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ABSTRACT OF THE THESIS

Event Recognition in Photo Streams

By

Shonali Balakrishna

Master of Science in Networked Systems

University of California, Irvine, 2016

Professor Ramesh Jain, Chair

Visual information is now an increasingly important part of the data ecosystem. While

photos are captured and shared widely over the internet, methods for image search and

organization remain unintuitive. The current state of the art in image organization extracts

people, objects, location and time information from images and provides options for the

automatic grouping of photos based on one of these attributes. As a next step in image

organization, we believe that images need to be grouped based on the events they represent.

However, such an event-based grouping of images is presently very primitive and imprecise.

In this thesis, we present an event-based image organization approach, where the key-idea is

to leverage visual concepts and spatio-temporal metadata of images in order to automatically

infer their representative event; this approach combines clustering with probabilistic learning

methods. Clustering is performed on images based on spatio-temporal metadata, where each

cluster represents an event that occurred at a particular spatio-temporal point/region. We

build probabilistic models that learn the associations between the different features and the

predefined event labels of each cluster, and use the learned models to automatically infer the

events in incoming photo streams. We evaluate efficiency of the proposed method by using

a personal image data set, using metrics such as precision and recall.

The contributions of this thesis are two-fold. First, we use several web based sources for

viii



semantically augmenting the spatio-temporal metadata corresponding to the images, and

second, we combine clustering with probabilistic learning to identify and annotate events in

the photo stream, using the augmented metadata and visual image concepts.

ix



Chapter 1

Introduction

Visual information is now an increasingly important part of the data ecosystem. The Web

has become exceedingly visual, with the wide proliferation of photos and videos from phone

cameras. To put numbers in perspective for photos, in 2015 alone, for every minute on

average, Instagram users liked more than 1.7 million photos, Pinterest pinners pinned nearly

10,000 images and Facebook users uploaded nearly 136,000 photos [1, 3].

While photos are captured and proliferated widely on social media websites and over the

internet in general, the methods for access and retrieval of desired images are still limited.

It is difficult to relive memories through photographs due to the lack of automatic image

organization and efficient image retrieval methods. Traditional image organization methods

of manually adding metadata (like captions and keywords) to photo collections is laborious

and time consuming. There is a pressing need for a means to automatically organize and

annotate such photo collections.

The current state of the art in image organization extracts people, objects, location and

time information from images and provides options for automatic grouping of photos based

on one of these attributes. Photo organization features in Google Photos, Apple’s Photos,
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Flickr use these attributes for grouping photos. Such a grouping of images along any one of

these dimensions provides a good first step in image organization; but these groupings are

unintuitive as the groups are based on only one of the attributes at any given time and are

hence not representative of the event they capture.

As a next step in image organization, we believe that images need to be grouped based on the

events they represent. In this context, an event answers questions such as: where (the place),

when (the time), who (the people involved), what (the type of event), how (the attributes

that characterize the event) [50] and hence, is a broad encapsulation of all of these attributes

of location, time, people and concepts. Events are an effective grouping mechanism, because

humans organize their memories around concrete events that they have experienced [51];

hence events are semantically connected to the information that multimedia captures. This

sort of event-based organization is also known to influence how people organize their personal

media [44]. However, such an event-based grouping of images is presently very primitive

and imprecise. Leveraging visual concepts to infer and annotate events will take image

organization to the next level, by grouping images into event-based semantically meaningful

collections.

In this thesis, we present an event-based image organization approach that combines clus-

tering with probabilistic inference, by exploiting image metadata and image visual concepts.

Events are an efficient paradigm for unified multimedia indexing, and provide a powerful

framework for multimedia search and retrieval [50]. Moreover, events can be key cues of

identification for image search and retrieval in an image corpus [34]. In this context, per-

sonal photographs have become a rich source of information to keep track of the events

occurring in a person’s life. Our goal in this thesis is to automatically classify photo streams

with high level events (like lunch, entertainment).

Our approach combines contextual spatio-temporal metadata - including augmented loca-

tion categories and time of day tags - with visual concepts, to infer the event represented
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by a cluster of images. It has been proven that an approach integrating both contextual

metadata and visual content is effective in bridging the existing multimedia semantic gap in

understanding what an image represents [30, 18]. Such an approach would be the first step

in image search, querying based on context semantic event cues, by automatically annotating

social media with events from public event directories [27] or by automatically identifying

events that have occurred based on social media [7].

We perform clustering on the images in order to group them into semantically meaningful

collections. Smartphones and modern digital cameras are equipped with various sensors

and record rich contextual metadata like location, time and image EXIF parameters for the

images captured on them. The importance of contextual metadata - especially time and

location - in multimedia search is emphasized in [34]. Clustering based on both time and

location has proven to be more effective, with clusters that are more accurate representations

of events [15]. Therefore, for the purposes of clustering, we focus on the spatio-temporal

attributes, given that photos from an event are generally taken in close proximity in time

and location, with small variability. We define all photos captured at a particular spatio-

temporal point/region to correspond to an event that has occurred. We cluster the images

based on spatio-temporal EXIF metadata like latitude, longitude, and timestamp, to obtain

event-based clusters.

We augment the contextual metadata with visual concepts, location information and time

tags. Recent advances in deep learning have now made it computationally feasible to mine

visual concepts from image content, making it possible for us to use a web-based deep

learning API, ClarifAI [2], on the images in the dataset. Furthermore, we query a location

web service, Foursquare [4], to obtain information about the nearest known places at the

image location, ranging from restaurants to historic monuments. Moreover, we also use the

temporal metadata in a modified form, where the local time in the specified timezone is

classified into a time of day tag.
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We predict the event represented by the image cluster by using these three key forms of

image metadata - visual concept information, location categories and time of day attribute

- derived from content, location and time, respectively. We use probabilistic models, such

as Conditional Random Fields (CRF) [24] and Naive Bayes [14], to learn the correlations

between these attributes and the corresponding event label. A probabilistic classifier predicts,

given a sample input, a probability distribution over the set of output classes. We train

probabilistic models to learn from the training data and the learned model is then used to

predict the event labels given an image cluster.

