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Abstract
Unlike biologically available nitrogen and phosphorus, which are often at limiting concentrations in surface seawater, sulfur
in the form of sulfate is plentiful and not considered to constrain marine microbial activity. Nonetheless, in a model system
in which a marine bacterium obtains all of its carbon from co-cultured phytoplankton, bacterial gene expression suggests that
at least seven dissolved organic sulfur (DOS) metabolites support bacterial heterotrophy. These labile exometabolites of
marine dinoflagellates and diatoms include taurine, N-acetyltaurine, isethionate, choline-O-sulfate, cysteate, 2,3-
dihydroxypropane-1-sulfonate (DHPS), and dimethylsulfoniopropionate (DMSP). Leveraging from the compounds
identified in this model system, we assessed the role of sulfur metabolites in the ocean carbon cycle by mining the Tara
Oceans dataset for diagnostic genes. In the 1.4 million bacterial genome equivalents surveyed, estimates of the frequency of
genomes harboring the capability for DOS metabolite utilization ranged broadly, from only 1 out of every 190 genomes (for
the C2 sulfonate isethionate) to 1 out of every 5 (for the sulfonium compound DMSP). Bacteria able to participate in DOS
transformations are dominated by Alphaproteobacteria in the surface ocean, but by SAR324, Acidimicrobiia, and
Gammaproteobacteria at mesopelagic depths, where the capability for utilization occurs in higher frequency than in surface
bacteria for more than half the sulfur metabolites. The discovery of an abundant and diverse suite of marine bacteria with the
genetic capacity for DOS transformation argues for an important role for sulfur metabolites in the pelagic ocean
carbon cycle.

Introduction

The trophic linkage between marine bacteria and phyto-
plankton in the ocean represents a key step in the global
carbon cycle, with phytoplankton lysis products [1] and
“dissolved primary production” [the dissolved organic car-
bon (DOC) released from living phytoplankton [2]] sup-
porting a major fraction of labile carbon flux.
Approximately 20 Gt of labile DOC are turned over by
heterotrophic marine bacteria each year, an amount more
than an order of magnitude higher than the annual turnover
from the semi-labile and refractory marine DOC pools
combined [3].

Sulfur is a component of amino acids, sulfolipids, and
other biomolecules essential to marine bacteria, but the high
inorganic sulfur concentration in seawater (~28 mM SO4

−2)
suggests that its availability is not an important factor
governing microbial growth. However, discoveries that
members of the ubiquitous SAR11 and SAR86 bacterial
clades are incapable of assimilating sulfate and thus
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dependent on uptake of organic sulfur [4, 5] bring a new
perspective to the role of dissolved organic sulfur (DOS) in
microbial heterotrophy. Overall, little is currently known
about the availability or trophic fate of DOS compounds in
the ocean. The one exception is the sulfonium compound
dimethylsulfoniopropionate (DMSP), a DOS metabolite
synthesized by phytoplankton as an osmoprotectant, possi-
ble antioxidant [6], and possible predator deterrent [7] that
is readily utilized by heterotrophic marine bacteria [8].

An improved understanding of the participation of labile
DOS in the carbon cycle requires better knowledge of the
phytoplankton-derived molecules supporting the metabo-
lism of heterotrophic bacteria. These molecules have proven
difficult to identify, however, because efficient bacterial
scavenging drives their concentrations into the picomolar
range [9, 10] and their half-lives in seawater down to
minutes [11]. An alternative strategy for discovering the
molecular currencies supporting microbial heterotrophy is
to extract biological signals from bacterial messenger RNA
(mRNA) [12–14]. In this approach, the transcriptional
responses of bacteria to phytoplankton-derived metabolites
provide indications of substrate uptake and metabolism.

We previously established a model system to investigate
how the compounds supporting bacterial heterotrophy var-
ied with changes in the dominant phytoplankton taxon. The
transcriptional response of marine bacterium Ruegeria
pomeroyi DSS-3 was measured when co-cultured first with
the dinoflagellate Alexandrium tamarense and then with the
diatom Thalassiosira pseudonana [15]. Bacterial gene
expression patterns indicated that both phytoplankton spe-
cies were releasing labile DOS metabolites into the medium.
At a minimum, these included 2,3-dihydroxypropane-1-
sulfonate (DHPS), taurine, N-acetyltaurine, and DMSP [15].
In this study, we follow-up on these initial results using data
from this co-culture system and metagenomic data from the
TARA Oceans expedition [16] to answer two questions: (1)
What does bacterial gene expression reveal about the
identity of labile phytoplankton-derived DOS metabolites?
(2) What is the abundance, taxonomy, and distribution of
the ocean bacterioplankton capable of utilizing these
metabolites? Our results show that at least seven
phytoplankton-derived DOS metabolites can support bac-
terial heterotrophy, and indicate a more important role for
DOS in microbial trophic interactions and carbon flux than
previously recognized.

