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Abstract 

A theoretical study is reported of the transition between the ground state   (  and the 

lowest triplet state   

1Ag)

13 B1u( ) of ethylene based on the diffusion Monte Carlo (DMC) variant of the 

quantum Monte Carlo method. Using DMC trial functions constructed from Hartree-Fock, 

complete active space self-consistent field and multi-configuration self-consistent field wave 

functions, we have computed the atomization energy and the heat of formation of both states, and 

adiabatic and vertical energy differences between these states using both all-electron and 

effective core potential DMC. The ground state atomization energy and heat of formation are 

found to agree with experiment to within the error bounds of the computation and experiment. 

Predictions by DMC of the triplet state atomization energy and heat of formation are presented. 

The adiabatic singlet-triplet energy difference is found to differ by 5 kcal/mol from the value 

obtained in a recent photodissociation experiment.  
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I. Introduction 

Molecular electronic excited states are of great basic and technological importance. One 

would like the capability to predict the optical adsorption and emission spectra and other 

electronic properties of molecular systems. Accurate computational predictions of these 

properties for excited states have, however, proved more difficult to obtain than for ground states.  

 Ethylene is the prototypical π-electron system whose photochemical behavior is of 

importance in chemistry, biology and technology [1,2].  Ethylene has been studied exhaustively 

in the vapor and crystalline phases; earlier results have been summarized by Robin [3]. Electron 

energy loss spectroscopy (EELS) revealed that the   1  vertical transition occurs at 97 

kcal/mol [4,5]. Electron impact spectroscopy (EIS) has established the singlet-triplet vertical 

excitation energy to lie in the range 97-108 kcal/mol [6].  

1 Ag →13 B1u

 Several large scale ab initio computational investigations of the singlet-triplet transition 

energy in ethylene have been carried out. The methods used in these studies were: configuration 

interaction with single excitations (CIS) [7,8], multi-reference CI (MR-CI) [9] and complete 

active space self-consistent field (CASSCF) [10]. 

In the present study, the electronic structure of the ground and the lowest triplet states of 

ethylene were examined using the diffusion Monte Carlo (DMC) method. This study is motivated 

by recent photodissociation studies of C2H4S conducted at 193 nm  

that yielded the triplet-state heat of formation, and the adiabatic energy splitting that arises from 

the singlet-triplet excitation [11-13]. These experiments demonstrated the importance of 

combined tunable synchrotron radiation with photofragment translational spectroscopy (PTS) to 

yield an approach that easily distinguishes ground and first-excited states. In the approach, 
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product detection is carried out using soft photoionization with vacuum ultraviolet (VUV) 

radiation. This experimental procedure makes possible the identification of new reaction channels 

including one that yields the lowest triplet state of C2H4. 

 The ground electronic state of ethylene is a planar singlet   (
1Αg) of  symmetry. 

Excitation of an electron from a π  bonding orbital to an π  anti-bonding orbital leads to a 

staggered equilibrium configuration in which the CH

  D2h

∗

2 groups are perpendicular to each other. 

This 900  rotation is accompanied by    bond stretching as the carbon-carbon bond converts 

from a double to a single bond, and results in    symmetry. This singlet-triplet transition is 

characterized by unfavorable Franck-Condon factors due to the geometry change [12].  

C− C

D2d

The DMC method [14-16] has become an useful approach for investigating the electronic 

structure of molecular systems because of its potential for high accuracy and favorable scaling 

(N3) of the computational effort with system size N. The method has been shown to provide 

accurate results for the calculation of a wide range of properties, including ground state energies 

[17], binding energies [18], ionization potentials, and electron affinities [19].  The power of the 

DMC method for treating ground- and excited-state systems resides in its explicit treatment of 

electron-electron correlation. Highly accurate DMC calculations have been carried out for 

numerous systems in the ground state. There are relatively fewer studies in which excited state 

energies have been determined; however, see refs. 14, 20-22. Excitation energies have been 

described as  ‘ 1
N

’ effects, as the change in energy is inversely proportional to the number of 

electrons in the system. As a result, a degree of precision must be achieved that makes possible 

the resolution of the energy change from the statistical uncertainty encountered in QMC 

calculations [23]. 
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 In this paper, we report equilibrium properties of the ground and lowest triplet states of 

ethylene including adiabatic and vertical energy splittings, heats of formation, and atomization 

energies. These quantities have been computed by the DMC method using Hartree-Fock (HF), 

and single-reference functions, the latter with natural orbitals (NOs) obtained from complete 

active space self-consistent field (CASSCF), and multi-configuration self-consistent field 

(MCSCF) trial functions. In addition, for comparison, Moller-Plesset second-order perturbation 

theory (MP2), density functional theory (DFT) in the local density approximation (LDA) and 

B3LYP generalized gradient approximation (GGA) results, have been carried out and are 

reported.  

