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Abstract
Large-scale networks of battery-operated wireless image

sensors have become technologically feasible. However, it
is still unclear how we can benefit from large-scale deploy-
ments of imagers. In this paper, we argue that using a large
number of low-power image sensors is useful and necessary
in many cases. For instance, occluded environments can-
not be efficiently observed with a small number of cameras.
In this case, distributed imagers can provide better coverage
due to minimum infrastructure requirements and availability
in large numbers. Additional benefits, such as pose diver-
sity, statistical advantages, and multiple perspectives are dis-
cussed in detail using application examples and qualitative
arguments.
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1 Introduction
Distributed vision systems have been extensively stud-

ied in the field of computer vision and robotics. However,
the current use of imaging has been mostly restricted to
resource-rich conventional cameras, such as webcams that
require capable computers and permanent power sources.
We have witnessed many instances of such systems exploit-
ing deployed communication infrastructures, such as local
area networks, wide area networks, and the Internet [1].

The emergence of large-scale wireless image sensors in-
troduces new challenges and opportunities. The distinguish-
ing property of these networks is the emphasis on low-power
battery-operated devices [3].On one hand, these systems im-
pose several resource constraints, such as memory and pro-
cessing limitations. On the other hand, they give us the abil-
ity to deploy imagers in large numbers and in many different
locations. This, in turn, gives birth to the idea of wireless
sensor networks with dozens or hundreds of image sensors
at dense spatial settings, all capable of acquiring and locally
processing the images.

The are many application potentials for these networks.
They includes a range of applications that exploit analysisof
color, for example, monitoring the status of crops in farm-
lands or wineries and monitoring plants in biology experi-
ments. Additionally, we have security as perhaps the most
promising application where cameras can be used in very
dense settings to monitor any unauthorized access to the en-

vironment or displacement of valuable objects. For example,
cameras can be used to monitor objects such as art pieces in
galleries or merchandise in shopping malls.

Due to limited available bandwidth in a large scale multi-
hop wireless network, nodes should process the images lo-
cally in order to reduce the per-node bandwidth usage in the
network. The locally extracted meta-data from the images
must then be collected and aggregated to present the results
to the imaging application. However, conventional image
analysis and computing utilizes heavy computation for esti-
mating properties of the images which is currently beyond
the capabilities of embedded imaging devices.

In this paper, we argue that by leveraging the large num-
ber of observations in large-scale imaging network, we im-
prove the performance of the image sensing applications
in occluded environments. In these environments, several
obstacles prevent the camera from seeing the intended ob-
jects. As a result, a high-resolution image is ineffective at
the processing stage leading to additional energy consump-
tion. Therefore, we argue for a reduction of both the input
image resolution and processing complexity on each indi-
vidual image sensor node. This, in turn, relaxes the power
requirements on each node and extends the longevity of the
network. The rest of the paper will elaborate these topics in
the context of concrete examples.

This rest of the paper is organized as follows. In Sec-
tion 2, we analyze how a larger image processing problem
can be divided in smaller problems and how the energy of
the overall processing is affected. In Section 3, we define
when it is possible or justifiable to perform such a decompo-
sition. Section 4 explains how the large number of sensors
can be useful in many different cases, such as occluded and
sparse environments. Finally, Section 5 concludes the paper.

2 Problem Statement
In deploying a network of image sensors, we essentially

decompose an image sensing problem into a set of smaller
subproblems, as seen in Figure 1. Like a divide and conquer
approach, each subproblem is solved individually and the re-
sults are combined for the final solution. Take for example
the counting problem, where we are interested in counting
the number of people in a public place. We can divide this
problem into local counting subproblems that are solved in-
dividually and further aggregated to solve the global count-
ing problem. Other examples include measurement of flow



Figure 1. In deploying a network of image sensors, we
essentially divide a global image sensing problem into a
set of smaller image sensing subproblems. In our discus-
sion, we assume that the boundary of subproblems are
individual image sensor nodes.

of people in a public space or displacement of important as-
sets in a building. These problems are global problems that
can be solved locally. For instance, by measuring the local
flow of people we can combine the results to produce a map
of the flow of the population in a building, or by monitoring
assets locally we can find displacement of any valuable ob-
ject in the building. In general, we can write the amount of
energy consumed to solve the global problem of interest as:

Eproblem = Eaggregation +
n

∑
i=1

Esubproblem (1)

which includes the cost of solving the collection of subprob-
lems and aggregating the results at some destination node.
Throughout this paper, we assume that the boundaries of sub-
problems in such a system are the individual image sensor
nodes (in Section 3 we show why that is the case). In addi-
tion, we assume that subproblems are solved on the battery-
operated image sensor nodes and the aggregation of local re-
sults happens on a resource-rich destination node with access
to permanent energy supply. Hence, we focus our attention
on the amount of energy that each individual image sensor
node consumes to locally solve a subproblem. The energy
cost of solving each subproblem is:

