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ABSTRACT In various biological processes such as endocytosis and caveolae formation, the cell membrane is locally deformed
into curved morphologies. Previous models to study membrane morphologies resulting from locally induced curvature often only
consider the possibility of axisymmetric shapes—an indeed unphysical constraint. Past studies predict that the cell membrane
buds at low resting tensions and stalls at a flat pit at high resting tensions. In this work, we lift the restriction to axisymmetry to study
all possible membrane morphologies. Only if the resting tension of the membrane is low, we reproduce axisymmetric membrane
morphologies. When the resting tension is moderate to high, we show that (i) axisymmetric membrane pits are unstable; and (ii)
non-axisymmetric ridge-shaped structures are energetically favorable. Furthermore, we find the interplay between intramembrane
viscous flow and the rate of induced curvature affects the membrane’s ability to transition into non-axisymmetric ridges and
axisymmetric buds. In particular, we show that axisymmetric buds are favored when the induced curvature is rapidly increased,
while non-axisymmetric ridges are favored when the curvature is slowly increased. Our results hold relevant implications for
biological processes such as endocytosis, and physical phenomena like phase separation in lipid bilayers.

SIGNIFICANCE Locally induced curvature is essential in a variety of biological processes. For example, in endocytosis,
the cell membrane forms small invaginations which then develop into mature buds. In this study, we use recent advances in
modeling lipid membranes to investigate the morphologies arising from locally induced curvature under varying membrane
tension. We find that low membrane tensions result in axisymmetric, bud-shaped morphologies. However, at high membrane
tensions, we find that locally induced curvature leads to the formation of shallow non-axisymmetric, cylindrically shaped
"ridges"—which are energetically favorable compared to axisymmetric morphologies. Our general non-axisymmetric studies
reveal symmetry-breaking morphological transitions inherent to lipid membranes and hold implications for biological
processes as well as physical phenomena including phase separation.

INTRODUCTION

The cell and its organelles are marked by a variety of strongly
curved and dynamic boundaries where local curvature induc-
tion is vital. For instance, the cell membrane forms spherical
vesicles as an important means of trafficking (1), the endo-
plasmic reticulum maintains but also dynamically remodels
networks of tubules (2, 3) and caveolae form curved pits that
can disassemble under increased tension (4). Endocytosis
is another prominent biological process where curvature is
locally induced. During endocytosis, proteins bend the cell
membrane through different mechanisms such as scaffolding
and protein insertion (5–8). Other processes that can induce
spatially varying curvatures are, for instance, charge deposi-
tion on one of the lipid monolayers (9), spatial variation of
the lipid composition through phase separation (10), as well
as the formation of block liposomes (11). The examples given

above show the significance of locally induced curvature in
synthetic and biological systems.

While local curvature induction in lipid membranes is
known to play an important role in many biological systems,
the physics underlying such phenomena is not well-understood.
Theoretical and numerical studies are required to gain deeper
insight into such processes—however, the timescale for phe-
nomena involving local curvature induction is often on the
order of seconds (12–14) and the corresponding deformations
range over lengths of 100–1000 nm (5, 12, 15). Such length
and timescales cannot be resolved using molecular simulation
methods, and hence, a continuum approach is often employed
to understand membrane-mediated processes involving locally
induced curvature.

Using a continuum approach, many studies successfully
modeled shape changes in lipid membranes. The continuum
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model commonly used for lipid bilayers is developed in the
seminal contributions by Canham (16), Helfrich (17), and
Evans (18), and can be considered an extension of Naghdi’s
work on shell theory (19). Since these pioneering develop-
ments, the model and its extensions reproduced many exper-
imentally observed morphologies of lipid vesicles (20–23),
including tubule formation from giant unilamellar vesicles
(24, 25).

Many works also studied the effects of isotropic, locally
induced curvature on lipid membranes. Continuum models
were used in a variety of contexts, including in the study of
compositional asymmetry during phase separation (26–30)
and protein-induced curvature (31–35). Biological processes
such as lipid droplet formation (36, 37) and endocytosis
(32, 38–44) were also modeled via locally induced curvature
in previous studies. However, due to the mathematical and
numerical complexity of modeling lipid membrane dynamics,
most of the aforementioned continuum studies do not allow
for arbitrary deformations. Instead they are often restricted to
axisymmetric shapes or small deviations from fixed geome-
tries such as planes, cylinders or spheres. Such studies do not
capture arbitrary morphological changes occurring between
different geometries. Moreover, many of these studies ignore
the interplay between induced curvature and intramembrane
viscous flow.

