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Refractivity is an important atmospheric parameter which determines the propagation

speed of electromagnetic (EM) waves traveling through the lower troposphere. The vertical

refractivity gradient of the atmosphere dictates how much the wavefront of a radio wave will

bend away from a straight-line path from its transmitter. For instance, the refractivity profile

over a terrestrial path generally causes radio waves to curve towards the Earth, effectively

increasing the ‘radio horizon’ past that of the optical horizon. Over a marine channel however,

the refractivity profile of the atmosphere can be highly variable and occasionally forms spurious

natural waveguides known as ‘ducts,’ which allow for abnormally long range propagation and

other anomalous effects such as increased clutter and holes in radar measurements. As a result,
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it is desirable to be able to track the refractivity profile of the atmosphere to better predict and

exploit the behavior of EM equipment in the presence of ducts.

Currently, the state-of-the-art in atmospheric refractivity research involves inference of

the atmospheric refractivity profile from observations of the propagation loss from EM waves

transmitted from a known location. Though this method has found some success, it is limited by

the fact that there are often many refractivity profiles resulting in similar observed propagation

loss. Thus, it is often impossible to know for certain the atmospheric refractivity profile from

propagation loss alone.

In this dissertation, it is suggested that additional information about atmospheric refractiv-

ity can be found by measuring array specific parameters such as the direction of arrival (DOA)

and array signal to noise ratio (ASNR) of a wavefront in addition to its propagation loss. The

topic of DOA estimation is discussed in depth, from classical techniques to the advancement

of state-of-the-art DOA estimation algorithms. The construction of a passive receiver array and

first long term measurements of the DOA of an over the horizon signal propagating through a

refractive marine channel are detailed. These measurements show that the time series of DOA

and ASNR fluctuations correlate strongly with atmospheric parameters related to refractivity,

implying that wavefront DOA and ASNR could be used to infer additional information about the

atmospheric refractivity profile.
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Chapter 1

Introduction

1.1 Background

In December 1901, Guglielmo Marconi transmitted the first wireless message across

the Atlantic, from Cornwall, England to St John’s, Canada. This was not the first proof that

information could be sent and received from a distance without a physical wire connecting

the two points of transmission, however, it was the first time that a wireless communication

system had been proven practically useful and commercially marketable. Today, nearly every

communication and remote sensing technology uses some form of wireless propagation. As a

result, the understanding and modeling of the behavior of electromagnetic (EM) waves and their

propagation paths has become an important topic of research.

The primary goal of this dissertation is to advance the understanding of radio wave

propagation as it is observed in coastal maritime channels. In particular, the focus is towards

shortfalls in the current state-of-the-art techniques for estimating the vertical refractivity profile

of the atmosphere. Atmospheric refractivity has been a topic of research over the last half century

because it causes many anomalous propagation phenomenon [1, 2, 3, 4, 5], thus it is desirable to

be able to determine the refractivity structure of the atmosphere in order to predict its effects on
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EM equipment.

The topics covered in this dissertation include,

1. Electromagnetic Wave Propagation: The behavior of EM waves of various wavelength as

they propagate through a medium is covered in depth. The split step parabolic equation

(PE) method [6, 7, 8] for simulating the path loss of a wave traveling through a refractive

environment is used to demonstrate the expected propagation path of transmitted signals.

We look at the effects of turbulence on the result of the PE method, and attempt to

draw conclusions about how well a refractivity profile may be inferred from path loss

measurements.

2. Array Processing: Array processing, particularly direction of arrival (DOA) estimation

[9], is examined as a possible method for improving the estimation of the atmospheric

refractivity profile. A chapter is devoted to the development of a novel gridless DOA

estimation algorithm which can also be generalized to arrays of arbitrary geometry.

3. Radio System Design: In the final chapter of this work, a 24 element phase coherent passive

receiver array is designed and built for the measurement of the DOA of over the horizon

signals. This is the first such array of its kind, and measurements of the DOA and array

signal to noise ratio (ASNR) of digital television signals are compared against propagation

loss to determine if DOA and ASNR might hold additional information, possibly useful for

improvement of future refractivity inversion.

1.2 Atmospheric Refractivity

Refraction is the change in direction of propagation of a wave due to the non-uniform

speed of propagation at different points along its path. Because Earth’s atmosphere is more dense

towards the Earth’s surface and the density of the atmosphere determines the speed of radio
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waves propagating through it. Radio waves traveling through the atmosphere are known to refract

towards Earth’s surface. The refractive index, n, is defined as

n = c/v , (1.1)

where c is the speed of light in vacuum and v is the speed of light in the medium. Near Earth’s

surface n is typically 1.000350. Because n is close to unity, another variable N known as

refractivity is adopted for clarity

N = (n−1)×106 . (1.2)

Atmospheric refractivity is a function of temperature T , pressure P, and partial water vapor e.

N = 77.6[P/T +4810e/T 2] , (1.3)

where P and e are measured in hectoPascals (hPa) and T is measured in Kelvin (K). When

tracking the height of propagating electromagnetic waves over the earth’s surface it becomes

necessary to account for the curvature of the earth. A variable M, modified refractivity, is defined

to transform the Earth to a flat surface:

M = N +(h/a)∗106 = N + .157h , (1.4)

where h is height above earth’s surface and a is the radius of the earth in km.

There are several well known propagation regimes which are typically defined by the

gradient of M(z), where z represents height above Earth’s surface in meters. These propagation

regimes include standard atmosphere (0.079 ≤ ∂M
∂z ≤ 0.157 M-units/m), super-refraction (0 ≤

∂M
∂z < 0.079 M-units/m), sub-refraction (0.157 < ∂M

∂z M-units/m), and ducting (∂M
∂z < 0 M-units/m)

[10, 11]. Standard atmosphere and super-refraction result in radio waves bending slightly towards

Earth’s surface, while sub-refraction results in radio waves being bent away from Earth, into outer
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space. Of the propagation regimes, ducting is often studied because it has a ‘trapping’ effect for

EM waves caught within the duct. The result is that ducts act as naturally occurring waveguides

capable of bending EM waves over the radio horizon to be detectable at significantly longer

ranges than would otherwise be expected under any other refractive conditions.

1.2.1 Ducting

Whereas other propagation regimes are defined by a supposedly constant gradient in

Earth’s atmospheric refractivity profile, the refractivity profile associated with ducting has more

specific structure. A duct is defined as any refractivity profile with a trapping layer, where the

trapping layer of a duct is a region in which ∂M
∂z < 0 [10]. The trapping layer can either start

at the surface of the earth (surface based duct) or at some non-zero elevation (elevated duct).

The trapping layer can be parameterized by its height, thickness, and the difference in modified

refractivity between the top and bottom of the duct (known as M deficit).

An important subset of surface based ducts are known as evaporation ducts, which are

common above water and are caused by a large humidity gradient just above the water’s surface.

Evaporation ducts can range in height from a few meters to several tens of meters, and are known

to be common in warm coastal regions such as the Southern coast of California [12]. The seasonal

frequency of ducting events is thought to be maximum in the summer months [13], though this is

not certain because wide scale monitoring of atmospheric refractivity is not yet practical.

The dominant factor determining atmospheric refractivity is water vapor pressure (see

(1.3)). The reason why ducting is most commonly observed in coastal and marine environments

is because atmospheric processes involving hydrolapse (rapid change in moisture with height)

often result in the formation of a duct. This is nearly always true directly over the ocean [14], and

will most likely lead to an evaporation duct. Ducting is known to be particularly common over

the Southern coast of California [15].
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1.2.2 Refractivity from Propagation Loss

The adverse effects of ducting on radar measurements have been the driving force for

many studies on EM propagation through refractive environments, most of which narrowly

focus on received signal strength [16, 17, 18, 19, 20]. Many more studies have revolved around

simulations of EM wave propagation through known refractive environments [7, 8], typically

performed using some form of the parabolic equation (PE) method [6].

One strain of research, known as ‘refractivity inversion’ focuses on trying to infer the

refractivity profile of the atmosphere from measurements of propagation loss. Propagation loss is

typically taken from radar clutter, or simulated using the PE method. There is extensive literature

on refractivity inversion techniques [2, 4, 21, 22].

In chapter 2, the method of estimating refractivity from propagation loss using PE simula-

tion is examined with the addition of simulated atmospheric turbulence. The results somewhat

call into question the fidelity of refractivity inversion given that the function mapping refractivity

to propagation loss is not one to one. Additionally, turbulence in both the atmosphere and the

measurements lead to significantly increased uncertainty in the results of the inversion. Finally,

the non-convexity of the equations governing refractivity inversion result in difficult optimization

problems that must be solved using sub-optimal methods. Despite uncertainty in the inversion, it

is not difficult to identify whether a duct is or is not present, rather the difficultly lies in identifying

the exact structure of the duct.

1.3 Direction of Arrival Estimation

The benefit of receiving wireless signals at an array of sensors rather than a single sensor

is that by tracking the spatial phase pattern of the signal across the array, it is possible to determine

the direction of arrival (DOA) of the wavefront. DOA is an array exclusive parameter in the sense

that it can only be measured at an array. It is also one of the most well studied topic in the field
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of signal processing. Recently, the focus of DOA estimation has turned from classical subspace

based DOA algorithms including MUSIC, root-MUSIC, and ESPRIT [23, 24, 25, 26] to newer

compressive sensing based methods such as compressive DOA estimation [27, 28, 29] capable of

achieving higher resolution from fewer measurements.

An advantage of compressive DOA estimation is that the classic limitation requiring

as many measurement snapshots as source signals no longer exists. However, compressive

techniques are not without drawbacks. Compressive DOA estimation involves picking the DOAs

composing the measurements as a linear combination of a few vectors from a user defined

dictionary. Typically the dictionary represents an evenly spaced grid of possible DOAs, and

because real signals do not lie neatly on a grid, the issue of ‘grid mismatch’ can arise.

As a response came the class of gridless DOA estimation algorithms [30, 31, 32], which

attempt to explain the measurements as a sparse combination of atoms picked from a known

manifold. Gridless DOA estimation methods are sometimes known as atomic norm minimization

(ANM) techniques because they are based on the minimization of the atomic norm of a set of

measurements.

In chapter 3, 2D compressive DOA estimation is applied to a set of over the horizon

array measurements taken in a coastal environment to identify the direction of departure (DOD)

and DOA of the wavefronts. The goal is to identify patterns associated with ducting towards

determining if DOD and DOA can be informative measurements for refractivity inversion. As

stated in section 1.2.2, up until this point, only propagation loss of a refracted signal has been

explored towards refractivity inversion. By also taking into consideration the DOA of the

wavefront, the refractivity inversion may be improved significantly.

In chapter 4 the theory of gridless DOA estimation is examined closely. Two major

drawbacks of gridless DOA estimation are its complicated implementation, and that it exclusively

applies to uniformly sampled signals, i.e. measurements taken at a uniform linear array. We

introduce new theory which generalizes the Vandermonde decomposition of a Toeplitz matrix.
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The generalization allows for gridless DOA estimation, as well as the classical root-MUSIC

DOA estimation algorithm [23] to be extended to non-uniform arrays. It is also shown that the

optimization involved in gridless DOA estimation need not be relaxed to a convex form. Instead,

the non-convex optimization can be solved directly using the alternating projections algorithm

[33, 34]. The proposed solution is shown to have speed and accuracy rivaling that of the convex

approach whilst also being conceptually simpler.

Finally, in chapter 5 a 24 element, phase coherent receiver array is constructed for the

purpose of measuring the DOA and array signal to noise ratio (ASNR) of long range signals

of opportunity propagating over the horizon in a refractive environment. The purpose of the

measurement campaign to determine if the DOA of over the horizon signals fluctuates measurably,

and whether these measurements can be used to enhance refractivity inversion. Conclusions and

a discussion on best future research directions are provided in chapter 6.

1.4 Thesis Overview

The overarching theme and conclusion of this research is summarized by the following

statement:

Thesis Statement: Array exclusive measurements such as array signal to noise ratio
and direction of arrival can likely be used to enhance the accuracy of refractivity
inversion.

In particular, this work has laid the groundwork for future studies to incorporate array

measurements into refractivity inversion by proving,

1. A phase coherent array system can be constructed at relatively low cost from consumer

available hardware and be used to measure variation in both the DOA and ASNR of EM

signals propagating through a refractive environment.
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2. The DOA of long range EM signals propagating through a refractive channel does vary by

a measurable amount, and this variation is related to atmospheric conditions.

3. The ASNR of long range EM signals propagating through a refractive channel is better

correlated with parameters associated with atmospheric refractivity than measurements of

propagation loss by individual sensors.

Considering the main effect of atmospheric refractivity is to bend EM waves from their

straight line path, it seems likely that DOA measurements contain some information about

atmospheric refractivity that will eventually be used for refractivity inversion. The measurements

from the array constructed in this work are, to our knowledge, the first experimental record

conclusively showing long term DOA fluctuation in RF signals propagating over the horizon.

While the final step of mapping DOA and ASNR measurements to specific refractivity profiles

has not yet been attempted, the work contained herein constitutes the preliminary steps towards

this goal.
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Chapter 2

Estimating Refractivity from Propagation

Loss in Turbulent Media

This chapter estimates lower atmospheric refractivity (M-profile) given an electromagnetic

(EM) propagation loss (PL) measurement. Specifically, height-independent PL measurements

over a range of 10-80 km are used to infer information about the existence and potential parameters

of atmospheric ducts in the lowest 1 km of the atmosphere. The main improvement made on

previous refractivity estimations is inclusion of range-dependent fluctuations due to turbulence in

the forward propagation model. Using this framework, the maximum likelihood (ML) estimate

of atmospheric refractivity has good accuracy, and with prior information about ducting the

maximum a priori (MAP) refractivity estimate can be found. Monte Carlo methods are used

to estimate the mean and covariance of PL, which are fed into a Gaussian likelihood function

for evaluation of estimated refractivity probability. Comparisons were made between inversions

performed on propagation loss data simulated by a wide angle parabolic equation (PE) propagation

model with added homogeneous and inhomogeneous turbulence. It was found that the turbulence

models produce significantly different results, suggesting that accurate modeling of turbulence is

key.
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2.1 Introduction

Refractivity of a medium represents the amount which an electromagnetic (EM) wave will

bend while propagating through the medium. Atmospheric refractivity is of particular interest

because there exist common height-varying refractivity profiles, which act as waveguides for EM

waves, known as ducts. The atmospheric inversion layer is primarily responsible for ducts and

separates the colder and more humid mixed layer from the free troposphere; thus, there exists

a large negative humidity gradient. Turbulence in the inversion layer will cause more humidity

variation in that layer relative to other layers. This will cause more refractivity fluctuations in the

inversion layer.

Ducting is a naturally occurring event that is known to cause anomalies in long range EM

equipment. Examples of these anomalies include unusually long operational range or increased

clutter in return signals. For operators of EM equipment it is beneficial to know when a ducting

phenomenon is occurring to better understand the possible effects on system performance. Thus,

it is desirable to have some way to characterize the qualities of a duct from simple measurements.

Because it is known that variation in atmospheric refractivity causes variation in PL measurements

[1], it may be possible to infer a refractivity profile from PL.

From a range independent refractivity profile parameterized by m (defined in section

2.2.1), a deterministic matrix of PL over height and range can be computed from a forward model

F(m) (defined in section 2.3). The parabolic equation (PE) method is used for this calculation [2].

The forward model can be used to find the appropriate M-profile that statistically best recreates a

measured PL.

Turbulence, parameterized by C2
n , causes random fluctuations in refractivity [3], which in

turn propagate through the forward model, F(m,C2
n) resulting in fluctuations in PL obeying an

unknown distribution. C2
n is a parameter relating to the magnitude of fluctuations in refractivity

from atmospheric turbulence. Stochastic variation in the forward model is expected to increase
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with range due to the compounding effect of fluctuations as they propagate forward [4]. As a

result, even small perturbations in refractivity can lead to large changes in PL at longer distances.

For inversion, the effects of turbulence mean:

1. The forward model for PL, F(m,C2
n), is now stochastic. As a result, a means to calculate

an average PL vector given m and C2
n becomes important.

2. The fluctuations in refractivity will have an effect on fluctuations in PL. The distribution

of refractivity fluctuations must be modeled, as well as the distribution of the resulting

fluctuations in PL.

3. The uncertainty in the PL vector will increase with range. In previous inversions [5, 6, 7, 8]

uncertainty was assumed range independent, an assumption which does not hold when

turbulence is present. This time a full covariance matrix of PL, Cd , must be calculated to

find the likelihood of a measurement given m and C2
n .

This work attempts to build upon previous efforts to estimate refractivity from clutter [9], [10],

[5] with the added component of randomness from atmospheric turbulence. The primary goals

are to find an accurate method of modeling turbulence and to describe the effect on refractivity

estimations.

2.2 Theory

2.2.1 Refractivity

Bending of the propagation path of an electromagnetic wave due to variation in the speed

of light is known as refraction, and is the cause of ducting phenomenon. The refractive index n is

defined as

n = c/v , (2.1)
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where c is the speed of light in vacuum and v is the speed of light in the medium being propagated

through. Near the earth’s surface n is typically 1.000350. Because n is close to unity, another

variable N known as refractivity is adopted for clarity

N = (n−1)×106 . (2.2)

Atmospheric refractivity is a function of temperature T , pressure P, and partial water vapor e.

N = 77.6[P/T +4810e/T 2] , (2.3)

where P and e are measured in hectoPascals (hPa) and T in Kelvin (K). When tracking the height

of propagating electromagnetic waves over the earth’s surface it becomes necessary to account

for the curvature of the earth. A variable M, Modified refractivity, is defined to transform the

earth to a flat surface:

M = N +(h/a)∗106 = N + .157h , (2.4)

where h is height above earth’s surface and a is the radius of the earth in km.

In the radar community, atmospheric ducts are represented by a refractivity profile which

varies with height, but is often assumed to be range independent. A sample M-profile representing

the case where both an evaporation and surface-based duct exists is shown in Fig. 2.1. It is only

necessary to know a few deterministic parameters of a refractivity profile for adequate description

of the propagation environment [11], so we limit description of the refractive environment to five

variables organized into vector m, with elements mi representing the ith parameter. From m all

realistic M-profiles can be constructed. The five parameters are shown in Figure 2.1.

An M-profile can be generated from m and used as input to the forward model, which is

an electromagnetic wide angle split step fast Fourier transform PE [12, 13]. The forward model

is set with parameters of the wave in question which includes transmitter height, max range
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Figure 2.1: Refractivity profile representing a ducting phenomenon.

of propagation, frequency, height and range step size, height of measurements, and maximum

propagation angle (and will later also take in turbulence structure coefficient of the atmosphere,

C2
n). The forward model calculates PL of the specified wave over height and range. Because

realistic measurements of PL are generally taken at one height, only the height of measurement

is kept. This height is an internal parameter of the model which can be altered to match the

situation being simulated. The output, F(m), of the forward model is an N f dimensional vector

corresponding to the theoretical propagation loss at the given height.

2.2.2 Turbulence

When the forward model F(m) is run, a deterministic output is generated which can be

exactly recomputed given an identical input m. In reality, the propagation pattern of an EM

wave through a steady duct shows short-term fluctuations. This is because turbulence causes

atmospheric variables such as temperature, pressure, and vapor pressure to fluctuate constantly,

which in turn cause the mean refractivity profile to fluctuate constantly and results in the scattering
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of waves propagating through the atmosphere [14]. This section adds stochastic fluctuations to

the refractivity profile so that the forward model can realistically reflect randomness introduced

by turbulence.

Stochastic Elements of Refractivity

It is assumed that the M-profile is subject to continuous fluctuations due to atmospheric

turbulence. To model fluctuations in refractivity due to turbulence the refractivity profile is split

into two parts: a range independent mean refractivity 〈n(z)〉, and a stochastically fluctuating part

ñ(x,z)

n(x,z) = 〈n(z)〉+ ñ(x,z) . (2.5)

where 〈.〉 represents mean. While 〈n(z)〉 is deterministic and can be fully specified by m, ñ(z) is

stochastic and requires a spectrum to generate realizations.

Structure Function

The structure function is defined as the covariance of the difference of a process between

position vector r and r+∆r where ∆r is a displacement vector from starting location r [15].

Dn(r,∆r) = 〈[n(r)−n(r+∆r)]2〉 (2.6)

where n(r) is the refractivity at point r. If we assume that the structure function is identical

from all starting positions and orientations (which is the assumption of local homogeneity),

then equation (2.6) becomes a functions of just r = |∆r|. Local homogeneity is an assumed in

Kolmogorov’s second similarity hypothesis [16]. Using dimensional analysis, it was concluded

that the structure function of a medium-scale turbulent field is a function of distance r from the

starting location and obeys

Dn(r) ∝ C2
nr2/3 (2.7)
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where C2
n is the structure function constant of the subscripted variable n and represents the

magnitude of ñ(z). Note that (2.7) applies only to medium-scale fluctuations. Structure functions

of large and small-scale fluctuations are modeled by different equations because the shape of their

spectrums is modeled differently than that of medium-scale fluctuations [17].

Equation (2.7) is known as the simplified Kolmogorov’s 2/3 law and condenses all

unknowns into the structure function constant C2
n . The structure function constant can be obtained

from physical measurement; however, it is known that its value changes with height above the

boundary layer. We initially assume height independence of C2
n to preserve the assumption of

homogeneity. Later we redact this assumption and observe the effect on the accuracy of our

inversion.

Modeling Turbulence

We choose a robust spectral model that has been used in similar studies known as the von

Karman spectrum, visualized in Fig. 2.2.