The remainder of the paper is organized as follows. Section II summarizes the quantum 

Monte Carlo (QMC) method and describes the trial wave functions used for the DMC 

calculations. In Sec. III, atomization energies, heats of formation, and singlet-triplet energy 

differences are reported and discussed. Section IV summarizes results and presents conclusions.   

 

II. Method 

The DMC approach is a stochastic method for obtaining time independent solutions to the 

Schrödinger equation by solving the time-dependent Schrödinger equation in imaginary time [20- 

24]. The solution of the latter equation converges to the overall bosonic ground state. Fermion 

antisymmetry is introduced through the fixed-node approximation (FNA), which imposes the 

nodes of an approximate function    onto the unknown exact function . The FNA has been 

found to provide accurate results for ground and excited states with trial functions constructed 

using various ab initio basis set methods. The introduction of information on the system from 

another source is the essence of importance sampling [25,26], which improves convergence to the 

ΨT Φ
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state of interest. In the DMC method the propagation of the distribution of walkers is achieved 

with the short-time approximation, which provides an analytical approximation to the Green's 

function [27].  In the present study Ψ  is written as a product of a single determinant and a 

correlation function.  The latter depends explicitly on interparticle coordinates. The orbitals of the 

single determinant in this study are NOs obtained from MCSCF and CASSF calculations using 

the GAMESS quantum chemistry package [28]. 

T

The form chosen for the correlation function is the 9-parameter function adapted by 

Schmidt and Moskowitz [29] from a function introduced by Boys and Handy (SMBH) [30]. Our 

DMC code includes a tenth term to satisfy the electron-nucleus cusp condition. This function 

contains two- and three-body terms in the form of electron-electron, electron-nucleus, and 

electron-other-nucleus distances. The SMBH correlation function contains first-order Jastrow 

terms that enable satisfying electron-electron and electron-nuclear cusp conditions [31]. 

Optimization of correlation function parameters is accomplished through fixed sample 

optimization using the absolute deviation (AD) functional [32] that minimizes the energy of Ψ  

and is given by, 

T

AD = 1
N

ET − ELi
i=1

N

∑

ET

. Here N is the number of walkers,    is the local energy 

of the ith  configuration, and    is reference energy chosen to minimize fluctuations.  

ELi

A.  DMC Trial functions 

        In this study, atomization energies, adiabatic and vertical energy differences between the 

ground singlet state and the lowest triplet state, and heats of formation of singlet and triplet C2H4 

were calculated using both effective core potential (ECP) and all-electron DMC methods.  

1. ECP trial wave functions 
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A soft ECP, i.e., one that is finite at the origin, in contrast to typical ECPs of quantum 

chemistry, is used here.  Such functions yield improved efficiency of DMC calculations over 

previously used pseudopotentials by making possible the use of larger time steps without 

instabilities or noticeable bias [33,34].  A HF trial function was constructed using the 

uncontracted Partridge 2 basis set (16s, 11p) [35] for C and the cc-pVDZ basis set for H [36].  

The Partridge C basis set was augmented by a single d-polarization function of 0.921 for the 

ground state and 1.013 for the triplet state.  

To test the quality of the HF trial function, a CASSCF (4,8) calculation was carried out 

and NOs from this approach introduced into a single determinant trial function. The CASSCF 

(4,8) notation implies promotion of 4 electrons from the highest occupied π  and σ orbitals into 8 

active orbitals. For these calculations, we again used the modified Partridge basis set.  

2. All-electron Trial Functions 

All-electron trial functions for the ground state and the lowest triplet state were 

constructed using HF orbitals. The electron-nucleus cusp condition was enforced for the s basis 

functions. The cusp condition for these functions on C and H were satisfied using a procedure 

similar to one presented recently by Manten and Lüchow. [37] see Appendix. All-electron DMC 

energy splittings and thermochemical estimates obtained with a trial function that satisfies the 

electron-nucleus cusp condition and one that does not satisfy this condition are compared below 

and emphasize the importance of satisfying the electron-nucleus cusp condition.  

