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controls (n¼ 22) using diffusion tensor imaging and tract-based spatial

statistics. Additionally, diffusion values were extracted and compared

for white matter tracts of interest, and associations with clinical
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Abstract: The successful implementation of prevention programs for

mother-to-child human immunodeficiency virus (HIV) transmission has

dramatically reduced the prevalence of infants infected with HIV while

increasing that of HIV-exposed uninfected (HEU) children. Neuropsy-

chological assessments indicate that HEU children may exhibit differ-

ences in neurodevelopment compared to unexposed children (HUU).

Pathological mechanisms leading to such neurodevelopmental delays

are not clear. In this observational birth cohort study we explored the

integrity of regional white matter microstructure in HEU infants, shortly

after birth.

Microstructural changes in white matter associated with prenatal

HIV exposure were evaluated in HEU infants (n¼ 15) and matched
r, PhD, Katherine
irsten A. Donald, PhD

outcomes from the Dubowitz neonatal neurobehavioral tool were

investigated.

Higher fractional anisotropy in the middle cerebellar peduncles of

HEU compared to HUU neonates was found after correction for age and

gender. Scores on the Dubowitz abnormal neurological signs subscale

were positively correlated with FA (r¼ 0.58, P¼ 0.038) in the left

uncinate fasciculus in HEU infants.

This is the first study to present data suggesting that prenatal HIV

exposure without infection is associated with altered white matter

microstructural integrity in the neonatal period. Longitudinal studies

of HEU infants as their brains mature are necessary to understand further

the significance of prenatal HIV and antiretroviral treatment exposure

on white matter integrity and neurodevelopmental outcomes.

(Medicine 95(4):e2577)

Abbreviations: DCHS = Drakenstein Child Health Study, DTI =

diffusion tensor imaging, FA = fractional anisotropy, HEU = HIV-

exposed uninfected, HIV = human immunodeficiency virus, HUU

= HIV-unexposed uninfected, M-/A-/RD = mean/axial/radial

diffusivity, TBSS = tract-based spatial statistics.

INTRODUCTION

T he human immunodeficiency virus (HIV) remains one of
the most severe global public health issues, with an esti-

mated 35 million people living with HIV in 2013.1–3 Sub-
Saharan Africa, especially southern Africa, remains the global
epicenter of the HIV epidemic, accounting for 70% of the
people living with HIV worldwide.3 The successful imple-
mentation of prevention of mother-to-child programs has
dramatically reduced the rate of vertical transmission while
increasing the number of HIV-exposed uninfected (HEU) chil-
dren being born.4–6 Subtle deficits in cognition, motor function,
language, and behavior have been observed among HEU chil-
dren compared to HIV-unexposed uninfected (HUU) con-
trols;7,8 however, there remains lack of consistency in
outcomes of studies exploring the neurodevelopmental outcome
of HEU children.9,10

Neuroimaging studies using quantitative magnetic reson-
ance imaging techniques are contributing to the improved
understanding of the underlying biology of the primary effects
of HIV infection on the developing brain. White matter hyper-
intensities, subtle white matter microstructural and neuro-
chemical abnormalities, and reduced white matter volume
have been reported in older children and adults with HIV
infection.11–13 In addition, white matter microstructural
alterations have been observed in prenatally infected adoles-
cents in brain areas including the superior longitudinal fas-
pus callosum, external capsule, middle
d basal pons.11,14 However, the effect

osure on white matter microstructure
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utilizing diffusion tensor imaging (DTI) in HEU infants has
not been previously documented.

To address these gaps in the understanding of the effects of
prenatal HIV exposure on white matter microstructural integrity
and neurobehavioral outcome of HEU infants, we conducted
this study in South African neonates.15 Using a cohort from a
peri-urban community in the Western Cape, the present study
investigated whether the impact of prenatal HIV exposure on
early white matter microstructural integrity may be discernible
in neonates and whether associations with early neurobeha-
vioral measures are present. Based on the literature in children
and adults with HIV infection, we hypothesized that disruptions
in white matter integrity would occur (even if more subtly) in
similar areas including association and projection pathways and
in the cerebellum and that these changes would be associated
with infant neurobehavior.