Sn(κ) = .033C2
n(κ

2 +L−2
0 )−11/6 exp(−κ

2/κ
2
m) , (2.8)

where κ represents wave number, κm = 5.92/l0 (known as the inner scale wavenumber parameter),

and l0 is the boundary between medium and small scale fluctuations, L0 is the boundary between

large and medium scale fluctuations known as the integral length scale. The major advantage of

the von Karman spectrum is that it approximates Kolmogorov’s power law for spatial frequencies

L−1
0 < κ < l−1

0 and allows for tuning at other wave numbers. The von Karman spectrum is

attractive for its simplicity; however, the algorithm is robust enough that it may be replaced

for more accurate spectral models if desired. Additionally, the assumption of homogeneous

turbulence in the marine boundary layer is less accurate [18], and will be addressed in section

2.2.3.
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Figure 2.2: von Karman spectrum divided into large, medium, and small scale subranges.
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Realizations of ñ(z) are found using [19]. An approximate realization Uz of the M point

spectrum Sn(κ) can be generated using the equation

ñ(z) =Uz =
1√
M

M−1

∑
k=0

Uk exp− j2πεkz (2.9)

where εk =
k
M εmax, εmax is the Nyquist spatial frequency of the desired signal, j =

√
−1, and Uk

is defined as

Uk =



√
Sn(0)W0, k = 0√
1
2Sn(εk)(W2k−1 + jW2k), 1≤ k < M

2√
Sn(εmax)WM−1, k = M

2

Uk =U∗M−k,
M
2 < k ≤M−1

(2.10)

Here Sn is the spectrum from which the realizations must match, and Wk is the kth element of

a sequence drawn from N(0,1). Intuitively, (2.10) is creating a signal which is the product of

Gaussian noise and an envelope spectrum which will have a purely real inverse Fourier transform.

Equation (2.9) simply transforms the end result of (2.10) to a vector which is considered an

accurate realization of turbulent noise over height. In practice we generate many independent

realizations of ñ(z) which are used to model turbulence over a large scale 2 dimensional grid

representing height and range. Simulations of PL with and without turbulent noise are shown in

Fig. 2.3.

2.2.3 Inhomogeneous Turbulence

The marine atmospheric boundary layer (MABL) is a turbulent stratified flow. When fully

developed, it consists of a surface layer, mixed layer, and an entrainment zone (often an inversion

layer) under the free troposphere. The pressure gradients and geostrophy in the free troposphere

produce the wind forcing on the boundary layer. The MABL is evolving continuously in time and

space (e.g., a continuous injection of moisture from ocean surface evaporation, radiant heating,
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Figure 2.3: Propagation loss (PL) at 1 GHz propagating through standard atmosphere refractivity
profile over height and range, (a) without turbulence, (b) with turbulence parameterized by
C2

n = 10−13.
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and cooling). However, the rate of change in the horizontal is much less than in the vertical. If

the mass of a MABL layer is constant, the horizontal pressure gradient and the stresses at each

interface sum to zero. The stress at the ocean arises from the friction between the surface layer

and the ocean. Above that, combinations of stability and shear provide the balance of stresses and

the horizontal pressure gradient at each layer. Higher stability (associated with a positive virtual

potential temperature gradient) dampens turbulence, while more shear gives more turbulence.

The mixed layer is (nearly) neutrally stable and with low shear, but in the inversion layer both

stability and shear are much larger. The point is that turbulence in the inversion layer might not

be greater or smaller than in the mixed layer.

Eddies, however, displace particles such that air samples at a given height have a distribu-

tion of water vapor content corresponding to the horizontal mean properties of the air at nearby

heights. Thus, the stronger the magnitude of water vapor gradient, the larger the variance of

the water vapor at that height. Since water vapor is the dominant term in the refractivity, the

variability of refractivity can be much larger in the inversion layer than in the mixed layer.

Use of numerical simulation techniques such as Large Eddy Simulation (LES) [20] has

shown that the magnitude of ñ(z) can increase more than ten-fold near the inversion layer of a

duct. This implies that C2
n varies over height when a duct is present, hitting a maximum in the

middle of the inversion layer and returning to a nearly constant value above the duct. We attempt

to model fluctuations subject to height-varying C2
n(z) and refer to turbulence generated under this

model as inhomogeneous turbulence.

A simulation of inhomogeneous turbulence was conducted by changing C2
n from a constant

value to a function of height, C2
n(z), then generating corresponding realizations of ñ(z). A simple

formula was created for C2
n(z) which models an increase in C2

n around the middle of a ducts

inversion layer.

C2
n(z) =Cs

[
1+K exp

(
−(z− (m3 +

m4
2 ))2

(m4
2 )2

)]
(2.11)
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where Cs represents the reference value of C2
n , m3 and m4 are the base height and thickness of

the duct respectively, and K can be adjusted to give any desired maximum to the function C2
n(z).

Eq (2.11) creates a C2
n profile which increases (1+K) fold at the inversion layer. Approximate

realizations of nih(z) following (2.11) are generated as follows,

nih(z) = ñ(z)

[
1+K exp

(
−(z− (m3 +

m4
2 ))2

(m4
2 )2

)]
(2.12)

where n f (z) is generated using C2
n =Cs. It has been shown that (2.12) produces accurate realiza-

tions of nih(z) [21] if the medium can be assumed quasi homogeneous, an assumption which is

popular in similar wave propagation studies [22], [23].

For inversions in the preceding examples, (2.12) is used to generate inhomogeneous

turbulence with K = 9 to achieve a tenfold increase in C2
n at the inversion layer. The increase

in C2
n makes refractivity fluctuations larger just below the duct interface by increasing turbulent

fluctuations. [20] suggests this is more consistent with reality than constant C2
n(z). The forward

model was run on two refractivity profiles with identical parameters except for m5, representing

M-deficit. The two values of m5 used change the profile from a surface based duct to an elevated

duct. Results of the forward model runs using both homogeneous and inhomogeneous turbulence

models are shown in Figures. 2.4, and 2.5. Theoretically, only surface based ducts should cause

trapping of propagating waves between the duct height and earths surface [24], Fig. 2.5 shows

that the inhomogeneous turbulence model can produce similar trapping in elevated ducts.

2.3 Stochastic Forward Model

As previously stated, a PE method [25] is used to calculate the amplitude U(x,z) of

propagative EM fields over a grid of ranges x and heights z. The PE method is derived from the
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Figure 2.4: (a) Surface based duct refractivity profile and C2
n profile. (b) Propagation loss (PL)

of 1 GHz wave given refractivity and C2
n profiles in (a) under no turbulence. PL calculated

assuming homogeneous turbulence given in (c) C2
n = 10−15 and (e) 10−14. PL calculated

assuming inhomogeneous turbulence given in (d) Cs = 10−15, and (f) 10−14.
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Figure 2.5: (a) Elevated duct refractivity profile and C2
n profile. (b) Propagation loss (PL) of 1

GHz wave given refractivity and C2
n profiles in (a) under no turbulence. PL calculated assum-

ing homogeneous turbulence given in (c)C2
n = 10−15 and (e) 10−14. PL calculated assuming

inhomogeneous turbulence given in (d) Cs = 10−15 and (f) 10−14.
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parabolic equation [13]

∂U(x,z)
∂x

=

[
jk0

2
(n2−1)+

j
2k0

∂2

∂z2

]
U(x,z) (2.13)

=

[
jk0

2
(
〈n(z)〉2 + ñ(x,z)2−1

)
+

j
2k0

∂2

∂z2

]
U(x,z) (2.14)

= [A(x,z)+B(z)]U(x,z) (2.15)

A(x,z) =
jk0

2
[
〈n(z)2〉+ ñ(x,z)2−1

]
; B(z) =

j
2k0

∂2

∂z2 (2.16)

where k0 = ω/c is a reference wave number and j =
√
−1. The solution to (2.16) can be written

as

U(x+δx,z) =U(x,z)exp
[∫ x+δx

x
(A+B)dx

]
(2.17)

≈U(x,z)exp [(A+B)δx] (2.18)

≈U(x,z)exp [Aδx]exp [Bδx]. (2.19)

Equation (2.18) assumes A varies slowly with range, while equation (2.19) assumes A and

B commute; however, A and B only commute for n constant in z. Error introduced by the

assumptions of equations (2.18) and (2.19)is discussed in section 2.3.2. The split performed in

equation (2.19) is the basis of the split step PE method.

The stochastic forward model is an augmented version of the PE forward model denoted

as F(m,C2
n), where m is the refractivity profile parameter vector and C2

n is the structure function

constant of the observed turbulence which corresponds to the magnitude of ñ(z). Specification of

C2
n allows control of the variance of ñ(z) which is generated inside the model and added to 〈n(z)〉.
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2.3.1 Parabolic Equations and Simulating Turbulence

The numeric solution to the split step PE method defined in equation (2.19) is written as

U(x+δx,z) =
1

2π
exp[ jκφ(z)]F−1 [eWAPEF [U(x,z)]

]
(2.20)

where F[·] represents the Fourier transform (FT), κ is the wave number, WAPE is the standard

wide angle PE propagator, and exp[ jκφ(z)] is known as the transmittance function. The PE

method is summarized as follows [13]: a Fourier transform of the starting field propagating

in the x direction is taken with respect to z and multiplied by a propagation filter. The inverse

transform is then taken and multiplied by a transmittance function which accounts for the change

in phase between range x and x+ δx. The PE algorithm marches down the x axis, calculating

each successive field amplitude using the previous field amplitude as input. The transmittance

function φ(z) comes from the eAδx term in equation (2.19) and is defined as

φ(z) =
1
2

∫ x+δx

x

[
〈n(x,z)〉2 + ñ(x,z)2−1

]
dx+ zδx/ae, (2.21)

where ae is the Earth radius in kilometers and the term zδx/ae has been added to correct for the

curvature of the Earth. Knowing the ratio ñ/〈n〉 � 1 and neglecting second-order terms, we

simplify the integral (2.21) so that only fluctuations over δx are nontrivial

φ(z) =
[
〈n(z)〉2−1+ z/ae

]
δx+ φ̃(z) (2.22)

φ̃(z) =
∫ x+δx

x
ñ(x′,z)2dx′ (2.23)

where φ̃(z) is the randomly fluctuating part of the transmittance function. The transmittance

function represents total phase change of the wave over range step δx, so to generate accurate

realizations of PL using the PE method, we must know the spectrum of fluctuations integrated
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over a distance δx, generate realizations of this spectrum using (2.9), and add them to the

transmittance function at every range step. This spectrum is known as the transverse spectrum.

The transverse spectrum is obtained from the spectrum of refractivity (2.8) through integration of

the corresponding autocorrelation function over range (assuming δx > L0) [21].

St(κz)≈
0.033(2π)2(
κ2

z +L−2
0

)4/3 δxC2
nπ

1/2 Γ(4/3)
Γ(11/6)

. (2.24)

Note that this paper assumes the existence of a universal statistical description of small-scale

turbulence which may not actually exist [26], [27]. If later research leads to a more accurate

method of modeling realizations of turbulence, it may be substituted into this work without

changing the inversion algorithm. For notational simplicity we will continue to denote fluctuations

in refractivity generated from the transverse spectrum in (2.24) as ñ(z). We simplify our algorithm

by generating independent realizations of ñ(z) at each range step of the PE, an assumption that

will be explored in the next section.

2.3.2 Sources of Error in the PE

Here the sources of error in the forward model F(m,C2
n) are explored. As mentioned in

the previous section, there are several approximations made by the PE method and its modification

for the inclusion of turbulence. Our goal is to identify each source of error and quantify their

magnitudes. The sources of error include limitations in range and height step size by the turbulence

model, approximations made in the derivation of the PE method, error in the turbulence model,

and effects of polarization which are not considered by the model.

Height and Range Resolution

To generate independent realizations of refractivity fluctuations in height between ranges

x and x+δx, we have assumed that the range step δx is large enough that fluctuations between
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range steps are independent. The integral length scale introduced in section 2.2.2 is the integral

of the longitudinal correlation between two points distance r apart.

L0 =
∫

∞

0
R(r)dr (2.25)

where R(r) is the autocorrelation function of refractivity as a function of distance r between

the points. Equation (2.25) reveals that the integral length scale is a measure of the minimum

distance between uncorrelated points; therefore, so long as L0 < δx, simulated turbulence will be

independent between realizations of ñ(z) at range steps δx apart. Recall the model spectrum in

equation (2.8) uses L0 as a parameter. Here L0 = 10 m was used. This value was also used in a

similar study on turbulence modeling [28]. Experimental measurements of the integral length

scales of wind velocity and temperature find values between 2 and 20 m [29]. We have assumed

that the integral length scale of refractivity is similar to that of wind velocity and temperature, a

reasonable assumption considering refractivity is a function of temperature.

The range step size of our forward model is primarily a function of signal frequency fc [4]

δx =
πc

fc sin2(θmax)
(2.26)

where c is the speed of light in a vacuum and θmax is the maximum propagation angle of the

propagating wave and has been set to 7.45◦ for all inversions to emulate a directional antenna.

According to (2.26), EM wave frequencies that result in range steps larger than the integral

length scale are acceptable. Plugging L0 = 10 m and θmax = 7.45◦ into equation (2.26) we get a

maximum acceptable simulated wave frequency of fc = 5.61 GHz.

Now we turn to the height step size, which we will denote as δz. The maximum height

step is δz = L0 because for larger step sizes fluctuations in turbulence are uncorrelated, defeating

the purpose of modeling turbulence from a spectrum. The minimum height step is δz = l0 because

the von Karman spectrum is not accurate for wave numbers larger than l−1
0 . The value of δz in
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the PE model is selected according to

δz =
c

2 fc sin(θmax)
(2.27)

Once calculated, the value of δz is rounded down such that the number of height steps between

the ocean surface and the maximum simulated height is a power of 2. The maximum height is

an input to the forward model; each inversion in this paper uses max height equal to 1 km and

results in 1024 evenly spaced height steps between 0 and 1000 m. Experimental values of l0 are

on the scale of 10−3 to 10−2 m.

Note that a model spectrum typically used to describe turbulence in wind velocity is

being used to model that of refractivity. This may be a source of error because refractivity is a

function of T , P, and e, (see equation (2.3)) all of which have some relation to wind velocity but

are not identical. A wind velocity model spectrum is used because wind velocity is an area of

significantly more focus in the literature than T , P, and e.

Error From Assumptions in the PE Method

Two assumptions are made in the Parabolic equation, equations (2.17)–(2.19). The first

assumption is that the refractivity profile varies slowly in range, and the second assumption is that

terms A and B commute. While our model assumes range independence of the refractivity profile,

stochastic variations from ñ cause changes in refractivity between range steps. Additionally,

A and B do not commute because B is a differential operator and n is expected to change in z.

An evaluation of the error caused by ignoring the commutator term on a range dependent PE is

performed in [2], where it is found that

E = δx

[
jk0n

∂ñ
∂x

U(x,z)+n
∂n
∂z

∂U
∂z

+
nU
2

∂2n
∂z2 +

U
2

(
∂n
∂z

)2
]
+O

[
(δx)2] (2.28)
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which depends on range step δx, wave frequency, and refractive index gradient in both x and z

directions and is guaranteed to increase on the order of δx2. Simulations performed here use range

step sizes on the order of 100 m, at 1 GHz, so the commutator error may become a significant

source of error at this range. It is possible to reduce this error by using an alternate splitting of the

PE, which may be implemented in future work.

Errors in the Turbulence Model

The proposed forward model, F(m,C2
n) handles turbulence and refractivity separately, by

inserting randomly generated fluctuations described by C2
n to an environment with an independent

refractivity profile parameterized by m. However, there is some evidence of a connection

between C2
n and m, especially in an inversion layer, through the dissipation rate of turbulence [30].

Turbulence is a dissipative mechanism for kinetic energy cascading from large to small scales.

The input for this energy is primarily wind shear, which can influence the temperature gradient in

the z direction, and by proxy the refractivity gradient within a duct. Thus, the simplified model

used here does not fully reflect the interactions between turbulence and refractivity, which may

be a future focus.

Error From Polarization

The PE method is a forward-scatter approximation to the Helmholtz wave equation for

either the electric field of a horizontally polarized wave or the magnetic field of a vertically

polarized wave [13]. Wave polarization impacts the solution of the PE at the boundaries, here

between ocean and air. Our PE forward model solves only for the electric field associated with a

horizontally polarized wave and assumes a Dirichlet boundary condition on the ocean surface

[31].This implies the ocean is a perfectly conducting surface. Because a rough ocean will not

perfectly reflect all energy, it might be better modeled with a nonzero impedance [31], [32].
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2.4 Bayesian Inversion

We now infer 〈n(z)〉 given PL measurement vector d under a Bayesian framework. The

unknown variables are the entries of the m vector, with unknown posterior probability distribution

(pdf). The joint pdf of m is the probability of m given the Nd dimensional data d, p(m|d) is

known as the posterior pdf. The m with the highest probability is the maximum a posteriori

(MAP) solution. Using Bayes rule, we obtain the posterior pdf

p(m|d) = p(d|m)p(m)

p(d)
(2.29)

It is clear from (2.29) that the posterior pdf depends on three terms, p(d|m), p(m), and p(d). Our

goal is to find an expression for each distribution.

Though knowledge of the prior on m may be attainable, we assume that it has a uniform

distribution. If some knowledge of the refractivity profile later becomes available through

measurement or some statistical means, it can be utilized by this framework. The distribution

p(d) is known as the evidence and is given as

p(d) =
∫

m
p(d|m)p(m)dm . (2.30)

The evidence is not of importance here. The term reduces to a constant, serving as a normalization

factor to ensure p(m|d) integrates to unity. Neglecting the evidence gives

p(m|d) ∝ p(d|m)p(m) , (2.31)

where p(d|m) is the likelihood function.
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2.4.1 Likelihood Function

To create a likelihood function, we model the measurement vector d as

d = gK(m)+n (2.32)

where n is a noise vector of measurement and model error and gK(m) is the average of K

realizations of F(m,C2
n) to reduce stochastic fluctuations in the forward model

gK(m) =
1
K

K

∑
k=1

F(m,C2
n)k . (2.33)

We model n as a Gaussian noise vector

n ∈ N(0,Σd) (2.34)

where Σd is the true covariance matrix of d which we approximate with Cd the maximum

likelihood estimate of K runs of f(m,C2
n).

Because n is Gaussian, we use the standard zero mean Gaussian likelihood function to

measure the likelihood of d coming from refractivity profile m.

p(d |m) =
1√

(2π)Nd |Cd|
exp

(
−
(d−gK(m))T C−1

d (d−gK(m))

2

)
, (2.35)

where Nd is the length of d. Note that Cd might be singular because of computer precision errors

caused by extremely small variance at short ranges. Adding a small diagonal load is recommended

to prevent computation errors. Because the likelihood function is strictly monotonic and the

terms outside the exponential do not contain input d, we simplify equation (2.35) to an objective

function

φ = (d−gK(m))T C−1
d (d−gK(m)), (2.36)
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Figure 2.6: Median and 90, 95, and 99% credibility interval of propagation loss (PL) for 300
MHz wave propagating through a) standard atmosphere, b) elevated duct, c) surface based
duct with C2

n = 10−14. Generated from N = 500 Monte Carlo trials assuming homogeneous
turbulence.

which must be minimized.

2.4.2 Genetic Algorithm

From (2.36) we have an objective function for evaluating the MAP estimate of m. To

uncover the MAP estimate m̂, we run a genetic algorithm (GA) over the continuous space of

possible m, choosing realistic upper and lower bounds on the parameters of the M-profile. The

crossover rate of the GA was set to 0.9 for all inversions, though the parameters of the GA may

be adjusted to assure more or less accurate results at the cost of computation time. A plot of GA

convergence per forward model run for various population sizes is shown in Figure 2.7 computed

using identical observation vectors d. Note that our convergence plot is evaluating the objective

function in equation (2.36). Each line in Figure 2.7 represents the average of five inversion runs
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Figure 2.7: Average convergence of GA with population sizes [16, 32, 64, 128] for measurement
d taken from elevated duct refractivity environment with C2

n = 10−15

to account for randomness. It appears that a population size of 32 has the best convergence

properties. All inversions performed in this paper were performed with a population size of 32

over 10 generations.

2.4.3 The “No-Duct” Case

In practice it is often the case that no duct is present in the refractivity profile being

evaluated; however, this scenario is represented by only a few of the possible m vectors. Given

the parameterized M-profile in section 2.2.1, a standard atmosphere case where no duct is present

is described only when m1, m4, and m5 are zero, and m2 ≈ .113 M-units. Given this circumstance,

use of a GA becomes problematic for two reasons. First, the GA is designed to sample sparsely

over the search space and navigate to a maximum point stochastically. If the no duct case is not
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sampled by the algorithm (which is likely), it will lead to misidentification of a no duct event as a

ducting event almost certainly. Next, in the scenario where the no duct m is evaluated, another m

can be scored as slightly more likely than the no duct case due to measurement noise.

Introduction of a prior probability on the space of m vectors is needed to remedy the

shortcomings of the optimization. Use of a prior requires slight modifications in (2.31) to account

for the prior probability of no duct.

Using a uniform prior over the set of all ducting events and a corresponding prior for the

no duct case is a simple method that may be used with good success. The set of m vectors, Mnd,

which denote no duct are described by m ∈ [0, .13,m3,0,0]. All other m vectors denote some

type of duct. Using this knowledge we have

p(m | d) ∝ p(d |m)p(duct), m ∈Mnd (2.37)

p(m | d) ∝ p(d |m)p(no duct), m /∈Mnd . (2.38)

The probability of the no duct case should reasonably reflect the frequency of ducting phenomenon

in the region where d was measured and can be obtained from a climatology database [8] or

from a numerical weather prediction algorithm[33]. To avoid problems incurred when the genetic

algorithm does not evaluate the probability of a no duct scenario, the likelihood of the no duct m

vector should be evaluated prior to running the algorithm and compared to the results.

2.4.4 Inversion Algorithm

The inversion algorithm is explained in detail below:

1. Measure both d and average C2
n .

2. Evaluate equation (2.38) using d, and Cd , gK(m) simulated with any m ∈ Mnd. The

resulting probability is the probability of a no duct scenario.

36



3. Make an initial guess m0. Generate the corresponding Cd0 using N Monte Carlo trials of

F(m0,C2
n).

4. Run the GA. The output is m1.

5. Generate Cd1 , rerun the GA using Cd1 .

6. Repeat N times

7. Evaluate (2.37) with input m̂ and (2.38) using m ∈Mnd. The m with greatest probability

parameterizes the estimated refractivity.

Step 2 is evaluating the probability of no duct and can be discarded if there is no prior

information about the environment being simulated. Step 3 asks for a user input, m0, which is

used as an initial guess at the duct being estimated. If nothing is known about the duct, then

the user may as well use the standard atmosphere profile from the previous step. This item is

important because calculation of the covariance Cd is the most computationally expensive part of

the algorithm. Precalculation of Cd speeds the inversion up considerably but requires that the

algorithm is iterative. Steps 4 through 6 are the main algorithm. An optimal solution is found

by the GA using the suboptimal Cd from the initial guess, the GA outputs the highest fitness

solution mopt and calculates the corresponding Cdopt . The process then repeats until the algorithm

has run a set number of times. The final step compares the likelihood of the solution m̂ with the

probability of the standard atmosphere (taking into account the prior likelihood of a standard

atmosphere).

