research 

on soil structure and water infiltration. Several pedo-transfer functions were developed, revealing 

significant correlations (R2>0.5) between infiltration rate and soil structural properties (such as 

bulk density, wet aggregate stability, mean weight diameter, organic carbon, and porosity), 

highlighting the positive effects of improving soil structure on water infiltration and the dynamic 

nature of infiltration response. Structure and soil texture assessed together lead to stronger 

predictability of soils infiltration characteristics than when each soil property is considered alone. 

As I conclude my PhD journey, I strongly believe that our scientific rigor and curiosity as a 

community should continue to guide us through the discoveries of new relationships and the 

understanding of more dominant soil-water processes. From the inherent variability of soil systems 
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to preferential flows, water repellency and surface processes, the pursuit of practical and adaptive 

infiltration models should persist. As we move forward in today’s world governed by “big data”, 

we could draw some inspiration from the growing availability of large databases and advanced 

data analytics. Eventually, we can develop comprehensive theoretical frameworks that not only 

advance our knowledge but also enhance the relevance of soil-water interactions in addressing 

real-world challenges.  
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CHAPTER 2: Evolution of Infiltration Modeling: Theory and Historical Perspectives 

2.1. Abstract 

Infiltration regulates the movement and storage of water at the soil-atmosphere interface and is, 

therefore, a key component of many related physical and biogeochemical processes. Numerous 

studies have examined infiltration over the past two centuries. These efforts have resulted in the 

development of numerous models that capture the effects of specific soil properties and initial and 

boundary conditions. This proliferation of models has advanced our collective ability to understand 

infiltration processes but has also made it challenging for researchers to select appropriate 

approaches for analyzing experimental infiltration data or for conducting basic research on soil 

parameters like saturated hydraulic conductivity or sorptivity. Here, we aimed to reduce this 

uncertainty by developing a comprehensive literature review of published infiltration models, 

including their underlying philosophies and evolution across the years. Through this effort we 

compiled and examined 138 unique infiltration models. We grouped models into two major 

categories, empirical and conceptual, noting boundaries between those two categories are at times 

debatable. We considered conceptual approaches as those built based upon earlier concepts, 

mainly derived from fundamental flow models, resulting in analytical solutions applied to the 

infiltration problem. We classified empirical models as those that solved the infiltration problem 

by curve-fitting measured data with algebraic equations. After classifying and providing a full 

historical retrospective of these models, we examined specific model parameters and how their 

usage has changed with time. We also reviewed different methods applied to estimate infiltration 

parameters, as well as the challenges that arise when using such methods.  
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2.2. Introduction 

Water infiltration is one of the most important processes of the hydrologic cycle for assessing 

runoff, soil moisture, groundwater recharge, nutrient leaching, plant growth and many other soil-

related processes (Zadeh et al., 2007; Singh, 2010; Fodor et al., 2011). Because of its importance, 

infiltration has been widely studied for over two centuries (Ghorbani et al., 2009). This attention 

led to development of numerous infiltration models, classified into two categories: conceptual and 

empirical models. Conceptual models are derived from fundamental and physical theories and 

typically account for soil properties and specific boundary and initial conditions, while empirical 

models are based on fitting experimentally measured data using defined mathematical functions 

(Assouline, 2013; Jacka et al., 2016).  

Among the conceptual models, most equations were derived from Darcy’s law and substantially 

influenced by approximating solutions and assumptions of Buckingham and Richardson-Richards. 

Although some researchers have questioned the validity of Buckingham’s assumptions and 

Richardson-Richards’ equations (Hunt et al., 2013; Beven 2018; Abou Najm et al., 2019; 

Germann, 2021), several extensions and new applications of Darcy-Buckingham–Richardson-

Richards paradigm for saturated and unsaturated flow (hereafter referred to as Darcy-BRR and 

explained in depth in the following section) were developed as an attempt to estimate infiltration. 

For example, flow in infiltration models was mostly derived from an abstracted and often overly 

simplified soil pore-structure of a bundle of capillary tubes. Comparatively rare are advancements 

reporting progress in percolation theory, network models, and Stokes viscous approach (Hunt et 

al., 2013; Beven, 2018; Germann, 2021). 

The abundancy of developed equations motivated other researchers to build reviews that 

investigate different infiltration models. Some of these reviews were comprehensive summaries of 
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various conceptual and empirical equations (Kutilek and Nielsen, 1994; Clothier, 2001; Raats et 

al., 2002; Delleur, 2006; Barry et al., 2007). Others provided insight of the historical evolution of 

infiltration theory, including the classic solutions of Richards’ equation (Youngs, 1995), or more 

generally, simple physical models (Assouline, 2013). Building on these reviews (Youngs, 1995; 

Assouline, 2013), other researchers have worked to identify which models are satisfactory for field 

applications. Typically, such models were fi t ted to measured infiltration data (e.g., cumulative 

infiltration vs. time of infiltration) for estimation of the parameters of fitted infiltration models. 

Ease and accuracy of estimated parameters were further assessed through evaluation techniques 

that identify the best-fit infiltration models for different datasets (Fodor et al., 2011; Jacka et al., 

2016; Nie at al., 2017b; Bayabil et al., 2019).  

Most reviews on infiltration theory provided a comprehensive evaluation of the commonly used 

infiltration models developed over the past century, highlighting the seminal works of Green and 

Ampt (1911), Philip (1957a, b), Parlange et al. (1982), Swartzendruber (1987), and Haverkamp et 

al. (1990, 1994), along with key empirical equations by Kostiakov (1932), Horton (1940), 

Mezencev (1948), and Holtan (1961). These models are still extensively studied and applied. 

However, in the last two decades, substantial efforts have been built on the above-mentioned 

models, leading to theoretical improvements and a wider body of research on modeling infiltration. 

These advancements have ultimately led to a larger and more diverse set of infiltration models and 

to more open discussions on the validity and application of some of the dominant theoretical 

frameworks. To this end, it became challenging for researchers to select appropriate approach(es) 

for analyzing experimental infiltration data or for conducting basic research on soil parameters 

like saturated hydraulic conductivity or sorptivity. Therefore, a comprehensive and current review 

covering both past and recent model development is still needed.  
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Here, we present a comprehensive critical review that traces the development of conceptual and 

empirical models over the past two centuries through both historical and theoretical lenses. With 

this review, our objectives are to 1) build an inclusive historical retrospective of the evolution of 

the infiltration problem and its solutions, 2) highlight the diversity in form, origin, and theory 

among reviewed infiltration models, and 3) explore methods applied to estimate the basic model 

parameters, including saturated hydraulic conductivity and sorptivity. To this end, we aimed for 

models that provided theoretical advancements, novel frameworks, and unique empirical fits, and 

excluded papers that focused on iterative or incremental advancements of existing models, as well 

as papers that adapted these models to other uses (e.g., hydraulic characterization).  
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2.3. Underlying physics of infiltration processes 

Water, lying upon or below the soil surface, infiltrates principally because of two forces of 

comparable importance, capillarity, and gravity (Buckingham, 1907). Absorption of water due to 

capillarity, namely sorptivity 𝑆 (LT-0.5), controls water movement at the early state of infiltration; 

then at transient state, hydraulic conductivity 𝐾 (LT-1) comes into play and dominates the 

infiltration process at steady state, which is mainly driven by gravity (Philip 1957b). The hydraulic 

conductivity, 𝐾 (LT-1), varies rapidly and nonlinearly with matric head, 𝜓 (L) (Richards, 1931). 

Integration of 𝐾 (LT-1) over a range of 𝜓 (L) is defined as matric flux potential, 𝜑 (L2T-1), which 

provides an interesting approach to the infiltration problem in unsaturated soils (Raats, 1971). The 

relative importance of capillarity over gravity during water infiltration in unsaturated soils is 

expressed by a scaling factor defined as the capillary length, 𝜆𝑐 (L) (Philip, 1985). 𝜆𝑐  (L) is equal 

to the inverse of a parameter 𝛼 (L-1) introduced by Gardner (1958) as a general description of soil 

textural and structural characteristics. 𝛼 tends to be small in fine-textured soils with capillarity 

dominant, while large in coarse-textured soils where gravity is important. Typically, 𝛼 is about 

1 𝑚−1, and the range 0.1 to 5 𝑚−1 can be representative of the full moisture range in real soils 

(Philip, 1984). Elrick and Reynolds (1992) suggested four values i.e., 𝛼 = 36, 12, 4 and 1 𝑚−1 

for practical use of permeameters and infiltrometers in soils varying from coarse sands to 

compacted clays. The reader should note that the larger values (i.e., 12 and 36 m-1) are for "sand 

fractions" and/or apply over small capillary ranges. 

Infiltration, at both local and field scales, can be treated as a one-dimensional (1D) process 

assuming water flow below the water source at soil surface or subsurface is directionally restricted. 

Otherwise, a multi-dimensional infiltration including two-dimensional (2D) flow through planar 

or axi-symmetrical domains, and fully three-dimensional (3D) flow can be established.    
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To determine water infiltration into soils, it is necessary to impose appropriate boundary 

conditions. These conditions include concentration, pressure, or flux-based depictions. Such 

boundaries may be summarized as: 

1) The concentration type boundary condition states that there is an infiltration flow that 

corresponds to the value of water content at the soil surface below saturation (but above 

the initial water content of the soil profile) and that the pressure head is fixed to negative 

or zero since the boundary is unsaturated.  

2) When water is ponding at the soil surface imposing hydrostatic head pressure, ℎ0 (L), at 

the boundary between the soil and the constant or falling water in a furrow, lake, or river, 

infiltration is governed by a pressure type boundary condition.  

3) When a water flux, 𝑞0 (LT-1), occurring primarily in sprinkling irrigation or rain is imposed 

across the boundary, a flux boundary condition can be applied as long as 𝑞0 is below the 

soil infiltration capacity. As soon as infiltration capacity decreases below the imposed 

water flux, runoff may be generated at the soil surface. 

The boundary conditions may change from prescribed flux to prescribed head type conditions (and 

vice-versa). For instance, when the precipitation or irrigation rate 𝑞0 (LT-1) exceeds infiltration 

capacity of the soil, ponding will occur. In this case, infiltration rate is no longer controlled by 

precipitation rate, but instead by infiltration capacity of soil. 

Finally, soil characteristics greatly affect water infiltration. Some soil characteristics with 

relatively high importance include:  

• Rigid vs. deformable or shrink-swell soils 

• Isotropic vs. anisotropic soils 

• Homogeneous vs. scale-heterogeneous or heterogeneous soils 
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• Non-hydrophobic vs. hydrophobic soils 

• Single- vs. dual- or multi-porosity domains 

• One- vs. two- or multi-layer soil profiles 

• Flat vs. sloping soil surfaces 

Infiltration models are mostly designed to characterize infiltration into simplistic soils, i.e., rigid, 

homogeneous, isotropic, and non-hydrophobic soils. These soils have idealized conditions with no 

water-repellency, preferential flow, or any other factors where the cumulative infiltration curves 

reflect a characteristic concave shape. The concave curve demonstrates higher infiltration capacity 

at early stages that reaches a constant slope at steady state. However, different soil and field 

conditions can alter this behavior leading to cumulative infiltration curves that exhibit convex, 

mixed, or non-standard shapes (e.g., Chen et al., 2020; Abou Najm et al., 2021; Pachepsky and 

Karahan, 2022).  

Altogether, the physics underlying infiltration processes are highly complex. To be able to select 

and apply the most appropriate model(s), it is important to understand how variables such as flow 

direction and dimensionality, driving forces, non-uniformities in drivers and media, and boundary 

conditions all interact. To guide the model selection process, we emphasized, in the first section 

of our review, the underlying physics of infiltration processes that encompass dimensions and 

directions, forces, convex vs. concave curves, homogeneity vs. heterogeneity and non-uniform 

flow drivers, as well as a brief discussion of common boundary conditions. In the following 

sections, we provided a narrative of the history and evolution of major infiltration models, divided 

into 1) empirical models and 2) conceptual models divided as macro-scale depictions of flow in 

rigid versus deformable soils. Across the years, modeling infiltration shifted from an extensive use 
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of analytical approaches to numerical computations, which aligned with the development of 

mathematics and resolving techniques throughout history. 
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2.4. Evolution of the basic flow models for rigid soils  

We summarized basic and fundamental physical flow models used as the foundations for modeling 

infiltration in rigid (non-swelling) soils (Error! Reference source not found.2.1). Below, we 

present the main fundamental equations that were used as steppingstones in most of the infiltration 

models reviewed in this paper. 

The Navier-Stokes equation was the first fundamental concept, developed by Navier (1823) and 

Stokes (1850), that described laminar motion of incompressible fluids flowing through 

homogeneous and smooth surfaces in both horizontal and vertical directions: 

𝜌 (
𝜕�⃗� 

𝜕𝑡
+ (𝑣 . 𝛻)𝑣 ) = −𝛻𝑃 + 𝜌𝑔 + 𝜇𝛻2𝑣                                                                                                       [2.1] 

where 𝑣 (LT-1) is velocity, 
𝑑𝑣

𝑑𝑡
 (LT-2) is the change of velocity with respect to time 𝑡 (T), ∇𝑃 (ML-

2T-2) is the pressure gradient, 𝜌 (ML-3) is fluid density , 𝜇 (ML-1T-1) is the dynamic viscosity of the 

fluid, and 𝑔 (LT-2) is the acceleration of gravity, and 𝛻 stand for the nabla operator where 𝛻 =

𝜕

𝜕𝑥
𝑒𝑥⃗⃗  ⃗ +

𝜕

𝜕𝑦
𝑒𝑦⃗⃗⃗⃗ +

𝜕

𝜕𝑧
𝑒𝑧⃗⃗  ⃗  

Based on Navier’s work, Poiseuille (1844) derived a physical law, known as Hagen–Poiseuille 

equation, that describes the pressure drop, ∆𝑃 (ML-1T-2), in an incompressible and Newtonian fluid 

with laminar volumetric flow, 𝑄 (L3T-1), flowing through a cylindrical pipe of length 𝑙 (L) and 

radius 𝑟 (L):  

𝑄 =
𝜋∆𝑃𝑟4

8𝜇𝑙
                                     [2.2] 

While the concept of infiltration was discussed and described in the literature before Darcy’s work, 

Darcy (1856) formulated the first empirical quantitative description of flow through a saturated 
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porous medium, known as Darcy's law, based on water infiltration experiments through sand beds, 

valid for both horizontal and vertical flow: 

𝑞 = −𝐾𝑠∇ℎ                                                                                                                      [2.3] 

where 𝑞 (LT-1) is the flux, 𝐾𝑠 (LT-1) is the saturated hydraulic conductivity, ∇ℎ (LL-1) is the 

hydraulic gradient describing the difference in total hydraulic head ℎ (L) between any two points 

within the porous medium. 

A few decades after Darcy, Buckingham (1907) built on the earlier work of Lyman Briggs, his 

senior colleague at the U.S. Bureau of Soil, who introduced capillary flow due to capillary gradient. 

Buckingham’s work resulted from deviations of the equilibrium between gravity and capillarity in 

unsaturated soils (Briggs, 1897). More about this development can be found in Germann (2021). 

Buckingham, who apparently did not notice the work of Darcy (Beven, 2018), extended Briggs’ 

concepts and drew an analogy with Ohm’s law and Fourier’s law to define unsaturated water flow 

as a function of a gradient of attraction and a constant of proportionality, namely “capillary 

conductivity”, based on two main assumptions: 

1. The driving force for water flow in isothermal, rigid, unsaturated soil containing no solute 

membranes and zero air pressure potential is the gradient between two points of the 

combination of matric 𝜓 (L) and gravitational 𝑧 (L) potentials, i.e., ℎ = 𝜓 + 𝑧 

2. The hydraulic conductivity of unsaturated soil is a function of water content 𝜃 (L3L-3) or 

matric potential 𝜓 (L). 

Based on Buckingham’s approach, vertical and 3D infiltration processes are generally considered 

to be in response to a combination of gravity and capillarity, and horizontal infiltration considered 

to be driven exclusively by capillarity. To this end, Buckingham’s assumptions have tremendously 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/wrcr.20155#wrcr20155-bib-0041
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advanced the theory of water flow and become the fundamental “depictions of the underlying 

physics”.   

𝑞 = −𝐾(𝜓)(∇𝜓 + 1) = −𝐾(𝜃)(∇𝜓 + 1)         𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑓𝑙𝑜𝑤                           [2.4] 

𝑞 = −𝐾(𝜓)(∇𝜓) = −𝐾(𝜃)(∇𝜓)                        ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑓𝑙𝑜𝑤                      [2.5] 

where ∇𝜓 (LL-1) is the matric hydraulic gradient, and 𝐾(𝜓) and 𝐾(𝜃) (LT-1) are the unsaturated 

hydraulic conductivities as respective functions of 𝜓 (L) and water content 𝜃 (L3L-3). Equation 2.4 

and/or 2.5 can be viewed as a generalization of Darcy’s Law and can be referred to as 

the Buckingham-Darcy law. 

In 1911, the flow theory witnessed the conceptualization of a “wetting front potential” by Green 

and Ampt who quantified the capillary force resulting from the matric potential of unsaturated 

soils. Green and Ampt (1911) assumed a constant wetting front that goes downward at constant 

water content and, thus, constant matric potential 𝜓 (L), as well as constant hydraulic conductivity 

𝐾 (L T-1), since water always moves within a saturated soil. The Green-Ampt model works best 

when a relatively sharp wetting front exists throughout the infiltration process. Such a distinct 

wetting front was adopted later by several infiltration models, such as those developed by Mein 

and Larson (1973), Li et al. (1976), Beven (1984), Selker et al. (1999a), Swartzendruber (2000), 

Selker and Assouline (2017), Stewart (2019). Consequently, the Green-Ampt model has proven to 

be one of the governing equations in understanding and predicting infiltration. 

The next advancement in theory was to combine these steady-state flow theories to non-steady 

conditions, in which soil water content can change over time and space. Two different scientists 

(Richardson, 1922; Richards, 1931) independently developed similar solutions to this problem 

through a second order convection-diffusion equation, conventionally known as Richards’ 
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equation (Equation 2.6 or 2.7). However, the resulting equation should rightly be called the 

Richardson-Richards’ equation. Unfortunately, Richardson’s work was barely noticed in the 

soil physics or hydrology literature, most likely because it was presented as part of a book on 

weather prediction (Raats and Knight, 2018).  

As Richards (1931) attempted to extend Darcy-Buckingham work, he defined “the essential 

difference between flow through a porous medium which is saturated and flow through a medium 

which is unsaturated is that under the latter condition the pressure is determined by capillary forces 

and the conductivity depends on the moisture content of the medium” (Richards 1931, page 323). 

However, Richards constrained his derivation to low pressure gradients, and highlighted the need 

for different model approximations for high pressure gradients: “For low pressure gradients it has 

been found by numerous investigators that this law (Darcy) is in exact agreement with experiment, 

and it is entirely analogous to the well-known law of Poiseuille for the flow of liquids through 

capillary tubes. However, both laws fail to hold for high pressure gradients. The limit within which 

they are true and the modifications which a second approximation requires can be determined only 

by exhaustive experiments on a wide range of materials.” (Richards 1931). The validity problem 

of Richards’ assumption is related to the validity of Darcy’s law. Very large hydraulic gradients 

will induce rapid flows where Darcy’s law is no longer valid. These fluxes appear under certain 

conditions where the Reynolds number varies from 1 to 10. Therefore, different scenarios where 

Darcy-BRR fails to apply include i) the appearance of turbulence for high-speed flows (e.g., 

cascade flows in macropores), ii) the problem of air entrapment and the need to account for air 

pressure gradients, iii) the need for connectedness of both the water and air phases. 
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Theoretically, Richards’ nonlinear partial differential equation for water flow can be derived by 

simply combining Darcy’s equation and conservation of mass along with Buckingham’s paradigm 

under isothermal conditions in a homogeneous and rigid porous medium.  

𝜕𝜃

𝜕𝑡
 = ∇[𝐷(𝜃)∇θ] + ∇𝐾(𝜃)                                                  [2.6]  

Richards’ equation is also written in the following head-based form: 

𝐶(𝜓)
𝜕𝜓

𝜕𝑡
 = ∇[𝐾(𝜓)∇𝜓] + ∇𝐾(𝜓)                                                  [2.7] 

The soil infiltration characteristics are hydraulic conductivity 𝐾(𝜃) or 𝐾(𝜓) (LT-1), hydraulic 

diffusivity 𝐷(𝜃) = 𝐾(𝜓)
𝜕𝜓

𝜕𝜃
 (L2T-1), and water holding capacity 𝐶(𝜓) =

𝜕𝜃

𝜕𝜓
  (L-1). 

The concept of water movement as a diffusion phenomenon, implicit in Buckingham’s approach, 

and later in that of Richards as well as Green and Ampt’s model, was explicitly proposed by Childs 

(1936a, 1936b) who studied the hypothesis of constant diffusivity. Later, Childs and Collis-

Georges (1950) introduced the concept of concentration-dependent diffusivity characterized by 

the strong dependence of diffusivity on water content. Embracing this concept, Philip (1957a) 

developed, based on a Taylor Series expansion of Equation 2.6, the first specific quasi-analytical 

solution of the non-linear Richards’ equation, in the form of a power series in t1/2 describing 

infiltration in a homogeneous, isotropic, and rigid porous medium. However, Philip’s time 

expansion series converges only for finite t; thus, the solution becomes unreliable at infinite times. 

To this end, Philip (1957b) approximated his equation by the two first terms, describing one-

dimensional, unsaturated infiltration for relatively short times. At this point, he defined the first 

term as “sorptivity” or “a term embracing both absorption and desorption”. In his words, it is “a 

measure of the capillary uptake or removal of water”. Later, in 1969, Philip showed that sorptivity 
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can be determined from horizontal infiltration where water flow is mostly controlled by capillary 

absorption (Philip, 1969a). The second term in Philip’s two-term equation reflects gravity effects 

and can be assumed equal to the saturated hydraulic conductivity multiplied with a constant 

between 1/3 and 2/3 (Davidoff and Selim, 1986; Swartzentruber and Young, 1974; Ghorbani et 

al., 2009). 

Following on Philip’s work, Parlange obtained, in a different series of papers, a quasi-analytical 

solution for water infiltration, by first developing a one-dimensional absorption equation 

(Parlange, 1971a), which was then extended to infiltration to include gravity effects (Parlange, 

1971b), and further extended in subsequent papers to problems in two and three dimensions 

(Parlange 1971c, 1972a, 1972b). 

The series of papers published by Philip and Parlange more than fifty years ago remains today the 

basis of our understanding of infiltration theory. However, a serious limitation of applying their 

quasi-analytical solutions emerges from the representativity of the initial and boundary conditions 

(described in detail in Section 2.8).  

Later, the analysis of the highly non-linear flow problem has been simplified and made tractable 

by applying the matric flux potential using Kirchhoff transformation. Raats (1971) defined the 

matric flux potential, 𝜑 (L2 T-1), by: 𝜑 = ∫ 𝐾(�̅�)𝑑�̅� =
𝜓

𝜓𝑖
∫ 𝐷(�̅�)𝑑�̅�

𝜃

𝜃𝑖
; subscript 𝑖 denotes the initial 

state. Using this definition, Redinger et al. (1984) and Campbell (1985) were the first to apply the 

Kirchhoff transform (K transform) of the matric potential 𝜓 (L) to linearize the second-order 

spatial term in Richards' equation (Equation 2.7). Their method introduced a simple but efficient 

method of solution for homogeneous unsaturated soils. However, K transform depends on the soil 

hydraulic properties and will therefore vary spatially with any spatial change in the hydraulic 
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properties. Therefore, to characterize scale-heterogeneous soils, Ross (1990) used an inverse 

hyperbolic sine transform of 𝜓 (L) in preference to the K transform. Later, Ross and Bristow 

(1990) capitalized on the numerical advantages of using the K transform to solve Richards' 

equation for water flow in scale-heterogeneous soils when the appropriate correction to spatial 

changes in soil properties is made.   

Clearly, Richards’ equation quickly became the mainstream approach for modeling flow in 

unsaturated soils. Two factors contributed to the success and rapid adoption of Richards’ equation 

that are discussed in detail below.  

First, researchers quickly developed simplified analytical approximations over the next few 

decades following Richards paper, and later, thanks to advancements in numerical computation, 

developed robust numerical models, particularly the HYDRUS software packages, which simulate 

water, heat and solute movement in 1-D, 2-D or 3-D porous media and provide numerical solutions 

to Richards’ equation (Simunek et al., 1998, 1999, 2005, 2006). HYDRUS uses linear finite 

elements to numerically solve Richardson-Richards’ equation for saturated or unsaturated water 

flow under uniform or nonequilibrium conditions, as well as Fickian-based advection–dispersion 

equations for solute transport. In 2008, Simunek and his coworkers described the entire history of 

the development of the various HYDRUS programs with related models and tools (Simunek et al., 

2008a). Later, Simunek et al. (2016) reviewed recent developments and applications of the 

HYDRUS program implemented after 2008. 

Second, the ubiquity and ease-of-use of Richards-based model frameworks, including HYDRUS, 

led Richards’ equation to dominate the theory of unsaturated flow, thus transitioning research in 

infiltration and unsaturated flow almost exclusively from a theoretical search for a better 

infiltration theory into an expanded field of highly applied and practical research. Therefore, many 
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researchers have been applying Richards’ equation to understand processes or develop solutions 

addressing environmental, agricultural, and ecological issues like irrigation efficiency, pollutant 

and nutrient transport, heat transfer, water recharge, and stormwater management (Lassabatere et 

al., 2010; Kandelous and Simunek, 2010; Goutaland et al., 2013; Slimene et al., 2017; Stewart et 

al., 2017a, b; Autovino, 2018; Coppola et al., 2019; Fields et al., 2020). 

Despite its widespread adoption, Richards’ equation fails to adequately describe infiltration in 

different flow situations and scales (e.g., Hunt et al., 2013; Beven, 2018; Germann, 2021). 

Fundamentally, the Richards’ equation was developed using equilibrium-based measurements, 

such that equilibrium between soil pressure head and water content is instantaneous, opposite to 

non-equilibrium conditions that occur during rapid flow (Simunek et al.,2003). Based on the 

theoretical dominance of capillary forces in unsaturated flow, Richards proposed an elegant 

hierarchy of active-inactive pores in which larger pores empty while smaller pores conduct water 

in partially saturated soils. He stated that if “there is a steady flow of liquid through a porous 

medium which is only partially saturated, then the larger pore spaces contain air and the effective 

cross-sectional area of the water conducting region is reduced” (Richards 1931). This hierarchy 

completely deactivates those larger pores “If these air spaces could in some way be filled with 

solid, the condition of the flow would be unchanged” (Richards 1931). On the other hand, 

Germann’s last published work was critical of Richards experiment “which relied on the 

application of air pressure to ensure that larger pores were empty at each potential and flow rate, 

was simply the wrong experiment for flows under more natural conditions.” (Germann 2021). 

Germann’s stated that “while capillary flow relies on the strongest force extended on water in an 

unsaturated soil, the weaker force of viscosity can dominate during infiltration as a result of 

formation of film flows at and near the soil surface.” (Germann 2021). Similar criticism was levied 
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by Hunt et al. (2013) and Beven (2018). Additionally, while HYDRUS is widely used to simulate 

water movement in variably saturated media, the software presents challenges for researchers to 

obtain accurate results in clay rich soils and soils with perched water table or restrictive layers. 

HYDRUS does not natively handle the dynamics aspects of soil swelling and shrinking processes 

or soil with restrictive layers. However, it could provide relatively reliable results under these 

specific conditions if the model was calibrated with specific soil data pertaining to these 

conditions. In the case of restrictive layers, Hydrus can simulate these effects if the hydraulic 

properties of each layer, such as Ks or soil water characteristic curves of each layer, were 

accurately defined. The same case applies for shrink/swell soils; as their hydraulic properties are 

different, accurate parameterization is needed at this stage. So, more specific input is needed under 

these conditions, presenting challenges for researchers. 

The inadequacies of Darcy-BRR framework were also becoming apparent as interests increased 

in depicting preferential flow processes through a wide range of theoretical advancements 

(Simunek et al., 2003; Jarvis, 2007; Simunek et al., 2008b). Studies were increasingly noting 

pollutant and nutrient transport processes that were happening at faster rates or over greater 

distances than seemed possible based on the depictions provided by BRR-based models (Zehe and 

Fluhler, 2001; Reichenberger et al., 2002; Zheng and Gorelick, 2003; Beven, 2010). Other work 

at hillslope and watershed scales also indicated that BRR-based models did not accurately capture 

soil wetting and streamflow responses to precipitation, even when treated with parameter values 

deemed as “effective” for the larger scales (van Schaik et al., 2008; James et al. 2010; Nimmo et 

al., 2021). 

These issues were first raised by Beven and Germann (1982), who demonstrated the importance 

of macropores and preferential water flow in soils, as well as identified the need for future 
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comprehensive characterization of flow that goes beyond Richards’ equation. Beven and 

Germann’s pioneering work (1982) led to a mainstream recognition and acknowledgement to the 

limitations of current physical theory. Thirty years later, many of the same discrepancies persisted, 

as noted by the revised work in Beven and Germann (2013). 

The first theoretical attempt at addressing the discrepancies of Darcy-BRR framework was held 

by Beven and Germann (1981), who described flow in high-permeability domains by the kinematic 

wave approach. To this end, Beven and Germann (1981) developed a one-dimensional model of 

bulk flow in a combined micropore/macropore system by approximating the micropore (subscript 

𝑚) flow, 𝑞m (LT-1), for various arrangements of macropores (subscript 𝑓) at different water 

contents, 𝜃𝑓 (L3L-3): 

𝑞m = 𝑎1𝜃𝑓 
𝑏1                                         [2.8] 

And the flow in macropores, 𝑞𝑓 (L T-1), by: 

𝑞𝑓 = 𝐾𝑓𝑎2𝜃𝑓
𝑏1                                            [2.9]       

where: 𝐾𝑓 (L T-1) is the hydraulic conductivity of the macropores, 𝑎1 (L T-1), 𝑎2, and 𝑏1 

(dimensionless) are fitting parameters. 

Recognizing the importance of preferential and non-equilibrium flow that is not captured by 

Darcy-BRR framework, Gerke and van Genuchten (1993) transformed Richards’ equation into a 

dual permeability model that describes two single-permeability media, one associated with 

macropores (fracture, inter-porosity domain) of high permeability, and the other associated with 

micropores (matrix, intra-porosity domain) of low permeability, with exchange possible through a 

permeable interface. This approach assumed constant fluid densities, no hysteresis in the hydraulic 
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properties, no effects of swelling, shrinking, temperature, air pressure, and solute concentration on 

water flow. Based on Richards’ equations, Gerke and van Genuchten (1993) model uses the flow 

equations for the fast-flow region (subscript 𝑓) and the matrix (subscript 𝑚), respectively as 

follows: 

𝜕𝜃𝑓(𝜓𝑓)

𝜕𝑡
= ∇[𝐾𝑓(𝜓𝑓)(∇𝜓𝑓 + 1)] − 𝑠𝑓(𝜓𝑓) −

Γ𝑤

𝑤𝑓
                                          [2.10] 

And 

𝜕𝜃𝑚(𝜓𝑚)

𝜕𝑡
= ∇[𝐾𝑚(𝜓𝑚)(∇𝜓𝑚 + 1)] − 𝑠𝑚(𝜓𝑚) −

Γ𝑤

1−𝑤𝑓
                                                   [2.11] 

where 𝑠(𝜓) (T-1) is the sink–source term, 𝑤𝑓 (L3L-3) is the ratio of the volume occupied by the 

fast-flow region and relative to the total volume, and Γ𝑤 (T-1) is a space- and time-dependent 

exchange term describing the transfer of water between the two pore systems. 

Other further approaches for modeling preferential and non-equilibrium flow in the vadose zone 

have used the kinematic approach (Jarvis, 1994; Jarvis and Larsson, 1998; Larsbo and Jarvis, 

2003), Darcy-BRR (Lewandowska et al., 2004), or Green and Ampt (Weiler, 2005; Stewart, 2018) 

by describing water movement in the soil matrix in combination with a depiction of water flow 

through macropores.  
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Figure 2.1: Evolution of the basic flow models for rigid (i.e., non-swelling) soils. It is worth noting that 

non-uniform preferential flows were recognized long before the equilibrium concepts of Buckingham and 

Richardson-Richards (Schumacher, 1864; Lawes et al., 1882; Kubiena, 1938; Brewer, 1960). However, 

the non-uniform flow was not modeled until early 1980s. 
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2.5. Evolution of basic flow characterization for deformable soils 

Many soils have clay minerals or other particles (e.g., organic substrates) that change volume when 

wetting and drying, which causes the soil matrix to deform and typically leads to excessive error 

when infiltration models developed for rigid soils are applied. Therefore, substantial research 

efforts have been devoted to characterizing water movement through deformable soils with time-

variable pore structures. In the context of water infiltration into soils, deformable soils are known 

as shrink/swell soils which expand when they absorb water and shrink when they dry out. These 

specific soils could be distinguished in the field by their wide deep cracks, their rough soil surface, 

and typically feel sticky and plastic when wet. 

Here, we list the basic conceptual models developed to characterize water flow into deformable 

soils (Figure 2.2). 

Using Darcy’s law, Biot (1955) first described the flow of fluids in deformable anisotropic soils 

by studying the problem of soil consolidation through the mixture theory in the absence of gravity 

effects:  

𝑣𝑙𝑖𝑞𝑢𝑖𝑑 − 𝑣𝑠𝑜𝑙𝑖𝑑 = −
𝑘

𝜃𝜇
∇𝑃                                                                                                       [2.12]  

where: 𝑣𝑙𝑖𝑞𝑢𝑖𝑑 and 𝑣𝑠𝑜𝑙𝑖𝑑 are the vertical velocity components of the liquid and solid phases, 

respectively, and 𝑘 (L2) is the solid permeability. 

Then, mass conservation of the solid (Equation 2.13) and liquid (Equation 2.14) phases, yielded 

(Bowen, 1980):  

𝜕𝜃

𝜕𝑡
− ∇[(1 − 𝜃)𝑣𝑠𝑜𝑙𝑖𝑑] = 0                                                                                                       [2.13] 

𝜕𝜃

𝜕𝑡
+ ∇(𝜃𝑣𝑙𝑖𝑞𝑢𝑖𝑑) = 0                                                                                                               [2.14] 
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Later, researchers’ attention was skewed towards characterizing soils that shrink and swell in 

volume when drying and wetting, namely shrink-swell soils. To understand the behavior of shrink-

swell soils, the soil shrinkage curve (SSC) was developed describing the change in soil volume as 

function of the change in water content from a fully saturated state to a completely dry state. The 

soil shrinkage curve is generally sigmoidal in shape and is represented by numerous models 

(McGarry and Malafant, 1987; Tariq and Durnford, 1993; Braudeau et al., 1999; Crescimanno and 

Provenzano, 1999; Chertkov 2000, 2003; Peng and Horn, 2005; Cornelis et al., 2006a, b; Lu and 

Dong, 2017; Chen and Lu, 2018; Gupt et al., 2021). 

Different modeling analogs of Richardson-Richards’ equation were developed to study and solve 

the problem of infiltration into shrink-swell soils. For instance, Philip (1969b) modified 

Richardson-Richards’ equation for a rigid soil and developed the standard Fokker–Planck equation 

(FPE - Equation 2.15) describing flow in unsaturated swelling media: 

𝜕𝜃

𝜕𝑡
 = ∇[𝐷(𝜃)∇𝜃] + ∇[(1 − 𝛾𝑤)𝐾(𝜃)]                                              [2.15] 

where 𝛾𝑤 (dimensionless) is the wet specific gravity of the swelling soil. 

Smiles and Raats (2005) reformulated the standard (FPE) by including the dimensionless constant, 

here called 𝛼𝑠𝑤𝑒𝑙𝑙, defined as a water content-dependent value and as an average over a defined 

pressure range, to deal with curvilinearity in the shrinkage curve: 

𝜕𝜃

𝜕𝑡
 = ∇[𝐷(𝜃)∇𝜃] + ∇[(1 − 𝛼𝑠𝑤𝑒𝑙𝑙𝛾𝑤)𝐾(𝜃)]                                  [2.16] 

Furthermore, a special form of the (FPE) was investigated by Su (2009), who considered the 

inclusion of dimensionless parameter 𝛽𝑠𝑤𝑒𝑙𝑙, the order of fractional derivative, which enables a 

clear explanation of the anomalous infiltration into swelling porous media: 
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𝜕𝛽𝑠𝑤𝑒𝑙𝑙𝜃

𝜕𝑡𝛽𝑠𝑤𝑒𝑙𝑙
 = 𝛻[𝐷(𝜃)𝛻𝜃] + 𝛻[(1 − 𝛼𝑠𝑤𝑒𝑙𝑙𝛾𝑤)𝐾(𝜃)]                                            [2.17] 

Another governing equation for water movement in swelling soils was provided by Giraldez and 

Sposito (1985) who used a generalized version of the Richardson-Richards equation: 

𝜌𝑏

𝜌

𝜕𝜃

𝜕𝑡
 = 𝛻[𝐷(𝜃)𝛻𝜃] + 𝛻𝐻                                                [2.18]  

where: 𝜌𝑏 (ML-3) is the soil bulk density and 𝜌 (ML-3) is the fluid density. H (LT-1) is a gravity-

envelope-pressure parameter given by: 

𝐻 = 𝐾(𝜃)(1 − 𝜌𝑏,𝑤�̅�)                                                [2.19] 

where: 𝜌𝑏,𝑤 (ML-3) is the wet bulk density (subscript 𝑤), and �̅� (L3M-1) is the slope of the shrinkage 

curve.  

Furthermore, Feddes et al. (1988) extended Richardson-Richards’ equation to characterize water 

flow in swelling/cracked soils by adding two sink-source terms, 𝑠𝑟 (T-1) quantifying the volume of 

water extracted from soil by roots, and 𝑠𝑓 (T-1) quantifying the horizontal infiltration from soil 

cracks (subscript 𝑓) into the soil matrix: 

𝜕𝜃

𝜕𝑡
 = ∇[𝐾(𝜓)(∇𝜓 + 1)] − 𝑠𝑟 + 𝑠𝑓                                                                                          [2.20] 

Shifting from Richardson-Richards’ equation, Davidson (1984), and later Weiler (2005), built on 

the classic Green-Ampt model to characterize infiltration into macroporous soils. Neither 

approach, however, describes the dynamic shrinkage and swelling processes. In response, Stewart 

(2018) combines the Green-Ampt model with a multidomain framework previously developed by 

Stewart, Abou Najm, et al. (2016), allowing for variations in properties of the different porosity 

domains, and therefore a better characterization of the dynamic properties of shrink-swell soils.  
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Another approach towards modeling water movement through shrink-swell soils was developed 

by Bennethum and Cushman (1996) who derived a new constitutive theory for multiphase, 

multicomponent, three-scale, swelling systems with interfaces. This effort resulted in a generalized 

form of Darcy's law where flow is governed by gravity and the Gibbs free energy, temperature, 

and concentration gradients: 

𝑞 = 𝜅𝐿 [−𝜙𝐿𝜌𝐿∇(�̃�𝐿 −
1

𝜌𝐿 𝜎) + (
1

𝜌𝐿 𝜎𝐿 +
1

𝜌𝐿 𝑃𝐿)∇(𝜙𝐿𝜌𝐿) + 𝜙𝐿𝜌𝐿𝑔𝐿 − 𝜙𝐿𝜌𝐿Ε𝐿∇𝑇0 +

∑ 𝜙𝐿𝜌𝐿�̃�𝐿𝑗∇C𝐿𝑗𝑁−1
𝑗=1 ]                                                                                                                    [2.21]                                                                                               

Where: L=lA refers to the fluid phase in the particle at the macroscale, B and C refer to the liquid 

and air phase at the mesoscale respectively, 𝜅 (L3TM-1) is second order positive semi-definite 

tensor, 𝜙 (L3L-3) is the volume fraction, 𝜌 (ML-3) is the fluid density, Ε (L2T-2T0(-1)) is the entropy, 

�̃� (L2T-2) is the specific Helmholtz free energy, ∇𝑇0 (T0) is the temperature gradient, �̃� (L4MT-2) 

is the chemical potential, and ∇C (ML-4) is the concentration gradient.  
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Figure 2.2: Evolution of the basic flow models for deformable (i.e., swelling) soils 
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2.6. Pore-scale models  

The infiltration process in soils through which air is replaced by water is typically investigated 

using Richards’ equation at the continuum scale, which requires the determination of soil hydraulic 

properties, such as water retention and unsaturated hydraulic conductivity curves. During 

infiltration within the complex structure of soils, one observes phenomena such as irregular 

wetting front and hydraulic non-equilibrium that are controlled by pore-scale characteristics of 

soils. Therefore, to better understand infiltration at the continuum scale, one should first investigate 

it at the pore scale - the scale of processes taking place within porous media. Different visualization 

tools were used to investigate the pore scale such as X-ray microcomputed tomography, confocal 

microscopy, and optical microscopy (Krummel et al., 2013; Geistlinger and Ataei-Dadavi, 2015; 

Liu and Song, 2015; Song et al., 2020). 

Several pore-scale approaches emerged to address fluid flow and transport in the complex 

geometry and topology of porous media, as well as to solve physics within the given domain at the 

pore scale (Wilkinson, 1984; Martys and Hagedorn, 2002; Valvatne and Blunt, 2004; Liu et al., 

2006; Prodanovic and Bryant, 2006; Blunt et al., 2013). The most widely used approaches for 

pore-scale modeling are Lattice Boltzmann Methods (BME), smoothed particle hydrodynamics 

approach, computational fluid dynamics-based techniques, and pore-network models (Blunt, 

2017).  

Here, we present a summary of the emergence of pore-scale models and their co-evolution to 

broaden our review aspects, as well as our understanding of the modelling and application of flow 

into porous media. Mapping the pore space of porous media into a network of connected pores 

was first developed by Fatt (1956a, b, c) who stressed the inadequacy of parallel tube models to 

describe the complex structure of soils and rocks. Fatt (1956a) proposed a regular 2D network of 
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tubes with various pore size distributions, which evolved to a ball-and-stick network proposed by 

Chandler et al. (1982) and Koplik (1982), and then to a biconical pore network proposed by Toledo 

et al. (1994). Recognizing that real porous media are three-dimensional, Rose (1957) developed 

the first computer-based network characterized by 3D lattices which were further used to study 

hysteresis (Nicholson, 1968), dispersion (Torelli and Scheidegger, 1971) and waterfloods (Simon 

and Kelsey, 1971, 1972). 

Since 1980s up to now, research in pore-scale modeling evolved from the computation of simple 

two-phase flow processes and relative permeability (Larson et al., 1981; Heiba et al. 1984; Koplik 

and Lasseter, 1985; Blunt and King, 1991; Blunt et al., 1992; Mogensen and Stenby, 1998) to a 

huge range of pore-scale events e.g. wettability, three-phase flow, hysteresis, mass transfer 

between phases, and to a more accurate abstraction of porous media (Wilkinson and Willemsen, 

1983; Blunt and Scher; 1995; Blunt 2001; Blunt et al. 2002; Joekar-Niasar et al., 2008, 2009; Dong 

and Blunt, 2009; Raoof and Hassanizadeh, 2010; Bultreys et al., 2015).  

For instance, Pomchaitaward et al. (2003) applied a lattice-Boltzmann method to study capillary 

infiltration in porous spheres and cubes. They further validated their approach by comparing the 

results of their lattice-Boltzmann simulations with those obtained from a continuum model based 

on the kinetic of capillary infiltration. Later, Tzavaras et al. (2017) used pore-network modeling 

to simulate infiltration at the pore scale. In their study, the structure of pores and their topology 

were adapted from a loess soil sample. Using the same pore size distribution, they generated two 

types of pore networks: structured and random. The former was based on the measured topology, 

while the latter was based on random pore connection. Their pore networks, however, were only 

composed of 16×16×32 nodes. The authors compared their pore-scale simulation from pore-

network modeling with the continuum-scale simulations obtained by solving the Richards’ 
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equation. More specifically, the horizontally averaged dynamics of water content and water 

potential at the two scales were compared. Although reasonable agreements were found, the 

authors stated that assuming fluid phases were immiscible and incompressible led to unrealistic 

air trapping in the studied pore networks.  
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2.7. Percolation theory  

 

Concepts from the percolation theory were widely applied in conjunction with network modelling 

to study flow and transport in complex porous media (Hunt, 2014; Sahimi, 2011; Hunt and Sahimi, 

2017). Percolation theory addresses the effect of geometrical and topological properties of the pore 

space, particularly pore size distribution and connectivity at both small and large scales. An 

important feature within percolation theory is the presence of a percolation threshold (critical 

fraction) below which the network is not connected and, therefore, there is no macroscopic flow 

or transport. The basic concept of percolation threshold has also been broadly referred to in soil 

physics using other terms such as residual water saturation or critical air-filled porosity.  

Early percolation models were based on networks (or lattices) composed of bonds and sites. Bonds 

act like links (or pore throats) connecting sites (or pore bodies). The early advancement in 

percolation theory for vertical downward infiltration was described by Glass and Yarrington 

(1996) as “gravity fingering in porous media” emphasizing that water mainly percolates due to 

gravity. More specifically, Glass and Yarrington (1996) proposed a modified invasion percolation 

approach for the immiscible displacement of a nonwetting fluid (e.g., air) by a wetting one (e.g., 

water). They further found that their modified invasion percolation model yielded substantially 

different structures in wetting front compared to the standard invasion percolation. Within their 

framework, gravity, and capillary fingering, as well as capillary facilitation, contributed to the 

determination of wetting front and its structure. In their own words, they stated that, “results 

suggest capillary forces to stabilize downward infiltration events either in very narrow or very 

wide pore-size distribution media. While this stabilization is intuitive for wide pore-size 

distributions, gravity fingering has generally been considered to dominate as the pore-size 

distribution narrows.”  
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Later, Glass et al. (2000) expanded these efforts and developed a macroscale growth “structural” 

model to model invasion percolation at the near pore scale. Under non-negligible viscous forces 

conditions, Glass et al. (2000) redefined (1) the total pore filling pressure to incorporate viscous 

losses within the invading phase (e.g., water) from one hand, and (2) the viscous effect to reduce 

randomness caused by capillary forces at the front. By comparing their simulations with CO2-

water experiments where viscous forces were negligible, Glass et al. (2000, 2001) found a fair 

agreement between simulations and experimental data. However, for trichloroethylene-water 

experiments, discrepancies between simulations and measured data were considerable. It is worth 

mentioning that the viscosity of trichloroethylene is nearly 40 times greater than that of CO2.        

Another approach towards modeling infiltration was developed by Hunt (1997) who presented 

random percolation theory and accordingly applied statistics of clusters showing that cumulative 

infiltration was analogous to electrical polarization. Using such an analogy, Hunt (1997) derived 

a general expression for cumulative infiltration including the two-term Philip (1957b) model as a 

special case (see his Eq. 40). 

More recently, Hunt et al. (2017) developed a theoretic model for vertical infiltration using 

concepts from random percolation theory. They proposed a two-term relationship for transient and 

steady-state infiltration. Hunt et al. (2017) assumed that the transient term describes solute 

transport under saturating conditions and the steady-state term represents advection fluid.  

𝐼(𝑡) =
𝑥0

𝑡𝑥0
𝑡 +

𝑥0

𝑡𝑥0

1/𝐷𝑏
𝑡

1

𝐷𝑏                                                                                                             [2.22]                                                                                               

where 𝐷𝑏 = 1.861 is the backbone fractal dimension in three dimensions (Hunt et al., 2014), x0 is 

the typical length scale (e.g., typical pore diameter), and 𝑡𝑥0 is the time for fluid to traverse the 

distance x0. By setting 𝐷𝑏 = 1.861, one finds the exponent in the transient term equal to 0.54 (= 
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1/1.861) which is close to 0.5 in the Philip (1957b) derivation. Using experimental data from 

Sharma et al. (1980), Hunt et al. (2017) scaled infiltration data and demonstrated that a much better 

agreement with actual data was obtained when infiltration data were scaled using the percolation 

theory exponent (e.g., 0.54). They concluded that the exponent 0.54 might be a better 

approximation than 0.5.  
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2.8. Bundle of capillary tubes approach  

Most of the fundamental flow concepts (described in sections 2.2 and 2.3) modeled water flow 

into porous media while characterizing the pore space with bundles of capillary tubes of either 

similar or varying radii. By simplifying the pore space topology, such models do not capture the 

fundamental randomness of porous media characterized by a wide distribution of interconnected 

channels and pore sizes. However, the different models based on bundles of capillary tubes can 

still provide improved representation of complex pore structures while their formulation remains 

an open theoretical and experimental challenge. 

One of the early infiltration models based on the bundle of capillary tubes approach was developed 

by Chu (1993). In his study, first soil water retention data were used to determine pore size 

distribution. Then, the Hagen-Poiseuille equation was applied to calculate hydraulic conductivity 

of each individual tube. Chu (1993) considered a scale factor to match theoretical and experimental 

saturated hydraulic conductivities. He generalized the Green-Ampt model to describe water flow 

in all tubes determined from water retention data, and then applied the van Genuchten model to 

derive a special case. Chu (1993) showed that his model captured spatial variation in the wetting 

front - an improvement over the traditional Green-Ampt model which assumes a constant depth 

front. In another study, Chu (1994) used the same approach but replaced the van Genuchten model 

with the Brooks-Corey model to represent water retention data. Using a Yolo light clay soil sample, 

he compared his theoretical results with those by the Philip model and found reasonable agreement 

between the two models.  

Recently, a more advanced approach based on the bundle of capillary tubes was proposed to predict 

pore size distribution using non-Newtonian fluids offering new possibilities for improving porous 

media characterization (Abou Najm and Atallah, 2016; Atallah and Abou Najm, 2019; Basset et 
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al., 2019; Hauswirth et al., 2019). Experimental evidence was presented validating the ability of a 

non-Newtonian fluid at different concentrations to infer the pore structure of simple and synthetic 

porous media using the ANA model (Atallah and Abou Najm, 2019; Hauswirth et al., 2019) and 

that of dual-porosity media using the dual-permeability ANA-2 model (Basset et al., 2019). 
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2.9. Summary of the infiltration models  

Building on the fundamental physical flow models for rigid and deformable/swelling soils 

(sections 2.2 and 2.3), several concepts were derived across the years to estimate infiltration for a 

specific porous media under specific boundary and initial conditions. Empirical models were also 

developed describing infiltration with fitted data derived from either field or laboratory 

experiments. Here, we present a comprehensive summary of the evolution of 138 infiltration 

models. Our summary is by no means an exhaustive list of all the attempts of infiltration modeling 

in literature. 

We illustrated the historical evolution of infiltration models as listed in Table 2.1, in an ascending 

historical order based on their year of publication. Table 2.1 summarizes those models based on 

their category, origin, and assumptions, as well as type and behavior of infiltration. For additional 

information and formulation, Table 2.1 was further expanded into Tables 2.5 and 2.6 in the 

Appendix to describe the model parameters, equations, and concepts. 
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Table 2.1: Summary of 138 infiltration models 

Model Category Soil Type 
Porosity 

Domain 

Type of 

Infiltration 

Infiltration 

Behavior 
Boundary Conditions Assumptions 

Cited [Mentioned 

in text] Origins 

      
Concentra-

tion 
Flux 

Pressure 

Head 

Step-

function 

moisture 

profile 

Diffusivity 

𝐷(𝜃) (L2 T-1) 

and/or 

Hydraulic 

Conductivity 
𝐾(𝜃) or  

𝐾(𝜓) (L T-1) 

Driving 

forces for 

infiltration 

 

Green and Ampt 

(1911) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

nearly 

constant  𝐾 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Darcy (1856) - 

Buckingham 

(1907) 

Kostiakov (1932) Empirical Arbitrary Arbitrary 

1D, Local and 

Field-scale, 

Surface 

Early and 

Transient State 
      

Experimental 

infiltration data 

Horton (1941) Empirical Arbitrary Arbitrary 

1D, Local and 

Field-scale, 

Surface 

Early and 

Steady-State 
      

Experimental 

infiltration data 

Mezencev (1948) Empirical Arbitrary Arbitrary 

1D, Local and 

Field-scale, 

Surface 

Early, Transient 

and Steady-

State 

      

Experimental 

infiltration data - 

Kostiakov (1932) 

Hansen (1955) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

  

 

x 

[Constant 

head] 

No 

𝐾 is constant 

within the 

transmission 

zone, then 𝐾 

within the 

wetting zone 

decreases 

toward the 

wetting front 

Capillarity 

and Gravity 
[Darcy’s law] 

Philip (1957a) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Transient 

(implicit) 
x   No 

𝐷 and 𝐾 are 

non-linear, 

strongly 

varying 

functions of 

θ 

Capillarity 

and Gravity 

Buckingham 

(1907) - 

Richards (1931) 

Philip (1957b) 

 Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State (explicit) 

x   No 

𝐷 

approaches a 

delta 

function 

Capillarity 

and Gravity 
Philip (1957a) 
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Holtan (1961) Empirical Arbitrary Arbitrary 

1D, Local and 

Field-scale, 

Surface 

Early, Transient 

and Steady-

State 

      
Experimental 

infiltration data 

Overton (1964) Semi-Empirical Arbitrary Arbitrary 

1D, Local and 

Field-scale, 

Surface 

Early, Transient 

and Steady-

State 

      Holtan (1961) 

Huggins and 

Monke (1966) 
Semi-Empirical Arbitrary Arbitrary 

1D, Local and 

Field-scale, 

Surface 

Early, Transient 

and Steady-

State 

      Holtan (1961) 

Fok and Hansen 

(1966) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

1D, Local scale, 

Surface 

(Furrow) 

Early, Transient 

and Steady-

State 

  

x 

[Constant 

head] 

No 

𝐾 is constant 

within the 

transmission 

zone, then 

within the 

wetting zone 

𝐾 decreases 

toward the 

wetting front 

Capillarity 

and Gravity 

Hansen (1955) 

[Darcy’s law] 

Philip (1967) Conceptual 

Rigid, Scale-

Heterogeneous, 

Anisotropic, 

Non-

hydrophobic, 

Flat surface 

Single 
1D, Field-scale, 

Surface 

Early and 

Transient 
x   No 

𝐾 varies 

spatially 

with 𝜓 in a 

mutually 

consistent 

way 

Capillarity 

and Gravity 

Richards (1931) - 

Philip (1957a, b) 

[Darcy’s law] 

Philip (1968) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

3D, Local scale, 

Subsurface 

(Point sources 

and spherical 

cavities) 

Steady-State x   No 

𝐷 is 

constant, 𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Capillarity 

and Gravity 

Richards (1931) 

[Darcy’s law] 

Wooding (1968) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

3D, Local scale, 

Surface 

(Shallow Pond) 

Steady-State x   No 

𝐷 is 

constant, 𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Capillarity 

and Gravity 

Richards (1931) - 

Philip (1968) 

[Darcy’s law] 

Philip (1969a) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

1D, 2D and 3D, 

Local scale, 

Surface and 

Subsurface 

(Cylindrical 

and spherical 

cavities) 

Early, Transient 

and Steady-

State 

x   No 

(A)  𝐷 and 𝐾 
are non-

linear, 

strongly 

varying 

functions of 

θ 

(B) 𝐷 is 

constant, 𝐾 

represented 

Capillarity 

and Gravity 

Darcy (1856) - 

Buckingham 

(1907) - 

Richards (1931) - 

Philip (1957a, b, 

1967, 1968) 
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by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

(C) 𝐷 

approaches 

delta 

function, 

very sharp 

peak in 𝐾 

then 𝐾 varies 

very slowly 

near 

saturation 

Parlange (1971a) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Transient 
x   No 

𝐷 vary 

markedly 

with  𝜃 and 

rapidly near 

saturation 

Capillarity 
Philip (1957a, b, 

1969a) 

Parlange (1971b) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x   No 

𝐷 vary 

markedly 

with  𝜃 and 

rapidly near 

saturation, 

very sharp 

peak in 𝐾 

then 𝐾 varies 

very slowly 

near 

saturation 

Capillarity 

and Gravity 

Philip (1957a, 

1969a) - Parlange 

(1971a) 

Parlange (1971c) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

2D and 3D, 

Local scale, 

Surface 

Early and 

Transient 
x   No Arbitrary Capillarity 

Philip (1969a) - 

Parlange (1971a, 

b) 

Philip (1971) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

2D and 3D, 

Local scale, 

Surface and 

Subsurface 

(Point and line 

sources) 

Steady-State  

x 

[Constant 

rainfall 

rate] 

 No 

𝐷 is 

constant, 𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Capillarity 

and Gravity 

Philip (1968, 

1969a) 

Parlange (1972a) Conceptual 

Rigid, 

Homogeneous, 
Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

2D and 3D, 
Local scale, 

Subsurface 

(Cavity) 

Steady-State x   No 
𝐷 and 𝐾 
strongly 

depend on 𝜃 

Capillarity 

and Gravity 

Philip (1968, 
1969a) -Parlange 

(1971a, b, c) 
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Parlange (1972b) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

2D and 3D, 

Local scale, 

Subsurface 

(Cavity) 

Early and 

Transient 
x   No 

𝐷 and 𝐾 

strongly 

depend on 𝜃 

Capillarity 

and Gravity 

Philip (1969a) -

Parlange (1971a, 

b, c, 1972a) 

Smith (1972) Semi-Empirical Arbitrary Arbitrary 

1D, Local and 

Field-scale, 

Surface 

Steady-State       

Extensive 

numerical 

solutions of 

Richards (1931) 

Philip (1972) Conceptual 

Rigid, Scale-

Heterogeneous, 

Anisotropic, 

Non-

hydrophobic, 

Flat surface 

Single 

2D and 3D, 

Field-scale, 

Surface and 

Subsurface 

(Point and line 

sources) 

Steady-State  

x 

[Constant 

rainfall 

rate] 

 No 

𝐷 is 

constant, 𝐾 

depends 

exponentiall

y on 𝜓 and 𝑧 

Capillarity 

and Gravity 

Philip (1967, 

1968, 1969a, 

1971) 

Talsma and 

Parlange (1972) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x   No 

(1) 𝐷 

approaches a 

delta 

function, 

very sharp 

peak in 𝐾 

then 𝐾 varies 

very slowly 

near 

saturation 

(2) 𝑑𝐾/𝑑𝜃 

and 𝐷 are 

proportional 

(3) 𝐷 is 

constant 

Capillarity 

and Gravity 

Philip (1957a, b, 

1969a) – Parlange 

(1971a, b) 

Parlange (1972c) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

 

x 

[Constant 

rainfall 

rate] 

 No 

𝐷 and 𝐾 

strongly 

depend on 𝜃 

Capillarity 

and Gravity 

Philip (1969a) - 

Parlange (1971a, 

b) 

Mein and Larson 

(1973) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
 

x 

Before 

ponding 

[Constant 

rainfall 

rate] 

x 

After 

ponding 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

very sharp 

peak in 𝐾 to 

a constant 𝐾 

near 

saturation 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) [Darcy’s 

law] 

Smiles (1974) Conceptual 

Swelling, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 
Transient State x   No Arbitrary 

Capillarity 

and Gravity 

Philip (1969a, b) 

[Darcy’s law] 

Turner and 

Parlange (1974) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

Single 
1D, Local scale, 

Surface 
Early State x   No Arbitrary 

Capillarity 

and Gravity 

Parlange (1971a) - 

Talsma and 

Parlange (1972) 
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hydrophobic, 

Flat surface 

Swartzendruber 

(1974) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
 

x 

Before 

ponding 

[Constant 

rainfall 

rate] 

x 

After 

ponding 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

very sharp 

peak in 𝐾 to 

a constant 𝐾 

near 

saturation 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) - Mein and 

Larson (1973) 

Morel-Seytoux 

and Khanji (1974) 
Conceptual 

Rigid, 
Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

very sharp 

peak in 𝐾 to 

a constant 𝐾 

near 

saturation 

Hydrostatic 
Pressure, 

Capillarity, 

Gravity, 

and Air 

resistance 

Green and Ampt 

(1911) - Mein and 

Larson (1973) 

[Darcy’s law] 

Morel-Seytoux 

(1976) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

 

x 

Before 

ponding 

[Arbitrary 

rainfall 

rate] 

x 

After 

ponding 

[Arbitrary 

head] 

No Arbitrary 

Hydrostatic 

Pressure, 

Capillarity, 

Gravity, 

and Air 

resistance 

Mein and Larson 

(1973) - Morel-

Seytoux and 

Khanji (1974) 

[Darcian sense] 

Li et al. (1976) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

nearly 

constant  𝐾 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) 

Brutsaert (1977) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
x   Yes 

𝐷 and 𝐾 are 

represented 

by 

Averjanov-

Irmay 

formula 

(1964) 

Capillarity 

and Gravity 

Green and Ampt 

(1911) - Richards 

(1931) - Philip 

(1957a, 1969a) - 

Parlange (1971a) 

Collis-George 

(1977) 
Empirical Arbitrary Arbitrary 

1D, Local and 

Field-scale, 

Surface 

Early, Transient 

and Steady-

State 

      
Experimental 

Infiltration data 

Hachum and 

Alfaro (1977) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
 

x 

Before 

ponding 

[Variable 

rainfall 

rate] 

x 

After 

ponding 

[Variable 

head] 

Yes 

Rapidly 

varying 𝐷, 

very sharp 

peak in 𝐾 to 

a constant 𝐾 

near 

saturation 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) - Mein and 

Larson (1973) 

[Darcy’s equation] 

Smith and 

Parlange (1978) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

 

x 

Before 

ponding 

[Arbitrary 

rainfall 

rate] 

x 

After 

ponding 

[Arbitrary 

head] 

No 

(1) 𝐷 

approaches a 

delta 

function, 

very sharp 

peak in 𝐾 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) - Philip 

(1957b, 1969a) -

Parlange (1971b) - 

Talsma and 

Parlange (1972) 
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then 𝐾 varies 

very slowly 

near 

saturation 

(2) 𝑑𝐾/𝑑𝜃 

and 𝐷 

increase 

rapidly and 

in similar 

fashion, 𝐾 

varies 

rapidly near 

saturation 

Batu (1978) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

2D, Local scale, 

Surface (Single 

and periodic 

strip sources) 

Steady-State x   No 

𝐷 is 

constant, 𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Capillarity 

and Gravity 

Philip (1968, 

1969a, 1971) 

Kutilek (1980) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

After 

saturation 

(ℎ0 = 0) 

x 

Before 

ponding 

[Constant 

rainfall 

rate] 

 No 

𝐷 

approaches a 

delta 

function 

Capillarity 

and Gravity 
Philip (1957a) 

Parlange (1980) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

(h0 ≤ 0) 
 

x 

(h0 > 0) 

[Constant 

head] 

No 

(1) 𝐷 

approaches a 

delta 

function, 

very sharp 

peak in 𝐾 

then 𝐾 varies 

very slowly 

near 

saturation 

(2) 𝑑𝐾/𝑑𝜃 

and 𝐷 

increase 

rapidly and 

in similar 

fashion 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

[Darcy’s law] 

Parlange et al. 

(1982) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
x   No 

𝐷 

approaches a 

delta 

function, 

very sharp 

peak in 𝐾 

then 𝐾 varies 

Capillarity 

and Gravity 

Philip (1957a, 

1969a) - Parlange 

(1980) 
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very slowly 

near 

saturation 

Scotter et al. 

(1982) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
3D, Local scale, 

Surface 
Steady-State   

x 

[Constant 

head] 

No 

𝐷 is 

constant, 𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

 

Wooding (1968) 

 

Fok et al. (1982) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

2D, Local, 

Surface 

(Furrow) 

Early, Transient 

and Steady-

State 

  

x 

[Constant 

head] 

No 

𝐾 is constant 

within the 

transmission 

zone, then 

within the 

wetting zone 

𝐾 decreases 

toward the 

wetting front 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Hansen (1955) - 

Fok and Hansen 

(1966) 

[Darcy’s law] 

Brakensiek and 

Rawls (1983) 
Conceptual 

Rigid, 

Heterogeneous, 

Two-layer 

(surface crust + 

subsoil), 

Isotropic, Non-

hydrophobic, 

Flat surface 

Dual 
1D, Local scale, 

Surface 

Early and 

Steady-State 
 

x 

Before 

ponding 

[Constant 

rainfall 

rate] 

x 

After 

ponding 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

very sharp 

peak in 𝐾 to 

a constant 𝐾 

near 

saturation 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) 

Reynolds et al. 