3. Other Ab Initio Calculations 

To provide an assessment of the present DMC calculations of atomization energies, heats 

of formation, adiabatic and vertical energy differences, we computed these quantities using the 

MP2, LDA and B3LYP methods at the complete basis set (CBS) limit. The CBS limit was 
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obtained from an exponential fit to single-point energies for the cc-pVXZ, (X=D,T, and Q) series 

of basis sets. These calculations were carried out using the Gaussian 98 program package [38]. 

 

III. Results and discussion 

  All DMC results were obtained for geometries of the ground and triplet states optimized 

at the MP2 level of theory with the 6-311++G** basis set.  For the LDA and B3LYP levels of 

theory, the geometry was optimized using the same basis set as that used with the DMC 

calculations. Results of the geometry optimizations are given in Table I. The MP2 optimized 

ground state geometry is found to be in excellent agreement with electron diffraction [38] results. 

For this reason the MP2 method was also used to determine the triplet state geometry for DMC 

calculations. 

The DMC computations were carried out with 12,800 walkers for a period long enough to 

obtain stochastic error bars of ≤  kcal/mol. There were typically 175-300 blocks and 150-200 

moves per block. A small time step of 1 × 10

0.3

-4 was used to avoid zero time-step extrapolation and 

to guarantee a high acceptance ratio ( ) . 99.9%

 

A. Atomization Energies 

As a test of the DMC computational procedure for the singlet-triplet energy splitting, we 

calculated the atomization energy and heat of formation of C2H4 (1Ag, 13B1u) with the method. 

The atomization energy is defined as the difference of the sum of the energies (valence energies 

with ECPs) of the atoms and the molecule including the zero point energy (ZPE), 

 

  (1) method
a 2 4 method method method 2 4 ZPE,method 2 4E (C H ) = 2E (C) + 4E (H) - E (C H ) - E (C H )
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here “  ” corresponds to LDA, MP2, B3LYP, or DMC levels of theory. method

 The ground and excited state-atomization energies are listed in Table II. The results of the 

MP2 and B3LYP calculations are in good accord with experiment, while the LDA estimate 

overbinds by ~ 13%.  

The ECP DMC ground state atomization energies are in excellent agreement with the 

experimental value of 531.9 kcal/mol.  In particular, the HF and CASSCF soft-ECP atomization 

energies obtained with the Partridge basis set overlap the experimental value.  

The all-electron DMC ground state atomization energy obtained with the electron-nucleus 

cusp correction agrees with experiment to within the error of the approaches; the means of these 

quantities differ by only 0.1 kcal/mol. If the cusp correction is not imposed, the computed 

atomization energy is 4.2 kcal/mol less than the experimental value.  

The zero point energy (ZPE) of the to states was obtained using scaled harmonic 

frequencies at the MP2/6-311++G** level of theory. The ground state ZPE at this level of theory 

is in excellent agreement with experiment [40]. The ZPE for triplet C2H4, obtained from LDA, 

B3LYP, and MP2 calculations, was scaled by 0.96, 0.98, and 0.97 [41], respectively. For the 

DMC calculations, scaled MP2 ZPEs were used. 

B. Heats of formation 

The heat of formation for the states of interest provides a further estimate of the accuracy 

of the DMC valence energies.  The DMC heats of formation at 0 K and 298 K are compared in 

Table III to results from other ab initio methods and to experiment. The heat of formation at 298 

K was determined by subtracting calculated non-relativistic atomization energies    from the Ea
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standard experimental enthalpies of formation of the isolated atoms. The heats of formation at 0 

K and 298 K were obtained from the following expressions [42]. 

 

  (2)   ∆Hf
0 (C2H4 ) = 2∆Hf

0 (C) + 4∆Hf
0 (H) - Ea

 

  (3)   ∆Hf
298 (C2H4 ) = ∆Hf

0 (C2H4 ) - TEMP

 

where TEMP is an empirical temperature correction for the interval 0 to 298 K that includes, in 

addition to the classical approximation for translation   
3
2 RT( ) and rotation   

3
2 RT( ) of the molecule, 

a temperature correction for the elements C and H in their standard states taken from experiment 