2.5 Inversion Results

Figure 2.8 shows the 90, 95, and 99% credibility intervals of the pdf of PL through

standard atmosphere, elevated duct, and surface- based duct refractivity profiles estimated from
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Figure 2.8: Median and 90, 95, and 99% credibility interval of propagation loss (PL) for
300 MHz wave at 20 m propagating through (a) standard atmosphere, (b) elevated duct, and
(c) surface-based duct with structure function constant C2

n = 10−14. Generated from 500 Monte
Carlo trials assuming homogeneous turbulence.

500 Monte Carlo trials under homogeneous turbulence generated by (2.9) and (2.10) and spectrum

described by (2.24) . From Figure 2.8 we see that when simulating homogeneous turbulence, the

distribution of PL through standard atmosphere and elevated duct refractivity profiles is nearly

identical, while surface-based ducts alter the distribution of PL significantly. Accordingly, we

expect our inversion algorithm should estimate surface-based ducting profiles well but be unable

to distinguish elevated ducts from standard atmosphere refractivity profiles.

Figure 2.9 shows the same distributions generated with C2
n(z) described by (2.12) with

K = 9. For the elevated duct profile we estimated m3 = 443 m, m4 = 95 m and for the surface-

based duct m3 = 260 m, m4 = 70 m. C2
n(z) remains unchanged for the standard atmosphere

profile because there is no inversion layer where turbulence is expected to increase. Under this

scheme both elevated and surface-based ducts produce unique distributions and therefore should
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Figure 2.9: Median and 90, 95, and 99% credibility interval of propagation loss (PL) for
300 MHz wave at 20 m propagating through (a) standard atmosphere, (b) elevated duct, and
(c) surface-based duct with structure function constant C2

n = 10−14. Generated from 500 Monte
Carlo trials assuming inhomogeneous turbulence.

allow for inversion. A key observation from Figures 2.8b and 2.9b is how the height-dependent

C2
n , when modeled as having an increase at the inversion (section 2.2.3), impacts beyond-line-

of-sight (BLOS) propagation for the elevated duct case considered. In Figure 2.8b the median

propagation loss over the region from 60 to 80 km is 142 dB over 500 realizations. In Figure 2.9b

(height-dependent), the value is 135 dB. This suggests that failing to account for the C2
n increase

at the inversion can negatively bias propagation estimates in the BLOS region. Note that this is

consistent with the differences between with and without height dependence show in Figure 2.5.

Figure 2.10 shows the covariance matrix, Cd , of PL of a wave propagating through a surface-based

duct under both homogeneous and inhomogeneous turbulence. The covariance matrices were

sampled from 500 runs of the forward model using the true refractive environment. Information

39



conveyed in these covariance matrices is absent from the inversion algorithm when assuming

Cd = αI. The parameters of the forward model for the refractivity inversion were chosen such

that the propagating wave would be trapped between any existing ducts and the ocean surface.

If the wave was to propagate at too steep an angle, it would not be trapped in the duct and we

might as well be working with a standard atmosphere. Outside the possibility that the transmitted

wave is not trapped by an existing duct, the transmitter height and propagation angle of the wave

should not impact inversion accuracy because the algorithm works by evaluating the first- and

second- order statistics of the specific wave being modeled. The same can be said for the height

at which PL is measured.

All figures and inversions were performed using PL at constant 20 m height (from the

ocean surface) from a transmitter at 10 m transmitting a 300 MHz wave over an 80 km range

with vertical beam width of 0.209 radians. The transmitter was pointed horizontally such that

the wave propagated normal to the line formed between the transmitter and the ocean surface.

The genetic algorithm used in the inversion ran over 10 generations with a population size of

32 and a crossover fraction of 0.1. Each inversion consisted of 60 GA runs. Inversions were

run comparing 60 iterations of the algorithm in section 2.4.4 and 60 inversions where Cd = σ2I.

The two inversion strategies are compared in Figures 2.11 and 2.12. The initial measurement

vector, d, was simulated using the forward model propagating through the true refractivity

profile over an 80 km range. The simulated d vector was 1234 points long, with a step size

of 64 m. Two refractive environments were estimated. First, a surface-based duct from the

VOCAR 1993 experiment [34] with homogeneous turbulence generated by (2.9) and (2.10) and

spectrum described by (2.24). Next, an elevated duct from the VOCAR 1993 experiment with

inhomogeneous turbulence simulated using (2.12). An inhomogeneous turbulence model is used

for inversions on the elevated duct because Figures 2.8 and 2.10 show that under a homogeneous

turbulence model, the elevated duct will be nearly indistinguishable from a standard atmosphere

profile.
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Figure 2.10: Estimated covariance matrix (in dB) of propagation loss at 20 m height through (a
and b) standard atmosphere, (c and d) VOCAR elevated duct, and (e and f) VOCAR surface-
based duct. Homogeneous turbulence model used in Figures 2.10a, 2.10c, and 2.10e. Inhomoge-
neous turbulence used in Figures 2.10b, 2.10d, and 2.10f. Estimates made using (500) forward
model runs of propagation loss using C2

n = 10−13.
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Figure 2.11: Estimated refractivity for surface-based duct measured in VOCAR 1993 experi-
ment assuming homogeneous turbulence, (a) C2

n = 10−17, (b) Cs = 10−15, and (c) Cs = 10−13.
(left column) Inversions performed using Monte Carlo estimate of Cd (Figures 2.11a– 2.11c);
(right column) Cd assumed proportional to αI.
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Figure 2.12: Estimated refractivity for elevated duct measured in VOCAR 1993 experiment
assuming inhomogeneous turbulence, (a) C2

n = 10−17, (b) Cs = 10−15, and (c) Cs = 10−13. (left
column) Inversions performed using Monte Carlo estimate of Cd; (right column) Cd assumed
proportional to αI.
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Figure 2.11 has two columns. The left column shows the inversion result after 1, 15,

and 60 iterations of the algorithm in sec 2.4.4. The right column shows the median and 80%

credibility intervals of the estimated refractivity profiles after 60 independent inversions. Both

columns show inversions performed on a surface-based duct over a range of C2
n values assuming

homogeneous turbulence. Figure 2.11 show that the iterative algorithm hits an accurate solution

after 15 iterations and does not change significantly in subsequent iterations. The Monte Carlo

trials which ignore Cd produce an accurate median solution but have a wide credibility interval,

indicating that individual solutions may not be very accurate. Both inversion methods appear to

lose accuracy as C2
n increases. Figure 2.12 is consistent with Figure 2.11 in these regard.

2.6 Conclusions

An inversion scheme was proposed for estimation of atmospheric refractivity given

measured PL d at constant height in presence of turbulence. The mean and covariance of error

in PL measurements was estimated using Monte Carlo trials and used to evaluate a likelihood

function for parameterized refractivity profiles. A genetic algorithm was then applied to search

over the parameter space to find the MAP refractivity profile, which was compared in accuracy

to refractivity profiles found using a likelihood function assuming spatially uncorrelated errors

(Cd ∝ I).

Two models of turbulence were used to simulate refractivity fluctuations, a homogeneous

model where C2
n was constant, and a more realistic inhomogeneous model where C2

n reached a

distinct peak at the inversion layer. Inversion results showed that the inhomogeneous turbulence

profile caused elevated ducts to produce trapping below the inversion layer, an effect which is

limited to surface-based ducts in nonturbulent environments. Additionally, despite the increased

refractivity fluctuations introduced by the inhomogeneous turbulence, inversion under such a

scheme produced accurate estimates of the parameters of an elevated duct which otherwise would
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have been mistaken for a standard atmosphere profile. The results suggest that turbulence can

significantly alter PL of waves traveling through atmospheric ducts by increasing the strength of

existing ducts.

For inversions, use of Monte Carlo trials to estimate covariance of PL appeared to increase

the accuracy of inversions performed on ducts with ambiguous mean PL patterns. Analysis of PL

from standard atmosphere and elevated and surface-based duct refractivity profiles showed that

homogeneous and inhomogeneous turbulence models produced different PL distributions for the

same refractivity profiles. Turbulence can have a significant impact on the distribution of PL, so

accuracy of refractivity inversion is limited by our ability to correctly model turbulence.
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Chapter 3

Compressive MIMO Beamforming of Data

Collected in a Refractive Environment

The phenomenon of ducting is caused by abnormal atmospheric refractivity patterns, and

is known to allow electromagnetic (EM) waves to propagate over the horizon with unusually

low propagation loss. It is unknown what effect ducting has on multiple input multiple output

(MIMO) channels, particularly its effect on multipath propagation in MIMO channels. A high

accuracy angle-of-arrival (AoA) and angle-of-departure (AoD) estimation technique for MIMO

communications, which we will refer to as compressive MIMO beamforming, was tested on

simulated data, then applied to experimental data taken from an over the horizon (OTH) MIMO

testbed located in a known ducting hotspot in southern California. The multipath channel was

estimated from the receiver data recorded over a period of 18 days, and an analysis was performed

on the recorded data. The goal is to observe the evolution of the MIMO multipath channel as

atmospheric ducts form and dissipate to gain some understanding of the behavior of channels in a

refractive environment. This work is motivated by the idea that some multipath characteristics of

MIMO channels within atmospheric ducts could yield important information about the duct.
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3.1 Introduction

For long range wireless electromagnetic (EM) communication signals, the line of sight

path between transmitter and receiver can be obscured by the curvature of the earth. Generally

signal strength at the receiver fades quickly with range for over the horizon signals, but an

exception can be made for marine environments experiencing atmospheric ducting [1]. Ducting

causes trapping of EM waves propagating at low angles between the ocean’s surface and the top

of the duct [2]. Ducts are formed by certain atmospheric refractivity profiles, where refractivity is

a measure of the deviation of an electromagnetic wave from a straight line path due to variation

in air density as a function of height. In a ducting environment an EM wave can be guided over

the horizon through a path that it would not otherwise travel [3]. This effect is known to decrease

signal attenuation over long ranges, but may also cause multipath interference in the form of

multipath fading [4].

In a ducting environment it is hypothesized that communication channels may have

higher throughput [5], and may also take on unique properties based on the duct. To test this

hypothesis, an experimental testbed was set up where a 4x4 multiple input multiple output

(MIMO) communications array was placed on vertical masts 41 km apart in a ducting hotspot in

southern California [1], see figure 5.1. Pilot signals from the transmitters were recorded by the

receivers at regular intervals for 18 days. The goal of the experiment was to observe the change in

the multipath environment for an over the horizon channel during ducting events. Ducting events

were identified by significant increases in received power levels at the receiver array.

We are unaware of any other experiment to date having been performed for the purpose of

relating the multipath characteristics of a MIMO channel to atmospheric refractivity. While the

over the horizon MIMO channel data that was collected is unique, it is also limited in that it is

representative of one static channel which may not be representative of all ducting channels. Our

hope is that a better understanding of the impact of ducting on MIMO communications channels
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will lead to more effective refractivity estimation techniques. For instance if the multipath channel

takes on specific properties exclusively during ducting events, this information could be used to

more accurately identify the presence and properties of a duct.

In this paper we use compressive MIMO beamforming to determine the angle-of-arrival

(AoA) and angle-of-departure (AoD) of signals traveling through a channel. Compressive

MIMO beamforming (detailed in section 3.3.2) is a precision beamforming technique utilizing

compressed sensing, and is based on the assumption of signal sparsity [6], [7] in the transmit and

receive angle domain. To obtain a best estimate of the MIMO channel matrix (see section 3.2),

[8], [9], a set of optimal training sequences [10] (see section 3.5) were sent from the transmitter

array. From the channel matrix a virtual array [11] is formed, to which compressive MIMO

beamforming can be applied to obtain the transmit and receive angles of the signal.

The structure of the paper is as follows. In section 3.2 the signal model is explained and

theoretical framework for channel estimation is laid out. Optimal channel estimation is essential

to this work because knowledge of the MIMO channel is required for beamforming. Section 3.3

gives the theory behind compressive sensing and lays the framework for MIMO beamforming.

Section 3.4 gives compressive MIMO beamforming error rates in two metrics for simulated

signals of varying signal to noise ratio (SNR) and number of active signal paths. Section 3.5

describes the experimental testbed and details regarding the transmitted waveforms and their

detections. Experimental data is processed and the resulting multipath channels and channel

properties are analyzed in section 3.6.

3.2 Multipath Signal Model

3.2.1 MIMO Signal Model

MIMO systems are a well studied topic in antenna communications and offer several

benefits over single input and output systems. A MIMO system is defined as an antenna setup
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utilizing multiple transmitters and receivers, often positioned in an array. By increasing the

number of transmitters and receivers the dimension of the channel matrix, whose elements

represent the transfer function between each transmitter and receiver, is increased. Higher

dimensional channel matrices can be exploited by spatially multiplexing multiple streams of

information [12]. Having multiple receivers allows for spatial processing (more generally known

as beamforming) to estimate the receive angle of arriving signals, while multiple transmitters

allows for spatial processing for estimation of the transmit angle of arriving signals.

The position of transmitters and receivers in a MIMO system is flexible, though this paper

will focus on transmit and receive elements positioned in uniform linear arrays (ULA). Consider

NT transmitters and NR receivers with element spacing r and s, communicating over a single

frequency. The set of transmitters send signals xt ∈ CNT at time sample time t = 1 . . .T . Each of

P paths have a unique AoD φp, AoA θp, and corresponding complex path gain.

Assuming a time invariant channel, the received signal at time sample t, yt ∈ CNR is

yt = Hxt +wt , (3.1)

where wt ∈ CNR is a zero mean symmetric complex Gaussian noise vector at time t and

H ∈ CNR×NT is the channel matrix which can be further decomposed [6]

H =
P

∑
p=1

apaR(θp)aT (φp)
H , (3.2)

where ap is the complex gain of path p, aR(θ) ∈ CNR , and aT (φ) ∈ CNT are the re-

ceive and transmit steering vectors for angles θ and φ, whose ith element is defined as aT,i(θ) =

exp[− j2πr sin(θ)i/λ] for i= [0, . . . ,NT−1] and aR,i(θ)= exp[− j2πssin(θ)i/λ] for i= [0, . . . ,NR−

1] with j =
√
−1, s and r are transmitter and receiver array spacings in meters, and λ is the carrier

wavelength in meters [13]. Eq (3.2) implicitly assumes that the received signals arrive as plane

waves at the receiver.
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The channel described by eq (3.1) and (3.2) can be equivalently viewed as the sum of

channels from every possible signal path. Rather than express the channel in (3.2) as the sum of

array responses from each of P paths, it can also be expressed as the sum of array responses from

every possible path over the space of possible transmit and receive angles (θ,φ), only a few of

which will be active (take non-zero values). Formally,

H =
∫

φ

∫
θ

Ha(θ,φ)aR(θ)aT (φ)
H dθ dφ, (3.3)

where Ha(θ,φ) is a function representing the path gain from transmit and receive angles

θ and φ. Since we have made the assumption that Ha(θ,φ) is non-zero at only a few points, an

approximate discretization can be made

H≈
QR

∑
i

QT

∑
j

Ha
i, jaR(θi)aH

T (φ j), (3.4)

where QR and QT are the number of points to which the transmit and receive angle space

are quantized. The approximation of eq (3.4) replaces the continuous function Ha(θ,φ) with

sparse matrix Ha ∈ CQR×QT , (having exactly P non-zero entries) which we will refer to as the

angular domain channel matrix [14]. Plugging (3.4) into (3.1) we have

yt ≈
QR

∑
i

QT

∑
j

Ha
i, jaR(θi)aH

T (φ j)xt +wt , (3.5)

which is an alternative signal model utilizing sparsity. The focus of this paper is the

estimation of Ha. From known xt and measurements of yt we estimate H, then using sparse

processing detailed in section 3.3 an estimate of Ha is constructed from H. Once recovered,

we analyze the transmit and receive angles traveled by multipath signals propagating through

ducting environments to determine any special properties they may have which could be used to

characterize ducts.

The elements of the steering vectors aR(θ) and aT (φ) are unit magnitude complex values
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representing the relative phase shift of the signals arriving or departing from one antenna with

respect to a reference antenna. From their definitions, the phase shift between vector elements is

dependent on carrier signal wavelength, arrival/departure angle, and inter element array spacing.

Ideally inter element spacing should be one half the carrier signal wavelength, which results in

maximum angular resolution of ±90◦ and is known as critical spacing. Sparsely spaced array

elements result in angle ambiguities caused by aliasing, while densely spaced arrays have smaller

array aperture leading to lower angular resolution. For sparsely spaced arrays, θmax = sin−1( λ

2r )

where θmax is the maximum resolvable receive angle, r is the inter element spacing, and λ is the

wavelength of the carrier signal in meters.

3.2.2 Channel Estimation

Compressive MIMO beamforming takes the estimated channel matrix H as input. The

estimate, Ĥ (where .̂ indicates an estimate) must be made from the known transmitted and

measured received signals. In this section we derive criteria for the transmitted waveform such

that the resulting channel estimate is optimal. Later in section 3.5 the waveform transmitted from

the experimental testbed is described and can be shown to satisfy the criteria for optimal channel

estimation.

Consider a matrix X ∈ CNT×T whose columns xt represent the symbols sent from all

transmitters at time t = [1, ...,T ] and matrix Y ∈ CNR×T whose columns yt contain the received

symbols at time t = [1, ...,T ]. Y can be expressed as

Y = HX+W, (3.6)

where W ∈ CNR×T is complex Gaussian sensor noise distributed such that each column

wt ∼ CN (0,σ2IT ) for t = [1, . . . ,T ], where IT is the identity matrix of dimension T . In this case

the least squares (LS) channel estimator is [9]
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Ĥ = YX†, (3.7)

where X† = XH(XXH)−1 is the pseudoinverse. Training matrix X is constrained by the

transmitted power as

‖X‖2
F = tr(XXH) = P , (3.8)

where tr[.] is the trace operation and P is a known constant representing the total power

transmitted and ‖.‖F is the Frobenius norm. We wish to find a training matrix X which minimizes

the channel estimation error subject to the power constraint (3.8). This is equivalent to solving

the optimization problem

min
X

E
[
‖H− Ĥ‖2

F

]
s.t. tr(XXH) = P , (3.9)

where E[.] is the expected value. Combining (3.6) and (3.7) we see H− Ĥ = WX†.

Continuing from (3.9) we get the objective function

J = E
[
‖H− Ĥ‖2

F

]
= E

[
‖WX†‖2

F
]

= σ
2
nNRtr

[
X†HX†]

= σ
2
nNRtr

[
(XXH)−1],

(3.10)

where E[WHW] = σ2
nNRI. Plugging (3.10) into (3.9), an equivalent equation is

min
X

tr
[
(XXH)−1] s.t. tr

[
XXH]= P , (3.11)

From here any training matrix satisfying
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Figure 3.1: Shortest path between transmitter (bottom) and receiver (top) superimposed on
satellite image of Southern California.

XXH =
P
NT

I, (3.12)

is optimal for (3.11), [9]. The optimality criteria also simplifies the channel estimation

equation. Plugging (3.12) into (3.7) we have

Ĥ =
(NT

P

)
YXH . (3.13)

All matrices with orthogonal rows with the same norm satisfy the optimality criteria of eq

(3.12). The waveforms transmitted by the MIMO testbed described in section 3.5 satisfy (3.12).
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3.3 Compressive MIMO Beamforming

3.3.1 Review of Compressive Sensing

Compressive Sensing (CS) is a relatively new field of signal processing wherein a mea-

surement vector is reconstructed as a sparse linear combination of predetermined dictionary

vectors. Consider the classical linear measurement model

r = Ψt+w, (3.14)

where w is Gaussian noise and r is a known measurement composed of some linear

combination of the columns of known dictionary matrix Ψ. The goal of CS is to reliably

determine t from knowledge of r and Ψ given that t is sparse, (has few non-zero values) or

approximately sparse (has entries that decay rapidly when reordered by magnitude).

The central tenet of CS is that if t is sparse then most of the salient information in r can be

captured by a few dictionary vectors (for appropriately designed dictionaries). Additionally, recent

theoretical results have established that t can be solved using tractable mixed norm optimization

programs [15]-[16], efficient greedy algorithms, [17], fast iterative thresholding algorithms [18],

or Bayesian probabilistic methods [19]. Proofs establishing the reliability of the mentioned

reconstruction procedures depend on a certain property of the dictionary matrix Ψ, and the

sparsity of t. Specifically, the key property of Ψ for proving the optimality of reconstruction is

the restricted isometry property (RIP) [20].

There are currently no known algorithms that check the RIP for a given matrix in polyno-

mial time, though one of the reasons that has lead to the widespread use of CS in many fields

is the discovery that certain probabilistic constructions of matrices satisfy the RIP with high

probability [21]. In this paper we assume the RIP holds for the dictionary matrix defined in

section 3.3.2, and test this theory with simulations performed in section 3.4.
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Of the many CS reconstruction algorithms noted earlier, we use the LASSO [22] (which

is sometimes also referred to as basis pursuit denoising [16] ). The LASSO is a well studied

method for solving compressive sensing problems which has good reconstruction error bounds

[23] and is computationally attractive due to the many publicly available software packages for

computing it. The LASSO in Lagrangian form is

min
t
‖r−Ψt‖2

2 +µ‖t‖1, (3.15)

where µ is a positive regularization parameter satisfying 0 ≤ µ ≤ 2‖ΨHr‖∞ [7]. In the

next section we will show that the path angles traveled by a multipath MIMO signal can be solved

using the LASSO.

3.3.2 MIMO Beamforming

From section 3.2.2 it is clear that an estimate of a channel H can be made from MIMO

systems transmitting certain sequences. Additionally, from eq (3.2) we see that a MIMO channel

can be written as the sum of a small number of paths, thus the channel is sparse in the dictionary

formed from the array responses from each possible path angle. In general we will only have

estimates of the channel, Ĥ (from eq (3.13)), which are used to produce angular domain channel

estimates, Ĥa.