(1983) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

3D, Local scale, 

Subsurface 

(Well) 

Steady-State   

x 

[Constant 

head] 

No 
Constant 

saturated 𝐾 

Hydrostatic 

Pressure 

and Gravity 

[Darcy’s law] 

Novak and Soltesz 

(1984) 
Empirical 

Swelling/ 

Cracked, 

Heterogeneous, 

Anisotropic, 

Non-

hydrophobic, 

Flat surface 

Multi 

1D, Local and 

Field-scale, 

Surface 

Early, Transient 

and Steady-

State 

      
Experimental 

infiltration data 

Fok and Chiang 

(1984) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

2D, Local scale, 

Surface 

(Furrow) 

Early, Transient 

and Steady-

State 

  

x 

[Constant 

head] 

No 

𝐾 is constant 

within the 

transmission 

zone, then 

within the 

wetting zone 

𝐾 decreases 

toward the 

wetting front 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Fok and Hansen 

(1966) - Fok et al. 

(1982) 
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Philip (1984a) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

2D, Local scale, 

Subsurface 

(Cylindrical 

cavities) 

Steady-State x   No 

𝐷 is 

constant, 𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Capillarity 

and Gravity 

Philip (1957a, 

1968, 1969a) 

Philip (1984b) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

3D, Local scale, 

Subsurface 

(Spherical 

cavities) 

Steady-State x   No 

𝐷 is 

constant, 𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Capillarity 

and Gravity 

Philip (1968, 

1969a) - Philip 

(1984a) 

Beven (1984) Conceptual 

Rigid, Scale-

Heterogeneous, 

Anisotropic, 

Non-

hydrophobic, 

Sloping surface 

Single 
1D, Field-scale, 

Surface 

Early and 

Steady-State 
 

x 

Before 

ponding 

[Constant 

rainfall 

rate] 

x 

After 

ponding 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

saturated 𝐾 

decreases as 

an 

exponential 

function of 

depth 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) - Mein and 

Larson (1973) 

[Darcy’s law] 

Germann (1985) Conceptual 

Rigid, 

Heterogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Multi 
1D, Local scale, 

Surface 
Steady-State  

x 

[Constant 

rainfall 

rate] 

 No Kinematic 𝐾 Gravity 

Beven and 

Germann (1981, 

1982) 

Warrick et al. 

(1985) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x   No Arbitrary 
Capillarity 

and Gravity 

Richards (1931) - 

Philip (1957a) 

Reynolds et al. 

(1985) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

3D, Local scale, 

Subsurface 

(well) 

Steady-State   

x 

[Constant 

head] 

No 

𝐷 is 

constant, 𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Scotter et al. 

(1982) - Reynolds 

et al. (1983) 

Parlange et al. 

(1985) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

(h0 ≤ 0) 
 

x 

(h0 > 0) 

[Constant 

head] 

No 

𝑑𝐾/𝑑𝜃 and 

𝐷 increase 

rapidly and 

in similar 

fashion 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Parlange (1980) 

Chu (1985) Conceptual 

Rigid, 

Heterogeneous, 

Three-layer 

Triple 
1D, Local scale, 

Surface 

Early and 

Steady-State 
 

x 

Before 

ponding 

x 

After 

ponding 

Yes 

Rapidly 

varying 𝐷, 

very sharp 

Hydrostatic 

Pressure, 

Green and Ampt 

(1911) - 
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(surface crust + 

till layer + 

subsoil), 

Isotropic, Non-

hydrophobic, 

Flat surface 

[Arbitrary 

rainfall 

rate] 

[Arbitrary 

head] 
peak in 𝐾 to 

a constant 𝐾 

near 

saturation 

Capillarity 

and Gravity 

Brakensiek and 

Rawls (1983) 

Waechter and 

Philip (1985) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

2D and 3D, 

Local scale, 

Subsurface 

(Cylindrical 

and spherical 

cavities) 

Steady-State x   No 

𝐷 is 

constant, 𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Capillarity 

(weak) and 

Gravity 

Philip (1957a, 

1968, 1969a, 

1984a, b) 

Philip (1985) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

2D and 3D, 

Local scale, 

Subsurface 

(Cavities) 

Steady-State Any No 

𝐷 is 

constant, 𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Capillarity 

and Gravity 

Van de Hulst 

(1949) - Philip 

(1957a, 1968, 

1969a, 1984a, b) - 

Waechter and 

Philip (1985) 

Philip (1986a) Conceptual 

Rigid, 

Homogeneous, 

Isotropic and 

Anisotropic, 

Non-

hydrophobic, 

Flat surface 

Single 

3D, Local scale, 

Subsurface 

(Spheroidal 

cavities) 

Steady-State x   No 

𝐷 is 

constant, 𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Capillarity 

and Gravity 

Philip (1957a, 

1968, 1969a, 

1984a, b, 1985) 

Philip (1986b) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

2D and 3D, 

Local scale, 

Subsurface 

(Discs, 

cylinders, 

spheres) 

Steady-State x   No 

𝐷 is 

constant, 𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Capillarity 

and Gravity 

Van de Hulst 

(1949) - Philip 

(1957a, 1968, 

1969a, 1984a, b, 

1985, 1986a) 

Kutilek and Krejca 

(1987) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Transient State 
x   No Arbitrary 

Capillarity 

and Gravity 
Philip (1957a) 

Swartzendruber 

(1987a) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

nearly 

constant 𝐾 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Darcy (1856) - 

Green and Ampt 

(1911) 
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Swartzendruber 

(1987b) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

(h0 ≤ 0) 
 

x 

(h0 > 0) 

[Constant 

head] 

No Arbitrary 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Richards (1931) - 

Philip (1957a) 

Broadbridge and 

White (1988) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

 

x 

Before 

ponding 

[Constant 

rainfall 

rate] 

x 

After 

ponding 

[Constant 

head] 

No 

𝐷 and 𝐾 

depend on a 

single free 

parameter 𝐶 

and readily 

measured 

soil 

hydraulic 

properties 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

[Darcy-

Buckingham 

approach] 

Yeh (1989) Conceptual 

Rigid, 

Heterogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Multi 
1D, Local scale, 

Surface 

Early and 

Steady-State 
x   No 

𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Capillarity 

and Gravity 
[Buckingham] 

Reynolds and 

Elrick (1990) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
3D, Local scale, 

Surface 
Steady-State   

x 

[Constant 

head] 

No 

𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

[Darcy -

Buckingham 

relationships] 

Haverkamp et al. 

(1990) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

(h0 ≤ 0) 
 

x 

(h0 > 0) 

[Constant 

head] 

No 

𝐷 

approaches a 

delta 

function, 

𝑑𝐾/𝑑𝜃 and 

𝐷 increase 

rapidly and 

in similar 

fashion, 𝐾 

varies 

rapidly near 

saturation 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Parlange et al. 

(1985) 

Smith (1990) Conceptual 

Rigid, 

Heterogeneous, 

Two-layer 

(surface crust + 

subsoil), 

Isotropic, Non-

hydrophobic, 

Flat surface 

Dual 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

 

x 

Before 

ponding 

[Variable 

rainfall 

rate] 

x 

After 

ponding 

[Variable 

head] 

No 

𝐾 

represented 

as function 

of 𝜃 using 

Brooks and 

Corey (1964) 

and van 

Genuchten 

(1980) 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Philip (1957b) -

Parlange (1971b) - 

Talsma and 

Parlange (1972) - 

Smith and 

Parlange (1978) 

[Darcy’s law], 

[Richards’ 

equation] 
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Schmid (1990) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
 

x 

Before 

ponding 

[Variable 

rainfall 

rate] 

x 

After 

ponding 

[Variable 

head] 

Yes 

Rapidly 

varying 𝐷, 

very sharp 

peak in 𝐾 to 

a constant 𝐾 

near 

saturation 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Mein and Larson 

(1973) 

Ankeny et al. 

(1991) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
3D, Local scale, 

Surface 
Steady-State x   No 

𝐷 is 

constant, 𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Capillarity 

and Gravity 
Wooding (1968) 

Swartzendruber 

and Hogarth 

(1991) 

Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

[Constant 

head] 

No Arbitrary 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Richards (1931) - 

Swartzendruber 

(1987b) 

Philip (1992) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

[Falling 

head] 

Yes 

Rapidly 

varying 𝐷, 

nearly 

constant 𝐾 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) 

White et al. (1992) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
3D, Local scale, 

Surface 
Steady Flow x   No 

𝐷 is 

constant, 𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Capillarity 

and Gravity 

Wooding (1968) 

[Darcy’s equation] 

Barry et al. (1993) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local, 

Surface 

Early, Transient 

and Steady-

State 

x 

(h0 ≤ 0) 
 

x 

(h0 > 0) 

[Constant 

head] 

No 

𝐷 

represented 

as function 

of 𝜃 using 

Bruce and 

Klute (1956), 

𝐾 depends 

strongly on 

the soil 

moisture 

characteristic 

curve 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Richards (1931) 

[Darcy’s law] 

Fonteh and 

Podmore (1993) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

2D, Local scale, 

Surface 

(Furrow) 

Early and 

Steady-State 
  

x 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

very sharp 

peak in 𝐾 to 

a constant 𝐾 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) - Hansen 

(1955) - Fok and 

Chiang (1984) 
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near 

saturation 

Smith et al. (1993) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

During 

rainfall 

hiatus 

 

x 

Before 

ponding/ 

post hiatus 

[Arbitrary 

rainfall 

rate] 

x 

After 

ponding 

[Arbitrary 

head] 

No 

𝐾 

represented 

as function 

of 𝜃 using 

Brooks and 

Corey (1964) 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Parlange et al. 

(1982) 

[Darcy flow] 

[Richards’ 

equation] 

Philip (1993) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
 

x 

Before 

ponding 

[Arbitrary 

rainfall 

rate] 

x 

After 

ponding 

[Arbitrary 

head] 

Yes 

Rapidly 

varying 𝐷, 

very sharp 

peak in 𝐾 to 

a constant 𝐾 

near 

saturation 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) 

Stone et al. (1994) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

constant 𝐾 

near 

saturation 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) - Philip 

(1957a) 

Mandal and 

Waechter (1994) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

2D, Local scale, 

Subsurface 

(Cylinders) 

Steady-State x   No Arbitrary 
Capillarity 

and Gravity 

Philip (1968, 

1984a, b, 1985) - 

Waechter and 

Philip (1985) 

Fallow et al. 

(1994) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

(h0 ≤ 0) 
 

x 

(h0 > 0) 

[Constant 

and Falling 

head] 

No 

𝐷 is 

constant, 𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Capillarity 
Philip (1957a - 

1969a) 

Basha (1994) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

1D, 2D and 3D, 

Local scale, 

Surface and 

subsurface 

Early and 

Steady-State 
 

x 

Before 

ponding 

[Arbitrary 

rainfall 

rate] 

x 

After 

ponding 

[Arbitrary 

head] 

No 

𝐷 is 

constant, 𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Capillarity 

and Gravity 

Buckingham 

(1907) - Richards 

(1931) - 

Greenberg (1971) 

Salvucci and 

Entekhabi (1994) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

constant 𝐾 

near 
saturation 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) - Philip 

(1957a) 

Corradini et al. 

(1994) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

 x  No 
𝐾 

represented 

as function 

Capillarity 

and Gravity 

Parlange et al. 

(1982, 1985) - 

Smith et al. (1993) 
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hydrophobic, 

Flat surface 

[Arbitrary 

rainfall 

rate] 

of 𝜃 using 

Brooks and 

Corey (1964) 

[Richards’ 

equation] 

Smettem et al. 

(1994) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
3D, Local scale, 

Surface 
Early State x   No 

𝐷 increases 

sharply with 

increasing 𝜃, 

𝐾 varies 

rapidly near 

saturation 

Capillarity 

Parlange (1971a) - 

Turner and 

Parlange (1974) 

Haverkamp et al. 

(1994) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

1D and 3D, 

Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

(h0 ≤ 0) 
 

x 

(h0 > 0) 

[Constant 

head] 

No 

𝑑𝐾/𝑑𝜃 and 

𝐷 increase 

rapidly and 

in similar 

fashion,  

𝐾 varies 

rapidly near 

saturation 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Parlange et al. 

(1982) - Smetten 

et al. (1994) - 

Haverkamp et al. 

(1990) 

Barry et al. (1995) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

[Constant 

head] 

No 

𝑑𝐾/𝑑𝜃 and 

𝐷 increase 

rapidly and 

in similar 

fashion,  

𝐾 varies 

rapidly near 

saturation 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Richards (1931) - 

Philip (1957a) - 

Parlange et al. 

(1982, 1985) - 

Haverkamp et al. 

(1990) 

Elrick et al. (1995) Semi-Empirical Arbitrary Single 

1D, Local and 

Field-scale, 

Surface 

Transient and 

Steady-State 
  

x 

[Falling 

head] 

   

Experimental 

Infiltration data – 

Richards (1931) 

Sommer and 

Mortensen (1996) 
Conceptual 

Deformable, 

Homogeneous, 

Anisotropic, 

Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

nearly 

constant 𝐾 

Liquid 

Pressure or 

Hydrostatic 

Pressure, 

and 

Capillarity 

Biot (1955) 

[Darcy’s law] 

Srivastava et al. 

(1996) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

nearly 

constant 𝐾 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) - Mein and 

Larson (1973) 

Preziosi et al. 

(1996) 
Conceptual 

Deformable, 

Homogeneous, 

Anisotropic, 

Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

nearly 

constant 𝐾 

Liquid 

Pressure or 

Hydrostatic 

Pressure, 

and 

Capillarity 

Darcy (1856) - 

Bowen (1980) 

Corradini et al. 

(1997) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

During 

rainfall 

hiatus 

 

x 

Before 

ponding/ 

post hiatus 

x 

After 

ponding 

[Arbitrary 

head] 

No 

𝐾 

represented 

as function 

of 𝜃 using 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Parlange et al. 

(1985) - Smith et 

al. (1993) - 

Corradini et al. 

(1994) 
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[Arbitrary 

rainfall 

rate] 

Brooks and 

Corey (1964) 

[Darcy’s law] 

[Richards’ 

equation] 

Parlange et al. 

(1997) 
Conceptual Arbitrary Arbitrary 

1D, Local scale, 

Surface 

Early and 

Steady-State 
Any No 

𝐷 

approaches a 

delta 

function, 

very sharp 

peak in 𝐾 

then 𝐾 varies 

very slowly 

near 

saturation 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Parlange et al. 

(1982, 1985) 

[Richards’ 

equation] 

Wu and Pan 

(1997) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
3D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

(h0 ≤ 0) 
 

x 

(h0 > 0) 

[Constant 

head] 

No 

𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Richards (1931) - 

Warrick et al. 

(1985) - Reynolds 

and Elrick (1990) 

Wang et al. (1997) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

nearly 

constant 𝐾 

Hydrostatic 

Pressure, 

Capillarity, 

Gravity, 

and Air 

entrapment 

effects 

Green and Ampt 

(1911) 

Enciso-Medina et 

al. (1998) 
Conceptual 

Rigid, 

Heterogeneous, 

Three-layer 

(surface seal + 

till layer + 

subsoil), 

Isotropic, Non-

hydrophobic, 

Flat surface 

Triple 

1D, Local scale, 

Surface 

(Furrow) 

Early and 

Steady-State 
  

x 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

nearly 

constant 𝐾 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) [Darcy’s 

law] 

Philip (1998) Conceptual 

Rigid, 

Heterogeneous, 

Two-layer 

(surface crust + 

subsoil), 

Anisotropic, 

Non-

hydrophobic, 

Flat surface 

Dual 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

(h0 ≤ 0) 
 

x 

(h0 > 0) 

[Constant 

head] 

No 

𝐷 and 𝐾 are 

nonlinear 

functions of 

𝜃 in the crust 

and in the 

soil 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Philip (1957a, b, 

1967, 1969a) 

[Darcy’s law] 

Smith et al. (1999) Conceptual 

Rigid, 

Heterogenous, 

Two-layer 

(surface crust + 

subsoil), 

Dual 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

During 

rainfall 

hiatus 

 

x 

Before 

ponding/ 

post hiatus 

x 

After 

ponding 

[Arbitrary 

head] 

No 

𝐾 

represented 

as function 

of 𝜃 using 

Brooks and 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Smith et al. (1993) 

- Corradini et al. 

(1994, 1997) 
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Isotropic, Non-

hydrophobic, 

Flat surface 

[Arbitrary 

rainfall 

rate] 

Corey (1964) 

– Upper 

layer has 

always the 

lowest 𝐾 

[Darcy’s law] 

[Richards’ 

equation] 

Selker et al. 

(1999a) 
Conceptual 

Rigid, Scale-

Heterogeneous, 

Anisotropic, 

Non-

hydrophobic, 

Flat surface 

Single 
1D, Field-scale, 

Surface 

Early and 

Steady-State 
  

x 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

saturated 𝐾 

function of 

depth 

following 

linear, power 

law and 

exponential 

relationship 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) - Beven 

(1984) 

Wu et al. (1999) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
3D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

(h0 ≤ 0) 
 

x 

(h0 > 0) 

[Constant 

head] 

No 

𝐾 

represented 

by an 

exponential 

function of 𝜓 

(Gardner, 

1958) 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Philip (1957a) - 

Reynolds and 

Elrick (1990) - Wu 

and Pan (1997) 

[Richards’ 

equation] 

Novak et al. 

(2000) 
Conceptual 

Swelling/ 

Cracked, 

Heterogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Multi 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

(h0 ≤ 0) 
 

x 

(h0 > 0) 

[Constant 

head] 

No Arbitrary 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) - Feddes et 

al. (1988) [Darcy’s 

law] [Richards’ 

equation] 

Corradini et al. 

(2000) 
Conceptual 

Rigid, 

Heterogeneous, 

Two-layer 

(surface crust + 

subsoil), 

Isotropic, Non-

hydrophobic, 

Flat surface 

Dual 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

During 

rainfall 

hiatus 

 

x 

Before 

ponding/ 

post hiatus 

[Arbitrary 

rainfall 

rate] 

x 

After 

ponding 

[Arbitrary 

head] 

No 

𝐾 

represented 

as function 

of 𝜃 using 

Brooks and 

Corey (1964) 

– Either 

layer may be 

less 

permeable 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Smith et al. (1993, 

1999) - Corradini 

et al. (1994, 1997) 

[Darcy’s law] 

[Richards’ 

equation] 

Swartzendruber 

(2000) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

(h0 > 0) 

[Variable 

head] 

Yes 

Rapidly 

varying 𝐷, 

nearly 

constant 𝐾 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Darcy (1856) - 

Green and Ampt 

(1911) 

Govindaraju et al. 

(2001) 
Semi-analytical 

Rigid, Scale-

Heterogeneous 

(at the field 

scale), 
Anisotropic, 

Non-

Single 

1D, Local and 

Field-scale, 

Surface 

Early, Transient 

and Steady-

State 

 

x 

Before 

ponding 

[Arbitrary 
rainfall 

rate] 

x 

After 

ponding 

[Arbitrary 
head] 

(1) Yes 

(2) No 

(1) At the 

local scale, 

rapidly 

varying 𝐷, 

constant  𝐾 

near 

saturation, 

Hydrostatic 

Pressure, 

Capillarity 
and Gravity 

Green and Ampt 

(1911) 
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hydrophobic, 

Flat surface 

(2) At the 

field-scale, 

saturated 

𝐾 varies 

spatially and 

represented 

by a 

correlated 

lognormal 

random field 

Serrano (2001) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

nearly 

constant  𝐾 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) 

Corradini et al. 

(2002) 
Semi-analytical 

Rigid, Scale-

Heterogeneous, 

Anisotropic, 

Non-

hydrophobic, 

Sloping surface 

Single 
1D, Field-scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

Downslope 

after 

ponding 

(no run-on) 

(1) 

 

x 

Before 

ponding 

[Arbitrary 

rainfall 

rate] 

x 

After 

ponding 

[Arbitrary 

head] 

No 

(1) 

Saturated 

𝐾 varies 

spatially and 

represented 

as a log-

distributed 

random 

variable with 

PDF 

(2)  Effective 

Saturated 

𝐾 

represented 

empirically 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Govindaraju et al. 

(2001) 

Elrick et al. (2002) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady State 
  

x 

(Constant- 

and Falling- 

head) 

Yes 

Rapidly 

varying 𝐷, 

very sharp 

peak in 𝐾 to 

a constant 𝐾 

near 

saturation 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) - Philip 

(1957b) - Elrick et 

al. (1995) 

Parlange et al. 

(2002) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
x (ℎ0 = 0)   No 

𝐷 and 𝐾 lie 

between the 

assumption 

of sharp 

wetting front 

and the 

assumption 

of 𝐷 and 

𝑑𝐾/𝑑𝜃 

proportional 

Capillarity 

and Gravity 

Green and Ampt 

(1911) - Philip 

(1969a) - Talsma 

and Parlange 

(1972) - Parlange 

(1980) - Parlange 

et al. (1982) 

Warrick et al. 

(2005) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x (Variable 

head) 
Yes 

Rapidly 

varying 𝐷, 

Hydrostatic 

Pressure, 

Green and Ampt 

(1911) 
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hydrophobic, 

Flat surface 

nearly 

constant 𝐾 

Capillarity 

and Gravity 

Weiler (2005) Conceptual 

Rigid, 

Heterogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Dual 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

nearly 

constant 𝐾 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) 

[Buckingham-

Darcy law] 

Govindaraju et al. 

(2006) 
Semi-analytical 

Rigid, Scale-

Heterogeneous, 

Anisotropic, 

Non-

hydrophobic, 

Sloping surface 

Single 
1D, Field-scale, 

Surface 

Early, Transient 

and Steady-

State 

Downslope 

after 

ponding 

(no run-on) 

x 

Before 

ponding 

[Variable 

rainfall 

rate] 

x 

After 

ponding 

[Variable 

head] 

No 

Saturated 

𝐾 varies 

spatially and 

represented 

as a log-

distributed 

random 

variable with 

PDF 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Govindaraju et al. 

(2001) - Corradini 

et al. (2002) 

Morbidelli et al. 

(2006) 
Semi-analytical 

Rigid, Scale-

Heterogeneous, 

Anisotropic, 

Non-

hydrophobic, 

Sloping surface 

Single 
1D, Field-scale, 

Surface 

Early, Transient 

and Steady-

State 

 

x 

Before 

ponding 

[Variable 

rainfall 

rate] 

x 

After 

ponding 

[Variable 

head] 

No 

Saturated 

𝐾 varies 

spatially and 

represented 

as a log-

distributed 

random 

variable with 

PDF 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Govindaraju et al. 

(2001, 2006) - 

Corradini et al. 

(2002) 

Lassabatere et al. 

(2006) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
3D, Local scale, 

Surface 

Transient and 

Steady-State 
x   No 

𝐾 

represented 

as function 

of 𝜃 using 

Brooks and 

Corey (1964) 

Capillarity 

and Gravity 

Philip (1969) - 

Smetten et al. 

(1994) - 

Haverkamp et al. 

(1994) 

Chen and Young 

(2006) 
Conceptual 

Rigid, infinitely 

deep, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Sloping surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
 

x 

Before 

ponding 

[Arbitrary 

rainfall 

rate] 

x 

After 

ponding 

[Arbitrary 

head] 

Yes 

Rapidly 

varying 𝐷, 

very sharp 

peak in 𝐾 to 

a constant 𝐾 

near 

saturation 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1991) 

[Darcy’s law] 

Warrick and 

Lazarovitch 

(2007) 

Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

2D, Local scale, 

Surface (Strip 

source) 

Early, Transient 

and Steady-

State 

  

x 

[Constant 

head] 

No Arbitrary 

Hydrostatic 

pressure, 

Capillarity 

and Gravity 

Turner and 

Parlange (1974) - 

Smetten et al. 

(1994) - 

Haverkamp et al. 

(1994) [Richards’ 

equation] 

Warrick et al. 

(2007) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

2D, Local scale, 

Surface 

(Furrow) 

Early, Transient 

and Steady-

State 

  

x 

[Constant 

head] 

No Arbitrary 

Hydrostatic 

pressure, 

Capillarity 

and Gravity 

Haverkamp et al. 

(1994) - Warrick 

and Lazarovitch 

(2007) [Richards’ 

equation] 
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Assouline et al. 

(2007) 
Conceptual Arbitrary Arbitrary Arbitrary 

Early, Transient 

and Steady-

State 

 

x 

Before 

ponding 

[Variable 

rainfall 

rate] 

x 

After 

ponding 

[Variable 

head] 

No Arbitrary 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Smith et al. (2002) 

- Brutsaert (2005) 

Germann et al. 

(2007) 
Conceptual 

Rigid, 

Heterogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Multi 
1D, Local scale, 

Surface 
Steady-State  

x 

[Constant 

rainfall 

rate] 

 Yes 

Saturated 𝐾 

is time-

variant 

Gravity [Stokes flow] 

Essig et al. (2009) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Sloping surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 

x 

Before 

ponding 

and after 

saturation 

(ℎ0 = 0) 

x 

Before 

ponding 

[Constant 

rainfall 

rate] 

x 

After 

ponding 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

very sharp 

peak in 𝐾 to 

a constant 𝐾 

near 

saturation 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

[Darcy -

Buckingham law] 

[Darcy’s law] 

Valiantzas (2010) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

(h0 ≤ 0) 
 

x 

(h0 > 0) 

[Constant 

head] 

No 

𝐷 and 𝐾 lie 

between the 

assumption 

of sharp 

wetting front 

and the 
assumption 

of 𝐷 and 

𝑑𝐾/𝑑𝜃 

proportional 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Philip (1975a, b) - 

Talsma and 

Parlange (1972) 

[Darcy’s law] 

[Richards’ 

equation] 

Su (2010) Conceptual 

Swelling, 

Heterogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Multi 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x   No 

Constant 𝐷 

and linear 𝐾 

as function 

of 𝜃 

(Fleming et 

al., 1984) 

Capillarity 

and Gravity 

Philip (1969b) - 

Smiles and Raats 

(2005) – Su (2009) 

[Richards’ 

equation] 

Corradini et al. 

(2011) 
Conceptual 

Rigid, 

Heterogeneous, 

Two-layer 

(surface crust + 

subsoil), 

Isotropic, Non-

hydrophobic, 

Flat surface 

Dual 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

During 

rainfall 

hiatus 

 

x 

Before 

ponding/ 

post hiatus 

[Arbitrary 

rainfall 

rate] 

x 

After 

ponding 

[Arbitrary 

head] 

No 

𝐾 

represented 

as function 

of 𝜃 using 

Brooks and 

Corey (1964) 

– Upper 

layer is more 

permeable 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Smith et al. (1993) 

- Corradini et al. 

(1997, 2000) 

[Richards’ 

equation] 

Swamee et al. 

(2012) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 

x 

(h0 ≤ 0) 
 

x 

(h0 > 0) 

[Constant 

head] 

(1) Yes 

(2) No 

(1) Rapidly 

varying 𝐷, 

nearly 

constant 𝐾 

(2) 𝑑𝐾/𝑑𝜃 

and 𝐷 are 

proportional 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Richards (1931) - 

Green and Ampt 

(1911) - Taslma 

and Parlange 

(1972) 



 

 
 

5
8

 

 

Govindaraju et al. 

(2012) 
Conceptual 

Rigid, Scale-

Heterogeneous, 

Anisotropic, 

Non-

hydrophobic, 

Flat surface 

Single 

1D, Local and 

Field-scale, 

Surface 

Early, Transient 

and Steady-

State 

 

x 

Before 

ponding 

[Arbitrary 

rainfall 

rate] 

x 

After 

ponding 

[Arbitrary 

head] 

(1) Yes 

(2) No 

(1) At the 

local scale, 

saturated 𝐾 

continuously 

decreasing 

with depth 

according to 

a power law 

(2) At the 

field-scale, 

saturated 

𝐾 

represented 

spatially by a 

correlated 

lognormal 

random field 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) 

Ali et al. (2013) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

nearly 

constant 𝐾 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) 

Almedeij and Esen 

(2014) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
 

x 

Before 

ponding 

[Constant 

rainfall 

rate] 

x 

After 

ponding 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

very sharp 

peak in 𝐾 to 

a constant 𝐾 

near 

saturation 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) - Mein and 

Larson (1973) 

Bautista et al. 

(2014) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

2D, Local scale, 

Surface 

(Furrow) 

Early, Transient 

and Steady-

State 

  

x 

[Variable 

head] 

No Arbitrary 

Hydrostatic 

pressure, 

Capillarity 

and Gravity 

Richards (1931) - 

Haverkamp et al. 

(1994) - Warrick 

and Lazarovitch 

(2007) - Warrick 

et al. (2007) 

Lassabetere et al. 

(2014) 
Conceptual 

Rigid, 

Heterogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Dual 

1D and 3D, 

Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x   No 

𝐾 

represented 

as function 

of 𝜃 using 

van 

Genuchten - 

Mualem 

model 

(Mualem, 

1976; van 

Genuchten, 

1980) 

Capillarity 

and Gravity 

Gerke and van 

Genuchten (1993) 

-Haverkamp et al. 

(1994) 

[Buckingham - 

Darcy law] 

[Richards’ 

equation] 
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Vatankhah (2015) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

[Arbitrary 

head] 

Yes 

Rapidly 

varying 𝐷, 

very sharp 

peak in 𝐾 to 

a constant 𝐾 

near 

saturation 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) - Almedeij 

and Esen (2014) 

Bautista et al. 

(2016) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 

2D, Local scale, 

Surface 

(Furrow) 

Early, Transient 

and Steady-

State 

  

x 

[Variable 

head] 

No Arbitrary 

Hydrostatic 

pressure, 

Capillarity 

and Gravity 

Richards (1931) - 

Haverkamp et al. 

(1994) - Warrick 

and Lazarovitch 

(2007) - Warrick 

et al. (2007) - 

Bautista et al. 

(2014) 

Nie et al. (2017a) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Steady-State 
  

x 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

nearly 

constant  𝐾 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911), Valiantzas 

(2010) [Darcy’s 

equation] 

Selker and 

Assouline (2017) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 
Early State   

x 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

nearly 

constant 𝐾 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) 

Stewart and Abou 

Najm (2018) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
3D, Local scale, 

Surface 

Transient and 

Steady-State 

x 

(h0 ≤ 0) 
 

x 

(h0 > 0) 

[Constant 

head] 

No 

𝐾 

represented 

as function 

of 𝜓 using 

Brooks and 

Corey (1964) 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Philip (1957a) - 

Philip (1969a) - 

Reynolds and 

Elrick (1990) - Wu 

and Pan (1997) - 

Wu et al. (1999)  

Stewart (2018) Conceptual 

Shrink-swell, 

Heterogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Dual 
1D, Local scale, 

Surface 

Early and 

Steady-State 
 

x 

Before 

ponding 

[Constant 

rainfall 

rate] 

x 

After 

ponding 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

very sharp 

peak in 𝐾 to 

a constant 𝐾 

near 

saturation 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) - Selker 

and Assouline 

(2017) 

Rahmati et al. 

(2019) 
Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early and 

Transient State 
x   No Arbitrary 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Richards (1931) - 

Philip (1957a) - 

Parlange et al. 

(1982) -

Haverkamp et al. 

(1994) 

Stewart (2019) Conceptual 

Rigid, 

Heterogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Dual 
1D, Local scale, 

Surface 

Early and 

Steady-State 
 

x 

Before 

ponding 

[Constant 

rainfall 

rate] 

x 

After 

ponding 

[Constant 

head] 

Yes 

Rapidly 

varying 𝐷, 

very sharp 

peak in 𝐾 to 

a constant 𝐾 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Green and Ampt 

(1911) - Beven 

and Germann 

(1982) - Gerke and 

Van Genuchten 

(1993) - Selker 
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near 

saturation 

and Assouline 

(2017)  

[Darcy’s law] 

Baiamonte (2020) Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

 

x 

[Constant 

rainfall 

rate] 

 No 

(1) 𝐾 

represented 

using 

Torricelli’s 

law 

(2) 𝐾 

represented 

as function 

of 𝜓 using 

Brooks and 

Corey (1964)  

Gravity Richards (1931) 

Su et al. (2020) Conceptual 

Deformable, 

Scale-

Heterogeneous, 

Anisotropic, 

Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x 

(h0 ≤ 0) 
 

x 

(h0 > 0) 

[Constant 

head] 

No 

𝐾 

represented 

as function 

of 𝜃 using 

van 

Genuchten 

model 

(1980) 

Hydrostatic 

Pressure, 

Capillarity 

and Gravity 

Richards (1931) 

Poulovassilis and 

Argyrokastritis 

(2020) 

Conceptual 

Rigid, 

Homogeneous, 

Isotropic, Non-

hydrophobic, 

Flat surface 

Single 
1D, Local scale, 

Surface 

Early, Transient 

and Steady-

State 

x   No Arbitrary 
Capillarity 

and Gravity 

Richards (1931) - 

Philip (1957a, b)  

Abou Najm et al. 

(2021)a 

Semi-

Conceptual 
Arbitrary Arbitrary Arbitrary Arbitrary Any No Arbitrary Arbitrary - 

Di Prima et al. 

(2021)a Conceptual 

Rigid, 

Homogeneous, 

Isotropic, 

Hydrophobic, 

Flat surface 

Single 
3D, Local scale, 

Surface 

Transient and 

Steady-State 
x   No 

𝐾 

represented 

as function 

of 𝜃 using 

Brooks and 

Corey (1964) 

Capillarity 

and Gravity 

Haverkamp et al. 

(1994) - 

Lassabatere et al. 

(2006) - Abou 

Najm et al. 2021) 

aAll models illustrate a concave cumulative infiltration curve I(t), except for Abou Najm et al. (2021) and Di Prima et al. (2021) which allow both the representation of either concave or convex I(t) curves. 
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From a historic timeline demonstrating the evolution of knowledge from earlier theories into the most recent conceptual 

models based on citations (Figure 2.3), we identified areas that witnessed the most developments vs. areas that have been 

understudied. Studies based on Darcy’s law, the Richardson-Richards-Buckingham paradigm and the Green-Ampt models, 

are very common, while models based on Stokes’ work and other earlier theories are areas for possible investigation and 

advancements.  

One additional finding from our inclusive survey is that almost all infiltration models for early- and transient-time behavior, 

except for Abou Najm et al. (2021) and Di Prima et al. (2021), were designed to reflect typical infiltration results from 

infiltration experiments revealing a concave cumulative infiltration curve. The concave curve demonstrates higher infiltration 

capacity at early stages that reaches a constant slope at steady state. This concave shape mimics what we call “perfect” 

infiltration conditions with no water-repellency, preferential flow, or any other factors present. However, different soils and 

field conditions can alter this behavior leading to cumulative infiltration curves that exhibit convex, mixed, or non-standard 

shapes. More recently, Pachepsky and Karahan (2022) analyzed the global infiltration database called SWIG developed by 

Rahmati et al. (2018). By analyzing 5023 infiltration curves, they found 12 types of cumulative infiltration curve shapes. 

Nearly one third of the SWIG database showed non-classic shape. They applied a classification tree approach to divide those 

data with non-classic shapes. Their results showed that measurement method, clay content, and organic matter were among 

the most influential predictors of the shape type. In fact, non-classic shapes were previously reported and associated to soil 

structure and hydrophobicity (Angulo-Jaramillo et al., 2019). Given different land use and field conditions, different 

structural interactions come into play such as soil water-repellency, hydrophobicity, and preferential flow paths. As an 

attempt to model infiltration behavior covering the full range of shapes, Abou Najm et al. (2021) introduced a soil water-

repellency parameter, 𝛼𝑊𝑅 (T-1) that can be used with any infiltration model. 𝛼𝑊𝑅 accounts for water repellency using an 

exponential scaling factor that mimics the attenuation of infiltration rates observed at start of infiltration (Figure 2.4). The 

𝛼𝑊𝑅 family of models originated by Abou Najm et al. (2021) presented a macroscopic approach addressing water repellency 

(Di Prima et al., 2021; Yilmaz et al., 2022); other more microscopic and process-based approaches can be found in Shillito 

et al. (2020) and Hammecker et al. (2022). 
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Figure 2.3: Schematic overview of (a) the historical evolution of infiltration theory from basic flow models to 1D and 3D infiltration 

models, and (b) the evolution of knowledge from earlier theories into the most recent infiltration models. Red symbols refer to 

infiltration models characterizing heterogenous pore domains. 
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Figure 2.4: All infiltration models are based on the basic physical flow models and mimic the concave shape infiltration curve, except 

for Abou Najm et al. (2021), Di Prima et al. (2021), and Yilmaz et al. (2021) who captured the multi-shaped cumulative infiltration 

curve behavior in water-repellent soils 
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Figure 2.5, which illustrates arc diagrams tracing the evolution of model advancements using the citations within the 

manuscripts in Table 2.1, further showed how conceptual models are interrelated and how newer models built on the 

foundations of previous models, particularly Darcy, Buckingham, Richardson-Richards and Green & Ampt (GA). However, 

we noticed that starting around 1990 the citations of these classic works began to decrease. Instead, new models started to 

build on one another, citing only earlier works that are one or two steps away, but not many of those models compiled the 

entire chain of references to the original or fundamental source. This is evidenced by the fact that the blue arc/links should 

have been denser on the left side; instead, Figure 2.5 demonstrates the relatively small number of citations that the original 

flow papers received (for example, Darcy or Buckingham), with the interesting exception of the GA model. 

Therefore, literature has tended to treat earlier classic models like Darcy and Richardson-Richards as accepted laws rather 

than fundamental studies to be cited. Another way to interpret this result is that the origins of many infiltration models became 

obscured and overlooked as model variations proliferated. To this end, Figure 2.5 clearly provides alarming evidence, not 

only for the observation that papers Darcy and Richardson-Richards are no longer cited regularly (of course we believe they 

should), but for what this can imply, which is a general belief, that flow theory in porous media is resolved and related 

macroscopic laws are utterly determined, and that the challenges are more on the application and mathematical interpretation 

of current theories.  
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Figure 2.5: Arc diagrams constituted by nodes that represent the conceptual infiltration models displayed as nodes along a single axis in an 

ascending historical order, and links that show connections between those models. Each node was assigned a size weight based on how many links 

(N) connect the represented model with the other nodes along each diagram. The diagram connects the represented models to their target sources 

cited in the corresponding papers. 
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To demonstrate this issue further, we built Table 2.2 that gathers some data from a literature search 

carried out in Google Scholar and Scopus. The first two columns in Table 2.2 represent the actual 

number of citations to the papers that we considered (Column 1), whereas the last two columns 

refer to the number of mentions of those references in papers (with or without citations). Table 2.2 

shows how the literature refers to Darcy and Richards’ work using key terms such as law, model, 

equation, or theory and in many instances not citing them. For example, Darcy (1856) was cited 

8,067 times, but the terms Darcy law or Darcy model or Darcy equation were mentioned a total of 

21,381 times in the literature. We noticed that the keyword “law” is used more commonly to 

represent Darcy, while the keyword “equation” generally represents Richards. On the other hand, 

soil water characteristic models, which are required to model infiltration processes under the 

Darcy-BRR paradigm, gained wide adoption. For example, Table 2.2 shows the citation impact of 

the van Genuchten model, which had 32,113 citations or nearly four times as many citations than 

either Darcy (1856) and Richards (1931). This result suggests that the van Genuchten (1980) model 

was published recently enough in the literature to continue being cited as a primary source. 

Therefore, our analysis raises the question of the reliability and validity of citations as quality 

indicators in infiltration research. We conclude that assessment of infiltration theory in literature 

based on citations does not often reflect its impact and relevance for the new concepts being 

addressed.  
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Table 2.2: Citation analysis involving Darcy, Richards, and van Genuchten theories (the asterisk * is 

used as a trick for a better Scopus search – can search for the alternative spellings of the same word) 

Cited theory (references 

list) 

Number of Records 

by Google Scholar 

[Scopus] (on 

September 26th, 2023) 

Theory mentioned in text  

Number of 

Records by 

Scopus (on 

September 26th, 

2023) 

Darcy (1856) 8,067 [ND] 

"Darcy* law" OR "Darcy* model*" OR 

"Darcy* equation" 
21,381 

a) "Darcy* law" 
16,131 

b) "Darcy* model*" 
3,603 

c) "Darcy* equation" 
3,209 

Richards (1931) 7,936 [4,484] 

"Richard* model*" OR "Richard* 

equation*" 
8,763 

a) "Richard* model*" 
2,295 

b) "Richard* equation*" 
6,584 

van Genuchten (1980) 32,113 [19,904] 

"van Genuchten model*" OR "van 

Genuchten equation" OR "van 

Genuchten parameter*" 
2,068 
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2.10. Model parameterization 

2.10.1. Evolution of the infiltration parameters 

2.10.1.1. Hydraulic conductivity 𝑲 

Saturated hydraulic conductivity, 𝐾𝑠 (LT-1), was originally defined by Darcy (1856) as a measure 

of the water infiltration through the soil porous medium, and later described as function of 

permeability 𝑘 (L2), density, 𝜌 (ML-3), and kinematic viscosity, 𝜂 (ML-1T-1), of a fluid through an 

empirical equation developed by Kozeny (1927): 

𝐾𝑠 = 𝑘 (
𝜌𝑔

𝜂
)                                                    [2.23] 

Unsaturated hydraulic conductivity, 𝐾 (LT-1), was introduced by Buckingham (1907), symbolized 

by 𝐾(𝜃) (LT-1) as a function of the water content 𝜃 (L3L-3), and by 𝐾(𝜓) as function of the matric 

potential 𝜓 (L). Accordingly, Wind (1955) proposed an empirical equation relating 𝐾(𝜓) (LT-1) 

to the matric potential 𝜓 (L) as follows: 

𝐾(𝜓) = 𝑏∗𝜓−𝑎∗
                                                                                               [2.24] 

where: 𝑏∗ (L2T-1) and 𝑎∗ (dimensionless) are empirical parameters. 

Although there exist numerous models in the literature, we only summarize several empirical 

and/or theoretical equations developed to illustrate the relationship between the unsaturated (𝐾(𝜃) 

or 𝐾(𝜓)) and the saturated (𝐾𝑠) hydraulic conductivities, as summarized in Error! Reference 

source not found..3.  
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Table 2.3: Empirical equations for the unsaturated hydraulic conductivities 𝐾(𝜃) and 𝐾(𝜓) 

Equation Reference 

Unsaturated hydraulic conductivity 𝑲(𝜽) or 𝑲(𝑺𝒆) 

𝐾(𝜃) = 𝐾𝑠𝑆𝑒
𝑛
                                                                      𝜃 < 𝜃𝑠 

𝐾(𝜃) = 𝐾𝑠                                                                            𝜃 = 𝜃𝑠 
Brooks and Corey (1964) 

𝐾(𝜃) = 𝐾𝑠𝑒
(𝜃−𝜃𝑠) Davidson et al. (1969) 

𝐾(𝜃) = 𝐾𝑠 (
𝜃

𝜃𝑠
)

𝑛

 Campbell (1974) 

𝐾(𝜃) = 𝐾𝑠𝑆𝑒
0.5 [∫

𝑑𝑆𝑒

𝜓
/∫

𝑑𝑆𝑒

𝜓

1

0

𝑆𝑒

0

]

2

 Mualem (1976) 

𝐾(𝜃) = 𝐾𝑠𝑆𝑒
2 [∫

𝑑𝑆𝑒

𝜓2
/∫

𝑑𝑆𝑒

𝜓2

1

0

𝑆𝑒

0

]

2

 Burdine (1953) 

𝐾(𝜃) = 𝐾𝑠𝑆𝑒
0.5 [1 − (1 − 𝑆𝑒

1/𝑚𝑠𝑠𝑐)
𝑚𝑠𝑠𝑐

]
2

 

Mualem’s model applied on van Genuchten 

(1980) model for water retention curve 

(WRC) 

𝐾(𝜃) = 𝐾𝑠𝑒
𝛽𝑙(𝜃−𝜃𝑠) Libardi et al. (1980) 

𝐾(𝜃) = 𝐾𝑠 (
𝑆𝑒

𝑆𝑒𝑜

)
0.5

[
1−(1−𝑆𝑒

1/𝑚𝑠𝑠𝑐)
𝑚𝑠𝑠𝑐

1−(1−𝑆𝑒𝑜
1/𝑚𝑠𝑠𝑐)

𝑚𝑠𝑠𝑐]

2

  van Genuchten et al. (1991) 

𝐾(𝜃) = 𝐾𝑠𝑒
−𝑎𝑠𝑛(𝜃𝑠−𝜃)𝑏𝑠𝑛  Setiawan and Nakano (1993) 

𝐾(𝜃) = 𝐾𝑠𝑆𝑒
𝛼𝑘 {

1

2
𝑒𝑟𝑓𝑐 [𝑒𝑟𝑓𝑐−1(2𝑆𝑒) +

𝛽𝑘𝜎𝑘

√2
]}

𝛾𝑘
  Kosugi (1999) 

𝐾(𝜃) = 𝐾𝑠 [

𝛽𝑔

𝜙
−1+𝜃−𝜃𝑐

𝛽𝑔

𝜙
−𝜃𝑐

]

𝜆𝑔

3−𝐷𝑔

                                             𝜃𝑥 ≤ 𝜃 < 𝜙 

 

𝐾(𝜃) = 𝐾𝑠 [

𝛽𝑔

𝜙
− 1 + 𝜃𝑥 − 𝜃𝑐

𝛽𝑔

𝜙
− 𝜃𝑐

]

𝜆𝑔

3−𝐷𝑔

(
𝜃 − 𝜃𝑐

𝜃𝑥 − 𝜃𝑐
)
2

 

 𝜃𝑐 ≤ 𝜃 < 𝜃𝑥 

Ghanbarian et al. (2016) 

Unsaturated hydraulic conductivity 𝑲(𝝍) 

𝐾(𝜓) = 𝐾𝑠𝑆𝑒
3.5

 Averjanov (1950) 

𝐾(𝜓) = 𝐾𝑠𝑒
𝛼𝜓 Gardner (1958) 

𝐾(𝜓) = 𝐾𝑠𝑒
𝛼(𝜓−𝜓𝑠𝑡𝑟)                                                                  𝜓 < 0 

𝐾(𝜓) = 𝐾𝑠                                                                                    𝜓 ≥ 0 
Rijtema (1965) 

𝐾(𝜓) = 𝐾𝑠 {
1

2
𝑒𝑟𝑓𝑐 [

ln (𝜓/𝛽𝑘)−𝛾𝑘
2

𝛾𝑘√2
]}

𝛾𝑘

{
1

2
𝑒𝑟𝑓𝑐 [

ln (𝜓/𝛽𝑘)

𝛾𝑘√2
]}

2

  Das and Kluitenberg (1995) 

𝑆𝑒 =
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
; 𝑆𝑒𝑜

=
𝜃𝑜−𝜃𝑟

𝜃𝑠−𝜃𝑟
 

𝜃𝑜, 𝜃𝑟 , 𝜃𝑠, 𝜃𝑐 and 𝜃𝑥 are arbitrary, residual, saturated, critical and the crossover water content at which fractal 

scaling from critical path analysis switches to universal percolation scaling from percolation theory, respectively. 
𝜓𝑠𝑡𝑟 (L) is the suction at the air-entry point. 

All other model parameters are fitted parameters. 
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Using the exponential equation developed by Gardner (1958) in Error! Reference source not 

found..3, Raats (1971) defined the saturated hydraulic conductivity 𝐾𝑠 (LT-1), in terms of the 

matric flux potential, 𝜑 (L2T-1), as: 

𝐾𝑠 =
𝛼𝜑

1−𝑒𝛼𝜓𝑖
                        [2.25] 

Considering that the matrix flux potential is defined by: 

𝜑 = ∫ 𝐾(ℎ) 𝑑ℎ
0

ℎ𝑖
                                  [2.26] 

A well-known equation for estimating 𝐾𝑠 (LT-1) was derived from Equation 2.25 for soils initially 

at “field capacity” or drier (Raats 1971; Scotter et al., 1982; Reynolds et al., 1985; Yeh, 1989; 

Ankeny et al., 1991; Wu and Pan, 1997; Stewart and Abou Najm, 2018): 

𝐾𝑠 = 𝛼∗𝜑                                                                                                               [2.27] 

Although the hydraulic conductivity improved our understanding of infiltration problem, 

researchers realized that solving this problem was still so far from complete. Thus, they recognized 

the need of an additional soil property that can improve the estimation of water infiltration. This 

major characteristic is the soil sorptivity, symbolized by 𝑆 (LT-1), that describes the water 

absorption by capillarity. 

2.10.1.2. Sorptivity 𝑺 

Philip (1957b) introduced the sorptivity 𝑆0 (LT-0.5), as the first term in his two-term equation of 

cumulative, one-dimensional, unsaturated infiltration 𝐼 (L) with negative or zero head surface 

boundary condition (ℎ0 ≤ 0 and 𝜃o ≤ 𝜃𝑠): 

𝐼 =  𝑆0𝑡
0.5 + 𝐴𝑡                                                                                                   [2.28] 
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After he introduced the term sorptivity in 1957, Philip undertook a series of successive events to 

entrench soil sorptivity into literature. In 1969, he first developed an analytical equation describing 

sorptivity, 𝑆0 (LT-0.5), for an unsaturated soil with a constant diffusivity D (L2T-1) independent of 

𝜃 (L3L-3): 

𝑆0  =  2(𝜃𝑜 − 𝜃𝑖) (
𝐷

𝜋
)
0.5

                                                                                  [2.29] 

Then, in 1973, he introduced the concept of flux concentration function 𝐹(𝜃) to describe the water 

absorption by capillary. He defined this concept as the ratio of water flux at any location in the 

profile 𝑖(𝑡) − 𝐾𝑖, to the infiltration rate at surface, 𝑖0(𝑡) − 𝐾𝑖, where 𝐾𝑖 (LT-1) is the initial 

hydraulic conductivity. In 1974, Philip and Knight further used this concept to estimate the 

sorptivity 𝑆0 (LT-0.5): 

𝑆0
2 = 2∫

[𝜃−𝜃𝑖]𝐷(𝜃)

𝐹(𝜃)
𝑑𝜃

𝜃0

𝜃𝑖
                                                                              [2.30] 

where 𝜃𝑖 and 𝜃𝑜 (L3L-3) are the initial (𝑡 = 0) and specific (𝑡 > 0) water contents, respectively.  

Many estimates for sorptivity 𝑆0 (LT-0.5) have relied on the use of the flux concentration function 

𝐹(𝜃) as shown in Table 2.4. 

Table 2.4: Main approximations of the flux concentration function 𝐹(𝜃) and sorptivity 𝑆0
2 (L2T-1) 

(Angulo-Jaramillo et al., 2016) 

𝑭(𝜽) 𝑺𝟎
𝟐 (L2T-1) Reference 

𝜃 − 𝜃𝑖

𝜃o − 𝜃𝑖
 2(𝜃o − 𝜃𝑖)∫ 𝐷(𝜃)𝑑𝜃

𝜃0

𝜃𝑖

 Philip and Knight (1974) 

2(𝜃 − 𝜃𝑖)

𝜃o + 𝜃 − 2𝜃𝑖
 ∫ (𝜃o + 𝜃 − 2𝜃𝑖)𝐷(𝜃)𝑑𝜃

𝜃o

𝜃𝑖

 Parlange (1975) 

(
𝜃 − 𝜃𝑖

𝜃o − 𝜃𝑖
)

0.5

 2(𝜃o − 𝜃𝑖)
0.5 ∫ (𝜃 − 𝜃𝑖)

0.5𝐷(𝜃)𝑑𝜃
𝜃0

𝜃𝑖

 Brutsaert (1976) 

𝑒𝑥𝑝 {− [𝑖𝑛𝑣𝑒𝑟𝑓𝑐 (
𝜃 − 𝜃𝑖

𝜃o − 𝜃𝑖
)]

2

} 2𝐷 ∫
𝜃 − 𝜃𝑖

𝑒𝑥𝑝 {− [𝑖𝑛𝑣𝑒𝑟𝑓𝑐 (
𝜃 − 𝜃𝑖

𝜃o − 𝜃𝑖
)]

2

}

𝑑𝜃
𝜃o

𝜃𝑖

 
Crank (1979) 
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Another approximation for sorptivity, 𝑆0 (LT-0.5), was derived by equating the Green-Ampt 

equation (considering a surface pressure of zero i.e., ℎ0 = 0) to Philip's two-term infiltration 

equation (Collis-George, 1977): 

𝑆0
2 = 2𝜓𝑤𝑓(𝜃o − 𝜃𝑖)𝐾𝑠                                                                [2.31]   

Where 𝜓𝑤𝑓 (L) is the wetting front potential. 

Later, Philip (1985) introduced the macroscopic capillary length, 𝜆𝑐 (L), typically equivalent to 

the wetting front potential, 𝜓𝑤𝑓 (L) as: 

𝜆𝑐 =
1

𝐾0−𝐾𝑖
∫ 𝐷(𝜃)𝑑𝜃

𝜃o

𝜃𝑖
                                                                       [2.32] 

Based on Philip’s definition of 𝜆𝑐,White and Sully (1987) reformulated the sorptivity, 𝑆0 (LT-0.5), 

by substituting Equation 2.29 into 2.32, with 𝐹 = 0 for 𝜃 = 𝜃𝑖 and 𝐹 = 1 for 𝜃 = 𝜃o: 

𝑆0
2  =  

𝜆𝑐(𝐾0−𝐾𝑖)(𝜃o−𝜃𝑖)

𝑏
                                                                        [2.33]              

where: 𝑏 is a dimensionless constant. White and Sully (1987) showed that 𝑏 =  0.5 exactly for 

soils exhibiting a step-function infiltration front (Philip and Knight, 1974) and 𝑏 =  𝜋/4 if soil 

diffusivity 𝐷(𝜃) is constant (Philip, 1969a). For general field soils, White and Sully (1987) 

suggested 𝑏 = 0.55, since the actual infiltration fronts does not tend to be as sharp as a step 

function.  

Using the matric flux potential term, 𝜑 (L2T-1), Reynolds and Elrick (1990) redefined the sorptivity 

𝑆0 (LT-0.5) as: 

𝑆0
2 = 

𝜑(𝜃o−𝜃𝑖)

𝑏
                                                                                   [2.34] 

Now for the case of ponded head infiltration (ℎ0 ≥ 0 and 𝜃o = 𝜃𝑠), the sorptivity, here defined as 

𝑆𝐻 (LT-0.5), was related to 𝑆0 (LT-0.5) (White and Sully, 1987, Haverkamp et al., 1990) by: 
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𝑆𝐻
2 = 𝑆0

2 + 2ℎ0𝐾𝑠(𝜃𝑠 − 𝜃𝑖)                                                                 [2.35] 

The Reynolds and Elrick (1990) expression in Equation 2.34 can also be applied to Equation 2.35 

to define the sorptivity 𝑆𝐻 (LT-0.5) as: 

𝑆𝐻
2 = (𝜃𝑠 − 𝜃𝑖)(

𝜑

𝑏
+ ℎ0𝐾𝑠)                                                               [2.36] 

Recently, Lassabatere et al. (2021) proposed a specific scaling procedure to simplify the 

computation of sorptivity. In addition, the same authors proposed a specific mixed formulation to 

ease the numerical computation of sorptivity, when the final state corresponds to water ponding 

and for very low initial water contents (Lassabatere et al., 2023).  These authors demonstrated that 

the saturated part of sorptivity, 2ℎ0𝐾𝑠(𝜃𝑠 − 𝜃𝑖) must not be forgotten and its omission may lead 

to erroneous modeling of water infiltration. 

2.10.2. Methods and challenges behind 𝑲 and 𝑺 estimation in literature 

There are many techniques to measure infiltration in the laboratory and in the field. Starting with 

characterization of the 𝐾(𝜃) or 𝐾(𝜓) functions, the commonly used methods are the instantaneous 

profile (Watson., 1966) and the plane of zero flux (Arya et al., 1975) methods. These methods are 

further divided between direct approaches, in which both 𝜃 (L3L-3) and 𝜓 (L) are measured within 

the soil profile, and indirect approaches, in which one variable is measured while estimating the 

other variable is determined from a separate water retention curve 𝜃(𝜓). In principle, these 

methods are simple; however, complications often arise in practice leading to complex and time-

consuming measurements. To simplify the field determination of 𝐾(𝜃) and 𝐾(𝜓) and therefore 

the extensive labor requirements, these two functions can be determined using the empirical 

equations illustrated in Error! Reference source not found..3 once the water retention curve 𝜃(𝜓) 

is determined (Libardi et al., 1980; Zachmann et al., 1981; Dane and Hruska, 1983). However, this 
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simplification can show a disagreement between the 𝜃(𝜓) curves as determined in-situ and on 

undisturbed core samples – a common disadvantage among all described methods. In addition, 

applying the widely used equations of 𝐾(𝜃) and 𝐾(𝜓) (Table 2.3) involves the determination of 

the saturated hydraulic conductivity 𝐾𝑠 (LT-1), which gives rise to more efforts and challenges 

knowing the soil heterogeneity (Fodor et al., 2011), the spatial and seasonal variability of 𝐾𝑠 (LT-

1) (Farkas et al., 2006; Gülser et al. 2016), as well as its scale dependency (Lai and Ren, 2007).  

To determine the saturated hydraulic conductivity 𝐾𝑠 (LT-1) as well as soil sorptivity 𝑆0 or 𝑆𝐻 (LT-

0.5), (noted hereafter as 𝑆0/𝐻), different experimental tools were designed to measure one- or multi-

dimensional flow that can include early, transient, and steady-state flow stages depending on the 

approach being applied. Starting with single and double ring-infiltrometers, these tools were built 

to determine the saturated hydraulic conductivity either under constant- (Schiff, 1953; Parr and 

Bertrand, 1960; Olson, 1960; Touma et al., 2007; Xu et al., 2012; Di Prima et al., 2016; Ronnqvist, 

2018) or falling-head conditions (Elrick et al., 1995; Angulo-Jaramillo et al., 2003, Bagarello et 

al., 2004). In a series of papers, Bouwer (1960, 1963, 1986) introduced a simple field measurement 

cylinder which can be used to determine the two parameters, saturated hydraulic conductivity, 𝐾𝑠 

(LT-1), and wetting front potential, 𝜓𝑤𝑓 (L), required to apply the Green-Ampt approach. Bouwer’s 

cylinder infiltrometer is discussed in detail in Selker’s vadose zone book (Selker et al., 1999). 

Moving to the disc infiltrometer developed by Perroux and White (1988), referred to also as a 

tension infiltrometer (Watson and Luxmoore, 1986), this tool involved supplying water to the soil 

surface under controlled suction (Smettem and Clothier 1989; Zhang 1997; Latorre et al., 2015). 

These techniques are all non-destructive and allow rapid flow measurements if steady flow can be 

quickly achieved depending on the ring size, soil texture, and soil structure. However, while 

driving discs, rings and cylinders into the soil, some disturbance, such as compaction, fracturing 
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or smearing, almost inevitably occurs (Bouma and Dekker 1981). In addition to soil disturbance, 

the large spatial variability of 𝐾𝑠 (LT-1) and 𝑆0/𝐻 (LT-0.5) can affect the precision and accuracy of 

the measured parameters (Sharma et al., 1980; Logsdon and Jaynes, 1996). To overcome the 

challenges of soil heterogeneity and spatial variability of 𝐾𝑠 (LT-1), the rainfall simulator can be 

used as an alternative experimental tool (Bradford et al., 1987; Lassu et al. 2015; Di Prima et al., 

2018). However, infiltrometers are still the most widely used devices for measuring field 

infiltration rates due to their simple application in the field (Rahmati et al., 2018). However, more 

complex parameter estimation models need to be developed to consider soil behavior such as 

swelling (Gérard-Marchant et al., 1997). Indeed, failure to take deviant behavior into account can 

lead to an underestimation, or even unrealistic values, of both sorptivity and hydraulic 

conductivity. 

Different infiltration models are employed to determine 𝐾𝑠 (LT-1) and 𝑆0/𝐻 (LT-0.5), from the multi-

dimensional infiltration measured using ring, cylinder, and disc infiltrometers. Among these 

models, numerous conceptual equations relate the one-dimensional cumulative infiltration 𝐼1𝐷 (L) 

to both parameters, 𝐾𝑠 (LT-1) and either 𝑆0 (LT-0.5) (Philip, 1957b, 1969a; Talsma and Parlange, 

1972; Barry et al., 1993) or 𝑆𝐻 (LT-0.5) (Smith and Parlange, 1978; Parlange 1980; Barry et al., 

1993; Swartzendruber, 2000; Valiantzas, 2010). These relationships reveal the relevance and 

applicability of estimating these two properties by fitting analytical equations numerically to 

infiltration data. In this context, the two-term equation derived by Philip (1957b) has been 

extensively used to determine 𝐾𝑠 (LT-1) and 𝑆0 (LT-0.5) due to its explicit numerical application 

(Equation 2.28). In one application, 𝑆0 (LT-0.5) is estimated by plotting 𝐼1𝐷 (L), measured into a 

uniform unsaturated soil profile, against 𝑡0.5 (T0.5) during the very early stage of infiltration. The 

slope of the linear relationship (𝐼1𝐷 vs. 𝑡0.5) allows the determination of 𝑆0 (LT-0.5). 𝐴 (LT-1), on 
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the other hand, can be estimated by plotting 𝐼1𝐷 (L) against 𝑡 (T) for larger times of infiltration. 

The slope of the linear relationship (𝐼1𝐷 vs. 𝑡) allows the determination of 𝐴 (LT-1), which is further 

used to estimate the saturated hydraulic conductivity 𝐾𝑠 (LT-1). Specifically, 𝐴 = 𝑚𝐾𝑠 with 1 3⁄ ≤

𝑚 ≤ 2 3⁄  (Youngs, 1968; Philip, 1969a; Talsma, 1969, Talsma and Parlange, 1972). A value of 

𝑚 = 0.363 may be appropriate for soils with a relatively low initial water content (Philip, 1987), 

while a value of 𝑚 = 2/3 is often used (Whisler and Bouwer, 1970, Fodor et al., 2011). In some 

studies, 𝑚 = 1 and hence 𝐴 = 𝐾𝑠 (Davidoff and Selim, 1986, Swartzendruber and Young, 1974, 

Ghorbani et al., 2009). It is crucial noting that Philip’s equation is no longer valid for very large 

times reaching the steady state and should be restricted to the modeling of the transient state 

(Philip, 1957b).  

A second set of models, based on three-parameter equations, are also fitted to infiltration data 

measured at any given time. In addition to 𝐾𝑠 (LT-1) and 𝑆0/𝐻 (LT-0.5), each of these equations 

depend on a dimensionless constant symbolized by 𝛽0 (Brutsaert, 1977), 𝐴0 (T-0.5) 

(Swartzendruber, 1987b; Swartzendruber and Hogarth, 1991), δ (Parlange et al., 1982, 1985, 2002; 

Haverkamp et al., 1990) or 𝛽 (Haverkamp et al., 1994) that also needs to be estimated failing to 

be able to be calculated simply analytically. Brutsaert (1977) recommended the value 𝛽0 = 2/3 

for practical applications. Swartzendruber (1987b) showed that 𝐴0 (T-0.5) can be equal to 
4𝐾𝑠

3𝑆𝐻
. 

Parlange et al. (1982, 1985) defined  𝛿 =
1

(𝜃𝑠−𝜃𝑖)(𝐾𝑠−𝐾𝑖)
∫ (𝐾𝑠 − 𝐾)𝑑𝜃

𝜃𝑠

𝜃𝑖
 where 𝐾𝑖 (LT-1) is the 

initial soil hydraulic conductivity; 𝛿 can take values from 0 to 1, with an approximate used value 

of 0.8 or 0.85. Haverkamp et al. (1994) further replaced δ by a new dimensionless constant, 𝛽, 

which varies from 0.3 (sand) to 1.7 (silt), with an average value of 0.6 according to Lassabatere et 
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al. (2009) who fitted the analytical model to analytically generated data to quantify the best values 

of constants 𝛽 and 𝛾.  

A third set of 1D infiltration equations, based on the approach of Green and Ampt (1911), also 

leads to the estimation of 𝐾𝑠 (LT-1) and 𝑆0/𝐻 (LT-0.5) under constant- (Li et al., 1976; Salvucci and 

Entekhabi, 1994; Stone et al., 1994; Swamee et al., 2012; Almedeij and Esen, 2014; Vatankhah, 

2015; Selker and Assouline, 2017) or falling-head ponding conditions (Philip 1992; Elrick et al., 

2002). By fitting the equations to one-dimensional infiltration data, we can estimate the 

parameters, 𝐾𝑠 (LT-1) and wetting front potential, 𝜓𝑤𝑓 (L). Then, the parameter 𝑆𝐻 (LT-0.5) can be 

deduced from Equation 2.36, with ℎ0 (L), 𝜃𝑠 and 𝜃𝑖 (L
3L-3) measured directly from the field. 