Methods

Experimental setup

Axenic strains of the dinoflagellate A. tamarense
CCMP1771 and diatom T. pseudonana CCMP1335 were

obtained from the National Center for Marine Algae and
maintained with regular checks for bacterial contamination
by microscopy and plating [15]. Co-cultures of the phyto-
plankton with or without the bacterium R. pomeroyi DSS-3
were established in six 20-L LDPE cubitainers (Reliance,
Winnipeg, Canada). The cubitainers were first filled with
18 L of autoclaved, 0.2-µm-filtered Guillard’s f/2 medium
with vitamin B12 added at f/50 concentration and 2 L of an
axenic A. tamarense culture in exponential phase grown in
the same medium. The f/2 medium contained 880 μMN as
NO3

− and 36 μM P as PO4
−3 at the time of inoculation.

Cubitainers were maintained at 18 °C with a 16–8 h
light–dark cycle under ~160 μmol photons m−2 s−1. After
7 days, bacteria grown overnight in ½YTSS medium were
harvested in exponential phase, washed five times with
sterile phytoplankton medium, and added to three of the
cultures at ~105 cells ml−1. Five days later, axenic T.
pseudonana in exponential phase grown in the same mod-
ified f/2 medium was added to all cubitainers at 200 cells
ml−1 along with silicate at 100 µM final concentration. The
order in which the phytoplankton were introduced was
determined based on T. pseudonana’s ability to outcompete
A. tamarense under the culture conditions used. The cul-
tures were maintained for 37 days [15].

Sampling and monitoring

Samples were taken regularly from the cubitainers and
streaked onto ½YTSS plates to check for bacterial growth.
Plates from bacteria-free phytoplankton controls were
checked for growth of any bacteria, while plates from
experimental cubitainers were visually inspected for colo-
nies with different morphology from R. pomeroyi. No
contamination was detected throughout the 37-day experi-
ment. Bacterial and phytoplankton cell numbers were
monitored in the cubitainers by flow cytometry. Triplicate
samples were preserved in glutaraldehyde (2% final con-
centration), stained with SYBR® Green I (final concentra-
tion 0.75×; Life Technologies, Waltham, MA, USA), and
analyzed on a Cyan instrument (Beckman Coulter, Brea,
CA, USA) using the FlowJo software [15]. On days 7, 9,
12, 15, 18, 23, 30, and 37, 1 L samples were collected for
chemical analyses and RNA-sequencing (RNA-seq).

Chemical analyses

Duplicate 6 ml samples filtered through 0.45-µm hydro-
philic polyethersulfone Acrodisc Supor membranes (Pall
Life Sciences, Port Washington, NY, USA) were analyzed
for dissolved inorganic nitrogen (nitrate+ nitrite) (APHA
Standard Method 4500-NO3 F), ammonium (4500-NH3 G),
dissolved inorganic phosphorus (4500-P F), and silicate
(spectrophotometric silicomolybdate assays). Triplicate
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samples that were unfiltered or filtered through ashed
Whatman GF/F filters were combusted on a Shimadzu
TOC-5000A Analyzer to determine total organic carbon
(TOC) and dissolved organic carbon (DOC) concentrations,
respectively. Analyses were performed at the Center for
Applied Isotope Studies (University of Georgia, Athens,
GA, USA).

DMSP was the only organic sulfur metabolite mea-
sured in the co-culture medium. For total DMSP analy-
sis, 10 ml subsamples were collected in 15 ml
polypropylene tubes with plug seal caps (Corning, NY,
USA) containing HCl (1.5% final concentration) for pre-
servation. For dissolved DMSP analysis, 10 ml samples
were gently poured into a polysulfone filtration tower
equipped with a 25 mm GF/F filter, and 4 ml were gravity
filtered and preserved in 1.5% HCl. At the time of ana-
lysis, DMSP was cleaved into dimethylsulfide (DMS) by
the addition of NaOH (1.3 M final concentration).
Resulting DMS was quantified using a gas chromatograph
(Shimadzu GC-2014 or GC-14A) with a Chromosil 330
column and a flame photometric detector coupled with a
purge and trap system [17].

