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Abstract
Objectives  Multidrug-resistant TB (MDR-TB) is a severe burden and public health threat worldwide. This study aimed 
to develop a radiomics model based on the tree-in-bud (TIB) sign and nodules and validate its predictive performance for 
MDR-TB.
Methods  We retrospectively recruited 454 patients with proven active TB from two hospitals and classified them into three 
training and testing cohorts: TIB (n = 295, 102), nodules (n = 302, 97), and their combination (n = 261, 81). Radiomics 
features relating to TIB and nodules were separately extracted. The maximal information coefficient and recursive feature 
elimination were used to select informative features per the two signs. Two radiomics models were constructed to predict 
MDR-TB using a random forest classifier. Then, a combined model was built incorporating radiomics features based on 
these two signs. The capability of the models in the combined training and testing cohorts was validated with ROC curves.
Results  Sixteen features were extracted from TIB and 15 from nodules. The AUCs of the combined model were slightly 
higher than those of the TIB model in the combined training cohort (0.911 versus 0.877, p > 0.05) and testing cohort (0.820 
versus 0.786, p < 0.05) and similar to the performance of the nodules model in the combined training cohort (0.911 versus 
0.933, p > 0.05) and testing cohort (0.820 versus 0.855, p > 0.05).
Conclusions  The CT-based radiomics models hold promise for use as a non-invasive tool in the prediction of MDR-TB.
Clinical relevance statement  Our study revealed that complementary information regarding MDR-TB can be provided by 
radiomics based on the TIB sign and nodules. The proposed radiomics models may be new markers to predict MDR in 
active TB patients.
Key Points 
• This is the first study to build, validate, and apply radiomics based on tree-in-bud sign and nodules for the prediction of 
   MDR-TB.
• The radiomics model showed a favorable performance for the identification of MDR-TB.
• The combined model holds potential to be used as a diagnostic tool in routine clinical practice.

Keywords  Pulmonary tuberculosis · Drug resistance · Radiomics · Machine learning
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Introduction

Tuberculosis (TB) is a communicable disease that is a major 
cause of ill health and one of the leading causes of death 
globally [1]. TB was the top cause of death from a single 
infectious agent until the coronavirus pandemic [1]. In addi-
tion, multidrug-resistant TB (MDR-TB) is still a severe bur-
den worldwide and continues to be a public health threat [2]. 
MDR-TB refers to resistance to isoniazid and rifampicin, 
which are otherwise the two most effective first-line drugs. 
Approximately 3–4% of people are diagnosed with TB for 
the first time and have MDR-TB, and approximately 18–21% 
have previously been treated for TB [3]. However, 95% or 
more of MDR-TB cases have already occurred before diag-
nosis by passive case finding [4]. Microbiologic culture 
and sputum smear microscopy are necessary tests for the 
diagnosis of TB [5]. The predictive value and sensitivity 
of using sputum as the sample are poor, but using culture 
isolates always means that results will be available only after 
4–8 weeks [1]. Hence, the early identification of patients 
with MDR-TB will substantially reduce the burden of TB.

Alongside microbiologic culture and sputum, chest com-
puted tomography (CT) is an essential screening method for 
detecting TB [6]. The most frequent abnormal CT pattern of 
active TB is the tree-in-bud (TIB) sign. The TIB sign is the 
constellation of small centrilobular nodules and concomitant 
branching opacities, which mimics the branching pattern of 
a budding tree [7]. TIB is observed in approximately 72% 
of active TB cases [8]. Nodules are also commonly seen 
in TB patients, and TB is a unique characteristic of benign 
lung nodules due their high prevalence in TB patients [9]. 
Several previous studies have shown that multiple cavities, 
the TIB sign, and nodules are common in MDR-TB [10–12]. 
However, these prior studies were heterogeneous and non-
quantitative, and few quantitative studies have focused on 
the TIB sign and nodules.

Radiomics is an emerging and non-invasive approach 
that can extract high-throughput quantitative features from 
medical images and convert the information into mineable 
databases [13]. Currently, radiomics is widely used in the 
differentiation of benign from malignant lesions, in the 
prediction of disease-free survival, and for diagnostic and 
prognostic assessments [14]. However, there have been few 
studies on radiomics analysis based on active TB for MDR-
TB prediction.

We hypothesized that the differences between drug-sen-
sitive TB (DS-TB) and MDR-TB could be captured by CT 
scans, reflected in spatial density patterns, and identified by 
radiomics. Therefore, the aim of this study was to develop 
a predictive model by CT radiomics features and to validate 
the predictive value of the model to distinguish DS-TB from 
MDR-TB.