As the number of images on our smartphones, hard disks, and cloud hosting accounts in-

crease exponentially, methods for their efficient organization and access needs to scale up

accordingly. Organization of images based on single attributes like time, location, people or

objects is a competent first step in this direction. However, such an organization does not

provide an intuitive image organization and search experience, due to the lack of holistic

representation of life experiences in images. Events are an efficient paradigm for grouping

of images, as it provides a natural abstraction of human experiences as captured by images.

Being able to infer the high-level event a group of images represent is crucial in providing

precise and detailed event annotations answering the 5 Ws of image search - what, where,

when, who and why, eventually providing an event perspective for searching and browsing

through image content. Event recognition, in this perspective, is a critical component in the

larger framework of image organization/search/exploration, which enables mining of intelli-

gent insights from visual data. Automatic event annotation in photo streams is an important

research problem, since it provides an avenue not just for automatic image organization, but

also for efficient indexing of images based on these annotated events, allowing for a search

experience in images as effective as existing document search systems.

This thesis is organized as follows: In Chapter 2, we present, firstly, a review of the existing

technology and features in image organization and secondly, a literature review of event-
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based image organization, clustering and probabilistic learning. In Chapter 3, we describe

the overall system model and its components and explain the event and dataset modeling. In

Chapter 4, we describe the feature modeling in detail and illustrate using some examples. In

Chapter 5, we describe the clustering algorithms explored and our clustering approach along

with example illustrations. In Chapter 6, we detail the probabilistic learning algorithms

explored and our modeling for each algorithm. In Chapter 7, we present the experiments

and evaluations conducted for our work, and discuss the findings. We conclude this thesis

and address future work in Chapter 8.
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Chapter 2

Related Work

We review firstly, the existing technology and features in image organization and secondly,

relevant literature pertaining to event-based image organization, clustering and probabilistic

learning. While most of the literature that is reviewed does not solve the exact research

problem addressed in this thesis, it focuses on the individual components that we use in

our model. The work discussed in this section does not synthesize these components into

a comprehensive event-based image organization model, but it has in some form influenced

our research. Therefore, we will survey the relevant research on each component to construct

our system model.

2.1 Current Technology Review

We review the features in the current state of the art technology for image search and

organization to better address the needs of the existing framework. We review the features in

the three most commonly used image storage and organization applications: Google Photos,

Apple’s Photos and Flickr.
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Figure 2.1: Image Search and Organization with Google Photos

Google Photos automatically organizes photos and makes them searchable; by default, photos

are organized based on the time that it was captured. Once you click the search button,

it provides options for searching based on people and places relevant to the user’s photos.

On selecting the Albums option, it displays groups of photos organized in three categories

- People, Places and Things. In the People section, Google groups together all photos

containing the face of a person, as identified by its face recognition system, making it possible

to search for all photos using the name of the person. In the Places section, Google utilizes

geo-tagging information wherever such data is available, and groups photos based on the

GPS information. When this GPS information is not available, it detects known landmarks.

In the Things section, it recognizes objects or concepts from images - for example, beaches

or cars or sky or buildings or food or concerts, graduations, birthdays, to name a few - and

organizes images based on these categories. Searching for any of these objects or concepts

results in pictures with these objects being displayed. Discrepancies in recognition of people
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or objects do exist, but the system is reasonably accurate. Furthermore, while searching,

it is possible to combine two attributes, for example, a search for ’snowstorm in Toronto’

would display relevant results. But image organization in albums is based on only one of the

attributes of time, location, people or objects, at a time. An example of image search and

organization in Google Photos is displayed in Figure 2.1

Flickr is a photo social network and provides automatic tagging of images based on what is

present in them, but this remains primitive for personal image collections. Camera Roll, for

personal photographs, provides two options for automatic organization - chronological, based

on date and time of upload, and Magic View, an organization based on a fixed number of

content types ranging from people to landscapes to animals. However, for public collections

of images, Flickr has powerful features for searching using objects or concepts. Search options

include object attributes and filtering based on color, size, media type etc. There is also a

map view to organize images based on location. No automatic face recognition options are

present in Flickr - manual tagging by the user is required.

Apple’s Photos is a photo management application developed by Apple. Photos organizes

images chronologically into moments and also specifies the location wherever the GPS in-

formation is available. It also has limited functionality in using face recognition to group

photos based on the people in them. Newer features include grouping based on the nature

of the photos, such as selfies, etc or based on the application source, for example Instagram

etc.

2.2 Literature Review

We discuss relevant literature related to event-based image organization, clustering and

probabilistic learning and discuss how this work relates to our approach.
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2.2.1 Event Based Image Organization

Studies in neuroscience have shown that humans remember their life experiences by struc-

turing past experiences into events [51]. This event structure is also known to influence how

people organize their personal media [44]. Events address questions of what, where, who,

when and how and hence, are semantically connected to the information that multimedia

captures [50].

Work has been done previously in detecting events in social media and relating these events

to the media corresponding to them [27, 46, 41, 21, 28]. Towards building stories using

online social media profiles, life events are detected by leveraging the spatio-temporal meta-

data of the images to build a relationship strength model for each user profile [46]. Events

and their properties are automatically detected by temporally monitoring media shared on

social media websites, and these events are used to structure online media and likewise, the

media is used to illustrate events in event directories [28]. Event and location semantics

are extracted from Flickr tags based on temporal and spatial distribution of tag usage, as

derived from photo metadata [41]. EventMedia creates an infrastructure for unifying event

centric information derived from event directories, media platforms, social networks using

linked data technologies and integrates related media descriptions with event descriptions

[21]. Events are integrated with the media corresponding to them by using linked data tech-

nologies for semantically enriching descriptions of both events and media, using a minimalist

LODE ontology and Media ontology respectively; public event directories are scraped, se-

mantic web technologies are used to provide a means for searching and browsing interlinked

media collections using an event perspective [27].