Esubproblem = Eaquisition + Ecommunication + Ecomputation (2)

which is the energy cost of acquiring the local image(s) ,
computing the local result on the image sensor and transmit-
ting the result to a destination node. In this equation, the
energy cost of acquisition of an image often grows linearly
with the size of the input image and mainly depends on ac-
quisition technology. However, the energy cost of commu-
nication is a complex function that depends on the size and
frequency of the outgoing computed meta-data and the num-
ber of incoming and outgoing messages to route traffic in a
multi-hop network [2].

Although the communication aspect is an interesting
problem in itself, in this paper we want to address a less-
studied component in sensor networks: local computation
for image processing. Up to this point much of the research
on in-network aggregation has dealt with low data rate sen-
sors such as temperature and humidity [7]. The limited re-
search that has been done on high data rate sensors like

acoustic sensors have been fruitful in showing the need for
local computation.

In Equation 2, the last term is the energy cost of running
computation on the incoming images locally. This depends
on the image size and often grows faster than linear, which
emphasizes the importance of image computation in deter-
mining the lifetime of the image sensor. In Table 1, we see
some typical image processing algorithms and their respec-
tive complexities.

Table 1. Typical algorithms’ complexities [6].
Algorithm Complexity

Classical 1-D DCT O(n logn)
Classical 2-D DCT O(n2 logn)
Wavelet packet compression O(n2 logn)
FFT O(n logn)

For instance, let’s assume that the algorithmic complexity
of an image processing algorithm isO(r2 logr), wherer is
the resolution of the image in pixels. In this case, using a
lower resolution considerably reduces the computation cost.
We argue that by leveraging the availability of large num-
ber of sensors and minimal infrastructure constraint, we can
reduce the complexity and image resolution requirements in
solving each individual subproblem. The rest of this paper
addresses this in more depth.

3 Justification for Problem Decomposition
In general, two factors influence the resolution of the im-

age. First, the environment in which cameras are deployed
affects the choice of image resolution. For instance, in a
very occluded environment, a high-resolution camera wastes
energy without much benefit. As a result, the amount of ob-
stacles in the environment imposes a maximum bound on
the image resolution.The second factor that affects the im-
age resolution is the application itself. Several applications,
such as an automatic lip reader, usually require a minimum
resolution to perform properly.

In the ensuing sections, we argue as to why these two fac-
tors can result in reducing the requirement of the image res-
olution of each sensor while deploying a larger set of image
sensors. Given that it is best to distribute resources, there
is still the question of where and how we process the im-
ages. The simplest solution would be to send back all the
images captured by the distributed low-resolution cameras
and process them centrally. Unfortunately as Guptaet al. [2]
demonstrated, the bandwidth of any node in a typical multi-
hop network is reduced by a factor of

√

n log(n) with n being
the total number of nodes. This is in fact a theoretical up-
per bound and in practical cases the bandwidth limitation is
even worse. The bandwidth constraints force us to move the
computation from the central server to the individual sensor
nodes. Furthermore, these computations should be confined
to single devices and not span over a group because of net-
work bandwidth limitations, communication overhead, and
resource constraints on the devices.

4 Numbers Come to Our Rescue
In this section, we present different reasons to believe that

a large number of low-resolution image sensors can be ben-



Figure 2. Top row is a two dimensional representation of
environment with a high resolution sensor. Bottom row is
a group of four reduced resolution sensors with the same
spatial coverage. Gray areas are the visible regions by
the sensors, solid areas are infra-structure objects in the
environment, and hatched areas are occluded regions.

eficial in special cases. First, one can take advantage of
multiple imagers in occluded environments where a single
high-resolution camera cannot get a clear view of the regions
of interest. Second, since we do not depend on the avail-
able power and communication infrastructure with wireless
battery-operated image sensors, we have greater flexibility
to adjust their poses . Third, in some cases, a large set of
observations contributes to more accurate statistics about the
environment. Finally, multiple perspectives of the same ob-
ject can help in different applications, such as object classi-
fication. We now explore each of the aforementioned cases
individually.

4.1 Sensing Visibility
In a practical deployment scenario, we can often deter-

mine the resolution of the image sensors based on the degree
of visibility in the environment. In an unobstructed environ-
ment with high degree of visibility, we deploy high resolu-
tion sensors to cover regions of interest. However, as the vol-
ume of the objects in the environment increases, the cover-
age performance of a higher resolution sensor degrades due
to the effect of the occlusion in the environment.