In addition, the quasilinear analysis of steady state infiltration, 𝑄𝑖𝑛𝑓 (L3T-1), using the 3D 

infiltration equations (Wooding, 1968; Scotter et al., 1982; Reynolds et al., 1983, 1985; Reynolds 

and Elrick, 1990; Ankeny et al., 1991) allows the determination of parameters 𝐾𝑠 (LT-1) and 𝜑 

(L2T), and thus leads to the estimation of 𝑆0 (LT-0.5) from Equation 2.34 or 𝑆𝐻 (LT-0.5) from 

Equation 2.35 or 2.36. Haverkamp et al. (1994) proposed an implicit formulation for the 1D 

infiltration model (Equation 2.37a) and Smettem et al. (1994) extended it to define the 3D 

cumulative infiltration, 𝐼3𝐷 (L), from a surface disk infiltrometer, adding the term 𝛾 (average value 

𝛾 = 0.75)  to represent 3D geometrical effects as (Equation 2.37b): 

2 ∆𝐾2

𝑆2  𝑡 =
1

1−𝛽

2 ∆𝐾

𝑆2
(𝐼(𝑡) − 𝐾𝑖t) −

1

1−𝛽
 𝑙𝑛 (

𝑒𝑥𝑝(
2𝛽 ∆𝐾

𝑆2 (𝐼(𝑡)−𝐾𝑖t))+𝛽−1

𝛽
)                                      [2.37a] 

𝐼3𝐷 = 𝐼1𝐷 + 
𝛾𝑆0

2𝑡

 𝑟(𝜃𝑠−𝜃𝑖)
                                                                     [2.37b] 
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Where ∆𝐾 = (𝐾𝑠 − 𝐾𝑖), 𝑟(L) stands for the disc radius. Equation (2.37a) defines an implicit 

formulation that does not ease the computation of the cumulative infiltration. Consequently, 

Haverkamp et al. (1994) have proposed two simplified expansions that are valid at transient and 

steady state, respectively (Haverkamp et al., 1994; Lassabatere et al., 2006): 

𝐼3𝐷 = 𝑆0𝑡
0.5 + (

2−𝛽

3
(𝐾𝑠 − 𝐾𝑖) + 𝐾𝑖 +

𝛾𝑆0
2

 𝑟(𝜃𝑠−𝜃𝑖)
) 𝑡                                  [38] 

𝐼3𝐷 = (𝐾𝑠 +
𝛾𝑆0

2

 𝑟(𝜃𝑠−𝜃𝑖)
) 𝑡 +

1

2(1−𝛽)
𝑙𝑛 (

1

𝛽
)

𝑆0
2

𝐾𝑠−𝐾𝑖
                                             [38] 

Note that more precise approximate expansions may be defined for the transient state according to 

the number of terms considered (Lassabatere et al., 2009, Appendix 2.11). 

Based on Haverkamp et al. approach (1994), BEST methods were designed to estimate the whole 

set of unsaturated hydraulic parameters, offering a complete hydraulic characterization of soils. 

The BEST-Slope method was pioneered by Lassabatere et al. (2006) and was followed by BEST-

Intercept (Yilmaz et al., 2010) and BEST-Steady methods (Bagarello et al., 2014). The three 

methods consider the same hydraulic function for defining water retention and hydraulic 

conductivity functions, with the use of van Genuchten (1980) model along with the Burdine 

condition and Brook and Corey (1964) model for describing the hydraulic conductivity. The three 

methods consider the same pedo-transfer functions to relate soil texture (i.e., particle size 

distribution) to hydraulic shape parameters, but differ in the use of experimental infiltration data 

to estimate the scale hydraulic parameters. The infiltration data is obtained by a Beerkan 

infiltration run which consists of water infiltrating through a single ring under ponded conditions 

(Braud et al., 2005; Aiello et al., 2014; Di Prima et al., 2016, 2018; 2020; Lassabatere et al., 2019a) 
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BEST-Slope and BEST-Intercept use the last/steady part of the cumulative infiltration to fit the 

asymptotic model (Equation 2.39) to estimate either the slope 𝑎 =   𝐾𝑠 +
𝛾𝑆0

2

 𝑟(𝜃𝑠−𝜃𝑖)
  or the intercept 

𝑏 =
1

2(1−𝛽)
𝑙𝑛 (

1

𝛽
)

𝑆0
2

𝐾𝑠−𝐾𝑖
 relating the hydraulic conductivity and the sorptivity. The two methods 

reduce the number of unknowns from two (𝐾𝑠, 𝑆0) to one (𝑆0), which strengthens the robustness 

of the inversion. Then, the two methods fit the two-term equation (Equation 2.38) to the first part 

of the cumulative infiltration (transient part) to derive the value of sorptivity 𝑆0 (LT-0.5). The part 

of the curves assigned to the transient state is defined by a specific iterative procedure that defines 

a validity time as a function of the estimated values of (𝐾𝑠, 𝑆0). BEST-Steady only considers the 

steady-state part and fits the asymptotic model (Equation 2.39) to the steady part of the cumulative 

infiltration data. The estimation of the intercept and of the slope leads to a system with two 

equations and two unknowns, leading to simultaneous estimations of the couple (𝐾𝑠, 𝑆0). Lastly, 

the scale parameter is estimated from the knowledge of sorptivity and saturated hydraulic 

conductivity (Lassabatere et al., 2006, Eq. 8). 

Bagarello et al. (2013, 2014, 2017) used these explicit expansions to propose two simplified 

versions of the BEST methods, Transient (TSBI) and Steady (SSBI), to determine 𝐾𝑠 (LT-1) of an 

initially rather nonconductive soil (𝐾𝑖 = 0). The TSBI method (Bagarello et al., 2013, 2014) is 

based on the explicit transient relationship (Equation 2.38) which, divided by 𝑡0.5, results in a 

linear relationship between 𝐼3𝐷/𝑡0.5 and 𝑡0.5 with slope 𝑏1 (LT-1), defined by: 

𝑏1 =
𝛾𝑆0

2

 𝑟(𝜃𝑠−𝜃𝑖)
+

2−𝛽

3
𝐾𝑠                                                                              [2.40] 



 

81 
 

The slope 𝑏1 (LT-1) can be estimated by a linear regression analysis of the (𝐼3𝐷/𝑡0.5, 𝑡0.5) data 

collected during the transient phase of the infiltration run. The intercept of the regression line 

(𝐼3𝐷/𝑡0.5, 𝑡0.5) indicates the sorptivity 𝑆0 (LT-0.5). Then, solving for 𝐾𝑠 (LT-1) gives: 

𝐾𝑠 =
𝑏1 

𝑏𝛾

𝑟𝛼
+

2−𝛽

3

                                                                                  [2.41a] 

𝐾𝑠 =
𝑏1 

𝛾𝛾𝑤
𝑟𝛼∗ +

2−𝛽

3

                                                                                                        [2.41b] 

where 𝛾𝑤 is a dimensionless constant (White and Sully, 1987) related to the shape of the wetting 

(or drainage) front and 𝛼∗(L-1) corresponds to the ratio between the matrix flux potential and the 

saturated hydraulic conductivity, 𝛼∗ =
𝐾𝑠

φ
 (Bagarello et al., 2017). Note that the two methods SSBI 

and TSBI make use of the relation between sorptivity and hydraulic conductivity  𝑆0
2 = 𝛾𝑤 (𝜃𝑠 −

𝜃𝑖) 𝜑  (Bagarello et al., 2017). 

The SSBI method, on the other hand, is based on the explicit steady-state expansion (Equation 

2.39). The slope, 𝑏2 (LT-1), of the linear relationship between 𝐼3𝐷 (L) and 𝑡 (T) collected during 

the steady-state phase of the infiltration run is defined as: 

𝑏2 = 𝐾𝑠 +
𝛾𝑆0

2

 𝑟(𝜃𝑠−𝜃𝑖)
                                    [2.42] 

Solving for 𝐾𝑠 gives: 

𝐾𝑠 =
𝑏2

𝑏𝛾

 𝑟𝛼
+1

                                                                                    [2.43a] 

𝐾𝑠 =
𝑏2 

𝛾𝛾𝑤
𝑟𝛼∗ +1

                                                                                                               [2.43b] 

BEST methods have been used for many applications and in many contexts and encountered 

several difficulties with real soils for some types of situations (water repellency, preferential flows, 
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and self-sealing soils). Di Prima (2021) recently pioneered a new BEST method dedicated to 

water-repellent soil. Yilmaz et al. (2023) proposed an improvement of the same method by 

developing a three-term expansion to describe the transient state. Regarding preferential flows, 

Lassabatere et al. (2019b) developed BEST-2K for the hydraulic characterization of dual-

permeability soils. This version allows the characterization of the soil as the combination of matrix 

and fast-flow regions, with the complete characterization of the unsaturated hydraulic parameters 

of the two regions . 

Alternatively, further approaches were developed based on model variations that solve for 𝐾𝑠 and 

include different parameters including Stewart and Abou Najm (2018b), Iovino et al. (2021) and 

Kargas et al. (2022).  
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2.11. Conclusion 

A substantial challenge researcher encounters when analyzing infiltration data is choosing which 

model to use, and then which procedures to follow for extracting hydraulic properties. The 

proliferation of infiltration models has on one hand led to better understanding and quantification 

of these processes, but on the other hand may be creating confusion regarding the origins, 

assumptions, and limitations of different approaches. While many reviews have covered different 

aspects of infiltration processes and modeling, until now there has not been a comprehensive and 

objective examination of infiltration models in the literature. This gap motivated us to develop a 

comprehensive literature review that summarizes and organizes the many distinct conceptual and 

empirical infiltration models that have been developed over the past two centuries. Our literature 

search has identified 138 unique infiltration models. We categorized them based on characteristics 

such as conceptual versus empirical equations, application to rigid versus deformable swelling 

soils, one-dimensional versus multi-dimensional infiltration, unsaturated to completely saturated 

porous media, and so on. Most of the developed infiltration models clustered theoretically around 

major milestones that were achieved by six or seven major contributions. Our citation analysis 

determined that Darcy’s law, the Richardson-Richards-Buckingham paradigm and the Green-

Ampt models were very common sources for subsequent advancements, while models building on 

Stokes work and other earlier theories represent potential areas for further investigation and 

advancement.  

We end our critical review by embracing how the evolution of infiltration models has led to 

incremental advancements along with limited improvements in characterizing the inherent 

variability of soil systems, preferential flows, water repellency and surface processes. With that 

being said, we should always aspire to develop practical and adaptive models to characterize the 
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infiltration behavior by treating all theories with the critical lens of a curious scientist, and step 

outside the comfort zone secured with some of our basic assumptions, theories, and boundary 

conditions.  
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2.12. Appendix 

Table 2.5: Summary of model parameters 

Symbol Unit Description 

Characteristics 

Α L2 Area  

�̃� L2 T-2 Specific Helmholtz free energy 

𝑏𝑅 L T-1 Conductance of a rivulet (Germann et al., 2007) 

C M L-3 Concentration 

𝑑 L Depth 

𝐷 L2 T-1 Diffusivity 

𝐷𝑏 Dimensionless Backbone fractal dimension in three dimensions (Hunt et al., 2014, 2017) 

𝑒 L3 L-3 Void ratio 

Ε L2 T-2 To-1 Entropy 

𝐸 M L-1 T-2 Energy 

𝑔 L T-2 Acceleration of gravity 

ℎ L Total head  

𝑖 L T-1 Infiltration rate 

𝐼 L Cumulative infiltration 

�̅� L T-1 Averaged hydraulic conductivity 

𝑘𝑟𝑐 Dimensionless Relative water conductivity accounting for air-confining condition (Wang et al., 1997) 

𝑘 L2 Permeability 

𝐾 L T-1 Hydraulic conductivity 

𝑙 L Thickness 

𝐿 L Length 

𝑃 M L-1 T-2 Pressure 

𝑞 L T-1 Flux 

𝑞0 L T-1 Precipitation/rainfall rate 

𝑄0 L3 T-1 Volumetric Precipitation/rainfall rate 

𝑄 L3 T-1 Volumetric flow rate 

𝑄𝑖𝑛𝑓 L3 T-1 Volumetric infiltration rate 

𝑟 L Radius 

s Dimensionless Slope 

𝑠 T-1 Sink-source term 

𝑆0 L T-0.5 Sorptivity of the soil alone (with h0 = 0) 

𝑆𝐻 L T-0.5 Sorptivity including the effect of the constant ponded head h0 

𝑆𝑒  L3 L-3 Saturation degree 

𝑡 T Time 

𝑡𝑐  T Critical time between transient and steady-state infiltration 

𝑇𝑐 T Sorptive time 

𝑇𝑆 T Duration of rainfall 

𝑇 To Temperature 

𝑣 L T-1 Velocity 
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V L3 Volume 

�̅� Dimensionless Slope of the shrinkage curve 

𝑤 L Width 

𝑤𝑓 Dimensionless Ratio of the volume occupied by each fast-flow region to total pore volume (called 𝛽 in Stewart 2019) 

𝑊 L Perimeter  

𝑊∗ L Adjusted wetted perimeter (Warrick et al., 2007; Bautista et al., 2014, 2016; Liu et al., 2020) 

𝑧 L Vertical distance in the z-direction (+ downward) 

𝜗 L2 T-1 Volumetric infiltration rate per unit length 

𝜎 M T-1 T-2 Stress 

𝜇 M T-1 T-1 Dynamic viscosity of the fluid 

𝛾𝑤 Dimensionless Wet specific gravity  

𝜌𝑏 M L-3 Soil bulk density  

�̃� L4 M-1 T-2 Chemical potential 

𝜈 Dimensionless Geometrical aspect ratio 

𝜙 L3 L-3 Volume fraction  

𝜃 L3 L-3 Volumetric water content 

𝜔 M M-1 Gravimetric water content 

𝑢2 Dimensionless Anisotropy 

𝜆 Dimensionless Pore size distribution index 

∅ L3 L-3 Porosity 

Γ T-1 Transfer of water between two pore systems 

𝜓 L Matric head 

𝜓𝑠𝑡𝑟 L Air entry value 

𝜓𝑤𝑓 L Wetting front potential 

𝛾0 Degrees Slope angle of the infiltration surface 

𝜀 Dimensionless Surface roughness coefficient 
𝜆𝑐 L Macroscopic capillary length (called 𝜆𝑠 in Wu and Pan, 1997; Wu et al., 1999; Abou Najm and Stewart, 2019) 

𝜅 L3 T M-1 Second order positive semi-definite tensor (Bennethum and Cushman, 1996) 

𝛼𝑤𝑟 L-1 Rate of water repellency attenuation (Abou Najm et al., 2021) 

Υ Dimensionless Ratio of volume occupied by border cracks to total crack volume (Stewart 2018) 

Model Constants 

𝑎 Dimensionless Wu and Pan (1997); Wu et al. (1999); Stewart and Abou Najm (2018) 

𝑎1 L-1 originally called 𝑎 (Beven and German, 1981; Germann, 1985) 

𝑎2 Dimensionless originally called 𝑎′ (Beven and German, 1981; Germann, 1985) 

𝑎3 Dimensionless Lambe and Whitman (1979); Su et al. (2020) 

𝑎4 Dimensionless originally called 𝑎 (Govindaraju et al., 2012) 

𝑎∗ Dimensionless originally called 𝑎 (Basha, 1994) 

𝑎′ Dimensionless originally called 𝑎 (Wind, 1995) 

𝑎𝑠𝑛 Dimensionless originally called 𝑎 (Setiawan and Nakano, 1993) 

𝐴 L T-1 Mezencev (1948); Philip (1957a, b) 

𝐴0 Dimensionless Swartzendruber (1987b); Swartzendruber and Hogarth (1991) 

𝐴1 T-1 originally called 𝐴 (Holtan, 1961; Overton, 1964; Huggins and Monke; 1966) 

𝐴∗ Dimensionless originally called 𝐴 (Smith, 1972) 

𝐴′ Dimensionless originally called 𝐴 (Warrick et al., 1985) 

𝐴′′ Dimensionless originally called 𝐴 (Lambe and Whitman, 1979; Su et al., 2020) 

𝑏 Dimensionless White et al. (1992); Fallow et al. (1994); Wu and Pan (1997); Wu et al. (1999); Stewart and Abou Najm 

(2018) 
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𝑏0 Dimensionless originally called 𝑏 (Broadbridge and White, 1988) 

𝑏1 Dimensionless originally called 𝑏 (Beven and German, 1981; Germann, 1985) 

𝑏2 Dimensionless originally called 𝑏 (Swartzendruber, 1974) 

𝑏∗ Dimensionless originally called 𝑏 (Basha, 1994) 

𝑏′ T-1 originally 𝑏 (Wind, 1995) 

𝑏𝑠𝑛 Dimensionless originally called 𝑏 (Setiawan and Nakano, 1993) 

𝐵 Dimensionless Chu (1985) 

𝐵′ Dimensionless originally 𝐵 (Warrick et al., 1985) 

𝐵′′ Dimensionless originally called 𝐵 (Lambe and Whitman, 1979; Su et al., 2020) 

𝑐 L Wu et al., (1999) 

𝑐0 Dimensionless originally called 𝑐 (Poulovassilis and Argyrokastritis, 2020) 

𝑐1 Dimensionless Corradini et al. (1997, 2011) 

𝑐2 Dimensionless Corradini et al. (1997, 2011) 

𝑐3 Dimensionless Corradini et al. (1997, 2011) 

𝑐4 Dimensionless originally called 𝑐 (Swartzendruber, 1974) 

𝐶 Dimensionless Reynolds et al. (1983,1985) 

𝐶 ′ Dimensionless originally 𝐶(Warrick et al., 1985) 

𝐶1 L T-0.5 Kutilek and Krejca (1987) 

𝐶2 L T-1 Kutilek and Krejca (1987) 

𝐶3 L T-1.5 Kutilek and Krejca (1987) 

𝑑1 Dimensionless Corradini et al. (2011) 

𝐷𝑔 Dimensionless originally called 𝐷 (Ghanbarian et al., 2016) 

𝑓∗ L-1 Beven (1984) 

𝑓𝑖 Dimensionless Morel-Seytoux and Khanji (1976) 

𝐹1 Dimensionless Ali et al. (2013) 

𝐹2 Dimensionless Ali et al. (2013) 

𝐹3 Dimensionless Ali et al. (2013) 

𝐺 Dimensionless Reynolds and Elrick (1990) 

𝑘1 Dimensionless originally called 𝑘 (Overton, 1964) 

𝑘′ L T-1 originally called 𝑘 (Kostiakov, 1932; Mezencev, 1948) 

𝐾𝐹 Dimensionless Horton (1941) 

𝑚𝑠𝑠𝑐 Dimensionless originally called 𝑚 (van Genuchten et al., 1980; Su et al., 2020) 

𝑚′  Dimensionless Lambe and Whitman (1979); Su et al. (2020) 

𝑛 Dimensionless Brooks and Corey (1964); Lassabetere et al. (2006); Essig et al. (2009) 

𝑛1 Dimensionless originally called 𝑛 (Swartzendruber, 1974) 

𝑛𝑠𝑠𝑐 Dimensionless originally called 𝑛 (van Genuchten et al., 1980; Su et al., 2020) 

𝑛′ Dimensionless originally 𝑛 (Kostiakov, 1932; Mezencev, 1948) 

𝑛∗ Dimensionless originally called 𝑛 (Selker et al., 1999a) 

𝑝 Dimensionless Philip et al. (1993); Corradini et al., (1994, 1997) 

Ρ Dimensionless Holtan, (1961); Huggins and Monke; (1966) 

𝑡0 T Smith (1972) 

𝑡𝑆 T Srivastava et al. (1996); Chen and Young (2007) 

𝛼 L-1 Gardner (1958); Philip (1968, 1972); Warrick et al. (1985); Ankeny et al. (1991) 

𝛼1 Dimensionless originally called 𝛼 (Smith et al., 1999, Corradini et al., 2000; 2011) 

𝛼3 Dimensionless Lambe and Whitman (1979); Su et al. (2020) 

𝛼𝑠𝑤𝑒𝑙𝑙 Dimensionless originally called 𝛼 (Smiles and Raats, 2005; Su, 2009; 2010) 
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𝛼𝑘 Dimensionless originally called 𝛼 (Das and Kluitenberg, 1995; Kosugi, 1999)  

𝛼∗ Dimensionless originally called 𝛼 (Smith, 1972) 

𝛼′ Dimensionless originally called 𝛼 (Srivastava et al. 1996) 

𝛽0 Dimensionless Brutsaert (1977); Selker and Assouline (2017); called 𝐴 and 𝛼 in Stewart (2018, 2019) respectively 

𝛽 Dimensionless Haverkamp et al. (1994); Lassabetere et al. (2006, 2014); Rahmati et al. (2019) 

𝛽1 T-1 originally called 𝛽 (Novak and Soltesz, 1984) 

𝛽2 Dimensionless originally called 𝛽 (Philip, 1972) 

𝛽3 Dimensionless originally called 𝛽 (Morel-Seytoux and Khanji, 1974; 1976) 

𝛽4 Dimensionless originally called 𝛽 (Su, 2010) 

𝛽∗ Dimensionless originally called 𝛽 (Selker et al., 1999a) 

𝛽′ Dimensionless originally 𝛽 (Srivastava et al. 1996) 

𝛽𝑠𝑤𝑒𝑙𝑙 Dimensionless originally called 𝛽 (Smiles and Raats, 2005; Su, 2009; 2010) 

𝛽𝑙  Dimensionless originally called 𝛽 (Libardi et al., 1980) 

𝛽𝑔 Dimensionless originally called  𝛽 (Ghanbarian et al., 2016) 

𝛽𝑘  Dimensionless originally called 𝛽 (Das and Kluitenberg, 1995; Kosugi, 1999)  

𝛿 Dimensionless Parlange et al. (1982, 1985, 2002); Haverkamp et al. (1990); Smith et al. (1993); Corradini et al. (1994) 

𝛿 ′ Dimensionless originally called 𝛿 (Srivastava et al. 1996) 

𝛾 Dimensionless Haverkamp et al. (1994); Lassabetere et al. (2006, 2014); Warrick and Lazarovitch (2007); Warrick et al. 

(2007) 

𝛾𝑘 Dimensionless originally called 𝛾 (Das and Kluitenberg, 1995; Kosugi, 1999)  

𝜆𝑔 Dimensionless originally called 𝜆 (Ghanbarian et al., 2016) 

ℬ Dimensionless originally called 𝛽 (Smith et al., 1993; Corradini et al., 1994, 1997; Smith et al., 1999; Corradini et al., 2000; 

2011) 

𝜎𝑘  Dimensionless originally called 𝜎 (Das and Kluitenberg, 1995; Kosugi, 1999)  
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 Table 2.6: Detailed Summary of infiltration models (Subscripts: 𝑚, 𝑓 and ℎ denote the matrix, the fast-flow, and the interface between these 

two regions; 𝑝, 𝑤 and 𝑑 denote the ponding, wetting, and draining stage; 𝑖, 𝑠, 𝑟 and ∞ denote the initial, saturated, relative, and final phase, 

respectively; 0 denote the soil surface (z=0)). 

Model Year Equation(s) Applied Concepts 

Green and Ampt 1911 𝑡 =
𝐼

 𝐾𝑠
−

(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)

 𝐾𝑠
ln (1 +

𝐼

(𝜃𝑠−𝜃𝑖)(𝜓𝑤𝑓+ℎ0)
)  

Green and Ampt equation is derived from the following expression of the 

infiltration rate, I (L T-1), with respect to time: 

𝑖 = 𝐾𝑠 [
𝜓𝑤𝑓 + 𝑧𝑤 + ℎ0

𝑧𝑤
] =

𝑑[𝑧𝑤(𝜃𝑠 − 𝜃𝑖)]

𝑑𝑡
 

Kostiakov 1932 𝐼 =  𝑘′𝑡𝑛′
 

Kostiakov proposed the empirical equation from field-measured data, which 

predicts physically a zero-infiltration capacity for prolonged rainfall events. 

𝑘′ > 0 and 0 < 𝑛′ < 1 

Horton 1941 𝑖 = 𝑖∞ + (𝑖𝑖 − 𝑖∞)𝑒−𝐾𝐹𝑡 

Horton derived the empirical equation from field-measured data, assuming that 

the reduction in the infiltration capacity is directly proportional to the rate of 

infiltration and is applicable only when the effective rainfall intensity is greater 

than 𝑖∞. 

𝑖∞ = 𝐾𝑠 and 𝐾𝐹 > 0 

Mezencev 1948 𝐼 =  𝑘′𝑡𝑛′
+ 𝐴𝑡 

Mezencev modified the Kostiakov’s model (1932) by including a linear term with 

a coefficient 𝐴 (L T-1) that is equal to the saturated hydraulic conductivity, 𝐾𝑠 

(LT-1), at infinite times. 

𝑘′ > 0 and 0 < 𝑛′ < 1 

Hansen  1955 

𝑥𝑤 = (
2𝐾ℎ

∅𝛥𝑆
)

0.5

𝑡0.5                                                                          Horizontal 

𝑡 =
∅𝛥𝑆

𝐾
[ℎ{1 − 𝑙𝑛(ℎ − 𝑧𝑤)} − 𝑧𝑤]                                                    Upward 

𝑡 =
∅𝛥𝑆

𝐾
[ℎ{1 − 𝑙𝑛(ℎ + 𝑧𝑤)} + 𝑧𝑤]                                               Downward 

Hansen related the soil-water movement and one-dimensional infiltration in the 

horizontal, upward, and downward directions and noted that the nature of flow 

from a free water surface through unsaturated soil exhibited three distinct zones, 

namely, the transmission zone, the wetting zone, and the wetting front. 

Philip 1957a 𝐼 = ∑𝐴𝑛(𝜃)

∞

𝑖=1

𝑡𝑛/2 + 𝐾𝑖𝑡 

A time series solution for 𝑥(𝜃, 𝑡) is developed in powers of 𝑡1/2 as: 

𝑥(𝜃, 𝑡 ) = 𝜑(𝜃)𝑡
1
2  +  𝜒(𝜃)𝑡 +  𝜓(𝜃)𝑡

2
3  + 𝜔(𝜃)𝑡2 +· · · 

The first term, 𝑋1(𝜃), reflects the influence of the capillary forces on the flow 

process, and the following terms, 𝑋2(𝜃) and 𝑋3(𝜃)…, reflect the gravity effect on 

infiltration. 

The cumulative infiltration equation, 𝐼 (L), was obtained by integrating the time 

series solution for 𝑧(∅, 𝑡), resulting in: 

𝐼 = 𝐴1(𝜃)𝑡1/2  +  (𝐴2(𝜃) + 𝐾𝑖)𝑡 + 𝐴3(𝜃)𝑡
2
3  + 𝐴4(𝜃)𝑡2 +· · · 

 

(Implicit) One broad equation describes early and transient infiltration behaviors. 
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Philip 

 

1957b 

 

𝐼 =  𝑆0𝑡
0.5 + 𝐴𝑡                                                                            0 ≤ 𝑡 ≤ 𝑡𝑐 

𝐼 =  𝐾𝑠t +
𝑆0

2

4(𝐾𝑠−𝐴)
                                                                                 𝑡 > 𝑡𝑐 

Where: 𝑡𝑐 =
𝑆0

2

4(𝐾𝑠−𝐴)2
 

The Philip’s time series solution for 𝑥(𝜃, 𝑡) is approximated by the two first terms 

for small times. The parameter 𝐴 is an estimate of (𝐴2 + 𝐾𝑖 +
the truncation error ε) such that 𝐴 = 𝑚𝐾𝑠 where 1 3⁄ ≤ 𝑚 ≤ 2 3⁄  (Youngs, 

1968; Philip, 1969a; Talsma, 1969, Talsma and Parlange, 1972). 𝑚 = 0.363 may 

be appropriate for soils with a relatively low initial moisture content (Philip, 

1987), while a value of 𝑚 = 2/3 is often used (Whisler and Bouwer, 1970, Fodor 

et al., 2011). In some studies (Davidoff and Selim, 1986, Swartzentruber and 

Young (1974), Ghorbani et al., 2009), 𝑚 = 1 and hence 𝐴 = 𝐾𝑠. Then, for large 

times (𝑡 > 𝑡𝑐), 𝐼 =  𝐾𝑠t which is nothing but the linear term in the equation valid 

for short times (0 ≤ 𝑡 ≤ 𝑡𝑐). 
(Explicit) Two specific equations were developed for each infiltration behavior, 

the first describing the early-state (0 ≤ 𝑡 ≤ 𝑡𝑐), while the second describing 

steady-state behavior (𝑡 > 𝑡𝑐). 

 

Holtan 1961 
𝑖 = 𝑖∞ + 𝐴1(𝑠0 − 𝐼)𝑃 

Where 𝑠0 = ∅ − 𝜃𝑖 

Holtan expressed the infiltration capacity as a function of the residual potential 

storage in the upper soil layers. The advantage of Holtan's approach is that it can 

compute the infiltration rate for both periods of rain intensity lower than 

infiltration capacity and periods of no rain.  

Overton 1964 
𝐼 =  𝑘1𝑠0 − √

𝑖∞
𝐴1

𝑡𝑎𝑛[√𝐴1𝑖∞(𝑡𝑐 − 𝑡)] 

Where: 𝑡𝑐 =
1

√𝐴1𝑖∞
𝑡𝑎𝑛−1 (√

𝐴1

𝑖∞
𝑘1𝑠0) and  𝑠0 = ∅ − 𝜃𝑖 

Using the Holtan model with Ρ = 2, Overton derived an infiltration equation 

which computes the infiltration rate at any time during a storm, even when rainfall 

does not exceed the infiltration capacity or when there is a temporary interruption 

in rainfall. 

𝑘1 is based on vegetation, varying between 0.3 for weeds to 1 for bluegrass. 

Huggins and 

Monke 
1966 𝑖 = 𝑖∞ + 𝐴1 (

𝑠0 − 𝐼

∅
)

Ρ

 

Huggins and Monke introduced porosity ∅ (L3 L-3) in the Holtan model. 

As 𝑠0 (L) takes the dimension of length, it cannot be equal to a non-dimensional 

quantity, i.e., (∅ − 𝜃𝑖) as originally hypothesized, rather it is equal to (∅ − 𝜃𝑖) 

times the depth of soil stratum above the impeding layer.  

 

Fok and Hansen 1966 
𝐼

ℎ∅𝛥𝑆
− 𝑙𝑛 (1 +

𝐼

ℎ∅𝛥𝑆
) =

𝐾𝑡

ℎ∅𝛥𝑆
 

Fok and Hansen derived an equation for one-dimensional downward infiltration 

from furrow irrigation based on Hansen (1955) who described soil-water 

movement through homogeneous unsaturated soils exhibiting three distinct zones, 

the transmission zone, the wetting zone, and the wetting front. Within the 

transmission zone (T), the hydraulic conductivity, 𝐾 (L T-1), is essentially 

constant. The moisture content, and thus the hydraulic conductivity within the 

wetting zone, decreases toward the wetting front; however, the energy consumed 

within this zone is approximately constant. The wetting front is, in effect, a 

capillary fringe; the moisture content of the foremost part is approximately the 

same. 
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Philip 1967 𝐼 =  𝑆0𝑡
0.5 + 𝐴2𝑡 + 𝐴3𝑡

3/2 + 𝐴4𝑡
2 + ⋯                                                                                        

Philip developed the following one-dimensional infiltration equation for an 

unsaturated heterogeneous medium: 
𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐾(𝜃, 𝑥)

𝜕

𝜕𝑥
{𝜓(𝜃, 𝑥)}) −

𝜕

𝜕𝑥
{𝐾(𝜃, 𝑥)}.  

To solve this equation, Philip (1967) applied a quasi-analytical method previously 

established in Philip (1957a) for small and moderate times: 

𝑥(𝜓, 𝑡) = 𝜙1(𝜓)𝑡1/2 + 𝜒1(𝜓)𝑡 + ⋯ 

The expression for cumulative infiltration 𝐼(L) into this subclass of scale-

heterogeneous media is formally like that for infiltration into homogeneous media 

(1957a, b). 

Philip 1968 

For buried point source, 

𝑖 =
𝛼2𝑄0𝑖

∗

8𝜋
 

Where: 

𝑖∗ =
1

2𝑇
𝑒𝑍−𝑅 [1 +

𝑍

𝑇
+

𝑍

𝑇2
]                                                          direction of 𝑧 

𝑖∗ =
𝑅

2𝑇2
𝑒𝑍−𝑅 [1 +

1

𝑇
]                                                                 direction of 𝑟 

𝑅 = 0.5𝛼𝑟; 𝑍 = 0.5𝛼𝑧 and 𝑇 = √𝑅2 + 𝑍2                                                                                

 

For spherical cavity, 

𝑄𝑖𝑛𝑓 = 4𝜋𝑟𝜑𝑉∗ 

𝑉∗ = (1 −  𝑅)−1                                                                                        (1) 

𝑉∗ = 1                                                                                                        (2) 

𝑉∗ = 𝑅                                                                                                        (3)                                           

Philip treated 3D steady infiltration from buried point sources and spherical 

cavities of continuous supply 𝑄0 (L3 T-1). Hydraulic conductivity 𝐾 (L T-1) 

depends exponentially on moisture (capillary) potential 𝜓 (L) ➔ 𝐾(𝜓) = 𝐾𝑠𝑒
𝛼𝜓; 

For soils initially at “field capacity” or drier, 𝑒𝛼𝜓𝑖 ≪ 1, and thus 𝜑 =
𝐾𝑠

𝛼
. 

The fundamental point source solution is first explored and then is used as the 

basis of an analysis of steady infiltration from spherical cavities. Philip (1968) 

analyzed steady infiltration from spherical cavities using the dimensionless 

infiltration 𝑉∗ for small 𝑅 (1), capillarity dominant (𝑅 → 0) (2), and for gravity 

dominant (𝑅 → ∞) (3). 

Wooding 1968 𝑄𝑖𝑛𝑓 = 𝜋𝑟2𝛼𝜑 + 4𝑟𝜑 

Wooding approximated a steady-state infiltration of water from a circular ring of 

radius r (L) assuming no surface ponding and the ratio 𝐾(𝜓)/𝜑(𝜓) is equal to the 

constant parameter 𝛼 (Philip, 1968). 

 

Philip 1969a 

1D Absorption and Infiltration (1): 

For absorption (1.1): 

𝑖 =
1

2
𝑆0𝑡

−1/2                                                                                        (1.1.A) 

𝑖 = √
𝐷∗

𝜋
(𝜃𝑠 − 𝜃𝑖)𝑡

−1/2                                                                        (1.1.B)             

𝑖 =
1

2
√2𝐾𝑠𝐶(𝜃𝑠 − 𝜃𝑖)𝑡

−1/2                                                                 (1.1.C)                                                                                

Where: 𝐷∗ =
𝜋𝑆0

2

4(𝜃𝑠−𝜃𝑖)
2
 and 𝐶 =

𝑆0
2

2𝐾𝑠(𝜃𝑠−𝜃𝑖)
                                                                           

For Infiltration (1.2): 

(1.2.A) 

𝑖 =
1

2
𝑆0𝑡

−1/2 + (𝐴2 + 𝐾𝑖) +
3

2
𝐴3𝑡

1/2 + ⋯                                            𝑡 < ∞ 

𝑖 = 𝐾𝑠                                                                                                   𝑡 → ∞ 

(1.2.B and C) 

𝑖 = (𝐾𝑠 − 𝐾𝑖)𝑖
∗ + 𝐾𝑠                                                                                                                                                                                  

𝑖∗ = 
1

2
(

1

√𝜋𝑇
− 1 + ⋯)                                                                 small 𝑇 (B) 

A. Philip expressed the dynamics of cumulative 1D surface absorption 

(1.1) and surface infiltration rate 𝑖 (L T-1) (1.2), as well as two- and 

three- dimensional subsurface infiltration (2.2) with non-linear exact 

series solutions. In two-dimensions, there is no steady-state (i.e., 𝑡 →
∞), unless diffusivity 𝐷 (L2 T-1) takes particular values, e.g., for 

constant 𝐷 or approaching delta function. 

 

B. Philip also expressed the dynamics of 1D surface absorption (1.1) and 

surface infiltration rate 𝑖 (L T-1) (1.2), as well as two- and three- 

dimensional subsurface absorption (2.1) and infiltration (2.2) in terms 

of dimensionless functions for constant diffusivity 𝐷 (L2 T-1) with 

hydraulic conductivity 𝐾 (L T-1) depending exponentially on moisture 

(capillary) potential ➔ 𝐾(𝜓) = 𝐾𝑠𝑒
𝛼𝜓; For soils initially at “field 

capacity” or drier, 𝑒𝛼𝜓𝑖 ≪ 1, and thus 𝜑 =
𝐾𝑠

𝛼
. 

 

C. Philip also expressed the dynamics of 1D cumulative surface 

absorption (1.1) and surface infiltration 𝑖 (L T-1) (1.2), as well as two- 
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𝑖∗ = 
1

4√𝜋𝑇
3
2

𝑒−𝑇                                                                              large 𝑇 (B) 

𝑖∗ = 
1

2𝜋
(

1

𝑖∗
− ln (1 +

1

𝑖∗
))                                                               small (C) 

𝑖∗ = 
1

2𝜋𝑇
                                                                                        large 𝑇 (C) 

Where: 𝑇 =
(𝐾𝑠−𝐾𝑖)

2𝑡

𝜋𝑆0
2  

2D and 3D Absorption and Infiltration (2): 

For 2D and 3D absorption (2.1): 

𝑖 =
(𝜃𝑠−𝜃𝑖)𝐷

∗𝑖∗

𝑟
          

Where: 𝐷∗ =
𝜋𝑆0

2

4(𝜃𝑠−𝜃𝑖)
2
                                                                                                

 (2.1.B) 

For cylindrical cavity:                                                              

𝑖∗ =
1

√𝜋𝑇
+

1

2
−

1

4
√

𝑇

𝜋
+

𝑇

8
− ⋯                                                              small 𝑇 

𝑖∗ =
2

𝑙𝑛𝑇
                                                                                                large 𝑇                                        

Where: 𝑇 =
𝜋𝑡

𝑡𝑔𝑒𝑜𝑚
 ; 𝑡𝑔𝑒𝑜𝑚 = (

2𝑟(𝜃𝑠−𝜃𝑖)

𝑆0
)

2
and 𝛾 = 0.57722 

For spherical cavity: 

𝑖∗ =
1

√𝜋𝑇
+ 1                                                                                        large 𝑇 

Where: 𝑇 =
𝜋𝑡

4𝑡𝑔𝑒𝑜𝑚
 and 𝑡𝑔𝑒𝑜𝑚 = (

𝑟(𝜃𝑠−𝜃𝑖)

𝑆0
)
2
 

 (2.1.C) 

For cylindrical cavity:                                                              

𝑇 =
𝜋

8
[(

4

𝜋𝑖∗
− 1) 𝑒4/𝜋𝑖∗ + 1]                                                               small 𝑇  

𝑖∗ =
4

𝜋ln (𝑇)
                                                                                            large 𝑇                                                                                    

Where: 𝑇 =
𝜋𝑡

𝑡𝑔𝑒𝑜𝑚
 and 𝑡𝑔𝑒𝑜𝑚 = (

2𝑟(𝜃𝑠−𝜃𝑖)

𝑆0
)
2
 

For spherical cavity: 

𝑇 =
𝜋

12
[2 (1 −

2

𝜋𝑖∗
)

−3
− 3(1 −

2

𝜋𝑖∗
)

−2
+ 1]                                      small 𝑇 

𝑖∗ =
2

𝜋
+ (

4𝜋2

3𝑇
)
1/3

                                                                                 large 𝑇                         

Where 𝑇 =
𝜋𝑡

4𝑡𝑔𝑒𝑜𝑚
 and 𝑡𝑔𝑒𝑜𝑚 = (

𝑟(𝜃𝑠−𝜃𝑖)

𝑆0
)
2

 

 

For 2D and 3D infiltration (2.2): 

(2.2.A) 

𝑖 =
1

2
𝑆0𝑡

−1/2 +
𝐴2

∗

𝑟
+

3𝐴3
∗

2𝑟2
𝑡1/2 + ⋯                                                         𝑡 < ∞ 

𝑖3𝐷 = ∫
𝐷(𝜃)

𝑟
𝑑𝜃

𝜃𝑠

𝜃𝑖
                                                                                  𝑡 → ∞  

 

𝑖 = 𝑘(𝜃𝑠 − 𝜃𝑖)𝑖
∗                                                                                  (2.2.B) 

For cylindrical cavity:    

𝑖∗ =
1

4𝑅K0(2𝑅)
                                                                                         𝑡 → ∞ 

For spherical cavity: 

and three- dimensional subsurface absorption 𝑖 (L T-1) (2.1) in terms of 

dimensionless function 𝑖∗ for diffusivity 𝐷 (L2 T-1) approaching delta 

function. 

 

Κ0 is the modified Bessel function of the second kind of order 0. 
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𝑖∗ = 1/2 [√𝜋𝑇∗𝑒−𝑇∗
+

1

2
+ √2𝑅 + 𝑒𝑟𝑓(√𝑇)]                                     𝑡 < ∞                                 

𝑖∗ =
1

2
+

1

4𝑅
                                                                                           𝑡 → ∞ 

Where 𝑘 =
(𝐾𝑠−𝐾𝑖)

(𝜃𝑠−𝜃𝑖)
; 𝑅 =

𝑘𝑟

4𝐷∗
; 𝑇∗ =

𝑘2𝑡

4𝐷∗
 and 𝐷∗ =

𝜋𝑆0
2

4(𝜃𝑠−𝜃𝑖)
2
 

Parlange 1971a 

𝐼 = ∫ 𝑧𝑤𝑑𝜃
𝜃𝑠

𝜃𝑖

 

𝑧𝑤 =
√2𝑡 ∫ 𝐷(𝜃)𝑑𝜃

𝜃𝑠

𝜃

√∫ 𝜃𝐷(𝜃)𝑑𝜃
𝜃𝑠

𝜃𝑖

 

An accurate, analytic representation of one-dimensional horizontal infiltration 

was developed by Parlange et al. where absorption is dominant and gravity effect 

is omitted.  

Parlange 1971b 

𝐼 = ∫ 𝑧𝑤𝑑𝜃
𝜃𝑠

𝜃𝑖

 

𝑧𝑤 = 𝐾𝑠(𝑡 − 𝑡𝑖) + ∫
𝐷(𝜃)𝑑𝜃

𝐾𝑠𝜃−𝐾(𝜃)

𝜃𝑠−∆𝜃

𝜃
                                                      𝑡 < 𝑡∞                                                      

𝑧𝑤 = − ∫
𝐷(𝜃)𝑑𝜃

𝐾(𝜃)+𝐾𝑠𝜃

𝜃𝑠

𝜃
                                                                             𝑡 → 𝑡∞                                                                 

The theory by (Parlange 1971a) was extended to develop an accurate, analytic 

representation of one-dimensional infiltration, valid for all times, where gravity 

plays a role. Diffusivity 𝐷 (L2 T-1) and hydraulic conductivity 𝐾 (L T-1) vary 

rapidly near saturation. 

Parlange 1971c 

2D Absorption: 

𝐼 =
𝑟√4𝐷𝑖𝜏 ∫ 𝐷(𝜃)𝑑𝜃

𝜃𝑠

𝜃

√∫ 𝜃𝐷(𝜃)𝑑𝜃
𝜃𝑠

𝜃𝑖

 

3D Absorption: 

1 −
𝑟

𝐼
= 𝑔(𝜏)∫ 𝐷(𝜃)𝑑𝜃

𝜃𝑠

𝜃

 

Where: 𝜏 =
𝑡

𝑟2
 and 𝑔(𝜏) is given by Eq.20 

 

  

An analytic solution for absorption (i.e., movement without gravity) in two and 

three dimensions is obtained, valid for all times, for arbitrary diffusivity 𝐷 (L2 T-

1). 

For simplicity, the two- and three-dimensional problems are treated for the case of 

a cylinder and a sphere, respectively. 

Philip 1971 

2D Infiltration: 

𝜗 =
𝛼𝑄0𝜗

∗

2𝜋
 

For surface line source: 

𝜗∗ =
𝑍

𝑇
𝑒𝑍K1(𝑇)                                                                         direction of 𝑥 

𝜗∗ = 𝑋𝑒𝑍 [
K1(𝑇)

𝑇
− 𝑒𝑍 ∫ 𝑒−𝑍∞

𝑍

K1(𝑇)

𝑇
𝑑𝑍]                                     direction of 𝑧 

For buried line source: 

𝜗∗ =
1

2
𝑒𝑍 [K0(𝑇) +

𝑍

𝑇
K1(𝑇)]                                                    direction of 𝑥                      

𝜗∗ =
𝑋

2𝑇
𝑒𝑍K1(𝑇)                                                                       direction of 𝑧 

Where: 𝑋 = 0.5𝛼𝑥; 𝑍 = 0.5𝛼𝑧 and 𝑇 = √𝑋2 + 𝑍2 
 
3D Infiltration: 

Philip established the solution of the quasilinear steady infiltration equation for 

any distribution of surface and buried sources of continuous supply 𝑄0 (L3 T-

1). Hydraulic conductivity 𝐾 (L T-1) depends exponentially on moisture (capillary) 

potential ➔ 𝐾(𝜓) = 𝐾𝑠𝑒
𝛼𝜓; For soils initially at “field capacity” or drier, 𝑒𝛼𝜓𝑖 ≪

1, and thus 𝜑 =
𝐾𝑠

𝛼
. 

 

Κ0 and Κ1 are the modified Bessel function of the second kind of order 0 and 1. 
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𝑖 =
𝛼2𝑄0𝑖

∗

8𝜋
 

For surface point source: 

𝑖∗ =
𝑍(1+𝑇)

𝑇3
𝑒𝑍−𝑇                                                                         direction of 𝑧 

𝑖∗ =
𝑅2+𝑍𝑇(𝑇−𝑍)

𝑅𝑇3
𝑒𝑍−𝑇                                                                 direction of 𝑟                                                        

For buried point source: 

𝑖∗ =
1

2𝑇
𝑒𝑍−𝑅 [1 +

𝑍

𝑇
+

𝑍

𝑇2
]                                                          direction of 𝑧 

𝑖∗ =
𝑅

2𝑇2
𝑒𝑍−𝑅 [1 +

1

𝑇
]                                                                 direction of 𝑟 

Where: 𝑅 = 0.5𝛼𝑟, 𝑍 = 0.5𝛼𝑧 and 𝑇 = √𝑅2 + 𝑍2 

Parlange 1972a 

Spherical cavity: 

𝑄𝑖𝑛𝑓 = 4𝜋𝑟𝜑𝑉∗                    

Where: 𝑉∗ = 1 + 𝛼𝑟/2                                                                                    

The solution for the steady state infiltration from a cavity is obtained analytically 

in two and three dimensions by a singular perturbation technique i.e., a solution 

valid near the cavity is matched to a solution valid far from it. Details of the 

method are given for a spherical cavity. The form of the solution depends upon 

the product 𝛼𝑟 ≤ 1 where 𝛼 (L-1) is a soil property that characterizes the relative 

importance of gravity and capillarity, and 𝑟 (L) characterizes the size of the 

cavity. When 𝛼𝑟 → 0, gravity effects become negligible in three dimensions. 

Parlange 1972b 

Spherical cavity: 

𝑄𝑖𝑛𝑓 = 4𝜋𝑟𝜑𝑉∗                    

Where: 𝑉∗ =
1

𝑔(𝑡)𝜑
+

𝑟3

𝑟1
2𝜑

∫ 𝛾−4𝐾
1

𝑟/𝑟1
𝑑𝛾       

𝑔(𝑡) and 𝑟1(𝑡) are given by Eq. (10) and (22) in Parlange’s paper, 

respectively. 

An analytical technique is presented to study unsteady infiltration from 

multidimensional cavities for moderate times. The solution reduces to known 

expressions for very short (Parlange, 1971c) and very long times (Parlnage, 

1972b). Only the simplest geometry, i.e., a spherical cavity, is considered. 

Smith 1972 𝑖 = 𝑖∞ + 𝐴∗(𝑡 − 𝑡0)
−𝛼∗

 

Richards’ equation for unsaturated soil moisture flow is solved by extensive 

numerical simulation of infiltration for various patterns of rainfall to develop a 

single dimensionless formula that describes the infiltration decay curves for all 

soils, initial conditions, and rainfall rates.  
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Philip 1972 

2D Infiltration: 

𝜗 =
𝛼𝑄0𝜗

∗

2𝜋
 

For surface line source: 

𝜗∗ = (1 + 𝛽2)
𝑍

𝑇
𝑒(1+𝛽2)𝑍K1[(1 + 𝛽2)𝑇]                                   direction of 𝑥 

𝜗∗ = (1 + 𝛽2)𝑋𝑒(1+𝛽2)𝑍 {
1

𝑇
K1[(1 + 𝛽2)𝑇] − (1 +

𝛽2)𝑒
(1+𝛽2)𝑍 ∫

1

𝑇
𝑒−(1+𝛽2)𝑍∞

𝑍
K1[(1 + 𝛽2)𝑇]𝑑𝑍}                         direction of 𝑧                            

For buried line source: 

𝜗∗ =
1

2
(1 + 𝛽2)𝑒

(1+𝛽2)𝑍 {K0[(1 + 𝛽2)𝑇] +
𝑍

𝑇
K1[(1 + 𝛽2)𝑇]} direction of 𝑥 

𝜗∗ =
1

2
(1 + 𝛽2)

𝑋

𝑇
𝑒(1+𝛽2)𝑍K1[(1 + 𝛽2)𝑇]                                 direction of 𝑧 

Where: 𝑋 = 0.5𝛼𝑥; 𝑍 = 0.5𝛼𝑧 and 𝑇 = √𝑋2 + 𝑍2 

3D Infiltration: 

𝑖 =
𝛼2𝑄0𝑖

∗

8𝜋
                

For buried point source: 

𝑖∗ =
1

2𝑇
𝑒(1+𝛽2)(𝑍−𝑇) [

(1+𝛽2)(𝑍+𝑇)

𝑇
+

𝑍

𝑇2
]                                       direction of 𝑧 

𝑖∗ =
𝑅

2𝑇2
𝑒(1+𝛽2)(𝑍−𝑇) [1 + 𝛽2 +

1

𝑇
]                                             direction of 𝑟                                       

For surface point source: 

𝑖∗ =
𝑍

𝑇3
[1 + (1 + 𝛽2)𝑇]𝑒(1+𝛽2)(𝑍−𝑇)                                         direction of 𝑧 

𝑖∗ =
1

𝑅𝑇3
[𝑅2 + (1 + 𝛽2)𝑍𝑇(𝑇 − 𝑍)]𝑒(1+𝛽2)(𝑍−𝑇)                     direction of 𝑟 

Where: 𝑅 = 0.5𝛼𝑟; 𝑍 = 0.5𝛼𝑧 and 𝑇 = √𝑅2 + 𝑍2 

Philip developed a quasi-linearized steady infiltration equation for heterogeneous 

soils under buried and surface sources of continuous supply 𝑄0 (L3 T-1). Hydraulic 

conductivity 𝐾 (L T-1) depends exponentially on both moisture (capillary) 

potential 𝜓 (L) and depth 𝑧 (L) ➔ 𝐾(𝜓) = 𝐾𝑠𝑒
[𝛼(𝜓+𝛽2𝑧]. 

𝛽2 is the dimensionless coefficient of dependence of conductivity 𝐾 (L T-1) on 

depth 𝑧 (L), 𝛽2 ≥ 0 

 

Κ0 and Κ1 are the modified Bessel function of the second kind of order 0 and 1. 

 

Talsma and 

Parlange 
1972 

𝑖∗ =
𝑖 − 𝐾𝑠

𝐾𝑠
 

2𝜋𝑇 = 𝑙𝑛 (
1+𝑖∗

𝑖∗
) +

1

𝑖∗
                                                                                  (1) 

2𝜋𝑇 = 𝑙𝑛 (
1+𝑖∗

𝑖∗
) −

1

+𝑖∗
                                                                                (2) 

2𝜋𝑇 = 3{(1 + 2𝑖∗)𝑙𝑛 (
1+𝑖∗

𝑖∗
) − 2}                                                             (3)                               

Where: 𝑇 =
𝐾𝑠

2𝑡

𝜋𝑆0
2 

Taslma and Parlange used the linearized infiltration equations (Philip, 1969a) to 

develop 1D infiltration equation assuming the diffusivity 𝐷 (L2 T-1) is (1) a delta 

function, (2) proportional to the variation rate of the hydraulic conductivity in 

respect to the volumetric moisture content 𝜕𝐾/𝜕𝜃 or (3) a constant. 

Parlange 1972c 

𝐷0(𝑡)𝜃0(𝑡)
𝑑𝜃0

𝑑𝑡
= 𝑖[𝑖 − 𝐾0(𝑡)]                                                       𝑡 < 𝑡∞ (1)        

                                                                                                    

𝑧𝑤 = ∫
𝐷(𝜃)𝑑𝜃

𝑖−𝐾(𝜃)

𝜃𝑠

𝜃
                                                                              𝑡 → 𝑡∞ (2) 

                                                                                                 

The one-dimensional infiltration was solved analytically. If 𝑖 > 𝐾𝑠 (𝑡 → 𝑡∞), the 

surface becomes saturated with water and ponding occurs, then equation (1) 

ceases to apply. Equation (2) (Parlange, 1971b) shows that the limiting profile is 

identical to the “profile at infinity” and therefore can be applied at infinite times. 

Mein and Larson 1973 

𝑡 =
𝐼

 𝐾𝑠
−

(𝜃𝑠−𝜃𝑖)𝜓𝑤𝑓

 𝐾𝑠
ln (1 +

𝐼

(𝜃𝑠−𝜃𝑖)𝜓𝑤𝑓
)                                       0 ≤ 𝑡 < 𝑡𝑝 

𝐼𝑝 = 𝑖𝑝𝑡𝑝                                                                                               𝑡 = 𝑡𝑝               

𝑡 − 𝑡𝑝 =
𝐼

𝐾𝑠
−

𝑖𝑝𝑡𝑝

𝐾𝑠
− (𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 − 𝜃𝑖)ln (

(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)+𝐼

(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)+𝑖𝑝𝑡𝑝
)    𝑡 > 𝑡𝑝                                 

Where: 𝑡𝑝 =
𝐾𝑠𝜓𝑤𝑓(𝜃𝑠−𝜃𝑖)

𝑖𝑝(𝑖𝑝−𝐾𝑠)
 

Mein and Larson published an extension of the Green and Ampt (1911) model of 

ponded infiltration, which applied the same piston flow concept to the case of 

constant flux surface conditions. 

Prior to the ponding time (0 ≤ 𝑡 < 𝑡𝑝), the rainfall intensity is less than the 

potential infiltration rate and the soil surface is unsaturated. Ponding (𝑡 = 𝑡𝑝) 

begins when the rainfall intensity exceeds the potential infiltration rate; the soil 
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surface becomes saturated. As rainfall continues (𝑡 > 𝑡𝑝), the saturated zone 

extends deeper into the soil. 

Smiles 1974 
𝐼 =  𝑆0𝑡

0.5 + 0.5[(1 − 𝛾𝑤,𝑖)𝐾𝑖 − (1 − 𝛾𝑤,𝑛)𝐾𝑛]𝑡 

 

Smiles approximated infiltration into swelling soils into a two-term infiltration 

equation in which 𝑆0 (L T-0.5) is the analogue of sorptivity in the swelling system 

and hydraulic conductivity 𝐾 (L T-1) reflects gravity. As for (1 − 𝛾𝑤), this term 

may be interpreted as if it reduced the effect of gravity to (1 − 𝛾𝑤) times its 

values in a rigid soil, and thus increases the time before which the effect of 

gravity is unimportant when compared with that of the moisture potential 

gradient. 

Turner and 

Parlange  
1974 𝐼 = 𝑆0𝑡

1/2 + 1/3 [𝐾𝑠 +
0.72𝑊𝑆0

2

Α(𝜃𝑠−𝜃𝑖)
] 𝑡  

An analytical solution for the lateral movement at the periphery of a one-

dimensional flow of water is derived, valid for short times when water infiltrates 

through a region having an area Α (L2) and a perimeter 𝑊 (L). 

Swartzendruber 1974 

𝑡 =
𝐼

 𝐾𝑠
−

(𝜃𝑠−𝜃𝑖)𝜓𝑤𝑓

 𝐾𝑠
ln (1 +

𝐼

(𝜃𝑠−𝜃𝑖)𝜓𝑤𝑓
)                                       0 ≤ 𝑡 < 𝑡𝑝 

𝐼𝑝 =
(𝜃𝑠−𝜃𝑖)𝜓𝑤𝑓𝐾𝑠

𝑞0−𝐾𝑠
                                                                                   𝑡 = 𝑡𝑝   

                 𝑡 > 𝑡𝑝 

𝐼 − 𝐼𝑝 = [
(𝑞0−𝐾𝑠)𝑡𝑝

1−𝑛1
] [(

𝑡

𝑡𝑝
)
1−𝑛1

− 1] + 𝐾𝑠(𝑡 − 𝑡𝑝)                                      (1)  

𝐼 − 𝐼𝑝 = 2(𝑞0 − 𝐾𝑠)(𝑡𝑝 − 𝑐4) {[(𝑡 − 𝑐4)/(𝑡𝑝 − 𝑐4)]
0.5

− 1} + 𝐾𝑠(𝑡 − 𝑡𝑝)   

(2)            

Swartzendruber presented a theoretical study of one-dimensional infiltration 

under constant-flux rainfall 𝑞0 (L T-1) into a uniform soil by treating the soil-

water profile as step function, as assumed in Green and Ampt (1911). The 

analysis is like that of Mein and Larson (1973) for 𝑡 ≤  𝑡𝑝. For describing the 

infiltration characteristics after the ponding time 𝑡𝑝 (L), two explicit-form 

equations, (1) and (2), are proposed for 𝑖 versus 𝑡, both equations being integrable 

into explicit forms of 𝐼 versus 𝑡 under constant-flux rainfall. Both equations are 

somewhat like that of Smith (1972) but contain one less characterizing constant. 

Equation (1) may be viewed as an altered Kostiakov (1932) form, modified to 

contain the feature of an asymptotically-approached the saturated hydraulic 

conductivity, 𝐾𝑠 (L T-1). In Equation (2), the exponent of (𝑡 − 𝑐4) is taken as 

−1/2 rather than the more general −𝛼∗ (Smith, 1972). 

(1) 𝑖 = 𝑎𝑡−𝑛1 + 𝐾𝑠 where  𝑎 = (𝑞0 − 𝐾𝑠)𝑡𝑝
𝑛1 

(2)  𝑖 = 𝑏2(𝑡 − 𝑐4)
−1/2 + 𝐾𝑠 

Morel-Seytoux 

and Khanji 
1974 𝑡 =

𝛽3

𝐾𝑠
{𝐼 − (𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 − 𝜃𝑖)𝑙𝑛 [1 +

𝐼

(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)
]}                                                         

Morel-Seytoux and Khanji modified Green and Ampt equation to account for the 

effects of air viscous resistance to water flow where 𝛽3 (originally called 𝛽, 

dimensionless) is a correction factor for viscosity. 
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Morel-Seytoux 1976 

𝐼𝑝 = 𝑖𝑝𝑡𝑝                                                                                                            𝑡 = 𝑡𝑝 
𝐾𝑠

𝛽3
(𝑡 − 𝑡𝑝) = 𝐼 − 𝐼𝑝 − [

(𝜃𝑠−𝜃𝑖)(𝜓𝑤𝑓+ℎ0)

1−𝑓𝑖
+ 𝐼𝑝 (1 −

1

𝛽3
)] 𝑙𝑛 [

1+(1−𝑓𝑖)𝐼/(𝜃𝑠−𝜃𝑖)(𝜓𝑤𝑓+ℎ0)

1+(1−𝑓𝑖)𝐼𝑝/(𝜃𝑠−𝜃𝑖)(𝜓𝑤𝑓+ℎ0)
]     

 𝑡 > 𝑡𝑝 
Where: 

𝑡𝑝 =
𝜓𝑤𝑓(𝜃𝑠−𝜃𝑖)

(1−𝑓𝑖)𝑖𝑝
(𝑒

1

𝛽3𝑖𝑝/𝐾𝑠−1 − 1)                                     constant rainfall rate 

Check Eq. (55) in Morel-Seytoux’s paper for 𝑡𝑝           variable rainfall rate                          

Formulas were derived for prediction of ponding time and cumulative infiltration 

following ponding under the influence of rainfall. The derivations use a piston 

profile but with corrections for air flow and resistance effects i.e., do not assume 

immediate saturation at the surface nor a piston displacement of air by water. 

Li et al. 1976 

 

𝐼 =
1

2
(𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 − 𝜃𝑖)(𝑡

∗ + √(𝑡∗)2 + 8𝑡∗)  

Where: 𝑡∗ =
𝐾𝑠

(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)
𝑡 

One of the simplest explicit solutions of the implicit Green and Ampt model was 

derived by Li et al. based on the approximation of the logarithmic term in GA 

equation using the first term of the power series expansion. 

Brutsaert 1977 𝐼 = 𝐾𝑠𝑡 +
𝑆0

2

𝛽0𝐾𝑠
[1 −

1

1 +
𝛽0𝐾𝑠𝑡0.5

𝑆0

] 

Brutsaert presented a closed form solution for each of the functions 

𝑋1(𝜃),𝑋2(𝜃),𝑋3(𝜃) and 𝑋4(𝜃) in Philip’s time series solution for 𝑧(∅, 𝑡). The 

method of obtaining these solutions assumes that these functions are near-step 

functions. 

0 ≤ 𝛽0 ≤ 1; 𝛽0 = 2/3 is sufficiently accurate for most soils. However, for soils 

with a very wide distribution of pore sizes, a larger value such as 𝛽0 = 1, may 

yield a better result. For most practical purposes, 𝛽0 = 1 is recommended 

(Kutilek et al., 1991). 

Collis-George 1977 
𝐼 =  𝑖0(𝑡𝑎𝑛ℎ𝑇)0.5 + 𝑖∞𝑡  
Where: 𝑖0 = 𝑆0(𝑡𝑐)

0.5 and 𝑇 = 𝑡 𝑡𝑐⁄  

An empirical equation is proposed by Collis-George which satisfies the 

conditions that cumulative infiltration is proportional to (time)1/2 at short times 

and reaches a steady state infiltration rate at long times. 

Hachum and 

Alfaro 
1977 

𝐼 = ∫ 𝑞0(𝑡)𝑑𝑡 −
𝑡

0
𝐾𝑖𝑡                                                                     0 < 𝑡 ≤ 𝑡𝑝 

𝐼 = 𝐼𝑝 +
(𝜓𝑤𝑓+ℎ0)𝐾𝑠(𝜃𝑠−𝜃𝑖)

(𝐾𝑠−𝐾𝑖)
𝑙𝑛 {

𝐾𝑠(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)+(𝐾𝑠−𝐾𝑖)[𝐼−𝐾𝑖𝑡]

𝐾𝑠(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)+(𝐾𝑠−𝐾𝑖)[𝐼𝑝−𝐾𝑖𝑡𝑝]
} + 𝐾𝑠(𝑡 −

𝑡𝑝) 

 𝑡 > 𝑡𝑝 

By extending the analysis of Mein and Larson (1973), Hachum and Alfaro 

developed a physical model for studying one-dimensional infiltration under 

variable application rainfall rate patterns 𝑞0 (L T-1), subjected to the assumptions 

of an abrupt wetting front, constant saturated hydraulic conductivity in the wetted 

zone, 𝐾𝑠 (L T-1), and constant wetting front potential 𝜓𝑤𝑓 (L). 
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Smith and 

Parlange 
1978 

𝑖 = 𝐾𝑠 (
𝐶

𝐾𝑠𝐼
+ 1)                                                                                        (1) 

𝑖 = 𝐾𝑠
𝑒𝐾𝑠𝐼/𝐶

𝑒𝐾𝑠𝐼/𝐶−1
                                                                                            (2) 

Where 𝐶 = (𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 − 𝜃𝑖) 

By adopting two extreme assumptions concerning the behavior of unsaturated soil 

hydraulic conductivity 𝐾 (L T-1) near saturation, Smith and Parlange derived a 

two-branched model for infiltration rate 𝑖 (L T-1) for arbitrary rainfall rates. 