Alternative approaches to the deterministic, continuum
approach to simulate locally induced curvature on the spatial
and temporal scales considered in this manuscript are pro-
vided by a large body of work based on the framework of
statistical mechanics. Statistical mechanics models are usually
less restricted in the permissible deformations but are not
guaranteed to rigorously model the in-plane fluidity of the
membrane. Additionally, the surface tension is often treated in
terms of the excess area—a perspective different from the one
employed in this manuscript. Nonetheless, many biological
phenomena have been successfully investigated using statis-
tical mechanics models, including phase separation (45–48)
and protein-induced budding (49–53) (see also Refs. (54, 55)
for reviews).

The present study is based on recent theoretical advances
in the continuum description of lipid membranes (56–59)
and corresponding numerical developments employing finite
element methods, all within the setting of differential ge-
ometry (60–64). These developments capture the coupling
between elastic out-of-plane bending and non-equilibrium
processes such as intramembrane fluid flow, intramembrane
phase transitions, and chemical reactions on arbitrarily curved
and deforming lipid bilayers. Many biological phenomena
are indeed governed by out-of-equilibrium effects and these
recent advances allow us to explore the underlying physics
of a variety of such phenomena. Here, we focus on the
intricate coupling between in-plane flow and out-of-plane
deformations—a coupling that is known to be important in
systems of biological relevance (56, 63, 65) and yet, is often
neglected.

In this study, we investigate the membrane morpholo-
gies of an initially flat membrane patch with a non-zero
spontaneous curvature in the center. We distinguish between
axisymmetric morphologies such as circular pits and buds,
observed during the early and late stages of endocytosis, re-
spectively, and non-axisymmetric, ridge-like morphologies
that resemble eisosomes in yeast cells. We show that axisym-
metric membrane morphologies are only preserved if the
resting tension of the membrane is low. When the resting ten-
sion is high, we show that (i) axisymmetric invaginations are
unstable; and (ii) non-axisymmetric ridge-shaped structures
are energetically favorable. We study the dynamical effects
resulting from the interplay between intramembrane viscous
flow and induced curvature, and find the rate at which the
locally induced curvature increases is a key determinant in the
formation of ridges. In particular, we show that axisymmetric
buds are favored when the induced curvature is rapidly in-
creased, while non-axisymmetric ridges are favored when the
curvature is slowly increased—the rate of change of induced
curvature affects the intramembrane viscous flow of lipids,
which can impede the membrane’s ability to transition into
ridges.

Our work contradicts previous studies of membrane de-
formations due to locally induced curvature (38, 40–43) by
showing that the assumption of axisymmetry is not gener-
ally valid when studying locally induced curvature. It further
shows that there exists a physically relevant, non-axisymmetric
mode of deformation that has not been reported before. Our
present work advances the preliminary findings in Ref. (61),
where non-axisymmetric deformations due to locally induced
curvature were first observed. While Ref. (61) focused on
the development of the numerical method, here, we seek to
explore the underlying physics and biological implications.

THEORETICAL MEMBRANE MODEL
In this section, we briefly describe our theoretical model;
however the interested reader is referred to the Supplemen-
tary Information (SI) and Ref. (59) for further details. Lipid
membranes are unique materials in that they behave like a
fluid in-plane yet elastically resist bending out-of-plane. More-
over, lipid bilayers are practically area-incompressible (66).
We model the lipid membrane as a single two-dimensional
manifold about the membrane mid-plane.

The elastic membrane behavior is governed by the en-
ergetic penalty for bending, commonly captured with the
Helfrich free energy (17), and the membrane’s areal incom-
pressibility. The free energy per unit area is given by

w = kb (H − C)2 + kgK +
1
J
λ (J − 1) , (1)

where H and K are the mean and Gaussian curvatures, respec-
tively, kb and kg are the corresponding mean and Gaussian
bending moduli, J denotes the relative change in surface area
with respect to a reference configuration, and λ is the surface
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tension. The bending rigidities kb and kg are assumed to be
uniform throughout the membrane. In Eq. (1), the first two
terms comprise the Helfrich free energy density and the last
term accounts for the incompressibility constraint.

We model the effects of induced curvature with the spon-
taneous curvature C, which makes it energetically favorable
for the membrane to be curved (H , 0) whenever C , 0.
Additionally, membrane shape changes and spatial variations
in the spontaneous curvature drive an in-plane flow of lipids.
We model the in-plane flow as that of a two-dimensional
Newtonian fluid, which results in additional in-plane viscous
stresses (see SI). Furthermore, we note that in-plane viscous
flows are coupled with the out-of-plane membrane motion
(56, 57, 59), leading to an intricate relationship between sur-
face flows, out-of-plane deformations, and surface tension
gradients (57, 63, 65). For the length scales involved in this
study, dissipation in the bulk fluid is negligible compared
to the in-plane viscous dissipation (56, 67, 68). Hence, we
neglect effects of the bulk fluid surrounding the membrane.
Similarly, our model does not account for thermal fluctuations.
As is argued in the SI, thermal fluctuations decay quickly
compared to the timescales considered here. We also defer
studying the effects of intermonolayer slip to future work
(56, 67).