Figure 2 illustrates the effect of occlusions on the cov-
erage of the image sensors. In this figure, the top row is a
two-dimensional representation of the environment which is
covered by a high-resolution sensor and the bottom row is
the same environment covered with four reduced-resolution
sensors. In both cases, the total area covered by the sensors
are equal in the absence of occlusion. Figure 2 illustrates
that as the number of occluding objects in the environment
increases, the coverage of the higher-resolution sensor de-
creases more severely. This is because objects occlude large
regions of visibility in a high-resolution image sensor.

In general, finding a global optimum value for the resolu-
tion of the image sensors based on the amount of occlusion
in the environment is a difficult problem and many variant
of this being studied in the field of computational geome-

Figure 3. This figure illustrates the effect of close obser-
vation of the objects on relaxing the requirement of each
sensor’s resolution.

try [4]. However, we observe that a collection of reduced
quality sensors outperforms a single sensor with equivalent
coverage as the degree of occlusion in the environment in-
creases. We attribute the adequacy of low resolution cam-
eras to the fact that as the number of occlusions increases,
the maximum sensing distance decreases. As we will see
later in the section, resolution translates into depth of sens-
ing. Thus, if we are limited by occlusions, we can reduce
resolution and therefore power consumption while maintain-
ing sensing quality.

4.2 Pose Diversity
We can benefit from multiple imagers by placing them in

many different poses. A pose is the combination of both the
position of the camera and its orientation (i.e., where it is
pointed at). Due to limited requirements for infrastructure,
we can adjust the poses of the image sensors to 1) minimize
the effects of the environmental variations such as illumina-
tion condition and shadows and 2) improve the quality of
sensing in the regions of interest. This otherwise, in limited
number of high quality images, requires heavy processing of
the images to compensate for such variations [5]. We can
divide the benefits of the pose diversity in two components
of flexibility in relative distances and relative orientation as
described below.
4.2.1 Relative Distance

In many applications, the goal of the experiment is partial
coverage of the environment such as monitoring access to a
building (e.g., doors, windows) or important objects of inter-
est. In these cases, sensors can be mounted in close proxim-
ity to the regions of interest to reduce each individual sensor
coverage requirement. Figure 3 depicts a network of battery-
operated image sensors placed in close proximity to the ob-
jects of interest. This special arrangement in turn has several
beneficial consequences in terms of power consumption as
well as complexity.

Geometrically speaking, the resolution of an image sensor
determines the extent of its spatial coverage. A higher reso-
lution sensor covers objects in the space with greater spatial
detail, resulting in increased spatial coverage. Let us assume
that the maximum acceptable representation of a pixel isd2

units of area in the “real world,” as seen in Figure 4. Then,



Figure 4. This figure illustrates a pyramid model of an
image sensor where the minimum of a pixel’s spatial rep-
resentation isd unit of distance. Right is top view of the
pyramid.

the space that the image sensor covers can be modeled as the
volume of a pyramid. If the resolution of the sensor isr pix-
els, then each side of the base of such pyramid1 is

√
r × d

hence the area of its base isr× d2. The height of the pyra-
mid can be determined based on theField Of View (φ) of the
sensor. We can write the space that is covered by the sensor
as:

Vcoverage =
1
3
×

√
r×d

2tan(φ/2)
× (r×d2) (3)

If we factor constants in Equation 3, the coverage model of
the sensor can be written as:

Vcoverage = Kc × r3/2 (4)

whereKc is a constant factor. The growth of the coverage
with respect to the image sensor resolution is faster than lin-
ear in Equation 4, indicating a clear benefit in enhancing the
image resolution. On the other hand, a larger resolution pro-
duces a larger data size and demands additional computation
time. While the computation time is less critical in devices
with permanent power access, it is crucial in battery-operated
devices. If we assume that the amount of time that it takes
for the sensing computation to run on each image sensor is
O(ρ), we can write the total amount of energy consumed on
an image sensor to be:

Ecomputation = Pcomputation ×O(ρ) (5)

wherePcomputation is the amount of power that the sensor con-
sumes during the computation state. Equation 5 suggests
that, for a class of image processing algorithms whose com-
plexity isρ > r3/2, the total computation energy grows faster
than the coverage of the environment in Equation 4.This fur-
ther highlights the importance of reduction of the image res-
olution to the extent that the coverage requirement in the ap-
plication warrants it.
4.2.2 Relative Orientation

In many computer vision problems, the pose of the image
sensors relative to the objects of interest in the environment
plays a significant role in determining the complexity of the
problem. This is due to view-dependent properties of the
objects. Since small battery-operated image sensors require

1Assuming aspect ratio of the sensor to be one.