METHODS

Study Population
This is a nested observational substudy of infants enrolled

in a larger population-based birth cohort study, the Drakenstein
Child Health Study (DCHS).16,17 The DCHS is located in the
Drakenstein area in Paarl, a peri-urban area in the Western Cape
province of South Africa. The local community of �200,000
people is of low socioeconomic status, live in informal housing
or crowded conditions, and have high levels of unemployment.
Infectious diseases including pneumonia, HIV, and tuberculosis
are common. The area has a well-established free healthcare
system, where �90% of women access public sector antenatal
care and child health services.

Participants
The DCHS recruited>1000 pregnant women in their second

trimester attending 2 primary health clinics serving different
populations—TC Newman (serving a mixed race population)
and Mbekweni (serving a black African population).16,17

We recruited pregnant women at 20 to 24 weeks gestation,
obtained written informed consent, and collected background
data as per the DCHS protocol.16,17 We confirmed the HIV
status of mothers antenatally utilizing standard HIV testing
algorithms and available laboratory tests.18 We confirmed the
HIV status of the infants by testing postnatally using the
qualitative polymerase chain reaction (PCR) technique. Infants
who tested positive on the PCR testing had their HIV status
confirmed using quantitative HIV viral load testing.

The study collected measures of potential confounding
factors. The Alcohol, Smoking and Substance Screening Test
(ASSIST) was used to assess maternal substance abuse.17–20

Following this initial screen, prenatal alcohol exposure was
further defined by a history of moderate-severe alcohol use in
any of the pregnancy trimesters. Maternal cigarette smoking
status was further documented using the Fagerström Test for
Nicotine Dependence.21

Objective measures of maternal substance use were also
included.16,17 Maternal urine cotinine was measured antenatally
and at the time of birth to detect and quantify current smoking
status. In addition, maternal urine samples were tested antena-
tally with rapid urine dipstick testing for recent use of common
illicit substances, including methamphetamines, cocaine, can-

Tran et al
nabis, methaqualone, and opiates.
Following birth, mother–child pairs identified through the

HIV-testing approach were included for study unless mothers

2 | www.md-journal.com
had a positive urine screen for illicit drugs of abuse (any group),
the infants were premature (<36 weeks), or had low APGAR
scores (<7 at 5 minutes), and/or history of neonatal ICU
admission for hypoxic ischemic encephalopathy or other sig-
nificant neonatal complications. Infants were also excluded
from this study if they had an identified genetic syndrome or
congenital abnormality. In this nested substudy, 39 infants were
assessed: 15 HEU infants and 24 matched HUU controls. No
infants who were identified in the antenatal visit for inclusion
were lost by the time of scanning and none refused consent
for scanning.

In this study we imaged 2 to 4-week-old infants during
natural (ie unsedated) sleep. Earplugs and mini-muffs were used
for ear protection, a pulse oximeter was used to monitor pulse
and oxygenation, and a qualified neonatal nurse or pediatrician
was present with the infant during the imaging session. At the
time of scanning, basic infant anthropometry was acquired,
including length, weight, and occipito-frontal head circumfer-
ence. The Dubowitz neurobehavioral scale, a measure of neo-
natal neuromotor and neurobehavior status, was used to study
early neurological and neurobehavioral changes and to identify
potential associations with neuroimaging findings.22 The score
is based on the distribution of the scores for each item in the
population of low-risk term infants, and the optimality score is
obtained by summating the optimality scores of individual
items. Together, the examination can be used to detect abnormal
neurological signs associated with specific patterns of lesions
observed on brain imaging. For this study, the ‘‘behavior’’
cluster, which includes items scoring irritability, cry, consol-
ability, alertness, visual and auditory orientation and eye move-
ments, and the ‘‘abnormal signs’’ cluster, which focuses on
posture, tremor, and startle items, were of particular interest.