Assumption (1) was that diffusivity 𝐷 (L2 T-1) is a step function (i.e., 𝐷(𝜃) varies 

rapidly with water content  𝜃 (L3 L-3)). For initially ponded conditions, 𝑡𝑝 → 0, 

and with rainfall rate 𝑞0 → ∞, the familiar Green and Ampt (1911) expression 

results. Assumption (2) was that 𝐷 and 𝑑𝐾/𝑑𝜃 are closely proportional. This 

model also holds for both rainfall and ponded surface conditions. 

Batu 1978 

𝑖 =
𝑞0𝛼𝐿𝑖∗

2𝜋
 

For single strip source: 

Check Eq. (25) and (26) in Batu’s paper, for horizontal and vertical 

infiltration, respectively. 

  

For periodic strip sources equally spaced by 2D (L): 

Check Eq. (48) and (49) in Batu’s paper, for horizontal and vertical 

infiltration, respectively.  

 

Where: 

𝐹2𝑁, 𝐹2𝑛, 𝐹2𝑛−1 and 𝐼𝑛 from Eq. (20), (21), (22), and (47), in Batu’s paper, 

respectively. 

𝑋0 =
𝛼𝐿

2
; 𝑋1 =

𝛼D

2
; 𝑋 =

𝛼𝑥

2
;  𝑍 =

𝛼𝑧

2
; 𝐿 =

𝑤

2
 

Batu presented analytical solutions for steady 2D infiltration from single and 

periodic strip sources of width 𝑤 (L) and constant flux 𝑞0 (L T-1) using Fourier 

analysis techniques with no flow outside the strip. The theory assumes that the 

hydraulic conductivity 𝐾 (L T-1) is an exponential function of the soil water 

potential 𝜓 (L). 

Kutilek 1980 

𝑖 =
1

2
𝑆0𝑡

−1/2                                                                                 0 ≤ 𝑡 < 𝑡𝑝 

𝑖 = 𝑖𝑝                                                                                                    𝑡 = 𝑡𝑝                 

 𝑖 =
1

2
𝑆0 [𝑡 −

𝑆0
2

4𝐴2𝑏(𝑏−1)
]
−1/2

+ 𝐴                                                                      𝑡 > 𝑡𝑝                                 

Where: 𝑏 =
𝑞0

𝑖∞
 

An approximate solution of the infiltration equation for rain of constant intensity 

𝑞0 (L T-1) is developed. The solution of infiltration for 𝑡 > 𝑡𝑝 is obtained for 

“delta function” soil. 

Parlange 1980 

𝑡 =  
𝐼

(𝐾𝑠−𝐾𝑖)
−

𝑆𝐻
2

2(𝐾𝑠−𝐾𝑖)2
ln (1 +

2(𝐾𝑠−𝐾𝑖)𝐼

𝑆𝐻
2 )                                                 (1) 

𝑡 =  
𝐼

(𝐾𝑠−𝐾𝑖)
+

𝑆𝐻
2

2(𝐾𝑠−𝐾𝑖)2
(𝑒

−
2(𝐾𝑠−𝐾𝑖)𝐼

𝑆𝐻
2

− 1)                                                   (2)  

Using Darcy’s law and the conservation of mass, Parlange solved the following 

partial differential equation governing water movement:  
𝜕𝜃

𝜕𝑡
 =

𝜕

𝜕𝑧
[𝐷

𝜕𝜃

𝜕𝑧
] −

𝜕𝐾

𝜕𝑧
 

under ponding conditions (h0 ≥ 0), assuming that: (1) 𝐷 (L2 T-1) increases 

rapidly with water content, 𝜃 (L3 L-3), while the conductivity, 𝐾 (L T-1), varies 

much less rapidly near saturation and (2) 𝐷 and 
𝜕𝐾

𝜕𝑧
 increase rapidly, and in similar 

fashion. 

Parlange et al. 1982 

𝑡 =
𝑆0

2

2(𝐾𝑠 − 𝐾𝑖)2(1 − 𝛿)
[2

(𝐾𝑠 − 𝐾𝑖)

𝑆0
2 𝐼 − 𝑙𝑛

𝑒
2𝛿

(𝐾𝑠−𝐾𝑖)

𝑆0
2 𝐼

+ 𝛿 − 1

𝛿
] 

𝐼 = 𝑆0𝑡
0.5 +

1

3
(2 − 𝛿)(𝐾𝑠 − 𝐾𝑖)𝑡                                                        small t 

𝐼 = (𝐾𝑠 − 𝐾𝑖)𝑡 +
𝑆0

2

2(𝐾𝑠−𝐾𝑖)(1−𝛿)
ln (

1

𝛿
)                                                  large t 

 

A new infiltration equation is obtained by introducing a new parameter 𝛿 to 

embrace different variations of the diffusivity term 𝐷 (L2 T-1) and the hydraulic 

conductivity 𝐾 (L T-1) under zero ponding (h0 = 0). 𝐷 is considered as a delta 

function. 

𝛿 takes values from 0 to 1, with an approximate used value of 0.85. Equations (1) 

and (2) in Parlange (1980) can be obtained by setting 𝛿 equal to 0 and equal to 1, 

respectively. 



 

 
 

9
9

 

Scotter et al. 1982 𝑖 = 𝐾𝑠 +
4𝜑

𝜋𝑟
 

Wooding’s equation is rewritten assuming the exponential relationship 

between 𝐾(𝜓) and 𝜓 as defined by Gardner (1958): 𝐾(𝜓) = 𝐾𝑠𝑒
𝛼𝜓; For soils 

initially at “field capacity” or drier, 𝑒𝛼𝜓𝑖 ≪ 1, and thus 𝜑 =
𝐾𝑠

𝛼
. 

Fok et al. 1982 

V =
𝜋

2
𝑥𝑤𝑧𝑤𝑙∅𝛥𝑆𝑒 

Where: 

𝑥𝑤 = (
2𝐾ℎ𝑥

∅ΔS
)

0.5
𝑡0.5; 

𝑧𝑤

ℎ
− 𝑙𝑛 (1 +

𝑧𝑤

ℎ
) =

𝐾𝑡

∅ℎ𝛥𝑆𝑒
 

A physical two-dimensional infiltration equation is developed assuming that the 

loci of the wetting pattern for two-dimensional furrow infiltration are half-

ellipses, and their vertical and horizontal flow components can be described as 

one-dimensional infiltration derived in an earlier study (Hansen, 1955; Fok and 

Hansen, 1966). 

Brakensiek and 

Rawls 
1983 

𝑖 =
𝐾𝑝𝑟𝑒𝑐

2
(

𝑧𝑤+𝜓𝑤𝑓,𝑝𝑟𝑒𝑐

𝑧𝑤
)                                                                   0 ≤ 𝑡 < 𝑡𝑝 

𝑧𝑤,𝑝 =
𝜓𝑤𝑓,𝑠𝑢𝑏𝑐−(

2𝑞0
𝐾𝑠,𝑠𝑢𝑏𝑐

)(
1−𝑞0
𝑞0

)𝑙𝑐

2𝑞0
𝐾𝑠,𝑠𝑢𝑏𝑐

−1
                                                              𝑡 = 𝑡𝑝 

𝑖 =
𝐾𝑒

2
(

𝑧𝑤+𝜓𝑤𝑓,𝑠𝑢𝑏𝑐+ℎ0

𝑧𝑤
)                                                                         𝑡 > 𝑡𝑝  

Where 𝐾𝑒 =
𝑧𝑤

𝑧𝑤−𝑙𝑐
𝐾𝑠,𝑠𝑢𝑏𝑐

+
𝑙𝑐

𝐾𝑠,𝑐

; 𝑟 =
𝐾𝑠,𝑐

𝐾𝑠,𝑠𝑢𝑏𝑐
 and 𝑡𝑝 = 𝑧𝑤,𝑝∅/𝑞0 

Brakensiek and Rawls developed a two-layer Green-Ampt model with transient 

crust conductivity to describe infiltration on crusted soils during uniform rainfall 

intensity. Infiltration for soil crust modeling may proceed during two periods, pre-

ponding, and post-ponding. Crusting of thickness 𝑙𝑐 (L) is assumed to start at the 

time of surface ponding. 

Reynolds et al. 1983 𝑄𝑖𝑛𝑓 =
2𝜋ℎ0

2𝐾𝑠

𝐶
+ 𝜋𝑟2𝐾𝑠 

The flow out of a well into the surrounding soil is a three-dimensional infiltration 

process that achieves steady state rapidly and is described in terms of pressure- 

and gravity-induced fluxes. The steady flow is affected by weak capillarity 

assuming semi-infinite, field-saturated flow (i.e., 𝜑𝑚 = 0). The water head inside 

the well remains constant. Analytical solutions are described for the estimation of 

the parameter C. 

Novak and Soltesz 1984 
𝑖𝑓 = 𝑞0                                                                                           0 ≤ 𝑡 ≤ 𝑡𝑝  

𝑖𝑓 = 𝐾𝑠,𝑓 + (𝑞0 − 𝐾𝑠,𝑓)𝑒
−𝛽1(𝑡−𝑡𝑝)                                                         𝑡 > 𝑡𝑝               

An empirical method is presented to determine the rate of infiltration into heavy, 

swelling soils, assuming water infiltrates into heavy soils primarily through the 

cracks, infiltration through the soil matrix is relatively small, and the geometry of 

cracks is a function of the water content. 

Fok and Chiang 1984 

V = [2𝑥𝑤𝑑 + 𝑤𝑧𝑤 + (
𝜋

2
) 𝑥𝑤𝑧𝑤] 𝑙∅𝛥𝑆𝑒 

Where: 

𝑥𝑤 = (
2𝐾ℎ𝑥

∅𝛥𝑆𝑒
)

0.5
𝑡0.5; 

𝑧𝑤

ℎ
− 𝑙𝑛 (1 +

𝑧𝑤

ℎ
) =

𝐾𝑡

∅ℎ𝛥𝑆𝑒
 

Fok and Chiang estimated the total volume of water infiltrated into the soil from 

irrigation furrow of depth 𝑑 (L), width 𝑤 (L) and thickness 𝑙 (L), using developed 

1-D and 2-D infiltration equations obtained from previous studies (Hansen, 1955; 

Fok et al., 1982). 

Philip 1984a 

𝑖 = 0.5𝛼𝜑𝑖∗ 

𝑖∗ = −[𝑅(𝛾 + ln(0.5𝑅))]−1                                                                      (1)                                                      

𝑖∗ =
2

𝜋
(1 + 𝑅−2/3)                                                                                     (2) 

Where: 𝛾 = 0.57722 and 𝑅 = 0.5𝛼𝑟   

Philip analyzed steady 2D infiltration from cylindrical cavities averaged over the 

whole cavity surface using the dimensionless infiltration rate  𝑖∗ for very small 𝑅 

(1), and for gravity dominant (𝑅 → ∞) (2). 

Philip  1984b 

𝑖 =
𝜑𝑉∗

𝑟
 

𝑉∗ = 1                                                                                                        (1) 

𝑉∗ =  (1 −  𝑅)−1                                                                                       (2) 

𝑉∗ =  1 +  𝑅                                                                                               (3) 

𝑉∗ = 0.5𝑅 + 𝑅1/3                                                                                      (4)  

Where: 𝑅 = 0.5𝛼𝑟 

Philip analyzed steady 3D infiltration from spherical cavities averaged over the 

whole cavity surface using the dimensionless infiltration 𝑉∗ for capillarity 

dominant (𝑅 → 0) (1), very small 𝑅 (2), small 𝑅 (3), and for gravity dominant 

(𝑅 → ∞) (4). 

Beven 1984 𝑖 =
−(𝜃𝑠−𝜃𝑖)𝑓

∗𝐾𝑖(𝜓𝑤𝑓+
𝐼

𝜃𝑠−𝜃𝑖
)

1−𝑒𝑓∗𝐼
                                                             0 ≤ 𝑡 ≤ 𝑡𝑝 

Beven developed an infiltration model based on the Green-Ampt assumptions on 

a class of non-uniform soils in which saturated hydraulic conductivity decreases 

as an exponential function of depth z (𝐾𝑠 = 𝐾𝑖𝑒
−𝑓∗(𝜃𝑠−𝜃𝑖)𝑧). 



 

 
 

1
0

0
 

𝑡 − 𝑡𝑝 =
1

𝑓∗𝐾𝑖
[ln(𝐼 + 𝐶) −

1

𝑒𝑓∗𝐶
ln(𝐼 + 𝐶) + ∑

{𝑓∗(𝐼+𝐶)}𝑚

𝑚!𝑚
∞
𝑚=1 − 𝜆]       𝑡 > 𝑡𝑝    

Where: 

𝑡𝑝 =
𝐼𝑝(1−𝑒𝑓∗𝐼𝑝)

−(𝜃𝑠−𝜃𝑖)𝑓
∗𝐾𝑖(𝜓𝑤𝑓+

𝐼𝑝

𝜃𝑠−𝜃𝑖
)
 ; 

𝐶 = (𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 − 𝜃𝑖) ; 

𝜆 = ln(𝐼𝑝 + 𝐶) −
1

𝑒𝑓∗𝐶
[ln(𝐼𝑝 + 𝐶) + ∑

{𝑓∗(𝐼𝑝+𝐶)}
𝑚

𝑚!𝑚
∞
𝑚=1 ]  

Germann 1985 

𝑖 = 0                                                                                                                 𝑡 < 0 

𝑐 = 𝑏1
1/𝑎1𝑖(1−1/𝑎1)                                                                                0 ≤ 𝑡 ≤ 𝑇𝑠 

𝑖 = 0                                                                                                                   𝑡 > 𝑇𝑠                          

Kinematic wave theory 1 was applied to the infiltration of water in the non-

capillary macropore system of a porous medium.  Water sorbance from the 

macropores into the matrix was ignored, limiting the approach to nearly saturated 

porous media. 

 
1Kinematic wave theory: 
𝜕𝑞

𝜕𝑡
+ 𝑐

𝜕𝑞

𝜕𝑧
= 0 

where 𝑐 (L T-1) is the kinematic wave velocity 

Warrick et al. 1985 

𝐼 =  
(𝜃𝑠 − 𝜃𝑖)𝐼

∗

𝛼
 

𝐼∗ =  𝐴′𝑇0.5 + 𝐵′𝑇 + 𝐶 ′𝑇1.5                                                               0 ≤ 𝑇 ≤ 𝑇𝑔 

 

𝐼∗ = 𝐼𝑔
∗ + 𝑇 − 𝑇𝑔

2                                                                                𝑇 > 𝑇𝑔              

𝐼𝑔
∗ = 𝐴′𝑇𝑔

0.5 + 𝐵′𝑇𝑔 + 𝐶 ′𝑇𝑔
1.5; 

Where: 𝑇 =  
𝛼𝐾𝑠𝑡

𝜃𝑠−𝜃𝑖
 ; 𝑇𝑔 = (

𝐴′

1− 𝐾𝑖  𝐾𝑠⁄
)

2

 

A generalized solution to the moisture flow Richards’ (1931) equation is 

developed for vertical infiltration using the solution of Philip (1957a) by applying 

reduced forms of time, depth, water moisture and infiltration. 

Reynolds et al. 1985 𝑄𝑖𝑛𝑓 =
2𝜋ℎ0

𝐶
(𝐾𝑠ℎ0 + 𝜑) + 𝜋𝑟2𝐾𝑠 

 

The original theory, as presented in Reynolds et al. (1983), is extended to account 

for the matric effects of the unsaturated soil (the initial suction head, 𝜓𝑖 (L), and 

the capillarity of the outer unsaturated envelope, 𝜑 (L2 T-1)). 

By assuming an exponential relationship between 𝐾(𝜓) and 𝜓 as defined by 

Gardner (1958): 𝐾(𝜓) = 𝐾𝑠𝑒
𝛼𝜓, then 𝜑 = ∫ 𝐾(𝜓)𝑑𝜓 =

𝐾𝑠

𝛼

0

𝜓𝑖
[1 − 𝑒𝛼𝜓𝑖]. For soils 

initially at “field capacity” or drier, 𝑒𝛼𝜓𝑖 ≪ 1, and thus 𝜑 =
𝐾𝑠

𝛼
 (Scotter et 

al.,1982). 

Parlange et al. 1985 

𝑡 =
𝑆0

2

2𝛿(1−𝛿)(𝐾𝑠−𝐾𝑖)
2
𝑙𝑛 (1 + 𝛿

(𝐾𝑠−𝐾𝑖)

𝑖−𝐾𝑠
) +

𝐾𝑠ℎ0(𝜃𝑠−𝜃𝑖)

(𝑖−𝐾𝑠)(𝐾𝑠−𝐾𝑖)
−

𝑆0
2+2𝛿(1−𝛿)𝐾𝑠ℎ0(𝜃𝑠−𝜃𝑖)

2(1−𝛿)(𝐾𝑠−𝐾𝑖)2
𝑙𝑛 (

𝑖−𝐾𝑖

𝑖−𝐾𝑠
)  

 

Parlange et al. extended the work developed under zero surface head condition 

(Parlange (1982)) to positive head boundary condition for arbitrary diffusivity 𝐷 

(L2 T-1). 

𝛿 takes values from 0 to 1, and changes slightly with the type of soil. For heavy 

clay soils, 𝛿 tends to be equal to 1, and for coarse-structured soils, the value of  𝛿 

decreases below the value of  𝛿 = 0.8 or 0.85. For the case of 𝛿 = 0, the equation 

takes the Green and Ampt form. 

Chu 1985 

Constant rainfall: 

𝐼 = 𝜃𝑐𝑙𝑐 + 𝜃𝑡𝑖𝑙𝑙(𝑧𝑤 − 𝑙𝑐) 
𝑑𝑧𝑤

𝑑𝑡
=

𝐾𝑒

2𝜃𝑡𝑖𝑙𝑙
(

𝑧𝑤+𝜓𝑤𝑓,𝑡𝑖𝑙𝑙

𝑧𝑤
)                                                                                     

Where: 

𝐾𝑒 =
𝑧𝑤

𝑧𝑤−𝑙𝑐
𝐾𝑡𝑖𝑙𝑙

+
𝑙𝑐
𝐾𝑐

;  

𝐾𝑐 = 𝐾𝑠,𝑐 + (𝐾𝑖,𝑐 − 𝐾𝑠,𝑐)𝑒
−𝐶𝐸; 

𝐶 = 𝑙𝑛 (
𝐾𝑠,𝑐

𝐾𝑖,𝑐−𝐾𝑠,𝑐
)𝐵 (1 −

𝜀

4
)𝐸𝑜; 

The layered Green-Ampt model proposed by Brakensiek and Rawls (1983) was 

extended to include the effect of non-uniform rainfall of intensity 𝑞0 (L T-1) and 

crusting energy 𝐸 (M L-1 T-2), as well as the water ponding on the interface 

between the tilled layer and the subsoil in the infiltration process. A tilled soil 

profile is assumed to consist of three layers - the surface crust, the tilled layer, and 

the subsoil, each characterized by specific thickness 𝑙 (L), hydraulic conductivity 

𝐾 (L T-1), wetting front potential 𝜓𝑓𝑝 (L), and water storage capacity 𝜃 

(dimensionless). A ponded depth or zone of positive water pressure of thickness 



 

 
 

1
0

1
 

𝐸𝑜 = [0.02062 + 0.00379 ln(𝑞0)]𝑞0𝑡1/2; 

Variable rainfall: 

𝑑𝑧𝑤

𝑑𝑡
=

𝑧𝑤+𝜓𝑤𝑓,𝑡𝑖𝑙𝑙

2𝜃𝑡𝑖𝑙𝑙
𝑙𝑐
𝐾𝑐

+
𝑧𝑤−𝑙𝑐
𝐾𝑡𝑖𝑙𝑙

             

𝑖 = min (𝑞0,
𝜃𝑡𝑖𝑙𝑙𝐷𝐿

𝑇𝑠
)   

Where: 

𝐷𝐿 from Eq. (14) in Chu’s paper; 

𝐾𝑐 = 𝐾𝑠,𝑐 + (𝐾𝑖,𝑐 − 𝐾𝑠,𝑐)𝑒
𝑙𝑛(

𝐾𝑠,𝑐
𝐾𝑖,𝑐−𝐾𝑠,𝑐

)𝐵(1−
𝜀

4
)
𝐸(𝑡)

𝐸𝑜 ; 

𝐸(𝑡) = 𝐸𝑖 + [0.02062 + 0.00379 ln(𝑞0)]𝑞0𝑇𝑠; 

Ponding on the interface: 

𝑖 = min (𝑞0,
(𝑙𝑐 + 𝑙𝑡𝑖𝑙𝑙 − 𝑙𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑛𝑑)/2

𝑙𝑐
𝐾𝑐

+
𝑙𝑡𝑖𝑙𝑙 − 𝑙𝑐

𝐾𝑡𝑖𝑙𝑙

) 

 

𝑙𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑛𝑑 (L) may exist in the tilled layer above the interface with the subsoil. 

The Runge-Kutta method was used to conduct the calculations.  

Waechter and 

Philip 
1985 

𝑖 = 0.5𝛼𝜑𝑖∗ 

𝑖∗ =
1

𝑠
∑ (−1)𝑛

In
Kn

∞

𝑛=−∞

 

𝑖∗ =
2

𝜋
[1 + 0.996𝑅−2/3 + 0.02235𝑠−4/3 + 𝑂(𝑠−2)];                   for large 𝑠                                                             

 Where: 𝑠 = 0.5𝛼𝑟 

Waechter and Philip obtained the asymptotic expansion of the mean infiltration 

rate 𝑖 (L T-1) for large 𝑠 (dominated by gravity, with capillary effects weak but 

nonzero) from buried circular cylindrical and spherical cavities using a scattering 

analog. 

 

In and Kn are the modified Bessel functions of the first and second kinds of order 

n. 

Philip 1985 

2D Infiltration: 

𝜗 = 𝑠𝜑𝜗∗ 

Check Eq. (34) in Philip’s paper for 𝜗∗ 

𝜗 = 4𝜑𝜉0                                                                                        for large 𝑠 

3D Infiltration: 

𝑄𝑖𝑛𝑓 = 𝜑𝑠𝐿𝑉∗ 

Check Eq. (53) in Philip’s paper for 𝑉∗ 

𝑄𝑖𝑛𝑓 =
8𝜋𝜑

𝛼
𝜉0                                                                                  for large 𝑠 

Where: 𝜉0 = ∑ 𝑎𝑛
∞
𝑛=0  and 𝑠 = 0.5𝛼𝐿 

Philip analyzed 2D and 3D steady infiltration from cavities of arbitrary size and 

shape (characteristic length 𝐿 (L)) using Van de Hulst theorem which connects 

2D and 3D infiltration, 𝜗 (L2 T-1) and 𝑄𝑖𝑛𝑓 (L3 T-1) respectively, to dimensionless 

“downward wetting function” 𝜉0 at large 𝑅 (i.e., 𝑅 → ∞).    

Philip 1986a 

𝑄𝑖𝑛𝑓 = 8𝜋𝜑𝛼−1𝜉0(𝑤, 𝑠)          

Where: 

𝜉0(𝑤, 𝑠) = 𝑠 ∑ 𝑎𝑛(𝑤)𝑠𝑛 + 𝑂(𝑠7)5
𝑛=0                                             for small 𝑠 

Check Eq. (31) to (33e) in Philip’s paper for 𝑎𝑛  

𝜉0(𝑤, 𝑠) =
1

2
𝑠2[1 + 1.99230638𝑤2/3𝑠−2/3] + 𝑂(𝑠−4/3)            for large 𝑠 

𝑠 = 0.5𝛼𝑢𝑟 and 𝑤 = 𝑢 ∗ 𝜈   

Solutions are given for quasilinear 3D steady infiltration from spheroidal cavities 

of arbitrary aspect ratio 𝜈 and radius 𝑟 (L) into isotropic and anisotropic 

homogeneous soils where anisotropy is defined by 𝑢2. The isotropic case is 

simply that of 𝑢2 = 1. 

For prolate spheroids 𝜈 >  1, for spheres 𝜈 =  1, and for oblate spheroids 𝜈 <  1. 

Philip 1986b 

Buried disc, 

𝑄𝑖𝑛𝑓 = 8𝜋𝜑𝛼−1𝜉0(𝑠)          

Where: 

𝜉0(𝑠) =
2𝑠

𝜋
[∑ 𝑎𝑛 (

𝜋

2
) 𝑠𝑛 + 𝐴𝑠87

𝑛=0 ]                                               for small 𝑠 

Check Eq. (30) in Philip’s paper for 𝑎𝑛 with 𝜙 =
𝜋

2
 

𝜉0(𝑠) =
1

2
𝑠2 [1 +

1

𝑠
+

1

4𝑠2
−

1

8𝑠3
+

1

16𝑠4
+

𝐵

𝑠5
]                                   for large 𝑠 

𝐴 and 𝐵 are estimated by matching the two above expansions of 𝜉0(𝑠) 
𝑠 = 0.5𝛼𝑟 

Philip studied steady quasilinear infiltration from buried discs and other sources 

of radius r (L) by expressing the volumetric infiltration rate 𝑄𝑖𝑛𝑓 (L3 T-1) as 

function of the far-field wetting function 𝜉0 and the dimensionless discharge 

function 𝑉∗. 
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Circular cylinder, 

𝑄𝑖𝑛𝑓 = 𝜑𝑉∗(𝑠) 

Check Eq. (60) in Philip’s paper for 𝑉∗(𝑠) 

Sphere, 

𝑄𝑖𝑛𝑓 = 4𝜋𝑟𝜑𝑉∗(𝑠) 

Check Eq. (65) in Philip’s paper for 𝑉∗(𝑠) 

 

Kutilek and Krejca 1987 𝐼 =  𝐶1𝑡
0.5 + 𝐶2𝑡 + 𝐶3𝑡

1.5 

𝐶1 is an estimate of sorptivity S, 𝐶2 is an estimate of (𝐴2 + 𝐾𝑖), and 𝐶3 is an 

estimate of (𝐴3 + the truncation error ε). The saturated hydraulic conductivity is: 

𝐾𝑠 = (3𝐶1𝐶3)
1/2 + 𝐶2 

Swartzendruber 1987a 𝐼 =  𝐾𝑠𝑡 +
(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)𝐾𝑠

(𝐾𝑠−𝐾𝑖)
ln (1 +

(𝐼−𝐾𝑖𝑡)(𝐾𝑠−𝐾𝑖)

(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)
)  

Using the following expression of the infiltration rate i: 

𝑖 = 𝐾𝑠 [
𝜓𝑤𝑓 + z + ℎ0

𝑧
] =

d[z(𝜃𝑠 − 𝜃𝑖)]

𝑑𝑡
+ 𝐾𝑖 

By setting 𝐾𝑖 equal to 0, the equation becomes nothing but Green and Ampt 

equation. 

Swartzendruber 1987b 𝐼 =  𝐾𝑠𝑡 +
𝑆𝐻

𝐴0
(1 − 𝑒−𝐴0𝑡0.5

) 

Based on Swartzendruber, Philip’s time series solution for 𝑧(∅, 𝑡) is unaffected 

by the pressure head condition at the soil surface h0; each function 

[𝑋1(𝜃),𝑋2(𝜃),𝑋3(𝜃)… ] is still the solution of its own ordinary differential 

equation that can be solved by relatively numerical methods. 

𝐴0 is a fitting parameter depending on the initial water content 𝜃𝑖 . 𝐴0 =
4𝐾𝑠

3𝑆𝐻
 

(Stroosnijder, 1976). As 𝐴0 → 0, it reduces to a form of the Philip’s model 

(1957b) with 𝐾𝑠 as the coefficient of the linear term. 

 

Broadbridge and 

White 
1988 

𝐼 = 𝑞0𝑡                                                                                                               𝑡 < ∞ 

𝐼 = 𝜆𝑐Θ𝑒
−1 [𝑙𝑛 {

𝐶(Θ𝑒−Θ)

Θ(𝐶−Θ𝑒)
} − 𝐶−1𝑙𝑛 {

Θ𝑒(𝐶−Θ)

Θ(𝐶−Θ𝑒)
} + 𝑅∗𝑡∗]                           𝑡 → ∞ 

Where: 

Θ𝑒 = 2𝐶𝜌 [(1 + 𝜌−1)
1

2 − 1]; 

𝜌 = 𝑅∗/𝑚; 
𝑚 = 4𝐶(𝐶 − 1); 

𝐶 = (𝑏0 − 𝜃𝑖)/(𝜃𝑠 − 𝜃𝑖); 
Θ = (𝜃 − 𝜃𝑖)/(𝜃𝑠 − 𝜃𝑖); 

𝑡∗ = 𝑡/𝑇𝑐; 

𝑅∗ = (𝑞0 − 𝐾𝑖)/𝐾𝑠 

Broadbridge and White described constant rate rainfall infiltration 𝑞0 (L T-1) in 

uniform soils and other porous materials. The model is based on Darcy-

Buckingham approach to unsaturated water flow and assumes simple functional 

forms for the soil water diffusivity 𝐷(𝜃) and hydraulic conductivity 𝐾(𝜃). 

Yeh 1989 𝜓 =
1

𝛼
𝑙𝑛 {𝑒−𝛼(𝑧𝑤−𝜓0) +

𝑖

𝐾𝑠
𝑒−𝛼𝑧 −

𝑖

𝐾𝑠
} 

Analytical solution to one-dimensional, steady state infiltration in heterogeneous 

soils is developed, only valid for 𝜓 ≤ 0. Yeh integrated Buckingham equation 

𝑞 = −𝐾(𝜓)(
𝜕𝜓

𝜕𝑧
+ 1) using the exponential model by Gardner (1958) which 

describes the unsaturated hydraulic conductivity by 𝐾(𝜓) = 𝐾𝑠𝑒
𝛼𝜓.  

Reynolds and 
Elrick  

1990 𝑄𝑖𝑛𝑓 =
𝑟

𝐺
(𝐾𝑠ℎ0 + 𝜑) + 𝜋𝑟2𝐾𝑠 

Reynolds and Elrick derived the steady-state infiltration by summing the steady 

flow out of the ring due to hydrostatic pressure of the ponded water in the ring 

and capillarity of the unsaturated flow, and the steady flow out of the ring due to 

gravity. The depth of the water ponding inside the ring remains constant. 

For ponding depths ranging from 5 to 25 cm, 𝐺 factor in can be approximated by 

the average shape factor, 𝐺𝑒, of an infiltrometer, for different textured soils equal 

to: 𝐺𝑒 =  0.316(𝑑/𝑟)  +  0.184;  

Wooding’s solution (1968) may be considered when H = 0 and G = 0.25. 
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Haverkamp et al. 1990 
𝑡 =

𝑆0
2−2𝜓𝑠𝑡𝑟𝐾𝑠(𝜃𝑠−𝜃𝑖)

2𝛿(1−𝛿)(𝐾𝑠−𝐾𝑖)
2

𝑙𝑛 (1 + 𝛿
(𝐾𝑠−𝐾𝑖)

𝑖−𝐾𝑠
) +

𝐾𝑠(ℎ0+𝜓𝑠𝑡𝑟)(𝜃𝑠−𝜃𝑖)

(𝑖−𝐾𝑠)(𝐾𝑠−𝐾𝑖)
−

[𝑆0
2
 −2𝜓𝑠𝑡𝑟𝐾𝑠(𝜃𝑠−𝜃𝑖)]+2𝛿(1−𝛿)𝐾𝑠(ℎ0+𝜓𝑠𝑡𝑟)(𝜃𝑠−𝜃𝑖)

2(1−𝛿)∆𝐾2
𝑙𝑛 (

𝑖−𝐾𝑖

𝑖−𝐾𝑠
)  

The infiltration equation of Parlange et al. (1985) is improved in such a way that 

it applies equally well for infiltration and capillary rise. This new equation 

considers the possibility of an infinite diffusivity near saturation. 

One can set 𝛿 = 1 for all practical purposes (Barry et al., 1995). 

Smith 1990 

𝑖 =
𝐾𝑠𝐺

𝐼
                                                                                                  𝑡 < 𝑡𝑝 

𝐼𝑝 = ∫ (𝜃 − 𝜃𝑖)
𝜃𝑠

𝜃𝑖

𝐷(𝜃)

𝑞0−𝐾(𝜃)
𝑑𝜃                                                                          𝑡 = 𝑡𝑝 

𝑖 = 𝐾𝑠 (
𝐺

𝐼
+ 1)                                                                              𝑡 > 𝑡𝑝 (1) 

𝑖 = 𝐾𝑠
𝑒𝐼/𝐺

𝑒𝐼/𝐺−1
                                                                                   𝑡 > 𝑡𝑝 (2) 

Where: 

𝐺 = (𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 − 𝜃𝑖)                                                                          (1) 

𝐺 =
𝑆𝐻

2

2𝐾𝑠
                                                                                                       (2) 

The resulting analytic expressions relate the infiltration rate 𝑖 (L T-1) to infiltrated 

cumulative water 𝐼 (L). This type of expression is uniquely general in describing 

the decay of 𝑖 with 𝐼 for either saturation or flux boundary conditions, and in 

describing the onset of ponding for flux boundary conditions (i.e.,  𝑡 < 𝑡𝑝,  𝑡 = 𝑡𝑝 

and  𝑡 > 𝑡𝑝). Specific cases are for 𝐷 (L2 T-1) following a step function (1) or 𝐷 

(L2 T-1) and 𝑑𝐾/𝑑𝜃 (L T-1) are closely proportional (2) (Smith and Parlange, 

1978)). This study explored the applicability of this theory when the soil profile is 

composed of two layers. The behavior of the layered system exhibits the same 

unifying 𝑖(𝐼) response to flux boundary conditions as does a homogeneous 

profile, which lends unexpected generality to the I-based analytical infiltration 

mode. 

Schmid 1990 

𝐼 = ∫ 𝑞0(𝑡)𝑑𝑡 + 𝑞0,𝑖(𝑡 − 𝑡𝑝) + 𝐾𝑠(𝑞𝑜,𝑝 − 𝑞0,𝑖)
(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)

(𝑞𝑜,𝑝−𝐾𝑠)
2 {[1 +

𝑡𝑝
0

2
(𝑞𝑜,𝑝−𝐾𝑠)

2

𝐾𝑠(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)
(𝑡 − 𝑡𝑝)]

0.5

− 1}  

Where: ∫ [𝑞0(𝑡) − 𝑞0,𝑖]𝑑𝑡
𝑡𝑝
0

= 𝐾𝑠
(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)

(𝑞0,𝑝−𝐾𝑠)
  

Based on Mein and Larson (1973), an explicit equation for time-dependent 

cumulative infiltration following ponding was proposed in this paper considering 

time-varying rainfall intensity 𝑞0(𝑡) (L T-1). 

Ankeny et al. 1991 𝑄𝑖𝑛𝑓 = 𝐾𝑠𝑒
𝛼𝜓 [𝜋𝑟2 +

4𝑟

𝛼
] 

Wooding’s equation is rewritten assuming: 

• No water ponding occurs inside the ring 

• Exponential relationship between 𝐾(𝜓) and 𝜓 as defined by Gardner 

(1958): 𝐾(𝜓) = 𝐾𝑠𝑒
𝛼𝜓 

• The ratio 𝐾(𝜓)/𝜑(𝜓) is equal to the constant parameter 𝛼 

 

Swartzendruber 

and Hogarth 
1991 

𝐼 =
𝐼∗𝑆0

2

𝐾𝑠
 

𝐼∗ = 𝑛−1 [1 − 𝑒−𝛼𝑡∗0.5

] + 𝑡∗ 

Where: 𝑛 =
𝛼

(1+𝑝)0.5
; 𝛼 =

𝐴0𝑆0

𝐾𝑠
; 𝑝 =

𝑆𝐻
2

𝑆0
2 and 𝑡∗ =

𝐾𝑠
2𝑡

𝑆0
2  

Swartzendruber and Hogarth developed a new three-parameter infiltration 

equation based on Swartzendruber’s equation (1987b) to describe the effect of 

soil-surface-ponded water head, ℎ0 (L), on the cumulative quantity of water 

infiltrated into the soil with time. 
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Philip 1992 

[1−(𝜃𝑠−𝜃𝑖)]�̅�

(𝜃𝑠−𝜃𝑖)
𝑡 =

𝐼

(𝜃𝑠−𝜃𝑖)
− (

𝜓𝑤𝑓+ℎ0

1−(𝜃𝑠−𝜃𝑖)
) 𝑙𝑛 (1 +

[1−(𝜃𝑠−𝜃𝑖)]𝐼

(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)
)          ℎ0 ≠ 𝑐𝑠𝑡 

 
�̅�

(𝜃𝑠−𝜃𝑖)
𝑡 =

𝐼

(𝜃𝑠−𝜃𝑖)
− (𝜓𝑤𝑓 + ℎ0)𝑙𝑛 (1 +

𝐼

(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)
)                ℎ0 = 𝑐𝑠𝑡 

Philip develops the solution for falling-head infiltration, which takes precisely the 

same functional form as that for constant ponded depth; only the values of the 

constants change. 

White et al. 1992 
𝑖 = 𝐾𝑠 +

4𝑏𝑆0
2

(𝜃𝑠−𝜃𝑖)𝜋𝑟
                                                                                ℎ0 ≤ 0 

𝑖 = 𝐾𝑠 +
4𝑏𝑆𝐻

2

(𝜃𝑠−𝜃𝑖)𝜋𝑟
                                                                                ℎ0 > 0 

White et al. combined the early-time transient and steady flow phases to estimate 

three-dimensional infiltration. 

The parameter 𝑏 is constrained to 0.5 ≤ 𝑏 ≤ 𝜋/4. A typical “average” value for 𝑏 

is 0.55 (White and Sully, 1987). 

Barry et al. 1993 

𝑡 =
𝐼

𝐾𝑠
− 𝛼∗ln (1 +

𝐼

𝛼∗𝐾𝑠
)   

Where: 

𝛼∗ =
𝑆0

2

2𝐾𝑠
2                                                                          no ponding (ℎ0 ≤ 0) 

Or 𝛼∗ =
𝑆𝐻

2

2𝐾𝑠
2                                                                under ponding (ℎ0 > 0) 

 

Barry et al. expressed the cumulative infiltration in terms of the Lambert W-

function as 𝐼 = −𝛼∗𝐾𝑠 [1 + 𝑊 (−𝑒−1−
𝑡

𝛼∗)]. As such, the new infiltration solution 

was derived, which has the general form of the Green and Ampt (1911) law 

without requiring a sharp wetting front. The saturated soil surface can be either 

ponded or not. 

Fonteh and 

Podmore 
1993 

V = [2𝑥𝑤𝑑 + 𝑤𝑧𝑤 + (
𝜋

2
) 𝑥𝑤𝑧𝑤] 𝑙(𝜃𝑠 − 𝜃𝑖)                                               (1) 

V = [2(𝑑 + 𝑧𝑐)𝑥𝑤,𝑚𝑎𝑥 + 𝑤𝑧𝑤 + (
𝜋

2
)𝑥𝑤,𝑚𝑎𝑥(𝑧𝑤 − 𝑧𝑐)] 𝑙(𝜃𝑠 − 𝜃𝑖)           (2) 

Where: 

𝑖𝑐 =
𝐾𝑠(𝜓𝑤𝑓+ℎ0+𝑧𝑐)

𝑧𝑐
                                                         

 

Fonteh and Podmore developed a simple two-dimensional infiltration model for 

rectangular furrows for depth 𝑑 (L), width 𝑤 (L), and thickness 𝑙 (L), based on 

the Green and Ampt equation and Fok and Chiang (1984) assuming the 

cumulative infiltrated volume is divided into two parts: before the wetting fronts 

meets (1) and after they meet (2). 

After the fronts meet, it is assumed that the region of two-dimensional flow shifts 

downwards due to vertical downward infiltration 𝐼𝑐 (L) estimated using Green 

and Ampt (1911). 

Smith et al. 1993 

0 < 𝑡 ≤ 𝑡ℎ (1) 

𝑖 = 𝑞0                                                                                                    𝑡 ≤ 𝑡𝑝  

𝐾𝑠(𝑡 − 𝑡𝑝)(1 − 𝛿) = (𝐼 − 𝐼𝑝) −
(𝜃𝑠−𝜃𝑖)𝐺(𝜃𝑖,𝜃𝑠)

(𝐾𝑠−𝐾𝑖)
𝑙𝑛 (

𝑒𝛿𝐼′/(𝜃𝑠−𝜃𝑖)𝐺(𝜃𝑖,𝜃𝑠)−1+𝛾

𝑒
𝛿𝐼𝑝

′ /(𝜃𝑠−𝜃𝑖)𝐺(𝜃𝑖,𝜃𝑠)−1+𝛾
)      

𝑡 > 𝑡𝑝               

Where: 𝐼′ = 𝐼 − 𝐾𝑖𝑡, 𝐺(𝜃𝑖, 𝜃𝑠) =
 𝑆(𝜃𝑖,𝜃𝑠)

2

2𝐾𝑠
=

𝑆𝐻
2

2𝐾𝑠
 and  𝛾 =

𝛿𝐾𝑠

(𝐾𝑠−𝐾𝑖)
 

𝐼 = 𝐼ℎ + (𝑞0 − 𝐾𝑖)(𝑡 − 𝑡ℎ)                                                    𝑡ℎ < 𝑡 ≤ 𝑡𝑛 (2) 

𝐾𝑠(𝑡 − 𝑡𝑝)(1 − 𝛿) = (𝐼 − 𝐼𝑝) −
(𝜃𝑠−𝜃𝑛)𝐺(𝜃𝑖,𝜃𝑛)𝐾𝑠

(𝐾𝑠−𝐾𝑛)
𝑙𝑛 (

𝐹𝐺(𝐼)−1+𝛾

𝐹𝐺(𝐼𝑝)−1+𝛾
)  𝑡 > 𝑡𝑛 (3)  

Where: 𝐹𝐺(𝐼) = 𝑒
𝛿(𝐼−𝐼𝑛)′

𝐺(𝜃𝑠−𝜃𝑛), (𝐼 − 𝐼𝑛)′ = 𝐼 − 𝐼𝑛 − 𝐾𝑛(𝑡 − 𝑡𝑛) and  𝛾 =
𝛿𝐾𝑠

𝐾𝑛−𝐾𝑖
 

The main purpose of this paper is to propose a simple conceptual model of 

rainfall infiltration which continuously describes the 

infiltration/redistribution/infiltration cycle. Smith et al. considered three 

sequential periods of time, with the first (1), assuming an initial rainfall pattern 

having 𝑞0 > 𝐾𝑠, lasting to a time 𝑡ℎ, which at some time 𝑡𝑝 < 𝑡ℎ causes ponding. 

The infiltration model (1) is based on the three-parameter analytic model of 

Parlange et al. (1982), extended to treat soils with very high initial water content 

𝜃𝑖. Then, during any significant interval within a storm in which 𝑞0 (L T-1) falls 

below 𝑖 (L T-1) at some time 𝑡 > 𝑡ℎ (𝑡ℎ = time of hiatus) (2), 𝜃0 < 𝜃𝑠. In this case, 

the redistribution model is based on profile extension with shape similarity 

defined by the scale factor ℬ, originally called 𝛽, and a shape factor, 𝑝. The 

similarity condition would be satisfied by a rectangle (ℬ = 1) which distorts in 

time, or the quadrant of an ellipse (ℬ =
𝜋

4
). After the rainfall hiatus (posthiatus 

period), 𝑞0 (L T-1) is assumed to increase at a time 𝑡 > 𝑡𝑛 causing a second 

ponding (3). A secondary wetting profile of accumulated water (𝐼 − 𝐼𝑛)′ = 𝐼 −
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𝐼𝑛 − 𝐾𝑛(𝑡 − 𝑡𝑛) advances alongside the earlier profile computed at 𝜃0 = 𝜃𝑛 with 

ℬ = 1.  A correction to 𝐺(𝜃𝑛, 𝜃𝑠) for 𝛽 < 1 was also incorporated. 

Philip 1993 

Constant rainfall rate 𝑞0(𝑡): 

𝐼 = (𝜃𝑠 − 𝜃𝑖)[𝑧(𝑡) − 𝑧0]                                                                     𝑡 < 𝑡∞ 

To calculate 𝑧(𝑡), check Eq. (17), (20), and (26) in Philip’s paper 

 𝑖 = 0.5�̅�[1 − (𝜃𝑠 − 𝜃𝑖)] [1 + {1 +
4𝑞0(𝜃𝑠−𝜃𝑖)

�̅�[1−(𝜃𝑠−𝜃𝑖)]2
}
0.5

]                         𝑡 → 𝑡∞ 

Variable rainfall rate  𝑞0(t): 
𝐼 = (𝜃𝑠 − 𝜃𝑖)[𝑧(𝑡) − 𝑧0] 
To calculate 𝑧(𝑡), differentiate with respect to time 𝑡: 

𝑞0(𝑡) =
(𝜃𝑠 − 𝜃𝑖)

�̅�

𝑑

𝑑𝑡
(𝑧

𝑑𝑧

𝑑𝑡
) − [1 − (𝜃𝑠 − 𝜃𝑖)]

𝑑𝑧

𝑑𝑡
 

Philip established the study of the effect of excess rainfall, ponded without runoff, 

on the dynamics of infiltration into a deep homogeneous soil using Green and 

Ampt, or delta function, approximation under constant and variable rainfall rates. 

Stone et al. 1994 

 

𝐼 = (𝜓𝑤𝑓 + ℎ0)∆𝜃(𝑡∗ + √2𝑡∗ − 0.2987𝑡0.7913)  

Where: 𝑡∗ =
𝐾𝑠

(𝜓𝑤𝑓+ℎ0)∆𝜃
𝑡 

Stone et al. developed an explicit approximation of the Green-Ampt equation 

(one-stage infiltration) by rewriting it in the form of Philip’s equation. 

 

Mandal and 

Waechter 
1994 

𝑖 = 0.5𝛼𝜑𝑖∗ 

𝑖∗ =
1

𝑠
∑ (−1)𝑛

In
Kn

∞

𝑛=−∞

 

Top half: 

𝑖∗ =
2

𝜋
(0.69953𝑠−2/3) 

Bottom half: 

𝑖∗ =
2

𝜋
(1 + 0.30066𝑠−2/3) 

Semicircular trench: 

𝑖∗ =
4

𝜋
(1 + 0.69953𝑠−2/3) 

Where: 𝑠 = 0.5𝛼𝑟 

Mandal and Waechter obtained the separate contributions to the mean infiltration 

rate 𝑖 (L T-1) from the top and the bottom halves of the buried circular cylinders of 

radius 𝑟 (L). 

 

In and Kn are the modified Bessel functions of the first and second kinds of order 

n. 

 

Fallow et al. 1994 𝐼 = [2(𝜃𝑠 − 𝜃𝑖)𝐾𝑠ℎ0 +
(𝜃𝑠 − 𝜃𝑖)𝜑

𝑏
]
0.5

𝑡0.5 

Fallow et al. presented an analytical equation for determining early-time, 

transient, and one-dimensional infiltration under both, constant head, and falling-

head conditions, in low-permeability soils, not significantly perturbed by 

gravitational effects. 

The parameter 𝑏 is constrained to 0.5 ≤ 𝑏 ≤ 𝜋/4. A typical “average” value for 𝑏 

is 0.55 (White and Sully, 1987, White et al., 1992). 
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Basha 1994 

𝑄𝑖𝑛𝑓 =
4𝐾𝑆𝑉

∗

𝛼2
 

2D shallow ditch: 

𝑉∗ =
2𝑎∗

1 − 𝑏∗
 

3D shallow pond: 

𝑉∗ =
2𝜋𝑎∗𝑠

(1 − 𝑏∗)(2 − 𝑏∗)
 

Where: 𝑠 = 0.5𝛼𝑟 

The Green's function method was used to derive a general analytical model which 

can handle multidimensional steady infiltration problems in a semi-infinite 

medium with arbitrary boundary conditions and root uptake forcing functions and 

for various simple source geometries. Two special kinds of boundary conditions 

were considered in this work, 2D shallow ditch, and 3D shallow pond of radius r 

(L). 

Salvucci and 

Entekhabi 

 

1994 

𝐼 = 𝐾𝑠 {(1 −
√2

3
) 𝑡 + (

√2

3
) (𝜒𝑡 + 𝑡2)0.5 + (

√2−1

3
)𝜒[𝑙𝑛(𝑡 + 𝜒) − 𝑙𝑛 (𝜒)] +

(
√2

3
)𝜒 [𝑙𝑛 (𝑡 +

𝜒

2
+ (𝜒𝑡 + 𝑡2)0.5) − 𝑙𝑛 (

𝜒

2
)]}  

Where  𝜒 =
(𝜓𝑤𝑓+ℎ0)∆𝜃

𝐾𝑠
 

An explicit expression for Green-Ampt cumulative infiltration is presented for 

any soil type definition and all times using Philip’s time series solution 

(Philip,1957a). 

Corradini et al. 1994 

𝐼′ = 𝐼 − 𝐾𝑖𝑡 

𝐼′ −
𝐼′2

2(𝑞0−𝐾𝑖)(𝜃0−𝜃𝑖)

𝑑𝜃0

𝑑𝑡
=

(𝜃0−𝜃𝑖)𝐺(𝜃𝑖,𝜃0)𝐾𝑠

𝛿𝐾0
𝑙𝑛 (1 +

𝛿𝐾0

𝑞0−𝐾0
)                            (1) 

(𝑞0 − 𝐾𝑖 − 𝐾0∗)𝐼
′ = ℬ𝑞0𝐾𝑠(𝜃0∗ − 𝜃𝑖)𝐺(𝜃𝑖, 𝜃0∗)                                      (2) 

Where: 𝐺(𝜃𝑖 , 𝜃0) =
1

𝐾0
∫ 𝐷(𝜃)𝑑𝜃

𝜃0

𝜃𝑖
  

Corradini et al. extended the conceptual model earlier developed by Smith et al. 

(1993) towards further generality treating an arbitrary sequence of rainfall rates. 

They included the representation of a sequence of infiltration/redistribution cycles 

with situations of infiltration not leading to soil surface saturation (i.e., 𝑡 < 𝑡𝑝) 

(1), and wetting profile reshaping under reduced rainfall rates (i.e., 𝑞0 < 𝑖) (2). 

Corradini et al. used a slightly modified version of Parlange et al. (1985) model 

for description of increases in the surface water content (1) and the Smith et al. 

(1993) redistribution equation for decreases (2). 
Equation (1) gives the limited case of soil surface saturation (Smith et al., 1993) 

for 𝜃0 = 𝜃𝑠 and 
𝑑𝜃0

𝑑𝑡
= 0. In Equation (2), the evolution of 𝜃0∗ will be estimated by 

Runge-Kutta integration of (1). 

𝑝 is a shape factor (Smith et al., 1993) approaching 1 for 𝑞0 (L T-1) near 𝐾𝑠 (L T-

1).  

𝜋/4 ≤ ℬ ≤ 1 (Smith et al., 1993). 

Smettem et al. 1994 𝐼 = 𝐼1𝐷 + 
√0.3𝜋𝑟𝑆0

2𝑡

 (𝜃𝑠 − 𝜃𝑖)
 

Smetten et al. developed an analytical expression for three-dimensional unsteady, 

unconfined, gravity-free flow out of a disc infiltrometer from one-dimensional 

confined infiltration. 

Haverkamp et al.  1994 

1D Infiltration: 

2(𝐾𝑠−𝐾𝑖)
2

𝑆0
2 𝑡 =

2

1−𝛽

(𝐾𝑠−𝐾𝑖)(𝐼−𝐾𝑖𝑡)

𝑆0
2 −

1

1−𝛽
𝑙𝑛 [

1

𝛽
𝑒

2𝛽
(𝐾𝑠−𝐾𝑖)(𝐼−𝐾𝑖𝑡)

𝑆0
2

+
𝛽−1

𝛽
]              (1)            

𝐼 =  𝑆0𝑡
0.5 +

2−𝛽

3
𝐾𝑠𝑡                                                                                 (2)  

3D Infiltration: 

𝐼 = 𝐼1𝐷 + 
𝛾𝑆0

2𝑡

 𝑟𝛥𝜃
 

𝐼 = 𝑆0𝑡
0.5                                                                                      very short t 

𝐼 = 𝑆0𝑡
0.5 + [

2−𝛽

3
(𝐾𝑠 − 𝐾𝑖) +  𝐾𝑖 +

𝛾𝑆0
2

 𝑟(𝜃𝑠−𝜃𝑖)
] 𝑡                                   short t 

𝐼 = (𝐾𝑠 +
𝛾𝑆0

2

 𝑟(𝜃𝑠−𝜃𝑖)
) 𝑡 +

1

2(1−𝛽)
𝑙𝑛 (

1

𝛽
)

𝑆0
2

(𝐾𝑠−𝐾𝑖)
                                steady state 

                 

(1) Parlange’s equation is redefined such that δ is replaced by new 

dimensionless constant β. 

(2) Haverkamp’s equation (1) is simplified into two-term approximate 

expansion, for short infiltration times and Ki close to zero. 

 

𝛽 ranges between 0.3 and 1.7 for sand to silty soils (Lassabatere et al., 2009, 

Rahmati et al., 2019). 𝛽 = 0.6 is an average value. 

A 3D cumulative infiltration, 𝐼3𝐷, from a disk source, is related to 1D cumulative 

infiltration, 𝐼1𝐷, particularly for water infiltration experiments that make use of 

disk or ring infiltrometers. An average value of 0.75 can be used for γ 

(Haverkamp et al., 1994, Lassabatere et al., 2006). 
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Barry et al. 1995 

 

𝐼∗ = (𝐼 − 𝐾𝑖𝑡)
2(𝐾𝑠−𝐾𝑖)

𝑆0
2+2𝐾𝑠ℎ0(𝜃𝑠−𝜃𝑖)

  

Where: 

𝐼∗ = 𝑡∗ + 1 − 𝛾∗ − 𝑒𝑥𝑝(−
√2𝑡∗

1+
√2𝑡∗

6

−
2𝑡∗

3
) +

𝛾

1+𝑡∗
{𝑒𝑥𝑝 (−

2𝑡∗

3
) [1 −

(1 − 𝛾)8𝑡∗
5

2] + (2𝛾 + 𝑡∗)𝑙𝑛 (1 +
𝑡∗

𝛾
)} ; 

𝑡∗ =
2(𝐾𝑠−𝐾𝑖)

2

𝑆0
2+2𝐾𝑠ℎ0(𝜃𝑠−𝜃𝑖)

𝑡 ; 

𝛾 =
2𝐾𝑠(ℎ0+𝜓𝑠𝑡𝑟)(𝜃𝑠−𝜃𝑖)

𝑆0
2+2𝐾𝑠ℎ0(𝜃𝑠−𝜃𝑖)

  

Barry et al. transformed the implicit infiltration formula presented by Haverkamp 

et al. (1990) into an explicit infiltration equation, which improved the 

applicability of the approach in both the short- and long-term limits. 

Elrick et al. 1995 𝐼 =
Α𝑝𝑜𝑛𝑑

A
[ℎ0 − ℎ(𝑡)] 

One-dimensional infiltration experiments conducted in the laboratory using 

undisturbed soil cores have been analyzed using numerical inversion procedures 

of a finite solution of Richards’ equation. For falling-head conditions, the 

cumulative infiltration is a function of the ponded head  ℎ(𝑡), the cross-sectional 

area of the infiltrating surface, A (L2), and that of the falling head tube, Α𝑝𝑜𝑛𝑑 

(L2). 

Sommer and 

Mortensen 
1996 

𝐼 = [1 + 𝑠(0)]𝑆0𝑡
0.5 

𝜃′(𝜒) =
𝜃𝜇𝑆0

2

2𝐷(𝜃)
[𝑙(𝜒) − 𝑠(𝜒)] 

Where: 

𝜒 =
𝑥 − 𝑥0

𝑆0𝑡0.5
 

𝑙′(𝜒) = −
𝜃′(𝜒)

𝜃
[𝑙(𝜒) − 𝑠(0) − 𝜒] ; 

𝑠′(𝜒) =
𝜃′(𝜒)

(1−𝜃)
[𝑠(𝜒) − 𝑠(0) − 𝜒]                                  under pressure liquid 

Or 

𝑠′(𝜒) =
𝜃′(𝜒)

3(1−𝜃)
[𝑠(𝜒) − 𝑠(0) − 𝜒]                        under hydrostatic pressure 

Using mixture theory, Sommer and Mortensen treated unidirectional infiltration 

of an initially dry deformable porous medium under constant liquid pressure, 

assuming the porous medium goes from completely dry to fully saturated (slug-

flow assumption) and neglecting gravity and inertial forces. 

To solve for 𝑆0 (L T-0.5) and the dimensionless water content, liquid, and solid 

velocities, 𝜃(𝜒), 𝑙(𝜒), and 𝑠(𝜒) respectively, Sommer and Mortensen set the 

following boundary conditions: 

𝜃 = 𝜃𝑖 at 𝜒 = 0 

𝜃 = 𝜃𝑠 at 𝜒 = 1 

𝑙(1) = 1 + 𝑠(0) 

𝑠(1) = [1 + 𝑠(0)]
𝜃𝑠 − 𝜃𝑐

1 − 𝜃𝑠
 

Where 𝜃𝑐 (L3 L-3) the water content of the porous material immediately ahead of 

the infiltration front at time t. A simpler limiting case is obtained if there is no 

capillary pressure drop across the infiltration front, then, 𝜃𝑐 = 𝜃𝑠 and therefore 

𝑠(1) = 0. 

Srivastava et al. 1996 
𝐼 = 𝛼′(𝜃𝑠 − 𝜃𝑖)(𝜓𝑤𝑓+ℎ0)∅

[𝛽′+𝛿′ln(∅)] 

Where: ∅ =
𝐾𝑠(𝑡−𝑡𝑝+𝑡𝑆)

(𝜃𝑠−𝜃𝑖)(𝜓𝑤𝑓+ℎ0)
 

Srivastava et al. developed an explicit equation to the modified Green-Ampt 

equation presented by Mein and Larson (1973) to represent cumulative infiltration 

at any time t greater than ponding time. 

Preziosi et al. 1996 

1D Infiltration: 

𝜌𝑠𝑜𝑙𝑖𝑑𝜙𝑠𝑜𝑙𝑖𝑑 (
𝜕𝑣𝑠𝑜𝑙𝑖𝑑

𝜕𝑡
+ 𝑣𝑠𝑜𝑙𝑖𝑑

𝜕𝑣

𝑆
𝜕𝑥) = −

𝜇

𝑘
[𝑣𝑠𝑜𝑙𝑖𝑑 − 𝐶(𝑡)] +

𝜕𝜎

𝜕𝑥
−

𝜙𝑠𝑜𝑙𝑖𝑑(𝜌𝑠𝑜𝑙𝑖𝑑 − 𝜌𝑙𝑖𝑞𝑢𝑖𝑑)𝑔  

3D Infiltration: 

Eqs. (1), (7) and (9) in Preziosi et al.’s paper 

Preziosi et al. presented a mathematical model for unidirectional infiltration of an 

incompressible liquid into an initially deformable porous material assuming slug-

flow in the absence of inertial forces. The quantity 𝐶(𝑡) depends on how the 

liquid constituent is pushed into the porous medium. The simplest case is when 

we are completely able to govern the inflow, for instance, we are able to steadily 

push liquid into the porous medium, which means C(t) = const. A more 

interesting situation for determining 𝐶(𝑡) arises in Eq. (23) in Preziosi et al.’s 

paper. 

Corradini et al. 1997 

0 ≤ 𝑡 < 𝑡1 

𝐼 = ∫ (𝑞0 − 𝐾𝑖)
𝑡

0
𝑑𝑡                                                                               𝑡 < 𝑡𝑝  

𝐼𝑝 = ∫ (𝑞0 − 𝐾𝑖)
𝑡𝑝
0

𝑑𝑡 =
∆𝜃𝐺(𝜃𝑖,𝜃𝑠)ℬ𝑝𝐾𝑠

𝑞0−𝐾𝑠
                                                   𝑡 = 𝑡𝑝  

𝑖 = 𝐾𝑠 +
(𝜃𝑠−𝜃𝑖)𝐺(𝜃𝑖,𝜃𝑠)ℬ𝑝𝐾𝑠

𝐼−𝐾𝑖𝑡
                                                                             𝑡 > 𝑡𝑝  

A relatively simple conceptual model for infiltration during complex rainfall 

sequences is presented as a reformulation of an analytically derived model 

developed earlier by Smith et al. (1993) and Corradini et al. (1994) in a more 

homogeneous version suitable for hydrologic applications. During the first 

rainfall period (0 ≤ 𝑡 ≤ 𝑡1), infiltration and redistribution rates are described 
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Where: 𝐺(𝜃𝑖 , 𝜃𝑠) =
1

𝐾𝑠
∫ 𝐷(𝜃)𝑑𝜃

𝜃𝑠

𝜃𝑖
 

𝑡 > 𝑡1 

𝑖1 = (−
1

ℬ

𝑑ℬ

𝑑𝜃0
−

1

𝜃0−𝜃𝑖
) (𝐼1 − 𝐾𝑖𝑡1)

𝑑𝜃0

𝑑𝑡
− 𝐾𝑖                                          𝑡 = 𝑡1          

𝑑𝜃0

𝑑𝑡
=

(𝜃0−𝜃𝑖)ℬ(𝜃0)

[𝐼−𝐾𝑖(𝑡−𝑡1)][(𝜃0−𝜃𝑖)
𝑑ℬ(𝜃0)

𝑑𝜃0
+ℬ(𝜃0)]

{𝑞0 − 𝐾0 −
ℬ(𝜃0)𝑝𝐾0(𝜃0−𝜃𝑖)𝐺(𝜃𝑖,𝜃0)

𝐼−𝐾𝑖(𝑡−𝑡1)
}         

if 𝑞0 ≤ 𝑖1 
𝑑𝜃0

𝑑𝑡
=

(𝜃0−𝜃1)ℬ(𝜃0)

[𝐼−𝐼1−𝐾1(𝑡−𝑡1)][(𝜃0−𝜃1)
𝑑ℬ(𝜃0)

𝑑𝜃0
+ℬ(𝜃0)]

{𝑞0 − 𝐾0 −
ℬ(𝜃0)𝑝𝐾0(𝜃0−𝜃1)𝐺(𝜃1,𝜃0)

𝐼−𝐼1−𝐾1(𝑡−𝑡1)
}   

if 𝑞0 > 𝑖1                  

prior to and during the rainfall hiatus, respectively. As for parameters, 𝑝 

approaches 1 near 𝐾𝑠 (L T-1) and 𝜋/4 ≤ ℬ ≤ 1 (Smith et al., 1993; Corradini et 

al., 1994). Explicit relations for ℬ and 𝑝 were given as follows: ℬ = 𝑐1
𝜃0−𝜃𝑖

𝜃𝑠−𝜃𝑟
+ 𝑐2, 

ℬ𝑝 = 𝑓(𝑞0/𝐾𝑠), and ℬ𝑝 = 𝑐3 (during redistribution), where 𝑐1, 𝑐2, and 𝑐3 are 

constants to be determined, (𝑞0/𝐾𝑠) is an implicit function through which the 

variation of the profile shape with 𝑞0/𝐾𝑠 expressed in terms of values of 𝑝 and ℬ 

is invariant with time during redistribution. After a limited period of 

redistribution, a new rainfall period (post-hiatus, 𝑡 > 𝑡1) produces re-infiltration 

into the soil. If 𝑞0 ≤ 𝑖1, the reinfiltrating water is approximately distributed 

through the whole dynamic profile. If 𝑞0 > 𝑖1, re-infiltration creates a new 𝜃(𝑧, 𝑡) 

profile in a soil with fictitious initial water content 𝜃(0,  𝑡1) = 𝜃1 and initial 

hydraulic conductivity 𝐾𝑖(𝑡 = 𝑡1) = 𝐾1. 