Figure 5. An image sensor mounted on top of art pieces
to measure number of local visitors.

minimum infrastructure, they can be mounted in many loca-
tions and in variety of different poses. For example, we can
set the orientation of the image sensors such that they view
the objects of interest from a more distinctive perspective.
In addition, the orientation setting can also be used to mini-
mize the possibility of objects being partially or completely
occluded.

Figure 5 illustrates this concept. Consider a problem
where we want to periodically estimate the instantaneous
number of people and their spatial distribution in an envi-
ronment such as an art museum or a public building. In this
case, we can choose to mount the image sensors on the ceil-
ing, looking from the top towards the floor. The advantage of
ceiling mounted sensors is minimizing the possibility of hu-
mans occluding each other. Additionally, looking from the
top, humans have highly distinctive geometrical properties
and as a result we can use simpler detection algorithms.
4.3 Statistical Convergence

There are many applications where we use a network of
image sensors to determine the gross statistics of the envi-
ronment. In many of these cases, a large number of low-
power battery-operated sensors contribute to the availability
of a large spatially-distributed observation set. This plays a
significant role in relaxing the requirements of sensing preci-
sion in each node. In addition, it contributes to the reduction
of complexity of the subproblems on the node, to the extent
that it still satisfies the precision requirement of the global
problem.

Take for instance, the problem of estimating the instanta-
neous number of people in a public place. In this case, we
perform local observations by deploying sensors in selected
regions of interest to estimate the number of nearby people
and predict the true value of the number of people in the en-
tire space. We can write the aggregation function as:

C =
A
a
×

∑N
i=1(ci + εi)

N
(6)

whereC is the estimate of the total number of people in the
environment. The parameterA is the total area of the envi-
ronment,a is the area covered by each individual sensor and



N is the number of sensors in the environment.ci is the result
of the local counting subproblem, which is synchronously
performed by the image sensors andεi is the amount of error
in solving each subproblem. Here, we assume that sensors do
not have a common field of view. In addition, we assume that
due to limited visibility in the space, such as indoor buildings
or crowded public spaces where people occlude each other,
we do not benefit from using high resolution image sensors.

The error in Equation 6 consists of error components. The
first is the error in the estimation due to limited sampling of
the environment (not shown in Equation 6) and the second is
the accumulative measurement error due to inaccuracies in
the underlying sensing computation (i.e.A

a ×
∑N

i=1(εi)
N ). If we

assume that the spatial observations of sensors are indepen-
dent and identically distributed, then the former component
of error is inversely proportional to the number of observa-
tions N. In addition, if we assume that local image com-
putation error (i.e,εi) is a zero-mean random variable, the
amount of this error will converge towards zero as the num-
ber of observations increases in a large-scale network.

4.4 Multiple Perspective
In a broad class of problems, we can take advantage of

view-dependent properties of the objects by deploying sen-
sors that look at the objects from different perspectives, as
shown in Figure 6. In this case, we essentially break sub-
problems into smaller problem units by exploiting a number
of image sensors performing computation in concert. Take
for instance an object classification problem, where we are
interested in classifying human intruders in the perimeterof
a building. In this case, we can exploit pairs of sensors to
classify humans regarding other intruding objects, such as
birds, animals, and volatile projection of shadows in the out-
door environment. The clear advantage of a pair of sensors
(e.g., one looking from the top and one from the side) is the
ability to classify humans with much higher degree of confi-
dence by assessment of their geometrical properties.

From the energy perspective, using multiple image sen-
sors is justifiable if we can take advantage of multiple views
to decompose a subproblem into smaller units such that

Ep11 + Ep12 << Ep1, (7)

wherep1 is the initial subproblem andEp11 andEp12 are the
smaller subproblem units. For this to work, the total energy
cost of smaller subproblem units must be sufficiently smaller
than the initial subproblem to cover the overhead of commu-
nication cost. In practice however, by sequentially executing
the smaller subproblem units we can save energy by avoiding
unnecessary computation at the same time that we enhance
the quality of sensing.

5 Concluding Remarks
In a network of battery-operated image sensors, limited

availability of power resources poses a constraint in termsof
computation in each node. However, there are two distinc-
tive advantages in this network versus a conventional net-
work, namely the availability of the nodes in large numbers
and the flexibility of the deployment infrastructure. We ar-
gue that these two advantages not only play a significant role
in reducing the energy consumption of each node, thereby

Figure 6. Distinct views of the objects reveal perspective-
dependent properties of the objects.

extending the lifetime of such a network, but also provide us
with a quality of sensing that is significantly better than that
of traditional image sensors. As a result, in many situations
it is prudent to use battery-operated image sensors insteadof
traditional sensor nodes. In this paper, we have presented a
qualitative argument for using battery-operated image sen-
sors. An analytical discussion will be the topic of our future
work.
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