Event recognition in images have been explored in past literature. Event and sub-event

recognition for single images is performed using a pipeline of classifiers, each successively

classifying the image into a event and a sub-event respectively [31]; furthermore, [31] uses

9



time constraints with clustering in a Bag of Features classification approach to recognize sub-

events, to further improve accuracy. A probabilistic graphical model is used with Variational

Message Passing, to classify into 8 sports events using object and scene category features [25].

High level concepts are used as features for semantic event detection, with event-level Bag of

Features representation for modeling events [19]. Temporal information and visual features

such as scene and object classifier outputs (such as indoor/outdoor, nature, sky, faces, etc.)

is used with a Bayesian belief network for event classification [12]; broad event classes like

Vacation, Party, Family and Sports were used and features that are effective for each event

label are computed manually for the dataset. A contextual meaningful hierarchy of events

is built in [48] by utilizing simple contextual cues of time, space and visual appearance;

Multi-modal clustering based on space, time and color distribution is performed.

Therefore, while past literature exists on utilizing image visual concepts or scene labels in

event-based image organization and event detection, this work was done at a time when such

visual concepts were primitive and limited in number and/or quality. More recent advances

in deep learning have not yet been leveraged to this end, in order to obtain more accurate

and extensive event annotations.

2.2.2 Clustering

Clustering has been widely used for grouping images using contextual metadata [11, 15, 29,

7, 40]. The importance of contextual metadata - especially time and location - in multimedia

search is emphasized in [34]. Clustering based on both time and location has proven to be

more effective, with clusters that are more accurate representations of events [15].

Clustering is used in [7] to identify events in social media documents(photos, videos etc),

with contextual features in a weighted cluster ensemble algorithm. A variety of algorithms

are used in [11] on time and/or image content attributes to cluster the images in order to
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group them based on events. Images are clustered in [15] based on spatio-temporal data to

detect high level events that occurred in reconnaissance missions in scenarios where sensor

data may be missing or unavailable. Images are clustered in [29], using temporal metadata

and image content features derived from image understanding, for classifying into events.

An algorithm for clustering of evolving data streams, using an online and offline clustering

component is proposed in [6]. Agglomerative clustering is performed in [40] on image EXIF

metadata as a first step and the finest possible sub-event represented by an image in a photo

stream is extracted using image metadata, user information, ontological model and other web

and external data sources; They use an event ontology, and provide flexibility in specifying

models by using contextual information to augment the model on the fly.

Graph community detection algorithms are also a form of clustering and are more commonly

called community detection. A detailed description is given in [35] about Modularity and

the relation between Modularity Optimization and community partitioning. Modularity

is used in a hierarchical manner in biochemical networks in [42]. A method to optimize

the modularity of a graph is described in [8], which is the basis of our implementation

of modularity. The metrics used to estimate the quality of a community partitioning are

described in [10], which we have implemented for our clustering performance evaluation.

2.2.3 Probabilistic Learning

There are two kinds of probabilistic learning models - generative and discriminative. A

generative classifier learns a model of the joint probabililty P (x, y) of the inputs x and

output labels y, and then makes predictions using the Bayes rule to compute the posterior

P (x|y). A discriminative model learns the conditional probability distribution or posterior

P (x|y) directly. A binary classification task is used in [20] to examine the conditions in

which discriminative and generative classifiers are each effective; it proves that contrary to
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widely held notions of the superiority of discriminative classifiers over generative classifiers,

there are distinct regimes where generative classifiers are known to perform better.

Naive Bayes

Naive Bayes is a generative probabilistic model based on the Bayes theorem and assumes

that the features are independent given the label. Despite this unrealistic assumption, Naive

Bayes has proven to be immensely successful in a number of domains. Towards measuring end

user perceptions of performance in distributed systems, the labeling of a remote procedure

call sequence with the correct transaction type is addressed using Naive Bayes, which works

well with an accuracy of 87% [17].

An empirical study of the Naive Bayes classifier is performed in [43], proving the effective-

ness of classification for both completely independent features and features with functional

dependencies; it also shows that the accuracy of the Naive Bayes classifier is dependent on

the amount of class information lost due to its independence assumptions. The optimality

of the Naive Bayes and the reason for its success in classification is discussed in [52]. The

classifier performs well even when dependencies exist among attributes, as classification de-

pends on the distribution of the dependencies across all attributes - the dependencies might

cancel each other out across labels and across atrributes. The accuracy of Naive Bayes is

due to the usage of the zero one loss function which does not penalize inaccurate posterior

probabilities as long as the class with the highest posterior is correctly estimated [13].

Two kinds of first order Naive Bayes probabilistic models exist for text-based classification

[33] - One, a multivariate Bernoulli model, which is a Bayesian network with no dependencies

between words and binary word features. A binary attribute vector indicating which words

occur is created and probability is computed by multiplying attribute values. Second, a

multinomial model, uses unigram language models with integer word counts. The text is
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represented by word occurrences with frequencies of words recorded. When computing the

probability of the label, probabilities of word occurrences are multiplied.

Conditional Random Fields

CRF has been used in a variety of disparate domains for modeling the correlation between

sequential data. CRF was first presented for the purpose of segmenting and labeling of

sequential data [24] and has been successfully used in text processing applications, like

named entity extraction [32] and shallow text parsing [47].