Materials and methods

Participants

We retrospectively collected lung CT data from patients 
in two hospitals from December 2015 to March 2022. The 
institutional ethics committee approved all the data in the 
study for retrospective analysis and waived the demand for 
informed consent.

The enrolled patients met the following inclusion criteria: 
(a) culture, sputum microscopy, or polymerase chain reac-
tion test to confirm TB; (b) drug susceptibility test (DST) 
results for M. tuberculosis to distinguish DS-TB from MDR-
TB; (c) typical imaging findings, whether TIB sign or nod-
ules indicative of TB; and (d) performance of all CT scans 
before the TB diagnosis. The exclusion criteria were as fol-
lows: (a) image artifacts or incomplete clinical information; 
(b) a history of other pulmonary diseases such as lung cancer 
or COPD; or (c) diabetes or HIV seropositivity.

Finally, we recruited 336 patients, which included 302 
patients with nodules and 295 patients with the TIB sign, 
as training cohorts 1 and 2. There were 261 patients with 
these two signs as the combined training cohort in hospital 
1 from December 2015 to January 2022. In addition, testing 
cohorts from hospital 2, including 97 patients with nodules, 
102 patients with the TIB sign, and 81 patients with these 
two signs, were subsequently enrolled from August 2017 to 
March 2022. Detailed information on the patient recruitment 
flowchart is shown in Fig. 1.

CT examination

All lung CT scans were performed using a Revolution CT or 
Light Speed VCT (GE Healthcare). The scanning included 
imaging from the thoracic inlet to the bilateral adrenal glands 
with deep inspiration breath-hold. The scanning parameters 
were as follows: tube voltage, 120 kV; automatic tube cur-
rent modulation; detector collimation, 64 × 0.625 mm; rota-
tion time, 500 ms; and pitch, 1.375. The image reconstruc-
tion parameters were as follows: slice thickness, 1.25 mm; 
increment, 1.25 mm; field of view, 15 cm; and matrix, 
512 × 512. Then, the reconstructed images were transferred 
to 3D slicer (http://​www.​slicer.​org) for radiomics analysis.

Lesion segmentation

The TIB sign was defined as multiple areas of centrilobu-
lar nodules with a linear branching pattern that resembles 
a budding tree [7]. Nodule refers to a rounded or irregular 
opacity, well or poorly defined, measuring up to 3 cm in 
diameter [15]. Regions of interest (ROIs) were separately 
drawn to segment TIB and nodules, manually contoured 

http://www.slicer.org
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including the whole surface of the lesions layer by layer, 
including circumambient satellite lesions in lung windows. 
The ROIs were drawn by an experienced chest radiologist 
and confirmed by an independent radiologist with 10 years 
of experience in lung CT. The two radiologists were blinded 
to the DST results.

Radiomics feature extraction

The radiomics features were separately extracted from TIB 
and nodules. Preprocessing and detailed information about 
the radiomics features is provided in the Supplementary 
Material and PyRadiomics official documentation. (https://​
pyrad​iomics.​readt​hedocs.​io/​en/​latest/​featu​res.​html).

Feature selection

First, 30 patients with the TIB sign or nodules were ran-
domly selected to calculate the intraclass correlation coef-
ficient (ICC) as previously reported [16]. Another radi-
ologist with 8 years of experience segmented the lesions 
of these patients. The aim of this study was to establish a 

resegmentation dataset for evaluating the interreader repro-
ducibility of radiomics features. Features with ICC > 0.80 
were considered to be highly reproducible and were retained. 
Given the unbalanced nature of the training dataset, the 
synthetic minority oversampling technique (SMOTE) was 
used on the training cohort to handle the imbalance between 
DS-TB patients and MDR-TB patients with the purpose of 
avoiding bias towards majority class cases and achieving 
a high classification rate [17]. To determine representa-
tive features for generalizing and optimizing the model, we  
used the maximal information coefficient (MIC) to identify 
important relationships in datasets and characterize them 
[18]. As a result, we separately chose the top 200 relevant 
features from the TIB sign and nodules in training cohort 1 
and 2 according to the MIC values. Then, we used the recur-
sive feature elimination (RFE) method to extract the most 
important features of prediction by finding a high correlation 
between specific features and labels. The RFE algorithm is 
very popular due to its effectiveness in selecting features 
in training datasets relevant to predicting target variables 
and eliminating weak features [19]. Tenfold cross-validation 
was utilized to avoid overfitting. We separately plotted the 

Fig. 1   Flowchart of patient 
selection

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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number of features in the dataset along with a cross-vali-
dated score and visualized the selected features.