SIMULATION PROCEDURE
We employ our recent isogeometric finite element formulation
(61) to simulate lipid membranes under the influence of
locally induced curvature (see SI for details). To study the
morphologies resulting from locally induced curvature, we
consider a model system consisting of a large circular lipid
bilayer patch of radius L, shown in gray in Fig. 1. The outer
edge is subjected to a uniform surface tension λ0, which from
now on will be referred to as the resting tension. Physically,
the resting tension describes the surface tension at equilibrium,
which we assume to remain unchanged far away from the
coated region. The surface tension is only prescribed on the
boundary and otherwise acts as a Lagrange Multiplier to

λ0λ0

λ0λ0

C0

t

Ċ0

1

Figure 1: The left inset shows the top view of the domain used
for our simulations. On the outer boundary, a line tension
λ0 is applied to simulate the resting tension far away from
the location of curvature induction. A non-zero spontaneous
curvature of magnitude C0 is applied in the center of the
circular geometry (shown in green), and is linearly increased
over time as shown in the right inset.

ensure incompressibility of the membrane. This is similar to
a reservoir boundary condition in classical fluid mechanics.
The outer edge is further pinned in the vertical direction
and is constrained to maintain zero slope. We study local
curvature induction due to, for instance, binding of proteins
from the bulk, aggregation of proteins, or the change of
induced curvature due to remodeling of a protein coat, by
imposing a time-dependent, non-zero spontaneous curvature
in a circular region in the center of the membrane patch,
shown in green in Fig. 1. The central patch, where C , 0,
is hereafter referred to as the coated region, in reference to
a curvature-inducing protein coat as observed , for example,
in endocytosis (7). The spontaneous curvature in the coated
region, denoted by C0, is linearly increased from 0 to Cmax

0
over time at a rate ÛC0, as shown in Fig. 1. The rate ÛC0 captures
different rates of protein binding, coat polymerization, or
protein aggregation in the coated region and, as we shall show,
affects the resulting membrane morphologies.

In our simulations, the coated patch is an ellipse with
principal semi-axes of lengths a = 1.02R0 and b = 0.98R0,
where R0 is a length that can be varied. The ellipticity breaks
the symmetry of the patch, as is physically the case due to
thermal fluctuations and non-circular aggregations of proteins.
We ensure our findings are independent of the ellipticity by
considering different values of a/b (see SI). We assume that
the coated region is a material property that is convected with
the surface during deformation, and neither grows nor diffuses.
In doing so, we assume that the coated region neither diffuses
as a whole nor grows due to diffusion of curvature-inducing
agents into or out of the coated region. On cell membranes,
diffusion may be slow due to a low diffusion coefficient or a
favorable chemical potential (59). A detailed motivation for
this assumption, and criteria when this assumption is valid,
are provided in the SI.

Table 1: Baseline parameters used for the results of this study,
unless stated otherwise. The parameters are chosen to be
in biologically relevant regimes. Here, kBT = 4.12 pN nm,
where kB is the Boltzmann constant and T is the temperature.

Parameter Symbol Value
bending rigidity kb 30 kBT (69)
Gaussian bending rigidity kg −0.83kb (70)
radius of model domain L 1000 nm
radius of coated region R0 100 nm (71)
in-plane viscosity ζ 10−8 Ns/m (72)
low resting tension λ0 10−4 pN/nm (73)
high resting tension λ0 10−1 pN/nm (74)
max. spontaneous curvature Cmax

0 0.04 1/nm
rate of spontaneous curvature ÛC0

0 0.0013 1/(nm s) (75)
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AXISYMMETRIC VS. NON-AXISYMMETRIC
SHAPES
In what follows, we discuss the possible membrane shapes
that can be obtained when the membrane is subjected to lo-
cal, curvature-inducing forces. In biological systems, locally
induced curvature often leads to axisymmetric shapes, for ex-
ample pits and buds (5, 10, 14, 76). This resulted in a number
of studies that exclusively considered axisymmetric shapes
(26–29, 32, 36, 38, 40–44, 77).Wewill begin by only allowing
for axisymmetric shapes as well, and subsequently, compare
the results to general membrane shapes, not constrained to
axisymmetry. We find that when the resting tension is high,
the unconstrained membrane shapes are lower in energy and
differ significantly from their axisymmetric counterparts. A
geometric analysis shows that the unconstrained membrane
shapes are shallow cylindrical structures. We end by using
energetic arguments to justify why, under certain conditions,
the non-axisymmetric structures are preferred over their ax-
isymmetric counterparts, thus indicating the latter can be
unphysical in nature.