Bacterial RNA extraction and RNA-seq

Bacterial cells were collected on 0.2 µm pore-size poly-
carbonate (PC) membranes after pre-filtration of 1 L sam-
ples through 2 µm pore-size membranes to remove
eukaryotic cells [15]. Filters were flash frozen in liquid
nitrogen and stored at −80 °C. For RNA extraction, filters
were incubated at 37 °C for 1 h in TE buffer, sodium
dodecyl sulfate (0.6% final concentration), and proteinase K
(120 ng µl−1

final concentration, Qiagen, Hilden, Germany).
An extraction with acid phenol:chloroform:isoamylalcohol
was performed, and RNA was resuspended in RNAse-free
water. RNA was precipitated with sodium acetate (0.3 M
final concentration) and three volumes of 100% ethanol, and
incubated overnight at −20 °C. Pellets were washed twice
with 75% ethanol, centrifuged, dried, and resuspended in
RNAse-free water [15].

Samples were treated with the Turbo DNA-free kit
(Invitrogen, Waltham, MA, USA) to remove DNA, and
tests for residual DNA by a 40-cycle PCR targeting the 16S
ribosomal RNA (rRNA) gene of R. pomeroyi were negative.
rRNA was depleted using custom probes for small and large
subunit rRNA genes from all three microbes [18]. Libraries
were prepared for two replicate cubitainers at each time
point using the KAPA Stranded mRNA-Seq kit (Kapa
Biosystems, Wilmington, MA, USA) at the Georgia
Genomics and Bioinformatics Core (University of Georgia)
and sequenced on a HiSeq Illumina 2500 at the Hudson
Alpha Institute for Biotechnology (AL, USA).

RNA-seq analysis

The FASTX toolkit was used for quality control of 249
million 50-bp reads (10 ± 2 million reads per sample;
Table S1), imposing a minimum quality score of 20 over
80% of read length. Reads aligning to an in-house rRNA
database were removed (blastn, score cutoff ≥50). Bowtie 2
[19] and HTSeq [20] were used to map the remaining reads
to the R. pomeroyi genome, conserving strand information
and removing reads that mapped to more than one location
(Table S1). Counts were converted to transcripts per million
[TPM [21]; Table S2] and data deposited in the NCBI
BioProject database under accession PRJNA381627. Genes
with differential expression between selected time points
(representing diatom- and dinoflagellate-dominated phases)
were determined with DESeq2 [22]. Although bacterial
expression can change more rapidly than the time intervals
between samples, genes identified as significantly different
were consistent over multiple sample dates within each
phase and most likely represented sustained transport/
metabolism activities.

Ruegeria pomeroyi expression assays

In a separate experiment, R. pomeroyi was grown in a
minimal medium with 12 mM choline-O-sulfate, 20 mM
cysteate, or 30 mM acetate as the sole substrate. Overnight
cultures were pelleted by centrifugation, resuspended in
1 ml Ambion (Thermo Fisher Scientific) denaturation
solution, flash frozen in liquid nitrogen, and stored at
−80 °C until RNA extraction. Samples were treated with
the TURBO DNA-free kit to remove DNA and Ribo-Zero-
Bacteria (Illumina) to remove rRNA. Library preparation,
sequencing, and differential expression analysis were as
described above.

Mining of the TARA Oceans metagenomes

We analyzed 225 TARA Oceans metagenomes in the bac-
terial/archaeal size range, either 0.22–1.6 or 0.22–3 µm,
from surface (SRF), deep chlorophyll maximum (DCM),
and mesopelagic (MES) depths (Table S3). Accounting for
replicate samples, 132 unique stations/depths were ana-
lyzed. The metagenomes were assembled using SPAdes
version 3.9 using k-mers of 21, 33, 55, and 77 after standard
adapter trimming and error correction using BFC (https://
github.com/lh3/bfc) with the k-mer size set to 19. The
reassembly pipeline built contigs within individual samples,
allowing coverage calculation by station and depth. Genes
were called using Prodigal version 2.6.3 with default
parameters. Coverage was obtained using BWA (https://
github.com/lh3/bwa) with default parameters to map reads
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back to contigs and samtools (https://github.com/samtools/
samtools) to calculate coverage for each contig.

Hidden Markov Models (HMMs) were used to search the
contigs for DOS genes. The HMMs were constructed from
reference sequences from bacterial isolates obtained for 11
DOS-related genes that were differentially expressed by R.
pomeroyi during the co-culture experiment. Proteins with
experimentally verified function were used whenever pos-
sible (Table S4). These gene databases were used to build
the HMMs using HMMER 3.1b2. From the output from
each HMM run against the gene calls in the Tara contigs,
only sequences with at least 40% protein identity to a
reference gene were kept. A score was then determined
where at least 80% of assembled genes were manually
annotated as the correct gene based on blastP analysis and
tree building (Table S4). Most of the DOS-related genes
mediate transformations in catabolic pathways, although
transporter substrate binding genes were used in the case of
the three C2 sulfonates that have a shared catabolic path-
way. We note that our estimates of DOS gene frequencies
are conservative, since HMM cutoffs were stringent, and
any alternate pathway or transport proteins would not be
counted. The Tara dataset was also searched for the single-
copy gene recA using the HMM in the Pfam Database
(http://pfam.xfam.org/family/PF00154#tabview=tab0).
Relative gene abundance information was obtained for each
DOS gene and recA based on coverage of the Tara contigs.
The proportion of cells harboring a DOS gene at a given
location and depth was estimated as: DOS gene counts
(normalized to the length of the recA gene)/recA gene
counts. A Bray–Curtis dissimilarity analysis based on DOS
gene abundances by sample was carried out in R (vegan
package, vegdist function) [23].