Define h= vec(H) where vec(.) stacks the columns of a matrix, and ã(θp,φp) = aR(θp)⊗

aT (φp) where ⊗ is the Khatri-Rao product [24]. The dictionary AD ∈CQRQT×NRNT of path angles

is defined as

AD =

[
ã(θ1,φ1), . . . , ã(θQR,φQT )

]
, (3.16)

where QT and QR represent an arbitrary number of transmit and receive angles evenly

spaced between (φmin,φmax) and (θmin,θmax). In practical terms, QT and QR are the number of
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grid points which the transmit and receive angle space will be divided into. For unknown sparse

vector ha = vec(Ha) ∈ CQRQT ,

ĥ = ADha +η, (3.17)

where η ∈ CNRNT is the noise due to approximation which is assumed to be from a

Gaussian distribution.

Solving eq (3.15) with variables from eq (3.17), the LASSO objective function [25]

produces a sparse estimate of the angular domain channel matrix in vector form.

ĥa = min
ha
‖ĥ−ADha‖2

2 +µ‖ha‖1. (3.18)

In this paper we set µ to half its maximum value (see [7] for further discussion).

Once ĥa has been solved it is cast back into matrix form, Ĥa = vec−1(ĥa) which was

introduced in eq (3.4). Each element of the angular domain channel matrix is associated with an

AoD and AoA through which the signal could have traveled. The magnitude of each element of

Ha represents the path gain of the signal traveling through the path angle pair associated with that

element.

3.4 Simulation

Compressive MIMO beamforming was simulated and tested against two other beamform-

ing techniques; conventional beamforming (CBF) [26] and 2D MUSIC [27], both described in

the appendix. CBF and MUSIC provide estimates of the angular domain power spectrum, which

are compared to the estimate produced from compressive MIMO beamforming.

A simulated signal yt ∈ CNR was constructed according to eq (3.5), repeated here for

convenience
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yt =
QR

∑
j=1

QT

∑
i=1

Ha
i, j

aR(θ j)aH
T (φi)xt +wt = ỹt +wt , (3.19)

where t = [1, . . . ,T ], QT = QR = 30 and Ha is a randomly generated sparse matrix whose

non-zero elements are unit magnitude with phase drawn from a uniform distribution over the

range [0,2π]. The sparsity of Ha was controlled by parameter P (P = 3 in figure 3.2), and each

xt was a known realization from a complex normal distribution xt ∈ CNT ∼ CN (0,I) (Gaussian

sequences obey eq (3.12) with high probability) which was generated independently for each t.

yt was first generated from random but known realizations of Ha and xt , then complex Gaussian

noise wt ∈ CNR ∼ CN (0,σ2I) was added such that any desired SNR could be met, where

SNR(dB) = 10 log

(
‖Hxt‖2

2

‖wt‖2
2

)
= 10 log

(
‖ỹt‖2

2

‖wt‖2
2

)
. (3.20)

and ‖.‖2
2 is the squared `2 norm.

From yt and xt , Ĥ was estimated according to eq (3.13) with P =NT T . Given Ĥ, eq (3.18)

was used to solve for Ĥa. Figure 3.2 shows plots of |Ha|2 alongside the angular power spectrum

recovered from CBF, ( |Ha
CBF|2 specified in eq (3.27) of the appendix) and MUSIC (F(θ,φ)

from eq (3.30) in the appendix) applied to the simulated noiseless data with NT = NR = 16 and

NT = NR = 4.

Note that both CBF and MUSIC, are limited by the maximum rank of H, which results in

the blurred spectrum seen in figure 3.2. The maximum rank of H is determined by the number of

transmitters and receivers in the MIMO system rank(Ha)≤min(NT ,NR). Compressive MIMO

beamforming is not limited in precision by the rank of H, but rather by how many columns of

dictionary AD can be formed before the dictionary ceases to satisfy the RIP property. When AD is

populated by too many column vectors ã(θ,φ) (which is equivalent to quantizing (θ,φ) space too

finely) there will be high coherence between the columns of AD to the point where the dictionary

will cease to satisfy the RIP. It is infeasible to check that any given AD satisfies the RIP because
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Figure 3.2: Angular power spectrum from various beamforming techniques performed on
simulated noiseless signals with T = 1000,P = 3,µ = .5µmax. (Top) NT = NR = 16. (Bot)
NT = NR = 4. (Left) Conventional beamforming, (Middle) 2D MUSIC, (Right) Compressive
MIMO beamforming with QR = QT = 30. Transmitter and receiver spacing each set to λ

2 .
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there is no known algorithm that works in polynomial time, however we assume that a dictionary

formed from quantizing the angle space into QR = QT = 30 is acceptable because the simulation

recovers simulated paths with satisfactory accuracy.

The performance of compressive MIMO beamforming is tested using two error metrics for

channels of varying sparsity and SNR given QR = QT = 30. The first error metric, εA, represents

angle error and is defined as the euclidean distance (in (θ,φ) space) between the P true path angle

pairs of Ha and the best matching set of P path angle pairs from Ĥa.

εA =
1
P

P

∑
p=1

√
(θ̂p−θp)2 +(φ̂p−φp)2, (3.21)

where θp and φp are the receive and transmit angles from path p of Ha, θ̂p and φ̂p are

the receive and transmit angles from path p of Ĥa, and the units of εA are degrees. The best

set of matching paths from Ĥa was found as the set of paths producing the smallest εA using

exhaustive search. It was found that the number of non-zero elements in Ĥa was always equal to

or greater than that of Ha. Note that simulations were performed over an angle space ranging

from [−90◦,90◦], so an average error of 18◦ represents a 10% error over the full space. In section

3.6 we will present findings over a much smaller angle space, for which we expect the same

percentage error rather than absolute error.

The second error metric is εN , is normed error defined as εN = 1
P‖H

a− Ĥa‖2
F . Normed

error is simply a measure of the mean squared difference between the true and estimated angular

domain channel matrices.

Each error metric was calculated for N = 200 Monte Carlo trials of simulated signals of

varying SNR and sparsity, then plotted in figure 3.3. The random number generator seed was

reset for each unique parameterization. We observe that both metrics show positive correlation

between error and SNR. Angle error εA appears nearly constant for signals composed of P > 1,

indicating that more paths does not lower the angular accuracy of the estimated paths. Normed
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error curves indicate that the mismatch between true and reconstructed angular channel matrices

is much greater for signals from multiple paths. Each curve appears to flatten for SNR above −15

dB. We conclude compressive MIMO beamforming will have sufficient accuracy for received

signals whose SNR is above −15 dB.

3.5 Experimental Setup and Data

The coast of southern California is known as a hotspot for atmospheric ducts [1], which

can act as leaky waveguides for EM waves. The goal of the experiment was to observe the

impact of a ducting environment on a MIMO communications channel, particularly the change in

multipath properties of the channel with time. No measurements of the atmospheric refractivity
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Figure 3.3: Average error of N = 200 Monte Carlo reconstructions of Ĥa using compressive
MIMO beamforming with µ = .5µmax on simulated signals of varying SNR and sparsity P. a)
Angle error (εA), b) Normed error (εN).
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profile were taken, so the observations at the receiver array are understood to reflect the typical

characteristics of a refractive channel rather than being the result of any specific type of duct.

3.5.1 Transmitters and Receivers

Data was collected from vertically positioned ULAs of 4 transmitters and 4 receivers.

The transmitter array was positioned at the end of Scripps Pier, 332 m from shore, with array

spacing of 3.8 m while the receiver array was located 1000 m inland at Camp Pendleton with array

spacing of 4 m. The transmitters will be referred to as T1-T4, where T1 is the topmost transmitter.

Likewise, the receivers will be referred to as R1-R4 where R1 is the topmost receiver. From

the array spacing the maximum resolvable angles were φmax = 1.63◦ and θmax = 1.55◦, which is

within the normal range of expected AoA and AoD’s for such long range over the horizon setups

[5]. The topmost elements of the transmitter and receiver arrays were approximately 34 and 32 m

above sea level respectively. The arrays were located 40.72 km apart, far enough that the line of

sight path between all antennas was obstructed by the horizon. The elements of both arrays were

pointed facing each other in azimuth, and with an elevation angle of 0◦.

A known, narrowband, length 213 Zadoff-Chu (ZC) signal, z, [10] was sent from each

transmitter on carrier frequency 1.385 GHz. ZC signals are complex, constant magnitude, and

satisfy the following property

zH(Pz) = 0, (3.22)

where P is any cyclic permutation of the identity matrix with P 6= I. Eq (3.22) should be

interpreted to mean any ZC sequence is orthogonal to any circularly shifted version of itself. By

sending identical ZC signals with unique circular shifts from each transmitter, a training matrix

which satisfies (3.12) is formed. The transmitted waveforms from [T1,...,T4] were identical,

circularly shifted ZC sequences, X ∈CNT×213
= [z0,z500,z1200,z2000]

T where zi is a ZC sequence
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circularly shifted by i samples. Each snapshot is 8×213 = 216 samples.

All receivers coherently recorded four snapshots of 216 samples taken at sample rate 1.25

MHz every fifteen minutes. Figure 3.4 shows matched filter outputs between the transmitted ZC

sequence and all receivers for a single snapshot. The matched filter output mi of receiver i is

defined as

mi[t] =
∞

∑
m=−∞

yi[m]z[t−m], (3.23)

where yi[t] represents index t of the measurement vector from receiver i and z is the

unshifted ZC sequence transmitted by T1. Each peak in figure 3.4 confirms the arrival of a

ZC sequence, the first peak being from T1, the second from T2, and so on. Because the four

transmitters each sent repeating 213 sample waveforms, the four arrival spikes in the matched

filter are expected to repeat every 213 samples (8 repetitions per snapshot). The magnitude of

each spike roughly represents the strength of the path between each transmitter and receiver.

We note the arrival of the ZC sequence from T3 and T4 in figure 3.4 are significantly

weaker than the others. We explore two possible explanations, first that both T3 and T4 are

positioned at significantly lower elevations than T1 and T2, thus the horizon presents a greater

obstacle. The decreased receive power may be the result of signal attenuation from propagating

over the horizon, however this does not explain why the signal from T4 arrives stronger than that

of T3. Second, multipath environments can cause fading [28], resulting in null zones where the

signal and its reflections effectively cancel each other out. It is possible that the receiver array lies

in a null zone for the signals from T3.

3.6 Results

Receiver noise variance was not recorded during the measurements. We assume each

receiver was subject to the same noise level for the entire testing period, thus received power
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Figure 3.5: Average received power (dB) over the test period from Jan 23 - Feb 09, 2016.

represents some scaling of SNR. Average received power was calculated as Pr =
1

NR
‖Y‖2

F for

each snapshot Y ∈ CNR×216
. The average received power over the full 18 day test period between

January 23 and February 09, 2016 is plotted in figure 3.5. Note that the array went down for 18

hours on January 31st, leading to a short gap in the data.

It is well documented that atmospheric ducts, particularly evaporation ducts, can increase

the SNR of over the horizon EM signals [1], [5]. We assume that periods for which the received

power is at a maximum are indicative of some form of ducting [29]. Using the periods between

January 25-29 and Feb 5-8 as examples of ducting events, we analyze the impact of ducting on

the reconstructed path angle pairs of Ĥa from the experimental data.

All receiver returns were processed using compressive MIMO beamforming. The objective

was to visualize the evolution of the multipath channel over time. The data was divided into two

hour intervals, 32 snapshots per interval (4 snapshots per 15 minutes = 32 snapshots per two

hours), and the estimate Ĥa from each snapshot was normalized to limit local SNR fluctuations.

All normalized estimates of Ĥa within an interval were averaged to produce Ĥa
int , representing

the fraction of path gain through each angle during the interval, normalized to account for power

fluctuations between snapshots. Formally,
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Ĥa
int =

1
N

N

∑
n=1

Ĥa
n

∑i, j |Ĥa
n,i, j|

, (3.24)

where Ĥa
n,i, j is the (i, j)th element of the estimated angular domain channel matrix from

snapshot n, and N is the number of snapshots in the interval. Note that the elements of each Ĥa
int

sum to one. Ĥa
int is plotted in figures 3.6-3.8 for all two hour intervals between January 24th and

January 26th, 2016.

We observe from the received power measurements of figure 3.5 that an atmospheric

duct existed on January 26th. Figures 3.6-3.8 show the evolution of the multipath channel from

January 24th through January 26. On January 24th the channel appears stable. There is little

fluctuation in received power (mostly occurring between midnight and 6 AM) and two dominant

path angle pairs are present at each interval. On January 25th, the received power measurements

from figure 3.5 indicate the possible formation of a weak duct between midnight and 10 AM, and

a strong duct after 6 PM. Active path angle pairs from January 25th presented in figure 3.7 do not

show significant variation from those of January 24th. Again two dominant path angle pairs are

present in the majority of the data.

Received power on January 26th (see figure 3.5) indicate the presence of a duct. Figure

3.8 shows that the multipath channel varied rapidly during daylight hours, but was stable and

indistinguishable from a non-ducting channel during nighttime. The impact of ducting appears

to be a lack of stability in the active path angle pairs, particularly in daylight hours. Figure 3.9

shows Ĥa
int over much longer intervals of low and high measurements of received power. During

low received power measurements of active path angle pairs are distributed tightly about specific

receive angles, while high received power measurements lead to more unpredictable path angle

pairs. It is possible that during periods of high receive power non-linearities in the receiver

hardware caused inaccuracies in the data and is responsible for the increased variability of active

path angle pairs during ducting, but this does not explain why these path angle pairs appear to
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Figure 3.6: Averaged normalized path gain Ĥa
int (from eq (3.24)) over 2 hour (32 snapshot)

intervals vs. AoA and AoD taken on January 24, 2016.

fluctuate only during daylight hours in figure 3.8.

3.7 Conclusion

Compressive MIMO beamforming was simulated and applied to data recorded from

a MIMO system. Simulations showed that compressive MIMO beamforming is capable of

accurately identifying multipath signals with higher resolution than conventional beamforming

and the 2D MUSIC algorithm. A MIMO array was set up in a ducting hotspot along the coast

of southern California for the purpose of monitoring the evolution of its multipath channel over

time. Matched filter processing of the received data confirmed the arrival of signals from the

transmitters. An optimal estimate of the channel was made four times every fifteen minutes. From

each channel measurement an angular domain channel matrix was calculated using compressive

MIMO beamforming. The evolution of active path angle pairs from the angular domain channel

matrix were examined over the measurement period.
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Figure 3.7: Averaged normalized path gain Ĥa
int (from eq (3.24)) over 2 hour (32 snapshot)

intervals vs. AoA and AoD taken on January 25, 2016.

Figure 3.8: Averaged normalized path gain Ĥa
int (from eq (3.24)) over 2 hour (32 snapshot)

intervals vs. AoA and AoD taken on January 26, 2016.
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Figure 3.9: Averaged normalized path gain Ĥa
int (from eq (3.24)) over long intervals of high

and low received power.
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The received power from the channel was used to determine the presence of ducting

with periods of high received power assumed to indicate ducting and low received power to

indicate a standard atmosphere. Two ducting events lasting multiple days were observed over

the measurement period. The MIMO paths did not appear strongly related to received power or

predictive of ducting. The active path angle pairs observed during ducting events were found to

come from a wider range of path angles. Path angle pairs traveled by communications signals

during ducting events were found to sometimes change quickly and unpredictably compared to

those observed when no ducts were present.

No conclusive evidence was found that active path angle abnormalities from received

MIMO communications signals can be used to predict ducting. The data, however, is only

representative of one nearshore channel between points in southern California, and results may

differ for channels in alternate locations. More data collection is required before conclusions can

be drawn about the relation between ducting and the shape of a MIMO multipath channel. We

suggest that refractivity profiles be taken alongside MIMO data in future related work so that the

precise shape of the duct can be compared with the active path angle pairs of the MIMO signal.

3.8 Appendix

3.8.1 2D Conventional Beamforming

Like compressive MIMO beamforming, conventional beamforming (CBF) takes in a

channel estimate Ĥ and outputs an estimate of the angular domain channel matrix Ha
CBF . From

(3.2), a channel matrix H is the sum of P rank 1 matrices, each representing a path from transmitter

to receiver. With this understanding we define dictionaries [6]

SR ∈ CNR×QR =

[
aR(−θmin), . . . ,aR(θmax)

]
, (3.25)
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ST ∈ CNT×QT =

[
aT (−φmin), . . . ,aT (φmax)

]
, (3.26)

where QR and QT are the number of bins into which the transmit and receive angle space

is divided. The dictionaries in (3.25) and (4.20) have columns representing the array responses

from signals arriving and departing from different angles. Larger QR and QT result in dictionaries

that more finely divide the angular spectrum.

The angular domain representation of a channel H for conventional beamforming [6] is

defined as

Ha
CBF = SH

R HST . (3.27)

Unlike compressive MIMO beamforming, the formulation of Ha
CBF in eq (3.27) does

not assume sparsity in Ha
CBF , so the CBF estimate of Ha is inherently different from that of

compressive MIMO beamforming.

3.8.2 2D MUSIC

The 2D MUSIC algorithm [30], is a variation of the popular MUSIC subspace method

[27]. Increased resolution is achieved by separating the signal and noise subspaces of the channel

matrix through eigen-decomposition. The idea is that contributions to the channel H from noise

are contained in the smallest eigenvalues of the channel covariance matrix, and by removing such

eigenvalues, a de-noised version of the channel is created.

The channel covariance is

R = E[hhH ], (3.28)

where h = vec(H), which has eigen-decomposition
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R = USΛSUH
S +UNΛNUH

N . (3.29)

Here US and UN are the matrices whose columns contain the eigenvectors of the signal

and noise subspaces, and ΛS, ΛN are diagonal matrices whose elements are the corresponding

eigenvalues. If the signal primarily travels through n paths, the dimension of the signal subspace

is n. Under this assumption US will contain the n eigenvectors corresponding to the n largest

eigenvalues. The spectrum function for 2D MUSIC is given as [11]

F(θ,φ) =
1

ãH(θ,φ)UNUH
N ã(θ,φ)

. (3.30)

F(θ,φ) is a continuous function which represents the relative strength of the signal

traveling through angles (θ,φ), similar to estimates of Ha from CBF and compressive MIMO

beamforming. An example of F(θ,φ) is shown in figure 3.2.
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Chapter 4

Gridless DOA Estimation and

Root-MUSIC for Non-Uniform Arrays

The problem of gridless direction of arrival (DOA) estimation is addressed in the non-

uniform array (NUA) case. Traditionally, gridless DOA estimation and root-MUSIC are only

applicable for measurements from a uniform linear array (ULA). This is because the sample

covariance matrix of ULA measurements has Toeplitz structure, and both algorithms are based on

the Vandermonde decomposition of a Toeplitz matrix. The Vandermonde decomposition breaks a

Toeplitz matrix into its harmonic components, from which the DOAs are estimated. First, we

present the ‘irregular’ Toeplitz matrix and irregular Vandermonde decomposition (IVD), which

generalizes the Vandermonde decomposition to apply to a more general set of matrices. It is

shown that the IVD is related to the MUSIC and root-MUSIC algorithms. Next, gridless DOA

is generalized to the NUA case using IVD. The resulting non-convex optimization problem is

solved using alternating projections (AP). A numerical analysis is performed on the AP based

solution which shows that the generalization to NUAs has similar performance to traditional

gridless DOA.
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4.1 Introduction

Estimating the direction of arrival (DOA) of one or more signals arriving at an array of

sensors is an important topic in array signal processing and has a wide range of applications in

radar, sonar, wireless communications, etc. Recently, the focus of DOA estimation has turned

from classical subspace based DOA algorithms including MUSIC, root-MUSIC, and ESPRIT

[1, 2, 3, 4] to newer compressive sensing based methods such as compressive DOA [5, 6, 7].

Compressive methods have the advantage that they are high resolution (resolve nearby DOAs),

and require only a single measurement snapshot.

Early compressive DOA techniques approximated the measurements as a linear combina-

tion of a few array patterns from DOAs picked out of a grid of possible DOAs. However, this

technique suffers from errors due to grid mismatch because true DOAs are not on a grid [8]. As a

response came the family of off-grid, or gridless methods, which exploit sparsity in the atomic

norm of the measurements [9, 10, 11, 12]. The atomic norm is the minimum number of “atoms”

from a manifold required to reconstruct a vector, thus gridless DOA is the continuous analog to

gridded compressive DOA.

Gridless DOA is an application of the continuous compressed sensing (CCS) spectral

estimation problem, which was introduced in [9]. There have been many adaptations of CCS to

related problems [13, 14], however, the atomic norm minimization formulation of gridless DOA

for a line array is the focus of this work [15, 16]. There are other similar algorithms such as the

enhanced matrix completion (EMaC) method [17] and gridless SPICE [11] whose formulations

are similar to gridless DOA. We refer the reader to [18] for a comprehensive review of CCS for

DOA.

CCS involves solving a semi-definite programming problem (SDP) whose objective is

to find the lowest rank Toeplitz matrix which can explain the measurements. The frequencies

composing the signal can be recovered through Vandermonde decomposition of the optimal
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Toeplitz matrix [19]. This decomposition is known to be unique when the Toeplitz matrix is rank

deficient [4]. In the context of DOA estimation, the parameters of the Vandermonde matrices,

known as harmonics, indicate the DOAs. The weakness of gridless methods is that they are

limited to regularly sampled measurements that can only be taken from a uniform linear array

(ULA).

There have been some recent efforts towards extending gridless DOA to NUAs [20, 21, 22,

23]. Many of these are based on array interpolation, where the manifold of a NUA is interpolated

back to that of a ULA. This idea traces back to “Fourier domain root-MUSIC” [24], which was

used to extend the root-MUSIC algorithm to NUAs. There are many other interpolation based

techniques for adapting older DOA algorithms to NUAs [25, 26, 27, 28, 29, 30, 31]. A drawback

of these techniques is that the interpolation is inaccurate for the whole array field of view, and

must be performed over many sectors of the array manifold.

This paper generalizes gridless DOA and root-MUSIC to NUAs by working directly on

the NUA measurements (no interpolation). This is achieved through the irregular Toeplitz and

irregular Vandermonde matrices. The word ‘irregular’ refers to the irregular sampling of the wave

field by a NUA. The irregular Toeplitz matrix can be decomposed into irregular Vandermonde

components, similar to Toeplitz and Vandermonde matrices. This allows for both root-MUSIC and

gridless DOA to be extended to NUAs. The DOAs are recovered through irregular Vandermonde

decomposition (IVD) of the irregular Toeplitz matrix.