In all simulations presented in this section, the spontaneous
curvature C0 is increased from zero to Cmax

0 at a constant rate
ÛC0, for a given resting tension λ0. We choose the rate to be
ÛC0
0 (see Table 1), which is small such that the membrane

deforms slowly, the in-plane viscosity has a negligible effect
on the dynamics, and the membrane generally finds its energy
minimizing configuration. All results shown are instantaneous
solutions, i.e. snapshots of an inherently dynamic process. The
material and geometric parameters chosen for our simulations
are listed in Table 1, which will be used hereafter unless stated
otherwise.

Axisymmetric Solutions
We restrict our general continuum theory (59) to axisymmetry
and present a corresponding numerical method following
Ref. (41) in the SI. In the axisymmetric case, the membrane’s
radial, axial, and azimuthal velocities are all required to be
independent of the azimuthal angle. As opposed to most
axisymmetric studies of locally induced membrane curvature
(26, 27, 29, 38, 40–43, 77), we include the viscous forces
arising from surface flows during membrane deformation.

Figure 2 shows our axisymmetric results at low and high
resting tensions. At the low resting tension λ0 = 10−4 pN/nm,
as the spontaneous curvature in the coated region is slowly
increased, the membrane first forms an invagination which
deepens and eventually deforms into a bud with a constricted
neck, shown in Fig. 2. On the other hand, at the high resting
tension of λ0 = 10−1 pN/nm, the membrane forms a shallow
invagination and deforms into a flat, circular pit as the sponta-
neous curvature is further increased. This can be qualitatively
explained by comparing the stored energy in the system based
on Eq. (1) and the work required to pull in lipids against the
resting tension. When the tension is high, the work required

0 100 200 300 400
0

50

100
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250
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z
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λ0 = 10−4 pN/nm
λ0 = 10−1 pN/nm

Figure 2: Axisymmetric shapes at different resting tensions.
At a low resting tension of λ0 = 10−4 pN/nm, the membrane
forms a bud (C0 = 0.018 nm−1, cf. Fig. 3). When the resting
tension is high, λ0 = 10−1 pN/nm, themembrane invagination
stalls which results in a shallow, flat pit—even at the high
spontaneous curvature shown here (C0 = 0.040 nm−1). The
color of the three dimensional membrane configurations
indicates the mean curvature H.

to pull in lipids dominates the energy even when H � C0 in
the coated region. Our axisymmetric results reproduce those
of earlier studies (41, 43), and validate our numerical results.

Non-Axisymmetric Solutions
We next relax the constraint of axisymmetry, thus allowing
general membrane deformations, using the finite element
formulation developed in Ref. (61) (see SI). We emphasize
that our general framework can yield both axisymmetric
and non-axisymmetric solutions. At the low resting tension
of λ0 = 10−4 pN/nm, the membrane forms a shallow in-
vagination which deepens into a bud as the spontaneous
curvature is increased (Fig. 3a)—similar to the axisymmet-
ric case described above and shown in Fig. 2. In contrast,
in the high resting tension case of λ0 = 10−1 pN/nm, the
non-axisymmetric simulations differ strongly from their ax-
isymmetric counterparts. After forming an initially shallow,
axisymmetric invagination at low values of C0, the membrane
deforms into a shallow horizontal ridge (Fig. 3b). The ridge is
aligned along the longer principal axis of the initially elliptic
patch. In what follows, we characterize the ridge structure
geometrically and then provide energetic arguments why
ridges are favored over the stalled, shallow pits observed in
axisymmetric simulations.

Ridge Characterization
A more detailed view of the ridge geometry is shown in
Fig. 4. The elongated ridge structure has a dumbbell shape
and displays reflection symmetry about the principal axes of
the coated region. It has a long cylindrical body and terminates
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Figure 3: Snapshots of membrane shapes at different resting tensions λ0 and different spontaneous curvatures C0, resulting from
non-axisymmetric simulations. In the low resting tension case of λ0 = 10−4 pN/nm, the non-axisymmetric solutions resemble
the corresponding axisymmetric solutions. In the high resting tension case of λ0 = 10−1 pN/nm, the solution branches out into
a non-axisymmetric, elongated structure, unlike its axisymmetric counterpart.
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Figure 4: Top (left) and cross-sectional (right) views of the ridges forming at high resting tensions. The vertical axis is scaled
differently from the horizontal axis, where z0 := z(x = 0, y = 0) = 2.6 nm and L = 1000 nm. While the geometry is not
significantly curved along the longer principal axis (A), it is curved along the shorter principal axis (B), thus resembling a
cylinder. Furthermore, the ends of the ridge are spherically shaped.

in spherical caps, as shown in the zoomed-in view in Fig. 4.
To further investigate the ridge geometry and compare it with
the spherical buds observed at low resting tension, we plot
the two principal curvatures κ1 and κ2 for both ridges and
buds (Fig. 5). At low resting tension, κ1 and κ2 take similar
values in the budded region, indicating that the bud is nearly
spherical.