Model construction and application

The random forest classifier (RFC) is a method that pos-
sesses high variance-bias trade-off capability, so RFC was 
used to construct the prediction models [20]. In training 
cohort 1, the selected radiomics features from the TIB sign 
were trained by using the RFC method. Then, radiomics fea-
tures based on the nodules were selected to build a model in 
training cohort 2. Finally, we built and applied three radiom-
ics models in the combined training cohort, which included 
a TIB model, nodules model, and combined model with 
the combination of all radiomics features based on the two 
typical lesions. These models were all trained and validated 
on the three training cohorts, which were randomly divided 
into parts at a ratio of 7:3 using tenfold cross-validation. 
Finally, we separately selected the best model of all models 

and tested it on the corresponding cohort of three external 
testing cohorts. Feature selections and model construction 
were carried out by the Python Scikit-learn package (ver-
sion 3.8, Scikit-learn Version 0. 21, http://​scikit-​learn.​org/). 
Our radiomics-based machine learning workflow pipeline 
is shown in Fig. 2.

Statistical analysis

Statistical analysis was performed with SPSS software (ver-
sion 26) and the Python Scikit-learn package. Qualitative 
variables (sex) are presented as frequencies. The chi-square 
test was used to analyze differences between sexes, and a t 
test was used to analyze age. Receiver operator character-
istic (ROC) curves, which were used to calculate the area 
under the ROC curve (AUC), were used to evaluate the per-
formance of all models in both cohorts. The DeLong test 
was used to analyze the AUCs of three radiomics models 
in the combined cohort and evaluate whether overfitting 

Fig. 2   The workflow of this study. The full line represented the process of the radiomics features selection and model construction in cohort 1 
and 2; the dotted line represented the process of the model construction and application the combined cohort

http://scikit-learn.org/
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occurred. Then, we used decision curve analysis (DCA) to 
determine the clinical usefulness of the TIB model, nodule 
model, and combined model by calculating the net benefits 
at different threshold probabilities in the combined training 
and testing cohort. Briefly, the net benefit was equivalent to 
the proportion of net true positives. The accuracy, precision 
(positive predictive value), recall (sensitivity), and F1 score 
were calculated. The F1 score is the harmonic average of 
the precision and recall, ranging from 0 to 1. Statistical tests 
were conducted with p < 0.05 as an indicator of statistical 
significance.

Results

Clinical characteristics of the patients

There were significant differences in age between MDR-
TB patients and DS-TB patients in all the training cohorts 
(p < 0.05), whereas age was not significantly different 
between the two groups in any testing cohorts. In addition, 
the remaining clinical characteristics (sex) were not signifi-
cantly different between MDR-TB and DS-TB patients in any 
cohort. Details of the basic characteristics of all the training 
and testing cohorts are summarized in Table 1.

Radiomics feature selection and model construction

We identified 200 top relevant features according to the MIC 
values. Finally, 16 features extracted from the TIB sign and 
15 features extracted from nodules were selected to build 
the model because of the highest cross-validated score. The 
normalized importance of the selected features is separately 
shown in Fig. 3. In addition, detailed values and distribu-
tions of these features are separately presented by the vio-
lin plot in Fig. 4. The radiomics model based on the TIB 
showed a favorable discriminatory ability in training cohort 
1 with an AUC of 0.902 (95% CI, 0.836 to 0.959), which was 
confirmed in testing cohort 1 with an AUC of 0.835 (95% 
CI, 0.739 to 0.922). In addition, the radiomics model based 
on the nodules also showed good performance in training 
and testing cohort 2, with AUCs of 0.919 (95% CI, 0.867 
to 0.964) and 0.871 (95% CI, 0.810 to 0.929), respectively.

Model construction and evaluation in combined 
cohorts

The 16 radiomics features selected from TIB and 15 radiom-
ics features selected from nodules were separately comprised 
of TIB model, nodules model, and combined model in com-
bined cohorts. The ROC curve AUCs of these three models 
in the combined training and testing cohorts are shown in 
Fig. 5. The combined model showed the best performance Ta
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for discriminating multidrug resistance (MDR), with AUCs 
and F1 scores of 0.911 (95% CI, 0.838 to 0.974) and 0.833, 
and 0.820 (95% CI, 0.659 to 0.955) and 0.832, respectively. 
The AUCs and F1 scores of the TIB model were 0.877 (95% 
CI, 0.871 to 0.982) and 0.786 (95% CI, 0.640 to 0.905) and 
0.817 and 0.789 in the two cohorts, respectively. The nodules 
model also showed excellent discriminatory ability in the 
combined training cohort, with an AUC of 0.933 (95% CI, 
0.871 to 0.982) and an F1 score of 0.833, which was con-
firmed in the testing cohort with an AUC of 0.855 (95% CI, 
0.714 to 0.973) and an F1 score of 0.778. In addition, there 
was no significant difference between the combined model 
and nodules model in the combined training (p = 0.538) and 
testing (p = 0.504) cohorts. More specifically, the AUCs of 
the combined model were not significantly different from 
those of the TIB model in the training cohort (p = 0.504), and 
there were significant differences between the two models 
in the testing cohort (p = 0.038). Finally, the AUCs between 
the TIB model and nodules model were not significantly dif-
ferent between the two cohorts (p = 0.313 and 0.054). The 
DCA curves, as presented in Fig. 6, showed that all three 