The proposed extension of gridless DOA to NUAs is a rank minimization problem, which

is non-convex [32]. A non-convex optimization problem is typically substituted for its convex

relaxation and solved using a general solver [33], such as the alternating directions method of

multipliers (ADMM) [34]. However, the proposed extension to NUAs cannot be easily cast

to its convex relaxation. Instead, the proposed solution is based on the alternating projections

(AP) algorithm [35, pg. 606], which finds a point of intersection between two or more sets by

iteratively projecting an initial estimate between the sets.
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The AP algorithm has been previously used to solve CCS problems [36], and implemen-

tation of AP to gridless DOA for NUAs is formulated by projecting onto the irregular Toeplitz

set. The use of AP for solving similar non-convex optimization problems gives promising results

[36, 37, 38]. A comparison of AP based gridless DOA against several competing algorithms,

including ADMM, reveals the AP solution has similar or superior performance. An analysis is

provided of the algorithm’s performance in challenging scenarios such as when the measurements

are corrupted with noise or the DOAs are closely spaced.

The paper is structured as follows: Sec. 4.2 contains an overview of gridless DOA

and relevant concepts such as the Vandermonde decomposition and root-MUSIC algorithm. In

Sec. 4.3, the IVD is introduced, which allows any positive semi-definite (PSD) matrix to be

decomposed into harmonics sampled at known irregular intervals (array sensor locations). The

IVD allows for non-Toeplitz matrices to be decomposed into their harmonic components. The

DOAs are given by the harmonics. In Sec. 4.4, a modification of the gridless DOA problem

is presented such that it can be applied to NUAs. A solution to the reformulated gridless DOA

problem based on the AP algorithm is proposed. In Sec. 4.5, the proposed algorithm is tested on

simulated measurements from both ULAs and NUAs. The results are for DOA estimation, but

are also applicable to the broader CCS problem to irregularly sampled signals.

In the remainder of this chapter, lowercase bold letters represent vectors and uppercase

bold letters represent matrices. Below is a short list of notation that will be used.

• T Vector or matrix transpose.

• ∗ Complex conjugate.

• H Vector or matrix conjugate transpose.

• † Moore-Penrose pseudo-inverse.

• ∠ Phase angle.

• ⊥ Orthogonal.
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• � Positive semi-definite.

• ‖.‖2 Two norm.

• ‖.‖F Frobenious norm.

• E Expected value.

• Tr Matrix trace.

• diag(X) Diagonal elements of matrix X.

• diag(x) Diagonal matrix with elements x.

• span(X) columnspace of matrix X.

• I Identity matrix.

• 1 Ones matrix.

• 0 Zeros matrix.

• xy Element-wise exponentiation.

• U(a,b) Uniform distribution from a to b.

4.2 Background: DOA Estimation for ULAs

4.2.1 Model Framework

Consider an array of M sensors receiving uncorrelated signals from K narrowband sources

located in the far field of the array. Signals from each source arrive from angles θ = [θ1 . . . θK]
T,

which are given in radians. The sources are assumed to be in the same plane as the array, and

the sensors are positioned at points on a line given by r = [r1 . . . rM]T, where each value ri

denotes the distance of sensor i from an arbitrary origin point in units of half-wavelengths. By

using half-wavelengths as the primary unit of distance, many of the equations surrounding DOA

estimation are simplified. If each sensor records L snapshots of data, the measured signal can be
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modeled as

Y = Z+N,

Z = As(r,θ)X,

(4.1)

where Y ∈ CM×L are the recorded measurements, X = [x1 . . . xK]
T ∈ CK×L contains the signals

from each of K sources, Gaussian uncorrelated measurement noise is contained in N ∈ CM×L,

and

As(r,θ) = [a(r,θ1) . . . a(r,θK)], (4.2)

a(r,θ) = [e− jπr1 sinθ . . . e− jπrM sinθ]T, (4.3)

is the array steering matrix whose columns model the phase pattern across the array from a signal

arriving at angle θ. The column vectors are known as array steering vectors and are defined

over θ ∈ [−π

2 ,
π

2 ). The goal is to recover θ given only knowledge of the sensor positions r and

measurements Y.

4.2.2 Vandermonde and Toeplitz Matrices

A Vandermonde matrix CM×K is defined as

V(z) = [z0 z1 . . . z(M−1)]T,

= [v(z1) . . . v(zK)],

(4.4)

where z = [z1 . . . zK]
T fully parameterizes the Vandermonde matrix [39, p. 409]. A single column

of the Vandermonde matrix is defined as v(z) = [1 z1 . . . zM−1]T.

The array steering matrix of a ULA will have Vandermonde structure. Sensor positions of
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a ULA are described as

rULA = α[0 1 . . . M−1]T+β, (4.5)

where α is an arbitrary scaling parameter and β is an arbitrary shifting parameter. In this case the

θ parameters of (4.2) are related to the z parameters of (4.4) by

zk = e− jπ(α+β)sin(θk), (4.6)

θk =−sin−1
( ∠zk

(α+β)π

)
. (4.7)

The values of rULA manifest as scaled and shifted integers. The classical choice of parameters has

(α,β) = (1,0), and corresponds to a ULA with half-wavelength sensor spacing.

It is well known that any Toeplitz matrix, T , can be decomposed into Vandermonde

components,

T = V(z)DV(z)H, (4.8)

where D ∈ RK×K is diagonal with positive entries, the z parameters have unit magnitude, and T

is a Hermitian symmetric Toeplitz matrix defined as

T (u) =



u1 u∗2 · · · u∗M

u2 u1 · · · u∗M−1
...

... . . . ...

uM uM−1 · · · u1


. (4.9)

The first column, u, of T fully parameterizes the matrix. The decomposition of (4.8) is unique

when the Toeplitz matrix is not full rank [19]. The set of Toeplitz matrices will be denoted by the

calligraphic letter T .

The decomposition (4.8) will here be referred to as Vandermonde decomposition.
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Figure 4.1: Null spectrum, (4.15), for half-wavelength spaced ULA measurements generated
according to (4.1) using M = 21, K = 3, L = 10. DOAs located at θ = [−7.2,15.9,42.1]◦ (red
x). a) Null spectrum contour of noiseless measurements. Red dashed line marks the complex
unit circle. b) Same as a) with added noise such that ‖Z‖F = ‖N‖F , see (4.1).

4.2.3 Root-MUSIC and Vandermonde Decoposition

Root-MUSIC is a subspace based DOA algorithm [1, 2]. The algorithm consists of

forming a polynomial from the sample covariance matrix of ULA measurements. The complex

roots of the polynomial, z, are used to estimate the DOAs through (4.7). Without noise, the sample

covariance matrix is Toeplitz and the polynomial roots are the z parameters of its Vandermonde

decomposition (4.8). Root-MUSIC is valid only for measurements taken at a ULA.

The sample covariance matrix, Ryy, is

Ryy =
1
L

YYH, E[Ryy] =
(
AsΣX AH

s +ΣN
)
,

ΣX =
1
L
E
[
XXH

]
, ΣN =

1
L
E
[
NNH

]
= σ

2
NI,

(4.10)

where ΣN is the expected noise covariance matrix, which becomes σ2
NI for uncorrelated noise

with variance σ2
N .
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If the measurements are noiseless, then span(Ryy)= span(As). In this case, the columnspace

and left nullspace of Ryy are known as the signal and noise subspaces respectively. When noise

is present in the measurements an estimated basis to both spaces is found from the eigen-

decomposition of Ryy,

Ryy = USΛSUH
S +UNΛNUH

N , (4.11)

where ΛS ∈RK×K is diagonal with the K largest eigenvalues of Ryy, US ∈CM×K is a matrix whose

columns are the corresponding eigenvectors, and ΛN ∈ R(M−K)×(M−K) and UN ∈ CM×(M−K) are

matrices containing the remaining noise eigenvalues and eigenvectors. The matrices US and UN

are estimated bases to the signal and noise subspaces respectively. It must be noted that the signal

and noise subspaces can only be estimated when L≥ K, because at least K snapshots are required

to build a rank K approximation of Ryy.

For noise free measurements, UN will be composed of eigenvectors whose corresponding

eigenvalues are 0. In this case UN exactly spans the left nullspace of As and

UN ⊥ As =⇒ UH
NAs = 0, (4.12)

When noise is present, the eigenvectors composing UN will have non-zero corresponding eigen-

values and UN will be an approximation of the noise subspace.

Because the array is assumed uniform and linear, any array steering vector can be substi-

tuted with a column from a Vandermonde matrix. From (4.12), the null spectrum is formed [4,

p.1159]

D(z) = ‖UH
Na(θ)‖2

2 = a(θ)HUNUH
Na(θ),

= v(
1
z
)TUNUH

Nv(z),
(4.13)

for |z|= 1. If we define the matrix

G = UNUH
N , (4.14)
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for G ∈ CM×M, then the null spectrum can be expanded into a polynomial in z,

di =
M

∑
m1,m2

Gm1,m2, (m1−m2) = i,

D(z) =d−(M−1)z
−(M−1)+ · · ·+dM−1zM−1,

(4.15)

where di are the sums along the diagonals of G. Some properties of D(z), z ∈ C, are as follows:

i. di = d∗−i, because G is Hermitian by construction.

ii. As a result of (4.12), K root pairs appear near the unit circle (noise present), or on the unit

circle (noise free) [2].

iii. If one root exists at z̃, another root will exist at 1
z̃∗ because D(z) = D( 1

z∗ ).

For root-MUSIC, the K roots inside the unit circle with largest magnitude, |z|, are taken

as DOA estimates using the mapping of (4.7) [4]. These roots produce highly reliable estimates

of the DOAs. When noise is present in the measurements, the accuracy of the DOA estimates is

related to how well the true noise subspace was approximated by UN .

Note that D(z) was derived only for z on the unit circle, but its roots located off the unit

circle are used as DOA estimates. There is no physically meaningful reason behind this decision.

Rather, it should be viewed as a useful mathematical trick. The polynomial expansion of D(z) is

especially useful because its roots can be calculated efficiently.

Figure 4.1 depicts an example null spectrum from half-wavelength spaced ULA measure-

ments, which highlights points ii and iii. Even when the measurements are severely corrupted by

noise, the null spectrum can be used to obtain good estimates of the DOA locations.

When Ryy is noise free, it is rank K and takes Toeplitz structure. Additionally, K (double)

roots appear on the unit circle of its null spectrum. Those roots are the elements, z, of the

Vandermonde decomposition of Ryy, see (4.8). Thus the procedure of root-MUSIC finds the
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z parameters of a Vandermonde decomposition. Because root-MUSIC works for covariance

matrices corrupted by noise, it can be viewed as a method for approximating the z parameters of

a ‘noisy’ Toeplitz matrix.

4.2.4 Gridless DOA for Uniform Linear Arrays

In gridless DOA estimation, the DOAs composing Z, (4.1), are found by minimizing the

atomic `0 norm of atoms defined by the manifold of the array steering matrix [18].

The noiseless signal contained in Z can be re-written as

Z =
K

∑
k=1

a(r,θk)xHk =
K

∑
k=1

cka(r,θk)bH
k (4.16)

where ck = ‖x‖2 > 0, bk = c−1
k xk, thus ‖bk‖2 = 1. We define the atomic set as

A = {a(r,θk,bk) = a(r,θk)bH
k }, (4.17)

which can be thought of as the set of rank 1 matrices of constrained norm that can be constructed

from the manifold a(r,θ) over all values of θ. Expressing Z as a linear combination of K atoms

in A brings us to the definition of the atomic `0 norm formulation of Z,

‖Z‖A ,0 = inf
ck,θk,bk

{
K : Z =

K

∑
k=1

cka(r,θk)bH
k

}
. (4.18)

Gridless DOA is concerned with finding a solution to (4.18). Towards this goal, consider

the matrix

S =
K

∑
k=1

c2
k

a(r,θk)

bk


a(r,θk)

bk


H

=

 T Z

ZH Q

 , (4.19)
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where

T = As(r,θ)DAs(r,θ)H, (4.20)

Q = XHX, (4.21)

and D ∈ RK×K is diagonal with elements c2
k . By definition S is a positive semi-definite (PSD)

matrix.

In the ULA case the array steering matrix is Vandermonde and T ∈ T . Theorem 6.2 of

[18] tells us that the atomic `0 norm of (4.18) in the ULA case will be the optimal solution of the

following rank constrained optimization problem,

minimize
T∈T ,Q

rank
(
T
)
, subject to S� 0. (4.22)

Once the optimal T is found, the DOAs θk for k = 1, . . . ,K can be recovered through Vandermonde

decomposition (or root-MUSIC) of T. Thus (5.13) can be viewed as a means of estimating the full

rank covariance matrix of a single measurement snapshot. This is possible because the covariance

matrix has low rank Toeplitz structure.

State-of-the-art optimization solvers are only suitable for convex problems. In practice,

the non-convex optimization problem of (5.13) is substituted for its convex relaxation [18],

minimize
T∈T ,Q

Tr
(
T
)
+Tr

(
Q
)
, subject to S� 0. (4.23)

When the matrix rank is substituted for the matrix trace the optimization of (5.13) is in the form of

a semi-definite program (SDP), to which there are many available solvers [33]. The derivation of

the popular alternating directions method of multipliers (ADMM) algorithm [34] to solve (5.15)

is provided in App. 4.7.
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4.3 Extension to Non-Uniform Array Geometries

We introduce a generalization of the Vandermonde matrix, which we call the irregular

Vandermonde matrix. In the same way a Toeplitz matrix is constructed from Vandermonde

components, we define an irregular Toeplitz matrix constructed from irregular Vandermonde

components. It is then shown that irregular Toeplitz matrices can be decomposed back to their

irregular Vandermonde components.

We deem this decomposition the irregular Vandermonde decomposition (IVD) because it

can be interpreted as the Vandermonde decomposition of an irregularly sampled signal (i.e. the

positions of the sensors act as sample locations of a spectrally sparse signal whose frequencies are

related to the DOAs). Furthermore, the array steering matrix of a NUA has irregular Vandermonde

structure. We propose an ‘irregular’ root-MUSIC algorithm, which is related to the IVD in the

same way root-MUSIC is related to the Vandermonde decomposition.

The IVD is derived by carrying out the steps of the Vandermonde decomposition on the

irregular Vandermonde matrix. Under this framework, the null spectrum no longer has polynomial

structure and cannot be easily rooted. Regardless, the roots of interest are the 2K root pairs which

lie on or near the unit circle. A simple method to recover the relevant information from these

roots is presented, which does not resort to computationally expensive numerical methods.

The key difference between the Vandermonde decomposition and the IVD is an additional

vector parameter involved in the IVD which specifies the sensor positions. For any vector of

sensor positions there is a set of matrices akin to the Toeplitz set containing all matrices that can

be decomposed exactly by the IVD. This set is used in Sec. 4.4 to extend gridless DOA to NUA

measurements.
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4.3.1 Irregular Vandermonde and Toeplitz Matrices

Consider an irregular Vandermonde matrix CM×K defined as [40],

W(γ,z) = [zγ1 . . . zγM ]T,

= [w(γ,z1) . . . w(γ,zK)],

(4.24)

where γi is the ith element of a vector γ ∈ RM and z ∈ CK , and w(γ,z) = [zγ1 . . . zγM ]T.

In the context of DOA estimation, As(r,θ) = W(γ,z), using the mapping

γ = r, zk = e− jπsinθk , θk =−sin−1(
∠zk

π
). (4.25)

Notice that this is a generalization of the mapping presented in (4.5–4.7).

Following (4.8), we construct an irregular Toeplitz matrix from irregular Vandermonde

matrices in the same way a Toeplitz matrix is constructed from Vandermonde matrices. Define

T γγ as the irregular Toeplitz set for parameter vector γ,

T γγ = {T : T = W(γ,z)DW(γ,z)H, |z|= 1}, (4.26)

where D ∈ RK×K is a diagonal matrix with elements c2
k . Each unique parameter vector, γ, is

associated with an irregular Toeplitz set, T γγ. The Toeplitz set is reached by any parameter vector

corresponding to a ULA, γ = α[0, . . . ,M−1]T+β.

The expected sample covariance matrix for NUA measurements with sensor positions

r = γ is a diagonally loaded member of T γγ,

E[Ryy] = As(r,θ)ΣX As(r,θ)H+ΣN

= W(γ,z)ΣX W(γ,z)H+σ
2
NI.

(4.27)
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Figure 4.2: Irregular null spectrum, (4.29), for NUA measurements generated according to (4.1)
using M = 21, K = 3, L = 10. DOAs located at θ = [−7.24,15.96,42.07]◦ (red x). a) Irregular
null spectrum contour of noiseless measurements. Red dashed line marks the complex unit
circle. b) Same as a) with added noise such that ‖Z‖F = ‖N‖F , see (4.1). c) Evaluation of a) on
unit circle. d) Evaluation of b) on unit circle.

for ΣX and ΣN in (4.10). When the measurements are noiseless ΣN = 0 and Ryy ∈ T γγ.

4.3.2 Irregular Root-MUSIC and Vandermonde Decomposition

Consider the sample covariance matrix, T ∈ CM×M, from a NUA constructed as in (4.27).

Following (4.13), the null spectrum of T is

D̃(z) = ‖UH
Na(r,θ)‖2

2 = a(r,θ)HUNUH
Na(r,θ)

= w(γ,
1
z
)TGw(γ,z),

(4.28)
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for r = γ and G in (4.14). Because (4.28) is constructed from irregular Vandermonde matrices,

we refer to it as the irregular null spectrum. The expansion of D̃(z) is

D̃(z) =
M

∑
m=1

M

∑
n=1

gm,nzγm−γn, (4.29)

where gm,n is element (m,n) of G. We treat the domain of D̃(z) as though it were the set of

complex numbers, despite deriving D̃(z) only for z on the unit circle.

Figure 4.2 depicts an example irregular null spectrum, D̃(z), from NUA measurements.

The behavior of the irregular null spectrum is similar to that of the null spectrum from a half-

wavelength spaced ULA in Fig. 4.1. Note that the irregular null spectrum has a discontinuity at

∠z = π, because for nearly all array geometries D̃(z)|∠z=π+ 6= D̃(z)|∠z=π− .

To understand why this is true, consider that ∠z = π± corresponds to DOAs θ = ±π

2 ,

(4.25). The discontinuity is due to the inequality of the NUA array manifold at the extreme values

of θ. The half-wavelength spaced ULA is one of several exceptional array geometries which

produce the same array pattern across the array for signals arriving at ±90◦,

e− jπ(r+β)sin( π

2 ) = e− jπ(r+β)sin(− π

2 ), r ∈ Z. (4.30)

Properties i-iii from Sec. 4.2.3 hold for the irregular null spectrum, (the equivalent property

i for the irregular null spectrum is gm,n = g∗n,m). Unlike (4.15), the irregular null spectrum no

longer expands to a polynomial that can be easily rooted. Instead, the expansion of (4.29) is a

non-linear equation for which there is no known closed form solution to obtain its roots.

We exploit the following two facts about D̃(z):

1. The roots of interest are those that appear on or near the unit circle, as seen by (4.12).

2. Only the phase angle of the roots of interest are used to generate DOA estimates.

Thus the local minimums of D̃(z) evaluated on the unit circle give DOA estimates with similar
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accuracy as those given by the actual roots. D̃(z) evaluated on the unit circle is the inverse of the

MUSIC spectrum [41].

The arguments, z, producing the K smallest local minima of D̃(z) are taken as the DOA

estimates using (4.25). Because each root of D̃(z) has a root pair on the same radial line (i.e.

∠z̃ = ∠ 1
z̃∗ ), a saddle point is expected to lie on or near this radial line. These saddle points

manifest as local minima of D̃(z) evaluated over |z|= 1, and provide good estimates of the DOAs.

An example is provided in Fig. 4.2.

When T ∈ T γγ, all roots of interest are guaranteed to appear on the unit circle because

G ⊥W(γ,z). Evaluating D̃(z) on the unit circle yields all root locations, z, which perfectly

reconstructs W(γ,z) from (4.26). The signal powers, c = [c2
1 . . . c2

K]
T are found from,

c = diag
(

W†T(W†)H
)
,

W† = (WHW)−1WH,

(4.31)

where D = diag(c), and W(γ,z) has been shortened to W. By this procedure it is possible to

decompose an irregular Toeplitz matrix to irregular Vandermonde components. Pseudocode for

the IVD algorithm is given in Sec. 4.3.4.

4.3.3 Irregular Toeplitz Structure

This section provides insight into the specific structure shared by all members of T γγ,

similar to Toeplitz matrices. Consider a noiseless sample covariance matrix, this time constructed

as an irregular Toeplitz matrix,

Rzz = As(r,θ)ΣX As(r,θ)H = W(γ,z)DW(γ,z)H, (4.32)
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where ΣX = D = diag(c), and (γ,z) is related to (r,θ) by (4.25). Each element of Rzz can be

written as,

(Rzz)m,n =
K

∑
k=1

c2
kz(γm−γn)

k . (4.33)

In the ULA case, γ = α[0,1, . . . ,(M−1)]T+β, and it can be seen that γm− γn will take the same

value across each diagonal, producing the Toeplitz structure. In the NUA case element (m,n) of

Rzz is the sum of K complex exponential functions sampled at element (m,n) of the Euclidean

distance matrix of γ [35].

It can be shown that the irregular Toeplitz set for any γ is convex. Consider two matrices

in T γγ composed from irregular Vandermonde matrices with parameters z1 and z2,

T1 = W(γ,z1)D1W(γ,z1)
H, (4.34)

T2 = W(γ,z2)D2W(γ,z2)
H. (4.35)

Then their convex combination is

λT1+(1−λ)T2 =

W
(

γ, [z1 z2]
)λD1 0

0 (1−λ)D2

W
(

γ, [z1 z2]
)H

,
(4.36)

for 0≤ λ≤ 1. The right hand side of (4.36) is a member of T γγ composed of irregular Vander-

monde matrices with parameters [z1 z2].

4.3.4 IVD and Irregular Root-MUSIC

The IVD presents a computationally efficient extension of root-MUSIC to NUA measure-

ments. We present pseudocode for the algorithms here.