At high resting tension, on the other hand, the two princi-
pal curvatures are of the same order only at early times, when
deformations are small (Fig. 5b, left panels). As soon as the
ridge develops, the first principal curvature κ1 decays to a
value that is one order of magnitude lower than the second
principal curvature κ2. Such a combination of principal curva-
tures demonstrates that the ridges are sections of cylindrical
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(b,1) first principal curvature κ1 at λ0 = 10−1 pN/nm
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Figure 5: Plots of the principal curvatures κ1 and κ2 at different resting tensions λ0 resulting from the non-axisymmetric
problem setup. In the low resting tension case of λ0 = 10−4 pN/nm, the two principal curvatures match in the region of the bud,
indicating a spherical shape. In the high resting tension case of λ0 = 10−1 pN/nm, the first principal curvature is one order of
magnitude lower than the second principal curvature, indicating a cylindrical shape.

structures.

Energetic Arguments: Buds vs. Ridges
To understand the difference between the axisymmetric and
non-axisymmetric simulations, we consider the total elastic
membrane energy

Π B

∫
P
w da , (2)

where w is the energy density given in Eq. (1) and the area
integral is over the membrane patch P. We can simplify
Eq. (2) by recognizing (i) according to the Gauss–Bonnet

theorem, the integral of the term kgK over the membrane
area is a constant if the boundary remains flat, and therefore,
can be ignored in our case, and (ii) the membrane is area-
incompressible, such that the area stretch J = 1 everywhere.
Hence, we can redefine the total elastic energy to be

Π B

∫
P

kb (H − C)2 da , (3)

such that we only need to take into account the difference
between the mean and spontaneous curvature.

Figure 6 shows the elastic energy defined in Eq. (3) for
the axisymmetric and non-axisymmetric membrane shapes.
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Figure 6: Comparison of the elastic energyΠ defined in Eq. (3)
for the axisymmetric and non-axisymmetric cases. The two
bottom figures show close-ups of sections of the top figure.
At a low resting tension of λ0 = 10−4 pN/nm, the stored
energies in the two cases match closely. At a high surface
tension of λ0 = 10−1 pN/nm, the non-axisymmetric branch
deviates from the axisymmetric case and follows a path with
a significantly lower energy than the axisymmetric solution.
Data is plotted only until C0 = 0.008 nm−1, for which the
membrane forms a long ridge as shown in Fig. 5b,2. At larger
values of C0, our simulations are no longer converged under
mesh refinement and thus omitted here (see SI). The line
markers merely indicate that the plots are generated from
discrete datapoints, where, for clarity, the number of line
markers is much less than the number of datapoints.

In the low resting tension case, the axisymmetric and non-
axisymmetric energies are almost identical (Fig. 6), and in
both cases a bud forms. However, in the high resting tension
case, the axisymmetric and non-axisymmetric energies only
agree at low values of C0. At higher spontaneous curvatures a
ridge develops, which is lower in energy than the axisymmetric
stalled pit (Fig. 6).

At this point, we provide arguments as to why ridges are
possible structures in addition to buds. We begin by splitting
the total membrane energy (3) into its contributions from the
coated and non-coated regions, where

Πcoat B

∫
Pcoat

kb (H − C)2 da , (4)

and Pcoat is the coated region of the membrane patch. In the
coated region, we observe that H ≈ C0 around the resting

tension and spontaneous curvature where the membrane tran-
sitions from shallow pits to either buds or ridges.We recognize
that the coat energy is minimized when H = 1

2 (κ1 + κ2) ≈ C0.
This is possible in two different ways:

κ1 ≈ κ2 ≈ C0 (Spherical buds) , (5)

κ1 ≈ 0, κ2 ≈ 2C0 (Cylindrical ridges) . (6)

Both choices are available to non-axisymmetric simulations,
while only Eq. (5) is compatible with the requirement of
axisymmetry. Equation (5) leads to spherical buds and is
preferred at low tensions in both the axisymmetric and general
cases. On the other hand, Eq. (6) leads to cylindrical ridges
and is preferred at high tensions—as seen in Fig. 5. To
understand why axisymmetric buds or non-axisymmetric
ridges are preferred, we need to consider both the stored
elastic energy and the work done to draw in lipids against the
resting tension at the boundary. To this end, we define the
latter as

Wλ0 B −
∫
∂P

u · λ0ν ds , (7)

where u is the displacement of a point on the boundary, ν
is the in-plane, outward pointing normal and the integral is
over the boundary of the membrane patch. Minimization of
(Π +Wλ0 ) provides the criterion for the formation of non-
axisymmetric ridges or axisymmetric buds. When the resting
tension is low, lipids are drawn in radially to form a bud, as
is shown in Fig. 7. When the resting tension is high however,
the work required to radially draw in lipids is increased and
therefore, bud formation is hindered and Π increases. Figure
6 shows that ridge formation then lowers the stored energy Π.
The formation of ridges is facilitated by a flow pattern that
resembles purely extensional flow as is shown in Fig. 7.