Taxonomy information was obtained for the gene
assemblies that passed the HMM cutoff using Diamond [24]
against the May 2018 version of the IMG non-redundant
database by keeping the taxonomy of the best hit. In cases
of frequent taxonomy assignments to a bacterial group not
previously known to possess the genetic capability, manual
annotation of gene function and that of its neighboring
genes was carried out. Neighboring genes were also clas-
sified taxonomically to check for evidence of mis-
assembled contigs, but this was not found.

Results and discussion

Co-culture dynamics

Dinoflagellate A. tamarense was the only phytoplankton
species in the co-cultures until day 12, when diatom T.
pseudonana was inoculated. Thalassiosira pseudonana
became numerically dominant by day 18, and was the only

phytoplankton species detected by day 30 (Fig. 1a). As
described in Landa et al. [15], the bacterium R. pomeroyi
was inoculated into three phytoplankton cultures on day 7 at
a concentration of 3.7 × 105 cells ml−1 and increased in
abundance by 32-fold by day 37 (Fig. 1b). Bacterial growth
was sustained solely by phytoplankton exometabolites since
no exogenous carbon or nitrogen sources usable by the
bacterium were provided. The remaining three phyto-
plankton cultures were left bacteria free. DOC and TOC
increased over time in both conditions, but were lower in
the co-cultures with bacteria (Fig. 1c, d). Inorganic nitrogen
and phosphorus were gradually drawn down during the
experiment, but remained high enough to ensure that phy-
toplankton growth was not limited by either nitrogen or
phosphate availability (Fig. S1). There was no difference in
phytoplankton cell dynamics between treatments with and
without bacteria (Fig. 1a).

Data from this co-culture system served as the basis to
investigate the role of phytoplankton-derived DOS meta-
bolites in supporting heterotrophic bacterial growth and
activity. An early co-culture phase was defined based on
dinoflagellate dominance and encompassed sampling days
7, 9, and 12; and a late phase was defined by diatom
dominance and encompassed days 23, 30, and 37 (Fig. 1b).
Bacterial genes with experimentally confirmed roles in DOS
utilization were tested for differential expression during
growth with the two phytoplankton species (Table 1).

Sulfonate metabolism

Expression patterns indicated that five sulfonates, a class of
organic sulfur compounds characterized by a R-SO3

−

functional group, were likely serving as substrates for R.
pomeroyi growth in the co-cultures. Transcripts for the
transport and catabolism of the C3 sulfonate DHPS were
enriched during the diatom-dominated phase of the co-
culture, including those encoding uptake (hpsKLM) and
catabolism to cysteate (hpsOPN, slcD) and pyruvate
plus sulfite (cuyA) (Fig. 2a; Table 1). DHPS was previously
identified as an abundant metabolite in T. pseudonana
[25–27] and was also found in the dissolved organic matter
pool associated with a marine diatom bloom [27].

We noticed enrichment of transcripts from an operon
containing an unannotated ABC transporter (SPO2658-
2661) and an adjacent gene (SPO2657) having high identity
to cuyA, the gene that encodes L-cysteate sulfolyase in the
DHPS catabolism pathway [28] (Table 1). Based on the
function of L-cysteate sulfolyase, we hypothesized that
the C3 sulfonate cysteate was also available as a bacterial
substrate during the diatom-dominated co-culture, and
transported into the cell by the upregulated unannotated
transporter system (Fig. 2a). Transcriptional analysis of R.
pomeroyi grown on cysteate compared to acetate showed
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strong upregulation of the ABC transporter components and
adjacent cuyA-like gene (cuyA-2; Fig. S2), supporting a role
in cysteate utilization. As is the case for cuyA in the DHPS
pathway, cuyA-2 is predicted to oxidize cysteate to pyruvate
and sulfite, although cysteate catabolism provides a net
source of ammonium to the bacterium, whereas DHPS does
not (Fig. 2a). While sulfonate concentrations were not
measured in this study, previous studies showed cysteate to
be a component of diatom metabolomes [25, 29].