The IVD takes as input the sensor positions, γ, the dimension of the noise subspace, K, and
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Algorithm 1 : (z,c) = IVD(T,γ,K)

Require: T ∈ CM×M, γ ∈ RM, K ∈ Z
[U,Σ,V] = svd(T)
UN= U( : ,K +1 : M)
z= find(argmin( D̃(z) ), |z|= 1 ), see (4.29) and (4.42)
c = diag

(
W(γ,z)†T(W(γ,z)†)H

)
Algorithm 2 : θ̂ = IrregularRootMusic(Y,γ,K)

Require: Y ∈ CM×L, γ ∈ RM, K ∈ Z, L≥ K
T = 1

LYYH

(z,c) = IVD(T,γ,K)
θ̂ =−asin(angle(z)/π)

the matrix to be decomposed, T. The outputs are the harmonics, z, and the diagonal matrix, D. If T

is a sample covariance matrix, then the harmonics are related to the DOAs by (4.25). In Algorithm

1, svd() is the singular value decomposition of a matrix and find(argmin(D̃(z)), |z|= 1) outputs

the values of z producing the K smallest local minima of D̃(z) on the unit circle. For simulations

in Sec. 4.5, a gridded search over 10M evenly spaced points on the unit circle was used to find

intervals containing minima, then the estimated minima locations were iteratively refined using a

golden section search algorithm [42].

The IVD allows for the extension of root-MUSIC to array measurements taken at a

non-uniform array. We deem this irregular root-MUSIC, which is presented in Algorithm 2.

Irregular root-MUSIC takes the measurements, Y, as inputs and outputs the DOAs. The number

of measurement snapshots must be at least as large as the number of DOAs present (L≥ K) or it

will be impossible to accurately estimate the noise subspace and the resulting DOA estimates will

be incorrect. The sensor positions, γ, input to Algorithm 2 are in units of half-wavelengths.
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4.4 Gridless DOA for Non-Uniform Arrays

The irregular Toeplitz set enables gridless DOA to be generalized to the NUA case. In

this section we modify the optimization for gridless DOA to extend its use to measurements from

NUAs, then propose an alternating projections (AP) based algorithm for solving said optimization.

The AP solution is based on similar AP based algorithms that were recently examined in the

context of CCS [36, 37, 38].

4.4.1 Extension to Non-Uniform Arrays

To extend gridless DOA to NUAs, the optimization of (5.13) is modified such that the

optimal matrix belongs to T γγ for γ = r,

minimize
T∈T γγ,Q

rank
(
T
)
, subject to S� 0. (4.37)

The optimization of (4.37) can be further simplified if we define the rank constrained irregular

Toeplitz set as

T K
γγ = {T : T ∈ T γγ, rank(T)≤ K}. (4.38)

This is the set of rank K matrices that are members of T γγ. The NUA gridless DOA problem then

simplifies to,

minimize
T∈T K

γγ ,Q
‖S‖F subject to S� 0. (4.39)

Once the optimal T is known, the IVD (Algorithm 1) can be applied to recover the DOAs and

source powers.
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4.4.2 Important Projections NUA Gridless DOA

Before it is possible to formulate the optimization of (4.39) using AP, we define some

important projections.

Projection to the Toeplitz Set

For ULA measurements, the projection onto T K
γγ can be replaced by a projection onto T .

The projection of a matrix, T ∈ CM×M, to the Toeplitz set is [43],

PT (T) = T (u)

ui =
1

2(M− i)

(M−i)

∑
j=1

T j, j+i−1 +T∗j+i−1, j.

(4.40)

In words, the Toeplitz projection, PT (T), is achieved by replacing the elements along each

diagonal with their mean.

Projection to the Irregular Toeplitz Set

Recall the definition of T K
γγ from (4.38). Consider a matrix T /∈ T K

γγ . The goal is to project

T onto T K
γγ ,

PT K
γγ

(T) = W(γ, z̃)DW(γ, z̃)H, (4.41)

for some set of parameters z̃ ∈ CK . A projection onto T K
γγ can be achieved by constructing an

irregular Toeplitz matrix using approximate parameters z̃ retrieved from the local minima of the

irregular null spectrum evaluated on the unit circle,

z̃ = arg
k

min
|z|=1

D̃(z), k = 1, . . . ,K, (4.42)

where argmink
z denotes the argument, z, which produces the kth smallest local minima.
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Algorithm 3 : T̃ = PT γ
(T,γ,K)

Require: T ∈ CM×M, γ ∈ RM, K ∈ Z, M ≥ K ≥ 1
(z,c) = IVD(T,γ,K)
T̃ = W(γ,z)diag(c)W(γ,z)H

Because T /∈ T γγ, the roots of its null spectrum are not on the unit circle. Instead,

approximate z parameters are estimated from the irregular null spectrum. Once z̃ is known,

the corresponding D matrix containing the signal powers is estimated (4.31). Pseudocode for

projection onto T K
γγ is given in Algorithm 3. The algorithm involves computing the IVD for a

given matrix and reconstructing the matrix from the IVD outputs. The structure of T̃ makes clear

that T̃ ∈ T K
γγ .

Projection to the Positive Semi-Definite Cone

The set of PSD matrices is

S�0 = {M ∈ CN×N : λi ∈ R, λi ≥ 0, ∀ i}, (4.43)

where λi is the ith eigenvalue of M, with corresponding eigen vector ei. The projection onto S�0

is [44]

PS�0(M) =
N

∑
i=1

max(0,λi)eieHi . (4.44)

The set S�0 forms a cone and is convex [34].

4.4.3 Alternating Projections for NUA Gridless DOA

The AP algorithm is an optimization scheme which has found notable success when

applied to the structured low rank matrix completion problem [36, 45, 46, 37]. The basic concept

of AP is that a solution located at the intersection of two or more sets can be found by iteratively

projecting an estimate between the sets. The algorithm is guaranteed to converge when all sets
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are convex, but convergence is not guaranteed when one or more sets is non-convex (i.e. the rank

constrained set) [47]. AP can be used to solve (4.39).

Define the set

S(T K
γγ ,Y) = {M : M =

 T Y

YH Q

 ,T ∈ T K
γγ }, (4.45)

where γ, Y ∈ CM×L, and K are known and Q ∈ CL×L is a free matrix. Here γ is the array element

position vector, and Y is the measurement matrix. The projection onto S(T K
γ ,Y) is performed as

M =

B C

D Q

 ,

PS
(T K

γ ,Y)
(M) =

PT K
γ

(B) Y

YH Q

 .
(4.46)

In words, the projection is achieved by replacing the top left submatrix of M with its projection

to T K
γγ (Algorithm 3), and replacing the corner submatrices with Y and YH.

The AP algorithm for solving (4.39) is achieved by projecting an initial estimate between

S�0 and S(T K
γγ ,Y),

H(i+1) = PS�0(L
(i)),

L(i+1) = PS
(T K

γγ ,Y)
(H(i+1)),

(4.47)

for arbitrary initial estimate L(0) ∈ C(M+L)×(M+L). Upon convergence, the IVD of the M×M

upper right submatrix of S retrieves the DOAs. Pseudocode for AP based gridless DOA algorithm

is given in Algorithm 4. We deem this algorithm, “AP gridless”.

AP gridless requires prior knowledge of K. There have been many works on source
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Figure 4.3: Histogram of recovered DOAs for AP ULA (Algorithm 5) and AP gridless (Algo-
rithm 4), M = 20, L = 1, σs = 5, θ = [−2,3,75]◦ (red x). 250 trials per histogram. Left- AP
ULA. Right- AP Gridless (NUA).

number estimation [48, 49] which can be used to estimate K. Alternatively, AP gridless can be

applied for a range of K, and the sparsest solution which adequately reconstructs the measurements

can be taken as optimal.

The algorithm is called “AP ULA” when the irregular Toeplitz projection, PT K
γ

(Algorithm

3), is replaced with a Toeplitz projection, PT (4.40). AP ULA can only be used for measurements

from a ULA, and is given in Algorithm 5.
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Algorithm 4 : θ̂ = AP Gridless(Y,γ,K)

[M,L] = size(Y)
Require: γ ∈ RM, K ∈ Z, 0 < K < M

L(0) = [0,Y;YH,I]
for i = 1 : max iterations do

H(i) = PS�0(L
(i−1))

T = H(i)(1 : M,1 : M)
Q = H(i)(M+1 : end,M+1 : end)
L(i) = [PT γγ

(T,γ,K),Y;YH,Q]

if ‖L(i)−L(i−1)‖F ≤ 1e−7 then
break

end if
end for
T = L(1 : M,1 : M)
[z,∼] = IVD(T,γ,K)
θ̂ =−asin(angle(z)/π)

4.4.4 Initialization and Convergence

The AP algorithm is guaranteed to converge at a linear rate when applied between two

closed convex sets [50], however the set of matrices with rank ≤ K is non-convex, (rather, it

is quasi-convex [35]). It is not known if AP will converge when applied between a convex set

and the rank constrained set. By construction, T K
γγ is the intersection between T γγ and the rank

constrained set, thus it is also non-convex and convergence remains an open question.

Progress towards a convergence proof was achieved in [51, Theorem 3.2] and can be

summarized as it applies to (4.47) as follows:

Theorem: Let L(i),H(i) be generated according to (4.47), and L(0) ∈ S(T K
γγ ,Y) then

1. Either ‖L(i)−H(i)‖2
F → ∞ as i→ ∞ or ‖L(i)−H(i)‖2

F converges to 0.

2. If L(0) is sufficiently close to the global minimizer of (4.39), L(0) converges to the global

minimum.

Note that Theorem 1 does not guarantee the point of convergence will be the global
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Algorithm 5 : θ̂ = AP ULA(Y,γ,K)

[M,L] = size(Y)
Require: γ ∈ RM, K ∈ Z, 0 < K < M

L(0) = [0,Y;YH,I]
for i = 1 : max iterations do

H(i) = PS�0(L
(i−1))

T = H(i)(1 : M,1 : M)
Q = H(i)(M+1 : end,M+1 : end)
L(i) = [PT (T),Y;YH,Q]
if ‖L(i)−L(i−1)‖F ≤ 1e−7 then
break

end if
end for
T = L(1 : M,1 : M)
[z,∼] = IVD(T,γ,K)
θ̂ =−asin(angle(z)/π)

minimizer unless the initialization point is sufficiently nearby the optimal solution. In general, it

can only be assumed the convergence point will be a local minimum of the optimization function.

All simulations in Sec. 4.5 were performed using the initialization,

L(0) =

 0 Y

YH I

 , (4.48)

which was always observed to converge to a critical point rather than diverging. Because it

remains unknown if the initialization point will bring the algorithm to a local or global minimum,

all further analysis on the accuracy of AP for gridless DOA is left to numerical simulation

performed in Sec. 4.5.

4.5 Simulation

AP gridless (4.47) (Algorithm 4), and AP ULA (4.40) (Algorithm 5) were applied to

solve the gridless DOA problem (4.39) for simulated measurements modeled by (4.1). For each
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simulation, K randomly generated DOAs were chosen such that the minimum angular separation

was 1
M for DOAs randomly drawn between [0,1) and scaled to [−90◦,90◦). Signals contained in

the K rows of X were generated as complex values with uniformly distributed phase. The signal

from each DOA was given random amplitude σx
s , x ∈U(0,1) to model sources with different

powers. Noise, N, was drawn from a complex Gaussian distribution with mean zero and variance

I, then scaled to fit the desired signal to noise ratio (SNR) determined by

SNR = 10log10

(‖Z‖2
F

‖N‖2
F

)
. (4.49)

Array measurements were simulated using an array of M sensors distributed as both a ULA

and NUA. The NUA geometry was generated by adding random offsets drawn from a uniform

distribution between [−.5, .5) (in units of half-wavelengths) to each sensor position. No restriction

was placed on how nearby two NUA elements could be.

All simulations were performed for ULA and NUA. In the ULA case, AP gridless and

AP ULA were both applied. It was assumed K was known for each simulation. AP gridless

and AP ULA were considered converged when ‖L(i)−L(i−1)‖F ≤ 10−7, or terminated after 10K

iterations.

The accuracy of the solution was gauged by the root mean square error (RMSE) between

true, θk, and recovered, θ̂k, DOAs defined as

RMSE =

√√√√E

[
1
K

K

∑
k=1

(θk− θ̂k)2

]
. (4.50)

A maximum MSE threshold of 10◦ was used to provide an even error penalty for simulations

resulting in incorrect DOA estimates.

Sparse Bayesian learning (SBL) [52, 53, 54, 55, 56], and least absolute shrinkage and

selector operator (LASSO) [57, 58, 5, 7] methods were given a dictionary of the array manifold
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with 1◦ separation between entries (180 total). The LASSO tuning parameter was selected such

that the solution was K sparse (which requires knowledge of ‖N‖F [59]). The ADMM algorithm

was applied to ULA measurements using parameters τ = .01, and ρ = 1 (see App. 4.7).

Example results from AP ULA and AP gridless are detailed in Fig. 4.3. The AP ULA

algorithm never misclassifies a DOA when the measurement SNR is high (Fig. 4.3, top left),

and lowering the measurement SNR results in few misclassifications (Fig. 4.3, bottom left). In

contrast, there are some NUA geometries which cause AP gridless to misclassify a DOA, even

for high SNR (Fig. 4.3, top right). The rate of misclassification for the low SNR NUA case is

slightly higher than that of the ULA case (Fig. 4.3, bottom right).

Gridless DOA excels over gridded methods in the high SNR, low snapshot case. This

is due to quantization error from grid mismatch limiting the maximum accuracy of gridded

techniques. Figure 4.4 compares gridless and gridded algorithms for high SNR, single snapshot

measurements when all algorithms are run to convergence. The best achievable accuracy for a

gridded technique using 1◦ DOA separation is RMSE = .25◦. In the ULA case (Fig. 4.4, top),

all gridless techniques achieve accuracy proportional to SNR. ADMM is not as precise due to

limitations in parameter tuning. In the NUA case (Fig. 4.4, bottom) AP gridless maintains

excellent performance.

The performance of each algorithm in lower SNR scenarios is detailed in Fig. 4.5. In the

ULA case, AP gridless and AP ULA achieve similar performance to ADMM, particularly in the

single snapshot case (Fig. 4.5, top left), indicating that convex relaxation is unnecessary to solve

rank minimization problems. AP gridless and AP ULA perform slightly worse than ADMM for

low SNR multi-snapshot measurements (Fig. 4.5, bottom left), suggesting that ADMM is more

robust to noise. AP gridless is superior to gridded techniques for NUA measurements (Fig. 4.5,

top and bottom right), except in low SNR scenarios where LASSO can attain similar performance.

Irregular root MUSIC (Algorithm 2) attains near identical performance to AP gridless in the

multiple snapshot NUA case (Fig. 4.5, bottom right), for less computational cost.
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Performance of the algorithms versus array elements, M, is given in Fig. 4.6. AP Gridless

and ADMM are superior in the ULA case (Fig. 4.6, top left), as gridded methods are limited in

accuracy by grid resolution. For NUAs, AP gridless and irregular root-MUSIC are superior for

the same reason. Root-MUSIC and irregular root-MUSIC attain equal performance to AP gridless

and ADMM in the multi-snapshot case (Fig. 4.6, bottom left and right) for lower computational

complexity. This is also shown by Fig. 4.7, which compares each method vs. number of snapshots,

L. Once the number of snapshots is greater than the number of sources (L≥K), there is no benefit

to choosing a gridless technique because root-MUSIC and irregular root-MUSIC attain the same

performance as gridless methods for reduced computational cost.

To get an indication of the high resolution capability of each algorithm, Fig. 4.8 compares

AP gridless and AP ULA to conventional beamforming (CBF) and root-MUSIC for noiseless

measurements with 2 DOAs at ±θ◦. For the single snapshot case (Fig. 4.8, top), AP gridless has

difficulty resolving nearby DOAs while ADMM and AP ULA have outstanding performance.

The difference is that ADMM and AP ULA use projection to T in place of projection to T K
γγ .

PT K
γγ

(4.41), (Algorithm 3) is fundamentally different than PT (4.40). PT outputs the

nearest Toeplitz matrix in Frobenius norm to its input (orthogonal projection), which is generally

a full rank Toeplitz matrix. In contrast, PT K
γγ

outputs a rank K matrix which is not necessarily

the orthogonal projection to T K
γγ . This is because PT K

γγ

is estimated by reconstructing an irregular

Toeplitz matrix using z parameters given by the local minima of D̃(z)||z|=1, rather than the phase

angle of the roots of D̃(z). Roots of D̃(z) which are nearby in phase angle sometimes do not

produce unique local minima of D̃(z)||z|=1, resulting in suboptimal z parameter estimates. This is

only an issue when the DOAs are poorly separated and the measurements do not give a precise

estimate of the noise subspace (L < K).

The same problem exists in the multiple snapshot (L≥ K) coherent sources case (Fig. 4.8,

middle). Because the sources are coherent, the noise subspace still cannot be well estimated and

AP gridless fails to resolve nearby DOAs until they are sufficiently separated.
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When the sources are made incoherent (Fig. 4.8, bottom), the noise subspace can be

estimated precisely, and AP gridless, root-MUSIC, and irregular root-MUSIC are exact. In

contrast, ADMM and AP ULA are not as precise because PT does not project to a specifically

rank K solution, resulting in ‘noisy’ DOA estimates.

The computational bottleneck of AP gridless is the projection to the irregular Toeplitz set,

PT K
γγ

, where a spectral search over D̃(z)||z|=1 is executed. In contrast, the AP ULA and ADMM

algorithms use the relatively efficient projection to the Toeplitz set, PT (4.40), and are limited

by the eigen-decomposition of the S matrix in its projection to the positive semi-definite cone,

PS�0. Both algorithms are relatively fast, having runtime under one second on a regular CPU for

problems with (M+L)< 100.

4.6 Conclusion

The problem of gridless direction of arrival (DOA) estimation for non-uniform array

(NUA) geometries was considered. Towards this goal, the irregular Vandermonde decomposition

(IVD) was introduced, which is a generalization of the Vandermonde decomposition for irregularly

sampled signals, such as those sampled from a NUA. From the perspective of the IVD, any

covariance matrix can be seen as an irregular Toeplitz matrix, and can be decomposed back

into its irregular Vandermonde components. The decomposition can be used to extend gridless

DOA to NUAs, as well as extending the larger continuous compressed sensing (CCS) problem to

irregularly sampled signals. The decomposition also extends root-MUSIC to NUAs.

An intuitive non-convex method of solving gridless DOA for NUAs based on the al-

ternative projections (AP) algorithm was proposed. The proposed algorithm was named AP

gridless. Simulation on uniform linear array (ULA) measurements found AP gridless attains

similar performance to its convex counterpart, ADMM. For NUAs, ADMM cannot be generalized,

and only AP gridless applies. AP gridless was found to be robust to noise, high resolution, and
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has superior performance compared to grid based techniques for high SNR.

4.7 Appendix: ADMM for gridless DOA

Here the alternating directions method of multipliers (ADMM) formulation of gridless

DOA is detailed as it applies to multiple snapshot ULA measurements. A review of ADMM is

given in [60]. Other sources which provide details on ADMM specifically for gridless DOA are

[18, 61, 62, 63, 22].

Start with the rank minimization problem of (5.13). Because the the rank constraint is

non-convex the problem must be cast to its convex relaxation before ADMM is applicable,

min
Q,S,Ŷ,u

1
2
‖Ŷ−Y‖2

2 +
τ

2

(
Tr(Q)+Tr(T (u))

)

subject to S =

T (u) Ŷ

ŶH Q

 , S� 0,
(A- 4.1)

where Y ∈ CM×L is the measurement matrix, T (u) ∈ CM×M is the Toeplitz matrix whose first

column is u, Q ∈ CL×L, and τ is a user defined parameter.

Next, the augmented Lagrangian is formed by collecting the constraints into the optimiza-

tion function [61, 62],

Lρ(Q,S, Ŷ,Λ,u) =
1
2
‖Ŷ−Y‖2

2 +
τ

2

(
Tr(Q)+Tr(T (u))

)
+

〈
Λ,S−

T (u) Ŷ

ŶH Q

〉+ ρ

2

∥∥∥S−

T (u) Ŷ

ŶH Q

∥∥∥2

F
, (A- 4.2)

where ρ is a user defined parameter and 〈. , .〉 is the matrix inner product, and Λ is the Lagrange

multiplier variable. ADMM is performed by iteratively optimizing (A- 4.2) over each variable
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independent of the the other variables. The update steps at iteration i are [61, 62],

(Q(i+1),u(i+1), Ŷ(i+1))← arg min
Q,Ŷ,u

Lρ(Q,S(i), Ŷ,Λ(i),u), (A- 4.3)

S(i+1)← argmin
S�0

Lρ(Q(i+1),S, Ŷ(i+1),Λ(i),u(i+1)), (A- 4.4)

Λ
(i+1)← Λ

(i)+ρ

(
S(i+1)−

T (u(i+1)) Ŷ(i+1)

Ŷ(i+1)H Q(i+1)

). (A- 4.5)

The update steps for Q, u, and Ŷ are computable in closed form. First define the partitions

S(i) =

 ST SY

SYH SQ

 and Λ
(i) =

ΛT ΛY

ΛYH ΛQ

 , (A- 4.6)

where the dimensions of each partition are the dimensions of T ,Y, and Q. The update steps are

[61, 62],

Q(i+1) =
1
2

S(i)
Q +

1
2
(S(i)

Q )H+
1
ρ

(
Λ
(i)
Q −

τ

2
I
)
, (A- 4.7)

u(i+1) = T −1
(

S(i)
T +

1
ρ

Λ
(i)
T

)
− τ

2ρ
e1, (A- 4.8)

Ŷ(i+1) =
1

2ρ+1
(
Y+ρS(i)

Y +ρS(i)
YH +2Λ

(i)
Y
)
, (A- 4.9)

where T −1 is a function giving the first column of the nearest Toeplitz matrix to its input (4.40),

and e1 is the canonical basis vector in M dimensional space, [1 0 . . . 0]T.