The above argument is heuristic and the transition from
invaginations into spherical buds or cylindrical ridges is
marked by an instability (see SI). While the existence of this
instability is deduced entirely from numerical experiments,
we aim to present a detailed theoretical stability analysis in a
future contribution. In particular, we seek to understand under
which conditions spherical buds or cylindrical ridges form,
as both can minimize the elastic energy in the coated region
(see Eqs. (5) and (6)).

Nevertheless, at high resting tensions, we observe ridges
instead of axisymmetric buds, indicating that ridges minimize
(Π + Wλ0 ) at high resting tensions. Accordingly, we can
conclude that the axisymmetric results previously found at
high resting tensions (41, 43) are unstable and unphysical.

MORPHOLOGICAL “PHASE” DIAGRAMS
All of the results presented thus far were generated for a single
coat radius R0, with the spontaneous curvature ramped up
at a single rate ÛC0

0 . In this section, we explore the different
morphologies accessible to lipid membranes, for a range
of parameters, in both axisymmetric and non-axisymmetric
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settings. In particular, we study morphological “phase” dia-
grams, for which we consider systems (i) with different coat
radii R0, (ii) over a range of resting tensions λ0, and (iii)
with different rates of change of spontaneous curvature ÛC0.
We find that increasing the spontaneous curvature quickly
can lead to an interplay between in-plane viscous forces and
out-of-plane deformations, which prevent the membrane from
reaching its lowest energy configurations—thus affecting the
transition into ridges described above. A classification of the

λ0 = 10−4 pN/nm
C0 = 0.01 1/nm

(a)

λ0 = 10−1 pN/nm
C0 = 0.0056 1/nm

(b)

Figure 7: Snapshots of membrane shapes and velocity pro-
files at different resting tensions λ0 from non-axisymmetric
simulations. The overlayed black arrows serve to indicate the
character of the flow pattern. In the low resting tension case of
λ0 = 10−4 pN/nm, the velocity profile shows inward-pointing
radial flow to form a bud. In contrast, in the high resting
tension case of λ0 = 10−1 pN/nm, we observe a flow pattern
similar to purely extensional flow with inward-pointing flow
along the longer principal axis of the initial ellipse and out-
ward pointing flow along the shorter principal axis of the
initial ellipse.

Table 2: Classification of the morphologies observed in
simulations. The pictographswill be used in themorphological
“phase” diagrams to indicate the respective morphology. The
same pictographs are used in both the axisymmetric and
non-axisymmetric cases for clarity.

Number Name Description Pictograph

I pit shallow, axisymmetric
deformation

II
deep

invagina-
tion

deep, axisymmetric
deformation with

z(x = 0, y = 0) > R0

III closed
bud

deep invaginations with
constricted necks

IV ridge non-axisymmetric, flat
cylinders

morphologies observed in simulations is provided in Table 2.

Geometry Effects: R0 vs. C0
We first examine how different coat radii can affect membrane
morphology. As shown in Fig. 8, the coat radius does not
qualitatively affect the observed membrane shapes. At high
resting tensions, the non-axisymmetric simulations go from
shallow pits to cylindrical ridges, while the axisymmetric
simulations always stall at flat, shallow pits. We note that the
spontaneous curvature at which the transition occurs is almost
independent of the coat radius. At low resting tensions, both
axisymmetric and non-axisymmetric simulations transition
from shallow pits to deep invaginations, and then to buds.

At low resting tension, we can predict the onset of bud
formation by considering the geometric deformation of the
coated region. We reported above that for a bud, H ≈ C0 in the
coated region, which implies the initial coated region deforms
into a spherical bud. Equating the initial and final surface
areas, we find πR2

0 = 4πR2
bud = 4π/(Cbud

0 )
2, from which we

approximate

Cbud
0 ∼ 2

R0
, (8)

where Cbud
0 is the spontaneous curvature at which a bud is ob-

served. Equation (8) is plotted as the dashed line in Figs. 8a,1
and 8a,2, and reasonably predicts the scaling of the sponta-
neous curvature required for bud formation. Accordingly, bud
formation at low resting tension is a geometrical phenomenon.