CRF has also been used previously for modeling the dependencies in sensor data for activity

detection [26], in videos to infer semantic event labels [49] and for motion tracking in video

sequences [45]. Hierarchical CRF is used in [26] for activity recognition, to learn patterns

of human behaviour from sensor data to infer high level activities and places. CRF is used

in [49], in videos to infer semantic event labels from multiple sequences to retrieve specific

video segments.

Furthermore, CRF has been used in classification of image regions [23], image labeling [16]

and object recognition in cluttered unsegmented images [39]. Image regions are classified in

[23], by modeling the neighborhood dependencies in observed data as well as labels using

CRF. CRF is applied to the image labeling problem in [16] with label features operating

at different scales, and predictions of various features are combined multiplicatively. Object

recognition in cluttered unsegmented images is done in [39] by modeling the assignment of

parts to local features for each object class by a CRF.

This indicates that CRF is an effective framework for modeling the correlation between

sequential data in a variety of disparate domains. With regards to contextual image meta-

data, CRF has been used in finding correlations between event labels, images’ visual content

through scene labels, GPS and time [9]; But [9] differs from our work in that they employ
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single scene labels to create a multi-level annotation hierarchy, while we propose a flat pre-

diction approach using augmented metadata based on temporal, spatial and multiple visual

concepts, derived from external web sources.

Therefore, in summation, while some work has been done in the past on event detection

and annotation using clustering and probabilistic methods, this work was conducted at a

time when the spectacular advances in deep learning that we’ve seen over the past few years

had not yet happened. Hence, highly accurate and descriptive visual concepts derived from

images have not been leveraged for event recognition, which is the key novelty of our work.
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Chapter 3

System Model

We discuss the overall system model, its various components and the role they play in this

chapter. We first discuss the preliminaries - the dataset that we use for the evaluation of

this approach, and how it ties into the modeling of the high-level events that we have worked

with. Next, we discuss each component and the part it plays in the overall model.

3.1 Preliminaries

The preliminary modeling in this thesis includes modeling of the dataset used and the mod-

eling of the events. We discuss each of these in detail below.

3.1.1 Dataset

We use a personal dataset to evaluate the performance of our algorithm, containing 392

clusters, and manually labeled with 7 predefined event classes as ground truth. In order

to aid the efficient labeling of ground truth for events, an event labeling web interface was
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Figure 3.1: System Model

created. This dataset is primarily a travel dataset, captured over a period of two years,

over various locations across the world. This dataset includes image EXIF metadata such as

latitude, longitude, localtime and timezone. Furthermore, several external sources, such as

Foursquare and ClarifAI, have been used to augment this dataset with attributes of visual

image concepts, time of day tags and foursquare location properties.

3.1.2 Event Modeling

As a first step in the direction of event annotation in images, we have worked with 7 high

level events suited to our dataset. These seven event labels are: Breakfast, Lunch, Dinner,

Meeting, Sight Seeing, Urban Walk, Entertainment.

Breakfast, Lunch and Dinner correspond to images taken during each of the three meals

during the day. Meeting relates to images taken around a large gathering of people, typically

in a formal work-oriented setting or a family gathering; Sightseeing relates to images taken

during travel, from outdoor landscapes to historic monuments in cities; Urban walk are

images taken within the city, on an everyday basis, while walking, driving, etc; Entertainment

relates to images taken during leisure or entertainment, either at the beach, resort, mall etc.
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3.2 Components

The overall system model has been illustrated in Figure 3.1. Each of the components of the

system model are elaborated on below, and the overall workflow is explained.

3.2.1 Features

The time of capture of images (in local time, along with the corresponding time zone) and the

location of capture(in latitude and longitude) is available to us through the image metadata.

Besides the features available to us through the image metadata, we have used web-based

external sources to augment the dataset. We have extracted the most important visual

concepts present in the images by using a deep learning API (ClarifAI [2]) on the image

content. We have also obtained the closest places(using Foursquare [4]) in proximity with

the longitude and latitude of the image cluster, and used the broad location category of

these places as a means of classification of location information. We have also converted the

time information into categorical data buckets, thus classifying the time into the time of day

when it was captured. These three features have been added to the dataset, and have been

primarily used in the prediction model.

3.2.2 Clustering

We have explored multiple clustering algorithms - agglomerative clustering, a graph commu-

nity detection algorithm called modularity optimization and a flat clustering algorithm for

streaming data - for finding an optimal grouping of images, based on image spatio-temporal

EXIF metadata. Since photos have been treated as an incoming stream in our work, for the

prediction phase we use a flat clustering approach for streaming data [6] to obtain clusters.

We cluster based on location(latitude and longitude) and time information.
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3.2.3 Probabilistic Models

The nature of our dataset is such that the attributes of an image are probabilistic, with mul-

tiple concepts and location categories, each of which might be noisy, uncertain or irrelevant

to the cluster and event label that it represents. Therefore, we use probabilistic learning

models to model the relationships between the attributes and the event labels. We have

explored probabilistic learning methods such as Conditional Random Fields[24] and Naive

Bayes [14] to perform structured prediction of event labels.

3.3 Overall Model

The overall system is shown in Figure 3.1. Image content and Image EXIF metadata is sent

to External Web Services like ClarifAI and FourSquare. The corresponding visual image

concepts and location categories are returned from ClarifAI and FourSquare respectively

and are augmented to the image metadata. The spatio-temporal EXIF metadata is sent

to a clustering block, where it is clustered according to location and time. The concepts,

location categories, time of day attributes and the resultant image clusters are passed to the

Event Prediction subsystem. At the Event Prediction block, a learning model was previously

trained on labeled cluster data containing attributes of concepts, location categories, time

of day and labeled with event tags. This learned model is used to predict the label of the

input image clusters and return the predicted event label.
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Chapter 4

Feature Modeling

We first discuss the raw spatio-temporal metadata that is available to our dataset, and then

discuss the features that we have derived and modeled from this raw data - concept tags,

location tags and temporal tags.