[42].  The ground state DMC heat of formation is found to be in excellent agreement with 

experiment for all trial functions except, as expected, with for the all-electron calculation for 

which the electron-nuclear cusp condition is not satisfied. This limitation leads to an overestimate 

of 4.25 kcal/mol for ∆ at 0 and 298 K. Hf

The DMC heat of formation at 298 for the triplet-state is found to lie ~ 4kcal/mol above 

Qi et al.’s [12] estimate from their photodissociation experiment. Suits has indicated, however 

that the 3 kcal/mol error of the experiment is an underestimate given the way that the error was 

extracted  - a procedure in which one peak was fit that was buried within another peak [43]. The 

DMC value is found to be in closer accord with the MR-CI results [9], differing by a ~ 2kcal/mol. 
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C. Singlet-Triplet Energy Difference 

Stimulated by their recent photodissociation measurements, Qi et al. suggested to us that it 

would be helpful to have a further theoretical estimate of the adiabatic singlet-triplet energy 

splitting. They obtained a value of 58(3) kcal/mol, which is to be compared with DMC values of 

~66 kcal/mol obtained using ECP and all-electron DMC approaches. The discrepancy between 

the Qi et al. value and the DMC result may not be as large as indicated because of the procedure 

used to determine the experimental value [43]. One sees from Table IV that the DMC splittings 

lie within 0.1 kcal/mol of each other statistically so that the use of a HF or a CASSCF trial 

function with a soft ECP yields no numerical difference from the use of the all-electron HF trial 

function. These adiabatic energy differences together with the results of earlier studies and other 

ab initio approaches determined in this study (LDA, MP2, and B3LYP) are also listed in Table 

IV. The MR-CI adiabatic energy splitting [9] is found to be in closer accord with the DMC values 

than the results from the other ab initio approaches. 

Also listed in Table IV are vertical energy splittings for each of the methods mentioned 

above. For this property there is a much wider experimental range of 97-108 kcal/mol.  The DMC 

results, however, are again in similar accord at ~104 kcal/mol, with statistical differences of  < 

0.1 kcal/mol as found for the adiabatic energy splitting.  

 

Summary and Conclusions   

Motivated by a recent photodissociation experiment, we have computed the adiabatic and 

vertical singlet-triplet energy splittings in ethylene. The DMC adiabatic splitting is found to be ~5 
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kcal/mol larger than a recent measurement. Other theoretical approaches (LDA, MP2, and MR-

CI) also yield larger values except for B3LYP. The DMC singlet-triplet vertical energy difference 

and heat of formation for the triplet state at 298K are found to differ from a MR-CI result by 

<2kcal/mol. DMC atomization energies and heats of formation of the singlet and triplet states 

were found to agree with experiment to within the errors of the two approaches where 

experimental data is available except as noted. 
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Appendix  

The electron-nucleus (e-n) cusp condition for an ns orbital is  

 

 
∂ lnϕns

∂riα riα = 0

= −Zα  (1) 

 

where ϕ  in Eq. (1) refers to an    s  basis function (BF) and is the atomic 

number of nucleus α .  To satisfy the e-n cusp condition, we have chosen the function,  

ns (n = 1,2,3,K,) Zα

  (2) fcusp(riα ) = a1 exp(−a2riα ) + a3riα + a4
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where the parameters a  were determined by numerically fitting Eq. (2) to the s BF 

using the Levenberg-Marquardt algorithm [44].  The e-n cusp condition written in terms of the a  

fitting parameters of Eq. (2) atr  is 

i  {i =1,2,3, 4}

iα = 0

i

 3 1 2

1 4

a a a Z
a a α

−
≈ −

+
 (3) 

 

The symbol ‘≈ ’ in Eq. (3) is used because the fitting parameters approximate the Zα to within the 

error of the numeric fit.   

We initially fit the exponential function of Eq. (2) to 1s and 2s BFs over an interval [ ] , 

where    was chosen to lie at a distance sufficiently far from the nuclear center that fluctuations in 

 have dissipated (see Fig. 1).  Approximately 10,000 points were used to fit each s-BF of H 

and C. This procedure was found, however, not to describe accurately the - Z

10, r

r2

r1

∇2ϕns

α behavior at the 

origin. To provide greater flexibility needed to address this shortcoming, a second point,    , is 

chosen that lies closer to the nuclear center such that 0 .  A least squares non-linear 

regression is then carried out over the interval [ . For C and H  was typically set to 0.0005 