Co-culture transcription patterns indicated that R.
pomeroyi growth was likely supported by three other sul-
fonates, in this case C2 sulfonates released during the
dinoflagellate-dominated phase (Fig. 2b). Seventeen genes

in the R. pomeroyi genome have been experimentally con-
firmed to transport and catabolize the structurally related
C2 sulfonates taurine, N-acetyltaurine, and isethionate
[30–32] (Fig. 2b). These are catabolized through a shared
lower pathway leading from sulfoacetaldehyde to acetyl-
CoA (via genes xsc and pta), and this pathway was enriched
in the bacterial transcriptome. The isethionate transporter
components (iseKLM) and upper pathway genes for ise-
thionate, taurine, and N-acetyltaurine (iseJ and tpa; Fig. 2b)
were also significantly enriched during the dinoflagellate
phase (Table 1). These bacterial expression results are
supported by previous findings of both taurine [33] and
isethionate [34] in metabolomes of marine diatoms. Here,
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the higher expression of R. pomeroyi C2 sulfonate genes
during the dinoflagellate phase suggests greater release by
the dinoflagellate than by the diatom. N-acetyltaurine has
not yet been identified in phytoplankton metabolomes.

Sulfate ester metabolism

We noted enrichment of transcripts from betC (choline
sulfatase) and betI (choline catabolism transcriptional reg-
ulator) during growth of R. pomeroyi on dinoflagellate-
derived metabolites. betC was previously experimentally
verified as an essential gene in the catabolism of the sulfate
ester choline-O-sulfate by R. pomeroyi [35]. Transcription
analysis of the bacterium growing on choline-O-sulfate
compared to acetate identified betC and betI among the
most highly enriched, along with transcripts from several
downstream genes that process choline to glycine betaine,
sarcosine, and glycine (Fig. 2c and Fig. S2). This DOS
metabolite was previously identified in the metabolome of
dinoflagellate Amphidinium carteri [36, 37].

Sulfonium metabolism

Ruegeria pomeroyi harbors two degradation pathways for
the sulfonium compound DMSP, each with different phy-
siological and ecological fates. DMSP-sulfur processed
through the demethylation pathway is incorporated into
cellular material or oxidized for energy, while DMSP-sulfur
processed through the cleavage pathway is largely lost from
the cells in the form of DMS [38] (Fig. 2d). In the axenic
controls, dissolved DMSP accumulated to 1050 ± 117 nM
(Fig. 1e), while in the R. pomeroyi co-cultures accumulation
was only 1.4 ± 0.4 nM, indicative of highly efficient bac-
terial uptake. Transcription of the first genes in each of the
pathways (dmdA for demethylation, dddW for cleavage)
was significantly higher during the dinoflagellate phase
(Table 1). This is consistent with previous data showing that
although T. pseudonana also synthesizes DMSP, A.
tamarense is the higher producer of the two [39]. We
checked whether this was the case under the specific growth
conditions used here and found 772 ± 3 nM DMSP in the A.
tamarense exometabolome vs. 101 ± 18 nM in the T.
pseudonana exometabolome after 1 week of axenic growth.
Although R. pomeroyi has other genes that can also mediate
the first step in the DMSP cleavage pathway [dddD, dddP,
dddQ [40]], only dddW was expressed to any appreciable
levels.

The timing of peak expression of the gatekeeper genes
for demethylation (dmdA) vs. cleavage (dddW) was offset in
the co-culture by 3–5 days (Fig. S3). Variations in the ratio
of DMSP routed through the two pathways have been
detected in natural marine bacterial communities as well
[8, 41], although the controls over this differential routingTa
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are still not understood [42]. Because DMSP demethylation
produces hydrogen peroxide [43–45] and cleavage produces
acrylate/acryloyl-CoA [46, 47], one hypothesis views dif-
ferential regulation as a mechanism for bacteria to balance
the different physiological stresses each pathway imposes
[48]. In the co-culture experiment, expression of the R.
pomeroyi catalase gene (katG) was significantly correlated
with expression of demethylation pathway genes (dmdA and
mtoX; r= 0.73 and 0.89, p ≤ 0.01), but not with the

cleavage pathway gene dddW (r= 0.27; Fig. S3), consistent
with hydrogen peroxide stress linked to demethylation.
Acryloyl-CoA reductase (acuI) from the cleavage pathway
is co-located and co-regulated with dmdA from the deme-
thylation pathway (Fig. S3), an unusual arrangement that,
upon upregulation of the operon, would protect the bac-
terium both by metabolizing acryloyl-CoA generated in the
cleavage pathway and routing DMSP into the demethyla-
tion pathway. We checked whether acryloyl-CoA