The DCHS was approved by the Faculty of Health
Sciences human research ethics committees of the University
of Cape Town and Stellenbosch University in South Africa, as
well as by the Western Cape Department of Health Provincial
Research Committee. This substudy was independently
reviewed and approved as HREC 525/2012. As above, mothers
provided written informed consent for participation in the study.

DTI Acquisition
White matter microstructure can be characterized in vivo

with diffusion tensor imaging (DTI), a noninvasive technique
that utilizes the intrinsic directionality of water diffusion along
fiber pathways to provide highly specific anatomical infor-
mation.23 The most widely used index is fractional anisotropy
(FA). This represents orientation-dependent variation in the
diffusivity of water and reflects a number of microstructural
properties such as degree of myelination, axon diameter, fiber
coherence, and fiber tracking density.24,25 Other reported
indices include mean diffusivity (MD), axial diffusivity
(AD), and radial diffusivity (RD). MD represents a measure
of average diffusivity. Alterations in MD may indicate a
decrease in cellular density, myelin degradation, or an increase
in the extra- and/or intracellular volumes.24 Organized neural
microstructure associated with improved cognition and beha-
vior are typically associated with higher FA values and lower
MD values. White matter microstructural pathology, however, is
more generally associated with lower FA and higher MD
values.23,24 AD represents diffusivity along the axonal structure,

Medicine � Volume 95, Number 4, January 2016
typically reflecting axonal membrane integrity and fiber coher-
ence.26 AD may be higher when there is damage to the
neurofilaments or axons.27,28 RD typically reflects average
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perpendicular diffusion and indicates degree of myelination;
RD is generally higher with myelin damage or reduced
myelination.28,29

Diffusion weighted images were acquired in the transverse
plane on a Siemens Magnetom 3T Allegra MRI system using
a spin-echo, echo-planar sequence along 45 noncollinear
diffusion directions (b-values 0 s/mm2 and 1000 s/mm2,
TR/TE¼ 7900/90 ms, slice thickness 1.6 mm, FOV 160 mm,
voxel size 1.3� 1.3� 1.6 mm3, 2 averages in anterior-posterior
and posterior-anterior orientation, scanning time 6.27 min per
average).

Data Processing
Diffusion imaging techniques are highly sensitive to the

motion of subjects during scan acquisition. As a result, acquir-
ing diffusion imaging data in infants offers particular logistical
and technical challenges. Initially, manual quality control of
individual subject data was applied. Only subjects with a
minimum of 12 acquisition volumes that were artifact-free were
allowed through the data preprocessing step. Subsequently,
FMRIB’s Diffusion Toolbox and processing streams from
Tract-Based Spatial Statistics (TBSS) were used to perform a
whole-brain analysis.

Diffusion weighted images from individual subjects were
registered to a corresponding b¼ 0 image. This step was
performed in order to correct for distortions resulting from
eddy currents as well as movement. Estimation of suscepti-
bility-induced off-resonance field was performed using the FSL
top-up tool. Subsequently, a single corrected image was created
using the combination of the 2 images. The FSL Brain Extrac-
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tion Tool was then used for the brain-extraction of images and
following this the calculation of diffusion tensors was per-
formed at each voxel. Values for each subject for FA, MD,

TABLE 1. Demographic, Anthropometric, and Dubowitz Data of

HIV-Exposed (n¼ 15)

Gestation (weeks, SD) 37.80 (2.11)
Age (days, SD) 23.20 (7.38)
Gender (male/female) 7/8
Weight (kg, SD) 3.91 (0.55)
Head circumference (cm, SD) 36.38 (1.79)
Length (cm, SD) 49.93 (3.55)
Dubowitz optimality scores (mean [SD])

Behavior (/7) 4.43 (1.39)
Abnormal signs (/3) 2.53 (1.06)

Maternal educationy (mean [SD]) �0.54 (0.74)
Primary 2
Some secondary 11
Completed secondary 2
Any tertiary 0

Socio-economic statusy (mean [SD]) �0.63 (1.46)
Body mass index (mean [SD]) 28.54 (5.04)
Maternal smoking (cotinine) (yes/no) 3/12
Maternal alcohol (yes/no) 3/12
Maternal CD4 count (cells/mm3, SD) 484.87 (173.31)

HIV¼ human immunodeficiency virus, SD¼ standard deviation.�
P< 0.05.
yStandardized score.