4.1 Spatio-Temporal Metadata

Temporal information, in the context of the capture of images, is available to us through

the Image EXIF metadata that accompany images taken through digital cameras or mobile

phones. Spatial metadata similarly accompany images captured, through the use of GPS

sensors which record location information. As such, the timestamp(including timezone infor-

mation), latitude, longitude at which the image was captured is the raw data that is available

to us through the image dataset. This data is commonly present for all images taken on

digital cameras or smartphones. We use this raw spatio-temporal data for the clustering

phase of our approach.
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Figure 4.1: Location tags for Sightseeing Event label

4.2 Derived Metadata

Using the raw spatio-temporal metadata and the images themselves, we derive our main

features for the prediction phase of our approach. We use the temporal data to derive time

of day tags, the location information to derive the location tags and the image content to

glean the visual concepts.

4.2.1 Location tags

Foursquare [4], a local search and discovery service, has been queried with the latitude and

longitude of the images, to obtain further information on the places on Foursquare closest

to the specified latitude and longitude. We obtain detailed information like name, address,

distance from the queried location etc about each of these possible places. Among these

attributes, we use the location category label, which ranges from restaurant to historic

monument, as a way to classify the image locations into a category. The broad location

category of these places is used as a means of classification of location information. This
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Figure 4.2: Correlation matrix of concept tags and event labels

information provides us with context on the location and hence the possible event that

occurred at the location.

We further analyze the location tags by using event labels. As illustrated in Figure 4.1, lo-

cation categories like Historic Site, Arts and Entertainment, Travel and Transport, Outdoors

and Recreation are the most frequently occurring for the Sight Seeing label.

4.2.2 Concept tags

ClarifAI [2], a web based deep learning API, has been used to extract multiple visual concepts

from each of the images, each concept returned with a probability of occurrence in the image.

ClarifAI detects objects and concepts representing the content of the images. The ClarifAI

vocabulary is extensive and able to detect over 11,000 different things in over 20 languages
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Figure 4.3: Concept tags for Sightseeing Event label

[2]. Concepts range from outdoors to windows to family to politics and are an indicator of

the objects and semantic representation of the image. Such information is useful in that it

expresses the key concepts present in the image content in text, thus allowing us to leverage

the powerful advances in deep learning over the recent years to solve the image organization

problem.

We further analyze the concepts that we work with by using event labels. A correlation

matrix depicting the different concepts and their correlations with event labels is displayed

in Figure 4.2. The intensity of the green indicates the frequency of occurrence of each concept

for the corresponding event label, with darker shades indicating a higher frequency.

We further elaborate on concept tags by using an example event label - Sight Seeing. As

evident in Figure 4.3, visual concept tags like travel, outdoors, people, nobody, city, daytime,

architecture occur very frequently for the Sight Seeing event label.
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Figure 4.4: Time tags for Sightseeing Event label

4.2.3 Temporal tags

From the temporal metadata of the image, the local time and timezone has been used to

classify it into a time of day tag - either morning, afternoon, evening or late night based on

the time range it falls under. The time information is therefore converted into categorical

data buckets, thereby classifying the time information into the time of day when it was

captured. This information is useful, as there exists correlations between events and the

time of day that it occurs during. For example, Meeting is likely to occur in the morning

or afternoon, Breakfast, Lunch and Dinner are likely to occur in the morning, afternoon

and evening respectively. By converting the time information into these tags, we are able to

leverage these correlations.

We further analyse the time of day tags that we have derived by using event labels. As

illustrated in Figure 4.4, most of the Sight Seeing activities occur during the afternoon,

indicated by the high frequency of occurrence of the afternoon time of day tag in the training

data.
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Chapter 5

Clustering

We discuss the clustering algorithms that were explored in our work - Agglomerative Cluster-

ing, Modularity Optimization and Flat Online Clustering for photo streams. The goal is to

cluster images into groups, where all images in the group are similar in terms of a similarity

metric, and all dissimilar images are grouped in different clusters. The distance metric, in

our case, computes the similarity of spatial and temporal values of captured images.

We illustrate the general attributes used by the clustering algorithm using an example re-

sultant cluster, as shown in Table 5.1. We illustrate the general working of our clustering

algorithm through Table 5.2, which displays a photo stream that was grouped into three

clusters. As seen in Table 5.1 and 5.2, images that are similar (or close together) in latitude,

longitude and localtime are grouped together. The location in terms of address, and time in

terms of date is also displayed for easy comprehension.
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Table 5.1: An example cluster with spatio-temporal attributes

5.1 Hierarchical Clustering

Hierarchical clustering seeks to build a hierarchy of clusters, and is useful when such hierar-

chies naturally exist in the data. There are two kinds of hierarchical clustering algorithms -

agglomerative and divisive. Agglomerative clustering is a bottom up approach, where each

observation begins in a cluster of its own, and clusters are iteratively merged based on a

distance metric, until one big cluster is formed. The resulting dendrogram is sliced at the

desired level of the hierarchy to obtain the corresponding clusters. Divisive clustering is a
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top down approach, where all observations begin in one big cluster and splitting is performed

recursively based on a metric, until you reach the end of the hierarchy.

In order to decide which clusters to merge together, a distance metric is used infer the

measure of dissimilarity or of distance between the two clusters. This distance metric could

be Euclidean, Manhattan, Hamming etc. There are also several linkage criteria based on

which clusters are merged together - either the minimum distance (single linkage) between

any two points in the two clusters, or the maximum distance (complete linkage), or the

averaged distance (average linkage).

Single linkage agglomerative clustering was performed for our work. Clusters were obtained

based on minimum distance between any two points in the two clusters. Distance metrics like

hamming, jaccard and euclidean were used and evaluated against each other. Hierarchical

clustering was evaluated for a combination of features in the dataset - Image EXIF attributes

like time, location, focal length, flash, ISO and exposure time. The number of clusters was

set manually, to the optimal number.