Parlange et al. 1997 

 

For a linear soil, 

𝐼 = 2√𝑡/𝜋 +
𝑡

2
+ 𝑂 (𝑡

3

2)                                                               short times                                                       

𝐼 = 1 + 𝑡 − (1 +
𝑡

2
 ) 𝑒𝑟𝑓 (

√𝑡

2
) + √𝑡/𝜋𝑒−𝑡/4                                 long times 

For a near- linear soil, 

𝑡 = 𝐼 − 2/3ln (1 +
3𝐼

2
)                                                                short times                                                       

𝐼 = 2√𝑡/3 +
2𝑡

3
+ 𝑂 (𝑡

3

2)                                                               long times                                                     

A general approximation for the solution2 to the one-dimensional Richards 

equation is presented for arbitrary soil properties and boundary conditions, exact 

for short times, in general, and for all times as D approaches a delta function.  The 

approximation becomes increasingly accurate for “linear” and “near-linear” soils. 
22𝑀 =

𝑞0

𝜃0𝐷0
−

𝑑𝜃0

𝑑𝑡

1

𝑞0−𝐾𝑠
 

Where: 𝑀 (L-1) is an unknown function of time.  

Wu and Pan 1997 

𝑖 = 𝑖𝑐  [𝑎 + 𝑏 (
𝑡

𝑇𝑐
)
−0.5

] 

Where:  𝑖𝑐 = 𝑓𝐾𝑠 ; 

𝑇𝑐 =
Δ𝜃𝜆𝑐

𝐾𝑠
 ;  𝑓 =

ℎ0+𝜆𝑐

𝑑+𝑟 2⁄
+ 1 

Wu and Pan developed a scaling method for axisymmetric, three-dimensional 

infiltration from a single ring infiltrometer, which resulted in a generalized 

solution to infiltration that can be applied to different soil conditions and ring 

geometry using two dimensionless parameters, 𝑎 and 𝑏. The essential part of this 

method was to model the macroscopic capillary length, λc(L), the sorptive time, 

𝑇𝑐(T) and the parameter 𝑖𝑐 (L T-1) used to scale the infiltration rate. 𝜆𝑐(L) is 

defined as being equal to the matric flux potential, 𝜑(L2 T-1), scaled by 𝐾𝑠 (L T-1): 

𝜆𝑐 = 𝜑/𝐾𝑠. 

𝑎 and 𝑏 were determined through curve-fitting to be approximately equal to 0.91 

and 0.17, respectively. 

Wang et al. 1997 

Without air compression: 

𝑡 =
∅(1−𝑆𝑒𝑖−𝑆𝑒𝑎𝑖𝑟)

𝐾𝑠
[

𝐼

∅(1−𝑆𝑒𝑖−𝑆𝑒𝑎𝑖𝑟)
− (𝜓𝑤𝑓 + ℎ0)𝑙𝑛 (1 +

𝐼

∅(1−𝑆𝑒𝑖−𝑆𝑒𝑎𝑖𝑟)(𝜓𝑤𝑓+ℎ0)
)]  

With air compression: 

𝑡 =
∅(1−𝑆𝑒𝑖−𝑆𝑒𝑎𝑖𝑟)

𝑘𝑟𝑐𝐾𝑠
[

𝐼

∅(1−𝑆𝑒𝑖−𝑆𝑒𝑎𝑖𝑟)
− (𝜓𝑤𝑓 + ℎ0 + ℎ𝑎𝑓)𝑙𝑛 (1 +

𝐼

∅(1−𝑆𝑒𝑖−𝑆𝑒𝑎𝑖𝑟)(𝜓𝑤𝑓+ℎ0+ℎ𝑎𝑓)
)]  

One-dimensional infiltration was derived on the basis of the Green and Ampt 

(1911) assumptions (infiltration process is isothermal, the porous medium is 

homogeneous, and the wetting front is sharp) by including the term ℎ𝑎𝑓 (L), air 

pressure immediately below the wetting front, to account for air entrapment 

effects. When soil air is not compressed during infiltration ➔ ℎ𝑎𝑓 = 0. 

Enciso-Medina et 

al. 
1998 

Zone (1): 

𝑖 = (
𝐵+𝑙𝑠𝑒𝑎𝑙+(𝜓𝑤𝑓+ℎ0)

𝑙𝑠𝑒𝑎𝑙
𝐾𝑠𝑒𝑎𝑙

+
𝐵

𝐾𝑡𝑖𝑙𝑙

)                                                           𝑧 ≤ 𝑙𝑠𝑒𝑎𝑙 + 𝑙𝑡𝑖𝑙𝑙 

𝑖 = (
𝐶+𝑙𝑠𝑒𝑎𝑙+𝑙𝑡𝑖𝑙𝑙+(𝜓𝑤𝑓+ℎ0)

𝑙𝑠𝑒𝑎𝑙
𝐾𝑠𝑒𝑎𝑙

+
𝑙𝑡𝑖𝑙𝑙
𝐾𝑡𝑖𝑙𝑙

+
𝐶

𝐾𝑠𝑒𝑎𝑙

)                                                            𝑧 > 𝑙𝑠𝑒𝑎𝑙 + 𝑙𝑡𝑖𝑙𝑙 

Where:  

To simulate the effects of surface sealing, soil cracking, and initial soil water 

content, Enciso-Medina et al developed a model for a three-layered soil system 

consisting of a surface seal of thickness 𝑙𝑠𝑒𝑎𝑙 (L), a tillage layer of thickness 𝑙𝑡𝑖𝑙𝑙 
(L), and the subsoil. The portion of the soil profile that receives water during 

infiltration is represented by three zones.  

The first zone (1) is directly below the wetted furrow and only involves vertical 

one-dimensional infiltration predicted using Green-Ampt method for vertical 

flow. Enciso-Medina et al. assumed that the time required to wet the seal is 



 

 
 

1
0

9
 

𝐵 =
𝐼−𝑙𝑠𝑒𝑎𝑙∆𝜃

∆𝜃𝑡𝑖𝑙𝑙
; 

𝐶 =
𝐼−𝑙𝑠𝑒𝑎𝑙∆𝜃𝑠𝑒𝑎𝑙−𝑙𝑡𝑖𝑙𝑙∆𝜃𝑡𝑖𝑙𝑙

∆𝜃
; 

Zone (2): 

𝑖 =
𝜓𝑤𝑓 + ℎ0

𝑥𝑠𝑒𝑎𝑙
𝐾𝑠𝑒𝑎𝑙

+
𝑥𝑤 − 𝑥𝑠𝑒𝑎𝑙

𝐾𝑡𝑖𝑙𝑙

 

Zone (3): 

𝜗 = [2𝑥𝑤𝑑 + 𝑤𝑧𝑤 + (
𝜋

2
)𝑥𝑤𝑧𝑤]𝛥𝜃𝑡 

negligible; therefore, infiltration starts when the wetting front reaches the bottom 

of the seal, 𝑙𝑠𝑒𝑎𝑙 (L). Thus, the infiltration rate was predicted when the wetting 

front is withing the tillage layer (𝑙 ≤ 𝑙𝑠𝑒𝑎𝑙 + 𝑙𝑡𝑖𝑙𝑙) or extends into the subsoil (𝑙 >
𝑙𝑠𝑒𝑎𝑙 + 𝑙𝑡𝑖𝑙𝑙) 
The second zone (2) represents one-dimensional horizontal flow of water through 

the sides of the wetted furrow using Green-Ampt method for horizontal 

infiltration.  

The third zone (3) is represented by a semielliptical shape that connects the 

corners of the first two zones predicting quasi-two-dimensional infiltration 𝜗 (L2 

T-1) for a rectangular furrow based on the model by Fok and Chiang (1984). 

Philip 1998 

𝐼 = 𝑆0,𝑐𝑡
0.5                                                                                           small t 

𝐼 = ∫ (𝜃𝑐 − 𝜃𝑐,𝑖)𝑑𝑧
𝑙𝑐
0

+ ∫ (𝜃 − 𝜃𝑖)𝑑𝑧
∞

𝑙𝑐
                                     intermediate t 

𝐼 = 𝐾𝑠𝑡                                                                                                  large t 

Quasi-analytic methods are used to analyze ponded infiltration into crusted soils 

for both small and large times and a good approximation for intermediate times is 

anchored at both ends by these results. Philip (1998) assumed a uniform soil of 

initial water content, 𝜃𝑖 (L
3 L-3) and saturated hydraulic conductivity 𝐾𝑠 (L T-1) 

lying underneath the crusted soil of initial water content 𝜃𝑐,𝑖 (L
3 L-3). 

Smith et al. 1999 

0 ≤ 𝑡 < 𝑡𝑐𝑟𝑢𝑠𝑡 

𝑞0 =
𝑑𝐼1

𝑑𝑡
+𝐾1,𝑖                                                                                    𝑡 ≤ 𝑡𝑝                                                                                          

0 =
(𝜃1,𝑠−𝜃1,𝑖)ℬ1(𝜃𝑠)[𝑞0−𝐾1,𝑠−(𝜃1,𝑠−𝜃1,𝑖)ℬ1(𝜃𝑠)𝑝1𝐺1(𝜓𝑖,0)𝐾1,𝑠/𝐼1]

𝐼 1[(𝜃1,𝑠−𝜃1,𝑖)𝛾1+ℬ1(𝜃𝑠)]
                      𝑡 > 𝑡𝑝 

Where: 𝐺1(𝜓𝑖, 𝜓0) =
1

𝐾𝑠
∫ 𝐾(𝜓)𝑑𝜓

𝜓0

𝜓𝑖
 and 𝛾1 =

𝑑ℬ1

𝑑𝜃0
 

 𝑡 ≥ 𝑡𝑐𝑟𝑢𝑠𝑡 
𝑑𝜓𝑐

𝑑𝑡
=

1

𝑃(𝜓0,𝜓𝑐,𝑡)
{𝐾0 +

𝐺1(𝜓𝑐,𝜓0)𝐾1,𝑠

𝑙𝑐
− 𝐾2,𝑐 −

ℬ2(𝜃2,𝑐)𝑝2(𝜃2,𝑐−𝜃2,𝑖)𝐾2,𝑠𝐺2(𝜓𝑖,𝜓𝑐)

𝐼−𝑙𝑐[𝜃1,𝑐−𝜃1,𝑖+𝛼1(𝜃0−𝜃1,𝑐)]−𝐾2,𝑖𝑡
}  

Where: 

𝑃(𝜓0, 𝜓𝑐 , 𝑡) from Eq. (22) in Smith et al.’s paper 

 𝐺2(𝜓𝑖, 𝜓𝑐) =
1

𝐾𝑠
∫ 𝐾(𝜓)𝑑𝜓

𝜓𝑐

𝜓𝑖
, 

 𝜃1,𝑐 = 𝜃1(𝑙𝑐), 𝜃2,𝑐 = 𝜃2(𝑙𝑐), 𝐾2,𝑐 = 𝐾2(𝑙𝑐), 

 𝛾2 =
𝑑ℬ2

𝑑𝜃2,𝑐
 

 

 

 

Smith et al. proposed a relatively simple analytical/conceptual model for 

infiltration in crusted soils treating the crust (1) as a single layer of thickness 𝑙𝑐 

(L) overlaying the subsoil (2) where the upper layer is always the most restrictive, 

i.e., 𝐾1,𝑠 < 𝐾2,𝑠. Cumulative dynamic infiltration comprises that in the crust layer 

𝐼1 (L) plus that in the subsoil 𝐼2 (L). For 𝑡 < 𝑡𝑐𝑟𝑢𝑠𝑡, 𝜃(𝑧) evolves within the crust 

layer, and cumulative infiltration in the crust upper layer is described by the 

model for homogeneous soils developed earlier (Smith et al., 1993; Corradini et 

al., 1994, 1997).  

For 𝑡 ≥ 𝑡𝑐𝑟𝑢𝑠𝑡, the dynamic water content in the crust is expressed as fraction 𝛼1 

associated with the surface and the remaining (1 − 𝛼1) associated with the 

interface. Also, for 𝑡 ≥ 𝑡𝑐𝑟𝑢𝑠𝑡, the previous model is extended in order to 

represent the effects of water flow in the subsoil, 𝐼2 (L), but with the upper 

boundary at the crust-subsoil interface. The system of equations may be solved by 

a standard Runge-Kutta method. Explicit relations for ℬ and 𝑝 were given by 

Corradini et al. (1997): 

ℬ1(𝜃0) = 0.6
𝜃0−𝜃1,𝑖

𝜃1,𝑠−𝜃1,𝑟
+ 0.4, 

ℬ1𝑝1 = 0.98 − 0.87𝑒−𝑞0/𝐾1,𝑠, and 

ℬ1𝑝1 = 1.7 (during redistribution). 

A constant value of 0.86 is assumed for 𝛼1 (originally called 𝛼). 

Selker et al. 1999a 

𝑖 = (𝜃𝑠 − 𝜃𝑖)
𝑑𝑧𝑤

𝑑𝑡
  

𝑖 =  
−3𝐾𝑖(𝛽

∗𝜓𝑤𝑓−1)

𝑧𝑤
2𝛽∗2

                                                                                       (1) 

𝑖 =  𝐾𝑖𝛽
∗ (

2𝑛∗−1

𝑛∗
) [

𝜓𝑤𝑓(1−
𝛽∗

𝑛∗𝑧𝑤)
−𝑛∗

−𝑧𝑤

1−(1−
𝛽∗

𝑛∗𝑧𝑤)
1−2𝑛∗ ]                                                       (2)                   

𝑖 =   
2𝛽∗𝐾𝑖(𝜓𝑤𝑓𝑒𝛽∗𝑧𝑤−𝑧𝑤)

1−𝑒2𝛽∗𝑧𝑤
                                                                              (3) 

 

Selker et al. developed three expressions for the time rate of infiltration using 

Green and Ampt approach for soils with hydraulic properties (𝐾𝑠 (L T-1) and 𝜓𝑤𝑓 

(L)) decreasing with depth following linear (1), power law (2), and exponential 

(3) relationships.  

 

(1) 𝐾𝑠(𝑧) = 𝐾𝑖𝛽
∗−2𝑧−2 ; 𝜓𝑤𝑓(𝑧) = 𝜓𝑤𝑓,0𝛽

∗𝑧 

(2) 𝐾𝑠(𝑧) = 𝐾𝑖 (1 −
𝛽∗𝑧

𝑛∗
)

2𝑛∗

; 𝜓𝑤𝑓(𝑧) = 𝐾𝑖 (1 −
𝛽∗𝑧

𝑛∗
)
−𝑛∗

  

(3) 𝐾𝑠(𝑧) = 𝐾𝑖𝑒
−2𝛽∗z ; 𝜓𝑤𝑓(𝑧) = 𝜓𝑤𝑓,0𝑒

𝛽∗𝑧 

 

 

Wu et al. 1999 

𝐼 =  𝑎𝑓𝐾𝑠𝑡 + 2𝑏𝑓𝐾𝑠(𝑇𝑐𝑡)
0.5                                                                short t 

𝐼 =  𝑎𝑓𝐾𝑠𝑡 + 𝑐                                                                            steady state 

Where: 𝑇𝑐 =
(𝜃𝑠−𝜃𝑖)𝜆𝑐

𝐾𝑠
; 

Wu et al. integrates the generalized equation in Wu and Pan (1997) for early-, 

transient- and steady-state infiltration behavior. 
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1
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𝑓 =
ℎ0+𝜆𝑐

𝑑+𝑟 2⁄
+ 1  

Novak et al.  2000 

𝜕𝜃

𝜕𝑡
 =

𝜕

𝜕𝑧
[𝐾(𝜓) (

𝜕𝜓

𝜕𝑧
+ 1)] − 𝑠𝑟 + 𝑠𝑓      

where: 

 𝑠𝑓 = (𝐾𝑠,ℎ
𝜓𝑤𝑓,𝑚+ℎ0

𝑧𝑤
)Α𝑓 and 𝑧𝑤 = √2𝐾𝑠,ℎ

𝜓𝑤𝑓,𝑚+ℎ0

(𝜃𝑠−𝜃𝑖)
𝑇𝑠  

Novek et al. developed an infiltration model for swelling, cracked fine-textured 

soils that permits changes in the dimensions of the cracks during the infiltration 

process. The extended Richards’ equation by Feddes et al. (1988) was solved, 

subject to three upper boundary conditions were considered: (1) unsaturated soil 

surface, (2) soil surface is saturated and a sub-critical surface layer (ℎ ≤ ℎ0,𝑚𝑎𝑥) 

is being formed, and (3) surface water layer reaches its maximum and water flows 

into cracks. 

𝑖𝑚 = −𝐾𝑚(𝜓)(𝜕𝜓 𝜕𝑧 + 1⁄ )                                                                                               
ℎ < 0 (1)                                                                              
𝑖𝑚 = 𝜕𝜓 𝜕𝑡⁄ − 𝐾𝑠,𝑚(𝜕𝜓 𝜕𝑧 + 1⁄ )                                                                             

0 ≤ ℎ ≤ ℎ0,𝑚𝑎𝑥 (2) 

𝑖𝑚 = 𝑖𝑓 − 𝐾𝑠.𝑚(𝜕𝜓 𝜕𝑧 + 1⁄ )                                                                                                          
ℎ > ℎ0,𝑚𝑎𝑥 (3)                                                                      

 

Corradini et al. 2000 

0 ≤ 𝑡 < 𝑡𝑐𝑟𝑢𝑠𝑡 

𝑞0 =
𝑑𝐼1

𝑑𝑡
+𝐾1,𝑖                                                                                       𝑡 ≤ 𝑡𝑝 

𝑖 = 𝐾1,𝑠 +
(𝜃1,𝑠−𝜃1,𝑖)𝐺1(𝜓𝑖,0)ℬ1(𝜃𝑠)𝑝1𝐾1,𝑠

𝐼1
                                                           𝑡 > 𝑡𝑝  

Where: 𝐺1(𝜓𝑖, 0) =
1

𝐾𝑠
∫ 𝐾(𝜓)𝑑𝜓

0

𝜓𝑖
  

𝑡 ≥ 𝑡𝑐 

𝐼 = [𝛼1(𝜃0 − 𝜃1,𝑖) + (1 − 𝛼1)(𝜃1,𝑐 − 𝜃1,𝑖)]𝑙𝑐 + 𝐼2 + 𝐾2,𝑖𝑡           

Where:                             

𝐼2 from Eq. (20) in Corradini et al.’s paper 

𝑃𝐿(𝜓𝑐 , 𝑡) from Eq. (19) in Corradini et al.’s paper 

𝜃1,𝑐 = 𝜃1(𝑙𝑐), 𝜃2,𝑐 = 𝜃2(𝑙𝑐),  𝐾1,𝑐 = 𝐾1(𝑙𝑐) and 𝐾2,𝑐 = 𝐾2(𝑙𝑐) 

Corradini et al. proposed an analytical/conceptual model, which is formulated by 

an extension of the Smith et al. (1999) model, for the solution of the infiltration 

and reinfiltration problem into any horizontal two layered soil where either layer 

may be less permeable under any real rainfall pattern. The model represents both 

the infiltration rate 𝑖 (L T-1), cumulative infiltration 𝐼 (L T-1), and soil water 

potentials 𝜓0 and 𝜓𝑐 (L) at the surface and the interface, respectively. For 0 ≤ t <
tc, the solution is that of the vertically homogeneous case described by Corradini 

et al. (1997).  

As to the parameters incorporated in the system, 𝛼1 (originally called 𝛼) is 

considered to be a constant, while ℬ2 and 𝑝2 are given, by analogy with the 

relations by Corradini et al. (1997) and Smith et al., (1999): ℬ2(𝜃2,𝑐) =

0.6
𝜃2,𝑐−𝜃2,𝑖

𝜃2,𝑠−𝜃2,𝑟
+ 0.4, 

ℬ2𝑝2 = 0.98 − 0.87𝑒−𝑣12/𝐾2,𝑠,  

Where 𝑣12 =
𝐺1(𝜓𝑐,𝜓0)𝐾1,𝑠

𝑙𝑐
+ 𝐾1,𝑐 and 

ℬ2𝑝2 = 1.7 (during redistribution). 

In case of re-infiltration following redistribution from a rainfall hiatus, Corradini 

et al. (2000) adopted the same concept proposed by Corradini et al. (1997). 

 

Swartzendruber 2000 

𝐼 =  𝐾𝑠𝑡 + 𝐸ln (1 +
(𝐼 − 𝐾𝑖𝑡)

𝐸
) 

𝐸 =
𝑆𝐻

2

2(𝐾𝑠−𝐾𝑖)
; 

 

Using the following expression of the infiltration rate i: 

𝑖 = 𝐾𝑠 [
𝜓𝑤𝑓+𝑧𝑤+ℎ

𝑧𝑤
] =

𝑑[𝑧𝑤(𝜃𝑠−𝜃𝑖)]

𝑑𝑡
+ 𝐾𝑖  

where the head h0(t) at the soil surface increases with time t according to: 

h0(t) =ℎ0+ 𝑝(𝑡) such that 𝑝(𝑡) =
𝑆𝐻(𝐾𝑠−𝐾𝑖)𝑡

1/2

2𝐾𝑠(𝜃𝑠−𝜃𝑖)
 

Govindaraju et al. 2001 

Constant rainfall: 

Local-scale Infiltration: 

𝑖 = 𝑞0                                                                                                         0 ≤ 𝑡 ≤ 𝑡𝑝 

𝑖 =
(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)+𝐼

𝐼
                                                                                        𝑡 > 𝑡𝑝 

Field-scale Infiltration: 

Govindaraju et al. studied the problem of field-scale infiltration over soils where 

spatial variability of saturated hydraulic conductivity 𝐾𝑠 (L T-1) is represented by 

a homogeneous correlated lognormal random field  𝑌 =  𝑙𝑛(𝐾𝑠) with mean 𝜎𝑌 

and standard deviation 𝜇𝑌. The cumulative infiltration, 𝐼 (L) (symbolized as 𝐹 in 

the paper), was used as an independent variable to develop expressions for the 

averaged field-scale infiltration under both constant and time-dependent rainfall 



 

 
 

1
1

1
 

𝐼 = 𝑞0𝑡                                                                                                      0 ≤ 𝑡 ≤ 𝑡𝑝 
𝑡 > 𝑡𝑝 

𝐼 = 𝐼𝑝 + √2𝐾𝑠(𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 − 𝜃𝑖)(𝑡
1

2 − 𝑡𝑝

1

2) +
2

3
𝐾𝑠(𝑡 − 𝑡𝑝) +

1

18
(

2𝐾𝑠
3

(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)
)
1/2

(𝑡3/2 − 𝑡𝑝
3/2

)            

Where: 𝑡𝑝 = 𝐼𝑝/𝑞0 and 𝐼𝑝 =
𝐾𝑠𝜓𝑤𝑓(𝜃𝑠−𝜃𝑖)

𝑞0−𝐾𝑠
   

Time-dependent rainfall: 

Local-scale Infiltration: 

𝑡 =
𝐼−𝐼𝑖

𝑞0
+ 𝑡𝑖                                                                                               0 ≤ 𝑡 < 𝑡𝑝 

𝑡 > 𝑡𝑝 

𝑡 = 𝑡𝑖 − (
(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)+𝐼𝑖

𝑞0
) +

1

𝐾𝑠
[𝐼 − (𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 − 𝜃𝑖) ln (𝐼 +

(𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 − 𝜃𝑖))] +
(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)

𝐾𝑠
ln (𝐼𝑝 + (𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 − 𝜃𝑖))                           

Where: 𝑡𝑝 =
𝐾𝑠𝜓𝑤𝑓(𝜃𝑠−𝜃𝑖)

𝑞0(𝑞0−𝐾𝑠)
−

𝐼𝑖

𝑞0
+ 𝑡𝑖  and 𝐼𝑝 = 𝐼𝑖 + 𝑞0(𝑡𝑝 − 𝑡𝑖)                                                                                                      

Field-scale Infiltration: 

𝑖̅ = 𝑞0[1 − 𝜇Ω] + {1 +
(𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 − 𝜃𝑖)

𝐼
}𝐺(𝐾𝑐, 1) 

Where: 

𝑡 = 𝑡𝑖 −
𝐼

𝑞0
(1 − 𝜇Ω) −

𝐼𝑖

𝑞0
+ [𝐼 + (𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 −

𝜃𝑖) ln (
(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)

𝐼+(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)
)]𝐺(𝐾𝑐 ,−1) + (𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 − 𝜃𝑖)∑

𝐺(𝐾𝑐,𝑖)

(1+𝑖)𝑞0
𝑖+1

∞
𝑖=1   

𝐺(𝐾𝑐 , 𝜉) from Eq. (7), 𝐾𝑐 from Eq. (14) and 𝜇Ω from Eq. (16) in 

Govindaraju et al.’s paper. 

rates. However, Govindaraju et al. also developed an explicit expression for the 

field-scale infiltration rate at any given time 𝑡 (T) under continuously ponded 

conditions of constant rainfall 𝑞0 (L T-1) (Green and Ampt, 1911). 

Serrano 2001 

𝐼 = 𝐼0(𝑡) + 𝑎𝑙𝑛 [
𝐼0(𝑡)+𝑎

𝐼𝑝+𝑎
] [

𝐼0(𝑡)+𝑎

𝐼0(𝑡)
] −

𝑎

2
𝑙𝑛2 [

𝐼0(𝑡)+𝑎

𝐼𝑝+𝑎
] [

𝐼0(𝑡)+𝑎

𝐼0
3(𝑡)

] +

𝑎

3
𝑙𝑛3 [

𝐼0(𝑡)+𝑎

𝐼𝑝+𝑎
] {

[𝐼0(𝑡)+𝑎]2

𝐼0
5(𝑡)

} − ⋯  

Where: 

𝑎 = (𝜓 + ℎ0)(𝜃𝑠 − 𝜃𝑖) 

Serrano developed an explicit solution of Green and Ampt infiltration equation by 

constructing a decomposition series, valid for deep homogeneous soils under 

ponding conditions resulting from intense rainfall events. 

Corradini et al. 2002 

𝑖̅ = 𝑞0[1 − 𝑝𝑟𝑜𝑏(𝐾𝑠 ≤ 𝐾𝑐)] + ∑ (1 +
(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)

𝐼∗
)3

𝑗=1 [𝐺(𝐾𝑗) −

𝐺(𝐾𝑗−1)]                                                                                                     (1) 

Where: 

𝐼∗ = 𝐾�̅� (
(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)

𝑞0
+ 𝑡) + 4√𝐾�̅� ((𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 −

𝜃𝑖))
0.00022𝜓𝑤𝑓

(𝑡 −
(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)𝐾𝑗̅̅ ̅

𝑞0(𝑞0−𝐾𝑗̅̅ ̅)
)

0.5

; 

𝐺(𝐾𝑗) = ∫ 𝐾𝑓𝐾𝑠
(𝐾)𝑑𝐾

𝐾𝑗

0
 and 𝐾𝑐 =

𝑞0𝐼

𝐼+(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)
 

𝐼 ̅ = 𝐼𝑝 (1 −
𝐾𝑠𝑒

𝑞0
) + 𝐾𝑠𝑒𝑇𝑠 + 𝜓𝑤𝑓(𝜃𝑠 − 𝜃𝑖) ln (

𝐼−(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)

𝐼𝑝−(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)
)             (2) 

Where: 

𝐼𝑝 =
𝐾𝑠𝑒𝜓𝑤𝑓(𝜃𝑠−𝜃𝑖)

𝑞0−𝐾𝑠𝑒
; 𝑡𝑝 =

𝐾𝑠̅̅̅̅ 𝜓𝑤𝑓(𝜃𝑠−𝜃𝑖)

𝑞0(𝑞0−𝐾𝑠̅̅̅̅ )
; 

𝐾𝑠𝑒 = 𝐾𝑠
̅̅ ̅ {0.89 − 0.0831𝑙𝑛CV(𝐾𝑠) − 0.8𝑒

(0.429CV(𝐾𝑠)−1.629)
𝑇𝑠
𝑡𝑝}; 

Two models for estimating expected areal-average infiltration rate, 𝑖 ̅(L T-1), at the 

hillslope scale were presented, under the condition of a negligible infiltration of 

surface water running downslope (run-on process) into soils.  The soil is 

vertically homogeneous but the saturated hydraulic conductivity 𝐾𝑠 (L T-1) is 

assumed as a lognormally distributed random variable with PDF, 𝑓𝐾𝑠
(𝐾), 

characterized by its mean value 𝐾𝑠
̅̅ ̅ and coefficient of variation  CV(𝐾𝑠). 

The first model (1) assumes that the areal-average infiltration is partly rainfall-

controlled, and partly soil-controlled. It was developed based on the formulation 

of the field-scale infiltration rate for a given realization of 𝐾𝑠 and following 

Govindaraju et al. (2001). The second model (2) incorporates the run-on process 

and is based on an empirical approach that uses an effective saturated hydraulic 

conductivity 𝐾𝑠𝑒 (L T-1), derived for each specific rainfall event of duration 𝑇𝑠 

(T). 



 

 
 

1
1
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Elrick et al. 2002 

𝐼 = 𝑆𝐻𝑡1/2 + 1/3𝐾𝑠𝑡                                                                    0 ≤ 𝑡 ≤ 𝑡𝑐 

𝑡 = 𝑡𝑐 −
(𝜃𝑠−𝜃𝑖)

 𝐶𝐾𝑠
{

𝐼−𝐼𝑐

(𝜃𝑠−𝜃𝑖)
−

ℎ0+𝜓𝑤𝑓

𝐶
𝑙𝑛 (

(ℎ0+𝜓𝑤𝑓)+𝐶𝐼(𝜃𝑠−𝜃𝑖)

(ℎ0+𝜓𝑤𝑓)+𝐶𝐼𝐶(𝜃𝑠−𝜃𝑖)
)}                 𝑡 > 𝑡𝑐 

Where: 

 𝐶 = 1                                                                                       Constant head 

𝐶 = 1 −
(𝜃𝑠−𝜃𝑖)

𝑅
;  𝑅 =

Α𝑝𝑜𝑛𝑑

A
                                                         Falling head 

Elrick et al. used the GA approach to deduce a new implicit equation for constant- 

and falling-head conditions by using the term 𝑅 (Elrick et al., 1995) which is the 

ratio of the cross-sectional area of the falling head tube, Α𝑝𝑜𝑛𝑑 (L2), to the 

infiltrating surface, A (L2). 

Parlange et al.  2002 

𝐼 =
𝑆0

2

2𝐾𝑠
{𝑡∗ +

1

1−𝛿
𝑙𝑛 [1 +

1−𝛿

𝛿
√1 − 𝑓]}  

Where: 

 𝑡∗ =
𝑆0

2

𝐾𝑠
2  ; 

𝑓 = 𝑒
{−2𝛿2𝑡[

1+𝐴√2𝑡+2𝐵𝑡

1+𝐶√2𝑡+2𝐵𝑡√2𝛿
]
2

}
; 

𝐴 =
1

2
+

𝜆−2𝛿

3
 ; 

𝐵 =
1+√2𝛿

12
(

4𝜆−11𝛿

3
+ 1); 

𝐶 =
1

6
+

𝜆

3
  ; 

𝜆 =
35

17
𝛿 −

3

2
𝛿1/4𝑒(

−15

4
√𝛿)

  

Parlange et al. developed an explicit approximation to Parlange’s equation (1982) 

assuming an initially dry, homogeneous soil where the surface of the soil is 

saturated, but not ponded. 𝛿 varies between 0 (Green and Ampt, 1911) and 1 

(Talsma and Parlange, 1972). Average value 𝛿 = 0.8 or 0.85 (Parlange et al., 

1985, Haverkamp et al., 1990). 

Warrick et al. 2005 

𝐼 = (θ𝑠 − θ𝑖)𝑧 
𝐾𝑠(𝑡−𝑡𝑖)

(θ𝑠−θ𝑖)
= 𝑧 − 𝑧𝑖 − (𝜓𝑤𝑓 + ℎ𝑖)𝑙𝑛 (

𝑧+𝜓𝑤𝑓+ℎ𝑖

𝑧𝑖+𝜓𝑤𝑓+ℎ𝑖
)           

𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1, 𝑖 = 0,1, … 

Cumulative infiltration was computed as a function of time-varying ponded water 

depths ℎ𝑖 (L) using a Green and Ampt analysis; the ponded depth ℎ𝑖 (L) changes 

stepwise with time. 

Weiler 2005 

𝐼𝑚 =
1

2

𝑏1/3

(θ𝑠−θ𝑖)
+

1

2

𝑎

𝑏1/3
+

1

2
𝑟𝑓                                                        Horizontal 𝐼                                     

Where: 

𝑎 = (θ𝑠 − θ𝑖)𝑟𝑓
2; 

𝑏 = 𝑟𝑓(θ𝑠 − θ𝑖)
2[12𝑐 − 𝑎 + 2√6𝑐(6𝑐 − 𝑎)]; 

𝑐 = 𝐾𝑠,𝑚(𝜓𝑤𝑓,𝑚 + ℎ0) 

 
𝑑𝐼𝑚

𝑑𝑡
= 𝐾𝑠,𝑚 (

𝜓𝑤𝑓,𝑚+ℎ0

𝐼𝑚
+ 1)                                                              Vertical 𝐼                                                                  

 

Weiler developed an infiltration model which combines macropore flow 

variability to model dual- permeability soils using analytical solutions of the 

Green-Ampt equation which serve as the basis for the model. 

Govindaraju et al. 2006 

𝑖 ̅from Eqs. (9) and (13) in Govindaraju et al.’s paper. 

Where: 

𝐹𝑐 =
𝐼

𝐼+(𝜓𝑤𝑓+ℎ0)(θ𝑠−θ𝑖)
 and 𝐺𝐾𝑠

(𝐾1, 𝜉) = ∫ 𝐾𝜉𝑓𝐾(𝐾)𝑑𝐾
𝐾1

0
 

A semi-analytical model estimating the areal-average infiltration rate at hillslope 

scale was presented, which neglects the infiltration of surface water running 

downslope into pervious soils (run-on process). It accounts for spatial 

heterogeneity of the saturated hydraulic conductivity, 𝐾𝑠 (L T-1), and rainfall rate, 

𝑞0 (L T-1). The 𝐾𝑠 field is characterized by a lognormal probability density 

function with PDF, 𝑓𝐾𝑠
(𝐾), characterized by its mean value 𝐾𝑠

̅̅ ̅ and coefficient of 

variation CV(𝐾𝑠), while the rainfall rate 𝑞0 (symbolized as 𝑟 in the paper)  is 

represented by a uniform distribution between two extreme values, 𝑟𝑚𝑖𝑛 and 

𝑟𝑚𝑖𝑛 + 𝑅. The model formulation relies upon the use of cumulative infiltration 

(symbolized as 𝐹 in the paper) as the independent variable which is expressed as 

function of time for use in practical applications. 

Morbidelli et al.  2006 𝑖̅ =
1

Α
∫∫(𝑞0 −

s1/2

𝜀𝑀𝑎𝑛𝑛𝑖𝑛𝑔

𝜕ℎ5/3

𝜕𝑥
)

𝑡Α1

𝑑Α1 + ∫∫ 𝑖

𝑡Α2

𝑑Α2 
Morbidelli et al. explored the role of spatial heterogeneity, in both the saturated 

hydraulic conductivity 𝐾𝑠 (L T-1) and rainfall intensity 𝑞0 (L T-1), on the 

integrated hydrological response of a natural slope. On this basis, Morbidelli et al. 
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1

3
 

𝑖 = 𝐾𝑠 +
𝐾𝑠(θ𝑠 − θ𝑖)(𝜓𝑤𝑓 + ℎ0)

𝐼
 

(2006) developed a model which estimates the areal-average infiltration rate 𝑖 ̅(L 

T-1) in the plane area A (L2), partly controlled (over the unsaturated area A1 (L2)) 

by the rainfall and run-on, and partly controlled by the soil (saturated area A2 

(L2)). 

Lassabatere et al.  2006 

𝐼 = 𝑆0𝑡
0.5 + [𝐴(1 − 𝐵)𝑆0

2 + 𝐵𝑖∞]𝑡                                                    small t 

𝐼 = (𝐴𝑆2 + 𝐾𝑠)𝑡 + 𝐶
𝑆2

𝐾𝑠
                                                                        large t 

Where: 

𝐴 =
𝛾

 𝑟(θ𝑠−θ𝑖)
 ; 

𝐵 =
2−𝛽

3
[1 − (

𝜃𝑖

𝜃𝑠
)

𝑛
] + (

𝜃𝑖

𝜃𝑠
)

𝑛
 ; 

𝐶 =
1

2[1−(
𝜃𝑖
𝜃𝑠

)
𝑛

](1−𝛽)
𝑙𝑛 (

1

𝛽
) ; 

𝑖∞ = 𝐴𝑆0
2 + 𝐾𝑠  

 

Lassabatere et al. adopted the BEST approach; this latter uses the following 

equation developed in Haverkamp et al. (1994): 𝐼 = 𝑆0𝑡
0.5 + [𝐴𝑆0

2 + 𝐵𝐾𝑠]𝑡 for 

short times and expresses an equivalent equation by replacing the hydraulic 

conductivity 𝐾𝑠 (L T-1) by the formula of the steady-state infiltration rate 𝑖∞. 

 

𝛽 ≈ 0.6 and  𝛾 ≈ 0.75, which applies for most soils when 𝜃𝑖 < 0.25𝜃𝑠 (Smettem 

et al., 1994, Haverkamp et al., 1994). 

 

Chen and Young 2006 

Steady rainfall 𝑝(𝑡): 
𝑖 = 𝑞0𝑐𝑜𝑠(𝛾0)                                                                                       𝑡 ≤ 𝑡𝑝                                                           

𝐾𝑠[𝑡 − (𝑡𝑝 − 𝑡𝑠)]𝑐𝑜𝑠(𝛾0) = 𝐼 −
(𝜓𝑤𝑓+ℎ0)(θ𝑠−θ𝑖)

𝑐𝑜𝑠(𝛾0)
𝑙𝑛 [1 +

𝐼𝑐𝑜𝑠(𝛾0)

(𝜓𝑤𝑓+ℎ0)(θ𝑠−θ𝑖)
]        

𝑡 > 𝑡𝑝    

Unsteady rainfall 𝑝(𝑡): 

Detailed derivation is presented in the paper’s appendix. 

Chen and Young quantified and explained the effects of slope angle 𝛾0(degrees) 

on infiltration into homogeneous and isotropic soils by extending the Green-Ampt 

equation onto sloping surfaces. For the steady rainfall case, the infiltration rate is 

determined by the rainfall intensity 𝑞0 (L T-1) before ponding (i.e.,  𝑡 ≤ 𝑡𝑝) and is 

calculated using the GA model after ponding (i.e.,  𝑡 > 𝑡𝑝). For unsteady rainfall, 

detailed derivation is presented in the appendix. 

Warrick and 

Lazarovitch 
2007 

𝐼 = 𝐼1𝐷 +
𝛾𝑆0

2𝑡

𝑤(θ𝑠 − θ𝑖)
 

𝑖 = 𝐾𝑠 +
𝛾𝑆0

2

𝑤(θ𝑠−θ𝑖)
                                                                                  𝑡 → ∞ 

Warrick and Lazarovitch addressed two-dimensional infiltration from water strip 

sources of width w (L) on the soil surface. The assumption is that when the 

cumulative infiltration is expressed per unit area of the wetted strip, the difference 

of that value and one-dimensional infiltration is linear with time. 

Warrick et al. 2007 

𝐼

𝑊∗
= 𝐼1𝐷 +

𝛾𝑆0
2𝑡

𝑊(θ𝑠 − θ𝑖)
 

𝑖 = 𝑊∗𝐾𝑠 +
𝑊∗𝛾𝑆0

2

𝑊(θ𝑠−θ𝑖)
                                                                            𝑡 → ∞ 

Warrick addressed infiltration from furrows or narrow channels of wetted 

perimeter 𝑊 (L). The basic approach was to develop the two-dimensional 

infiltration 𝐼 (L) as a combination of the corresponding one-dimensional vertical 

𝐼1𝐷 (L) and an edge effect.  Also, a simplified expression was found for the 

limiting steady-state case, which is analogous to Wooding’s equation for 

infiltration from a shallow pond. 

Haverkamp et al. rationalized that a reasonable bound on 𝛾 was 0.6–0.8, but the 

results of Warrick and Lazarovitch (2007) for the strip showed generally a wider 

range from 0.6 to 1.1. 

Assouline et al. 2007 
𝑖 = 𝑞0(𝑡)                                                                                                         𝑡 ≤ 𝑡𝑝  

𝑖 = 𝑖𝑐𝑎𝑝(𝐼𝑐𝑎𝑝)                                                                                                 𝑡 > 𝑡𝑝                                                                         

A simple accurate method was presented to study infiltration under variable 

intensity rainfall.  

Before ponding ( 𝑡 ≤ 𝑡𝑝), infiltration rate is equal to the rainfall rate. After 

ponding ( 𝑡 > 𝑡𝑝), the infiltration rate 𝑖𝑐𝑎𝑝 (L T-1) is a unique function of 

cumulative infiltration 𝐼𝑐𝑎𝑝 (L). Many mathematical expressions can be readily 

adapted to represent available 𝑖𝑐𝑎𝑝 [e.g., Green and Ampt, 1911; Kostiakov, 1932; 

Horton, 1940; Philip, 1957a; Smith and Parlange, 1978; Parlange et al., 1999]. 

Germann et al. 2007 

𝑖 = 0                                                                                                         𝑡 < 𝑡𝑤(𝑧) 
𝑖 = 𝑏𝑅𝜃𝑅

3                                                                                   𝑡𝑤(𝑧) ≤ 𝑡 ≤ 𝑡𝑑(𝑧) 

𝑖 = 𝑏𝑅𝜃𝑅
3 (

𝑡𝑑(𝑧)−𝑇𝑠

𝑡−𝑇𝑠
)

3/2
                                                                               𝑡 > 𝑡𝑑(𝑧) 

Where: 

𝑡𝑤(𝑧) =
𝑧

𝑏𝑅𝜃𝑅
2 ; 𝑡𝑑(𝑧) = 𝑇𝑠 +

𝑡𝑤(𝑧)

3
 

German et al. introduced a rivulet of conductance 𝑏𝑅 (L T-1) modeled as Stokes 

flow assuming steady and gravity-driven flow in which the effects of capillarity 

on infiltration are negligible, while viscous momentum dissipation impedes it. 
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Essig et al. 2009 𝑖�̅�𝑤 = 𝑐𝑜𝑠𝛾0�̅�𝑧𝑤 −
𝜓𝑤𝑓

(1 − 𝑛)
(𝐾𝑖𝑆𝑖

−1/𝜆
− 𝐾𝑆̅̅̅̅ −1/𝜆) 

Essig et al. developed a simplified 1-D sharp-front model for sloping surfaces of 

slope angle 𝛾0 (degrees) using the Brooks and Corey (1964) relationship in 

combination with Darcy’s law (1856), applicable for different boundary 

conditions: concentration (constant water content at the soil surface), flux 

(constant rainfall rate at the soil surface), and constant pressure head. 

Valiantzas  2010 
𝐼 = 𝑆0𝑡

1/2 +
𝐾𝑠

2
𝑡 +

𝐾𝑠
2

8𝑆0
𝑡3/2                                                           no ponding 

𝐼 = 𝑆𝐻𝑡1/2 +
𝐾𝑠

2
𝑡 +

𝐾𝑠
2

8𝑆𝐻
𝑡3/2                                                               ponding 

A simple mathematical form of an infiltration equation is developed using the 

two-algebraic equation (Philip, 1975b), which applies for the complete time 

range. 

Su 2010 𝐼 = 𝑆0𝑡
𝛽4/2 + 𝐴𝑡 

A new equation of 1D cumulative infiltration into swelling soils is derived from 

the fractional Fokker–Planck equation (fFPE) of flow in swelling porous media, 

following the form of Philip’s two-parameter infiltration equation (Philip, 1957b). 

Corradini et al. 2011 

                                                                   𝐾1,𝑠 < 𝐾1,ℎ  

𝑞0 =
𝑑𝐼1

𝑑𝑡
+𝐾1,𝑖                                                                         𝑡 ≤ 𝑡𝑝 < 𝑡𝑐𝑟𝑢𝑠𝑡 

𝐼1 = 𝐼1,𝑝 + √2𝐾1,𝑠𝐺1(𝜓𝑖 ,𝜓0)[𝑡
1/2 − 𝑡𝑝

1/2
] +

2

3
𝐾1,𝑠[𝑡 − 𝑡𝑝] +

1

18
[

2𝐾1,𝑠
3

(𝜃1,𝑠−𝜃1,𝑖)𝐺1(𝜓𝑖,𝜓0)
]
1/2

[𝑡3/2 − 𝑡𝑝
3/2

]                                     𝑡𝑝 < 𝑡 < 𝑡𝑐𝑟𝑢𝑠𝑡 

𝑖 = 𝐾1,𝑠 [1 +
𝐺1(𝜓𝑐 ,0)

𝑙𝑐
]                                                                      𝑡 ≥ 𝑡𝑐𝑟𝑢𝑠𝑡  

Where: 

𝐼1,𝑝 = [1 +
ℬ1𝑝1𝐾1,𝑠(𝜃1,𝑠−𝜃1,𝑖)𝐺1(𝜓𝑖,0)

𝑞0−𝐾1,𝑠
]; 𝑡𝑝 = 𝐼1,𝑝/𝑞0; 𝐾1,ℎ =

𝑞0
𝑝1𝐺1(𝜓𝑖,0)

𝑙𝑐
+1

;       

𝐺1(𝜓𝑖 , 0) =
1

𝐾1,𝑠
∫ 𝐾1(𝜓)𝑑𝜓

𝜓0

𝜓𝑖
; 𝐾1(𝜓) = 𝐾1,𝑠 [1 + (

𝜓−𝑑1

𝜓1,𝑠𝑡𝑟
)

𝑐1

]
−

(3𝑛+2)

𝑐1
                     

                                                                         𝐾1,𝑠 ≥ 𝐾1,ℎ (i.e., 𝑡𝑝 > 𝑡𝑐𝑟𝑢𝑠𝑡)  

𝑖 = 𝑞0                                                                                                    𝑡 ≤ 𝑡𝑝  

𝑖 = 𝐾1,𝑠 [1 +
𝐺1(𝜓𝑐 ,0)

𝑙𝑐
]                                                                            𝑡 > 𝑡𝑝 

𝑡𝑝 = (1.5 − 𝑆2𝑖)
0.7(2.5𝐾2,𝑠)

0.12
(25 + 0.4𝑙𝑐)𝑞0

−(1+1.5/𝑙𝑐
0.5)       

Where: 

𝑆2𝑖 =
𝜃2,𝑖−𝜃2,𝑟

𝜃2,𝑠−𝜃2,𝑟
; 

𝐺1(𝜓𝑐 , 0) = (
4

5
𝑛 − 1.7) (𝜓1,𝑠𝑡𝑟 + 𝑑1) (1 − 𝑒

−
𝜓𝑐

𝜓1,𝑠𝑡𝑟)                 for  𝜓𝑐 ≤ 0     

𝐺1(𝜓𝑐 , 0) = −𝜓𝑐                                                                           for 𝜓𝑐 > 0 

          

A simple conceptual model was proposed for local infiltration into a two-layered 

soil profile with the upper layer much more permeable than the subsoil under any 

rainfall pattern. It is a reformulation of a conceptual model of Corradini et al. 

(2000). First, the maximum value, 𝐾1,ℎ (L T-1), of the saturated hydraulic 

conductivity of the upper soil, 𝐾1,𝑠 (L T-1) (i.e., 𝐾1,𝑠 < 𝐾1,ℎ) yields the ponding 

time 𝑡𝑝 (T) while the dynamic wetting front is entirely within the upper layer. 

Then, when the front extends into the lower layer (𝑡 ≥ 𝑡𝑐𝑟𝑢𝑠𝑡) and 𝜃1,𝑐 is rather 

close to 𝜃1,𝑠, it is assumed that 𝐾1,𝑐 ≈ 𝐾1,𝑠 and 𝑑𝜓𝑐/𝑑𝑡 negligible because 

𝑑𝜓1/𝜃1 → 0 as 𝜃1 → 𝜃1,𝑠. 

Then, parameterized forms for the time when the wetting front reaches the 

interface, for time to ponding 𝑡𝑝 (T) associated with (𝐾1,𝑠 ≥ 𝐾1,ℎ) is determined.  

Swamee et al. 2012 

 

𝐼 = (𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 − 𝜃𝑖)[1.94(𝑡∗)0.74 + (𝑡∗)1.429]0.7                              (1) 

𝐼 = (𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 − 𝜃𝑖)[2.66(𝑡∗)1.124 + (𝑡∗)2.174]0.46                           (2) 

Where: 𝑡∗ =
𝐾𝑠

(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)
𝑡 

Based on Green-Ampt (1911) and Talsma-Parlange (1972) implicit equations, 

Swamee et al. proposed the respective explicit expressions (1) and (2) derived 

from the interpolation technique of the curve-fitting, for determining cumulative 

infiltration. The main difference between the Green–Ampt and Talsma–Parlange 

assumptions is that (1) considers a soil which has a rapidly varying diffusivity 𝐷 

(L2 T-1) and a near-constant hydraulic conductivity 𝐾 = 𝐾𝑠 (L T-1) while (2) 

assumes that 𝐷 and 𝜕𝐾 𝜕𝜃⁄  are proportional. 

Govindaraju et al. 2012 

Local-scale Infiltration: 

𝐼 = 𝑞0𝑡                                                                                                      0 ≤ 𝑡 ≤ 𝑡𝑝 

𝐴(𝐼3 − 𝐼𝑝
3) + 𝐵(𝐼2 − 𝐼𝑝

2) + 𝐶(𝐼 − 𝐼𝑝) + 𝐷𝑙𝑛
𝐼 + ∆𝜓∆𝜃

𝐼𝑝 + ∆𝜓∆𝜃
= 𝑃(𝑡 − 𝑡𝑝) 

𝑡 > 𝑡𝑝                   

Govindaraju et al. studied the problem of local- and field-scale infiltration over a 

particular class of heterogeneous soils with the dimensionless parameter 𝑎3 

(originally called 𝑎) governing the non-uniformity in the saturated hydraulic 

conductivity 𝐾𝑠 (L T-1). At the local scale, the theory for infiltration refers to 

vertically nonuniform soils (𝐾𝑠 (L T-1) decreasing with depth according to a 

power law) and is developed using a sharp front (Green–Ampt) approach. To 
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Where: 𝐴 = 1/3; 

𝐵 = ∆𝜃/2(3𝑎4 − ∆𝜓); 
𝐶 = (∆𝜓∆𝜃)2 − 3𝑎4∆𝜓∆𝜃2 + 3(𝑎4∆𝜃)2; 

𝐷 = −(∆𝜓∆𝜃)3 + 3𝑎4∆𝜓2∆𝜃3 − 3𝑎4
2Δ𝜓∆𝜃3; 

𝑃 = 3(𝑎4∆𝜃)2𝐾𝑠,0 

𝑡𝑝 = 𝐼𝑝/𝑝 and  𝑝 =
3(𝑎4∆𝜃)2𝐾𝑠(𝐼𝑝+∆𝜓∆𝜃)

𝐼𝑝
3+3𝑎4∆𝜃𝐼𝑝

2+3(𝑎4∆𝜃)2𝐼𝑝
 

Field-scale Infiltration: 

𝑖̅ = 𝑞0[1 − 𝐺(𝐾𝑐 , 0)] +
3(𝑎4∆𝜃)2(𝐼 + ∆𝜓∆𝜃)

𝐼3 + 3𝑎4∆𝜃𝐼2 + 3(𝑎4∆𝜃)2𝐼
𝐺(𝐾𝑐 , 1) 

Where:   

𝐼 from Eqs. (12) and (13), 𝐺(𝐾𝑐 , 𝜉) from Eq. (9) and 𝐾𝑐 from Eq. (10) 

∆𝜓 = 𝜓𝑤𝑓 + ℎ0 and ∆𝜃 = 𝜃𝑠 − 𝜃𝑖 

determine field-scale infiltration properties, the spatial variability in the surface 

saturated hydraulic conductivity is represented by a log-normal random field 𝑌 =
 𝑙𝑛(𝐾𝑠,0) with mean 𝜇𝑌 and standard deviation 𝜎𝑌 .  

Ali et al. 2013 

 

𝐼 = (𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 − 𝜃𝑖) [√
𝐹1𝐾𝑠

(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)
𝑡 + 𝐹2 + 𝐹3]  

By replacing the logarithmic term of the GA model by sequential segmental 

second order polynomials, Ali et al. (2013) developed a generalized explicit 

model for estimation of cumulative infiltration, varying the length of wetting 

front, 𝑧𝑤(L). 

The universal values of the model’s coefficients change with different ranges of 

𝑧𝑤/(𝜓𝑤𝑓 + ℎ0). 

Almedeij and Esen 2014 

𝐼 = 𝜓𝑤𝑓(𝜃𝑠 − 𝜃𝑖) (0.65𝑡∗ + √0.25𝑡∗2 + 2𝑡∗)                            0 ≤ 𝑡 ≤ 𝑡𝑝 

Where: 𝑡∗ =
𝐾𝑠

𝜓𝑤𝑓(𝜃𝑠−𝜃𝑖)
𝑡  

𝐼 = (𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 − 𝜃𝑖) {
1

2
(𝑡∗ + √(𝑡∗)2 + 8𝑡∗) + 0.15𝑡∗}              𝑡 > 𝑡𝑝                                           

Where: 𝑡∗ =
𝐾𝑠

(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)
𝑡 ; 

𝑡𝑝 =
𝐾𝑠𝜓𝑤𝑓(𝜃𝑠−𝜃𝑖)

𝑖𝑝(𝑖𝑝−𝐾𝑠)
  

A proposed explicit modification for the infiltration model (Mein and Larson, 

1973) is presented for the case when steady rainfall rate is less than the initial 

infiltration capacity of the soil until ponding time (0 ≤ 𝑡 ≤ 𝑡𝑝). After ponding 

(𝑡 > 𝑡𝑝), the cumulative infiltration will follow the classical Green-Ampt model; 

the designated equation and that suggested by Li et al. (1976) are similar, but the 

equation here imposes an additional term of 0.15𝑡∗. This additional term accounts 

for the remaining components of the first order approximation of the power series 

expansion of the natural log in GA equation. 

 

Bautista et al. 2014 

𝐼(𝑡𝑖) = 𝐼(𝑡𝑖−1) + Δ𝑍2(𝑡𝑖) + Δ𝐸(𝑡𝑖) 

Eqs. (5)-(9) for Δ𝑍2(𝑡𝑖) in Bautista et al.’s paper. 

Eq. (11) for  Δ𝐸(𝑡𝑖) in Bautista et al.’s paper. 

This article discussed a methodology, derived from the two-dimensional Richards 

equation, for estimating two-dimensional furrow infiltration for time-variable 

surface flow depth ℎ0(t). The method was originally derived assuming a constant 

pressure head at the infiltrating surface by Warrick et al. (2007). 
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Lassabetere et al. 2014 

𝐼 = 𝑤𝑓𝐼𝑓 + (1 − 𝑤𝑓)𝐼𝑚 

 

2∆𝐾𝑚
2

𝑆0,𝑚
2 𝑡 =

1

1−𝛽𝑚
[
2∆𝐾𝑚

𝑆0,𝑚
2 (𝐼𝑚 − 𝐾𝑖,𝑚𝑡) − 𝑙𝑛 (

𝑒
𝛽𝑚

2∆𝐾𝑚
𝑆0,𝑚

2(𝐼𝑚−𝐾𝑖,𝑚𝑡)

+𝛽𝑚−1

𝛽𝑚
)]     and   

2∆𝐾𝑓
2

𝑆0,𝑓
2 𝑡 =

1

1−𝛽𝑓
[
2∆𝐾𝑓

𝑆0,𝑓
2 (𝐼𝑓 − 𝐾𝑖,𝑓𝑡) − 𝑙𝑛(

𝑒
𝛽𝑓

2∆𝐾𝑓

𝑆0,𝑓
2(𝐼𝑓−𝐾𝑖,𝑓𝑡)

+𝛽𝑓−1

𝛽𝑓
)]  

𝐼3𝐷 = 𝑤𝑓 (𝐼1𝐷,𝑓 +
𝛾𝑓𝑆0,𝑓

2

 𝑟𝛥𝜃𝑓
𝑡) + (1 − 𝑤𝑓)(𝐼1𝐷,𝑚 +

𝛾𝑚𝑆0,𝑚
2

 𝑟𝛥𝜃𝑚
𝑡) 

Where: ∆𝐾 = 𝐾𝑠 − 𝐾𝑖 and ∆𝜃 = 𝜃𝑠 − 𝜃𝑖 

Lassabetere et al. assumed that infiltration into the dual-permeability medium 

may be derived from infiltration into individual single-permeability domains, i.e., 

the matrix and the fast-flow region, while assuming that there is no water transfer 

between the two pore regions. As such, infiltration fluxes into the dual-

permeability medium are simply a linear combination of fluxes into individual 

regions, with the proportionality coefficients corresponding to the fractions of 

surface occupied by each region. 

Lassabetere et al. further developed a three-dimensional water infiltration 

equation from a circular disk source into dual-permeability media assuming 

surface pressure head ℎ0 ≤ 0. 

Vatankhah 2015 
𝐼 = (𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 − 𝜃𝑖)(𝑡

∗ + 2.693𝑙𝑛[1 + 0.527√𝑡∗])  

Where: 𝑡∗ =
𝐾𝑠

(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)
𝑡  

 

Vatankhah developed an explicit expression by further modifying Almedeij and 

Esen (2014) model using the nonlinear technique to reduce the maximum 

absolute relative error; this model is developed for any rainfall rate whether 

greater or less than the initial infiltration capacity and without requiring the 

determination of the ponding time, 𝑡𝑝(T). 

 

Bautista et al. 2016 

𝐼2𝐷
𝑖 = 𝑍𝑘

𝑖 + 𝐸𝑘
𝑖   

Computational method 1: 

Eq. (10) and (11) for 𝑍1
𝑖  and 𝐸1

𝑖 , respectively. 

Computational method 2: 

Eqs. (14)-(16) for 𝑍2
𝑖  

Eqs. (18)-(20), and (21) for 𝐸2
𝑖  

Computational method 3: 

Eq. (23) for 𝑍3
𝑖  

Eqs. (24) and (25) for 𝐸3
𝑖  (constant 𝛾) 

Eqs. (25) and (26) for 𝐸3
𝑖  (depth dependent 𝛾) 

Find the above equations in Bautista et al.’s paper. 

Bautista et al. proposed a methodology for estimating furrow infiltration under 

time-variable ponding depth.  Bautista et al. (2014a) previously proposed a 

modification to the infiltration equation developed by Warrick et al. (2007) to 

account for time-variable ponding depth ℎ0 (t). This study further examined this 

problem, proposed an alternative formulation, and examined the problem of 

calibrating the parameter 𝛾 under variable depth conditions.  

Nie et al. 2017a 𝑧𝑤(𝜃𝑠 − 𝜃𝑖) = 0.5𝐾𝑠𝑡 + √2𝐾𝑠(ℎ0 + 𝜓)(𝜃𝑠 − 𝜃𝑖)𝑡 [1 +
𝐾𝑠𝑡

8(ℎ0+𝜓)(𝜃𝑠−𝜃𝑖)
]  

Nie et al. present an approximate explicit solution to the Green-Ampt (GA) 

infiltration model for estimating the wetting front depth of 1D infiltration based 

on Valiantzas (2010). 

Selker and 

Assouline 
2017 𝑖 = 𝐾𝑠 +

𝛽0𝐾𝑠+√
(𝜃𝑠−𝜃𝑖)𝐾𝑠𝜓𝑤𝑓

2𝑡

1+𝛽0
𝐾𝑠𝑡

(𝜃𝑠−𝜃𝑖)𝜓𝑤𝑓
+√

2𝐾𝑠𝑡

(𝜃𝑠−𝜃𝑖)𝜓𝑤𝑓

  

Selker and Assouline presented a simple explicit solution for ponded infiltration 

into soils using the Green and Ampt approach by describing early infiltration 

behavior in terms of the sum of gravitational flow and the exact solution for 

capillary imbibition. 

𝛽0 can be approximated by 2/3 (Brutsaert, 1977, Selker and Assouline, 2017, 

Stewart, 2019). 

Stewart and Abou 

Najm 
2018 

𝐼 =  𝑆0𝑡
0.5 + 𝑎𝐾𝑠𝑡 +

𝑆0
2𝑎𝑏

(𝜃𝑠−𝜃𝑖)(𝑑+
𝑟

2
)
𝑡                                                   0 ≤ 𝑡 ≤ 𝑡𝑐 

𝐼 = 𝑓𝐾𝑠𝑡 + 𝑓(1 − 𝑎)𝐾𝑠𝑡𝑐                                                                             𝑡 > 𝑡𝑐 

Based on two-term Philip type solutions for short and long times, the proposed 

model accounts for different ring sizes and depths of insertion, initial water 
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Where: 

𝑡𝑐 =
(𝜃𝑠−𝜃𝑖)(ℎ0+𝜆𝑐)

4𝑏𝐾𝑠𝑓2(1−𝑎)2
 ; 𝑓 =

ℎ0+𝜆𝑐

𝑑+𝑟 2⁄
+ 1 

content and matric pressure head, transient and steady-state infiltration behaviors, 

and non-zero water supply pressures. 

 

For real soils, 0.4 < 𝑎 < 0.5 (Philip, 1990);  𝑎 was determined through curve-

fitting to be approximately equal to 0.91 (Wu and Pan, 1997). In most cases, 𝑎 =
 0.45 is recommended. 𝑏 varies between 1/2 and 𝜋/4 depending on the shape of 

the soil water diffusivity function (White and Sully, 1987). 𝑏 = 0.17 (Wu and 

Pan, 1997). A value of 𝑏 =  0.55 is often assumed (Haverkamp et al., 1994, 

White and Sully, 1987, Reynolds and Elrick, 1990;).  𝜆𝑐(L) is defined as being 

equal to the matric flux potential, 𝜑(L2 T-1), scaled by 𝐾𝑠 (L T-1): 𝜆𝑐 = 𝜑/𝐾𝑠. 

According to Iovino et al. (2021), a could be fixed in advance. 

Stewart 2018 

𝐼 = 𝐼𝑚 + 𝐼𝑓  

 

𝐼𝑚 = 𝑞0,𝑚𝑡                                                                                                     𝑡 ≤ 𝑡𝑝,𝑚 

𝐼𝑓 = min (𝑞0,𝑓𝑡, 𝐾𝑓𝑡,
V𝑓

A𝑓
) 

𝑡 > 𝑡𝑝,𝑚 

𝐼𝑚 = 𝑞0,𝑚𝑡𝑝,𝑚 + 𝐾𝑚(𝑡 − 𝑡𝑝,𝑚) + (𝜃𝑠 −

𝜃𝑖)𝜓𝑤𝑓,𝑚𝑙𝑛

[
 
 
 1+𝛽0

𝐾𝑚𝑡

(𝜃𝑠−𝜃𝑖)𝜓𝑤𝑓,𝑚
+√

2𝐾𝑚𝑡

(𝜃𝑠−𝜃𝑖)𝜓𝑤𝑓,𝑚

1+𝛽0
𝐾𝑚𝑡𝑝,𝑚

(𝜃𝑠−𝜃𝑖)𝜓𝑤𝑓,𝑚
+√

2𝐾𝑚𝑡𝑝,𝑚

(𝜃𝑠−𝜃𝑖)𝜓𝑤𝑓,𝑚]
 
 
 

                                                                                         

𝐼𝑓 = min (𝑞0,𝑓𝑡𝑝,𝑚 + 𝑞0(𝑡 − 𝑡𝑝,𝑚) − (𝐼𝑚 − 𝐼𝑝,𝑚),𝐾𝑐𝑟𝑎𝑐𝑘𝑡,
V𝑓

A𝑓
)  

Where: 𝑞0,𝑚 = (1 −
Υ∅𝑓

1−∅𝑠𝑢𝑏
)𝑞0 and 𝑞0,𝑓 = (

Υ∅𝑓

1−∅𝑠𝑢𝑏
) 𝑞0 

A multidomain infiltration model was proposed based on Green and Ampt (1991) 

to estimate infiltration in shrink-swell soils mediated by the matrix, which may 

include small-scale interaggregate shrinkage cracks, from those associated with 

inter-block cracks that surround the matrix. The two domains are related to the 

total crack porosity via a proportionality factor Υ (0 ≤ Υ ≤1). To apply the Green-

Ampt model in a multidomain formulation, Stewart divided the rainfall 

(precipitation) rate, 𝑞0 (L T-1), between the soil matrix and border crack domains. 

Rahmati et al. 2019 

 

𝐼 =  𝑆0𝑡
0.5 +

2 − 𝛽

3
𝐾𝑠𝑡 +

1

9
(𝛽2 − 𝛽 + 1)

𝐾𝑠
2

𝑆0

𝑡
3
2 

Rahmati et al. applied the Taylor series (Philip 1957a) up to third order in powers 

of 0.5 to the quasi-exact implicit analytical expansion presented by Haverkamp et 

al. (1994) to introduce a three-term infiltration model. 