Copyright # 2016 Wolters Kluwer Health, Inc. All rights reserved.
AD, and RD were then obtained for between group analyses.
Diffusion values by regions of interest (ROIs) were extracted,
exported, and compared by group using standard SPSS statisti-
cal packages as below. Statistical analyses controlled for gender
and postnatal age at the time of the scan. Age (in days) was
considered particularly critical due to the rapid pace at which
white matter maturation evolves in early neonatal life.30

Whole-Brain Tract-Based Spatial Statistics
The standard pipeline for TBSS analysis was applied for

statistical analysis. In this study, the FMRIB FA template for
adults, provided by FSL was not considered appropriate
for neonatal DTI analysis. Thus, each subject was registered to
a representative target that was preselected from the control
cohort. The subject with the lowest mean warp coefficient from
the control cohort was chosen as the target image.

Each FA image was aligned into a standard space and
upsampled to 1� 1� 1 mm3 voxel size. Next, the average FA
image was created and thinned to create a skeletonized mean FA
image, which represents the center of all white matter tracts
common to the study group. An FA value of 0.2 was used as a
threshold for the skeleton. This study was explorative and so we
applied a more stringent threshold compared to that of some
previous studies of this age group that used a threshold FA value
of 0.15. Subsequently, we projected diffusion data onto this
skeleton for the statistical analysis.

The FSL’s Randomize tool was used to assess voxelwise
differences in DTI metrics among the study groups. Specifi-
cally, between group variations were investigated with unpaired
t tests and correlational analyses, and statistical analyses were

White Matter in HIV-Exposed Uninfected Infants
corrected for multiple comparisons with threshold-free cluster
enhancement. We considered results with a P value of <0.05 as
statistically significant.

Exposed and Unexposed Infants

HIV-Unexposed (n¼ 24) Statistics

38.42 (1.74) t¼�0.95, P¼ 0.35
19.87 (4.31) t¼ 1.59, P¼ 0.13

14/10 t¼ 0.69, P¼ 0.49
3.78 (0.70) t¼ 0.64, P¼ 0.53

35.73 (1.69) t¼ 1.12, P¼ 0.27
49.82 (4.62) t¼ 0.092, P¼ 0.93

3.52 (1.28) t¼ 2.06, P¼ 0.049�
2.67 (0.82) t¼�0.42, P¼ 0.68
0.15 (1.00) t¼�2.31, P¼ 0.027

�

2 –
9 –

12 –
1 –

0.34 (2.00) t¼�1.63, P¼ 0.11
24.97 (6.45) t¼ 1.82, P¼ 0.08

8/16 t¼�0.92, P¼ 0.38
3/21 t¼ 1.13, P¼ 0.24

– –
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Data Analysis by Regions of Interest
Following FSL preprocessing, we examined group main

effects using extracted data on different diffusion indices by ROI.
We applied affine-registration to each brain and a standard
FMRIB58_FA template. The white-matter atlas from Johns
Hopkins University was used for the extraction of MD values
for each subject for the ROIs. ROIs included associative bundles,
commissural bundles, projection bundles, and large white matter
tracts of the brainstem and cerebellum. Generalized linear models
were used to evaluate group differences in diffusion parameters,
with neonatal postnatal age (days) at scan time as well as gender
as covariates. Results were Bonferroni corrected.