Finally, the S update is a projection onto the positive semidefinite cone (4.44),

S(i+1) = PS�0

(
S(i)−

T (u(i+1)) Ŷ(i+1)

Ŷ(i+1)H Q(i+1)

+ 1
ρ

Λ
(i)
)
. (A- 4.10)

ADMM is known to converge at a linear rate for convex problems [60].
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Figure 4.4: RMSE vs. SNR on high SNR single snapshot measurements using AP Gridless
(Algorithm 4), AP ULA (Algorithm 5), ADMM (App. 4.7, τ = 10−5), SBL, and LASSO.
M = 20,K = 3,L = 1,σs = 5. Each point represents average over 250 trials. All algorithms run
to convergence.
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Figure 4.5: RMSE vs. SNR for AP gridless (Algorithm 4), AP ULA (Algorithm 5), ADMM
(App. 4.7), SBL, LASSO, root-MUSIC, and irregular root-MUSIC (Algorithm 2), M = 20,
K = 3, σs = 5. Each point represents 250 trials. Top left- ULA measurements, L = 1. Top right-
NUA measurements, L = 1. Bottom left- ULA measurements, L = 10. Bottom right- NUA
measurements, L = 10.
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Figure 4.6: RMSE vs. M for AP gridless (Algorithm 4), AP ULA (Algorithm 5), ADMM 4.7,
SBL, LASSO, root-MUSIC, and irregular root-MUSIC (Algorithm 2), SNR = 10 dB, K = 3,
σs = 5. Each point represents 250 trials. Top left- ULA measurements, L = 1. Top right-
NUA measurements, L = 1. Bottom left- ULA measurements, L = 10. Bottom right- NUA
measurements, L = 10.
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Figure 4.7: RMSE vs. L for AP gridless (Algorithm 4), AP ULA (Algorithm 5), ADMM (App.
4.7), SBL, LASSO, root-MUSIC, and irregular root-MUSIC (Algorithm 2), M = 20, K = 3,
σs = 5, SNR = 10 dB. Each point represents 250 trials. Top- ULA measurements. Bottom-
NUA measurements.
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Figure 4.8: RMSE vs. DOA separation of conventional (Bartlett) beamformer (CBF), AP
gridless (Algorithm 4), AP ULA (Algorithm 5), ADMM (App. 4.7), root-MUSIC, and irregular
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Chapter 5

Phase Coherent Electromagnetic

Measurements in a Refractive

Environment

Phase coherent measurements of the pilot tone from a digital television (DTV) station

were taken at a 24 element vertical array located 168 km from the transmitter. Measurements

were recorded over a period of 15 days in a region known for lower tropospheric ducting, a

phenomenon in which abnormal atmospheric refractivity patterns allow for the exceptionally

long range propagation of electromagnetic (EM) radiation. The DTV station was positioned

over the horizon relative the receiver array such that line of sight was obstructed, thus significant

diffraction loss was expected. Direction of arrival (DOA) estimation was performed on the

measurements. The focus of the study was to record long term array measurements of a signal

propagating through a refractive channel to investigate whether array specific quantities such as

array signal to noise ratio (ASNR) or DOA could be used to enhance estimates of atmospheric

refractivity. An analysis is performed on the collected data and it is shown that ASNR in particular

exhibits strong correlation with atmospheric parameters related to refractivity.
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5.1 Introduction

It is well known that radio waves propagating through Earth’s troposphere can experience

significant variation in field strength due to weather related factors. Foremost of these factors is

the refractive index of the Earth’s lower troposphere. A strong negative gradient of the refractive

index can cause EM waves to experience a phenomenon known as ‘ducting’, or ‘trapping’, which

has the result of bending the wave over Earth’s horizon to produce signal strengths as much

as tens of dB above what is otherwise expected, even at distances very far from the point of

transmission [1].

The refractive index of the troposphere is primarily determined by three factors; water

vapor pressure, temperature, and atmospheric pressure. The dominant factor is water vapor

pressure, which causes atmospheric processes involving hydrolapse (rapid change in moisture

with height) to result in the likely formation of a duct. This is nearly always true over the ocean

[2], and produces a particular type of duct low to the ocean surface known as the evaporation

duct, which can reach tens of meters in height. These are typically observed in coastal regions,

and are particularly common over the Southern coast of California [3].

The adverse effects of ducting on radar measurements has been the driving force for

many studies on radio wave propagation through refractive environments. Many of these studies

are narrowly focused towards ducting’s influence on received signal strength [4, 5, 6, 7, 8].

Many more studies have revolved around simulations of radio wave propagation through known

refractive environments [9, 10], typically performed using some form of the parabolic equation

(PE) method [11]. Recently, measurement and simulation have been combined in refractivity

inversion, where the atmospheric refractivity profile is inferred from radar clutter measurements

[12, 13, 14, 15, 16, 17, 18]. While refractivity inversion has demonstrated some success, it is not

perfect and suffers from several known issues [19, 20].

The issues that must be addressed in refractivity inversion include the computationally
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costly nature of the PE forward model and the difficult non-convex optimization involved in pro-

ducing the refractivity estimate. While advances in commercially available computational power

may partially address these issues, refractivity inversion may further be improved through the

inclusion of additional measurement parameters. We propose that by incorporating measurements

that can only be taken by a phase coherent array system such as direction of arrival (DOA) of

the wavefront and array signal to noise ratio (ASNR), the search space of possible refractivity

estimates may be narrowed. For instance, DOA can be modeled using ray trace algorithms

which are computationally efficient relative to PE modeling [21, 22]. By combining inversions

using DOA, ASNR, and propagation loss measurements it may be possible to increase both the

efficiency and accuracy of the inversion.

This work is a preliminary measurement campaign to collect DOA and ASNR measure-

ments of electromagnetic (EM) waves propagating through a refractive environment. Many

theoretical works state that variation in atmospheric refractivity within a transmission channel

will cause variation in the DOA of EM waves propagating through that channel [23, 24, 25],

however, little has been done towards proving this to be true [26]. If it is found that variations in

the refractivity profile within a radio channel can cause the measured DOA of the radio signal to

vary by a measurable amount (as is expected), then work can proceed towards incorporating such

measurements into a stronger refractivity inversion framework.

The measurement campaign was conducted over a period of 15 days from November

19 through December 03, 2019. The pilot tone from a digital television (DTV) station, was

recorded by a phase coherent receiver array positioned 168 km from the transmission sight. The

transmission channel was located in coastal Southern California, a region known for ducting [3].

Only the narrowband pilot tone from the DTV station, at 584.33 MHz, was used to determine the

DOA.

The paper is structured as follows. In Sec. 5.2 the experimental setup is detailed,

including details about the receiver array, the transmitted signal, and a review of refractivity
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and EM propagation. In Sec. 5.3, the theoretical model for the array measurements is detailed,

array calibration process is described, and DOA estimation is reviewed. In Sec. 5.4 the data are

analyzed and results displayed. The findings are discussed and the paper is concluded in Sec. 5.5.

An Appendix is included with specifications of the array system and part numbers.

5.2 Experiment Description

The pilot tone of a digital television (DTV) station was recorded continuously by a vertical

line array located on the Southern coast of California, Fig. 5.1. The DTV transmitter was located

over the horizon (OTH) relative to the receiver array and over a partial marine propagation channel.

The focus of the study was to make observations concerning the long term stability of the DOA

of radio waves propagating over the horizon. We theorize that by measuring the DOA of signals

propagating through a refractive environment, some additional information about the refractive

environment can be obtained that isn’t given by the propagation loss of the signal.

5.2.1 Measured Signal

The signal being measured was the pilot tone from a DTV station broadcasting from Mt.

Wilson in Angeles national forest (34◦ 13’ 27.0” N, 118◦ 3’ 47.2” W). The signal path is displayed

in Fig. 5.1. The transmitter was located 167.8 km from the receiver array at an elevation of 1765

m above mean sea level. At the time of measurements the DTV station (callsign KTBN-TV) was

transmitting a horizontally polarized signal at 1000 kW effective radiated power over a 6 MHz

bandwidth between 584–590 MHz. Only the amplitude and phase of the DTV station pilot tone

at frequency fc = 584.33 MHz was recorded at the receiver array.
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Figure 5.1: Map of signal path from KTBN-TV transmitter to receiver array at Scripps Pier.
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5.2.2 Receiver Array

EM measurements were observed by a 24 element phase coherent array composed of six

software defined radios (SDR). Each radio consisted of 4 receive channels connected to vertically

polarized monopole antennas by 9.14 m cables. The antennas were affixed to a vertical mast

with uniform inter-element spacing of .257 m, giving the array a total aperture of ar = 5.91 m.

The bottom-most antenna was positioned at an elevation of 10.8 m above mean sea level. The

array was located at the end of Ellen Browning Scripps Memorial Pier (lat 32◦52′1.4′′ N, long

117◦15′26.7′′ W). An image of the antenna mast and system setup is provided in Fig. 5.2, and a

system diagram is provided in Fig. 5.3.

All radios were driven using the same external 10 MHz reference clock and pulse per

second (PPS) signal derived from the 10 MHz reference. The reference clock and PPS signals

were split using an 8 way clock splitter, and connected to each radio through identical length

cables. The reference clock was fed to a frequency synthesizer to produce a tone at the desired

center frequency 584.25 MHz, which was split again and used as a local oscillator (LO) for each

radio. The signals captured by each radio were recorded by a data server using open source

GNUradio software. A list of hardware used in the receiver array is provided in Appendix 5.6.

All radios recorded at a sample rate of fs = 244.14 k samples per second, using the LO as

the carrier frequency. The in-phase and quadrature (IQ) data streams from each channel were

recorded continuously by the data server. The data server, clocks, and radios were stored in a

temperature and humidity controlled building nearby the antenna mast. The data streams from

each antenna were labeled channels 1 through 24, with channel 1 as the lowest elevation receiver

and channel 24 as the highest. One additional antenna was placed below channel 1, which

transmitted a calibration sequence across the array from array endfire (−90◦ elevation angle).
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Figure 5.2: Coherent receiver array positioned on the end of Scripps Pier and control station
setup inside nearby shed.
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Figure 5.3: Receiver array system diagram.
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5.2.3 Theoretical Background

Refractivity and Ducting

It is well known that the propagation of electromagnetic (EM) waves can be significantly

influenced by the vertical refractive structure of the troposphere [27]. The index of refraction, n,

or refractivity, N = (n−1)×106, is a measure of the propagation velocity of an EM wave in a

medium,

n =
c
v

(5.1)

where c = 3× 108 m/s is the speed of light in a vacuum and v is the speed of propagation in

a particular medium. Any medium with non constant refractive index will cause EM waves

propagating through it to bend. One such medium is the Earth’s troposphere, which has a vertical

refractive gradient dependent on several atmospheric thermodynamic properties,

N =
77.6

T
(p+4810

e
T
), (5.2)

where T is air temperature (K), p is atmospheric pressure (hPa), and e is water vapor pressure

(hPa). Taking into account Earth’s curvature, modified refractivity, M, is used to more easily

classify the effects of refractivity by transforming Earth to an idealized flat surface,

M(z) = N +
z
R
×106, (5.3)

where z is height above the earth’s surface and R is the radius of the Earth.

There are several well known propagation regimes which are defined by the gradient of

M(z). These propagation regimes include standard troposphere (0.079 ≤ ∂M
∂z ≤ 0.157), super-

refraction (0≤ ∂M
∂z < 0.079), sub-refraction (0.157 < ∂M

∂z ), and ducting (∂M
∂z < 0), where ∂M

∂z has

units of M-units/m. Standard troposphere and super-refraction result in radio waves bending
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slightly towards Earth’s surface, while sub-refraction results in radio waves being bent away from

Earth, into outer space. Of the propagation regimes, ducting is the most studied because it has

a ‘trapping’ effect for EM waves caught within the duct. The result is that ducts act as pseudo-

waveguides that can bend EM waves over the radio horizon to be detectable at significantly longer

ranges than would otherwise be expected.

The trapping layer of a duct is defined as the region in which dM
dz < 0, and can either start

at the surface of the earth (surface based duct) or at some non-zero elevation (elevated duct). An

important subset of surface based ducts are known as evaporation ducts, which are common above

water and are caused by a large humidity gradient just above the water’s surface. Evaporation

ducts can range in height from a few meters to several tens of meters, and are known to be

common in warm coastal regions such as the Southern coast of California [28]. The seasonal

frequency of ducting events is thought to be maximum in the summer months [29].

There has been significant effort towards modeling the propagation loss experienced by

EM waves propagating through ducts using simulation tools such as the split step parabolic

equation [10, 15, 30, 19]. In response to the success of PE modeling, measurement campaigns

have been launched towards observing the actual propagation loss experienced by ducted signals

[8]. The ultimate goal is comprehensive modeling and prediction of the troposphere’s refractivity

structure in real time. Often lost in simulation and experimental measurements is the spatial phase

pattern of the recorded wavefronts, which could be used to determine the DOA of the incoming

signal. Through physical measurement of wavefront DOA, this work aims to provide an answer

to how the DOA of a signal propagating through a refractive environment might change over

time.

Wireless Propagation

It is generally accepted that for a signal to be received without significant propagation

loss due to diffraction, the direct path between the transmitter and receiver must have adequate
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clearance. The obstacle created by the curvature of the Earth for signals propagating over the

horizon is known as ‘Earth’s bulge’, and because Earth’s standard troposphere has a negative

modified refractivity gradient, RF waves generally bend towards the surface of the Earth. This

effectively reduces Earth’s bulge height and extends the radio horizon.

To compensate for curvature in the path of an RF wave propagating through standard

atmospheric conditions, it is common to substitute Earth’s radius with 4/3rds of its true value to

estimate the radio harizon [31]. This is sufficient for signals propagating over terrestrial paths in

mid to high latitude regions of the Earth because standard atmospheric conditions are common

in those locations, however marine environments are known to experience higher variability in

refractive conditions [32] and are less well predicted using the 4/3rds approximation. Because

the vertical refractivity gradient determines the effective Earth’s radius when calculating the radio

horizon, we expect it to influence both DOA and propagation loss of the wavefront at the receiver.

The amount of clearance required between a transmitter and receiver for clear signal

reception is calculated using the radii of the first Fresnel zone,

F1 =
1
2

√
λD, (5.4)

where λ = v
fc
= .5134 m is the signal wavelength and D = 167.8 km is the distance between the

transmitter and receiver, thus the first Fresnel radii of the channel was 146.8 m.

In the strict sense, a ‘line of sight’ connection between a transmitter and receiver is defined

as a connection where the first Fresnel zone is completely unobstructed. In practice it has been

reported that 60% of the first Fresnel zone should be unobstructed for strong signal reception [31].

Figure 5.4 depicts the first Fresnel zone of the propagation path (to scale) for Earth’s true radius

and the 4/3rds augmentation. In neither case is the propagation path completely unobstructed.

Slight changes in the atmospheric refractivity gradient correspond to changes in the radio

horizon experienced by the DTV signal, which in turn should translate to measurable quantities
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Figure 5.4: First Fresnel zone diagrams (to scale) using standard Earth’s radius (k = 1) and
k = 4/3rds Earth’s radius (k = 1.33). Green represents portion of channel over terrestrial path,
blue represents portion of channel over marine path.

such as ASNR and DOA. Because the atmospheric refractivity gradient fluctuates over marine

channels, we expect the effect of these fluctuations to be observable in long term measurements

of the DTV signal. Abnormally clear reception likely corresponds to super-refraction or ducting

within the channel while abnormally low signal reception corresponds to sub-refraction.

5.3 Array Calibration and Processing

5.3.1 Signal Model

Consider a uniform linear array (ULA) of M antennas receiving K narrowband far field

signals. A common array measurement model is concerned only with the magnitude and phase of

a narrowband signal (i.e. the value at a particular DFT bin) as it is measured at each element of

an array

y[t] = As[t]+n[t], (5.5)

where y[t] ∈ CM is the complex valued measurement snapshot vector composed of the signal

received at each of M antennas at time t, s[t]∈CK is a vector of signals arriving from K directions,
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n[t] ∈CM is a vector of noise at time t, and A = [a(θ1) . . . a(θK)] is known as the array manifold

matrix. The columns of the array manifold matrix are known as array steering vectors, and

contain the phase pattern across the array expected from a signal arriving at angle θ. The array

steering vector of a ULA is

a(θ) = [1 e j2πd sin(θ) . . . e j2π(M−1)d sin(θ)]T, (5.6)

where θ ∈ [−90◦,90◦), d is the inter-element array spacing in wavelengths of the narrowband

signal being detected. The receiver array measured the pilot tone of a DTV station at frequency

fc = 584.33 MHz. Assuming the DTV signal propagates at the speed of light, c = 3×108 m/s,

the wavelength is v/ fc = .5134 m and the array elements, which are separated by .257 m, have

half wavelength inter-element spacing.

5.3.2 Data Format

The continuous data streams from each channel were buffered into frames of 212 consecu-

tive time samples. Each channel used a receiver gain of 30 dB, and signals were recorded at their

absolute magnitude without normalization. We denote the time domain data frame from channel i

and time t as ri[t] ∈ C4096. Two operations were performed on each data frame:

1. A length 212 discrete Fourier transform was applied to each data frame using a Hamming

window. The value of the frequency bin containing the DTV pilot tone for each channel

was collected in a vector y[t] ∈ C24. We refer to y[t] as the data ‘snapshot’ at time t. The

FFT bin containing the pilot tone was decided at the start of the measurement campaign

and held constant over the measurements.

2. Each data frame was correlated with the calibration sequence (detailed in Sec. 5.3.3) and

the phase of the correlator peak was collected in a calibration vector ϕ[t], used to correct

the phase of y[t].
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Figure 5.5: Depiction of the signal processing path taken by samples as they are recorded at the
array. All subfigures generated from Cliffside test data (see Sec. 5.3.8).

A dataflow diagram is presented in Fig. 5.5.

The relatively large frame size was chosen to reduce the amount of storage required for

the measurements. Each radio was run at a sample rate of 244.14 kHz, thus one snapshot was

recorded every .0168 seconds, effectively reducing the amount of data to be stored by a factor of

212.The receiver array recorded continuously for 15 days between November 19 and December 3,

2019.

5.3.3 Array Calibration

The array steering vector defined in (5.6) is valid only for array measurements which are

both synchronous and phase coherent. An array which is said to be synchronous samples each

array element at identical sample rates. Phase coherent refers to a synchronous array system

where the sample clock edge occurs at the same time instant on each channel.
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For theoretical applications, the RF signal is often assumed to be sampled as it is received

at the antenna, though in practice the signal propagates down a coaxial cable, through various

stages of the ‘RF chain’ (for example filtering and mixing), and is finally sampled at an analog

to digital converter (ADC). For phase coherent measurements, the phase pattern experienced by

the antennas must be preserved through the cables and RF chain. Calibration is used to mitigate

errors caused by differences in cable lengths and RF chain components due to manufacturing

imperfections.

Continuous array calibration is necessary for two reasons: first, the mixer in each RF

chain will adopt an unknown phase offset at startup (i.e. the sample clock edges are not aligned

for each channel). The result is that each channel will have a unknown phase offset which is

modeled by expanding (5.5)

y[t] = φ� (As[t]+n[t]), (5.7)

where φ ∈ CM is a vector of unit magnitude complex numbers representing the unknown phase

offset at each channel and � is the Hadamard (element-wise) product. Next, the effects of system

aging and temperature influences (i.e. expansion of cables and system components due to heating

applied unevenly across the system, for instance by sunlight hitting some cables but not others).

The same reference clock and PPS signal were fed to all radios to achieve synchronous

sampling. A repeating length 212 Zadoff-Chu (ZC) calibration sequence, z ∈ C4096 with root

parameter R = 501 [33] was transmitted from array endfire (−90◦ elevation angle). The cross

correlation was taken between the calibration sequence and the data frame from each channel as

γi[t] = F −1
(

F (z)F (ri[t])
)
, (5.8)

where F represents the discrete Fourier transform, ri ∈ C4096 is the data frame from channel i,

and ¯̄̄̄̄̄ denotes the complex conjugate.
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The element of γi[t] with largest magnitude was taken from each channel and placed in a

vector,

ϕ[t] =
[
γ
∗
1[t] . . . γ

∗
24[t]

]T
, γ

∗
i [t] = max

(
γi[t]
)
, (5.9)

where the max function is understood to return the complex value of the element with largest

magnitude. The phase angle of each element of ϕ represents the phase of the calibration signal

as it arrived at each array element. Because the calibration signal arrived from −90◦ below the

array, its phase across the array is known (see eq. (5.6)). Thus the unknown phase offset at each

channel at time t is estimated as

φi[t] =
ϕi[t]
|ϕi|[t]

a(−90◦)i. (5.10)

Calibration was taken for each data frame and applied to the measurements. The data path through

the array is visualized in Fig. 5.5. We remark that the calibration sequence was transmitted

continuously and potential exists for interference between the calibration sequence and the DTV

pilot.

5.3.4 Conventional DOA (CBF)

The conventional beamformer (CBF), also known as the Bartlett beamformer is the oldest

and most robust of the DOA estimation techniques [34]. The first step of CBF involves forming

the sample covariance matrix (SCM) of the measurements,

Ryy =
1
T

T

∑
t=1

y[t]y[t]H, (5.11)

where H denotes the conjugate transpose. The SCM is an estimate of the true covariance matrix

of the measurements. If the source directions are static then a longer resolution period (larger
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T ) will produce a SCM which better estimates the true covariance matrix, in turn enhancing the

accuracy of CBF.

CBF is performed by calculating the angular power spectrum of the sample covariance

matrix over the range of possible DOAs. The angular power spectrum of CBF is

PCBF(θ) = aH(θ)Ryya(θ), (5.12)

for θ ∈ [−90◦,90◦). The DOAs of the signals composing the measurements will produce peaks

in PCBF(θ). Note that (5.12) covers only the 180◦ in-front of the array, and signals arriving from

the other 180◦ produce the same phase pattern across the array as their positive angle counterparts

(i.e. a(0◦) = a(180◦)), thus an ambiguity exists between signals arriving at the front and back of

the array.

The classical beamformer is reliable and has been proven effective on experimental data

[35, 36], however, it is also known to have poor angular resolution. In particular, the spectral

response from any strong signal can have significant sidelobes which can obscure the spectral

response of weaker signals arriving at nearby angles. To ensure accurate DOA estimates, a high

resolution algorithm known as Gridless DOA estimation is also employed.