models, including the TIB model, nodules model, and com-
bined model, would offer net benefits over the “treat-all” or 
“treat-none” scheme within a certain range of thresholds in 
the combined training cohort. Similar results were found in 
the testing cohort. The accuracy, precision, recall, and F1 
score of all three models in the combined training and testing 
cohorts are summarized in Table 2.

Discussion

In the present study, we developed and validated CT-based 
radiomics models based on TIB and nodules for differentiat-
ing DS-TB from MDR-TB. These radiomics models hold the 
potential to facilitate a non-invasive individualized identifi-
cation of MDR in TB patients. The combined model showed 
the best predictive performance, and the performance was 
higher than that of the TIB model and similar to that of the 
nodules model.

This study collected data on the basic clinical charac-
teristics of all patients. The analysis showed that the age of 

Fig. 3   The 16 radiomics features based on TIB (a) and 15 radiomics features based on nodules (b) with the highest normalized importance were 
selected and included
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MDR-TB patients was significantly different from that of 
DS-TB patients in all training cohorts. However, there was 
no significant difference in age between the two groups 

in any testing cohort. This is consistent with the findings 
of a previous study finding that MDR-TB patients were 
younger than DS-TB patients [21]. In addition, there was 

Fig. 4   These violin plots show the detailed values and distributions of 16 features based on TIB (a) and 15 features based on nodules (b)

Fig. 5   ROC curves of the TIB, nodules, and combined model. a Training cohort. b Testing cohort
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no difference in sex between MDR-TB and DS-TB patients 
in any cohorts, which was similar to the results of other 
studies [21, 22].

TB still poses a severe threat to public health, especially 
with the increasing incidence of MDR-TB, resulting in dif-
ficulty in controlling the epidemic [23]. Acid-fast bacilli 
or bacterial cultures are accurate bacteria-based detection 
methods based on bacteria, but are time-consuming. In 
addition, new gene testing methods are always inconven-
ient and may be restricted by the laboratory environment 
[24]. Therefore, it is necessary to develop a non-invasive 
and user-friendly model focused on the prediction of MDR 
for TB patients.

The TIB has most commonly been described in TB 
patients with pulmonary infectious disorders and was the 
most characteristic but not pathognomonic CT feature of 
active TB [25]. It always reflects the presence of endobron-
chial spread, caseous necrosis, and granulomatous inflam-
mation filling surrounding respiratory bronchioles and alve-
olar ducts [26]. It was reported that large nodules, including 
ground-glass opacities, were more frequently observed in 
MDR-TB patients [12]. However, these signs can only be 
considered to be a marker of the active pathological process 

rather than being MDR-TB specific. Several studies have 
confirmed that only imaging findings of MDR-TB do not 
differ from those of DS-TB [12, 27]. Even though MDR-TB 
patients generally tend to have more extensive lesions, are 
more likely to have bilateral lesions, have large nodules, and 
have a larger scope of the TIB sign, these signs are insuffi-
cient to discriminate MDR-TB from DS-TB [12]. Thus, it is 
essential to explore the specific differences between MDR-
TB and DS-TB using quantitative analysis, and radiomics 
seems promising in this regard.