A B

C D

Fig. 2 Expression of organic sulfur pathways by R. pomeroyi. Histo-
grams indicate relative expression (TPM) for genes encoding trans-
formation of a C3 sulfonates, b C2 sulfonates, c a sulfate ester, and d a
sulfonium compound. The first six bars in each represent expression
during the dinoflagellate phase (sampling days 7, 9, and 12) and the
last six bars represent expression during the diatom phase (sampling

days 23, 30, and 37), with replicates (n= 2) shown separately. Orange
backgrounds indicate genes with significant enrichment in the dino-
flagellate phase and green indicate significant enrichment in the diatom
phase (DESeq2, p < 0.05). Genes used in the Tara Oceans bioinfor-
matic analysis are marked with gray circles
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accumulation switches gene expression to the demethyla-
tion pathway by adding acrylate, the precursor of acryloyl-
CoA, to R. pomeroyi cultures growing on DMSP. As
hypothesized from the genome organization, the relative
DMSP flux through demethylation pathway increased sig-
nificantly upon acrylate addition (Fig. S4).

Sulfur fate in Ruegeria pomeroyi

The S moiety in sulfonates is more oxidized than in DMSP
and therefore less valuable as a reduced sulfur source for
bacterial biosynthesis. For the inorganic sulfur derived from
the three dinoflagellate-derived sulfonates (taurine, N-acet-
yltaurine, and isethionate), sulfur has been shown to be
exported from R. pomeroyi via the soe system in the form of
sulfate [49, 50]. Consistent with this, there was higher
average expression of soeABC during the dinoflagellate
phase, and expression of soe genes had significant positive
correlations with tauR, xsc, and pta (Fig. S5). Inorganic
sulfur from the two C3 diatom-derived sulfonates (DHPS
and cysteate) is exported by R. pomeroyi instead in the form
of sulfite via the cuyZ gene [28, 51]. cuyZ had peak
expression in the diatom phase (Fig. S5). Finally, inorganic
sulfur from DMSP metabolism is exported by R. pomeroyi
in the form of sulfate using a third system, soxABCDXYZ
[52]. Expression of sox genes peaked during the dino-
flagellate phase and was significantly correlated with
expression of DMSP demethylation gene dmdA (Fig. S5).

DOS transformation by ocean bacteria

We used knowledge of the sulfur metabolites important in
this model system to characterize the capacity for DOS
utilization by ocean bacteria. Thirteen bacterial genes
indicative of catabolism of phytoplankton-derived organic
sulfur molecules were analyzed in the Tara Oceans meta-
genomic database [16]. DNA sequences representing the
bacterial/archaeal size class of marine plankton (0.22–1.6 or
0.22–3 µm filter pore-size ranges; Table S3) from surface
(100 samples from 5m depth), DCM (72 samples from 17
to 188 m depths), and mesopelagic (53 samples from
250–1000 m depths) collections (Fig. S6) were assembled
into contigs by individual sample (see Methods), which
allowed us to link reads back to the station and depth where
they were collected. HMM searches were conducted for
genes characteristic of the model system sulfur metabolites,
using diagnostic catabolic genes or, in the case of the
C2 sulfonates that share catabolic genes, using transporter
binding proteins (Fig. 2). The percent of genomes harboring
the genes was estimated based on length-normalized ratios
to recA, a housekeeping gene present in single copy in all
bacterial and archaeal genomes. The sum of recA sequences
across all samples (Table S3) indicated that 1.4 million

bacterial/archaeal genome equivalents were surveyed in
these Tara Oceans collections, of which ~650,000 were
from the surface ocean, ~500,000 from the DCM, and
~230,000 from the mesopelagic.

The frequency of genes for DOS utilization averaged
across all locations and depths is highest for DMSP, and
this is the only DOS metabolism capability identified in all
225 Tara samples. Twenty percent of bacterial genomes
harbored dmdA, the diagnostic gene for DMSP demethy-
lation, while 3.8%, 2.5%, and 2.4% of genomes had dddK,
dddP, and dddD, the most abundant DMSP cleavage genes
(Table S3). Although dddW was the most highly transcribed
of the R. pomeroyi DMSP cleavage genes in the co-culture,
it is extremely rare in the Tara dataset—present in only 92
of the 1.4 million genome equivalents we surveyed (0.01%
of genomes; Table S3). Cleavage genes dddL and dddQ
were found in 0.06% and 2.3% of genomes; whether DMSP
cleavage is the native function of dddQ has been questioned
[53]. A recent analysis of DMSP cleavage gene expression
in the Tara Oceans metatranscriptome data shows they are
actively expressed, with dddP and dddK having the highest
transcription levels [54].