Bohr.  To connect  smoothly to the s  BF and its first and second derivatives, a third-

order polynomial of the form  

< r2 << r1

r1,r2 ] r2

fcusp riα( )

]

]

]

  (4) p(riα ) = a0 + a1riα + a2riα
2 + a3riα

3

 

is introduced in the interval [ ,  where δ  is a parameter typically less than 0.05 

Bohr.  The coefficients in Eq. (4) were determined by enforcing the continuity of the polynomial 

and its first derivative at the end points of the interval   [ . The gradient and Laplacian of 

the s orbital were obtained by differentiating  in the range of   [  and the s orbital in 

r1,r1 + δ

r1,r1 + δ

fcusp(riα ) 0, r1
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the range of   [ .  Continuity of the first and second derivatives of the s BF was achieved by 

enforcing continuity of the connection polynomial and its first derivative at the bounds of the 

interval [ . The coefficients of  and  are listed in Table V. 

r3,∞

+ δ

− ih),  i

]

]r1,r1

/ (1

fcusp(riα )

= 1 / n

p(riα )

0.1

The resultant function and its first and second derivatives are fit to cubic splines and the 

latter functions are then used in the local energy evaluation. Usually, 1000 non-equally spaced 

spline points were required to map the interval [  onto [0  with the function 

 where h  and α = .  

0,1] ,∞]

  xi = αih = 0,K,n − 1
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Table I: Optimized structuresa for the ground (  and triplet (1Ag) 3 B1u ) states of C2H4.                      

 
Method 

 
RC-C(A)  

 
RC-H(A) 

 
HCH (θ) 

1Ag 

CISb 1.42 1.074 121.90 
LDA 1.3266 1.0958 121.67 
MP2 1.3386 1.0848 121.68 
B3YLP 1.3289 1.0850 121.74 
Experimentc 1.3370 1.0860 121.19 

3B1u  

LDA 1.4200 1.1014 122.31 
MP2 1.4604 1.0847 121.51 
B3YLP 1.4473 1.0880 121.78 

aAll geometry optimizations were carried out using the 6-311++G** basis set. 
b Reference 7. 

c Reference 40. 
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Table II: Atomization energies for the ground and the triplet states at their optimized geometriesa 
(kcal/mol) 

 

Method 
  C2H4

1Ag( ) C2H4
3B1u( ) b 

LDA 602.39 536.25  

MP2 532.32  464.39 

B3LYP 531.75 471.05 

   

DMC(ECP) 

      MCSCF(6-311++G(2d,2p)/SBK)c 533.5(4) NAd 

      HF(Partridge/Soft)e,f     531.67(16) 466.50(16) 

      CASSCF(4,8)(Partridge/Soft)f,g     531.73(16) 466.19(16) 
   

DMC(all-electron)   

      HF(cc-pVDZ/nocusp)h     527.66(56) 469.94(59) 

      HF(cc-pVDZ/cusp)i     531.80(39) 466.59(43) 

   

Experimentj    531.90(10) NAd 

 

aFor optimized geometries for the LDA, MP2 and B3LYP methods, see Table I. 
bLDA, MP2, and B3LYP frequencies were scaled by 0.96, 0.98, and 0.97, see reference. 
[41].  The use of unscaled frequencies lead to increase in the atomization energies by 1.11 
and 0.57 kcal/mol for LDA and B3LYP and 0.87 kcal/mol for MP2 and DMC results. 
cFrom reference 45; a single reference trial function using natural orbitals (NOs) obtained 
from a MCSCF calculation with double excitations of all valence electrons into 30 virtual 
orbitals.  The C 1s core was replaced by the SBK ECP and a basis set of the quality 
similar to 6-311++G(2d,2p) was used.  
dThe triplet atomization energy is not available. 
eTrial function with HF orbitals.  The C 1s core was replaced by a soft-ECP [33] and the 
remaining electrons were described by the Partridge [35] uncontracted basis set 
fThe Partridge uncontracted basis set for C was augmented with d-polarization functions 
of the cc-pVDZ basis. 
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gSingle reference trial function using the NOs from a CASSCF calculation with 4 
electrons distributed among 8 orbitals. The C 1s core was replaced by a soft-ECP [33] and 
the remaining electrons described by the Partridge uncontracted basis set.   