Resting Tension Effects: λ0 vs. C0
Thus far, we presented simulation results for two extreme
cases of the resting tension: λ0 = 10−4 pN/nm and λ0 =
10−1 pN/nm. However, resting tensions in lipid membranes
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Figure 8: Morphological “phase” diagrams: radius of coated region R0 vs. spontaneous curvature C0 at different values of the
resting tension λ0, all at the lowest considered rate of spontaneous curvature ÛC0

0 . The shaded areas of the diagrams are not
accessible with our current numerical framework. In the low resting tension case, there is an inversely proportional relationship
between the coated region and spontaneous curvature required for closed buds. The dashed line shows the relationship in
Eq. (8), where the proportionality is replaced by an equality. The morphological “phase” diagrams from the axisymmetric and
non-axisymmetric setup agree well. In contrast to the low resting tension case, there is only a mild dependence on the size of
the coated region when the resting tension is high and ridges form. The axisymmetric simulations at the high restion tension
yield shallow pits at all spontaneous curvatures.

range from 10−1 pN/nm in yeast cells (41) to 3 · 10−3 pN/nm
in blebbing cells (74, 78), and to even lower values in giant
unilamellar vesicles (73). Accordingly, we study axisymmetric
and non-axisymmetric membrane morphologies over a wide
range of resting tensions. Our results are captured in the
morphological “phase” diagrams in Figs. 9a,1 and 9a,2, which
show membrane morphologies as the spontaneous curvature
is increased, for each value of the resting tension. In Figs. 9a,1
and 9a,2, the spontaneous curvature is increased slowly, such
that our simulations correspond to quasi-static equilibrium
configurations (Figs. 9b and 9c reveal rate effects associated
with changing ÛC0 and are discussed in the subsequent section).
This implies that the observed morphologies also minimize
the energy of the system.

The non-axisymmetric simulations shown in Fig. 9a,1
again show there exist two paths for morphological transi-

tions. At resting tensions below a threshold value of λ0 ≈
3 · 10−4 pN/nm, membranes transition from shallow pits to
deep invaginations and then to spherical buds, with the final
morphology compatible with the spherical energy minimiza-
tion criterion of (5). Above this threshold, on the other hand,
membranes transition from shallow pits to ridges—with the
latter satisfying the cylindrical energy minimization criterion
of (6). In stark contrast, the axisymmetric simulations shown
in Fig. 9a,2 do not have access to the second path to form
cylindrical structures; consequently, the simulations stall at
shallow pits at resting tensions above 3 · 10−4 pN/nm.

We note that at low resting tensions, below λ0 ≈ 3 ·
10−4 pN/nm, the axisymmetric and non-axisymmetric mor-
phological “phase” diagrams are almost indistinguishable,
including the transitions from pits to invaginations to buds.
In particular, for a given resting tension, the spontaneous
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Figure 9: Morphological “phase” diagrams: Resting tension λ0 vs. spontaneous curvature C0 at different values of the rate
of spontaneous curvature ÛC0. With increased rate of spontaneous curvature, the resting tension at which ridges are observed
increases. The shaded areas of the diagrams are not accessible with our current numerical framework.

curvatures at which a shallow pit becomes a deep invagination
is nearly identical between the two types of simulations. The
same is true for the onset of bud formation as well.

Rate Effects: Varying ÛC0

In biological and artificial lipid membrane systems, the rate of
curvature induction varies in different settings. For example,
curvature-inducing proteins can assemble at different rates—
thus inducing curvature at different rates as well (13, 15).
In this section, we study rate effects by changing ÛC0, the
rate of change of spontaneous curvature, on lipid membrane
morphologies as a function of the resting tension λ0. We find
that at high resting tensions, higher rates lead to additional
viscous stresses in the membrane, and as a result the ob-
served membrane morphology may not be the lowest energy
configuration.

The results of altering the rate of change of spontaneous
curvature ÛC0, are presented in Fig. 9. At low resting tensions,
in both the axisymmetric and non-axisymmetric cases, mem-
brane morphologies are unaffected by changes in ÛC0 : The
transitions from shallow pits to deep invaginations, and then
to buds, are independent of ÛC0. At high resting tensions, the

axisymmetric results are largely independent of ÛC0 as well.
However, for non-axisymmetric simulations at moderate to
high resting tensions, ÛC0 strongly affects membrane morpholo-
gies, as shown in Figs. 9a,1, 9b,1, and 9c,1. In particular, with
increasing rates, the resting tension and spontaneous curva-
ture at which ridges form shift toward higher magnitudes.
Hence, the non-axisymmetric results increasingly resemble
the axisymmetric ones when the rate of spontaneous curvature
is increased (see Figs. 9c,1 and 9c,2).