Genes for utilization of sulfoacetaldehyde (xsc), taurine
(tauA), and DHPS (hpsN) are the next most frequent in Tara
bacterioplankton (estimated to be in 8.4%, 8.2%, 4.8% of
genomes). Genes for transforming choline-O-sulfate (betC)
and isethionate (iseK) are not frequent (0.9% and 0.5% of
genomes) (Table S3). Notably, bacterial DOS genes are not
distributed evenly by depth. DMSP demethylation gene
dmdA and cleavage gene dddK had distributions sig-
nificantly biased toward surface ocean bacterial genomes.
The DMSP cleavage gene dddP and genes for taurine
(tauA), N-acetyltaurine (naaA), cysteate (cuyA-2), isethio-
nate (iseK), and sulfoacetaldehyde (xsc) utilization had
distributions significantly biased toward mesopelagic bac-
terial genomes (Fig. 3).

To learn which bacterial taxa harbor DOS genes, we
assigned taxonomy to the Tara genes based on blast analysis
against the Integrated Microbial Genomes non-redundant
database. For all DOS genes except dddK, taxonomic
assignments include bacteria belonging to the Rhodo-
bacterales, an expected consequence of Rhodobacterales
member R. pomeroyi being the sensor bacterium that gen-
erated the DOS metabolite list. Because of the numerical
importance of SAR11 cells in the ocean, they dominate the
taxonomic assignments for any DOS genes found in the
group. Thus, SAR11 genomes account for >80% of bac-
terial genes for DMSP utilization (dmdA and dddK), >55%
of genes for DHPS utilization (hpsN), and >60% of genes
for taurine utilization (tauA). Other marine Alphaproteo-
bacteria from the SAR116, Rhodospirillales, and Rhizo-
bacterales clades also harbor DOS genes, but to a lesser
extent than Rhodobacterales and SAR11 (Fig. 4).
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In the mesopelagic, novel groups not previously recog-
nized for organic sulfur metabolism were prominent
(Fig. 4). One such group is SAR324, whose genomes
contain orthologs for utilization of DMSP (dmdA and
dddP), DHPS (hpsN), taurine (tauA), N-acetyltaurine
(naaA), isethionate (iseK), and choline-O-sulfate (betC). For
example, SAR324 genomes account for 41% of dmdA, 92%
of iseK, and 29% of tauA in bacteria sampled from meso-
pelagic depths. A second novel taxon potentially partici-
pating in DOS metabolite catabolism at depth is the
Acidimicrobiia group of the Actinobacteria, whose gen-
omes contain orthologs for utilization of N-acetyltaurine
(30% of mesopelagic naaA), taurine (1% of mesopelagic
tauA), and DMSP cleavage (46% of mesopelagic dddP).
The Acidimicrobiia tauA and naaA genes in the Tara data
are uncharacteristically long (~680 amino acids compared
to ~300 in other bacteria), which was due to two substrate
binding domains encoded in each. Two substrate binding
domains were also found in tauA and naaA in some marine
Acidimicrobiia reference genomes (Fig. 5), an arrangement
that could improve scavenging for scarce substrates. A third
novel group at DCM and mesopelagic depths is Thioglobus/
SUP05, whose genomes contain orthologs for DMSP
cleavage (21% of DCM dddP, 7% of mesopelagic dddP)
and taurine utilization (11% of DCM tauA, 33% of meso-
pelagic tauA). Lastly, DOS genes that mapped to a novel
Gammaproteobacteria group with 16S rRNA sequences
most similar to Thiohalorhabdaceae bacterium JGI
01_F9_750m (95% identity) included those for DMSP
demethylation (13% of mesopelagic dmdA) and N-acet-
yltaurine utilization (51% of mesopelagic naaA) (Fig. 4).

Two catabolism genes used in the Tara HMM searches,
cuyA-2 and xsc, are not specific for a single DOS metabo-
lite. cuyA-2 encodes a second copy of L-cysteate sulfolyase
for cysteate metabolism in R. pomeroyi (Fig. 2a), but might
not be distinguishable from the canonical cuyA from the
DHPS pathway in homology-based searches. xsc encodes a
sulfoacetaldehyde acetyltransferase that in R. pomeroyi
mediates a step in the shared lower pathway through which
C2 sulfonates taurine, N-acetyltaurine, and isethionate are
degraded (Fig. 2b), but this gene is also used in an alternate
pathway for DHPS catabolism by some marine bacteria
[28]. Taxonomic assignments of cuyA-2 and xsc are domi-
nated by SAR11, Rhodobacter, SAR324, and Gammapro-
teobacteria, and their frequency and distribution are
consistent with other sulfonate utilization genes (Table S3).