5.2 Modularity Optimization

Modularity optimization is a graph community structure detection method. Louvain method

using the Community API [8] has been implemented in our work. The working of this

algorithms is as follows: Each node starts in a community of its own. Phase 1: For every

node, find a neighbour whose community assignment maximizes the modularity of that node.

Assign the node with the community of the neighbour which maximizes modularity, only

if the gain is positive. If the modularity gain is not positive, the community assignments

remain unchanged. Each node can be considered multiple times, until a local modularity

maxima is reached. Phase 2: Build a network whose nodes are the communities detected in
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phase 1, and the links between these nodes are assigned a weight given by the sum of weights

of all links between these two communities. These two phases are repeated iteratively until

convergence is reached, wherein the maximum modularity is obtained and no further gain is

possible.

We represent the spatio-temporal data from our image dataset as a graph and implement

community detection algorithms on this graph, so as to effectively cluster them based on

their spatio-temporal attributes. Spatio-temporal (time, latitude, longitude) metadata was

used to model the graph, where the nodes represent images and edges are drawn between

nodes when two images have their spatio-temporal distance within a threshold (for example,

7 days, 13km). The constraint over the edges was varied for optimal results. In addition,

weights are assigned to edges based on the magnitude of spatio-temporal distance between

nodes - more the distance, lesser the weights. In order to model the inverse relationship

between weights assigned and magnitude of spatio-temporal distance, the following function

was used: W = K
(1+d)

where W is the weight, K is a constant, d is the magnitude of spatio-

temporal distance.

5.3 Flat Clustering

Since we focus on photo streams, for the prediction phase of our work, we treat photos as data

streaming in and use a basic flavor of sliding window based clustering algorithm, inspired

by [6]; We cluster based on time, latitude and longitude (three dimensional clustering). We

start with a random seed of sliding window and then adapt it as we see more data. The

photo stream is processed in sliding windows of fixed length and outdated data is discarded.

The clustering process consists of an offline component that computes clustering statistics,

and an online component that uses these statistics for the clustering for each sliding time

window.
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Table 5.2: Clustering of an example Photo Stream into three clusters
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Chapter 6

Probabilistic Learning

Our data is of probabilistic nature, with some of the concepts, location categories possibly

noisy, uncertain or irrelevant to the images that they represent. Furthermore, the relation-

ship between event labels and these cluster attributes, relative to our ability to model them,

are also not deterministic. Therefore, we use probabilistic models to represent the correla-

tions between the event labels and these features. In this thesis, we explore a generative

probabilistic method, Naive Bayes and a discriminative probabilistic graphical model, CRF.

Naive Bayes is a generative probabilistic model based on the Bayes theorem. A generative

classifier learns a model of the joint probabililty P (x, y) of the inputs x and output labels

y, and then makes predictions using the Bayes rule to compute the posterior P (x|y), by

picking the most probable y label. A discriminative model learns the conditional probability

distribution or posterior P (x|y) directly.

CRF is a discriminative probabilistic graphical model which relaxes strong independence

conditions. Probabilistic graphical models use a graph based representation to compactly

model complex dependence relationships between random variables over a high dimensional

space [22]. They encode relationships between multiple variables using a joint or conditional
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Table 6.1: Event Prediction for an example cluster

probability distribution, such that given observations, we are able to make predictions of the

solutions with a probability distribution over all feasible solutions [37]. These probability

distributions are specified by means of a graph. There are two types of graphical models -

Bayesian networks and Markov networks. Bayesian networks are directed graphical models,

where the family of probability distributions are specified by directed acyclic graphs, rep-

resenting a factorization of conditional probability distributions over the random variables.

Markov Random Fields are undirected graphical models, which defines a family of joint

probability distributions using an undirected graph, which maybe cyclic [37]. Factor graphs

are undirected graphical models that explicitly factorize the probability distributions. Once
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a model has been specified and parameterized, its parameters are learned using training

instances, and the resulting model is used to solve inference tasks on future instances of

data.

To illustrate the working of our general prediction model, Table 6.1 contains a example

image cluster with each of its features and whose ground truth event label is Sight Seeing.

This cluster consists of four images, with their respective concepts, location category tags

and time of day tags. We notice that the cluster consists of frequently occurring tags for

this event label, as evident in Figure 4.2, and the probabilistic model which was trained to

capture these correlations correctly predicts the event label as Sight Seeing. We implement

prediction using Naive Bayes and CRF.

6.1 Naive Bayes

Naive Bayes is a generative probabilistic model based on the Bayes theorem and assumes

that the features are independent given the label. We approach the classification task here

as a variety of event classification in a Bayesian learning model. We assume that the data

was generated by a parametric model and use training data to compute the optimal values

of the parameters of the Bayes model. Using this learned model, incoming feature data is

classified using Bayes rule to calculate the posterior probability for each event class, hence

selecting the most probable class as the output label.

In an image cluster, the visual concepts for the cluster are represented by c = {ci} where

i = 1, 2, ..N and N is the total number of images, the time of day tags are represented by

t = {ti}, and the location categories are represented by l = {li}. The set of possible event

labels is represented by E = {e1..em}, where m is the total number of event labels.

Given an test event cluster instance j with tags for time of day tj, location category lj and
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visual concepts cj, we seek the event label ek that maximizes P (ek|cj, tj, lj).