5.3.5 Gridless DOA Estimation

Gridless DOA estimation is an advancement of compressive sensing based DOA estima-

tion [37] in which the DOAs are found by minimizing the atomic `0 norm of atoms defined by the

manifold of the array steering matrix [38, 39, 40, 41, 42]. The technique is named for its ability

to resolve DOAs at any angle, an improvement over earlier compressive DOA estimation methods

in which DOAs were limited to lie on a user specified grid. Gridless DOA estimation is achieved
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as the optimal solution of the following rank constrained optimization problem

minimize
T∈T ,Q

rank
(
T
)
, subject to S� 0, (5.13)

where

S =

 T Y

YH Q

 , (5.14)

T is the set of Toeplitz matrices, Q is a free variable, and Y =
[
y[t1] . . . y[tn]

]
is a matrix of

measurement snapshots of arbitrary size. Once the optimal T is found the DOAs are recovered

through Vandermonde decomposition of T.

Because (5.13) is non-convex, it has no well known general solution. In practice (5.13) is

substituted for its convex relaxation [41],

minimize
T∈T ,Q

Tr
(
T
)
+Tr

(
Q
)
, subject to S� 0. (5.15)

where Tr(.) is the matrix trace. When the matrix rank is substituted for the matrix trace the

optimization of (5.13) takes the form of a semi-definite program (SDP), to which there are many

available solvers. In this work (5.15) is solved using the popular alternating directions method of

multipliers (ADMM) algorithm [43]. A derivation of the algorithm is found in [40].

5.3.6 Carrier Frequency Offset Removal

In applications where the transmitter and receiver do not share the same clock, it is well

known that the receiver will experience a carrier frequency offset (CFO) [44]. CFO is defined as

the frequency difference between the clocks used at the transmitter and receiver. If both clocks

are stable over short time periods then their CFO is constant. In this case, the phase of a received

narrowband signal will progress linearly in time at a rate proportional to the CFO. Over longer
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intervals the CFO between clocks tends to drift randomly.

For the proposed application there are two ways in which CFO could present an issue.

Firstly, the linear phase progression between subsequent measurements can cause DOA estimation

errors by reducing the accuracy SCM. To avoid these errors the linear phase progression must

be removed. We leverage the fact that the receiver array is synchronous, thus each channel

experiences identical linear phase progression due to CFO. In this case the effects of CFO can be

canceled by rotating each measurement snapshot y[t] by the conjugate phasor of any channel’s

measurements.

ŷ[t] = y[t]e− j∠y1[t], ∀t. (5.16)

In this work we use channel 1. Equation (5.16) has the effect of eliminating phase drift in time

while preserving the spatial phase pattern across the array elements. Because the DOA of a signal

manifests as the spatial phase pattern across the array, CFO correction can be performed without

impacting the DOA estimate.

The second issue that can arise due to CFO is the potential for the DTV pilot tone to drift

between FFT frequency bins over the measurement campaign. Figure 5.6 tracks hourly CFO

mean in radians per snapshots over the measurement period. Over 95% of hourly CFO mean

fell between 1.15 and 1.3 radians per snapshot. At 4096 samples per snapshot, fs/4096 = 59.6

measurement snapshots were recorded per second, thus the transmitter and receiver experienced

a relative drift of (1.3−1.15)59.6/(2π) = 1.42 Hz over the measurement campaign. The FFT

applied to each data frame had a bin width of fs/4096 = 59.6 Hz, therefore we conclude the

system was stable enough that the DTV pilot tone did not shift between FFT bins.
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Figure 5.6: Mean CFO over each hour of recorded data.
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5.3.7 SCM, Overlap, and Normalization

Several parameters which must be considered are how many measurement snapshots

should be used to generate each SCM, and how much overlap should exist between measurements

used to generate successive SCMs. Figure 5.7 depicts the time progression of the CBF spectrum

from the same dataset using 1, 100, and 500 snapshot constructions of Ryy.

If too few snapshots are used to construct the SCM the true covariance may not be

accurately approximated, leading to a CBF spectrum dominated by noise. If too many snapshots

are used to construct the SCM the underlying assumption of stationarity may be violated (i.e.

the true covariance may change over the period spanned by the snapshots), producing a blurry

realization of the CBF spectrum. A general rule of thumb is that the SCM should be generated

using 2–3 times as many snapshots as their are sensors to avoid producing a rank deficient SCM.

Overlap refers to the amount of shared measurements used to generate subsequent SCMs,

and has the effect of further smoothing the spectrum in time. For instance, if the first SCM

is constructed using measurement snapshots taken at time t = 1, . . . ,10, the next SCM can be

estimated from snapshots at time t = 6, . . . ,15 for 50% overlap between consecutive estimates.

Once generated, each spectrum is normalized such that the peak spectral power is 1.

This allows a time series of spectra from measurements with fluctuating ASNR to be displayed

together.

5.3.8 Array Verification

Array functionality was verified by performing DOA estimation of test tones transmitted

from three known locations within line of sight of the array. The view to or from each test location

is displayed in Figure 5.8. The locations included the top floor of a nearby building, a cliffside,

and the pilot tone from a DTV station transmitting from atop a nearby mountain. The building was

University of California San Diego’s Nierenberg Hall, positioned at elevation angle 5.3◦ relative
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the receiver array (measured at site and confirmed using elevation data from the U.S. geographical

service). Test tones were transmitted from Nierenberg Hall at frequencies 423, 915, 1265, and

2394 MHz, (U.S. amateur radio bands). The tone transmitted from the cliffside (elevation angle

4.8◦ relative to array) was centered at 915 MHz. DTV station KBNT-CD broadcast from Mt.

Soledad, 2.2 km from the array, (elevation angle 4.7◦ relative to array) had pilot tone frequency

of 530.33 MHz.

In all tests the transmitter and receiver positions were fixed and the propagation path

was line of sight, thus the DOA in all cases was expected to be constant. Any fluctuation in the

spectrum peak can be attributed to noise within the system. The total variation of the test tone

DOA estimates provides a good benchmark for DOA estimation accuracy.

Figure 5.9 gives the time evolution of the CBF spectrum for each test tone transmitted

from Nierenberg Hall using one second of measurement snapshots per SCM, and 50% overlap

between estimates (see Sec. 5.3.2 and 5.3.7). As expected, the peak of the spectra are constant

and centered at 5.3◦. The spectrum peak angle for all tones are plotted on top of each other,

and the dominant DOA detected using gridless DOA is given alongside the CBF spectrum peak.

DOAs estimated using the gridless method showed strong agreement with those estimated from
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Figure 5.8: View from each test location. Left: view from UCSD Nierenberg Hall. Middle:
view from cliffside transmitter sight (transmitter is log-periodic antenna on left). Right: view
from reciever array to Mt. Soledad transmitter.

the CBF spectrum peak. The largest fluctuation in estimated DOA was from the CBF spectrum

peak of the 423 MHz test tone, having a standard deviation of 0.051◦.

Figures 5.10 and 5.11 give the time evolution of the CBF spectrum and spectral peaks

for the test tone broadcast from the cliffside location and pilot tone from KBNT-CD. Again, the

estimated DOAs are constant at the expected arrival angle and gridless measurements exhibit

strong agreement with the CBF spectrum peak. The standard deviation of the spectral peak DOAs

from cliffside and KBNT-CD test locations were 0.016◦ and 0.044◦ respectively.

The performance of the array over all tests indicates the receiver array system was capable

of detecting the DOA of the pilot tone from KTBN-TV with accuracy greater than 0.1◦.

5.4 Data Analysis

The CBF spectrum from Los Angeles station KTBN-TV was estimated using a sliding

window of size Nt = 128 snapshots (roughly 2 minutes), and 50% overlap in measurements

between consecutive spectrum estimates. Gridless DOA was also used to estimate the peak arrival
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angle. Other measured values include single channel received signal strength (RSS) and array

signal to noise ratio (ASNR) at the receiver array, defined as

RSSi[t] = 10 log10

(
|yi[t]|2

)
, (5.17)

ASNR = 10 log10

(
λ1

∑
24
i=2 λi

)
, (5.18)

where RSSi[t] is the RSS at channel i and time t, and λi is the ith largest eigenvalue of an

estimated SCM. RSS is a measure similar to propagation loss while ASNR represents the power

ratio between the largest eigenvalue and all other eigenvalues of a SCM. If only one signal is

being received then the SCM will be rank 1, however there is always noise within a system which

causes the SCM to lose rank 1 structure and limits total ASNR.

Results of the measurement campaign are displayed in Figs. 5.12–5.16 alongside air

temperature and precipitation taken at the time of measurement. Air temperature was recorded

by the National Oceanic and Atmospheric Administration (NOAA) collection site located on

Scripps Pier beside the receiver array. Hourly precipitation measurements were taken from the

National Center for Atmospheric Research (NCAR), stage IV surface precipitation dataset [45]

at the location of the receiver array. Figure 5.17 gives precipitation maps along the propagation

channel during the period of most intense precipitation.

Dramatic changes in the CBF spectrum typically occur at the beginning of periods of

precipitation or at times when ASNR dropped dramatically, for instance on November 20, 27,

and 28 (see Figs. 5.12 and 5.15). This may be due to partial obstruction of the main signal path

due to cloud cover or other obstructions, which causes signal energy from other DOAs to appear

relatively stronger in comparison.

It has already been demonstrated that evaporation duct height can be estimated from RSS

measurements across an array [46, 47], even without phase coherence between array elements. If
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DOA estimation strongest DOA. Bottom- ASNR vs time.
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Figure 5.13: As in Figure 5.12, November 22–24, 2019.
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Figure 5.14: As in Figure 5.12, November 25–27, 2019.
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Figure 5.15: As in Figure 5.12, November 28–30, 2019.
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Figure 5.16: As in Figure 5.12, December 01–03, 2019.
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Figure 5.17: One hour accumulated precipitation (mm/hour) time evolution, Nov 28, 2019.
Black lines indicate the California coastline, red ‘x’s indicate transmit and receive sites.
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Figure 5.18: Daily median received signal strength (RSS) and 10–90% quantile ranges. Each
value calculated from 3 channel median RSS across array. Channels 2–22 displayed.

signals propagating over the horizon arrive as a single plane wave at array broadside then RSS

should be constant across the array and there would be no benefit to taking measurements at

different heights. Figure 5.18 gives the median daily RSS generated as the median of each set of

3 neighboring channels at each time. Clearly there is variation across the array, indicating the

signal is actually composed of many plane waves interfering constructively and destructively with

one another. Our goal is to determine the DOAs of the signals’ multipath components.

Figure 5.19 gives the DOAs found using Gridless DOA estimation the three strongest

signal paths. Clearly the direct path around 0◦ is dominant at all times. Sporadic secondary
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Figure 5.19: Gridless DOA estimation, 3 strongest peaks using gridless DOA.

and tertiary paths appear occasionally, most notably around +26◦ and −28◦. It is likely that

some secondary paths were very close to the direct path at 0◦, but could not be resolved due to

limitations in the resolution capability of DOA estimation. This problem can be solved only by

using an array with significantly larger aperture (in wavelengths), which is impractical at DTV

frequencies but may be achievable at higher frequencies.

Figure 5.20 compares observed distributions of measurements taken during periods with

and without precipitation. Precipitation resulted in a roughly 7 dB decrease in mean ASNR,

though the overall ANSR distribution maintained a somewhat bimodal appearance in both cases.
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Figure 5.20: Empirical probability distributions (histograms) of ASNR and gridless DOA during
periods with and without precipitation. Colored bars indicate mean and standard deviation of
each observed distribution.

The dominant DOA (from gridless DOA) is consistently negative, however the magnitude of

the negative angle is not significant compared to potential measurement error. For instance, a

0.3◦ deflection from broadside could be caused by arsin(θ) = 5.91sin(0.3) = 3.1 cm horizontal

deviation between the top and bottom receivers.

DOA appears Gaussian distributed during periods without precipitation, but becomes

somewhat bimodal during precipitation events. The mean DOA observed during periods of

precipitation was shifted by approximately−0.1◦ against observations made without precipitation.

The increase in DOA variance during precipitation is expected as precipitation was shown to

decrease the strength of the main signal path, reducing the accuracy of its DOA estimate.

Figure 5.21 gives histograms of RSS for channels 1 and 24, alongside ASNR. Clearly

RSS was not constant across the array, and in general increased with transmitter height. ASNR

distribution did not closely resemble RSS distribution, and in general exhibited lower variance

than RSS. It has previously been demonstrated that RSS across an array can vary significantly

for arrays located in refractive channels [26, 47], thus the clear difference between channel 1

and channel 24 is not surprising. What is unexpected is that ASNR is more tightly distributed
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Figure 5.21: Daily empirical probability distributions (histograms) of RSS at receiver elements
1 and 24, and ASNR over full measurement period.

than single channel RSS. This indicates that while the amount of signal energy arriving at a

single receiver can fluctuate significantly, the total signal energy arriving across the array is more

predictable. Such fluctuations may be the result of atmospheric turbulence, which is known to

affect EM propagation [20].

Figure 5.22 gives the correlation coefficient between measurements taken by the array

and several atmospheric parameters measured during the campaign. Atmospheric measurements

included air temperature, water temperature, barometric pressure, precipitation, wind speed, and
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Figure 5.22: Correlation coefficient between atmospheric time series and array time series.

wind direction. All atmospheric measurements were recorded by the NOAA station located on

Scripps Pier beside the receiver array, except for precipitation which was provided by NCAR

stage IV precipitation maps. Because refractivity affects RF propagation and refractivity is a

function of temperature, pressure, and water vapor pressure (see eq. (5.2)) it is reasonable to

expect that air temperature and barometric pressure should show some correlation with the array

measurements.

The atmospheric measurements with largest correlation to array measurements were

ASNR and barometric pressure. Correlation between single element RSS and barometric pressure

were significantly lower than that of ASNR and barometric pressure, indicating that ASNR can
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provide more information about atmospheric parameters over RSS. Wind speed also demonstrated

surprisingly high correlation with ANSR and RSS measurements. We speculate wind speed is a

good predictor of evaporation duct height, which in turn influences RSS [48]. The DOA estimated

using gridless DOA showed only minor correlation with precipitation, air temperature, and wind

direction.

5.5 Summary and Conclusions

A 24 element phase coherent vertical receiver array was set up on the coast of Southern

California and set to record the pilot tone from a distant DTV station transmitting OTH relative the

receiver array. The goal of the study was to observe variability in array exclusive measurements

such as wavefront DOA and ASNR to determine their viability for enhancing refractivity inversion

research.

It was found that DOA fluctuations in the DTV signal main path were observable and

varied on the order of 1◦. Several DOAs from minor paths were observable, though appeared

sporadically and could not be clearly attributed to any atmospheric parameter. ASNR was found to

be strongly correlated with barometric pressure and wind speed, significantly more so than single

channel RSS. This result strongly suggests that ASNR is a superior predictor of atmospheric

refractivity than RSS.

While DOA showed little correlation between atmospheric parameters, it was demon-

strated that wavefront DOA can fluctuate measurably over large time scales. Future studies

employing larger scale measurement campaigns may reveal more complicated connections be-

tween DOA and atmospheric refractivity.

The results of the measurement campaign reported herein mark a preliminary step in

incorporating array measurements for prediction of atmospheric refractivity. There is already

extensive literature on refractivity estimation from measures of RSS, particularly those taken from

156



marine radar [49, 12, 13, 14, 15, 30, 19]. This work has demonstrated that refractivity estimation

can likely be improved by using ASNR measurements in place of single channel RSS.

5.6 Appendix A: Part Specifications

A list of specific hardware used in the receiver array, depicted in Fig. 5.3. Additional

details provided in the data sheets available for each part number.

• Antennas: Abracon (APAMSTJ-138) Passive Multiband Antenna.

• Radios: Ettus USRP N310 Software Defined Radio.

• 10 MHz Reference: Novus (NR3623-O) Triple Output 10 MHz OCXO Low Phase Noise

PPS Source.

• Local Oscillator (LO): Valon 5009 Frequency Synthesizer Module.

• Splitter 1: Ettus OctoClock-G CDA-2990.

• Splitter 2: ZN6PD1-63-S+ 6-way Power splitter/combiner.

• Data Server:

– CPU: 1 x AMD EPYCTM 7351P Processor (2.4Ghz,155/170W).

– Memory: 8 x 8GB DDR4 2666 ECC RDIMM Memory.

– SSD: 24 x SAMSUNG 860 Pro Series 2.5” 1TB SATA III V-NAND 2-bit MLC.

• Cabling (antenna to radio): LMR-240 30 ft SMA male to SMA female Coax.

• Climate Control:

– Dehumidifier: Quest Hi-E Dry 120 Dehumidifier Model 4036730.

– Air Conditioner: KWIB1411 Portable Water-Cooled Air Conditioner.
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Chapter 6

Conclusions and Future Work

As has been long predicted, our measurements confirm that the DOA of EM signals

propagating over the horizon through a refractive channel do change over time. Despite advances

in DOA estimation algorithms, even the most classic technique of CBF can be used to detect this

change given the array hardware can produce sufficient measurements. Due to the broad scope of

this work, it is difficult to reach succinct conclusions that summarize the work as a whole. Instead,

a list of conclusions over range of subtopics is provided in the proceeding section.

6.1 Conclusions

The conclusions provided here are itemized in order of the works covered in this disserta-

tion, from chapter 2 through chapter 5. Some elements from conclusions made in one chapter

may be repeated in another chapter when relevant.

6.1.1 Conclusions: Chapter 2

The effects of turbulence on refractivity inversion were explored. A model for including

turbulence in parabolic equation simulation of propagation loss was proposed, then refractivity
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inversion was attempted on simulated propagation loss measurements including turbulence.

Conclusions are as follows:

• The Parabolic Equation model for EM propagation simulation is limited in accuracy for

long range propagation prediction due to the effects of turbulence. The effects of slight

variation in the atmospheric refractivity profile at one range cascade into large differences

in estimated PL at long ranges.

• The genetic algorithm is not an efficient or reliable tool for refractivity inversion. The issue

of how to invert between a forward model and refractivity is still an open question. The

main obstacle is the non-convex nature of the forward model.

• It is far easier to invert for strong surface based duct conditions because these conditions

have the largest impact on propagation loss, however surface based ducts make up only a

small fraction of the actual ducts observed.

• Correct description and modeling of turbulence is important for improving refractivity

inversion. By defining the expected error due to turbulence it may be possible to construct

bounds on the likelihood of correct estimation of the refractivity profile.

6.1.2 Conclusions: Chapter 3

MIMO measurements from a communication channel in a refractive environment were

evaluated using compressive sensing based DOA estimation techniques. Conclusions are as

follows:

• MIMO communications arrays offer an improved method of estimating DOA of over the

horizon signals by allowing for direction of departure estimation in addition to direction of

arrival estimation.
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• Compressive DOA estimation adds improved resolution over conventional 2D DOA esti-

mation techniques such as CBF and MUSIC.

• Compressive DOA estimation is limited by several factors, including grid mismatch and

computational complexity.

• The measurements clearly depicted a fluctuating communications channel with several

distinct directions of departure and arrival.

• Larger scale MIMO systems are necessary for higher fidelity measurements of the evolving

refractive channel.

6.1.3 Conclusions: Chapter 4

An algorithm for gridless DOA estimation of measurements from a non-uniform array of

known geometry was developed and evaluated. Conclusions are as follows:

• Root-MUSIC, commonly thought to apply only to measurements from uniform linear arrays,

is suitable for measurements from non-uniform arrays with only minor generalizations of

background theory.

• The concept of Vandermonde decomposition of a Toeplitz matrix can be generalized to

decompose ‘irregular Toeplitz matrices’ to ‘irregular Vandermonde matrices’. The union

of all sets of irregular Toeplitz matrices is the set of positive semi-definite matrices. The

decomposition is likely not unique, though the number of decompositions of an irregular

Toeplitz matrix producing low rank irregular Vandermonde matrices is typically only one.

• Alternating projections (AP) is suitable for solving rank minimization optimizations with

high likelihood of convergence to the correct solution. The AP algorithm has the same

computational complexity as the best (known) solution using convex relaxation of the

problem, but is conceptually simpler and can be extended to non-uniform array geometries.

165



• The extension to non-uniform array geometries results in only minor decreases in DOA

estimation performance.

6.1.4 Conclusions: Chapter 5

A phase coherent EM array was constructed to record the carrier tone of a digital television

(DTV) station broadcast from 168 km away. DOA estimation was performed on the array

measurements and a 15 day history of fluctuations in the DOA was recorded. Conclusions are as

follows:

• The DOA of signals propagating over the horizon through a refractive environment does

fluctuate on the scale of hours to days.

• The total DOA fluctuations were on the order of .75◦, which means that any array deployed

for such measurements should be designed such that it can detect sub 1◦ fluctuations, i.e.

the array aperture should be very large relative the signal wavelength.

• Precipitation appears to be the dominant factor determining DOA.

• DOA and SNR were not well correlated, indicating that DOA may be a useful secondary

parameter for refractivity inversion over propagation loss.

6.2 Future Work

In some sense, the research presented in this dissertation is only a small piece of work in

the larger literature on refractivity estimation. Towards the goal of full incorporation of signal

DOA into refractivity inversion, this is an early text showing that the concept holds merit. We have

demonstrated that signal DOA is in fact a parameter that can be measured practically alongside

propagation loss, and is sufficiently independent of propagation loss that it may confer additional

information useful for inferring the refractivity profile along the channel path.
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There is a long list of future studies which must now be conducted. Firstly, we have

demonstrated that DOA is variable within a refractive channel, but only for one single channel.

There are many variables describing a communications channel, including but not limited to:

• signal frequency and bandwidth

• transmitter and receiver hardware specifications

• location of channel and medium of propagation

• propagation distance and terrain within the channel

• weather conditions within the channel.

The study detailed in chapter 5 must be repeated in many different channels over a range of

conditions listed above to better detail how DOA is affected by the different parameters.

Most importantly, refractivity within the propagation channel should be recorded in high

detail to determine a relationship between the DOA and refractivity profile. Simultaneously, mod-

eling software must be advanced to give realistic estimates of the DOA experienced by a receiver

array at any given point. When simulation and reality are well matched DOA measurements can

enhance refractivity predictions. Then it is a matter of developing efficient algorithms that can

map between DOA/PL and refractivity. Advances in machine learning may be key in this issue.

Finally, it is technically challenging to develop an array system capable of measuring

signal DOA using modern hardware. The evolution of better tools, such as software defined radios

specifically designed to operate multiple channels coherently, is important to promote smaller

scale research by institutions that do not have access to prohibitively expensive equipment.
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