hHF trial function. The electron-nucleus cusp is not enforced for the s basis functions of 
the cc-pVDZ basis set  for C and H atoms. Statistical filtering was used to remove 
outliers. 
iHF trial function. The electron-nuclus cusp is enforced for the s basis functions of the cc-
pVDZ basis set  for C and H atoms. See appendix for explanation. 
jReference 40. 
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Table III: Heats of formation: ground and triplet states at 0K and 298K (kcal/mol) 

   ∆Hf
a 

Method   
1Ag  (0K)     

1Ag  (298K)    
3 B1u  (0K)    

3 B1u  (298K)  

LDA -55.91 -57.94 10.23 8.53 

MP2 14.18 12.15 82.09 80.53 

B3LYP 14.73 12.70 75.43 73.75 

MR-CIb NAc NAc NAc 76.50 

     

DMC (ECP)d 

       HF(Partridge/Soft) 14.79(22) 12.76(55) 79.96(22) 78.40(55) 

       CASSCF(4,8)(Partridge/Soft) 14.73(23) 12.70(57) 80.27(23) 78.71(57) 

     

DMC(all-electron)e     

       HF(cc-pVDZ/nocusp) 18.81(58) 16.78(59) 76.54(60) 74.98(61) 

       HF(cc-pVDZ/cusp) 14.68(41) 12.65(42) 79.88(45) 78.32(46) 

 

Experiment 14.57(07)f 12.54(07)f NA g 70(3)h 
 

aFinal DMC statistical errors include experimental errors in heat capacities of the atoms and 
molecules. For corrections using unscaled frequencies see Table II. 
bReference 9. 
cReference 9 does not report data for these quantities. 
dFor an explanation of the trial functions presented here, see footnotes a-e of Table II. 
eFor an explanation of the trial functions presented here, see footnotes f and g of Table II. 
fReference 40. 
gReference The experimental heat of formation of the triplet state at 0K is not available. 
hReference 12. 
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 Table IV: C2H4 adiabatic and vertical energy differences (kcal/mol). 

Method Adiabatica  Vertical  

CISb 46.0 NAc 

LDA 68.1 112.4 

MP2 68.5 104.9 

B3LYP 61.5 102.9 

MR-CId 64.0 106.0 

   

DMC(ECP)e 

       HF(Partridge/Soft)    66.0(3)    104.2(3) 

       CASSCF(4,8)/Partridge/Soft)    66.4(3)    103.5(3) 
   

DMC(all-electron)f   

       HF(cc-pVDZ/nocusp) 61.0(6) NAg 

       HF(cc-pVDZ/cusp) 66.3(4) 103.8(6) 
   

Experiment 

       Photodissociationh 58(3) NAg 

       EELSi NAg 97 

       EISj NAg 108 
aThe use of unscaled frequencies changes the adiabatic energy difference by less than 0.1 
kcal/mol  
bReference 7. 
cReference 7 does not report the CIS vertical excitation energy. 
dReference 9. 
eFor a description of the trial functions presented here, see footnotes a-e of Table II. 
fFor a description of the trial functions presented here, see footnotes f and g of Table II. 
gNot available. 
hReference 12. 
iReferences 4,5. 
jReference 6. 
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Table V: Cusp function fitting parameters for C and H.   

 C H 

Parametera 1s 2s 1s 

a1 7.13566 0.626242 -0.532445 

a2 6.40756 0.923861 12.3077 

a3 -1.12723 0.0375271 4.12677 

a4 0.672694 -0.143064 -1.24605 
aParameters for the function a ; see Appendix. 1 exp(−a2r) + a3r + a4
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Figure Captions 

 

Figure 1. Electron-nucleus cusp-fitting scheme: is the numerically fitted exponential 

function to an Gaussian type orbital (GTO).  The GTO and  are connected by a third-order 

polynomial P(r). The values r

fcusp

fcusp

1 and r2 are numerically determined to satisfy the electron-nuclear 

cusp condition. The value of r2 is chosen to lie at a distance that fluctuations of the Laplacian of 

the orbital are negligible. The interval [r1,r2]denotes the region of the connecting polynomial 

required to smoothly connect  to the GTO. fcusp

 

Figure 2.  Cusp correction (dashed line) for the Laplacian (solid line) of the carbon 1s cc-pVDZ 

basis function.  The value of r1 is 0.005 bohr and for r2 =1.3 bohr. The length of the polynomial 

connecting the electron-nuclear cusp function and the GTO, specified here as [r1,r2]  is 0.05 bohr 
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