To understand why the rate of spontaneous curvature
affects our non-axisymmetric results, we first qualitatively
describe the difference in the lipid flow leading to axisym-
metric shapes and non-axisymmetric ridges. At high resting
tensions and low rates of change of spontaneous curvature
ÛC0, ridges are low energy structures, and in order to form,
require an in-plane shear flow of lipids as seen in Fig. 7b .
Axisymmetric shapes, on the other hand, only draw in lipids
radially (Fig. 7,a)—thus forming shallow, flat shapeswhich are
energetically unfavorable due to their large bending costs, as
discussed previously. We quantify the relative importance of
lipid rearrangements and the forced membrane deformations
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by defining two timescales:

τf :=
ζ

λ0
and τc :=

1
R0 ÛC0

, (9)

where τf denotes the timescale associated with out-of-plane
deformations and in-plane shear flows (63, 65), ζ is the two-
dimensional intramembrane viscosity, and τc is a loading
timescale associated with the rate of change of spontaneous
curvature. When τf � τc, the lipids can quickly rearrange
in-plane such that the membrane can find the lowest energy
configurations—which, at high tension, are ridges. As can be
easily verified, this condition is satisfied at the lowest rates
considered in this study. When τf � τc, on the other hand,
lipids are unable to rearrange and access the in-plane shearing
modes—and the resulting flow occurs radially in response to
the changing isotropic spontaneous curvature. As the lipids
cannot access the in-plane shearing modes, ridges cannot
form and the membrane forms axisymmetric shapes—which
are the only available option.

The above arguments on the formation of ridges and
axisymmetric shapes also explain the threshold resting tension,
λthresh

0 , which separates ridge formation from the formation
of axisymmetric shapes. This threshold is the resting tension
where “phases” I, II, and IVmeet (see Figs. 9a,1, 9b,1 and 9c,1).
We assume the threshold value occurs when τf and τc are
comparable, such that (see (9)) λthresh

0 ∼ ζR0 ÛC0. Accordingly,
increasing ÛC0 by a constant factor should increase λthresh

0 by
the same factor, as ζ and R0 are constant. Figs. 9a,1, 9b,1,
and 9c,1 show that when ÛC0 increases by a factor of 10, λthresh

0
increases roughly by a factor of five. Our simple timescale
argument thus predicts the correct trends for the threshold
resting tension in this highly nonlinear dynamical problem.
However, a detailed understanding of the effects of ÛC0 and
the changes in the morphological “phase” diagrams requires
a rigorous stability analysis. We leave such an analysis to a
future study.

CONCLUSIONS AND EXPERIMENTAL
IMPLICATIONS
In this work, we studied lipid membrane morphologies result-
ing from locally induced curvature. We found axisymmetric
solutions at low resting tensions, while non-axisymmetric
ridges were observed at high resting tensions. Several previous
studies considered the effects of locally induced spontaneous
curvature as a means of studying endocytosis (41, 43). These
works are restricted to axisymmetric shapes and describe a
snap-through instability at high tension. Our current work,
however, contradicts such findings, which neglect lower energy
non-axisymmetric membrane morphologies.

The non-axisymmetric lipidmembrane shapes observed in
the present study have implications in understanding biological
processes and related phenomena. In relation to endocytosis,
for example, experimental studies observe both buds at low

resting tensions (14, 76) and shallow pits at high resting ten-
sions (79, 80). While the cylindrical ridges we observe at large
resting tensions and spontaneous curvatures have not been
explicitly reported in stalled endocytic events, there appear to
be signatures of such structures in experimental studies. For
example, clathrin is capable of forming cylindrical ridge-like
cages in focal adhesions (81), and ridge-like polymerized
structures appear to exist in clathrin-mediated endocytosis
under hypotonic conditions (80). These observations, in con-
junction with our simulation results, suggest a mechanism
that allows coat proteins such as clathrin to self-assemble into
ridge-like structures at high resting tensions.

Ridge-like structures have also been experimentally ob-
served as eisosomes in yeast cells (82), which are generally
under high membrane tension. While eisosomes are linked
to BAR proteins (82), which induce anisotropic curvature
(7), our results demonstrate that even isotropic spontaneous
curvatures lead to anisotropic cylindrical structures.

Additionally, a recent study found that cholera toxin sub-
unit B (CTxB) binds to the lipid bilayer, and induces bud
formation (83). The same study suggests that bud formation
is inhibited at increased resting tension, and reports ridges
induced by CTxB (83). However, the correlation between
such ridges and the magnitude of the resting tension is not yet
known.

Finally, we consider morphological changes accompa-
nying phase separations of biological membranes, where
diffusion of lipids is often negligible. During such processes,
budding transitions were found as a result of the different
spontaneous curvatures of the phase-separating components
(10, 84), similar to the structures we found at low resting
tension. Furthermore, there is a striking similarity between
the ridge-shaped phase separated domains in lipid bilayers
(10, 12), and the high resting tension ridge structures presented
in our study. We speculate that such structures, as observed in
Refs. (12, 85, 86), arise due to the membrane being in a high
resting tension state, as was also proposed by Harden et al.
(87). We hope that our work inspires the careful investigation
of the role of resting tension in phase separating membrane
systems with spontaneous curvatures (88).
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