β can take the value of 0.6 over the whole range of 𝜃 (Haverkamp et al., 1990). It 
ranges between 0.3 and 1.7 for sand to silty soils (Lassabatere et al., 2009, 

Rahmati et al., 2019). 

Stewart 2019 

𝐼𝑓 = 𝑞0𝑡 − 𝐼𝑚                                                                                 𝑡 < 𝑡𝑝,𝑓(1) 

𝑡 < 𝑡𝑝,𝑚(2) 

𝐼𝑚 = (1 − 𝑤𝑓)𝑞0𝑡                                                                                      

𝐼𝑓 = 𝑤𝑓𝑞0𝑡                                                                                                 

𝐼𝑚 = (1 − 𝑤𝑓)𝐾𝑠,𝑚𝑡 [(
𝑞0

𝐾𝑠,𝑚
− 1)

𝑡𝑝,𝑚

𝑡
+ 1 +

1

𝜏
𝑙𝑛 (

1+𝛽0 𝜏+√2𝜏

1+𝛽0 𝜏𝑝,𝑚+√2𝜏𝑝,𝑚
)]       

  𝑡 ≥ 𝑡𝑝,𝑚 (3)                                 

𝐼𝑓 = 𝐾𝑠,𝑚𝑡 [(
𝑞0

𝐾𝑠,𝑚
)

𝑡𝑝,𝑓

𝑡
+ 𝑤𝑓

𝐾𝑠,𝑓

𝐾𝑠,𝑚
(1 −

𝑡𝑝,𝑓

𝑡
) − 𝐼𝑚𝑝,𝑓]                      𝑡 ≥ 𝑡𝑝,𝑓 (4) 

Where: 

𝐼𝑚𝑝,𝑓 = (1 − 𝑤𝑓)𝐾𝑠,𝑚𝑡 [(
𝑞0

𝐾𝑠,𝑚
− 1) 𝜏𝑝,𝑚 + 𝜏𝑝,𝑓 +

1

𝜏
𝑙𝑛 (

1+𝛽0 𝜏𝑝,𝑓+√2𝜏𝑝,𝑓

1+𝛽0  𝜏𝑝,𝑚+√2𝜏𝑝,𝑚
)] ;      

𝜏 =
𝐾𝑠,𝑚𝑡

∆𝜃𝑚𝜓𝑤𝑓,𝑚
  ;   𝜏𝑝,𝑚 =

𝐾𝑠,𝑚𝑡𝑝,𝑚

∆𝜃𝑚𝜓𝑤𝑓,𝑚
   ; 𝜏𝑝,𝑓 =

𝐾𝑠,𝑚𝑡𝑝,𝑓

∆𝜃𝑚𝜓𝑤𝑓,𝑚
  

Stewart applied the Green–Ampt infiltration model within a dual-domain 

framework to distinguish water movement through the soil matrix vs. through 

macropores. 

For all time prior to ponding in the macropore domain (𝑡 < 𝑡𝑝,𝑓), the cumulative 

infiltration as preferential flow is determined as the cumulative precipitation 

minus cumulative infiltration into the soil matrix (1). Before the soil matrix 

experiences ponding (𝑡 < 𝑡𝑝,𝑚), both domains absorb rainfall in proportion to 

their surface-connected areas (2). After the soil matrix ponds (𝑡 ≥ 𝑡𝑝,𝑚), its 

cumulative infiltration is determined by equation (3). Assuming that water is 

moving through the macropores as plug flow under a unit hydraulic gradient, 

cumulative infiltration into the preferential flow domain after ponding (𝑡 ≥ 𝑡𝑝,𝑓) 

is found by equation (4). 

𝛽0 (Called 𝛼 in Stewart, 2019) can be approximated by 2/3 (Brutsaert, 1977, 

Selker and Assouline, 2017, Stewart, 2019). 

Baiamonte 2020 

𝐼 = 𝐼∗𝐾𝑠𝑡𝑐 

Where: 

(1): 

An exact analytical solution of Richards’ equation under gravity-driven 

infiltration and constant rainfall intensity is derived. In (1), the solution is 

presented under Torricelli’s law, which simulates the soil hydraulic conductivity 



 

 
 

1
1
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𝐼∗ = 2𝜌2ln (
𝜌−√Θ𝑖

𝜌−√Θ
) − 2𝜌(√Θ − √Θ𝑖) − (Θ − Θ0);                    0 < 𝜏 ≤ 𝑇𝑠 

𝐼∗ = 2𝜌2ln (
𝜌−√Θ𝑖

𝜌−√Θ𝑠
) − 2𝜌(√Θ𝑠 − √Θ𝑖) − (Θ − Θ0);                          𝜏 > 𝑇𝑠 

(2): 

𝐼∗ from Eq. (29a) and (29b) for 0 < 𝜏 ≤ 𝑇𝑠 and  𝜏 > 𝑇𝑠, respectively. 

𝜌 = 𝑞0/𝐾𝑠;Θ = (𝜃 − 𝜃𝑖)/Δ𝜃; 𝜏 = 𝑡/𝑡𝑐 

function and describes the emptying or filling process of a nonlinear water 

reservoir. In (2), the solution is extended to the Brooks and Corey soil hydraulic 

conductivity function. 

Su et al.  2020 

𝑖 = −𝐾𝑒(𝜕𝜓 𝜕𝑧 + 1⁄ )                                                                              ℎ ≤ 0 (1) 

𝑖 = −𝜕𝜓 𝜕𝑡⁄ − 𝐾𝑒(𝜕𝜓 𝜕𝑧 + 1⁄ )                                        0 < ℎ ≤ ℎ𝑚𝑎𝑥 (2) 

Where: 

𝐾𝑒 = 𝐾𝑠ℎ𝑆𝑒
0.5 [1 − (1 − 𝑆𝑒

1/𝑚1)
𝑚1

]
2

; 

𝐾𝑠ℎ = 𝐾𝑠10𝑚′(𝜃𝑠ℎ−𝜃𝑠); 

𝜃𝑠ℎ = 2 − ∅𝑖 −
1

𝜌𝑏(𝑎3+𝛼3𝜔)
−

𝐴′′+𝐵′′ ln(𝜌𝑏𝑤𝑧)

𝜌𝑏
 ; 

𝑆𝑒 = [
1

1+(𝛼𝜓)𝑛𝑆𝑆𝐶
]
𝑚𝑆𝑆𝐶

and 𝑚𝑆𝑆𝐶 = 1 − 1/𝑛𝑆𝑆𝐶 

 

A modified Richards model (RMSD)3 was developed to simulate soil water 

movement into deformable soils subject to the following upper boundary 

conditions: (1) when rainfall intensity does not exceed the infiltration capacity of 

the soil, and (2) when rainfall intensity exceeds the infiltration capacity of the 

soil. Su et al. introduced the unsaturated hydraulic conductivity of deformable 

soils, 𝐾𝑒 (L T-1) and related it to physical properties using Lambe and Whitman 

(1979) and van Genuchten (1980, 1991) models. 

 
3RMSD: 

𝜕𝜃

𝜕𝑡
+

𝜃𝑖

1+∅𝑖

𝜕∅

𝜕𝑡
=

𝜕

𝜕𝑧
[𝐾𝑒(𝜓)

𝜕𝜓

𝜕𝑧
] +

𝜕𝐾𝑒(𝜓)

𝜕𝑧
+ 𝑊𝑟 

Where: 𝑊𝑟 = −𝑆𝑟Δ𝑥Δ𝑦Δ𝑧Δ𝑡 

𝑆𝑟  (T-1) is the water absorption strength of plant roots. 

Poulovassilis and 

Argyrokastritis 
2020 

𝐼 = (𝑆0𝑡
0.5 − 𝑎𝑡) + 𝐾𝑠𝑡 

Where: 

𝑎𝑡 = 𝑆0𝑡
0.5 (1 − 𝑒−𝑐0(

𝐾𝑠
𝑆 )𝑡0.5

) 

A new two-term analytical equation, which takes the form of Philip’s two-term 

equation, was derived for estimating vertical cumulative infiltration occurring in 

homogeneous porous media under zero ponding, including a factor 𝑎𝑡 (L), 

characteristic of each porous body, valid for all 𝑡. 

Abou Najm et al. 2021 𝑖𝑊𝑅 = 𝑖(1 − 𝑒−𝛼𝑤𝑟𝑡) 

Abou Najm et al. (2021) proposed a simple correction term (1 − 𝑒−𝛼𝑤𝑟𝑡) that can 

be applied to any infiltration model to simulate infiltration behaviors of water-

repellent soils.  

The correction term starts with a value of zero at the beginning of the infiltration 

experiment (t = 0) and asymptotically approaches 1 as time increases, thus 

simulating decreasing soil water repellency through time.  
To demonstrate the effectiveness of this method, Abou Najm et al. (2021) used a 

simple two-term infiltration model similar to two-term Philip type solution 

(Check Eq. 9 in the paper). 

Di Prima et al. 2021 

𝐼 = 𝑆0√𝑡 −
𝑆0√𝜋

2√𝛼𝑤𝑟
erf (√𝛼𝑤𝑟𝑡 + [𝐴(1 − 𝐵)𝑆0

2 + 𝐵𝑖∞]𝑡 −

 
[𝐴(1−𝐵)𝑆0

2+𝐵𝑖∞](1−𝑒−𝛼𝑤𝑟𝑡)

𝛼𝑤𝑟
  

  small t 

𝐼 = (𝐴𝑆2 + 𝐾𝑠)𝑡 + 𝐶
𝑆2

𝐾𝑠
                                                                        large t 

Where: 

𝐴 =
𝛾

 𝑟𝛥𝜃
 ; 

𝐵 =
2−𝛽

3
[1 − (

𝜃𝑖

𝜃𝑠
)

𝑛
] + (

𝜃𝑖

𝜃𝑠
)

𝑛
 ; 

𝐶 =
1

2[1−(
𝜃𝑖
𝜃𝑠

)
𝑛

](1−𝛽)
𝑙𝑛 (

1

𝛽
)  and 𝑖∞ = 𝐴𝑆0

2 + 𝐾𝑠 

Di Prima et al. presented an adaptation of the BEST method, namely BEST-WR, 

to characterize soils at any stage of water-repellency. They modified the 

Haverkamp explicit transient infiltration model, included in BEST for modeling 

infiltration data, by embedding the scaling factor (1 − 𝑒−𝛼𝑤𝑟𝑡) introduced by 

Abou Najm et al. (2021) that describes the rate of attenuation of infiltration rate 

due to water repellency. 

All parameters are algebraically positive values, unless otherwise specified. 
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CHAPTER 3: The Problem of Too Many Infiltration Models: How Can We Maintain the 

Physical Meaning of Soil Hydraulic Parameters? 

3.1. Abstract 

The crucial impact of infiltration process on many related physical and biogeochemical processes 

has motivated researchers to develop numerous models for assessing infiltration over the past two 

centuries, resulting in 138 identified infiltration models. The proliferation of infiltration models, 

in one respect, has enhanced understanding and assessment of these processes. However, this 

proliferation has potentially challenged researchers to decide which model to utilize when 

analyzing experimental infiltration data, and subsequently determine the appropriate procedures 

for extracting soil hydraulic properties, such as saturated hydraulic conductivity 𝐾𝑠 (LT-1) and 

sorptivity 𝑆 (LT-0.5). At this level, an accurate estimation of hydraulic properties requires a 

complete investigation of soil hydraulic models and data extraction techniques. Although several 

studies have touched upon the various concepts of infiltration modeling and evaluated model 

performance, a comprehensive and unbiased evaluation of the variability among the estimated 

infiltration characteristics from different models has been lacking till now. This gap exists not only 

among different models but also extends to various extraction techniques. Addressing this gap is 

essential for determining the consistency and uniqueness of the estimated infiltration parameters 

across different models and for exploring suitable procedures for extracting saturated hydraulic 

conductivity 𝐾𝑠 (LT-1) and sorptivity 𝑆 (LT-0.5). At this end, an uncertainty meta-analysis was 

carried out using a global infiltration database of 5,023 cumulative infiltration curves. This analysis 

focused on assessing the variability of the estimated infiltration characteristics, 𝐾𝑠 (LT-1) and 𝑆 

(LT-0.5) from eleven one-dimensional (1D) infiltration models and different extraction techniques 

applied to estimate those characteristics. Our results distinctly demonstrated the notable variations 
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in saturated hydraulic conductivity 𝐾𝑠 (LT-1) and sorptivity 𝑆 (LT-0.5) derived from various models 

under varying extraction techniques. The observed changes in 𝐾𝑠 (LT-1) and 𝑆 (LT-0.5) indicate that 

the characteristics related to the models and extraction methods have a significant impact on the 

predictions of soil hydraulic parameters. Ultimately, our study has demonstrated an appropriate 

practice to evaluate the performance of 1D infiltration models under different extraction methods 

and assess the variability of the predictions of soil hydraulic parameters including 𝐾𝑠 (LT-1) and 𝑆 

(LT-0.5). These insights are crucial for practical applications in fields such as agriculture and 

hydrology, guiding the selection of both models and extraction techniques based on project-

specific requirements. Additionally, our findings suggested avenues for future research and 

improvements in existing models and techniques. 
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3.2. Introduction 

The infiltration process describes entry of water into soil, and its subsequent movement or retention 

within soil. Water retention due to capillarity, namely sorptivity 𝑆 (LT-0.5) according to Philip 

(1957b), controls water movement at the early state of infiltration; then at transient state, hydraulic 

conductivity comes into play and eventually governs the infiltration process at steady state which 

is mainly driven by gravity. Building upon Philip’s theory which has been widely adopted and 

expanded by many researchers, saturated hydraulic conductivity 𝐾𝑠 (LT-1) can be determined as 

the steady-state slope of the cumulative infiltration curve. This curve is a graphical representation 

that shows the cumulative amount of water that has infiltrated into soil over time during a rainfall 

or irrigation event.   

Because of the fundamental role of infiltration in soil hydrology and biogeochemistry, numerous 

models ranging from empirical to physically based have been developed to determine hydraulic 

parameters such as 𝐾𝑠 (LT-1) and 𝑆 (LT-0.5), and therefore estimate the infiltration capacity of soils. 

Basset et al. (2023), presented a comprehensive critical review that traced the development of 

conceptual and empirical models over the past two centuries through a historical and theoretical 

evolution assessment. Based on their review, 138 unique infiltration models were compiled and 

examined based on underlying infiltration philosophies and characteristics.  

Commonly used models among the 138 infiltration models developed through the past century, 

specifically Green and Ampt (1911), Kostiakov (1932), Horton (1940), Mezencev (1948), Philip 

(1957b), Parlange et al. (1982), Swartzendruber (1987), and Haverkamp et al. (1990, 1994) were 

examined by several review studies to evaluate and determine which of these models are most 

suitable for field applications (Mishra et al., 2003; Fodor et al., 2011; Mirzaee et al., 2014; Jacka 

et al., 2016; Sihag et al., 2017; Nie at al., 2017; Vand et al., 2018; Bayabil et al., 2019). Such 



 

141 
 

studies identified best-fit models by curve-fitting infiltration equations using measured infiltration 

data. 

Typically, infiltration data is measured by means of different experimental tools including ring, 

cylinder, and disc infiltrometers designed to measure one- or multi-dimensional flow that can 

include early, transient, and steady-state flow stages depending on the approach being applied 

(Schiff, 1953; Parr and Bertrand, 1960; Olson, 1960; Bouwer, 1960, 1963, 1986; Watson and 

Luxmoore, 1986; Perroux and White, 1988; Elrick et al., 1995; Angulo-Jaramillo et al., 2003, 

Bagarello et al., 2004; Touma et al., 2007; Xu et al., 2012; Di Prima et al., 2016; Ronnqvist, 2018). 

Once experimental data is collected, soil hydraulic properties such as saturated hydraulic 

conductivity 𝐾𝑠 (LT-1) and sorptivity 𝑆 (LT-0.5) which are key characteristics for many conceptual 

infiltration models can be determined by incorporating infiltration data into multi-dimensional 

infiltration equation, eventually obtaining solutions of 𝐾𝑠 (LT-1) and 𝑆 (LT-0.5) using approximate 

analytical or numerical techniques. 

 

Accuracy of 𝐾𝑠 (LT-1) and 𝑆 (LT-0.5) estimates depends upon the degree to which steady flow is 

attained within the system, and upon the ability of each experimental method to account for various 

theoretical and practical constraints associated with representing the physical system using 

selected infiltration equations. Additionally, the evolving landscape of statistical and numerical 

data analysis techniques underscores the need to evaluate accuracy of the extraction techniques. 

Given these aspects, it has become imperative to determine the accuracy of 𝐾𝑠 (LT-1) and 𝑆 (LT-

0.5) estimated from soil hydraulic models, as well as variability and uniqueness of these parameters 

across various models and different extraction techniques. By examining differences in predictions 

of 𝐾𝑠 (LT-1) and 𝑆 (LT-0.5) among infiltration models using diverse data analysis methods, we can 
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gain insight into the robustness of the available applied practices in estimating soil hydraulic 

parameter through infiltration modeling and data analysis.  

Realizing the need for a thorough and impartial evaluation of the variability in estimated 

infiltration characteristics among infiltration models and extraction methods, we carried out an 

uncertainty metadata analysis to achieve two-folded objectives: 1) assess the variability of 

estimated infiltration characteristics, saturated hydraulic conductivity 𝐾𝑠 (LT-1) and sorptivity 𝑆 

(LT-0.5) from different infiltration models, and 2) evaluate the robustness of these models across 

various extraction analysis techniques applied to estimate 𝐾𝑠 (LT-1) and 𝑆 (LT-0.5). Our meta-

analysis is performed in R software using 5023 infiltration data curves extracted from SWIG, the 

global infiltration database developed by Rahmati et al. (2018). 
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3.3. Materials and Methods 

3.3.1. Infiltration models 

Basset et al. (2023) identified and compiled 138 unique infiltration models, among which 102 were 

one-dimensional (1D) infiltration models. Drawing from their review, we selected eleven one-

dimensional (1D) infiltration models spanning from the 1900s to present, which represents a 

comprehensive spectrum of mathematical and physical concepts in infiltration modeling theory, 

while covering both widely utilized and recently developed approaches for estimating infiltration 

characteristics. Following is a summary of the specific characteristics of the selected infiltration 

models, along with their corresponding equations.  

3.3.1.1.Green and Ampt (1911) 

Green and Ampt (1911) is one of the earliest developed infiltration models recognized as a 

pioneering effort in understanding and quantifying one-dimensional water infiltration into soils 

during rainfall events with ponding conditions. The single equation proposed by Green and Ampt, 

commonly known as GA, was developed assuming a constant wetting front that moves at constant 

water content 𝜃 (L3L-3) and, thus, constant matric potential 𝜓𝑤𝑓 (L), as well as constant hydraulic 

conductivity 𝐾𝑠 (LT-1), since water always moves within a saturated soil. Despite the main 

assumption of a sharp wetting front throughout the infiltration process, Green and Ampt model 

had laid the foundation for many subsequent advancements in infiltration modeling.  

𝑡 =
𝐼1𝐷

 𝐾𝑠
−

(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)

 𝐾𝑠
𝑙𝑛 (1 +

𝐼1𝐷

(𝜃𝑠−𝜃𝑖)(𝜓𝑤𝑓+ℎ0)
)                                                                   [3.39] 

where 𝐼1𝐷 (L) is the cumulative one-dimensional infiltration, 𝑡 (T) is time, ℎ0 (L) is the ponding 

head at the surface, 𝜃𝑠 and 𝜃𝑖 (L
3L-3) are the saturated and initial water contents, respectively. 
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3.3.1.2. Philip (1957b) 

Philip (1957b) is one of the most widely known and applied infiltration models and has been 

instrumental in advancing our understanding of the infiltration process. Philip (1957b) is credited 

with deriving an explicit two-term equation of cumulative, one-dimensional infiltration 𝐼1𝐷 (L) 

with negative or zero head surface boundary condition (ℎ0 ≤ 0 and 𝜃o ≤ 𝜃𝑠) for early and transient 

infiltration times based on his classical time series solution (Philip, 1957a). The two-term derived 

equation (hereafter called 2TR-Philip) has been extensively used to determine the saturated 

hydraulic conductivity 𝐾𝑠 (LT-1) and sorptivity 𝑆 (LT-0.5). 

For small times, 

𝐼1𝐷  =  𝑆𝑡0.5 + 𝐴𝑡                                                                                                               [3.40TR]                      

where 𝐴 (LT-1) is the parameter describing water movement due to gravity. 𝐴 = 𝑚𝐾𝑠 with 1 3⁄ ≤

𝑚 ≤ 2 3⁄  (Youngs, 1968; Philip, 1969; Talsma, 1969, Talsma and Parlange, 1972). 𝑚 = 0.363 

may be appropriate for soils with a relatively low initial moisture content (Philip, 1987), while a 

value of 𝑚 = 2/3 is often used (Whisler and Bouwer, 1970, Fodor et al., 2011). Simultaneously, 

Philip (1957b) defined saturated hydraulic conductivity 𝐾𝑠 (LT-1) as the steady-state slope of the 

cumulative infiltration curve and accordingly expressed this asymptote through a linear regression 

equation in terms of 𝐾𝑠 (LT-1) and 𝑆 (LT-0.5) (hereafter called 2ST-Philip) 

For large times, 

𝐼1𝐷  = 𝐾𝑠𝑡 +
𝑆2

4(𝐾𝑠−𝐴)
                                                                                                              [3.2ST] 
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3.3.1.3. Li et al. (1976) 

Li et al. (1976) developed the first explicit solution for GA model to estimate cumulative one-

dimensional infiltration 𝐼1𝐷 (L) while eliminating the need for iterative computations. Their 

approach involved using the first term of a power-series expansion of the natural logarithmic term 

included in the original implicit equation of Green and Ampt (1911). 

𝐼1𝐷 =
1

2
(𝜓𝑤𝑓 + ℎ0)(𝜃𝑠 − 𝜃𝑖)(𝑡

∗ + √(𝑡∗)2 + 8𝑡∗)                                                                    [3.3]  

where: 𝑡∗ =
𝐾𝑠

(𝜓𝑤𝑓+ℎ0)(𝜃𝑠−𝜃𝑖)
𝑡 

3.3.1.4. Brutsaert (1977) 

Brutsaert (1977) proposed an approximate method that integrates the ordinary differential 

equations of each of the functions 𝑋1(𝜃), 𝑋2(𝜃), 𝑋3(𝜃) and 𝑋4(𝜃) in Philip’s time series solution 

for 𝑧(𝜃, 𝑡) (Philip, 1957a) assuming these functions behave as near-step functions. His approach 

determines cumulative one-dimensional infiltration 𝐼1𝐷 (L) with negative or zero head surface 

boundary condition (ℎ0 ≤ 0 and 𝜃o ≤ 𝜃𝑠) for short but also, for large time of infiltration.  

𝐼1𝐷 = 𝐾𝑠𝑡 +
𝑆2

𝛽0𝐾𝑠
[1 −

1

1+
𝛽0𝐾𝑠𝑡0.5

𝑆

]                                                                                               [3.4] 

where 𝛽0 is a fitting parameter, 0 ≤ 𝛽0 ≤ 1; 𝛽0 = 2/3 is sufficiently accurate for most soils. 

3.3.1.5. Parlange (1980) 

Using Darcy’s law and the conservation of mass, Parlange (1980) formulated two equations to 

express cumulative one-dimensional infiltration 𝐼1𝐷 (L) under ponding conditions (ℎ0 ≥ 0). 

Equation [5a] assumes that soil diffusivity 𝐷 (L2T-1) increases rapidly with water content 𝜃 (L3L-
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3) while conductivity, 𝐾 (LT-1), varies much less rapidly near saturation; Equation [5b] assumes 

that 𝐷 (L2T-1) and 
𝜕𝐾

𝜕𝑧
 (T-1) increase rapidly, and in similar fashion. 

𝑡 =  
𝐼1𝐷

(𝐾𝑠−𝐾𝑖)
−

𝑆2

2(𝐾𝑠−𝐾𝑖)
2 𝑙𝑛 (1 +

2(𝐾𝑠−𝐾𝑖)𝐼1𝐷

𝑆2 )                                                                           [3.5a]         

𝑡 =  
𝐼1𝐷

(𝐾𝑠−𝐾𝑖)
+

𝑆2

2(𝐾𝑠−𝐾𝑖)
2
(𝑒

−
2(𝐾𝑠−𝐾𝑖)𝐼1𝐷

𝑆2 − 1)                                                                             [3.5b]                         

Equation 3.5a can be expressed as GA equation 3.1 with 𝑆 = √2(ℎ0+𝜓𝑤𝑓)𝐾𝑠(𝜃𝑠 − 𝜃𝑖) (Collis-

George, 1977) and initial hydraulic conductivity 𝐾𝑖 = 0, and therefore disregarded to avoid 

replicability. 

3.3.1.6. Parlange et al. (1982) 

As an attempt to embrace different variations of the diffusivity term 𝐷 (L2T-1) and hydraulic 

conductivity 𝐾 (LT-1), Parlange et al. (1982) developed a three-parameter one-dimensional 

infiltration model for negative or zero head surface boundary condition (ℎ0 ≤ 0 and 𝜃o ≤ 𝜃𝑠) by 

introducing a new dimensionless parameter 𝛿. 

For small times, 

𝐼1𝐷 = 𝑆𝑡0.5 +
1

3
(2 − 𝛿)(𝐾𝑠 − 𝐾𝑖)𝑡                                                                                       [3.6TR]  

For large times, 

𝐼1𝐷 = (𝐾𝑠 − 𝐾𝑖)𝑡 +
𝑆2

2(𝐾𝑠−𝐾𝑖)(1−𝛿)
𝑙𝑛 (

1

𝛿
)                                                                               [3.6ST]  

where 𝛿 takes values from 0 to 1, with an approximate used value of 0.85.  
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3.3.1.7. Swartzendruber (1987) 

Swartzendruber (1987) derived a quasi-solution of Richards' equation for one-dimensional water 

infiltration into soils. His solution aligns with the classical Philip’s time series solution 𝑧(𝜃, 𝑡) for 

early and transient times (Philip, 1957a). Furthermore, Swartzendruber’s solution extends Philip’s 

solution to cover asymptotically large times (Philip, 1957b). 

𝐼1𝐷 = 𝐾𝑠𝑡 +
𝑆

𝐴0
(1 − 𝑒−𝐴0𝑡0.5

)                                                                                                   [3.7] 

where 𝐴0 is a fitting parameter depending on the initial water content 𝜃𝑖. 𝐴0 =
4𝐾𝑠

3𝑆
 (Stroosnijder, 

1976). As 𝐴0 → 0, Swartzentruber’s equation reduces to the steady-state form of Philip’s model 

(1957b) with 𝐾𝑠 (LT-1) being the coefficient of the linear term. 

3.3.1.8. Stone et al. (1994) 

Stone et al. (1994) developed an explicit approximation of GA equation by using a Taylor-series 

expansion. The resulting one-dimensional infiltration equation takes the following form: 

𝐼1𝐷 = (𝜓𝑤𝑓 + ℎ0)∆𝜃(𝑡∗ + √2𝑡∗ − 0.2987𝑡∗0.7913)                                                                 [3.8] 

3.3.1.9. Valiantzas (2010) 

Valiantzas (2010) proposed a three-parameter approximate equation as a direct method for 

determining saturated hydraulic conductivity 𝐾𝑠 (LT-1) and sorptivity 𝑆 (LT-0.5) of soils. The 

equation was derived to approach Philip’s infinite time series solution at small and moderate times 

(Philip 1957a), while characterizing the constant 𝐾𝑠 (LT-1) at large times. Through his one-

dimensional infiltration equation, Valiantzas aimed to provide a practical approach to estimating 

𝐾𝑠 (LT-1) and 𝑆 (LT-0.5) without the need for extensive time-consuming measurements or complex 

modeling techniques. 
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𝐼1𝐷 = 𝑆𝑡0.5 +
1

2
𝐾𝑠𝑡 +

1

8

𝐾𝑠
2

𝑆
𝑡1.5                                                                                                    [3.9] 

3.3.1.10. Rahmati et al. (2019) 

Recognizing the complex resolution of the quasi-exact implicit (QEI) analytical formulation of 

Haverkamp’s equation (Haverkamp et al., 1994), Rahmati et al. (2019) applied Taylor series up to 

third order in powers 0.5 to (QEI) to develop the following three-term one-dimensional infiltration 

model for early and transient time of infiltration: 

𝐼1𝐷  =  𝑆𝑡0.5 +
2−𝛽

3
𝐾𝑠𝑡 +

1

9
(𝛽2 − 𝛽 + 1)

𝐾𝑠
2

𝑆
𝑡1.5                                                                     [3.10] 

3.3.1.11. Abou Najm et al. (2021) 

In an effort to depict infiltration patterns across diverse structural interactions such as soil water-

repellency, Abou Najm et al. (2021) presented a macroscopic approach by proposing a simple 

correction term (1 − 𝑒−𝛼𝑤𝑟𝑡) that can be applied to any infiltration model estimating one- or three-

dimensional infiltration rate 𝑖 (LT-1) while simulating infiltration behaviors of water-repellent 

soils, where 𝛼𝑤𝑟 (T-1) is the soil water-repellency parameter.  

To demonstrate the effectiveness of their method, Abou Najm et al. (2021) applied the correction 

term (1 − 𝑒−𝛼𝑤𝑟𝑡) to a simple two-term infiltration model (Stewart and Abou Najm, 2018a) similar 

to the two-term type solution by Philip (1957b), leading to the following equation of cumulative 

one-dimensional infiltration 𝐼1𝐷 (L) for small times: 

𝐼1𝐷 = 𝑐1√𝑡 + 𝑐2𝑡 −
𝑐1√𝜋

2√𝛼𝑤𝑟
(1 − 𝑒−𝛼𝑤𝑟𝑡 (

1+√𝜋𝛼𝑤𝑟𝑡−2√
𝛼𝑤𝑟𝑡

𝜋

1+√𝜋𝛼𝑤𝑟𝑡+(𝜋−2)𝛼𝑤𝑟𝑡
)) −

𝑐2(1−𝑒−𝛼𝑤𝑟𝑡)

𝛼𝑤𝑟
                  [3.11] 
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where 𝑐1 (LT−1/2) and 𝑐2 (LT−1) are constants specific to the soil type and initial and boundary 

conditions (e.g., ponding depth, ring geometry, initial water content). In the one-dimensional 

infiltration model developed by Philip (1957b), 𝑐1 is sorptivity 𝑆 (LT−1/2), and 𝑐2 is 𝐴 (LT−1). 

At this stage, we compiled the eleven selected models mentioned earlier, along with their 

corresponding parameters, as presented in Table 3.1. Additionally, we outlined the mathematical 

relationships relating hydraulic parameters defined by each model to both, sorptivity 𝑆 (LT−1/2) 

and saturated hydraulic conductivity 𝐾𝑠 (LT−1). These relationships are used to substitute model’s 

parameters by 𝑆 (LT−1/2) and 𝐾𝑠 (LT−1), ultimately deriving infiltration equations with two 

unknowns (𝑆, 𝐾𝑠). This substitution is a key aspect of our analysis since our study revolves around 

the estimation of two fundamental infiltration parameters, 𝑆 (LT−1/2) and 𝐾𝑠 (LT−1), while assessing 

the extent of variability in estimating these parameters across the eleven different models when 

subjected to different extraction techniques. Exceptionally, in Abou Najm et al.’s (2021) model, 

an additional new parameter, the soil water-repellency parameter 𝛼𝑤𝑟 (T-1), is introduced and 

needs to be optimized as well. Any assumed values of the models’ fitting-type parameters are 

included in Table 3.1. 
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Table 3.1: Compilation of the eleven selected infiltration models 

 

  

Models Parameters 
Relationship between models’ 

parameters and 𝑆 and/or 𝐾𝑠 
Fitting parameters 

Green and Ampt (1911) - 

GA 
𝐾𝑠, 𝜓𝑤𝑓, ℎ0, 𝜃𝑠 and 𝜃𝑖  

𝑆 = √2(ℎ0+𝜓𝑤𝑓)𝐾𝑠(𝜃𝑠 − 𝜃𝑖) 

(Collis-George, 1977) 
 

Li et al. (1976) 

Stone et al. (1994) 

Philip (1957b) 𝑆 and 𝐴 𝐴 = 𝑚𝐾𝑠 

1 3⁄ ≤ 𝑚 ≤ 2 3⁄  (Philip, 
1969a; Talsma, 1969, 

Talsma and Parlange, 

1972). 𝑚 = 0.363 may 

be appropriate for soils 
with a relatively low 

initial moisture content 

(Philip, 1987), while a 

value of 𝑚 = 2/3 is often 
used (Whisler and 

Bouwer, 1970, Fodor et 

al., 2011).  

Abou Najm et al. (2021) - 

WR 
𝑐1, 𝑐2, and 𝛼𝑤𝑟 

𝑐1 = 𝑆 

𝑐2 = 𝐴 =  𝑚𝐾𝑠 

(Philip, 1957b) 

Brutsaert (1977) 𝐾𝑠, 𝑆 and 𝛽0  

0 ≤ 𝛽0 ≤ 1; 𝛽0 = 2/3 is 

sufficiently accurate for 

most soils (Brutsaert, 
1977; Selker and 

Assouline, 2017; Stewart, 

2019).  

Parlange (1980) 𝐾𝑠, 𝐾𝑖  and 𝑆  𝐾𝑖 = 0 

Parlange e al. (1982) 𝐾𝑠, 𝐾𝑖 , 𝑆 and δ  

0 ≤ 𝛿 ≤ 1, and changes 

slightly with the type of 

soil. A value of  𝛿 = 0.85 

is representative for many 
types of soil (Parlange et 

al., 1985; Haverkamp et 

al., 1990). 

𝐾𝑖 = 0 

Swartzendruber (1987) 𝐾𝑠, 𝑆 and 𝐴0 𝐴0 =
4𝐾𝑠

3𝑆𝐻
 (Stroosnijder, 1976)  

Valiantzas (2010) 𝐾𝑠 and 𝑆   

Rahmati et al. (2019) 𝐾𝑠, 𝑆 and 𝛽  

0.3 ≤ 𝛽 ≤ 1.7 for sand to 

silty soils, respectively 

(Lassabatere et al., 2009, 

Rahmati et al., 2019). 𝛽 is 
interpolated within this 

range depending on the 

specified soil textural 

class. In case where soil 
texture is unspecifief, an 

average value of 𝛽 = 0.6 

can be used. 
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3.3.2. R software 

Our metadata analysis was conducted in R - a powerful programming language and open-source 

software environment that is widely used for statistical computing, data analysis, and graphical 

visualization. Using R software, we aimed to: 

• Clean, transform, and restructure the collected infiltration data used for analysis. 

• Build and statistically evaluate the eleven infiltration models. 

• Estimate the two fundamental parameters, sorptivity 𝑆 (LT-0.5), and saturated hydraulic 

conductivity 𝐾𝑠 (LT-1) from the eleven models using different extraction techniques. 

• Create high-quality visual graphs representing the performance of models and extraction 

techniques, as well as the variability of the estimated parameters, 𝑆 (LT-0.5) and 𝐾𝑠 (LT-1). 

3.3.3. Data collection and preprocessing 

We obtained infiltration data from the Soil Water Infiltration Global Database (SWIG), which was 

developed by Rahmati et al. (2018). SWIG stands out as the largest and most up-to-date infiltration 

database compiling 5023 experimental plots that depict cumulative infiltration curves (cumulative 

infiltration I (cm) vs. time T (hr)). These curves were digitized by collecting experimental data 

from available literature, as well as obtaining published or unpublished data from various 

researchers worldwide. SWIG also provides additional information about the location of 

infiltration measurements, soil characteristics, and the land management practices involved. Due 

to its vast amount of information on soil water infiltration characteristics, this comprehensive 

database can be instrumental in advancing our understanding of soil-water interactions and further 

supporting our analysis. 
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Then we thoroughly examined the actual dataset obtained from SWIG to identify any discrepancies 

or inconsistencies among the 5023 cumulative infiltration curves that can potentially disrupt the 

analysis. A quality check on any dataset prior to the analysis ensures the consistency of the dataset 

and prevents potential inaccuracies in the analysis. Following is step-by-step exclusion approach 

we followed to clean our infiltration dataset used in the analysis (Figure 3.1): 

1) The dataset has been inspected for missing data and any inconsistencies, including 

typographical errors and NA values. 

2) The dataset has been inspected for negative or decreasing data points within each 

experimental plot of the dataset. Since it is not physically possible for cumulative 

infiltration to decrease as infiltration time increases, such negative or decreasing values 

could be indicative of errors in measurement, data recording, or other experimental 

inconsistencies. 

3) Infiltration plots consisting of fewer than five recorded observations were excluded. An 

infiltration test with fewer than five measurements might not adequately depict the whole 

infiltration behavior or capture the variability within the tested area.  

4) Outliers have been detected and addressed to avoid inaccuracies or abnormalities in the 

data which could skew the analysis. We assumed that experimental plots with a final 

infiltration rate exceeding 100 cm/hr were suspicious or unusual for typical soil textures 

ranging from sand to clay (Table 1 in Ku, 2013). These outliers could be attributed to errors 

in unit conversion, data reporting, or experimental errors stemming from the experiment 

itself. 

5) Infiltration plots where the initial measurement didn’t start at t=0 and/or had not reached 

steady state were excluded from the analysis. Steady state refers to a condition where the 
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system's behavior does not change over time, and in the context of infiltration, it typically 

implies that the infiltration rate has stabilized. Plots that haven't reached steady state might 

exhibit varying and unpredictable infiltration rates, which can introduce noise and 

uncertainty into our results. By focusing on infiltration experiments that start the 

measurements from t=0 and have achieved steady state, we ensured that our analysis 

captured the complete and consistent evolution of the infiltration process from its initial 

state to its steady state. Now to determine whether steady state has been reached, we ran a 

regression analysis on the last three points of each cumulative infiltration curve. Then we 

calculated the error difference between predicted infiltration (cm), estimated from our 

regression analysis, and actual infiltration (cm). Eventually, we identified the segment of 

the curve where the estimated error difference is below 2% asymptotic, indicating a 

consistent trend and implying that the system has reached a steady state. 

 

Figure 3.1: Step-by-step exclusion approach for data cleaning and preprocessing 
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3.3.4. Data visualization 

Once the exclusion criteria were applied, we visualized the screened dataset by plotting cumulative 

infiltration I (cm) as function of the infiltration time T (hr). Examining the shapes of cumulative 

infiltration curves provided valuable insights into soil-water dynamics. As such, different features 

in the curve, such as inflection points, plateauing, or variations in slope can offer information about 

phenomena like water-repellency, preferential flow paths, and interactions related to soil structure.  

To further assess soil-water interactions, we visualized data indicative of soil textural classes 

within the dataset using USDA soil texture triangle which categorizes soils based on the proportion 

of sand, silt, and clay particles. This visual representation allowed for a clear depiction of the soil 

texture distribution within the dataset. In addition, water content data, including initial and 

saturated water contents, 𝜃𝑖 and 𝜃𝑠 (cm3cm-3) respectively, for each experimental plot were 

incorporated into the visualization, offering a comprehensive view of the soil characteristics 

associated with water dynamics. In cases where direct measurements of 𝜃𝑖 and 𝜃𝑠 (cm3cm-3) were 

unavailable, a reasonable approximation was followed for further analysis: 

• Saturated Water Content 𝜃𝑠 (cm3cm-3) 

Saturated water content 𝜃𝑠 (cm3cm-3) was assumed equal to soil porosity and accordingly estimated 

using the following formula: 𝜃𝑠 = 1 −
𝜌𝑏

𝜌𝑠
 where 𝜌𝑏 (gcm-3) is the soil bulk density and 𝜌𝑠 (gcm-3) 

is the specific gravity of the soil particles. 

• Initial Water Content 𝜃𝑖 (cm3cm-3) 

When the initial water content 𝜃𝑖 (cm3cm-3) was not reported in the dataset, 𝜃𝑖 (cm3cm-3) was 

estimated as 20% of the saturated water content 𝜃𝑠 (cm3cm-3): 𝜃𝑖 = 0.2𝜃𝑠 
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It's important to note that these assumptions provide reliable estimation of initial and saturated 

water contents 𝜃𝑖 and 𝜃𝑠 (cm3cm-3) when direct measurements are unavailable. However, 

whenever possible, direct measurements of initial and saturated water contents would always 

provide more accurate and reliable data based on the characteristics of the soils being studied. 

Relying on actual measurements of water content allows researchers to better capture the 

variability and trends in the soil's behavior, which might not be fully captured by estimations. 

3.3.5. Extraction techniques for 𝑲𝒔 and 𝑺 estimation 

Once data was obtained, cleaned, and visualized, we proceeded to extract two fundamental 

parameters, sorptivity 𝑆 (cmhr-0.5) and saturated hydraulic conductivity 𝐾𝑠 (cmhr-1), from the 

eleven selected infiltration models. To perform this extraction, three distinct scenarios were 

considered, each describing a different extraction technique (Figure 3.2 and Table 3.2): 

The first scenario (denoted as Scenario 1) outlined a conventional optimization approach where 

optimal values of the two positive unknowns (𝑆, 𝐾𝑠) were derived by curve fitting the infiltration 

dataset (i.e., actual cumulative infiltration 𝐼 vs. time of infiltration 𝑡) into the equation of each 

model using the least square technique. This technique aimed to minimize the sum of the squared 

differences between the actual infiltration data 𝑦𝑗
𝑖 obtained from SWIG and the corresponding 

infiltration values predicted by each of the infiltration models �̂�𝑗
𝑖, where 𝑗 represents a single 

observation within the 𝑖𝑡ℎ experimental plot of total 𝑚 observations, and 𝑁 is the total number of 

experimental plots. 

𝑚𝑖𝑛
𝑖=1𝑡𝑜𝑁

∑ (�̂�𝑗
𝑖 − 𝑦𝑗

𝑖)
2𝑚

𝑗=1                                                                                                               [3.12] 
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The second scenario (denoted as Scenario 2) expressed saturated hydraulic conductivity 𝐾𝑠 (cmhr-

1) as the steady-state slope of the cumulative infiltration curve. At the final stage of infiltration, 

gravity dominates, and water infiltration achieves a steady state. During this stage, the slope of the 

cumulative infiltration curve is equal to the saturated hydraulic conductivity 𝐾𝑠 (cmhr-1), as 

described in a one-dimensional infiltration system by Philip (1957b). Therefore, a linear regression 

analysis of slope 𝑏 (cmhr-1) and intercept 𝑐 (cm) of the data collected during the steady/final phase 

of the infiltration run (𝐼∞ vs. 𝑡∞) was performed to estimate 𝐾𝑠 (cmhr-1). 

𝐼∞,𝑖 = 𝑏𝑖𝑡𝑖 + 𝑐𝑖                                                                                                                         [3.13] 

where:  

𝐾𝑠,𝑖 = 𝑏𝑖                                                                                                                                     [3.14] 

This extraction technique reduced the number of unknowns from two (𝐾𝑠, 𝑆) to one variable (𝑆) 

which strengthens the robustness of the inversion. 

To identify the steady/final phase of the infiltration run (𝐼∞ vs. 𝑡∞), we started first by running a 

regression analysis on the last three points of each cumulative infiltration curve. This analysis 

involved fitting a linear mathematical model to these points to estimate the behavior of the 

infiltration process at end times. Following the regression analysis, we calculated the error 

difference between the predicted infiltration (cm), estimated from our regression analysis, and the 

actual infiltration (cm), for each point of the cumulative infiltration curve. To this end, we 

identified the section of the curve where the estimated error difference falls below 2% as 

asymptotic, thus representing the steady phase of the infiltration run (𝐼∞ vs. 𝑡∞); The remaining 

observations where the error difference is above 2%, were designated as the transient phase of the 

infiltration run (𝐼𝑡𝑟 vs. 𝑡𝑡𝑟) (Di Prima et al., 2019). 
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To estimate sorptivity 𝑆 (cmhr-0.5) (𝐾𝑠 (cmhr-1) being already estimated as described above), 

Scenario 2 was translated into two sub-scenarios with distinct extraction approaches: 

• Scenario 2 – Transient (denoted as Scenario 2 – TR) estimated 𝑆 (cmhr-0.5) by fitting either 

the general equation of each model or exclusively its transient-state expression (if derived 

for short infiltration times) to the transient infiltration data (𝐼𝑡𝑟 vs. 𝑡𝑡𝑟). 

• Scenario 2 – Steady (denoted as Scenario 2 – SS) only considered the steady phase of the 

infiltration dataset, and thus, estimated 𝑆 (cmhr-0.5) by fitting either the general equation of 

each model or exclusively its steady-state expression (if derived for long infiltration times) 

to the final infiltration data (𝐼∞ vs. 𝑡∞). Notably, models that have derived asymptotic 

equations for cumulative infiltration under steady-state (Equation 3.13) have defined an 

expression for the intercept term 𝑐 (L) in terms of 𝐾𝑠 (cmhr-1) and 𝑆 (cmhr-0.5). 

Consequently, solving the equation 𝑐 = 𝑓 (𝑆, 𝐾𝑠) led to the estimation of 𝑆 (cmhr-0.5) given 

that 𝐾𝑠 (cmhr-1) is known. Such models included Philip (1957b) and Parlange et al. (1982). 

The third scenario (denoted as Scenario 3) replicated the same extraction technique used in 

Scenario 1, which involved curve fitting the infiltration dataset into the equation of each model 

using the least square technique. However, what differed in Scenario 3 vs Scenario 1 is that, in 

addition to minimizing the sum of the squared differences between the actual infiltration data 𝑦𝑗
𝑖 

and the predicted values �̂�𝑗
𝑖, Scenario 3 alternatively minimized the sum of the squared differences 

between the saturated hydraulic conductivity 𝐾𝑠 (cmhr-1) to be estimated and the steady-state slope 

𝑏 (cmhr-1) of the cumulative infiltration curve.  

𝑚𝑖𝑛
𝑖=1𝑡𝑜𝑁

[∑
1

𝑚
(�̂�𝑗

𝑖 − 𝑦𝑗
𝑖)

2
+ (𝐾𝑠,𝑖 − 𝑏𝑖)

2𝑚
𝑗=1 ]                                                                               [3.15] 
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As a result, Scenario 3 served as a midway point between scenarios 1 and 2, highlighting an 

extraction technique that conventionally optimized for soil hydraulic parameters using the least 

square technique while anchoring the estimated value of 𝐾𝑠 (cmhr-1) to the steady-state slope 𝑏 

(cmhr-1) of the cumulative infiltration curve. At this level, Scenario 3 illustrates a dual optimization 

approach combining analytical rigor with a focus on the underlying physical processes of 

infiltration. 

Under the three scenarios (1, 2, and 3), saturated hydraulic conductivity 𝐾𝑠 (cmhr-1) and sorptivity 

𝑆 (cmhr-0.5) require values greater than zero since it is physically impossible for these parameters 

to be negative. Negative values for these parameters would have no physical interpretation in the 

context of water flow and soil characteristics. As such, 𝐾𝑠,𝑖 ≥ 1𝑒−06𝑐𝑚ℎ𝑟−1 and 𝑆𝑖 ≥

1𝑒−06 𝑐𝑚ℎ𝑟−0.5. 
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Figure 3.2: Diagram summarizing the methodology followed to estimate sorptivity 𝑆 (cmhr-05) and 

saturated hydraulic conductivity 𝐾𝑠 (cmhr-1) using three extraction techniques represented by three 

distinct scenarios. 
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Table 3.2: Summary of the eleven selected infiltration models subjected to the three extraction techniques 

represented by three distinct scenarios. 

 

3.3.6. Model performance parameters 

To assess the deviation between model's predictions and actual dataset of cumulative infiltration I 

(cm), and comprehensively evaluate performance of infiltration models under each scenario, the 

following statistical parameters were used:  

• Normalized Root Mean Square Error (NRMSE) 
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NRMSE is the normalized version of RMSE - one of the most used statistical parameters to 

quantify the accuracy of model’s predictions. NRMSE scales the difference between predicted �̂�𝑗 

and observed values 𝑦𝑗 at the 𝑗𝑡ℎ data point within the experimental plot (i.e., RMSE) by the mean 

�̅̂� of actual values �̂�𝑗: 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

�̅̂�
=

∑
1

𝑚
(�̂�𝑗−𝑦𝑗)

2𝑚
𝑗=1

�̅̂�
                                                                                             [3.16] 

Since we aim to compare the performance of models across different experimental plots, using the 

normalized RMSE in our analysis allows for more meaningful comparisons and insights into the 

relative performance of models across different experimental plots within the dataset. NRMSE 

values typically range from 0% to 100%. Lower NRMSE, ideally approaching 0%, indicates better 

predictive performance as they signify smaller overall discrepancies between predictions and 

actual observations. Values closer to 100% signify larger discrepancies between the predicted and 

actual values, indicating poorer model’s performance. A 100% NRMSE would indicate that the 

model's predictions have no correspondence with the actual data. 

• Coefficient of Determination (R2) 

R2 is a statistical parameter that quantifies the goodness of fit of a regression model to the actual 

data points. In other words, R2 assesses how well the independent variable (�̂�) explains the 

variability in the dependent variable (𝑦) in a predicted regression model, and therefore can 

determine the model performance.  

𝑅2 = 1 −
∑ (�̂�𝑗−𝑦𝑗)

2𝑚
𝑗=1

∑ (�̂�𝑗−�̅̂�)
2𝑚

𝑗=1

                                                                                                               [3.17] 
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R2 ranges from 0 to 1. Lower R2 closer to 0 indicates that the model fails to explain the variability 

in the dependent variable. In other words, the independent variable in the model does not provide 

any information about the variability observed in the dependent variable. Higher R2, ideally 

approaching 1, represents better predictive performance, indicating that the model significantly 

accounts for the variability in the dependent variable. However, it is important to note that a high 

R2 (i.e., close to 1) does not necessarily indicate an appropriate or accurate model. It might be 

possible for a model with a high R2 to overfit the data or have other issues, which justifies the need 

for at least one or two statistical measures of models’ performance in addition to R2. Moreover, it 

is possible for R2 to be negative, which typically indicates that the model is a poor fit for the data 

and performs worse than a horizontal line. 

• Coefficient of correlation (CC) 

CC is a statistical measure that quantifies the strength and direction of the linear relationship 

between two variables. It is commonly used to assess how closely two variables are correlated to 

each other, and therefore can determine the success of numeric predictions. The coefficient of 

correlation ranges between -1 and 1, and is calculated using the following formula: 

𝐶𝐶 =
𝑚 ∑ �̂�𝑗𝑦𝑗−∑ �̂�𝑗 ∑ 𝑦𝑗

𝑚
𝑗=1

𝑚
𝑗=1

𝑚
𝑗=1

√𝑚 ∑ �̂�𝑗
2𝑚

𝑗=1 −(∑ �̂�𝑗
 𝑚
𝑗=1 )

2
√𝑚∑ 𝑦𝑗

2𝑚
𝑗=1 −(∑ 𝑦𝑗

𝑚
𝑗=1 )

2
                                                                      [3.18] 

A positive value of CC (0 < 𝐶𝐶 ≤ 1) indicates a positive linear relationship between the variables 

𝑥 and 𝑦, while a negative value of CC (−1 ≤ 𝐶𝐶 < 0) indicates a negative linear relationship 

between the two variables. A value of CC near 0 (𝐶𝐶 ≈ 0) indicates that changes in one variable 

are not systematically associated with changes in the other. 
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3.4. Results and discussion 

Here, we present a condensed overview of the insights learned from our metadata analysis applied 

on 3957 infiltration curves derived through the data cleaning process of 5023 cumulative 

infiltration curves extracted from SWIG database.  

3.4.1. Cumulative Infiltration Curves 

First, we visualized 3957 cumulative infiltration curves by plotting cumulative infiltration 𝐼 (cm) 

as function of infiltration time 𝑇 (hr). Observing the shape and slope of the cumulative infiltration 

curve offered insights into different components of soil-water interactions. Nine random 

simulations of 50 random actual cumulative infiltration curves 𝐼(𝑡) were plotted as illustrated in 

Figure 3.3. We observed that most curves exhibited a typical concave shape, where they steeply 

rose initially, reaching a constant slope over time. However, some curves showed non-classic 

shapes, deviating from the classic concave trend (Figure 3.3).  

 

Figure 3.3: Nine random simulations of 50 random actual cumulative infiltration curves 𝐼(𝑡) 
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To further analyze the shapes observed in Figure 3.3, we ran a function in R to identify convexity 

and concavity of cumulative infiltration curves by calculating the convex hull for both upward and 

downward directions, considering the "inside" of the curve, and taking the ratio of path lengths. A 

value < 1 indicates “convex” (concave up), while a value > 1 indicates “concave” (concave down). 

A value exactly equal to 1 indicates a line or a combination of both convex and concave shapes, 

hereafter called “non-uniform”. As a result, 79% of screened cumulative infiltration curves in 

SWIG exhibited a typical concave shape, representing what is considered "perfect" infiltration 

conditions with no water-repellency, preferential flow, or any other key components of soil-water 

interactions.  However, about 21% of curves appeared to have shapes different from the commonly 

assumed concave classic shape; 6% were convex, and 15% showed non-uniform shapes (Figure 

3.4). Our findings aligned with a study conducted by Pachepsky and Karahan (2022) who analyzed 

the 5023 infiltration curves extracted from SWIG and found that one third of the curves showed 

non-classic shape. The different shapes of cumulative infiltration curves indicate how different 

land use, field conditions, and soil properties significantly affect water infiltration, emphasizing 

the importance of assessing soil phenomena such as water-repellency, hydrophobicity, and 

preferential flow paths to understand soil-water interactions (Angulo-Jaramillo et al., 2019; Abou 

Najm et al., 2021; Di Prima et al., 2021; Pachepsky and Karahan, 2022; Basset et al., 2023). 
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Figure 3.4: Classification of three different shapes (convex, concave, and non-uniform) observed in 3957 

cumulative infiltration curves 𝐼(𝑡)  
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3.4.2. Soil Characteristics 

We conducted a detailed analysis of data indicative of soil textural classes, as well as physical 

attributes including initial and saturated water contents, 𝜃𝑖 and 𝜃𝑠 (cm3cm-3). This visual 

representation offered a comprehensive view of the soil characteristics associated with each 

infiltration curve.  

Figure 3.5 covered the full range of soil texture across our dataset, as identified by the USDA soil 

texture triangle from coarse to fine particles. While 28% of the 3957 plots lacked soil texture 

information, our analysis indicated a diverse and representative dataset of 2857 experimental plots 

covering various soil textural classes, which is crucial for capturing the broad spectrum of soil-

water interactions.  

 

Figure 3.5: USDA soil texture triangle of soils under 3957 experimental infiltration plots (ND=Not 

Determined) 
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We plotted the data descriptive of initial and saturated water contents, 𝜃𝑖 and 𝜃𝑠 (cm3cm-3) as 

function of soil texture to determine the initial moisture condition of soils being investigated, and 

further understand soil-water interactions (Figure 3.6). Clearly, the difference between 𝜃𝑖 and 𝜃𝑠 

(cm3cm-3) is relatively high, indicating that most of infiltration tests were performed under dry 

conditions. Another clear observation is that coarser soils, such as sandy and sandy loam soils, 

exhibit lower water retention capacity compared to finer soils, such as clay loam and clayey soils. 

This difference is attributed to the larger pores in coarser soils, facilitating rapid drainage and 

reducing water retention, whereas finer soils, with smaller pores, hold onto water more effectively 

through capillary action. We also observed noticeable variability in water retention capacity within 

the same textural class. This variability suggests that factors beyond soil texture alone contribute 

to the ability of soils to retain water. From a meta-data systematic review, Basset et al. (2023) 

revealed that studying soil texture alone, without considering soil structure, is not enough for an 

effective assessment of soil-water characteristics. Soil structure, with both its inherent and induced 

variations due to natural factors and management practices (tillage, cover crops, soil amendments, 

and others), have significantly shaped soil-water interactions (Lipiec et al., 2006; Hao et al., 2022; 

Vedere et al., 2022). Moreover, the variability in water contents within the same textural class was 

significantly higher in finer soils. This trend can be attributed to the inherent heterogeneity of finer 

soils in terms of particle arrangement, organic matter content, and mineralogy (Krull et al., 2003; 

Kogel-Knabner et al., 2008; Kooistra and van Noordwijk, 2020). This inherent heterogeneity 

contributes to a wider and more dynamic range of soil responses across finer soils to management 

practices like tillage, cover crops, and soil amendments, as well as responses to climate variations 

and seasonal changes (Ramesh et al., 2019).  
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It is worth noting that saturated water content values 𝜃𝑠 (cm3cm-3) equal to or greater than 0.7 are 

considered significantly high and uncommon (Figure 3.6). A value of 𝜃𝑠 ≥ 0.7 suggests that the 

soil may have a lower percentage of mineral components or a unique composition that allows it to 

retain more water than usual. Soil textures naturally have lower water-holding capacities, making 

it less common for them to reach such high saturation levels.  

 

Figure 3.6: Water content distribution per soil textural class under 1428 experimental plots where both 

water content and textural class information are available. Soils are plotted from coarsest to the finest 

soil textural class (𝜃𝑠 and 𝜃𝑖 = saturated and initial water contents, respectively). 

3.4.3. Variability in 𝑲𝒔 and 𝑺 estimated values across 1D models 

Here we present our findings on the variability in the estimated infiltration characteristics, 𝐾𝑠 

(cmhr-1) and 𝑆 (cmhr-0.5) across eleven one-dimensional (1D) infiltration models using the three 

extraction techniques/scenarios.  

First, we plotted boxplots that demonstrated the overall statistical variation of the saturated 

hydraulic conductivity 𝐾𝑠 (cmhr-1) and sorptivity 𝑆 (cmhr-0.5), estimated per each 1D infiltration 
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model among three scenarios, as illustrated in Figures 3.7 and 3.8, respectively. From Figure 3.7, 

notable patterns and trends can be observed among both 1D models and extraction techniques. The 

second extraction technique illustrated through Scenario 2 (2TR/2ST) showed no variance in 𝐾𝑠 

observations since 𝐾𝑠 was estimated independently of each model as the steady-state slope 𝑏 of 

the cumulative infiltration curve at end times. Scenario 3 behaved like Scenario 2 with the overall 

median and variance of each model being moderately constant. This similarity suggests that a dual 

optimization which optimizes for soil hydraulic parameters using each model’s equation, while 

minimizing the difference between 𝐾𝑠 and the steady-state slope 𝑏 standardizes the estimation of 

𝐾𝑠 across different infiltration models. This resulted in a close alignment of aligning 𝐾𝑠 with the 

steady-state slope 𝑏 of the cumulative infiltration curve.  

In Scenario 1 which found optimal values of 𝐾𝑠 within each individual model, a greater variability 

emerged in the estimated 𝐾𝑠 values, reflecting the diverse characteristics and behaviors of the 

models in predicting 𝐾𝑠. However, the overall median demonstrated a slight degree of consistency, 

potentially pointing to common trends or patterns across the models in Scenario 1. Notably, Abou 

Najm et al. (2021) stood out as distinct from other models in Scenario 1. The unique feature of 

Abou Najm et al. (2021) incorporating water repellency and hydrophobicity into infiltration 

modeling (i.e., integrating a third parameter 𝛼𝑤𝑟, in addition to 𝐾𝑠 and 𝑆) could be a significant 

factor contributing to its distinct behavior compared to the other models. Abou Najm et al. (2021) 

described the convex shape in cumulative infiltration curves induced by water repellency, unlike 

the other ten models that only depict the classic concave shape. Considering both effects led to a 

different representation of 𝐾𝑠 under Scenario 1 since different shapes of cumulative infiltration 

curves existed in the dataset. We suggest that the addition of 𝛼𝑤𝑟 introduced by Abou Najm et al. 

(2021) is only warranted when dealing with convex shape complexity (Figure 3.9). Otherwise, we 
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are introducing a new parameter into infiltration modeling that may be a redundant addition when 

comparing 𝐾𝑠 estimates between non-hydrophobic and hydrophobic soil hydraulic models. In 

addition, the similarity in 𝐾𝑠 predictions across all models including Abou Najm et al. (2021) under 

scenarios 2 and 3 emphasized that, based on the physical definition of 𝐾𝑠, the shape of the 

cumulative infiltration curve, whether concave or convex, does not affect the estimation of 𝐾𝑠. 

This is because any cumulative infiltration curve, irrespective of its shape, reaches a steady state, 

showing a linear curve of slope representing 𝐾𝑠. 

 

Figure 3.7: Boxplots illustrating the statistical variation of saturated hydraulic conductivity Ks (cmhr-1) 

estimated across the experimental plots (N=3957) per each 1D infiltration model. Models are ordered by 

the historical evolution of infiltration modeling attempts from the oldest (left) to the most recent (right). 

Each model within each scenario contains the same number of observations (N= 3957 estimated values of 

𝐾𝑠). 

Significant variability in estimated 𝑆 values resulted from the second extraction technique 

illustrated through Scenario 2. This variability was particularly striking given that 𝐾𝑠 values were 

fixed while 𝑆 estimates significantly fluctuated across all models. Despite this uniformity in 𝐾𝑠 

across models, the observed fluctuations in 𝑆 values suggest that factors specific to each model, 
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including their mathematical expressions, play a significant role in influencing the estimated 

sorptivity within the framework of Scenario 2. In scientific terms, sorptivity describes the ability 

of soil to absorb water. Sorptivity, as introduced by Philip (1957b), is a measure of the initial rate 

at which water infiltrates into a soil under the influence of capillary forces. The concept of 

sorptivity itself is therefore rooted in the physical properties and behaviors of soils in response to 

water infiltration. However, Scenario 2 introduced the idea that sorptivity may behave as a 

mathematical parameter unique to each infiltration model. This expansion of the sorptivity concept 

in Scenario 2 underscores the influence of model-specific characteristics on the observed 

variability in 𝑆 estimates.  

This variability in 𝑆 became much less apparent under scenarios 1 and 3 where no parameters were 

fixed for the optimizer, but rather both values 𝐾𝑠 and 𝑆 were subjected to optimization. In these 

scenarios, the overall median highlighted a level of consistency among the different models. This 

suggests that the optimization process, when applied to both 𝐾𝑠 and 𝑆 simultaneously, tends to 

align the estimated sorptivity values across various infiltration models. The contrast in variability 

between Scenario 2, where only 𝐾𝑠 was fixed, and scenarios 1 and 3, where both 𝐾𝑠 and 𝑆 were 

optimized, emphasized the impact of extraction techniques on the predicted outcomes of soil water 

parameter estimation. This insight provided valuable information about the interplay between the 

concept of sorptivity as either a scientific concept rooted in physical properties or a mathematical 

parameter subject to optimization.  

It is worth noting that Rahmati (2019) and Abou Najm et al. (2021) equations were specifically 

developed for transient infiltration times. Therefore, including them under Scenario 2-ST, where 

we estimated 𝑆 by fitting models’ equations to steady-state infiltration data (𝐼∞ vs. 𝑡∞), would be 

conceptually inaccurate. Given this consideration, we have opted to exclude these models from 
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Scenario 2-ST to maintain the integrity of our analysis. We believe that this approach ensures a 

more accurate assessment of the models' performance within the context of steady-state 

infiltration. 

 

Figure 3.8: Boxplots illustrating the statistical variation of sorptivity S (cmhr-0.5) estimated across the 

experimental plots of total N=3957 per each 1D infiltration model. Models are ordered by the historical 

evolution of infiltration modeling attempts from the oldest (left) to the most recent (right). Each model 

within each scenario contains the same number of observations (specifically 3957 estimated values of 𝑆). 
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Figure 3.9: Boxplots illustrating the statistical variation of saturated hydraulic conductivity 𝐾𝑠 (cmhr-1) 

and sorptivity 𝑆 (cmhr-0.5) estimated across the experimental plots of total N=242 cumulative infiltration 

curves exhibiting convex shapes per each 1D infiltration model. Models are ordered by the historical 

evolution of infiltration modeling attempts from the oldest (left) to the most recent (right). Each model 

within each scenario contains the same number of observations (specifically 242 estimated values of 𝐾𝑠 

and S). 