RESULTS

Demographic Characteristics and
Anthropometric Measurements

The sample for the present analysis included 15 HEU infants
and 24 matched HUU controls (Table 1). The mean (SD, range)
age of all infants at scanning was 21.1 (5.83, 11–34) days and
46% were women. There were no significant differences in the

Tran et al
mean values for infant age at scanning, gestational age at birth,
weight, length, and head circumference for HEU infants com-
pared to HUU infants. Although maternal smoking and alcohol

TABLE 2. Results of Group Differences in Diffusion Parameters b
Higher in the Middle Cerebellar Peduncles of Exposed Infants Co

FA

Hemisphere F

Superior longitudinal fasciculus R 0.15 0.9
L 0.77 0.5

Superior fronto-occipital fasciculus R 1.27 0.3
L 0.10 0.9

Uncinate fasciculus R 0.89 0.4
L 3.31 0.0

Cerebellar peduncle
Inferior R 2.77 0.0

L 0.54 0.6
Middle 6.15 0.0
Superior R 0.07 0.9

L 0.23 0.8
Corticospinal tract R 0.61 0.6

L 0.71 0.5
Cerebral peduncle R 2.16 0.1

L 1.59 0.2
Posterior thalamic radiation R 1.26 0.3

L 1.04 0.3
Fornix 2.40 0.0
Cingulum R 1.95 0.1

L 3.40 0.0
Hippocampal cingulum R 0.66 0.5

L 1.96 0.1
Corpus callosum

Genu 4.24 0.0
Body 2.92 0.0
Splenium 2.06 0.1

AD¼ axial diffusivity, FA¼ fractional anisotropy, MD¼mean diffusivi�
Post-hoc investigation of univariate tests of significance revealed that
y Significant group differences at P< 0.05 after controlling for age and g
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misuse in pregnancy were present in this cohort, there were no
significant differences in these prenatal exposures between HEU
and HUU groups (Table 1). All HIV-infected mothers were on
triple therapy before delivery and had CD4 T lymphocyte counts
between 200 and 800 cells/mm3. Undetectable or low levels of
viral loads were observed in 80% of HIV-infected mothers, with 2
mothers having viral loads >50,000 copies/mL.

Whole-Brain Group Comparisons of Diffusion
Parameters

There were no group differences that reached significance
in any diffusion parameters on whole-brain analysis. Infant age
at scanning was positively correlated with FA and negatively
correlated with MD and RD across groups in several white
matter tracts, including the internal and external capsule, and
the anterior corona radiata.

Comparisons by Regions of Interest
General linear models by ROIs showed significant differ-

ence in diffusion parameters by group in major white matter

Medicine � Volume 95, Number 4, January 2016
fiber tracts that interconnect cerebellar and brainstem regions.
There was significantly higher FA in the middle cerebellar
peduncles of HEU infants compared to HUU [F (3,38)¼ 6.15,

y Regions of Interest. Fractional Anisotropy was Significantly
mpared to Controls

MD AD RD

P F P F P F P

29 0.45 0.721 0.53 0.664 0.35 0.791
20 0.98 0.413 0.41 0.747 1.19 0.340
01 0.54 0.657 1.16 0.338 0.26 0.857
58 0.29 0.836 0.40 0.752 0.22 0.885
58 0.05 0.987 0.24 0.869 0.03 0.991
31
�

0.89 0.472 0.90 0.451 0.86 0.470

56 0.69 0.571 0.44 0.725 0.85 0.476
57 0.56 0.643 0.49 0.692 0.51 0.681
02y 4.04 0.014

�
1.68 0.189 5.77 0.003

�

76 2.26 0.099 2.02 0.129 1.24 0.311
74 1.14 0.347 0.86 0.469 0.78 0.514
11 0.28 0.839 0.06 0.982 0.46 0.714
55 0.81 0.494 0.39 0.758 0.88 0.462
10 1.16 0.337 1.15 0.344 1.25 0.307
08 1.31 0.288 1.22 0.318 1.36 0.272
04 1.28 0.298 0.97 0.416 1.42 0.255
87 2.56 0.070 1.39 0.264 2.39 0.085
84 0.97 0.418 0.49 0.689 1.33 0.281
40 2.64 0.064 2.51 0.075 2.66 0.064
28
�

1.30 0.291 0.75 0.528 1.67 0.191
84 0.39 0.760 0.39 0.761 0.48 0.695
38 0.55 0.651 0.89 0.458 0.86 0.470

12
�

1.54 0.222 0.55 0.655 2.27 0.098
48
�

0.68 0.570 0.23 0.872 1.01 0.401
24 0.87 0.467 0.36 0.784 1.51 0.230

ty, RD¼ radial diffusivity.
age contributed significantly to the model.
ender.
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P¼0.002] after correction for age and gender (Table 2,
Figures 1 and 2).

