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INTRODUCTION 
 

The analysis here of 22 obsidian artifacts from three recorded sites on Zion National Park 

and Pipe Spring National Monument exhibits a very diverse set of source provenances (Tables 1 

and 2).  While all the artifacts were produced from Great Basin sources (i.e, Nevada and Utah), 

site 42WS2698 exhibited artifacts most likely produced from the Queen (Truman Canyon) 

source on the eastern California/western Nevada border over 450 km distant (see discussion). 

LABORATORY SAMPLING, ANALYSIS AND INSTRUMENTATION 

 All archaeological samples are analyzed whole. The results presented here are 

quantitative in that they are derived from "filtered" intensity values ratioed to the appropriate x-

ray continuum regions through a least squares fitting formula rather than plotting the proportions 

of the net intensities in a ternary system (McCarthy and Schamber 1981; Schamber 1977). Or 

more essentially, these data through the analysis of international rock standards, allow for inter-

instrument comparison with a predictable degree of certainty (Hampel 1984; Shackley 2011). 

 All analyses for this study were conducted on a ThermoScientific Quant’X  EDXRF 

spectrometer, located in the Archaeological XRF Laboratory, Albuquerque, New Mexico. It is 

equipped with a thermoelectrically Peltier cooled solid-state Si(Li) X-ray detector, with a 50 kV, 

50 W, ultra-high-flux end window bremsstrahlung, Rh target X-ray tube and a 76 µm (3 mil) 

beryllium (Be) window (air cooled), that runs on a power supply operating 4-50 kV/0.02-1.0 mA 

at 0.02 increments.  The spectrometer is equipped with a 200 l min−1 Edwards vacuum pump, 

allowing for the analysis of lower-atomic-weight elements between sodium (Na) and titanium 

(Ti). Data acquisition is accomplished with a pulse processor and an analogue-to-digital 

converter.  Elemental composition is identified with digital filter background removal, least 

squares empirical peak deconvolution, gross peak intensities and net peak intensities above 

background. 
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 The analysis for mid Zb condition elements Ti-Nb, Pb, Th, the x-ray tube is operated at 

30 kV, using a 0.05 mm (medium) Pd primary beam filter in an air path at 200 seconds livetime 

to generate x-ray intensity Ka-line data for elements titanium (Ti), manganese (Mn), iron (as 

Fe2O3
T), cobalt (Co), nickel (Ni), copper, (Cu), zinc, (Zn), gallium (Ga), rubidium (Rb), 

strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), lead (Pb), and thorium (Th).  Not all 

these elements are reported since their values in many volcanic rocks are very low. Trace 

element intensities were converted to concentration estimates by employing a least-squares 

calibration line ratioed to the Compton scatter established for each element from the analysis of 

international rock standards certified by the National Institute of Standards and Technology 

(NIST), the US. Geological Survey (USGS), Canadian Centre for Mineral and Energy 

Technology, and the Centre de Recherches Pétrographiques et Géochimiques in France 

(Govindaraju 1994). Line fitting is linear (XML) for all elements but Fe where a derivative 

fitting is used to improve the fit for iron and thus for all the other elements.  When barium (Ba) is 

analyzed in the High Zb condition, the Rh tube is operated at 50 kV and up to 1.0 mA, ratioed to 

the bremsstrahlung region (see Davis 2011; Shackley 2011).  Further details concerning the 

petrological choice of these elements in Southwest obsidians is available in Shackley (1988, 

1995, 2005; also Mahood and Stimac 1991; and Hughes and Smith 1993). Nineteen specific 

pressed powder standards are used for the best fit regression calibration for elements Ti-Nb, Pb, 

Th, and Ba, include G-2 (basalt), AGV-2 (andesite), GSP-2 (granodiorite), SY-2 (syenite), 

BHVO-2 (hawaiite), STM-1 (syenite), QLO-1 (quartz latite), RGM-1 (obsidian), W-2 (diabase), 

BIR-1 (basalt), SDC-1 (mica schist), TLM-1 (tonalite), SCO-1 (shale), NOD-A-1 and NOD-P-1 

(manganese) all US Geological Survey standards, NIST-278 (obsidian), U.S. National Institute 

of Standards and Technology, BE-N (basalt) from the Centre de Recherches Pétrographiques et 
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Géochimiques in France, and JR-1 and JR-2 (obsidian) from the Geological Survey of Japan 

(Govindaraju 1994).   

The data from the WinTrace software were translated directly into Excel for Windows 

software for manipulation and on into SPSS for Windows for statistical analyses. In order to 

evaluate these quantitative determinations, machine data were compared to measurements of 

known standards during each run.    RGM-1 a USGS obsidian standard is analyzed during each 

sample run for obsidian artifacts to check machine calibration (Table 1).  Source assignments 

were made by reference to Haarklau et al. (2005), Jack (1976), Nelson and Tingey (1997), as 

well as source standard data at this lab (see Tables 1 and 2, and Figure 1).   

