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On embedding 4-manifolds in R’
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Let M denote a connected, compact, unbounded, piecewise linear (= P.L) manifold
f dimension 4. Denote by Wy(M) the normal Stiefel-Whitney class in dimension 3,
with integer coefficients (twisted if M is-not orientable).
Tt is well known that (M) = 0 if M is orientable; see (5), for example.
Let R7 denote Euclidean 7-space.
TanoreM. If M is orientable, or, more generally, if Wo(M) = 0, then there is a PL
embedding M — R7.
(Note. This theorem, with the same proof, is due independently to C.T.C. Wall.)
Proof. Let A = M be a 4-simplex, and pub My = M —int A. Let S be the 3-sphere
oM, = OA.
The embedding M — R7 is constructed in two stages, following the method of
_ Haefliger-Hirsch ((1)). First a PL embedding ¢ : M, R is found such that g|S ~ 0 in
7 g(int M,); call such an embedding untwisted. Then a theorem of Irwin is applied
to extend ¢ to a PL embedding of A in R7—g(int M,).
 To find an untwisted PL embedding ¢ : M, K7, the argument of § 4 of (1) is applied
_ to a smoothing I, of M, (which exists because M, is 4-dimensional ((7)) to produce
 a smooth untwisted embedding f: M, —~ B7; then Whitehead’s approximation theorem
((6)) is invoked to obtain g.
(For completeness, the construction of the smooth embedding f: My~ R is outlined.
In (2) it is proved that there is a smooth embedding h: M,— R?, which might be
 twisted. If W,(M) = 0, then h admits a normal vector field, thought of as a map
wi My—>R7—h(M). If M is orientable, u(S) bounds the chain w(M,) in R — k(D).
Alexander duality and Hurewicz isomorphism then imply «(S) ~ 0 in R7—h(M,), and
it follows that 7 is untwisted. If M is not orientable, then %(S) bounds mod 2; in this
 case ¢ is obtained by twisting (M) around the 3-handles of a handle decomposition.)
~ Assume then that M, < R as a subcomplex, and S ~ 0 in R7— M. Let N < R7be
a ‘regular neighbourhood’ of M, with § < 0N ((3)). Put W = R?—int N. The PL
7-manifold W is easily seen to be 2-connected, since it has the same homotopy type as
R — M,
Clearly S ~ 0 in W, so there exists a map v: A~ W with |§ = identity. Theorem 1
of Trwin ((4)) implies that v is homotopic rel S to a PL embedding ¢:A—W. Since
W n M, = S, the embedding ¢ completes the embedding of M in R".
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