Neurobehavioral Measures and Diffusion
Parameters

There was a significant difference between the scores on
the abnormal neurological signs subscale of the Dubowitz for
HEU infants compared to HUU neonates.

Scores on the Dubowitz abnormal neurological signs sub-
scale were positively correlated with FA (r¼ 0.58, P¼0.038)
in the left uncinate fasciculus; negatively correlated with MD
(r¼�0.58, P¼0.048) and AD (r¼�0.61, P¼0.026) in the
right inferior cerebellar peduncle; negatively correlated with
MD (r¼�0.65, P¼0.017) and AD (r¼�0.75, P¼0.003) in
the left hippocampal cingulum; and negatively correlated with
MD (r¼�0.66, P¼0.014) in the right hippocampal cingulum
of HEU infants (Figure 3).

DISCUSSION
To the best of our knowledge, this is the first time that DTI

has been used to investigate white matter microstructural integ-
rity in neonates exposed to HIV, but uninfected at birth. Our study
found significantly higher FA in the middle cerebellar peduncles
of HEU infants compared to unexposed neonates. In addition,
correlational analyses of diffusion parameters with the Dubowitz

FIGURE 1. White matter tracts superimposed on a 3D brain templ
the middle cerebellar peduncles (blue) of HIV-exposed uninfected
axial (C) views. HIV¼human immunodeficiency virus.
neurobehavior scores of HEU infants showed abnormal neuro-
logical signs cluster was positively correlated with FA in the left
uncinate fasciculus. These preliminary results are consistent with

FIGURE 2. Variability of FA values by the group in the middle
cerebellar peduncle. FA¼ fractional anisotropy.

Copyright # 2016 Wolters Kluwer Health, Inc. All rights reserved.
and expand on previous studies that found subtle neurodevelop-
mental effects of prenatal HIV exposure in older children.7,8

Diffuse white matter alterations have been documented in
cerebellar pathways of HIV-infected adults and older, specifically
in the middle cerebellar peduncles.31,32 These pathways have been
implicated in a variety of intellectual and neuropsychological
deficits, which are most pronounced in visuospatial, language and
memory functions.33 We described higher FA in the middle
cerebellar peduncles neonates exposed to prenatal HIV, which
suggests that the developing cerebellum may be particularly
sensitive to the effects of HIV exposure. Although an elevated
FA may indicate increased white matter connectivity,24,25 it has
also been postulated as possibly representing microscopic deficits
in axonal structures or reductions in axonal diameter, density of
axonal packing, and branching by some authors.34,35

Correlational analyses of diffusion parameters with the
Dubowitz neurobehavior scores of HEU infants showed associ-
ations between the abnormal neurological signs cluster with
DTI metrics in several white matter tracts including the uncinate
fasciculus, inferior cerebellar peduncles, and hippocampal cin-
gulum. Functions of these networks are believed to include
cognition, higher level motor tasks, memory, learning, atten-
tion, language, and emotional processing.36–39 These are areas
that have been identified as being affected in children with
prenatal HIV exposure.7,8 A decrease in AD is usually indica-
tive of axonal damage and might suggest thinner axons due to
reduced axonal caliber, less well-ordered axons as a con-
sequence of misguided cell migration during development, or
a lower number of axons.28,40,41 In addition, a few studies have
documented decreased AD with dysmyelination or demyelina-
tion.28,42 Increased MD is normally observed in conditions of
reduced membrane density associated with increased volume of
extracellular space or with decreased barriers to diffusion in
white matter, whereas reduced MD may reflect increased
neuronal activity and connectivity.43 Although the clinical
significance of the negative correlation between MD and
abnormal neurological signs observed in our HEU infants is
unknown, we hypothesize that it may relate to abnormal cell
proliferation or aberrant pruning. Longitudinal studies of these
infants by following up their developmental and behavioral
outcomes as they mature may further define the functional or
real-world significance of the associations between the abnor-
mal neurological signs and DTI metrics in these tracts.