Numerous prior studies have described the utility of radi-
omics approaches to discriminate solitary TB nodules from 
lung adenocarcinoma. A deep learning–based nomogram 
using radiomics based on CT and clinical factors was devel-
oped and validated to differentiate two diseases, obtaining 
an AUC of 0.906 in the external validation cohort [28]. In 
addition, Hu et al established a radiomics model containing 
a set of nine [18F]FDG PET/CT radiomics features from 235 
patients, which achieved an encouraging predictive perfor-
mance (AUC = 0.889) [29]. Another similar study utilized a 
radiomics nomogram integrating the radiomics score of fea-
tures selected from [18F]FDG PET/CT, with an AUC of 0.93 
in the validation cohort [30]. Few studies have focused on 

Fig. 6   DCA for the TIB, nodules, and combined model in the train-
ing cohort (a) and the testing cohort (b). The net benefit versus the 
threshold probability is plotted. Black line represents the assumption 
that all patients were MDR-TB. Dotted line represents the assumption 
that all patients were DS-TB. The x-axis shows the threshold prob-
ability. The y-axis shows the net benefit. A model is only clinically 

useful if it has a higher net benefit than the default treat-all (all cases 
were MDR-TB) and treat-none (none of the cases was MDR-TB) 
strategies. It is clear from the graph that these three models are supe-
rior to either treat-all or none strategy within certain ranges of risk 
threshold

Table 2   Predictive performance 
of three models in the combined 
training and testing cohorts

Index Training cohort Testing cohort

TIB model Nodules model Combined model TIB model Nodules model Combined model

AUC​ 0.877 0.933 0.911 0.786 0.855 0.820
Accuracy 0.803 0.833 0.833 0.758 0.767 0.774
Precision 0.829 0.811 0.870 0.778 0.778 0.889
Recall 0.806 0.857 0.800 0.800 0.778 0.782
F1 score 0.817 0.833 0.833 0.789 0.778 0.832
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the identification of MDR-TB based on radiomics. A recent 
publication established a radiomics model to predict MDR 
in cavitary TB with severe transmission and poor treatment 
outcome, and timely identification of cavitary MDR-TB can 
adjust therapies and improve prognosis [31]. The current 
study focused on the two most frequent signs of active TB 
to differentiate MDR-TB from DS-TB. Its advantage was 
mainly the timely identification of MDR-TB before TB pro-
gression, especially when patients had only one or both of 
the typical signs, and it could lead to a high success rate and 
reduced recurrence in patients. To our knowledge, no pub-
lished study has focused on radiomics based on the TIB sign 
and nodules of active TB, as was done in this study. As a 
result, we attempted to further solve this most relevant clini-
cal question to differentiate MDR-TB from DS-TB based on 
the most frequent CT signs of active TB.

In our study, we proposed three radiomics models using 
RFC that involved 16 radiomics features based on the TIB 
sign and 15 radiomics features based on the nodules to pre-
dict MDR-TB, and these models all achieved good perfor-
mance. These radiomics models had several advantages. 
First, there was a relatively high AUC (0.911 vs. 0.820) in 
the combined model, and the predictive power of the single 
radiomics model was robust enough even if the AUC of the 
nodules model was slightly higher than that of the combined 
model (0.933 vs. 0.911). In addition, these models, espe-
cially the combined model and nodules model, showed good 
performance according to the F1 score, which could provide 
a more realistic assessment for radiomics models. Second, 
1483 radiomics features were separately extracted from the 
TIB sign and nodules, which included first-order features, 
shape-based (3D, 2D) features, GLCM features, GLRLM 
features, GLSZM features, GLDM features, and NGTDM 
features. Then, we took two steps, including MIC and RFE, 
to eliminate weak features, and ultimately, 16 features and 
15 features were put into the model construction, allowing 
for a credible result. Third, we retrospectively gathered two 
cohorts (training and testing) that focused on the TIB sign 
and nodules, respectively, to select features and construct 
models. Then, we applied these two models in the combined 
cohorts (training and testing) and established a combined 
model to guarantee good stability and generalizability in 
clinical practice. Above all, these three models, especially 
the combined model in the current study, yielded an excellent 
performance for the distinction of MDR-TB and could offer 
net benefits over all the “treat-all” or “treat-none” strategies 
within a certain threshold probability.

The study had several limitations. First, the current study 
was a retrospective analysis with a small sample size. How-
ever, inherent selection bias may exist. Second, we focused 
only on the MDR classification of active TB patients with 
the TIB sign or nodules, although these signs were frequent 
in TB patients. The role of radiomics in the prediction of 

patients without these signs was not investigated, which mer-
its further studies. Third, limited clinical information was 
involved in the present study, and the models that we estab-
lished did not include any clinical information. Fourth, con-
sidering the small sample size of the testing cohort, future 
studies should concentrate on prospective studies to increase 
generalizability.

In conclusion, we developed three CT image-based radi-
omics models for the identification of MDR-TB patients. 
These models were separately trained and tested in three 
cohorts, and these models, especially the combined model 
and nodules model, showed excellent performance. Our study 
may potentially aid in early MDR-TB characterization by 
integrating the multidisciplinary approach currently based on 
radiomics and can be used as a non-invasive auxiliary tool.
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