Although boxplots illustrated in Figures 3.7 and 3.8 effectively portrayed the degree of variability 

in the estimated infiltration characteristics, 𝐾𝑠 and 𝑆, they may not capture every aspect of the 

underlying data descriptive of 𝐾𝑠 and 𝑆 estimates. This limitation highlighted the potential for 

generalizations or misinterpretations. For instance, underlying patterns of data specific to each 

experimental plot of the dataset were not evident in these visualizations. Moreover, with so many 

estimates (3957 observations of 𝐾𝑠 and 𝑆 per each model), the number of labeled outliers in Figures 
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3.7 and 3.8 is huge, far too many to investigate each one individually and discern whether they 

represent expected extreme values within the dataset or true outliers unique to each model. 

3.4.4. Variability in 𝑲𝒔 and 𝑺 estimated values across 1D models and extraction methods 

per each infiltration experiment 

To delve deeper into the analysis, we further explored 𝐾𝑠 and 𝑆 estimates across the eleven 1D 

infiltration models for each individual plot within the dataset (Figures 3.10 and 3.11). As such, our 

analysis offered a multifaceted view of the 𝐾𝑠 and 𝑆 estimates in each scenario, providing insights 

into the distributional characteristics, statistical variations, and outlier counts associated with each 

of the 1D infiltration models at the plot level. In both figures (i.e., Figures 3.10 and 3.11), the 

density plots on the left depicted the distribution of z-scores. Each z-score explains per infiltration 

plot how much of standard deviation is each 1D infiltration model away from the mean across 

eleven (1D) infiltration models and a total of N=3957 infiltration plots. The graphical plots in the 

middle segment provided a detailed examination of statistical variations within each experimental 

plot, with key statistical indicators including means (𝜇) highlighted in red, model-specific outliers 

highlighted in colors designated to each model, and +- standard deviation (𝜎) indicated by black 

horizontal lines. The barplots on the right summarized the total number of outliers observed in 

estimates for each of the 1D infiltration models. An outlier is defined as a data point (𝑥) that 

deviates significantly from most other data points in the dataset. This deviation is determined based 

on a z-score falling outside the range of -2 to +2 where 𝑧 is estimated using the following formula 

𝑧 =
𝑥−𝜇

𝜎
. 

As seen from Figure 3.10, the dispersion of 𝐾𝑠 estimates per individual plots was notably clear 

across the eleven models, particularly under scenarios 1 and 3. This observation provided a more 
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detailed understanding of the underlying variability of 𝐾𝑠 predictions across different infiltration 

models and extraction techniques. This was not clearly demonstrated in Figure 3.8, which showed 

some general trends and patterns in estimates, but did not provide a detailed view of 𝐾𝑠 variability 

across individual plots. Under Scenario 3, variability of 𝐾𝑠 decreased significantly compared to 

Scenario 1, with estimates appearing clustered around the mean. This suggests a more uniform 

behavior of the models in terms of 𝐾𝑠 estimates under Scenario 3. Obviously, under Scenario 2, 

all estimates of 𝐾𝑠 were identical as Scenario 2 fixed 𝐾𝑠 values across all models, expressed as the 

steady-state slopes of cumulative infiltration curves. Another observation in Figure 3.10 was the 

low 𝐾𝑠 estimates (𝐾𝑠 = 1𝑒−06 𝑐𝑚ℎ𝑟−1 – minimum value set for the optimizer) within a significant 

number of plots under Scenario 1 compared to scenarios 2 and 3. To further investigate this 

observation, we generated histograms representing each model to depict the frequency of these 

minimal (approximately zero) values of 𝐾𝑠 (Figure 3.12). A spike around 𝐾𝑠 = 1𝑒−06 𝑐𝑚ℎ𝑟−1 

across various models under Scenario 1, suggests that the optimizer in Scenario 1 was consistently 

converging to this minimum value across different models, indicating potential numerical 

convergence issues. To assess the physical validity of these minimal 𝐾𝑠 estimates, we generated 

the USDA soil texture triangle covering the soil textural classes within these specific plots (Figure 

3.12) which showed a diverse distribution of various soil textural classes, rather than representing 

only a finer texture commonly associated with very low values of 𝐾𝑠. While we ascertained the 

fact that soil texture alone may not be the sole indicator of soil-water characteristics, it became 

challenging to attribute physical meaning to all these minimal 𝐾𝑠 values in the context of soils and 

water infiltration. Nevertheless, this finding underscored the importance of addressing the potential 

of numerical artifacts before considering the adoption of Scenario 1. 
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The total number of outliers observed in 𝐾𝑠 estimates for each of the 1D infiltration models shed 

light on the divergent behaviors exhibited by different models (Figure 3.10). However, the 

presence of outliers does not always indicate that the corresponding models deviate significantly 

from the overall trend of the data. This point was emphasized under Scenario 3 where 𝐾𝑠 data were 

clustered around the mean; however, model 9 (Valiantzas, 2010) exhibited a significant number 

of outliers. In situations where the standard deviation is very low, even a slight deviation from the 

mean might be considered an outlier statistically, but this deviation may not necessarily have a 

significant physical meaning. Therefore, based on our results, we suggest coupling the 

investigation of outliers with the visualization of the distribution of data around the mean and the 

standard deviation, as illustrated in Figures 3.10 and 3.11. Identifying outliers alone may not 

always reflect meaningful physical distinctions, and a thorough examination of the data 

distribution can provide a more accurate understanding of the observed patterns and behaviors in 

the context of characterizing soil hydraulic properties. 
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Figure 3.10: Graphical representation of the variability, skewness, and outliers in estimates of 𝐾𝑠 (cmhr-

1) at the plot level per each 1D infiltration model. 

Figure 3.11 clearly showed the significant dispersion of sorptivity 𝑆 (cmhr-0.5) estimated from the 

different models across the experimental plots under different scenarios. The observed fluctuations 
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in 𝑆 values suggest that specifics related to each model and each extraction technique significantly 

impact predictions of sorptivity. The optimization process, when applied to both 𝐾𝑠 and 𝑆 as in 

scenarios 1 and 3, demonstrated smaller fluctuations in sorptivity estimates across various 

infiltration models compared to Scenario 2, particularly in Scenario 3 where less dispersion and 

lower number of outliers were depicted. A higher variability in 𝑆 estimates was observed under 

Scenario 2 where 𝐾𝑠 was fixed. While the concept of sorptivity itself is rooted in the physical 

properties and behaviors of soils in response to water infiltration, our analysis reconfirmed the idea 

that sorptivity may behave as a mathematical parameter unique to each infiltration model.  
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Figure 3.11: Graphical representing of the variability, skewness, and outliers in the estimates of 𝑆 (cmhr-

0.5) at the plot level per each 1D infiltration model.  
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Figure 3.12: Histograms representing the statistical variation of saturated hydraulic conductivity 𝐾𝑠 

(cmhr-1) per each 1D infiltration model across Scenarios 1 and 2 associated with USDA soil texture 

triangle of N=740 plots out of the 3957 plots that had at least one minimal value of 𝐾𝑠 (10-6 cmhr-1) by 

any of the 11 models across Scenario 1. 
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3.4.5. How far are 𝑲𝒔 and 𝑺 estimates from each other per plot? 

Figure 3.13 highlighted the influence of both, infiltration models and extraction techniques on the 

predictions of 𝐾𝑠 and 𝑆, contributing to a broader understanding of the complexities involved in 

soil-water parameter estimation. Table 3.3 further illustrates the percentages of experiments plots 

exhibiting a normalized magnitude (max-min)/mean greater to or equal to 0.1, 1 and 10 for 𝐾𝑠 and 

𝑆 across all scenarios.  

To recap on the extraction techniques followed in our analysis: 

• Scenario 1: The first extraction technique was a conventional optimization exercise which 

optimized simultaneously for the two parameters, 𝐾𝑠 and 𝑆, using each model’s equation. 

• Scenario 2: The second extraction technique estimated 𝐾𝑠 independently of each model, as 

the steady-state slope of the cumulative infiltration curve at end times, and further 

optimized for 𝑆 using each model’s equation. 

• Scenario 3: The third extraction technique was a dual optimization which optimized for 

soil hydraulic parameters, 𝐾𝑠 and 𝑆, using each model’s equation while minimizing the 

difference between 𝐾𝑠 and the steady-state slope of the cumulative infiltration curve.  

Once again, our analysis revealed significant variability in estimates of soil hydraulic parameters, 

𝐾𝑠 and 𝑆, across different 1D infiltration models, which varies under varying extraction techniques. 

Scenario 1 showed a greater disparity between the maximum and minimum values of 𝐾𝑠 compared 

to scenarios 2 and 3. Specifically, 87% of the experimental plots under Scenario 1 showed a 

magnitude (max-min) exceeding the mean value, with 1.3% of plots showing a magnitude (max-

min) exceeding 10 times the mean value (Table 3.3). This substantial difference indicated a wider 
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range of 𝐾𝑠 estimates and therefore a greater variability in the predictions among models under 

Scenario 1.  

Sorptivity generally showed to be highly influenced by models’ expressions. However, for 𝑆 

estimates, Scenario 1 had a lower range compared to Scenario 2 although 𝐾𝑠 values were all the 

same under Scenario 2 (i.e., min = max of 𝐾𝑠). This finding suggests that, despite having a wider 

range for 𝐾𝑠 in Scenario 1, the simultaneous optimization process may result in a more constrained 

range for 𝑆. As of Scenario 3, this extraction technique demonstrated a relatively lower range for 

both 𝐾𝑠 and 𝑆 where the corresponding histograms emphasized a high frequency of values within 

low ranges. Specifically, for 𝐾𝑠, 84% of the experimental plots in Scenario 3 showed a very small, 

normalized difference between their maximum and minimum values, equal to at least 10 -1. In 

contrast, for 𝑆, 0% of the plots exhibited this small difference. Our results suggested that Scenario 

3 could be an effective extraction technique for accurate estimation of both 𝐾𝑠 and 𝑆. This 

suggestion aligns with the notion that considering the interplay between optimization analytics and 

the physical definition of 𝐾𝑠 leads to a more robust parameter estimation. Sorptivity remained 

highly variable under all scenarios but clearly better also under Scenario 3. While sorptivity was 

originally introduced by Philip (1957b) as a soil-water characteristic describing the soil's capacity 

to sorb water due to capillary action, our findings emphasized that model-specific expressions play 

a significant role in shaping sorptivity estimates. 
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Table 3.3: Percentages of experiments plots exhibiting a normalized magnitude (max-min)/mean greater 

to or equal 0.1, 1 and 10 for 𝐾𝑠 and 𝑆 across all scenarios. 

(max-min)/mean >0.1 >1 >10 

Scenario 1 

𝐾𝑠 100% 87% 1.3% 

𝑆 100% 44% 4% 

Scenario 2-TR 

𝐾𝑠 0% 0% 0% 

𝑆 100% 99% 0.98% 

Scenario 2-ST 

𝐾𝑠 0% 0% 0% 

𝑆 100% 93% 0% 

Scenario 3 

𝐾𝑠 16% 2% 0% 

𝑆 100% 34% 1.5% 
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Figure 3.13: Graphical visualization of the statistical variation of the magnitude (max-min)/mean 

estimated from the saturated hydraulic conductivity 𝐾𝑠 (cmhr-1) and sorptivity 𝑆 (cmhr-0.5) values per 

each experimental plot of total N=3957 among 1D infiltration models 

The physical significance of 𝐾𝑠 predictions, specifically how much 𝐾𝑠 is anchored to the steady-

state slope 𝑏, was illustrated in heatmaps showing the statistical variation of the absolute difference 
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(𝐾𝑠 − 𝑏)/ 𝑏 per each 1D infiltration model and classified per each textural class under scenarios 1 

and 3 (Figure 3.14). Both scenarios 1 and 3 which predicted 𝐾𝑠 by optimizing each model’s 

equation resulted in some deviation from the true physical value of 𝐾𝑠 which is equal to the steady-

state slope 𝑏 of the cumulative infiltration curve. However, Scenario 3 aligned 𝐾𝑠 closely with 𝑏 

across major plots and textural classes, emphasizing the capability of the corresponding extraction 

technique to capture the physical dynamics of infiltration accurately and showcasing a robust 

parameter estimation that reflects the behavior of soil-water system. Notably, the steady-state 

expressions developed under Philip (1957b) and Parlange et al. (1982) expressed 𝐾𝑠 as equal to 

steady-state slope under both scenarios. These expressions were formulated as linear equations for 

estimating infiltration at steady state where the slope represents 𝐾𝑠, providing a clear link between 

the mathematical representation of soil-water dynamics and the physical processes occurring in 

the soil-water system. 
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Figure 3.14: Heatmaps illustrating the statistical variation of the absolute difference (Ks – b)/b between 

the saturated hydraulic conductivity Ks at steady state minus the steady-slope b estimated across the 

experimental plots of total N =2857 per each 1D infiltration model and classified per each textural class 
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3.4.6. Performance of 1D infiltration models 

We proceeded to evaluate the performance of infiltration models under each scenario (Figure 

3.15). Our analysis demonstrated the relatively good performance of three extraction techniques 

(i.e., scenarios 1, 2 and 3) in predicting infiltration 𝐼 (cm) considering low NRMSE, and high R2 

and CC values across major experimental plots. Comparing the three scenarios, Scenario 1 had the 

lowest NRMSE, the highest mean value of R2 and the highest CC to estimate infiltration across 

models compared to scenarios 2 and 3. Scenario 2 was the least accurate extraction technique to 

predict infiltration according to the three key evaluation parameters. Scenario 3 was reasonably 

accurate, and its performance was more satisfactory than Scenario 2.  

 

Figure 3.15: Range plots illustrating the performance of 1D infiltration models across 3957 experimental 

plots using three key model performance parameters: Normalized Root Mean Squared Error (NRMSE), 

R-squared value (R2), and Coefficient of Correlation (CC). 

While key evaluation parameters such as NRMSE, R-squared value (R2), and Coefficient of 

Correlation (CC) provide valuable insights into the overall performance of infiltration models 

under our analysis scenarios, they do not capture all aspects of infiltration models and extraction 
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techniques. For instance, Scenario 1 might exhibit the lowest NRMSE, indicating good overall 

model performance, but it's essential to recognize that this might not necessarily reflect the 

accuracy of estimated parameters, 𝐾𝑠 and 𝑆. High variability in these parameters, as observed in 

previous analyses, could indicate potential issues with the physical realism of models’ predictions, 

despite favorable NRMSE values. While NRMSE provides a measure of error between actual and 

predicted infiltration, it does not reveal whether 𝐾𝑠 and 𝑆 adhere to physical principles of 

infiltration theory. Also, evaluation parameters do not capture the full range of behaviors exhibited 

by different models subject to a certain extraction technique. To avoid any misconceptions and 

fully understand the effectiveness of infiltration models, it is therefore crucial to, besides 

computing model performance parameters, perform quantitative assessments of soil parameter 

predictions, and consideration of specific study objectives to provide a comprehensive evaluation 

of infiltration models under varying extraction techniques. 

It is worth noting that in Figure 3.15, NA estimates are shown across the transient-state expressions 

of 1D models, which are applicable to transient data comprising N=3871 experiment plots, 

compared to the total or steady-state data comprising N=3957 plots. This discrepancy is due to 86 

infiltration tests in our dataset that did not undergo a transition phase and were already under 

saturation conditions. However, since this number represents only a negligible 2% of the total 

dataset, it will not affect the statistical comparison across all models. 
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3.5. Conclusion  

Our analysis studied the complex relationships between soil properties, infiltration models, and 

parameter estimations, shedding light on the variability and uniqueness associated with estimated 

saturated hydraulic conductivity and sorptivity in the context of eleven different 1D infiltration 

models and three different extraction techniques. Scenario 1 optimized simultaneously for the two 

parameters, 𝐾𝑠 and 𝑆, using each model’s equation. Scenario 2 unified 𝐾𝑠 across all models, as the 

steady-state slope of the cumulative infiltration curve at end times, and further optimized for 𝑆 

using each model’s equation. Scenario 3 represented a dual optimization which optimized for 𝐾𝑠 

and 𝑆 using each models’ equation while minimizing the infiltration error and the difference 

between 𝐾𝑠 and the steady-state slope of the cumulative infiltration curve. Our detailed analysis of 

the different scenarios and their impact on infiltration characteristics, 𝐾𝑠 and 𝑆, provided valuable 

insights into the trade-offs and considerations involved in selecting extraction techniques for soil-

water parameter estimation. 

Overall, our results highlighted the divergent behaviors exhibited by different infiltration models 

in predicting 𝐾𝑠 and 𝑆, both within the same and across different extraction methods, pointing out 

how different models can capture and represent soil-water interactions differently. More precisely, 

our analysis showed that adopting the physical significance of 𝐾𝑠 as the steady-state slope of the 

cumulative infiltration curve (Scenario 3) reduced the dispersion of 𝐾𝑠 predictions across models. 

Moreover, sorptivity behaved best also under Scenario 3, but continues to remain highly sensitive 

to model selection and extraction method. This emphasized the model-specific nature of sorptivity 

estimates and reinforced the notion that variations in infiltration models can lead to diverse 

estimations of such a key parameter.  
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Here, we recommend that the reporting of 𝐾𝑠 and 𝑆 should always be associated with details of the 

model used as well as the extraction technique being applied. We also recognize the need to 

standardize a reporting method to allow for generalizations to be realistic, particularly in the 

context of systematic reviews. Our results demonstrate that given the wide range of variability in 

estimates of 𝐾𝑠 and 𝑆 for the same experimental plot (just as a result of model or extraction method 

selection), it is really hard to extract any meaningful conclusions from a systematic review of the 

literature involving the values of 𝐾𝑠 and 𝑆. Perhaps global and local values should be reported, 

where global values are based on their original definitions where 𝐾𝑠 is the steady-state slope of the 

cumulative infiltration curve at end times, and 𝑆 is Philip’s introduced parameter estimated using 

Philip’s equation (Equation 2a). Local values are values used in each specific study and can follow 

any model selection by researchers. For that, we offered Scenario 3 as a good common ground 

allowing for model-specific formulation to be anchored with the physically accepted definition of 

𝐾𝑠. 

By incorporating evaluation metrics of model behavior across the dataset used in the extraction, 

and adherence of estimated parameters to physical meanings, researchers can gain a more 

comprehensive understanding whether the applied extraction technique is suitable or not. This 

holistic approach ensures that the strengths and limitations of different extraction techniques are 

properly assessed, leading to more informed decision-making in the field of infiltration modeling. 

Furthermore, as the future of data analysis is closely tied to artificial intelligence (AI), researchers 

face significant challenges in determining the most appropriate approach to adopt as AI continues 

to progress. Unifying the physical meanings of 𝐾𝑠 and 𝑆 based on their real origins is a paramount 

practice to standardizing soil-water parameter estimation. Accordingly, researchers can ensure 

consistency, clarity, and transparency in infiltration modeling research.  
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CHAPTER 4: Uncharted Territory: Evaluating 3D Infiltration Modeling for Enhanced 

Predictions of Soil Hydraulic Parameters 

4.1. Abstract 

Expanding upon our previous metadata analysis, which focused on the variability of infiltration 

predictions in one-dimensional (1D) models, we have now extended our investigation to three-

dimensional (3D) infiltration modeling. This area, though critically important for more precise 

hydrological modeling and for scenarios where infiltration is not strictly vertical such as in 

heterogeneous soils, has been rarely evaluated. Our objective here is to provide comprehensive 

insights into the capabilities and limitations of different 3D infiltration models, thereby shedding 

light on the uniqueness and accuracy of saturated hydraulic conductivity 𝐾𝑠 (LT-1) and sorptivity 

𝑆 (LT-0.5) predictions. Leveraging the same extensive dataset from the Soil Water Infiltration 

Global (SWIG) database comprised of 5,023 cumulative infiltration curves, we applied four 

different 3D infiltration equations and estimated the corresponding 𝐾𝑠 (LT-1) and 𝑆 (LT-0.5) using 

three different applied extraction techniques. Our results distinctly demonstrated notable 

similarities in 𝐾𝑠 and 𝑆 derived from models sharing similar algorithms and underlying 

assumptions, while also showing significant variabilities in these parameters within the same 

models under different infiltration conditions (transient- vs. steady-state) or across different 

models with varying theoretical foundations and extraction methods. These findings underscored 

the significant impact that model characteristics and extraction methods have on the estimation of 

𝐾𝑠 and 𝑆 in 3D infiltration modeling. By identifying the conditions under which different models 

and methods perform best, we provide valuable guidance for practitioners aiming to achieve 

accurate and reliable infiltration predictions for specific applications, such as irrigation planning, 

hydrological studies, or soil conservation efforts. 
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4.2. Introduction 

Given the fundamental role of infiltration in soil hydrology and biogeochemistry, numerous 

models have been developed to characterize infiltration and estimate key hydraulic parameters 

such as 𝐾𝑠 (LT-1) and 𝑆 (LT-0.5). At the early time of infiltration, sorptivity 𝑆 (LT-0.5) which was 

described by Philip (1957b) was water retention due to capillarity influences water movement. As 

infiltration progresses, hydraulic conductivity 𝐾𝑠 (LT-1) becomes significant, governing water 

movement at steady-state conditions, primarily driven by gravity. 

Traditionally, infiltration models have predominantly focused on one-dimensional (1D) water 

movement, particularly in vertical infiltration scenarios, rather than fully accounting for three-

dimensional (3D) infiltration processes. In a theoretical and historical review on infiltration theory, 

Basset et al. (2023) collected and identified 102 one-dimensional (1D) infiltration models, while 

only 28 three-dimensional (3D) models have been identified, indicating a significant gap in 3D 

representation compared to the more established 1D approaches.  

This gap has resulted in numerous studies examining and comparing the performance of different 

1D infiltration models (Mishra et al., 2003; Shukla et al., 2003; Fodor et al., 2011; Mirzaee et al., 

2014; Jacka et al., 2016; Sihag et al., 2017; Nie at al., 2017; Vand et al., 2018; Bayabil et al., 2019) 

while comparatively less attention has been given to three-dimensional (3D) models (Lassabetere 

et al., 2009). The significant disparity in efforts dedicated to the development and evaluation of 

1D infiltration models compared to 3D modeling is primarily attributed to greater complexity, 

computational demands, and data requirements associated with 3D modeling efforts. The need to 

account for spatial variability in soil properties, moisture content, and infiltration dynamics across 

multi dimensions has presented a real challenge to researchers to model 3D infiltration. 



 

197 
 

Additionally, there may be fewer benchmark datasets available for testing and validating 3D 

models compared to 1D models, making it more challenging to assess their performance. 

Smettem et al. (1994) were the first to recognize the importance of capturing spatial variability of 

infiltration characteristics for a comprehensive understanding of water movement through the soil 

profile. Based on their research, Haverkamp et al. (1994) pioneered the development of a simple 

mathematical model describing water infiltration in three dimensions within the soil profile. Their 

work has been instrumental in driving the development of different three-dimensional infiltration 

models across the years (Wu and Pan, 1997; Wu et al., 1999; Lassabetere et al., 2006, 2014, 

Stewart and Abou Najm, 2018; Di Prima et al., 2021). 

Building on these efforts, we aimed to gauge the capabilities and limitations of 3D infiltration 

models in predicting soil hydraulic parameters such as 𝐾𝑠 (LT-1) and 𝑆 (LT-0.5) across different 

extraction techniques. Different 3D infiltration models may produce varying predictions of soil 

hydraulic parameters due to differences in assumptions, parameterizations, and numerical 

techniques. Understanding the variability of estimated parameters among these models is essential 

for assessing their robustness and uncertainty, which has not been explored until now. Building 

upon our previous work on 1D modeling, we attempt to establish connections and identify 

similarities or differences between 1D and 3D modeling approaches. This comparative analysis 

can reveal whether insights and conclusions drawn from 1D models hold true in the context of 3D 

modeling, or if there are unique factors and considerations specific to 3D infiltration modeling. 

To this end, we carried out a metadata analysis to evaluate different 3D infiltration models and 

assess the variability in estimated infiltration characteristics among these models and applied 

extraction methods. The key infiltration parameters that were assessed are saturated hydraulic 

conductivity 𝐾𝑠 (LT-1) and sorptivity 𝑆 (LT-0.5) due to their governing role in characterizing 
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infiltration processes. Our meta-analysis was performed in R software using 5023 infiltration data 

curves extracted from SWIG, the global infiltration database developed by Rahmati et al. (2018). 
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4.3. Methods 

4.3.1. Infiltration models 

Basset et al. (2023) conducted an in-depth review where they identified a total of 138 unique 

infiltration models, including 28 that were three-dimensional (3D) models. Based on their findings, 

we selected four three-dimensional (3D) infiltration models that span from historical to present 

times. These models represent comprehensive mathematical and physical concepts in infiltration 

modeling theory, encompassing both commonly used and recently developed methods for 

predicting infiltration properties. Moreover, these models were specifically selected because they 

incorporate soil water parameters relevant to our investigation, saturated hydraulic conductivity 

𝐾𝑠 (LT−1) and sorptivity 𝑆 (LT−1/2). The following is a summary of distinctive features of the 

selected infiltration models, along with their corresponding equations.  

4.3.1.1.Haverkamp et al. (1994)  

Haverkamp et al. (1994) are well-known for developing the most practical analytical equation for 

three-dimensional infiltration from a disc or ring infiltrometer of radius 𝑟 (L) for all infiltration 

times based on easily measurable soil and hydraulic properties.  

𝐼3𝐷 = 𝐼1𝐷 + 
𝛾𝑆2𝑡

 𝑟𝛥𝜃
                                                                                                                           

[41] 

For small times, 

𝐼3𝐷 = 𝑆𝑡0.5 + [
2−𝛽

3
(𝐾𝑠 − 𝐾𝑖) +  𝐾𝑖 +

𝛾𝑆2

 𝑟(𝜃𝑠−𝜃𝑖)
] 𝑡                                                                    [1TR] 

For large times, 

𝐼3𝐷 = (𝐾𝑠 +
𝛾𝑆2

 𝑟(𝜃𝑠−𝜃𝑖)
) 𝑡 +

1

2(1−𝛽)
𝑙𝑛 (

1

𝛽
)

𝑆2

(𝐾𝑠−𝐾𝑖)
                                                                        [1ST]  
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where 𝛽 and 𝛾 are fitting parameters; 𝛾 = 0.75 and 0.3 ≤ 𝛽 ≤ 1.7 for sand to silty soils, 

respectively (Lassabatere et al., 2009, Rahmati et al., 2019). 

4.3.1.2.Lassabatere et al. (2006) 

Lassabatere et al. (2006) developed a simple and practical infiltration equation, commonly known 

as BEST equation, which gained popularity due to its influential contribution to estimating three-

dimensional water infiltration for transient and steady state based on Haverkamp et al. (1994) 

model. 

For small times, 

𝐼3𝐷 = 𝑆𝑡0.5 + [𝐴(1 − 𝐵)𝑆2 + 𝐵𝑖3𝐷.∞]𝑡                                                                                   [2TR] 

For large times, 

𝐼3𝐷 = (𝐴𝑆2 + 𝐾𝑠)𝑡 + 𝐶
𝑆2

𝐾𝑠
                                                                                                        [2ST]  

where: 

𝐴 =
𝛾

 𝑟(θ𝑠 − θ𝑖)
 

𝐵 =
2 − 𝛽

3
[1 − (

𝜃𝑖

𝜃𝑠
)
𝑛

] + (
𝜃𝑖

𝜃𝑠
)
𝑛

 

𝐶 =
1

2 [1 − (
𝜃𝑖

𝜃𝑠
)
𝑛

] (1 − 𝛽)

𝑙𝑛 (
1

𝛽
) 

i3D.∞ = 𝐴𝑆2 + 𝐾𝑠 

4.3.1.3.Stewart and Abou Najm (2018) 

Stewart and Abou Najm (2018) proposed an approach for estimating three-dimensional (3D) 

infiltration by building upon the two-term Philip type solutions established by Philip (1957). Their 
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approach takes into consideration various factors such as different sizes of infiltration rings of radii 

𝑟 (L), depths of insertion 𝑑 (L), saturated 𝜃𝑠 (L3L-3) and initial 𝜃𝑖 (L
3L-3) water contents, matric 

flux potential, 𝜑(L2 T-1), water supply pressure head ℎ0 (L), as well as transient and steady-state 

infiltration behaviors, ensuring a comprehensive analysis of infiltration processes across different 

conditions. 

For small times, 

𝐼 =  𝑆𝑡0.5 + 𝑎𝐾𝑠𝑡 +
𝑆2𝑎𝑏

(𝜃𝑠−𝜃𝑖)(𝑑+
𝑟

2
)
𝑡                                                                                           [3TR] 

For large times, 

𝐼 = 𝑓𝐾𝑠𝑡 + 𝑓(1 − 𝑎)𝐾𝑠𝑡𝑐                                                                                                        [3ST] 

where: 

𝑡𝑐 =
(𝜃𝑠−𝜃𝑖)(ℎ0+𝜆)

4𝑏𝐾𝑠𝑓
2(1−𝑎)2

  

𝑓 =
ℎ0 + 𝜆

𝑑 + 𝑟 2⁄
+ 1 

𝜆 (L) is the capillary length equal to the inverse of a parameter 𝛼 (L-1) introduced by Gardner 

(1958) as a general description of soil textural and structural characteristics, thus 𝜆 =  
1

𝛼
 

For real soils, 0.4 <  𝑎 <  0.5 (Philip, 1990) and 0.5 <  𝑏 <  𝜋/4 (White and Sully, 1987). 𝑎 =

 0.45 and 𝑏 =  0.55 are often assumed (Haverkamp et al., 1994, White and Sully, 1987, Reynolds 

and Elrick, 1990). 
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4.3.1.4.Di Prima et al. (2021) 

Di Prima et al. (2021) expanded upon the existing BEST method by incorporating the scaling 

factor (1 − 𝑒−𝛼𝑤𝑟𝑡) initially proposed by Abou Najm et al. (2021) as an attempt to mimic 

infiltration behaviors of water-repellent soils.  

For small times, 

𝐼3𝐷 = 𝑆√𝑡 −
𝑆√𝜋

2√𝛼𝑤𝑟
𝑒𝑟𝑓 (√𝛼𝑤𝑟𝑡 + [𝐴(1 − 𝐵)𝑆2 + 𝐵𝑖3𝐷.∞]𝑡 − 

[𝐴(1−𝐵)𝑆2+𝐵𝑖3𝐷.∞](1−𝑒−𝛼𝑤𝑟𝑡)

𝛼𝑤𝑟
 [4] 

We compiled the four selected models mentioned earlier, along with their corresponding 

parameters, as presented in Table 4.1. Exceptionally, in Di Prima et al.’s (2021) model, an 

additional new parameter, the soil water-repellency parameter 𝛼𝑤𝑟 (T-1), is introduced and needs 

to be optimized as well. Any assumed values of the models’ fitting-type parameters are included 

in Table 4.1. 
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Table 4.1: Compilation of the four selected (3D) infiltration models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.2. Data collection and preprocessing 

The methodology followed in Chapter 3 for collecting and preprocessing infiltration data was 

followed in this analysis. To elaborate, we first obtained infiltration data from the Soil Water 

Infiltration Global Database (SWIG) by Rahmati et al. (2018), which compiles 5023 experimental 

plots depicting cumulative infiltration curves (i.e., cumulative infiltration I (cm) vs. time T (hr)). 

Models Parameters Fitting parameters 

Haverkamp et al. (1994) 𝐾𝑠, 𝐾𝑖 , 𝑆, 𝑟, 𝛽, 𝛾, 𝜃𝑠 and 𝜃𝑖  

0.3 ≤ 𝛽 ≤ 1.7 for sand to silty 

soils, respectively. An average 

value of 𝛽 = 0.6 was used when 

soil textural data was not 

determined. (Lassabatere et al., 

2009, Rahmati et al., 2019). 

 

An average value of 𝛾 = 0.75 

was used (Smettem et al., 1994; 

Haverkamp et al., 1994). 

 

𝑛 was estimated based on soil 

textural class using Table 4 

(Minasny and McBratney, 2007). 

An average value of 𝑛 derived 

from Table 4 was used when soil 

textural data was not determined. 

 

𝐾𝑖 = 0  

Lassabatere et al. (2006) - BEST 𝐾𝑠 , 𝑆, 𝑟, 𝛽, 𝛾, 𝑛, 𝜃𝑠 and 𝜃𝑖  

Di Prima et al. (2021) - BESTWR 𝐾𝑠, 𝑆, 𝛼𝑤𝑟, 𝑟, 𝛽, 𝛾, 𝑛, 𝜃𝑠 and 𝜃𝑖  

Stewart and Abou Najm (2018) 𝐾𝑠, 𝑆, 𝑟, 𝑑, 𝜆, 𝑎, 𝑏, 𝜃𝑠 and 𝜃𝑖  

 

𝑑 = 5𝑐𝑚 = ring insertion depth 

(Stewart and Abou Najm, 2018) 

 

𝜆 = 1/𝛼 where 𝛼 (cm-1) is 

suggested by Elrick et al. (1988) 

as function of soil textural class 

(See Table 2 in Wu et al., 1999) 

 

0.4 <  𝑎 <  0.5 (Philip, 1990) 

and 0.5 <  𝑏 <  𝜋/4 (White and 

Sully, 1987). 𝑎 =  0.45 and 𝑏 =

 0.55 were used (Haverkamp et 

al., 1994, White and Sully, 1987, 

Reynolds and Elrick, 1990) 

𝑟, 𝜃𝑠 and 𝜃𝑖  were extracted from our infiltration database by Rahmati et al. (2018). 
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Then, we thoroughly examined this dataset to identify any discrepancies or inconsistencies that 

can potentially disrupt the analysis. Any such discrepancies were excluded from the analysis based 

on a step-by-step exclusion criterion outlined in Chapter 3, as illustrated in Figure 4.1. The last 

exclusion criteria (i.e., #7 in Figure 4.1) was specifically considered in this analysis since 3D 

infiltration modeling requires information about water contents and size of infiltration rings; 

therefore, any infiltration tests that did not measure the initial and saturated water contents, 𝜃𝑖 and 

𝜃𝑠 (cm3cm-3) respectively, as well as the ring radius 𝑟 (cm) were removed. 

 

Figure 4.1: Step-by-step exclusion approach for 3D infiltration data cleaning and preprocessing 
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4.3.3. Extraction techniques for 𝑲𝒔 and 𝑺 estimation 

To extract the two fundamental parameters, sorptivity 𝑆 (cmhr-0.5) and saturated hydraulic 

conductivity 𝐾𝑠 (cmhr-1), from the four selected infiltration models, we considered three distinct 

scenarios, each representing a different extraction technique (Figure 4.2 and Table 4.2): 

The first scenario (denoted as Scenario 1) outlined a conventional optimization approach where 

optimal values for the two positive unknowns (𝑆, 𝐾𝑠) were derived by curve fitting the infiltration 

dataset (i.e., actual cumulative infiltration 𝐼 vs. time of infiltration 𝑡) into the equation of each 

model using the least square technique. This technique aimed to minimize the sum of squared 

differences between the actual infiltration data 𝑦𝑗
𝑖 obtained from SWIG and corresponding 

infiltration values predicted by each of infiltration model �̂�𝑗
𝑖, where 𝑗 represents a single 

observation within the 𝑖𝑡ℎ experimental plot of total 𝑚 observations, and 𝑁 is the total number of 

experimental plots. 

𝑚𝑖𝑛
𝑖=1𝑡𝑜𝑁

∑ (�̂�𝑗
𝑖 − 𝑦𝑗

𝑖)
2𝑚

𝑗=1                                                                                                                    [5] 

The second scenario (denoted as Scenario 2) outlined a linear regression analysis of slope 𝑏 (cmhr-

1) and intercept 𝑐 (cm) of the data collected during the steady/final phase of the infiltration run 

(𝐼∞ vs. 𝑡∞) to describe 𝐾𝑠 (cmhr-1). 

𝐼∞,𝑖 = 𝑏𝑖𝑡𝑖 + 𝑐𝑖                                                                                                                              [6] 

Unlike 1D modeling which directly expresses 𝐾𝑠 (cmhr-1) as the steady-state slope 𝑏 (cmhr-1), 3D 

models relate 𝐾𝑠 (cmhr-1) to 𝑏 (cmhr-1) based on more complex interactions and geometric 

considerations. 

Following Haverkamp et al. (1994), Lassabatere et al. (2006), and Di Prima et al. (2021),   
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𝐾𝑠,𝑖 = 𝑏𝑖  −
𝛾𝑆𝑖

2

 𝑟𝑖(𝜃𝑠,𝑖−𝜃𝑖,𝑖)
                                                                                                                   [7] 

Following Stewart and Abou Najm (2018), 

𝐾𝑠,𝑖 = 𝑏𝑖/𝑓𝑖                                                                                                                                    [8] 

Where 𝑓𝑖 =
ℎ0,𝑖+𝜆𝑖

𝑑𝑖+𝑟𝑖 2⁄
+ 1 

This extraction technique reduced the number of unknowns from two (𝐾𝑠, 𝑆) to one variable (𝑆) 

which strengthens the robustness of the inversion. 

To identify the steady/final phase of the infiltration run (𝐼∞ vs. 𝑡∞), we started by running a 

regression analysis on the last three points of each cumulative infiltration curve. This analysis 

involved fitting a linear mathematical model to these points to estimate the behavior of the 

infiltration process at end times. Following the regression analysis, we calculated the error 

difference between predicted infiltration (cm), estimated from our regression analysis, and actual 

infiltration (cm), for each point of the cumulative infiltration curve. To this end, we identified the 

section of the curve where the estimated error difference falls below 2% as asymptotic, thus 

representing the steady phase of the infiltration run (𝐼∞ vs. 𝑡∞); The remaining observations where 

the error difference is above 2%, were designated as the transient phase of the infiltration run 

(𝐼𝑡𝑟 vs. 𝑡𝑡𝑟) (Di Prima et al., 2019). 

To estimate sorptivity 𝑆 (cmhr-0.5), Scenario 2 was translated into two sub-scenarios with distinct 

extraction approaches: 
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• Scenario 2 – Transient (denoted as Scenario 2 – TR) estimated 𝑆 (cmhr-0.5) by fitting the 

transient-state expression derived for short infiltration times to the transient infiltration data 

(𝐼𝑡𝑟 vs. 𝑡𝑡𝑟). 

• Scenario 2 – Steady (denoted as Scenario 2 – SS) only considered the steady phase of the 

infiltration dataset and thus estimated 𝑆 (cmhr-0.5) by fitting the steady-state expression 

derived for long infiltration times to the final infiltration data (𝐼∞ vs. 𝑡∞). Notably, models 

including Haverkamp et al. (1994), Lassabatere et al. (2006), and Di Prima et al. (2021) 

have derived asymptotic equations for cumulative infiltration under steady-state describing 

the intercept term 𝑐 (L) in terms of 𝐾𝑠 (cmhr-1) and 𝑆 (cmhr-0.5). Consequently, solving the 

equation 𝑐 = 𝑓 (𝑆, 𝐾𝑠) led to estimation of 𝑆 (cmhr-0.5). It is worth noting that Di Prima et 

al. (2021) equation was specifically developed for transient infiltration times. Therefore, 

we have opted to exclude this model from Scenario 2-ST to maintain the integrity of our 

analysis.  

The third scenario (denoted as Scenario 3) replicated the same extraction technique used in 

Scenario 1, which involved curve fitting the infiltration dataset into the equation of each model 

using the least square technique. However, what differed Scenario 3 from Scenario 1 is that, in 

addition to minimizing the sum of the squared differences between the actual infiltration data 𝑦𝑗
𝑖 

and the predicted values �̂�𝑗
𝑖, Scenario 3 alternatively minimized the sum of the squared differences 

between the estimated and the actual steady-state slopes of the cumulative infiltration curve, �̂� and 

𝑏 (cmhr-1) respectively. 

𝑚𝑖𝑛
𝑖=1𝑡𝑜𝑁

[∑
1

𝑚
(�̂�𝑗

𝑖 − 𝑦𝑗
𝑖)

2
+ (�̂�𝑖 − 𝑏𝑖)

2𝑚
𝑗=1 ]                                                                                       [9] 
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Consequently, Scenario 3 acted as an intermediate approach between scenarios 1 and 2. It 

showcased an extraction technique that conventionally optimized for soil hydraulic parameters 

using the least square technique, while also anchoring the steady-slope �̂� (cmhr-1) (calculated as 

function of the estimated 𝑆 (cmhr-0.5) and 𝐾𝑠 (cmhr-1)) to the actual steady-state slope 𝑏 (cmhr-1) 

of the cumulative infiltration curve. 

Under the three scenarios (1, 2, and 3), saturated hydraulic conductivity 𝐾𝑠 (cmhr-1) and sorptivity 

𝑆 (cmhr-0.5) require values greater than zero since it is physically impossible for these parameters 

to be negative. Negative values for these parameters would have no physical interpretation in the 

context of water flow and soil characteristics. As such, 𝐾𝑠,𝑖 ≥ 1𝑒−06𝑐𝑚ℎ𝑟−1 and 𝑆𝑖 ≥

1𝑒−06 𝑐𝑚ℎ𝑟−0.5. 

 

Figure 4.2: Diagram summarizing the methodology followed to estimate sorptivity 𝑆 (cmhr-05) and 

saturated hydraulic conductivity 𝐾𝑠 (cmhr-1) across 3D infiltration models using three extraction 

techniques represented by three distinct scenario
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Table 4.2: Summary of the four selected (3D) infiltration models subjected to the three extraction techniques represented by three distinct 

scenarios 

Models 
Infiltration 

Behavior 

I(t) 

curve 
Analytical Equation 

Extraction technique 

𝒎𝒊𝒏
𝒊=𝟏𝒕𝒐𝑵

∑(�̂�𝒋
𝒊 − 𝒚𝒋

𝒊)
𝟐

𝒎

𝒋=𝟏

 

𝒎𝒊𝒏
𝒊=𝟏𝒕𝒐𝑵

[∑
𝟏

𝒎
(�̂�𝒋

𝒊 − 𝒚𝒋
𝒊)

𝟐𝒎

𝒋=𝟏

+ (�̂�𝒊 − 𝒃𝒊)
𝟐] 

𝑰∞,𝒊 = 𝒃𝒊𝒕𝒊 + 𝒄𝒊 

𝒎𝒊𝒏
𝒊=𝟏𝒕𝒐𝑵

∑(�̂�𝒋
𝒊 − 𝒚𝒋

𝒊)
𝟐

𝒎

𝒋=𝟏

 

Scenario 1 Scenario 3 Scenario 2-TR Scenario 2-ST 

Haverkamp 

et al. 

(1994) 

Early, 

Transient 

and Steady 

- State 

Concave 

�̂�𝑖 = 𝑆𝑖𝑡𝑖
0.5 + [

2−𝛽

3
𝐾𝑠,𝑖 +

𝛾𝑆𝑖
2

 𝑟𝑖∆𝜃𝑖
] 𝑡𝑖         

small t (TR) 

�̂�𝑖 = (𝐾𝑠,𝑖 +
𝛾𝑆𝑖

2

  𝑟𝑖∆𝜃𝑖
) 𝑡𝑖 +

1

2(1−𝛽)
𝑙𝑛 (

1

𝛽
)

𝑆𝑖
2

𝐾𝑠,𝑖
  

large t (ST) 

0.3 ≤ 𝛽 ≤ 1.7 and 𝛾 = 0.75 
(TR) 

𝑡𝑖 = 𝑡𝑡𝑟,𝑖 

𝑦𝑖 = 𝐼𝑡𝑟,𝑖 

(ST) 

𝑡𝑖 = 𝑡𝑠𝑡,𝑖 

𝑦𝑖 = 𝐼𝑠𝑡,𝑖 

𝐾𝑠,𝑖 ≥ 0 

𝑆𝑖 ≥ 0 

𝑡𝑖 = 𝑡𝑡𝑟,𝑖 

𝑦𝑖 = 𝐼𝑡𝑟,𝑖 

𝐾𝑠,𝑖 = 𝑏𝑖 −
𝛾𝑆𝑖

2

 𝑟𝑖∆𝜃𝑖
 

0 ≤ 𝑆𝑖 ≤ √
𝑏𝑖𝑟𝑖∆𝜃𝑖

𝛾
 

𝐾𝑠,𝑖 = 𝑏𝑖 −
𝛾𝑆𝑖

2

 𝑟𝑖∆𝜃𝑖
 

𝑆𝑖

= √
2𝑐𝑖𝐾𝑠,𝑖(1 − 𝛽)

ln (1/𝛽)
 

Lassabatere 

et al. 

(2006) - 

BEST 

Early, 

Transient 

and Steady 

- State 

�̂�𝑖 = 𝑆𝑖𝑡𝑖
0.5 + [𝐴𝑖𝑆𝑖

2 + 𝐵𝑖𝐾𝑠,𝑖]𝑡𝑖            

small t (TR) 

�̂�𝑖 = (𝐴𝑖𝑆𝑖
2 + 𝐾𝑠,𝑖)𝑡𝑖 + 𝐶𝑖

𝑆𝑖
2

𝐾𝑠,𝑖
 

               large t (ST) 

𝐴𝑖 =
𝛾

 𝑟𝑖∆𝜃𝑖
 ; 

𝐵𝑖 =
2−𝛽

3
[1 − (

𝜃𝑖,𝑖

𝜃𝑠,𝑖
)

𝑛𝑖

] + (
𝜃𝑖,𝑖

𝜃𝑠,𝑖
)

𝑛𝑖

 ; 

𝐶𝑖 =
1

2[1−(
𝜃𝑖,𝑖

𝜃𝑠,𝑖
)
𝑛𝑖

](1−𝛽)

𝑙𝑛 (
1

𝛽
) ; 

0.3 ≤ 𝛽 ≤ 1.7 and 𝛾 = 0.75 

𝐾𝑠,𝑖 = 𝑏𝑖 −
𝛾𝑆𝑖

2

 𝑟𝑖∆𝜃𝑖
 

𝑆𝑖 = √
𝑐𝑖𝐾𝑠,𝑖

𝐶𝑖
 

Stewart and 

Abou Najm 

(2018) 

Early, 

Transient 

and Steady 

- State 

�̂�𝑖  =  𝑆𝑖𝑡𝑖
0.5 + 𝑎𝐾𝑠,𝑖𝑡𝑖 +

𝑆𝑖
2𝑎𝑏

(𝜃𝑠,𝑖−𝜃𝑖,𝑖)(𝑑+
𝑟𝑖
2
)
𝑡𝑖   

small t (TR) 

�̂�𝑖  = 𝑓𝑖𝐾𝑠,𝑖𝑡𝑖 + 𝑓𝑖(1 − 𝑎)𝐾𝑠,𝑖𝑡𝑐,𝑖     

large t (ST) 

𝑡𝑐,𝑖 =
(𝜃𝑠,𝑖−𝜃𝑖,𝑖)(ℎ0,𝑖+𝜆𝑖)

4𝑏𝑖𝐾𝑠,𝑖𝑓𝑖
2(1−𝑎)2

  

𝑓𝑖 =
ℎ0,𝑖 + 𝜆𝑖

𝑑 + 𝑟𝑖 2⁄
+ 1 

𝜆𝑖 =
1

𝛼𝑖
, 𝑑 = 5𝑐𝑚, 𝑎 =  0.45, 𝑏 =  0.55 

(TR) 

𝑡𝑖 = 𝑡𝑡𝑟,𝑖 

𝑦𝑖 = 𝐼𝑡𝑟,𝑖 

(ST) 

𝑡𝑖 = 𝑡𝑠𝑡,𝑖 

𝑦𝑖 = 𝐼𝑠𝑡,𝑖 

𝐾𝑠,𝑖 ≥ 0 

𝑆𝑖 ≥ 0 

𝑡𝑖 = 𝑡𝑡𝑟,𝑖 

𝑦𝑖 = 𝐼𝑡𝑟,𝑖 

𝐾𝑠,𝑖 = 𝑏𝑖/𝑓𝑖 

𝑆𝑖 ≥ 0 

𝑡𝑖 = 𝑡∞,𝑖 

𝑦𝑖 = 𝐼∞,𝑖 

𝐾𝑠,𝑖 = 𝑏𝑖/𝑓𝑖 

𝑆𝑖 ≥ 0 

Di Prima et 

al. (2021) - 

BESTWR 

Transient 
Non-

uniform 

�̂�𝑖 = 𝑆𝑖𝑡𝑖
0.5 −

𝑆𝑖√𝜋

2√𝛼𝑤𝑟,𝑖
𝑒𝑟𝑓 (√𝛼𝑤𝑟,𝑖𝑡𝑖 +

(𝐴𝑖𝑆𝑖
2 + 𝐵𝑖𝐾𝑠,𝑖)𝑡𝑖 − 

(𝐴𝑖𝑆𝑖
2+𝐵𝑖𝐾𝑠,𝑖)(1−𝑒−𝛼𝑤𝑟,𝑖𝑡𝑖)

𝛼𝑤𝑟,𝑖
  

𝐴𝑖 =
𝛾

 𝑟𝑖∆𝜃𝑖
 ; 

𝐵𝑖 =
2−𝛽

3
[1 − (

𝜃𝑖,𝑖

𝜃𝑠,𝑖
)

𝑛𝑖

] + (
𝜃𝑖,𝑖

𝜃𝑠,𝑖
)

𝑛𝑖

; 

0.3 ≤ 𝛽 ≤ 1.7 and 𝛾 = 0.75 

𝑡𝑖 = 𝑡𝑡𝑟,𝑖 

𝑦𝑖 = 𝐼𝑡𝑟,𝑖 

𝐾𝑠,𝑖 ≥ 0 

𝑆𝑖 ≥ 0 

𝛼𝑤𝑟,𝑖 ≥ 0 

𝑡𝑖 = 𝑡𝑡𝑟,𝑖 

𝑦𝑖 = 𝐼𝑡𝑟,𝑖 

𝐾𝑠,𝑖 = 𝑏𝑖 −
𝛾𝑆𝑖

2

 𝑟𝑖∆𝜃𝑖
 

0 ≤ 𝑆𝑖 ≤ √
𝑏𝑖𝑟𝑖∆𝜃𝑖

𝛾
 

𝛼𝑤𝑟,𝑖 ≥ 0 

𝑡𝑖 = 𝑡∞,𝑖 

𝑦𝑖 = 𝐼∞,𝑖 

𝐾𝑠,𝑖 = 𝑏𝑖 −
𝛾𝑆𝑖

2

 𝑟𝑖∆𝜃𝑖
 

0 ≤ 𝑆𝑖 ≤ √
𝑏𝑖𝑟𝑖∆𝜃𝑖

𝛾
 

𝛼𝑤𝑟,𝑖 ≥ 0 
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4.3.4. Model performance parameters 

To evaluate how accurately infiltration models predict cumulative infiltration 𝐼 (cm) compared to 

actual data across various scenarios, we estimated several statistical parameters: 

• Normalized Root Mean Square Error (NRMSE) 

NRMSE is the normalized version of RMSE, which scales the difference between predicted �̂�𝑗 and 

observed values 𝑦𝑗 at the 𝑗𝑡ℎ data point within the experimental plot (i.e., RMSE) by the mean �̅� of 

actual values 𝑦𝑗: 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

�̅�
=

∑
1

𝑚
(�̂�𝑗−𝑦𝑗)

2𝑚
𝑗=1

�̅�
                                                                                                [10] 

Lower NRMSE values, ideally approaching 0%, signify better predictive performance, indicating 

smaller discrepancies between predictions and observations. Higher values, closer to 100%, 

suggest larger discrepancies and poorer model performance. A 100% NRMSE would mean no 

correspondence between predictions and actual infiltration data. 

• Coefficient of Determination (R2) 

R2 quantifies how well a regression model fits the actual data points by measuring how much the 

independent variable (�̂�) explains the variability in the dependent variable (𝑦) in a predicted 

regression model.  

𝑅2 = 1 −
∑ (�̂�𝑗−𝑦𝑗)

2𝑚
𝑗=1

∑ (�̂�𝑗−�̅�)
2𝑚

𝑗=1

                                                                                                                  [11] 

R2 ranges from 0 to 1, with higher values indicating better predictive performance. However, a 

high R2 doesn't necessarily mean a perfect model; it could still overfit or have other issues, which 
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justifies the need for at least one or two statistical measures of models’ performance in addition to 

R2. Negative R2 values typically indicate a poor fit for the data. 

• Coefficient of correlation (CC) 

CC measures the strength and direction of the linear relationship between two variables and is 

calculated as follows: 

𝐶𝐶 =
𝑚 ∑ �̂�𝑗𝑦𝑗−∑ �̂�𝑗 ∑ 𝑦𝑗

𝑚
𝑗=1

𝑚
𝑗=1

𝑚
𝑗=1

√𝑚 ∑ �̂�𝑗
2𝑚

𝑗=1 −(∑ �̂�𝑗
 𝑚
𝑗=1 )

2
√𝑚∑ 𝑦𝑗

2𝑚
𝑗=1 −(∑ 𝑦𝑗

𝑚
𝑗=1 )

2
                                                                         [12] 

CC ranges from -1 to 1, with positive values(0 < 𝐶𝐶 ≤ 1)  indicating a positive linear 

relationship, negative values (−1 ≤ 𝐶𝐶 < 0) indicating a negative linear relationship, and values 

near 0 suggesting no systematic association between the variables. 
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4.4. Results and discussion 

4.3.1. Variability in 𝑲𝒔 and 𝑺 estimates across 3D models 

Here, we present insights learned from our metadata analysis applied on the 1724 out of 5023 

infiltration curves to investigate the variability in infiltration characteristics, 𝐾𝑠 (cmhr-1) and 𝑆 

(cmhr-0.5) across four one-dimensional (3D) infiltration models using the three extraction 

techniques/scenarios. 

The first exploration of the overall statistical variation of saturated hydraulic conductivity 𝐾𝑠 

(cmhr-1) and sorptivity 𝑆 (cmhr-0.5) estimates was illustrated in Figures 4.3 and 4.4, respectively. 

A notable observation was the significant similarity in 𝐾𝑠 and 𝑆 estimates across the models 

proposed by Haverkamp et al. (1994) and Lassabatere et al. (2006) (also known as BEST). This 

similarity was consistent under both transient- and steady-state expressions (between 1TR and 2TR 

from one end, and 1ST and 2ST from another end), and across different extraction techniques. 

This finding aligns with our expectations since BEST model is derived from Haverkamp et al. 

(1994) model, sharing similar algorithms and underlying assumptions, thereby leading to similar 

infiltration characteristic estimates.  

Despite the overall similarity between Haverkamp et al. (1994) and BEST models, a significant 

variability emerged in the estimated 𝐾𝑠 values when comparing transient- and steady-state 

expressions across each individual model (Figure 4.3). This variability suggests that the equations 

derived for specific behaviors of infiltration (either transient or steady state) within the same model 

can lead to different predictions of 𝐾𝑠. This is likely due to the distinct nature of transient and 

steady-state infiltration processes, each influenced by different soil and boundary conditions. 

Additionally, in 3D infiltration models, the estimation of 𝐾𝑠 is complicated by the radial flow 
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component and the three-dimensional geometry of the wetting front, which differentiates between 

how water moves during transient and steady state within the soil profile. Unlike 𝐾𝑠,  the estimates 

for sorptivity 𝑆 under models proposed by Haverkmap et al. (1994) and BEST showed less 

sensitivity to whether they were derived using transient or steady-state equation (Figure 4.4). As 

well, the overall median of 𝑆 estimates across different models demonstrated a slight degree of 

consistency, potentially pointing to common trends or patterns across the models in different 

scenarios. The relative stability of 𝑆 estimates across different phases of infiltration or conditions 

implies that sorptivity, which reflects the initial infiltration rate, is less affected by variations in 

transient and steady-state 3D infiltration behaviors compared to 𝐾𝑠. In other words, as sorptivity 

is primarily driven by the soil's capacity to absorb water initially, 𝑆 can tend to be a more consistent 

property across different phases of 3D infiltration compared to 𝐾𝑠.  

The three extraction techniques employed, referred to as Scenario 1, Scenario 2-TR/ST, and 

Scenario 3, demonstrate relatively small varying degrees of impact on the estimated values of 𝐾𝑠 

when Haverkamp et al. (1994) and BEST were applied (Figure 4.3). Starting first with the 

transient-state equations (i.e., 1TR and 2TR), Scenario 1 exhibited a similar overall spread of 𝐾𝑠 

estimates compared to Scenarios 2-TR and 3 but with a slightly lower median, suggesting that 

these equations might slightly underestimate 𝐾𝑠 under scenario 1. Under this scenario, Haverkamp 

et al. (1994) and BEST (i.e., 1TR and 2TR) optimized 𝐾𝑠 directly from transient-state data focusing 

primarily on the early/transient infiltration phase, without any anchor to steady-state conditions 

(as used in Scenario 2-TR and 3), possibly leading to a more conservative estimate of 𝐾𝑠. Moving 

to the steady-state expressions (i.e., 1ST and 2ST), predictions of 𝐾𝑠 across all scenarios align 

closely. This is expected as Haverkamp et al. (1994) and BEST developed steady-state expressions 
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as linear equations that inherently converge to the steady-state slope 𝑏 incorporating 𝐾𝑠, 𝑆, and 

geometric considerations as defined in Equation [7] under Scenario 2. 

Stewart and Abou Najm (2018) showed trends that are relatively like those observed in the models 

by Haverkamp et al. (1994) and BEST, under different extraction techniques. Under scenario 1, 

the three models (1TR, 2TR, and 3TR) exhibited a moderately similar spread in 𝐾𝑠 estimates, with 

Stewart and Abou Najm (2018) showing a slightly higher median. Now under scenarios 2 and 3, 

Stewart and Abou Najm (2018) behave similarly to the steady-state expressions developed by 

Haverkamp et al. (1994) and BEST, which highlights a very interesting finding for 𝐾𝑠 predictions. 

The close alignment in predictions suggests a high level of consistency in how 𝐾𝑠 is defined as 

function of the steady-state slope 𝑏, soil’s sorptive capacity (either sorptivity 𝑆 or capillary length 

𝜆), and geometric considerations across these three models. While we ascertain that each 3D model 

developed distinct relationships of 𝐾𝑠 to the steady-state slope 𝑏 and geometric configurations, the 

fundamental principles governing these relationships are aligned.  

As for the model proposed by Di Prima et al. (2021) (also known as BESTWR), this model stood 

out as distinct from the other models by incorporating water repellency and hydrophobicity into 

infiltration modeling (i.e., integrating a third parameter 𝛼𝑤𝑟, in addition to 𝐾𝑠 and 𝑆). This 

additional parameter 𝛼𝑤𝑟 models the impact of water repellency, distinguishing it from the classic 

concave shape depicted by other models and instead describing a convex shape in cumulative 

infiltration curves. From our analysis (Figures 4.3 and 4.4), Di Prima et al. (2021) fails in 

estimating reliable values of 𝐾𝑠 and S when optimized simultaneously using the least square 

technique (i.e., scenarios 1 and 3). However, they provided accurate and reliable predictions of 𝐾𝑠 

and S under Scenario 2-TR where 𝐾𝑠 is estimated as function of steady-state slope 𝑏, sorptivity 𝑆, 

and geometric factors (Figure 4.3), reducing the system from three unknows (𝐾𝑠, 𝑆, and 𝛼𝑤𝑟) to a 
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simpler system with two unknows (𝑆 and 𝛼𝑤𝑟). This distinctive performance of Di Prima et al. 

(2021) under varying extraction techniques highlight the influence of infiltration dynamics on the 

complex interactions between 𝐾𝑠, 𝑆, and 𝛼𝑤𝑟. During the early stages of infiltration, water 

repellency causes a delay in the wetting front advancement, leading to a convex shape in the 

cumulative infiltration curve. This complexity makes it challenging to optimize 𝐾𝑠 and S 

accurately using only transient-state data with the varying influence of water repellency. As 

infiltration progresses, the impact of water repellency diminishes, allowing the soil to reach a more 

stable infiltration rate. Under steady-state conditions, effects of hydrophobicity are minimized, 

making it easier to estimate 𝐾𝑠 accurately when related to the steady-state slope 𝑏, sorptivity S, 

and geometry. Additionally, integration of geometric factors in steady-state expressions helps to 

normalize effects of hydrophobicity, leading to more consistent and reliable 𝐾𝑠 and S estimates. 
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Figure 4.3: Boxplots illustrating the statistical variation of saturated hydraulic conductivity Ks (cmhr-1) 

estimated across the experimental plots of total N=1724 per each 3D infiltration model. Models are 

ordered by the historical evolution of infiltration modeling attempts from the oldest (left) to the most 

recent (right). 



 

217 
 

 

Figure 4.4: Boxplots illustrating the statistical variation of sorptivity S (cmhr-0.5) estimated across the 

experimental plots of total N=1724 per each 3D infiltration model. Models are ordered by the historical 

evolution of infiltration modeling attempts from the oldest (left) to the most recent (right). 

While the boxplots in Figures 4.3 and 4.4 effectively portrayed the degree of similarity and 

variability in the estimated infiltration characteristics, 𝐾𝑠 and 𝑆, they do not capture every aspect 

of the underlying data.  

4.4.2. Variability in 𝑲𝒔 and 𝑺 estimated values across 3D models and extraction methods 

per each infiltration experiment 

To gain a deeper understanding, we explored 𝐾𝑠 and 𝑆 estimates across the four 3D infiltration 

models for each individual plot within the dataset, as depicted in Figures 4.5 and 4.6.  
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This detailed analysis provided a multifaceted view of the 𝐾𝑠 and 𝑆 estimates in each scenario, 

offering insights into the distributional characteristics, statistical variations, and outlier counts 

associated with each of the 3D infiltration models at the plot level. In both figures (i.e., Figures 

4.5 and 4.6), the density plots on the left depicted the distribution of z-scores. Each z-score explains 

the distance from the mean (standard deviations) across four 3D infiltration models per infiltration 

plot. The graphical plots in the right segment provided a detailed examination of statistical 

variations within each experimental plot, with key statistical indicators including means (μ) 

highlighted in red, model-specific outliers highlighted in colors designated to each model, and +- 

standard deviation (𝜎) indicated by black horizontal lines. The barplots in the bottom summarized 

the total number of outliers observed in estimates for each of the 3D infiltration models. An outlier 

is defined as a data point (𝑥) that deviates significantly from most other data points in the dataset. 

This deviation is determined based on a z-score falling outside the range of -2 to +2 where 𝑧 is 

estimated using the following formula 𝑧 =
𝑥−𝜇

𝜎
. 

Figures 4.5 and 4.6 highlighted variability of 𝐾𝑠 and 𝑆 estimates across major experimental plots 

in Scenarios 1 and 3, although major data points representing 𝐾𝑠 and 𝑆 estimates for each model 

are clustered around the mean within the [-2,2] z-score range, with a minimal number of outliers 

depicted. This clustering suggests that models might produce statistically consistent estimates, but 

notable variability exists, which can be attributed to underlying physics behind each model. The 

variability in 𝐾𝑠 and 𝑆 estimates can be primarily attributed to the model proposed by Di Prima et 

al. (2021). The inclusion of the 𝛼𝑤𝑟 parameter, which accounts for water repellency and the 

resulting convex shape in cumulative infiltration curves, complicates the simultaneous 

optimization of 𝐾𝑠 and 𝑆 using transient-state data under Scenario 1 and 3, leading to greater 

variability in 𝐾𝑠 and 𝑆 estimates within each plot. As well, variability in predictions is more 
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pronounced across 𝐾𝑠 compared to 𝑆 estimates since, as stated before, estimates of 𝐾𝑠 can be 

variable across the same model when using either transient- or steady-state equations/datasets; 

however, this discrepancy is less significant for 𝑆. 

Variability in 𝐾𝑠 and 𝑆 decreased among models under Scenario 2 (2TR and 2ST) especially when 

predicting 𝑆, highlighting a more uniform behavior of the models in terms of 𝐾𝑠 and 𝑆 estimates 

under Scenario 2. Relating 𝐾𝑠 and 𝑆 together transforms the problem from a system with two 

unknowns (𝐾𝑠 and 𝑆) to one unknown (𝑆) for non-hydrophobic soils, and from a system with three 

unknowns (𝐾𝑠, 𝑆, and 𝛼𝑤𝑟) to two unknowns (𝑆 and 𝛼𝑤𝑟) for water-repellent soils, mainly reducing 

the complexity imposed on the optimization. On one hand, anchoring 𝐾𝑠 to steady-state conditions 

ensures that the steady-state slope of the cumulative infiltration curve reflects 𝐾𝑠 dynamics. On 

the other hand, relating sorptivity and geometric factors to 𝐾𝑠 play a significant role in 𝐾𝑠 

estimation across 3D models, reflecting the soil's ability to absorb water initially and affecting the 

shape of the wetting front. Therefore, our detailed plot-level analysis highlighted the importance 

of steady-state conditions in providing consistent and accurate infiltration characteristics, 

especially in complex soil conditions affected by water repellency.  