Applying Bayes rule gives us,

P (ek|cj, tj, lj) =
P (cj, tj, lj|ek)P (ek)

P (cj, tj, lj)
(6.1)

Since Naive Bayes assumes conditional independence between features given class, we get

P (cj, tj, lj|ek) =
i∏
P (cji , t

j
i , l

j
i |ek) (6.2)

where j is the cluster instance, and i represents the ith image of the cluster. Therefore, given

an image cluster j with attributes cj, tj, lj we maximize for k in

P (ek|cj, tj, lj) =

∏i P (cji , t
j
i , l

j
i |ek)P (ek)

P (cj, tj, lj)
(6.3)

For the inference, a maximum a posteriori or MAP decision rule is used, where we pick the

class that is most probable. The corresponding classifier is called a Bayes classifier, which

assigns an event label ek for some k as follows:

ŷ = arg max
k

i∏
P (cji , t

j
i , l

j
i |ek)P (ek) (6.4)

Since P (cj, tj, lj) is a constant, it is ignored in the inference stage. The prior probabilities

P (cji , t
j
i , l

j
i |ek) and P (ek) are learned from the training data. Our implementation is based on

MonkeyLearn [5]. A 75:25 split of the dataset was used as the training and testing datasets

respectively.
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6.2 Conditional Random Fields

We use Conditional Random Fields (CRF) [24], an undirected probabilistic graphical model,

to model the correlation between the event labels and the derived attributes from the dataset.

CRF allows us to relax strong independence assumptions in the state transition and directly

models the conditional probability of labels given features. A 1st-order Markov CRF with

state and transition features was modeled using CRFSuite [38], with state features condi-

tioned on combinations of attributes and event labels, and transition features conditioned

on event labels.

In an image cluster, the visual concepts for the ith image of a cluster are represented by

c = {ci} where i = 1, 2, ..N , the time of day tags are represented by t = {ti}, and the

location categories are represented by l = {li}. We denote the event label using ski , where

ski = 1 if the ith image is represented by the kth event label and ski = 0, if not.

Given the tags for time of day, location category and visual concepts, we model the correlation

between the event label and these features using the conditional probability of the kth event

label as

P (sk|c, t, l) =
1

Zs

exp(
N∑
i=1

βk.fk(ci, ti, li, s
k
i ) +

N−1∑
i=1

λk.rk(ci, ci+1, ti, ti+1, li, li+1)) (6.5)

where Zs is the normalization constant, fk
s is the feature function for individual images in

a cluster with event label k and rks models the correlation between features of consecutive

images in the cluster.

The log-likelihood function for the kth event label is given by

Lk = − log(Zs) +
N∑
i=1

βk.fk(ci, ti, li, s
k
i ) +

N−1∑
i=1

λk.rk(ci, ci+1, ti, ti+1, li, li+1) (6.6)
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During the training phase, the parameter vectors λk, βk are learned so as to maximize

the objective function Lk in (6.6). While testing, given c, l, t, the event label sk which

maximizes (6.6) is returned as the predicted event label. The model is trained using Gradient

Descent and the maximization of the logarithm of likelihood of the training data with L1

regularization term was computed using the L-BFGS [36] method. A 75:25 split of the

dataset was used as the training and testing datasets respectively.
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Chapter 7

Experiments and Evaluation

We discuss the experiments conducted and their evaluation results for the clustering and

prediction components of our system model. We then discuss the overall implications of our

evaluation results in the discussion section.

7.1 Clustering

Metrics for Evaluation

The clustering algorithms were evaluated with the following metrics:

Purity: Each cluster is assigned to the class which is most frequent in the cluster, and the

purity is evaluated by finding the fraction of correctly assigned points. This metric is skewed

when number of clusters is large, or each point is assigned to its own cluster.

Adjusted Random Index: Measures the similarity of each combination of two clusters in the

dataset. This metric ignores permutations and has chance normalization. It also penalizes
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Figure 7.1: Comparison of Hierarchical Clustering for various distance metrics and attributes

false positives and false negatives.

Adjusted Mutual Information: Measures the agreement of the two assignments. This metric

ignores permutations and is normalized against number of clusters, hence can be used to

evaluate clusterings with different number of clusters.

Evaluation

An evaluation was done of the efficacy of hierarchical clustering for various combinations of

the Image EXIF attributes like time, location, focal length, flash, ISO and exposure time.

For each of these attributes, hierarchical clustering was implemented using various distance

metrics like Hamming, Jaccard, Euclidean, Squared Euclidean, Canberra. The results are

displayed in Figure 7.1. We find that the best quality of clustering in terms of the purity

metric, was obtained using only the time and location attributes, for distance metrics of
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Figure 7.2: Comparison of Purity, ARI, AMI for Hierarchical Clustering and Modularity
Optimization

hamming and jaccard. The other attributes that were found to provide decent clustering

results when used along with time and location were ISO and Flash. Based on these findings,

for the prediction phase, we clustered the data based on only time and location.

The clustering algorithms that were evaluated were Hierarchical clustering and Modular-

ity optimization. These algorithms were evaluated based on metrics like Purity, Adjusted

Ramdon Index and Adjusted Mutual Information. The evaluation results and comparison

is illustrated by Figure 7.2. Modularity Optimization seems to perform better in terms of

ARI and Purity, but these metrics are skewed and don’t account for the large number of

single node clusters formed. The AMI metric, which does normalize against these flaws,

provides a more just evaluation between the two algorithms. According to the AMI metric,

both algorithms perform almost equally well. Hierarchical clustering has the added benefit

of allowing us to control the number of clusters formed.
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Figure 7.3: Naive Bayes Precision-Recall for individual event labels

7.2 Probabilistic Learning

Naive Bayes

The performance of our proposed prediction approach is evaluated using metrics like precision

and recall. Figure 7.3 displayed the precision and recall performance of Naive Bayes for each

of the event labels. The Naive Bayes classifier provides consistently good performance for all

labels, and manages to classify event labels of Breakfast and Lunch, despite the low number

of data points pertaining to these labels. Excluding the outlier event labels of Breakfast

and Lunch, the best performing event labels are Sight Seeing with a precision of 0.93 and

Entertainment with a recall of 0.97.