In cases where HMMs identified orthologs in taxa not
previously recognized to transform DOS, we carried out
synteny-based checks on the annotations by examining gene
neighborhoods in the Tara assemblies and in their closest
reference genomes. The co-location of genes with annota-
tions consistent with DOS metabolism corroborated the
HMM annotations (Fig. 5). The HMMs did not recover any
orthologs originating from archaeal genomes, although we
note that there were no characterized marine archaeal DOS
genes to include in the HMM reference sequences.

Insights into DOS processing and fate

Bacteria capable of DMSP utilization are the most frequent
DOS degraders in the Tara Oceans database, an expected
result given both that ~10% of marine net primary
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production is directed to DMSP synthesis [8, 55] and
phytoplankton intracellular concentrations can reach
400 mM [39, 56]. Marine bacteria serving as model
organisms for DMSP gene discovery, including R. pomer-
oyi, can harbor up to four different DMSP cleavage genes in
addition to dmdA [40, 42]. Yet, based on the frequency of
cleavage genes in the Tara dataset compared to demethy-
lation gene dmdA, it appears that most oceanic DMSP-
degrading bacteria are capable only of demethylation.
Among DMSP-degrading SAR11 cells, for example, fre-
quencies of dmdA and dddK indicate that no more than 25%
can harbor both pathways. Although community gene

frequency is not a measure of activity level, the lower fre-
quency of cleavage genes accords with estimates that <2%
of the DMSP synthesized by marine phytoplankton is ulti-
mately released from the ocean surface as DMS [42].
Nonetheless, this small DMS flux relative to DMSP pro-
duction accounts for over 40% of Earth’s atmospheric sulfur
burden [41], and even minor changes in bacterial routing
between the two pathways could impact atmospheric sulfur
concentrations.

The fact that DMSP genes dmdA and dddK have fre-
quencies biased toward surface ocean genomes suggests a
close coupling between phytoplankton synthesis and
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bacterial transformation for this compound. Yet, in the case
of sulfonate genes, with frequencies mostly biased toward
mesopelagic genomes, the proximate source of labile DOS
is less clear. Sulfonate-sulfur is more oxidized than DMSP-
sulfur and may be less preferred as a substrate in surface
waters. Sinking phytoplankton biomass could also provide a
source of sulfonates at depth, as supported by evidence of
DHPS production during bacterial degradation of sulfoli-
pids from photosynthetic membranes [57]. DOS metabolites
could also be available from viral lysates and zooplankton
detritus. For example, taurolipids have been identified in
protist membranes [58], and taurine release by crustacean
zooplankton has been observed in surface and upper
mesopelagic waters [59]. When the Tara Ocean samples are
clustered based on gene patterns, collection depth is the
main correlate (Fig. 6), with depth-related variation in both
sources of DOS and the bacterial taxa that process DOS
likely to be driving this pattern. Only minor groupings were
observed based on oceanic region, although a separate
cluster of 15 surface and DCM samples with high DOS
gene abundance emerged, driven primarily by high fre-
quencies of genomes with dddK, hpsN, and tauA (Fig. 6).

Our important findings are, first, that a diverse suite of
DOS metabolites have the potential to support bacterial
heterotrophy in the ocean. Membership in this suite may
well expand further, particularly when viewed through a
more comprehensive lens than just a single model bac-
terium’s gene expression. The recent finding that the
structurally unusual DOS compound dimethylsulfox-
onium propionate is an exometabolite of marine phyto-
plankton and readily taken up by marine bacteria,
including R. pomeroyi [60], supports this prediction. The
biosynthetic apparatus and physiological roles of these
DOS metabolites in marine phytoplankton remain largely
unknown. Second, in addition to the bacterial taxa already

recognized to play roles in organic sulfur transformation
(Rhodobacter, SAR11, and SAR116), we discovered that
other taxonomic groups can process DOS metabolites and
have gene frequencies biased toward the mesopelagic.
These include SAR324, Acidimicrobiia, Thioglobus/
SUP05, and Thiohalorhabdaceae-like cells with varying
capabilities for utilization of DMSP, taurine, N-acet-
yltaurine, isethionate, and choline-O-sulfate. Non-labile
marine DOS (defined as the semi-polar molecules cap-
tured on solid-phase extraction resin) in the ocean’s dis-
solved organic matter reservoir has been found to degrade
at a higher long-term rate than bulk DOC, indicating
selective removal of organic sulfur over time and depth
[61]. Here, an analysis window targeting the labile com-
ponents of marine DOS similarly implicates organic sulfur
turnover as a key process in the global carbon cycle.
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