DISCUSSION 

 As noted above, the number of sources represented at these three sites is quite diverse 

(Tables 1 and 2).  Most of the sources represented could be considered regional sources in 

southwestern and central Utah (Tables 1 and 2).  More unusual, but not unprecedented, is the 

presence of artifacts produced from Queen (Truman Canyon or Truman Meadows) source on the 

California/Nevada border area about 470 km in linear distance (see Figure 2).  I conferred with 

Craig Skinner at the Northwest Obsidian Laboratory in Covallis, Oregon, and we both agree that 

the elemental concentrations of these artifacts, and the relatively rare mahogany colored 

character of much of the debitage are a close match with the Queen (Truman Canyon) source, 

and does not match any other source known from North America.  Keep in mind that all this 

debitage could come from one or two cores or bifaces.  While this may seem a great distance, it 

is not that unusual in Great Basin prehistory, indeed North America (see Dillian et al. 2010; 

Ramos 2000).  Research on this source by Ramos indicates that it was frequently conveyed to the 

east (2000).  Why this distant source of obsidian raw material is present at this site, while more 
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regional sources also occur is one of the vexing questions of archaeology (Dillian et al. 2010; 

Shackley 2005).   Perhaps there are other data sets that indicate an interaction to the west. 
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Table 1.  Elemental concentrations and source assignments for the archaeological specimens and 
USGS RGM-1 rhyolite standard.  All measurements in parts per million (ppm). 

 
Sample  Site Ti Mn Fe Rb Sr Y Zr N

b 
Ba Source 

1843 42WS1775 109
5 

36
5 

8997 19
6 

44 2
3 

11
1 

25 17
3 

Wild Horse Cnyn, UT 

1844 42WS1775 833 38
9 

9491 27
2 

16 5
9 

10
0 

35 18 Black Rock, UT 

1845 42WS1775 110
7 

34
6 

9056 20
5 

44 2
1 

11
6 

25 18
6 

Wild Horse Cnyn, UT 

1846 42WS1775 135
7 

35
1 

8834 19
4 

43 2
1 

10
5 

27 15
5 

Wild Horse Cnyn, UT 

1847 42WS1775 129
6 

34
5 

8896 18
7 

45 2
0 

10
7 

26 15
2 

Wild Horse Cnyn, UT 

1848 42WS1775 126
2 

40
3 

9857 21
8 

47 2
0 

11
3 

23 17
3 

Wild Horse Cnyn, UT 

1849 42WS1775 117
7 

33
5 

8690 19
3 

41 2
3 

10
9 

24 18
0 

Wild Horse Cnyn, UT 

1850 42WS2698 922 43
0 

7666 14
0 

20 2
2 

11
1 

34 20 Queen, CA/NV 

1851 42WS2698 114
2 

68
6 

1009
1 

20
0 

28 2
4 

13
5 

33 38 Queen, CA/NV 

1852 42WS2698 113
2 

36
2 

9161 20
2 

45 2
2 

11
3 

25 16
7 

Wild Horse Cnyn, UT 

1853 42WS2698 973 52
5 

8413 16
1 

24 2
2 

11
9 

31 46 Queen, CA/NV 

1854 42WS2698 102
3 

59
6 

9175 17
2 

25 2
4 

13
3 

37 54 Queen, CA/NV 

1855 42WS2698 944 49
8 

8307 16
4 

26 2
1 

12
5 

33 28 Queen, CA/NV 

1856 42WS2698 115
2 

66
6 

9824 19
6 

27 2
0 

13
4 

39 30 Queen, CA/NV 

1857 42WS2698 111
0 

65
4 

9816 19
3 

29 2
2 

13
2 

37 24 Queen, CA/NV 

1858 42WS2698 101
7 

56
8 

8996 17
2 

24 2
1 

12
9 

36 53 Queen, CA/NV 

1859 42WS2698 115
9 

64
0 

9659 19
4 

26 2
5 

13
4 

38 0 Queen, CA/NV 

1860 42WS2698 120
9 

76
3 

1093
8 

21
8 

26 2
5 

14
0 

35 31 Queen, CA/NV 

1 AZ B:2:9 122
2 

37
6 

9635 20
3 

50 2
0 

11
0 

29 17
7 

Wild Horse Cnyn, UT 

2 AZ B:2:9 106
2 

30
0 

9485 19
3 

81 2
6 

11
8 

17 57
9 

Panaca Summit, Modena, 
UT/NV 

3 AZ B:2:9 128
2 

35
3 

9453 19
5 

45 2
3 

11
7 

27 19
6 

Wild Horse Cnyn, UT 

4 AZ B:2:9 114
6 

30
3 

9398 19
4 

88 2
5 

12
8 

17 56
2 

Panaca Summit, Modena, 
UT/NV 

RGM1-
S4 

 162
8 

29
9 

1333
3 

14
5 

10
8 

2
6 

21
8 

10 78
6 

standard 

RGM1-
S4 

 153
4 

27
6 

1334
1 

14
9 

10
5 

2
2 

21
4 

10 77
7 

standard 
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Table 2.  Crosstabulation of site by source. 
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Figure 1. Sr versus Rb bivariate plot of the elemental concentrations for the archaeological 
specimens.  
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Figure 2.  Obsidian sources in the region. 
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