Interestingly, we deciphered in Figure 4.5 a spike around 𝐾𝑠 = 1𝑒−06 𝑐𝑚ℎ𝑟−1 across Haverkamp 

et al. (1994), BEST, and BESTWR models under Scenario 2-TR, encompassing 457 plots (i.e., 

27% of plots). This spike suggests that the optimizer in Scenario 2-TR which is constrained by the 

condition 𝑆𝑖 ≤ √
𝑏𝑖𝑟𝑖∆𝜃𝑖

𝛾
 (as shown in the first two rows of Table 4.2 under Scenario 2-TR), was 

consistently converging to this maximum value across these models, leading to 𝐾𝑠 to be equal to 

minimal value set at 1𝑒−06 𝑐𝑚ℎ𝑟−1. This indicates that the optimizer might be overly restrictive 

when transient-state expressions were applied using transient-state data, constraining the 
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predictions of a realistic range of 𝐾𝑠 values that reflect actual soil properties. However, we plotted 

Figure 4.7 to check whether the extraction technique (i.e., Scenario 2-TR) is causing this spike, 

which can point to potential limitations or biases when such models (i.e., Haverkamp et al. (1994), 

BEST, and BESTWR) are applied. Figure 4.7 compared Scenarios 1 and 3 (i.e., conventional 

optimization techniques) versus Scenario 2 (2TR and 2ST) regarding the estimates of 𝐾𝑠 within 

the 457 plots across the models developed by Haverkamp et al. (1994), BEST, and BESTWR. The 

spike was again depicted under the other two scenarios, pinpointing potential limitations behind 

the models' concepts and algorithms that depict the transient state infiltration behavior rather than 

the extraction technique itself. In contrast, steady-state expressions of these models showed a more 

realistic range of 𝐾𝑠 predictions, which can better reflect the actual soil-water structure.  
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Figure 4.5: Graphical representing of the variability, skewness, and outliers in the estimates of 𝐾𝑠 (cmhr-

1) at the plot level per each 3D infiltration model.  
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Figure 4.6: Graphical representing of the variability, skewness, and outliers in the estimates of 𝑆 (cmhr-

0.5) at the plot level per each 3D infiltration model. 
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Figure 4.7: Histograms representing the statistical variation of saturated hydraulic conductivity 𝐾𝑠 

(cmhr-1) per each 3D infiltration model across N=457 plots that exhibited minimal values of 𝐾𝑠 (10-6 

cmhr-1) by the three models under Scenario 2-TR including Haverkamp et al. (1994), BEST, and BESTWR 
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It is worth noting that the transient-state expressions of 3D models are applicable to transient data 

comprising N=1674 experiment plots, compared to the total or steady-state data comprising 

N=1724 plots. This discrepancy is due to 50 infiltration tests in our dataset that did not undergo a 

transition phase and were already under saturation conditions. However, since this number 

represents only a negligible 3% of the total dataset, it will not affect the statistical comparison 

between transient- and steady-state expressions. 

Another notable observation regarding the number of estimates is illustrated under Scenario 2-ST, 

where the estimation of 𝐾𝑠 and S from Haverkamp et al. (1994) and BEST models resulted in NA 

values. This issue led to fewer estimates (N=1313) than the expected 1724 estimates (Figures 4.5 

and 4.6). Upon investigation, we plotted corresponding cumulative infiltration curves and found 

these curves to be convex or non-uniform in shape. Since these models were designed to depict 

the classic concave shape of cumulative infiltration curves, they failed in generating finite 

estimates of 𝐾𝑠 and S. This is especially problematic because the intercept 𝑐 (Equation [6]) of the 

linear cumulative curve at steady state is negative. Given that S is estimated using the intercept 𝑐 

(as shown in the first two rows of Table 4.2 under Scenario 2-ST), the root mean square of a 

negative value is infinite, leading to an inability of these models to produce valid estimates under 

such conditions. This finding underscored the need to apply other models under these specific 

conditions. Even if finite values of 𝐾𝑠 and S were estimated across these models using other 

extraction techniques, limitations are evident from the classic models. At this stage, Scenario2-ST 

has proved efficient in depicting the inability of models to produce valid estimates in cases where 

infiltration curves deviate from the expected concave shape. For accurate and reliable estimation 

of soil hydraulic properties under conditions of water-repellency, alternative models that can 

handle such deviations are necessary. 
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4.4.3. Performance of 3D infiltration models 

Our analysis revealed that Scenarios 1 and 3 exhibited relatively better performance compared to 

Scenario 2 in predicting cumulative infiltration 𝐼 (cm) across Haverkamp et al. (1994), BEST, and 

Stewart and Abou Najm (2018) models. Specifically, Scenario 1 demonstrated the lowest 

Normalized Root Mean Squared Error (NRMSE), the highest value of R2, and the highest 

Correlation Coefficient (CC) to estimate infiltration compared to Scenarios 2 and 3 (Figure 4.8). 

However, when considering BESTWR model, Scenarios 1 and 3 led to infiltration predictions with 

very low accuracy (NRMSE > 50 and R2<0). Interestingly, BESTWR showed significantly better 

predictions under Scenario 2-TR. This indicates that for BESTWR model, estimating infiltration 

using transient-state data and relating 𝐾𝑠 to the steady-state slope 𝑏, sorptivity 𝑆, and geometry 

(Scenario 2-TR) resulted in better predictions compared to other scenarios. 

Now one could suggest the following hypothesis based on the observed performance of these 

models on cumulative infiltration 𝐼 predictions: “Scenario 1 can be applied to estimate 𝐾𝑠 and S 

from Haverkamp et al. (1994), BEST, Stewart and Abou Najm (2018) models while Scenario 2-

TR can be used to estimate 𝐾𝑠 and S from BESTWR”.   

However, it's crucial to acknowledge that while key evaluation parameters provide valuable 

insights into the overall performance of infiltration models under our analysis scenarios, they do 

not capture whether 𝐾𝑠 and S adhere to the physical principles of infiltration theory. We observed 

that if we follow the suggested hypothesis, a wider range of behaviors will be exhibited by 

Haverkamp et al. (1994), BEST, Stewart and Abou Najm (2018)  under Scenario 1 compared to 

other scenarios, as illustrated in Figure 4.9. Specifically, 60% and 46% of the experimental plots 

under Scenario 1 showed a magnitude (max-min) exceeding the mean value across 𝐾𝑠 and S 
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estimates, respectively. Convergence issues were encountered as previously discussed when 

transient-sate expressions were applied to estimate 𝐾𝑠 and S under this scenario. Therefore, while 

the model's performance metrics might appear favorable, the underlying physical realism and 

robustness of the parameter estimates could be compromised. Therefore, careful consideration and 

possibly further refinement of the models and scenarios are necessary to ensure both accurate and 

physically meaningful predictions of soil hydraulic properties. 

 

Figure 4.8: Range plots illustrating the performance of 3D infiltration models across 1724 experimental 

plots using three key model performance parameters: Normalized Root Mean Squared Error (NRMSE), 

R-squared value (R2), and Coefficient of Correlation (CC). 
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Figure 4.9: Graphical visualization of the statistical variation of the magnitude (max-min)/mean 

estimated from the saturated hydraulic conductivity 𝐾𝑠 (cmhr-1) and sorptivity 𝑆 (cmhr-0.5) values per 

each experimental plot across 1724 experimental plots among 3D infiltration models of non-hydrophobic 

soils 
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4.4.4. Infiltration models for water-repellent soils 

Both, Abou Najm et al. (2021) and Di Prima et al. (2021) were developed as physical infiltration 

frameworks to account for water repellency in soils that depict convex cumulative infiltration 

curves.  

Abou Najm et al. (2021) pioneered the addition of a soil water-repellency parameter 𝛼𝑤𝑟 (T-1) and 

thus proposed the scaling factor (1 − 𝑒−𝛼𝑤𝑟𝑡) that can be incorporated to any infiltration model as 

an attempt to mimic infiltration behaviors of water-repellent soils. Abou Najm et al. (2021) further 

developed a modified version of classic two-term Philip’s equation (Philip, 1957b) (also known 

as WR) by integrating the scaling factor (1 − 𝑒−𝛼𝑤𝑟𝑡) to develop an analytical equation describing 

one-dimensional (1D) cumulative infiltration in hydrophobic soils. 

Di Prima et al. (2021) expanded upon the existing BEST method (Lassabatere et al., 2006) and 

developed an analytical equation (also known as BESTWR) by incorporating the scaling factor 

(1 − 𝑒−𝛼𝑤𝑟𝑡) proposed by Abou Najm et al. (2021) as an attempt to mimic three-dimensional (3D) 

infiltration behaviors of water-repellent soils.  

At this level, we carried out a statistical analysis on the performance of these two models in terms 

of their capabilities or limitations in estimating reliable values of the soil water-repellency 

parameter 𝛼𝑤𝑟 (T-1), and therefore characterizing the convex shape of cumulative infiltration 

curves (Figures 4.10 and 4.11). 

As shown in Figure 4.10, WR demonstrated a relative consistency in 𝛼𝑤𝑟 predictions across 

varying extraction techniques. 84% to 93% of the infiltration plots showed favorable Normalized 

Root Mean Squared Error (NRMSE) of less than 10% between Scenario 3, and Scenarios 1 and 2-

TR, respectively. Additionally, the WR model was able to effectively characterize the shape of 



 

229 
 

cumulative infiltration curves. WR predicted lower values of 𝛼𝑤𝑟 converging to zero for 

infiltration plots exhibiting a convex shape, and relatively higher values converging to infinity for 

infiltration plots exhibiting a concave shape (Figure 4.11). 𝛼𝑤𝑟 parameter captures the initial 

resistance of water-repellent soils to infiltration, with values approaching zero as the water 

repellency effect dominates. In contrast, for non-repellent soils or soils where the water repellency 

diminishes quickly, 𝛼𝑤𝑟 values are higher, reflecting the quicker transition from initial to steady-

state infiltration rates. 

As for BESTWR, this model did not generate statistically significant values of 𝛼𝑤𝑟 under scenarios 

1 and 3 with high NRMSE values indicating less reliable predictions. However, the model 

succeeded in providing reliable and comparable predictions of 𝛼𝑤𝑟 with those obtained through 

WR model under Scenario 2-TR, where the model was able to effectively characterize the shape 

of cumulative infiltration curves, with 75% of the infiltration plots showing favorable NRMSE of 

less than 10%. Therefore, while BESTWR model might struggle under certain extraction 

techniques, the model can still provide reliable 𝛼𝑤𝑟 estimates under specific conditions (like 

Scenario 2-TR), highlighting the importance of selecting appropriate scenarios for model 

application. 

These findings suggest that the scaling factor proposed by Abou Najm et al. (2021) could be a 

versatile tool for characterizing soil water repellency and its impact on infiltration dynamics. The 

addition of the soil-water repellency parameter 𝛼𝑤𝑟 aligns well with the physical expectations of 

how water-repellent and non-repellent soils behave under infiltration conditions.  
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Figure 4.10: Normalized mean squared error (NRMSE) error as function of 𝛼𝑤𝑟 (cm-1) parameter 

estimated by (1D) and (3D) infiltration models of water-repellent soils, including WR (2021) and 

BESTWR (2021) respectively, across N=1674 infiltration plots. 

 

Figure 4.11: Distribution of 𝛼𝑤𝑟 (cm-1) parameter estimated by (1D) and (3D) infiltration models of 

water-repellent soils, including WR (2021) and BESTWR (2021) respectively, as function of the shape of 

cumulative curves (concave, convex, and non-uniform) across N=1674 infiltration plots 
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4.5. Conclusion  

Compared to 1D models, 3D models offer greater accuracy in situations involving varied soil 

textures, layering, or significant radial where infiltration is not strictly vertical such as in 

heterogeneous soils. However, significant efforts have been dedicated to the development and 

evaluation of 1D infiltration models compared to 3D modeling due to the greater complexity, 

computational demands, and data requirements associated with 3D modeling efforts. To this end, 

we carried out a metadata analysis to shed light on the strengths and limitations of 3D models to 

depict the infiltration behaviors of both non-hydrophobic and water-repellent soils, while studying 

the variability and uniqueness associated with estimated saturated hydraulic conductivity and 

sorptivity in the context of four different 3D infiltration models and three different extraction 

techniques illustrated by three scenarios. Scenario 1 optimized simultaneously for the two 

parameters, 𝐾𝑠 and 𝑆, using each model’s equation. Scenario 2 unified 𝐾𝑠 across all models, as the 

steady-state slope of the cumulative infiltration curve at end times, and further optimized for 𝑆 

using each model’s equation. Scenario 3 represented a dual optimization which optimized for 𝐾𝑠 

and 𝑆 using each models’ equation while minimizing the infiltration error and the difference 

between 𝐾𝑠 and the steady-state slope of the cumulative infiltration curve. Our detailed analysis of 

3D models and the different scenarios with their impact on infiltration characteristics, 𝐾𝑠 and 𝑆, 

provided valuable insights into the trade-offs and considerations involved in 3D model’s selection 

and extraction techniques for soil-water parameter estimation. 

In summary, our analysis revealed both expected similarities and notable variabilities in the 

infiltration characteristic estimates across different 3D models and extraction techniques. The 

observed similarities and variabilities highlight the importance of understanding the specific 

contexts and conditions under which 3D different models are applied. For instance, Haverkamp et 
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al. (1994) and BEST models have provided similar estimates under varying extraction techniques, 

underscoring their shared foundations. However, the variability within each model's transient and 

steady-state expressions for 𝐾𝑠 highlights the need for careful model selection based on specific 

infiltration conditions. Sorptivity 𝑆 proved to be more consistent across these variations, providing 

a reliable measure of initial infiltration behavior. Compared to transient-state expressions, steady-

state expressions of Haverkamp et al. (1994) and BEST revealed greater consistency and thus more 

reliable estimates of 𝐾𝑠, recommending their application in the context of 𝐾𝑠 estimation. 

Furthermore, Scenario 2 (i.e., where 𝐾𝑠 is related constrained by steady-state conditions and related 

to sorptivity and geometry) has been shown to provide reliable estimates of 𝐾𝑠 and 𝑆 across 

different 3D models and is therefore recommended as an extraction technique. By relating 𝐾𝑠 and 

𝑆 together, the problem is transformed from a system with two unknowns (𝐾𝑠 and 𝑆) to one unknow 

(𝑆) for non-hydrophobic soils, and from a system with three unknowns (𝐾𝑠, 𝑆, and 𝛼𝑤𝑟) to two 

unknowns (𝑆 and 𝛼𝑤𝑟) for water-repellent soils, reducing numerical complexity. In addition, the 

close alignment in 𝐾𝑠 predictions between 3D models describing homogeneous soils, including 

ST-Haverkamp et al. (1994), ST-BEST, and Stewart and Abou Najm (2018), under Scenario 2-ST 

suggests a high level of consistency in defining 𝐾𝑠 as function of the steady-state slope 𝑏, soil’s 

sorptive capacity (either sorptivity 𝑆 or capillary length 𝜆), and geometric considerations across 

these three models. Scenario 2-ST has further demonstrated a remarkable capability in depicting 

the inability of models including Haverkamp et al. (1994) and BEST to produce valid estimates 

under conditions of water-repellency, enforcing researchers to apply alternative models, such as 

the BESTWR model under such conditions, which can handle water-repellency. Concluding with 

BESTWR, this model also shows more realistic predictions under Scenario 2, proving to be 

suitable for soil water parameter estimation in hydrophobic soils. 



 

233 
 

4.6. References 

 

Basset, Christelle; Abou Najm, Majdi; Angulo-Jaramillo, Rafael; Bagarello, Vincenzo; 

Ghanbarian, Behzad; Di Prima, Simone; Iovino, Massimo; Lassabatere, Laurent; Stewart, R. 

(2023). Conceptual and empirical approaches to characterize infiltration: A literature review 

(under review). Vadose Zone Journal. 

Bayabil, H. K., Dile, Y. T., Tebebu, T. Y., Engda, T. A., & Steenhuis, T. S. (2019). Evaluating 

infiltration models and pedotransfer functions: Implications for hydrologic modeling. 

Geoderma. https://doi.org/10.1016/j.geoderma.2018.11.028 

Di Prima, S., Castellini, M., Abou Najm, M. R., Stewart, R. D., Angulo-Jaramillo, R., Winiarski, 

T., & Lassabatere, L. (2019). Experimental assessment of a new comprehensive model for 

single ring infiltration data. Journal of Hydrology, 573, 937–951. 

Di Prima, S., Stewart, R. D., Abou Najm, M. R., Ribeiro Roder, L., Giadrossich, F., Campus, S., 

Angulo-Jaramillo, R., Yilmaz, D., Roggero, P. P., Pirastru, M., & Lassabatere, L. (2021). 

BEST-WR: An adapted algorithm for the hydraulic characterization of hydrophilic and water-

repellent soils. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2021.126936 

Elrick, D. E., Reynolds, W. D., & Tan, K. A. (1988). A new analysis for the constant head well 

permeameter technique. Proceedings of the Conference on Validation of Flow and Transport 

Models for the Unsaturated Zone, New Mexico, 23, 26. 

Fodor, N., Sándor, R., Orfanus, T., Lichner, L., & Rajkai, K. (2011). Evaluation method 

dependency of measured saturated hydraulic conductivity. Geoderma. 

https://doi.org/10.1016/j.geoderma.2011.07.004 

Jačka, L., Pavlásek, J., Pech, P., & Kuráž, V. (2016). Assessment of evaluation methods using 

infiltration data measured in heterogeneous mountain soils. Geoderma. 

https://doi.org/10.1016/j.geoderma.2016.04.023 

Lassabatere, L., Angulo-Jaramillo, R., Soria-Ugalde, J. M., Šimůnek, J., & Haverkamp, R. (2009). 

Numerical evaluation of a set of analytical infiltration equations. Water Resources Research. 

https://doi.org/10.1029/2009WR007941 

Minasny, B., & McBratney, A. B. (2007). Estimating the water retention shape parameter from 

sand and clay content. Soil Science Society of America Journal, 71(4), 1105–1110. 

Mirzaee, S., Zolfaghari, A. A., Gorji, M., Dyck, M., & Ghorbani Dashtaki, S. (2014). Evaluation 

of infiltration models with different numbers of fitting parameters in different soil texture 

classes. Archives of Agronomy and Soil Science, 60(5), 681–693. 

Mishra, S. K., Tyagi, J. V, & Singh, V. P. (2003). Comparison of infiltration models. Hydrological 

Processes, 17(13), 2629–2652. 

Nie, W., Ma, X., & Fei, L. (2017). Evaluation of Infiltration Models and Variability of Soil 

Infiltration Properties at Multiple Scales. Irrigation and Drainage. 

https://doi.org/10.1002/ird.2126 

Philip, J. R. (1990). Inverse solution for one‐dimensional infiltration, and the ratio A/K1. Water 



 

234 
 

Resources Research. https://doi.org/10.1029/WR026i009p02023 

Rahmati, M., Latorre, B., Lassabatere, L., Angulo-Jaramillo, R., & Moret-Fernández, D. (2019). 

The relevance of Philip theory to Haverkamp quasi-exact implicit analytical formulation and 

its uses to predict soil hydraulic properties. Journal of Hydrology. 

https://doi.org/10.1016/j.jhydrol.2019.01.038 

Rahmati, M., Weihermüller, L., Vanderborght, J., Pachepsky, Y. A., Mao, L., Sadeghi, S. H., 

Moosavi, N., Kheirfam, H., Montzka, C., Van Looy, K., Toth, B., Hazbavi, Z., Al Yamani, 

W., Albalasmeh, A. A., Alghzawi, M. Z., Angulo-Jaramillo, R., Antonino, A. C. D., 

Arampatzis, G., Armindo, R. A., … Vereecken, H. (2018). Development and analysis of the 

Soil Water Infiltration Global database. Earth System Science Data. 

https://doi.org/10.5194/essd-10-1237-2018 

Reynolds, W. D., & Elrick, D. E. (1990). Ponded Infiltration From a Single Ring: I. Analysis of 

Steady Flow. Soil Science Society of America Journal. 

https://doi.org/10.2136/sssaj1990.03615995005400050006x 

Shukla, M. K., Lal, R., & Unkefer, P. (2003). Experimental evaluation of infiltration models for 

different land use and soil management systems. Soil Science, 168(3), 178–191. 

https://doi.org/10.1097/00010694-200303000-00004 

Sihag, P., Tiwari, N. K., & Ranjan, S. (2017). Estimation and inter-comparison of infiltration 

models. Water Science, 31(1), 34–43. 

Smettem, K. R. J., Parlange, J. Y., Ross, P. J., & Haverkamp, R. (1994). Three‐dimensional 

analysis of infiltration from the disc infiltrometer: 1. A capillary‐based theory. Water 

Resources Research. https://doi.org/10.1029/94WR01787 

Stewart, R. D., & Abou Najm, M. R. (2018). A Comprehensive Model for Single Ring Infiltration 

I: Initial Water Content and Soil Hydraulic Properties. Soil Science Society of America 

Journal. https://doi.org/10.2136/sssaj2017.09.0313 

Vand, A. S., Sihag, P., Singh, B., & Zand, M. (2018). Comparative evaluation of infiltration 

models. KSCE Journal of Civil Engineering, 22, 4173–4184. 

White, I., & Sully, M. J. (1987). Macroscopic and microscopic capillary length and time scales 

from field infiltration. Water Resources Research. 

https://doi.org/10.1029/WR023i008p01514 

Wu, L., & Pan, L. (1997). A Generalized Solution to Infiltration from Single-Ring Infiltrometers 

by Scaling. Soil Science Society of America Journal. 

https://doi.org/10.2136/sssaj1997.03615995006100050005x 

Wu, L., Pan, L., Mitchell, J., & Sanden, B. (1999). Measuring Saturated Hydraulic Conductivity 

using a Generalized Solution for Single-Ring Infiltrometers. Soil Science Society of America 

Journal. https://doi.org/10.2136/sssaj1999.634788x 

 

  



 

235 
 

CHAPTER 5: How does soil structure affect water infiltration? A meta-data systematic 

review 

5.1. Abstract 

Soil structure is a key attribute of soil quality and health that significantly impacts water 

infiltration. Structure can be significantly altered by natural or anthropogenic drivers including soil 

management practices and can in turn impact soil infiltration. Those changes in soil structure are 

often complex to quantify and can lead to conflicting impacts on water infiltration into soils. Here, 

we present a narrative systematic review (SR) of the impacts of soil structure on water infiltration. 

Based on inclusion and exclusion criteria, as well as defined methods for literature search and data 

extraction, our systematic review led to a total of 153 papers divided into two sets: experimental 

(131) and theoretical (22) papers. That implied a significant number of in-situ and field 

experiments that were conducted to assess the impacts of soil structure on water infiltration under 

the influence of different land uses and soil practices. Analysis of the metadata extracted from the 

collected papers revealed significant impacts of soil structure on water infiltration. Those effects 

were further attributed to land use and management, where we demonstrate the impact of three 

unique categories: soil amendments, crop management and tillage. Furthermore, significant 

correlations were established between infiltration rate and soil structural properties, with R2 values 

ranging from 0.51 to 0.80 and for saturated hydraulic conductivity and soil structural properties, 

with R2 values ranging from 0.21 to 0.78. Finally, our review highlighted the significant absence 

of and the need for theoretical frameworks studying the impacts of soil structure on water 

infiltration.  
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5.2. Introduction 

Soil structure refers to the hierarchical grouping and arrangement of soil particles (sand, silt, clay, 

organic and inorganic particles) into porous compounds forming aggregates which can vary in size 

and shape from small clusters through to large blocks (Dexter, 1988; Lal, 1991; Kay and Angers, 

2001). Some soils build a large, solid, structureless mass (referred to as massive); and others 

consist of small, porous aggregates that tend to have a uniform rounded shape – referred to as 

granular, a desirable structure for the growth of crops (Coughlan et al., 1991; Levine et al., 1996). 

These aggregate arrangements develop a strong structural influence on the ability of soil to absorb 

and hold water during irrigation and rainfall events (Franzluebbers, 2002; Pagliai et al., 2004; Di 

Prima et al., 2021; Abou Najm et al., 2021).  

Over the last 40 years, soil structure has received growing interest and broader audience as a 

dynamic soil factor affecting soil-water movement at multiple scales (Hamblin, 1986; Abou Najm 

et al., 2010; Sanders et al., 2012). Furthermore, expanded efforts in conservational practices, from 

no-till to cover crops to soil amendments and others, have led to significant impacts on soil 

structure. Those impacts, however, were the results of myriads of complex and interconnected 

factors, often resulting in conflicting soil responses. As a result, several studies have investigated 

the role of soil structure, with both its inherent and induced variations, on water infiltration (Lepore 

et al., 2009; Rahmati, 2017). However, no studies, to our knowledge, have compared previous 

findings in the structured approach of a “systematic review”. A systematic review is a review that 

conducts a literature search to answer a clearly formulated question by applying predetermined 

inclusion and exclusion criteria used to identify and eventually analyze the collected data from the 

most relevant research.  
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Here, we aim to conduct a meta-analysis systematic review (SR) that investigates the impacts of 

soil structure on water infiltration. Therefore, the primary research question that best follows this 

approach is: How does soil structure affect water infiltration? 
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5.3. Methodology 

Our systematic review follows the approach developed by the Center for Evidence-Based 

Conservation (CEBC) which answers a research question through a literature search followed by 

data extraction based on a defined set of ‘inclusion criteria’. The research question for this 

systematic review (how does soil structure affect water infiltration?) was formulated according to 

the PECO (Population/Exposure/Comparator and Outcomes) model as described by the CEBC’s 

protocol. Three different database sources (Scopus, ScienceDirect and googlescholar.com) were 

used in the review including peer reviewed journal articles and other scientific documents, but 

only peer reviewed journal articles published in English were considered. Table 5.1 shows the data 

sources and the keywords used in building the literature search. 

Table 5.1: Literature search: publishing sources and keywords 

Publishing sources Keywords Number of Records (on May 8, 

2020) 

Scopus ("soil structur*" OR "soil infiltra*" 

OR "soil aggregate*") AND 

(structur* OR aggregat*) AND 

infiltra* 

1,524 

ScienceDirect ("soil structure" OR "soil 

infiltration" OR "soil aggregation") 

AND (structure OR aggregation) 

AND infiltration 

266 

Google scholar Same as in ScienceDirect 22a 

Wildcard characters (*and?) are not supported in ScienceDirect and Google Scholar.           

aUsing Google scholar, we included 22 out of 17,400 results which are the most relevant and unique retrieved 

records.  

 

Once collected, we exported all these references into Mendeley software which can also check for 

any duplication in references. The first filtering process was carried out in Mendeley based on the 

title of the database, followed by the second screening based on the reading of screened abstracts. 
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At the end, the remaining literature went through a full-text review after being selected and 

tabulated in MS Excel spreadsheets. As a result, the literature gathered consisted of 1,812 records, 

narrowed down to a total of 1,544 references after duplicates were removed. The title-screening 

lowered the number to 854 followed by the abstract-screening which led to a final of 462 

references. Figure 5.1 provides a flow chart summarizing the screening process.  

Among the 462 records that passed the title and abstract screening, 84% (387) of the literature 

assessed the direct or indirect impacts of soil structure on water infiltration upon studying the 

influence of different land uses on hydraulic and structural soil properties through in-situ and field 

experiments. Furthermore, 7% (32) of the retrieved literature consisted of theoretical papers 

relating water infiltration/flow to soil structure through previously or newly developed models; 

and the remaining 9% (43) were review papers. Then, the screened papers were subjected to full 

text reading and exclusion criteria. The exclusion criteria covered papers that did not have a clear 

treatment/control system, did not report infiltration or soil texture data, and did not show a clear 

concise description of models relating infiltration/flow to soil structure. Finally, a total of 153 

papers passed the exclusion criteria and were analyzed. Those papers were divided into two sets, 

experimental (131) and theoretical (22). Two comprehensive summary tables were built, one for 

each set, including the title, the author, and the publication year of each paper in MS Excel 

spreadsheets.  
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Figure 5.1: Flowchart of describing the steps of the literature search, the inclusion and exclusion criteria 

and the quality assessment 
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5.4. Results and Discussion 

Here, we present a summary of the lessons learned and different compilations and integrations of 

data gathered from the 153 selected papers (131 experimental and 22 theoretical). We first 

observed that the results were dominated by field-scale experimental studies comparing field 

responses under different soil practices or treatments with the purpose of studying changes in water 

infiltration and soil structure. We also noted a significant absence of theoretical efforts to describe 

soil structural attributes as impacted by different land uses, and we will get back to this point 

towards the end of this study.  

To start, we plotted the historical distribution of the gathered research as identified by our inclusion 

criteria (Figure 5.1), which goes back to 1953 (Figure 5.2). However, while reviewing the 

research’s evolution over the years, we found that almost no literature on structure was published 

between 1953 and 1980 (or the significance of structure was not highlighted at the Title or Abstract 

levels). Most modeling effort in that period seemed clustered around modeling soil as a 

homogeneous medium (no structure), possibly because the technology and computational 

capabilities back then limited the ability to visualize or characterize soil structural features. After 

1980, the frequency of research increased gradually, especially during the last decade, which can 

be attributed to improvements in visualization and computational technologies, as well as 

experimental capabilities across the years. Simultaneously, attention to soil structure and its impact 

on important soil ecohydrological functions as well as on physical and biogeochemical interactions 

related to water distribution in soils gained a lot of momentum, particularly with increased interest 

in phenomena like preferential flow (Beven and Germann, 1982; Abou Najm et al., 2010) and the 

biogeochemical cycling of carbon, nitrogen, and phosphorous among other elements. 
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Figure 5.2: Historical distribution of the screened literature 

Hereafter, we will assess the experimental efforts that demonstrated evidence of the impact of soil 

structure on infiltration. Those efforts also led to the realization and need for the development of 

theoretical frameworks assessing the role of soil structure on infiltration modeling. The assessment 

first included the 131 experimental papers (Figure 5.1) and then was followed by a summary and 

synthesis of all the other 22 modeling and theoretical papers that focused on incorporating structure 

into infiltration modeling. 

5.4.1. General Characteristics of the Experimental Set 

Detailed analysis of the 131 experimental papers led to the extraction of 800 unique plot datasets 

(N=800). A unique plot was extracted from a paper only when infiltration data was available on a 

treatment (typically soil management) and a control. Each plot includes the results of soil physical 
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and structural characterization as well as results from infiltration experiments (location, period, 

and type of experiment).  

First, we reported data descriptive of the location and the study period of the run experiments. The 

review included case studies from 15 major countries (Figure 5.3) where most of the studies were 

conducted in USA (22%), China (15%), Australia (8%), and Israel (7%). 

 

Figure 5.3: a) Combined Bar and line graph illustrating the geographical distribution of the screened 

literature by the number of plots and papers per country, respectively (ND=Not Determined), b) 

Geographical map illustrating the exact geographic location of all sampling plots based on latitude and 

longitude coordinates extracted from the literature 

According to the review, most experimental studies (35%) on soil structure were performed over 

a period of less than 5 years (Figure 5.4). This is probably related to the fact that typical research 

projects have a duration of less than 5 years. This is a major limitation to the advancement of our 

understanding of soil structure as changes take much longer time to develop.  
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Figure 5.4: Distribution of the final screened literature based on the study period (ND=Not Determined) 

Then, we conducted a detailed analysis of data indicative of soil textural, structural, and physical 

attributes under different types of soil management. The 800 plots covered the full range of soil 

texture, as identified by the USDA soil texture triangle (Figure 5.5), from coarse to fine particles. 
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About 30% (highlighted in red in Figure 5.5) of those soils were described only by their soil texture 

class without reporting their particle size distribution (i.e., %sand, silt, and clay).  

 

Figure 5.5: Distribution of soil particle sizes in the final screened literature (N=800). Points in black are 

based on exact reported values (% of sand, silt, and clay) while points in red are arbitrarily located 

around the center of a textural class, in the absence of detailed texture data. 

The soil structure, on the other hand, was characterized by the following soil properties: bulk 

density, penetration resistance, porosity (total, capillary, and non-capillary), % of macro-, meso-, 

and micropores, aggregate mean weight diameter (MWD), geometric mean diameter (GMD), dry-

aggregation degree (DAD), % of water stable aggregates (WSA) (>0.25mm), stability and 

instability index, macro-aggregation index, % of dry aggregates (>2mm, 1-2mm and <1 mm), % 

of soil organic matter (SOM), and carbon (SOC). It was also characterized by the following 
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physical properties relating to water infiltration: infiltration rate (initial, mean, final/steady), 

saturated and unsaturated hydraulic conductivity, sorptivity, infiltration depth and time to ponding.  

Although all studies reported the change in structural and physical soil properties under the effects 

of different land uses, data attributes reported in each paper were different. This resulted in a 

heterogeneous database with larger datasets for certain attributes compared to others, as 

summarized in Figure 5.6. 

 

Figure 5.6: Number of plot datasets (N) with reported measured soil structure and infiltration attributes, 

derived from the full dataset N=800. 
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Therefore, we based our analysis on the following soil attributes showing the highest number of 

descriptive plots (Figure 5.6): infiltration rate (initial, mean, and steady) (mm/h), bulk density 

(g/cm3), mean weight diameter MWD (mm), water stable aggregates WSA (%), soil organic 

carbon SOC (%), and total porosity (%). Hereafter, we assumed that soil organic matter is made 

up of 60% organic carbon, i.e., SOC = 0.6*SOM. The first detailed assessment of these selected 

soil attributes explored the effects of different soil practices on soil structure and water infiltration.  

Figure 5.7 shows the range of different soil practices assessed in literature that alter soil structure 

and infiltration. Across the full dataset (N=800), a total of 226 plots (28%) investigated the induced 

changes in soil structure and water infiltration under soil amendments treatment (including 

compost, manure, and conditioners), followed by 191 (24%) and 87 (11%) plots studying tillage 

and crop management (including cultivation, vegetation, and cover crops), respectively.  

 

Figure 5.7: Distribution of soil management practices generated from the gathered literature (N=800) 
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5.4.2. Effects of soil management practices on soil structure and water infiltration 

The following is a summary of the effects of these different soil management practices (treatments) 

on soil structure and water infiltration. Based on the reported data, we analyzed those effects using 

Treatment vs. Control plot comparisons and effect size analysis to understand the potential effects 

of soil management practices on soil structure and water infiltration.  

5.4.2.1.Treatment vs. Control (T vs. C) plots 

We plotted Treatment vs. Control (T vs. C) on scatter graphs to illustrate the implication of soil 

amendments (Figure 5.8), tillage (Figure 5.9) and crop management (Figure 5.10) on six soil 

attributes: infiltration rate, bulk density, porosity, MWD, WSA, and SOC. Infiltration was reported 

either as initial infiltration rate, mean, or steady state while porosity was reported as either total, 

macro, or micro. Points above the 1:1 line indicate an increasing effect induced by the represented 

treatment while points below the line represent a decreasing effect on the attribute between the 

treatment and the control. Points on the 1:1 line indicate that the treatment has no significant effect 

on that attribute, meaning that the control and the treatment revealed the same value for that 

specific attribute. Each graph (Figures 5.8, 5.9, and 5.10) is coupled with the USDA soil texture 

triangle that illustrates the particle size distribution of the corresponding soils. Note that the 

infiltration rate had to be log-transformed in all datasets for a better data visualization. 
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Figure 5.8: Effect of soil amendments (N=226 out of 800) on soil structure using Treatment vs. Control 

scatter graph, coupled with a 1:1 line. Six soil attributes (infiltration rate, bulk density, porosity, MWD, 

WSA, and SOC) are plotted comparing soil amendments impact compared to the control values. N is the 

number of plot datasets for each of the six attributes, derived from the sub database N=226 with soil 

amendments. 
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Figure 5.9: Effect of tillage (N=191 out of 800) on soil structure using Treatment vs. Control scatter 

graph, coupled with a 1:1 line. Six soil attributes (infiltration rate, bulk density, porosity, MWD, WSA, 

and SOC) are plotted comparing soil tillage impact compared to the control values. N is the number of 

plot datasets for each of the six attributes, derived from the sub database N=191 with tillage. 
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Figure 5.10: Effect of crop management (N=87 out of 800) on soil structure using Treatment vs. Control 

scatter graph, coupled with a 1:1 line. Six soil attributes (infiltration rate, bulk density, porosity, MWD, 

WSA, and SOC) are plotted comparing crop management impact compared to the control values. N is the 

number of plot datasets for each of the six attributes, derived from the sub database N=87 with crop 

management. 

5.4.2.2.Effect Size Analysis 

An alternate approach of analyzing the treatments’ effects on soil structure and water infiltration 

was the determination of an effect size - a quantitative measure of the magnitude of the treatment 

effect. The effect size, 𝐸𝑆, is calculated as the following response ratio: 

𝐸𝑆 =
𝑋𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝑋𝑐𝑜𝑛𝑡𝑟𝑜𝑙
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Where 𝑋 represents the value of the structural and physical soil attributes. 

Three distinct scenarios emerge based on the obtained 𝐸𝑆 value: 

1. 𝐸𝑆 > 1 indicates an increase, or a positive response to treatment.  

2. 𝐸𝑆 < 1 indicates a decrease, or a negative response to treatment. 

3. 𝐸𝑆 = 1 indicates no response to treatment. 

Note that a positive response reflects only an increase in value in treatment compared to control, 

and this does not necessarily mean an improvement to soil or infiltration conditions (Ex.: increase 

in bulk density is a sign of compaction). The effect sizes associated with each of the top three 

treatment categories (soil amendments, tillage, and crop management) in particular, and all 

treatments in general, for the selected soil attributes (infiltration rate, bulk density, porosity, MWD, 

WSA, and SOC) were presented in tabular form (Table 5.2), as well as graphically displayed using 

boxplots (Figure 5.11). 
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Table 5.2: Statistical summary of the effect sizes (Treatment: Control) associated with each treatment for 

each of the selected soil attributes in the data set 

Soil Attributes 

    

Mean 
Standard 

Deviation 

Sample 

Size 
Mean 

Standard 

Deviation 

Sample 

Size 
Mean 

Standard 

Deviation 

Sample 

Size 
Mean 

Standard 

Deviation 

Sample 

Size 

Infiltration Rate 
      

Initial 1.410 0.458 17 0.782 0.302 36 1.496 0.688 29 1.207 0.576 109 

Mean 1.224 0.265 27 1.125 0.662 6 1.413 0.486 33 1.644 2.755 143 

Steady-State 2.104 3.417 71 0.864 0.281 106 2.085 1.044 74 1.716 1.957 459 

Porosity 
      

Total 1.048 0.028 8 0.983 0.081 39 1.163 0.213 23 1.035 0.168 174 

Micro 2.078 0.385 3 1.207 0.359 25 0.782 0.432 7 1.121 0.374 64 

Macro 0.995 0.198 9 0.966 0.845 48 1.047 0.235 13 1.008 0.597 129 

Bulk Density 0.911 0.068 45 1.016 0.091 80 0.966 0.100 41 0.982 0.09 300 

MWD 3.549 5.534 22 0.852 0.142 60 1.388 0.513 59 1.232 0.607 213 

WSA 2.263 2.194 101 1.068 0.558 42 1.269 0.166 26 1.664 1.612 220 

SOC 1.705 0.915 35 0.972 0.286 54 1.436 0.228 40 1.498 2.016 258 
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Figure 5.11: Boxplots of the effect sizes associated with each treatment (AM = soil amendments, Crops = 

crop Management, Till = tillage, TOT = Total Treatments) for each of the selected soil attributes in the 

data set. The margin line, highlighted in red, corresponds to an effect size of 1 (i.e., no response to 

treatment). If the variable median lies above the red line, the variable attribute indicates a positive 

response to treatment and vice versa. Extreme outliers that distort the scale of a boxplot were excluded, 

with their numbers indicated atop the appropriate boxplot. 

In addition, we generated 95% confidence intervals for the effect sizes ES of the soil attributes 

within each treatment and we then plotted the resulting confidence intervals and effect sizes in 

forest plots in Figure 5.12 representing a) soil amendments, b) crop management, and c) tillage. 

These forest plots show a horizontal line representing the 95% confidence intervals of the 

attribute’s result, with each end of the line representing the boundaries of the 95% confidence 

interval, and a vertical line known as the “line of null effect”. This line is placed at ES=1, with the 

right side favoring the treatment (ES>1) while the left side favoring the control (ES<1). It is 

particularly important to check whether the horizontal line crosses the “line of null effect” or not. 

If the horizontal line does not cross the line of null effect, the null value (ES=1) does not lie within 
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the 95% confidence interval, and therefore, the studied treatment illustrates a statistically 

significant effect on the assessed treatment at the 5% significance level (irrespective to which side 

the data is). In other words, there is only a 5% risk of concluding that a statistically significant 

difference exists between the treatment and its control when there is no actual difference.  



 

256 
 

 

Figure 5.12: Forest plot showing the effect of a) soil amendments, b) crop management, and c) tillage on 

the selected soil attributes. The horizontal lines represent the 95% confidence intervals for each attribute, 

and the vertical line represents the “line of null effect” (ES=1). The right side of the null effect line 

(ES>1) favors the treatment while the left side (ES<1) favors the control. N is the number of plot datasets 

derived from the sub database N=226, 191, and 87 out of 800, respectively for a), b), and c). 
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5.4.3. Interpretation of the effects of Soil Treatments on structure and Infiltration  

Figures 5.12 (a and b) show the positive effect of both soil amendments and crop management on 

soil structure and water infiltration, with statistical significance at 5% significance levels for 

approximately all included soil attributes. This is also demonstrated in Figures 5.8 and 5.10 for all 

different types of soils, as indicated by points above the 1:1 line comparing soil amendments and 

crop management to their control, respectively.  

As for tillage, a statistically significant decline in mean weight diameter (MWD) as well as initial 

and steady-state infiltration rate (IR) was observed across tilled soils (Figure 5.12c). This effect is 

demonstrated also in Figure 5.9 where most of the data points representing these attributes lie 

below the 1:1 line indicating a decreasing effect induced by tillage, particularly in finer soils. That 

decline partly reflects the effect of using heavy farm machinery and artificial disturbance which 

leads to a poorer soil structure as compared to no-till practices (Nyamadzawo et al., 2007, Kahlon 

et al., 2013, Chen et al., 2016, Nouri et al., 2019, Melman et al., 2019). Figure 5.12c shows six soil 

attributes crossing the ES=1 line (demonstrated also by more scatter in Figure 5.9 corresponding 

to those attributes as compared to MWD for example), indicating no particular response to tillage, 

suggesting that some attributes may be more sensitive to soil particle size differences than others 

(Figure 5.9). Referring to Figure 5.12c, these attributes have effect sizes with 95% confidence 

intervals overlapping around the value of 1. That means no statistical significance can be reported 

with respect to their response to tillage at the 5% significance level. Clearly, the analysis conducted 

above (i.e., Table 5.2 and Figures 5.8 to 5.12) highlighted significant variations in the physical and 

structural soil attributes under the studied treatments. To this end, we plotted Figure 5.13 to 

summarize the treatments’ effects on soil structure and water infiltration.  

 



 

258 
 

 

Figure 5.13: Summary of treatments’ effects on soil structure and water infiltration at the 5% 

significance level 

As shown in Figure 5.13, this systematic review gathers enough meaningful data indicating 

statistically significant effects of both, soil amendments and crop management on water infiltration 

and soil structure, resulting in increased infiltration rate, mean weight diameter (MWD), water 

stable aggregates (WSA), soil organic carbon (SOC), and reduced soil bulk density. However, 

there was not enough data to support that there is a significant response of porosity to soil 

amendments and crop management. Furthermore, this systematic review shows that tillage 

negatively impacts water infiltration (initial and steady state) and mean weight diameter, while it 

can increase the % of water stable aggregates. And, given that the effects of tillage on bulk density, 

soil porosity and soil organic carbon are not statistically significant, it is not so obvious to draw 

one comprehensive conclusion around the effects of tillage on soil structure. 
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5.4.4. Effect of Soil Structure on Infiltration Rate 

To assess the change in water infiltration as function of soil structure, we explored the correlations 

between steady infiltration rate and soil structural attributes. To this end, we plotted the steady 

infiltration rate (mm/h) as a function of a) mean weight diameter (MWD, mm), b) water stable 

aggregates (WSA, %), c) total porosity (%), and d) SOC (%) in Figure 5.14 under different soil 

practices and their respective control. Also, we plotted in Figure 5.15 the steady infiltration rate as 

a function of soil bulk density – a structural property that exhibited a high number of points in our 

dataset. Each graph (Figures 5.14 and 5.15) is coupled with the USDA soil texture triangle that 

illustrates the particle size distribution of the corresponding soils. Note that steady infiltration rate, 

plotted on the y-axis, is log-transformed in all figures, and fitted to the best-fit curve for a better 

data visualization. 
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Figure 5.14: Steady infiltration rate IR (mm/hr) as function of a) mean weight diameter MWD (mm), b) 

water stable aggregates WSA (%), c) total porosity TP (%), and d) soil organic carbon SOC (%) for 

different soil practices and their respective control. N* is the number of data points of the attributes (both 

treatment and control values) that exist in the same plots N (N*=2N). 
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The data in Figure 5.14a indicates that steady infiltration rate is directly proportional to mean 

weight diameter MWD of soil aggregates with a reasonably fitted R2 of 0.5099. Infiltration tends 

to increase as mean weight diameter increases, particularly for MDW > 1mm, and with 𝑀𝑊𝐷 >

3mm stimulating much higher infiltration rate than lower MWD. We further noticed that soils with 

𝑀𝑊𝐷 > 3 have a finer texture with higher clay and silt contents compared to soils with lower 

MWD. Despite their fine texture, these soils show the highest infiltration rate because fine particles 

can act as cementing agents for aggregation, resulting in a higher mean weight diameter compared 

to coarse materials. The high infiltration rate in these soils is therefore attributed to the effect of 

soil structure, a characteristic that profoundly affects water infiltration. Fine-textured soils with 

well-developed structure enhance water infiltration, whereas infiltration can be hindered in coarse-

textured soils without a defined and stable structure, and especially if compacted. For instance, 

sandy loams have a strong tendency of structural degradation through compaction (Nawaz et al., 

2013; Huang and Hartemink, 2020). That supports the notion that studying soil texture alone, 

without considering soil structure, is not enough for an effective assessment of soils’ infiltration 

characteristics.  

For water stable aggregates (WSA), Figure 5.14b shows no clear change in the steady infiltration 

rate as function of the % of water stable aggregates at lower values (WSA < 30%). For WSA 

varying between 30 and 70%, the steady infiltration rate seems to follow an increasing linear trend 

with the increase in % of water stable aggregates. An increase in the slope of this relationship 

seems possible above this range (WSA > 70%) thus indicating a nonlinear relationship overall. To 

interpret these clusters, we first assessed the particle size distribution of the studied soils over the 

three considered ranges of WSA. We noticed that soils with a very low WSA (< 30%) have a 

coarse texture composed of loamy sand, sandy loam, or sandy clay loam. On the other hand, soils 
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with higher WSA (> 70%) consist of fine textures ranging from clay loam, silty clay loam, silty 

clay to clay. As for soils with an intermediate WSA (between 30 and 70%), these soils are the most 

diverse and abundant among the data collected; they are mixed, but mostly of silty loam texture. 

These results were predictable due to the impact of soil texture on water stable aggregates. Fine 

textured soils have much greater surface area per unit volume ratio compared to soils with coarser 

particles. This helps in maintaining a stronger binding of soil particles and thus increases WSA. 

The highest infiltration rate in these fine-textured soils resulted from their high % of water stable 

aggregates, which again highlights the strong correlation between soil structure and water 

infiltration. 

With respect to total porosity, a positive correlation (R2 = 0.46) was found between the steady 

infiltration and total porosity data, as shown in Figure 5.14c. Increasing total soil porosity from 35 

to 65% corresponds to an increase in the steady infiltration rate from 10 gradually up to 1000 

mm/hr. With respect to soil texture data, the increase in total porosity concurs with an increase in 

the percentage of fine particles (silt and clay). Soils with porosity greater than 50% show the 

highest fines content which decreases as porosity goes below 50%. Figure 5.14c supports the 

significant influence of soil structure on water infiltration by showing that a high porosity is in 

favor of enhancing water infiltration only in well-structured soils.  

Last but not least, Figure 5.14d displays a high overall variability in steady infiltration rate (IR, 

mm/hr) as function of soil organic carbon SOC (%). No significant trends were shown, but 

increased values of infiltration rate can be observed at higher values of soil organic carbon, 

particularly for SOC > 1.5%. A marginally slight increase in SOC does not necessarily influence 

soil structure and infiltration rates (Sastre et al., 2018). However, a significant increase in soil 

organic carbon is often associated with increased aggregation, physical stability, and permanent 
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pore development (Nyamadzawo et al., 2007; Jemai et al., 2012). Noellemeyer et al. (2008) 

showed that SOC turnover led to a loss of aggregation, and accordingly, soil hydraulic properties 

were negatively impacted in the longer term. The soil texture data in Figure 5.14d indicates that 

soils with high SOC (> 1.5%) have higher clay content as compared to soils with low carbon 

content (SOC < 1.5%). Clayey soils favor high carbon stocks due to the stabilizing and cementing 

properties of clays physically protecting soil organic carbon from microbial activity (Green et al., 

2000; Noellemeyer et al., 2008). 

 

Figure 5.15: Steady infiltration rate IR (mm/hr) as function of soil bulk density 𝜌𝑏  (g/cm3) for different 

soil practices and their respective control. N* is the number of data points of the attributes (both 

treatment and control values) that exist in the same plots N (N*=2N=306). 

The data in Figure 5.15 shows a negative but weak relationship between soil bulk density and 

infiltration rate. For the most part, the steady infiltration rate is inversely related to soil bulk 

density, implying that a high bulk density can be an indicator of a low infiltration rate. But this 

figure still emphasizes the importance of addressing soil structure beyond bulk density given the 

fact over the wide range of bulk density for which the same or similar steady infiltration rate is 

observed. A representation of correlation between steady infiltration rate and bulk density is 

illustrated in the context of the USDA soil texture triangle which displays the particle size 
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distribution of soil groups classified into the following four categories of bulk density in 

descending rank: (1) 𝜌𝑏 ≥ 1.45 𝑔/𝑐𝑚3, (2) 1.25 ≤ 𝜌𝑏 < 1.45 𝑔/𝑐𝑚3, (3) 1 ≤ 𝜌𝑏 < 1.25 𝑔/𝑐𝑚3 

and (4) 𝜌𝑏 < 1 𝑔/𝑐𝑚3. High-density soils lie down at the base of the triangle while soils with low 

density are clustered at the mid-right to the top of the triangle. Coarse-textured soils (sandy soils) 

are more prone to high bulk density. Assuming same particle density, sandy soils have smaller 

porosity values (0.25-0.4) as compared to silt (0.35-0.5) and clayey soils (0.4-0.7) (Yu et al., 1993; 

Hillel, 2003). Given that bulk density is inversely related to total porosity, we can typically 

emphasize that coarse-textured soils are generally more dense than fine-textured soils.  

5.4.5. Can Soil Structure Predict Infiltration Rate? 

We performed a multilinear regression analysis using R software to build on the statistical 

correlations we explored and see if a combination of soil structural attributes can be used to predict 

infiltration rate. Our regression analysis led to the development of several pedo-transfer functions 

(PTFs) predicting steady infiltration rate (IR, mm/hr) as function of particle size distribution (PSD, 

% sand, silt, and clay) and four soil structural attributes: MWD (mm), WSA (%), soil bulk density 

𝜌𝑏 (g/cm3), and soil organic carbon SOC (%) (Table 3). We reported PTFs that led to statistically 

significant results and came because of a wide number of data points N* (referring to the number 

of data points for each attribute and including both the values under treatment and control in the 

same plots). As a result, we disregarded the PTFs with a considerably low R-squared value (R2 < 

0.5) and low N* (< 100).  

Accordingly, our shortlisted PTFs had reasonable R2 ranging from 0.51 to 0.80, and a number of 

data points N* ranging from 100 to 294 (each representing a unique plot). The developed PTFs 

were further illustrated in Figure 5.16 which plots the observed vs. predicted values of steady IR 

(mm/hr) to emphasize the accuracy (with R2 values of 0.51-0.80) and reliability (with CV values 
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lower than 27%) of our predictions. A very important observation from Table 5.3 is that SOC 

improved the predictability of IR. This is a very significant finding implying that IR is not a static 

soil parameter, but rather a dynamic one that changes according to the dynamics of soil organic 

carbon. Therefore, our results show that soil structure, with its dynamic, time- and scale-dependent 

behavior, can predict water infiltration. More importantly, this allows for a water infiltration 

predictive tool that is dynamic and can account for changes in water infiltration properties as 

function of dynamic changes in soil structure that can result from varied land or soil management. 

As such, those PTFs can capture changes in water infiltration rate because of variations in the 

dynamic soil structural properties including mean weight diameter, % of water stable aggregates, 

bulk density, and soil organic carbon. In addition, involving the changes in soil texture improves 

the predictability of IR, which again supports the notion that soil structure and soil texture together, 

lead to a stronger assessment of soils’ infiltration characteristics.  
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Table 5.3: Pedo-transfer functions (PTFs) predicting steady IR (mm/hr) as function of PSD (%sand, silt, 

and clay) different soil structural attributes, MWD (mm), WSA (%), bulk density BD (𝜌𝑏, g/cm3), and soil 

organic carbon SOC (%). Only PTFs that have an R-squared value R2 ≥0.5 and a number of data points 

N* ≥100 were considered. 

Response 

Y 

Variables X Equation R2 N* 

Steady IR 

(mm/hr) 

MWD (mm) 𝑙𝑜𝑔𝐼𝑅 = 2.33 + 0.98𝑀𝑊𝐷 0.5099 294 

MWD (mm) + SOC (%) 𝑙𝑜𝑔𝐼𝑅 = 1.42 + 1.14𝑀𝑊𝐷 + 0.57𝑆𝑂𝐶 0.5679 172 

MWD (mm) + WSA (%) 𝑙𝑜𝑔𝐼𝑅 = 1.88 + 0.59𝑀𝑊𝐷 + 0.026𝑊𝑆𝐴 0.696 128 

MWD (mm) + SOC (%) + 𝜌𝑏 

(g/cm3) 

𝑙𝑜𝑔(𝐼𝑅) = 2.55 +  0.81𝑀𝑊𝐷 −  0.19𝑆𝑂𝐶 +  0.55𝜌𝑏 0.704 100 

Including PSD 

MWD (mm) + Sand (%) 𝑙𝑜𝑔𝐼𝑅 = 2.73 + 1.05𝑀𝑊𝐷 − 0.013𝑆𝑎𝑛𝑑 0.7121 166 

MWD (mm) + Silt (%) 𝑙𝑜𝑔𝐼𝑅 = 1.68 + 1.08𝑀𝑊𝐷 + 0.012𝑆𝑖𝑙𝑡 0.7125 166 

MWD (mm) + Clay (%) 𝑙𝑜𝑔𝐼𝑅 = 2.08 + 1.19𝑀𝑊𝐷 − 0.009𝐶𝑙𝑎𝑦 0.6638 198 

MWD (mm) + SOC (%) + 

Sand (%) 

𝑙𝑜𝑔𝐼𝑅 = 2.67 + 1.59𝑀𝑊𝐷 − 0.6𝑆𝑂𝐶 − 0.015𝑆𝑎𝑛𝑑 0.7406 120 

MWD (mm) + SOC (%) + Silt 

(%) 

𝑙𝑜𝑔𝐼𝑅 = 1.47 + 1.52𝑀𝑊𝐷 − 0.49𝑆𝑂𝐶 + 0.014𝑆𝑖𝑙𝑡 0.7524 120 

MWD (mm) + SOC (%) + 

Clay (%) 

𝑙𝑜𝑔𝐼𝑅 = 3.4 +  1.12𝑀𝑊𝐷 +  0.29𝑆𝑂𝐶 −  0.097𝐶𝑙𝑎𝑦 0.8007 120 

Log is natural logarithm (i.e., base e) 
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Figure 5.16: Observed vs. predicted values of steady infiltration rate IR (mm/hr) by each developed PTF 

with the corresponding equation, R2, number of data points N*, and coefficient of variation CV (%).  

5.4.6. Can Soil Structure Predict Hydraulic Conductivity? 

As we obtained accurate and reliable PTFs predicting steady infiltration rate IR in soils, we were 

further interested in exploring significant correlations relating the hydraulic conductivity Ksat 

(mm/h) to soil structural properties. As such, we applied a similar multilinear regression approach 

in R (Table 5.4). 
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Table 5.4: Pedo-transfer functions (PTFs) predicting saturated hydraulic conductivity Ksat (mm/h) as a 

function of different soil structural attributes, MWD (mm), bulk density BD (𝜌𝑏, g/cm3), and soil organic 

carbon SOC (%). 

Response Y Variables X Equation R2 N* 

Ksat (mm/hr) 

MWD (mm) 𝑙𝑜𝑔(𝐾𝑠𝑎𝑡) = −1.19 + 1.38𝑀𝑊𝐷 0.2067 112 

MWD (mm) + SOC (%) 𝑙𝑜𝑔(𝐾𝑠𝑎𝑡) = −1.11 + 2.67𝑀𝑊𝐷 − 0.29𝑆𝑂𝐶 0.3467 82 

MWD (mm) + SOC (%) + 𝜌𝑏 

(g/cm3) 

𝑙𝑜𝑔(𝐾𝑠𝑎𝑡) = 13.65 +  1.65𝑀𝑊𝐷 −  3.46𝑆𝑂𝐶

− 5.67𝜌𝑏 

0.7824 64 

 

Only three developed PTFs were able to predict the hydraulic conductivity Ksat (mm/h) as a 

function of soil structural properties. Also, these PTFs were less accurate than the previously 

developed functions relating infiltration rate (IR) with soil structural properties (Table 5.3). The 

difference in results between IR and Ksat predictions can be partly attributed to the significantly 

large difference in data points representing the two variables in our dataset (N*=932 compared to 

N*=334 data points descriptive of IR and Ksat, respectively). However, there was one significant 

correlation reported for predicting Ksat (mm/h) as function of three structural properties (MWD, 

mm), bulk density (BD, g/cm3), and soil organic carbon (SOC, %) with a significant R2 of 0.7824. 

Despite the low number of corresponding data points (N*=64), this correlation highlights reliable 

and promising Ksat predications as function of soil structure attributes that we can further enhance 

when larger datasets are available. Interestingly, this correlation provided a PTF that can 

successfully predict Ksat without the need for soil texture information. In fact, we attempted to 

include soil texture (%sand, silt, or clay) to this PTF and the predictability of Ksat was not improved 
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for our dataset. This finding can have significant implication on the parameterization of hydrologic 

models and shows the importance of soil structure in predicting Ksat. 

5.4.7. Theoretical set 

Finally, we evaluate the second dataset comprising the 22 theoretical papers that we obtained from 

the systematic review. Those papers were further divided into two categories: one category of 14 

papers emphasized new models (Parlange et al., 1982; Helalia, 1993; Messing and Jarvis, 1993; 

Greco, 2002; Lepore et al., 2009; Li and Zhang, 2011; Tiktak et al., 2012; King and Bjorneberg, 

2012; Braudeau and Mohtar, 2014; Coppola et al., 2015; Dong et al., 2017; Rahmati, 2017; 

Mohammadzadeh-Habili et al, 2018; Fatichi et al., 2020) and another category (8 papers) utilized 

developed models, particularly HYDRUS-1/2/3D, for water flow simulations (Germann and 

Hensel, 2006; Sander and Gerke, 2009; Laloy et al., 2010; Rajeswari et al., 2010; Zehe et al., 2010; 

Schwärzel et al., 2011; Xu et al., 2017; Belcaid et al., 2020).  

Here, we want to highlight one of the most significant outcomes of this search, which is its inability 

to identify many of the classic contributions that assessed the effect of structure on infiltration. In 

fact, the search outcomes highlight the significant absence of and the need for modeling efforts to 

derive a comprehensive theoretical framework around different soil structural attributes that are 

impacted by different land uses. We realize that such a comprehensive framework is still an open 

research question. However, this research highlights that a wide literature review, using the general 

search criteria defined in Table 5.1, has missed a significant number of theoretical contributions 

that should have been included or captured. Those missing include papers that have developed 

models or theoretical frameworks for soil structure characterization and its influence on water 

infiltration (Ex.: Pachepsky and Rawls (2003); Jorda et al., 2015; Araya and Ghezzehei, 2019). 

For instance, Pachepsky and Rawls (2003) provided a quantitative characterization of the field soil 
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structure using pedo-transfer functions that show empirical relationships between soil structure 

and hydraulic properties. Also, Jorda et al. (2015) predicted the soil hydraulic conductivity from 

other more easily obtained soil and land characteristics (e.g., bulk density) in a study using 487 

data points gathered from the literature. Later, Araya and Ghezzehei (2019) realized how difficult 

it is to accurately model the complex and non-linear relationships between soil structural variables 

and infiltration properties using physically based models or traditional statistical methods. 

Therefore, they developed new accurate PTFs which predict the saturated hydraulic conductivity 

Ks using machine learning ML, high performance computing, and a large database of over 18,000 

soils. Their study opens an opportunity to revise the challenges encountered in soil structure 

characterization and therefore conduct future research that can engage our metadata of soil 

hydraulic and structural properties with the current progress in ML tools. 

Yet, these papers (and many others, as the above three papers present a noncomprehensive list of 

other papers that should have been included) could not be retrieved from the literature sources in 

our search because they did not include the keywords “structure” and “infiltration” terms in their 

title and/or abstract. As a result, these papers could not make it through the initial literature 

screening of our systematic review. This shows that soil structure remains an underutilized term 

in soil physics; impacted by the lack of universally applicable and reliable quantitative measures 

of soil structure. This challenge exacerbates when structure is dynamically changing in space and 

time.   
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5.5. Conclusion 

We presented a narrative systematic review (SR) of the impacts of soil structure on water 

infiltration. Following the (SR) methodology, we first formulated the primary research question 

entitled “how does soil structure affect infiltration?”. Then, we conducted a literature search 

tailored to that question based on predefined inclusion criteria. Following our literature search, we 

screened the retrieved literature by title/abstract, and analyzed the extracted data. The total number 

of title- and abstract-screened literature including “soil structure” and “infiltration” retrieved from 

publishing sources (Scopus, ScienceDirect, and GoogleScholar) was 153 studies, divided into 131 

experimental and 22 theoretical papers. Results have demonstrated the dominance of field-scale 

experimental studies comparing field responses under different soil practices or treatments over 

the modeling efforts studying the effects of soil structure on water infiltration. In addition, most of 

these studies are on the order of five years or less. This is probably attributed to the fact that typical 

research projects have a duration of less than 5 years. We identify this as a major limitation to the 

advancement of our understanding of soil structure as changes take much longer time to develop. 

Then upon analyzing the metadata extracted from the collected papers (N= 800 data points), our 

results suggested that land use (a variable that most directly impacts soil structure) profoundly 

affects water infiltration. More specifically, soil amendments and crop management improve water 

infiltration and soil structure, whereas tillage negatively impacts water infiltration (initial and 

steady state). As for the effects of tillage on soil structure, our data has demonstrated different 

responses of soil structural attributes to tillage. Our systematic review shows that tillage decreases 

the mean weight diameter, while it can increase the % of water stable aggregates. Consequently, 

significant correlations were established between infiltration rate and soil structural properties 

(such as bulk density, wet aggregate stability, mean weight diameter, organic carbon, and 
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porosity), highlighting the positive effects of improving soil structure on water infiltration. They 

also highlight the dynamic (temporal) nature of infiltration response, given that organic carbon (a 

dynamic property) showed an ability to improve the predictions of infiltration rate. In addition, 

soil structure and soil texture assessed together, lead to a stronger predictability of soils’ infiltration 

characteristics than when each soil property is considered alone. Finally, this study highlights the 

need to utilize the growing availability of large databases along with accurate data‐driven methods, 

to research new predictive data-science methods, and to direct future research efforts towards 

comprehensive theoretical frameworks around the understanding of the impacts of soil 

management on different soil hydraulic and structural attributes, and their corresponding impact 

on infiltration. 
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