Figure 7.4 is a confusion matrix for the Naive Bayes classifier, which shows the classification

performance of each event label with respect to the others - it displays the false positives and
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Figure 7.4: Confusion matrix for Naive Bayes Event Prediction

true negatives as classified by the Naive Bayes. It is evident from Figure 7.4 that the Naive

Bayes classifier correctly predicts the event labels on most instances. The misclassification

that occurs most commonly is that of predicting Urban Walk instead of the correct label of

Sight Seeing. Some other common misclassifications are predicting Entertainment and Sight

Seeing instead of the correct label of Urban Walk, and Meeting instead of Dinner.

Conditional Random Fields

Figure 7.5 depicts the CRF precision and recall values for each of the event labels. The

event labels of Meeting and Dinner were best performing, with a best precision of 0.7333

for Meeting and best recall of 0.7143 for Dinner. Due to the low number of training and

testing data points for the event labels of Breakfast and Lunch, the precision and recall of

these two event labels dropped to zero. A comparison of the average precision and recall

including and excluding these two outliers, as shown in Figure 7.6 shows that the average

precision increased considerably from 0.439 to 0.615, and the average recall increased from

0.417 to 0.584, after excluding these two worst performing event labels.
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Figure 7.5: CRF Precision-Recall for individual event labels

Figure 7.6: CRF Average Precision-Recall comparison
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Figure 7.7: General Comparison of Naive Bayes and CRF

Comparison and Evaluation

Figure 7.7 compares the Naive Bayes classifier with the CRF classifier, in terms of metrics

of precision, recall and accuracy. The precision and recall are averaged over all the event

labels. Naive Bayes is found to perform better in terms of all three metrics, achieving an

average precision of 0.834 and an average recall of 0.884 over CRF’s 0.626 and 0.588 respec-

tively. These averages were computed for the best performing five labels, to the exclusion

of Breakfast and Lunch, for a fair comparison for events with decent number of training

data. In terms of accuracy, Naive Bayes achieves an accuracy of 87% over CRF’s 61%. This

shows that Naive Bayes outperforms CRF comprehensively and provides accurate prediction

results.

Figure 7.8 displays the comparison between CRF and Naive Bayes for each event label using

a metric called F1-measure, which is the harmonic mean of precision and recall. Naive Bayes
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Figure 7.8: F1-Measure Comparison of Naive Bayes and CRF for individual event labels

outperforms CRF for all event labels. Naive Bayes is able to predict even outlier labels of

Lunch and Breakfast, unlike CRF, despite the low number of training data available for these

two events. This shows the robustness of the simpler Naive Bayes prediction model over a

more complex model like CRF which accounts for dependencies in the data, even with such

dependencies existing between attributes in our data.

7.3 Discussions

Our approach was evaluated for a personal image dataset that was manually labeled with

ground truth for clusters as well as with ground truth of event labels. We discuss our findings

from the evaluations for each component of our model - the clustering component and the

prediction component, and then discuss the overall performance of the approach.
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The results obtained from clustering was evaluated against the ground truth with metrics

such as purity, AMI and ARI, and the results obtained were promising. The results of clus-

tering using various combination of attributes was compared, and spatio-temporal attributes

were found to provide the best clustering. Finding metrics which justly evaluated cluster-

ings against each other and against the ground truth was challenging, and hence multiple

such metrics for evaluation were considered. We obtained clusters of AMI of over 0.5 for

both algorithms evaluated, which are encouraging results, but also leaves room for further

experimentation and improvements.

The results obtained for prediction were considerably good, with Naive Bayes giving us an

accuracy of 87% over the entire test dataset. These prediction results prove that the features

that were used to augment the dataset are of a relevant nature, and these features when used

with probabilistic models provide for accurate results in event prediction.

Our overall approach performs well together, firstly giving us image groupings according to

events (represented as a spatio-temporal point/region) and secondly providing us high-level

event annotations for these image groups with high accuracy.
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Chapter 8

Conclusion

We present an event-based image organization approach, where we combine clustering with

probabilistic learning methods, to detect and infer events in a photo stream; we use multiple

web-based sources for semantically augmenting the metadata of the images. Most notably,

we leverage recent advances in deep learning to obtain highly detailed visual concepts from

images. The efficiency of our event-based image organization approach was evaluated using

a personal image dataset, and the results have been promising. Grouping of images based

on events would allow for organization of images into semantically meaningful collections,

and automatically inferring these events by exploiting visual concepts and image metadata

is the first step in this direction.

Current state of the art in image organization and features group photos based on a single

attribute - either time or location or people or objects. Events encapsulate all of these

attributes and provide a natural abstraction of specific life experiences for users. Hence,

events are an effective and intuitive mechanism for grouping of images. Automatic annotation

of events in a photo stream is essential for effective search and organization of images,

saving users valuable time and effort of manual annotation. Our approach when applied to
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photo streams provides an efficient framework for automatic event detection and annotation,

providing for semantically meaningful organization of images.

8.1 Future Work

Implementing this approach on publicly available photo streams, such as those from Flickr,

would be a natural next step, so as to allow us to evaluate this approach on real-world

streaming data. These public data collections would provide for more training data, thus

improving the precision and recall. Publicly available datasets contain user provided descrip-

tions of images and collections, providing another avenue of data from which event-related

information can be gleaned. This would allow us to build on the set of derived features we

already have, thus creating a powerful framework for inferring events in photo streams.

Another future direction is utlizing agglomerative clustering along with event ontologies for

predicting more fine-grained event annotations using similar probabilistic models. Such an

approach not only provides annotation for events, but also allows for the semi-automatic

creation of event ontology models which can be generated from the extracted correlations

between features and event labels. Extending this framework to include these ontologies

would make for a powerful automatic event annotation framework.
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