Infant postconception age at scanning was positively
correlated with FA and negatively correlated with MD and
RD across both groups in several white matter tracts, including
the internal and external capsule, and the anterior corona

: analysis by regions of interest. Diffusion anisotropy was higher in
nts compared to controls as seen in sagittal (A), coronal (B), and
radiata. These findings are consistent with previous research,
which showed a basic pattern of the maturation process in
pediatric DTI: an increase in FA and a decrease in MD as a

www.md-journal.com | 5



FIGURE 3. White matter tracts superimposed on a 3D brain template: tracts associated with neurobehavior. Scores on the Dubowitz
abnormal neurological signs subscale was positively correlated with FA in the left uncinate fasciculus (green), negatively correlated with
MD and AD in the right inferior cerebellar peduncle (yellow), negatively correlated with MD and AD in the left hippocampal cingulum

al c
y, F
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function of age.44 This suggests that the expected increase in FA
and decrease in MD should fail to appear in HEU infants in later
years if white matter injury is present. A longitudinal follow-up
of these infants as their brains mature will help to further
understand the significance of prenatal HIV exposure on the
development of these white matter tracts.

Although the precise mechanisms underlying potential
neurodevelopmental delays in HEU children are not clear,
the role of prenatal HIV exposure in neurodevelopment may
potentially be understood in terms of the interactions between
the immune and central nervous systems. HEU infants have
been reported as having up-regulation of pro-inflammatory
cytokines at birth when compared to unexposed controls.45

The late prenatal and postnatal period is known to be a time
when maximal brain growth as well as processes critical to
effective CNS maturation occur. These processes include the
maturation and elongation of both axons and dendritic trees and
the sensitive migration of neuronal cells to their correct position
in the layers of the cortex and may be particularly vulnerable to
exposure to higher levels of proinflammatory cytokines and
immune activation in general.46,47

A number of limitations to this study should be mentioned.
First, our findings were based on a small sample size and so
false negative findings cannot be excluded. Other demographic
variables that were not controlled for may have influenced
results and should be considered in larger samples. In addition,
our study used a cross-sectional design and therefore causal
inferences remain preliminary. Interpreting how neurobiologi-
cal and clinical neurodevelopmental differences develop over
time will necessitate robust longitudinal follow up and data.

Despite these limitations, we believe there are also some
key strengths to our dataset documented here. These include the
fact that these neonates were matched for age and gender as well
as maternal alcohol use and cigarette smoking during preg-
nancy. This is the first study to report neurobiological changes
in infants prenatally exposed to HIV, but who are uninfected.
Cerebral changes are especially intense during the last trimester
of gestation and the first several postnatal months30 and struc-
tural abnormalities of the brain that manifest at this time may
result in motor and cognitive deficits in later years. Imaging
during early postnatal weeks may more accurately reflect the
specific effects of antenatal HIV exposure on white matter
microstructural integrity before postnatal risk factors known
to have high prevalence in these high-risk communities

(pink), and negatively correlated with MD in the right hippocamp
sagittal (A), coronal (B), and axial (C) views. AD¼ axial diffusivit
MD¼mean diffusivity.
additionally negatively affecting brain development.
In conclusion, the results documented in this study suggest

that the effects of prenatal HIV exposure can be observed at a

6 | www.md-journal.com
neurobiological level in neonates, with altered white matter
microstructural integrity of major white matter tracts. The find-
ings are consistent with those reported previously where changes
in white matter microstructure in adults and older children with
HIV infection were documented. Locating the altered white
matter microstructural integrity in these brain regions so early
in life may provide better understanding of the underlying
mechanisms of neurodevelopmental delays observed in HEU
children. Future studies with larger cohorts are more likely to be
able to detect specific windows of vulnerability to prenatal HIV
exposure on the developing brain. Furthermore, to evaluate the
validity of these reported changes, longitudinal studies are needed
to investigate the changes in diffusion metrics as these HEU
infants age and their brains mature.
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