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ABSTRACT
In this paper, we outline a physically motivated framework for describing spin-selective recombination processes in chiral systems, from which
we derive spin-selective reaction operators for recombination reactions of donor–bridge–acceptor molecules, where the electron transfer is
mediated by chirality and spin–orbit coupling. In general, the recombination process is selective only for spin-coherence between singlet and
triplet states, and it is not, in general, selective for spin polarization. We find that spin polarization selectivity only arises in hopping-mediated
electron transfer. We describe how this effective spin-polarization selectivity is a consequence of spin-polarization generated transiently in
the intermediate state. The recombination process also augments the coherent spin dynamics of the charge separated state, which is found to
have a significant effect on the recombination dynamics and to destroy any long-lived spin polarization. Although we only consider a simple
donor–bridge–acceptor system, the framework we present here can be straightforwardly extended to describe spin-selective recombination
processes in more complex systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0150269

I. INTRODUCTION

There has recently been a growing interest in spin-selectivity
of processes in molecular chiral donor–acceptor systems.1–4 These
systems may provide a versatile platform for exploring the molec-
ular origins of the chirality-induced spin selectivity (CISS) effect,5–8

without the complications of interactions with electrodes,3,9–12 and it
has also been suggested that chiral donor–acceptor systems could be
exploited in various quantum information science applications.1,13,14

Several theories have been proposed for the molecular CISS effect
and on how spin polarization is generated in the formation of
charge separated states,7,8,15–17 and a handful of experimental pro-
tocols have been proposed to test these theories.2,5,8,15,18 While most
studies to date have focused on the CISS effect in the formation of
charge separated states in donor–acceptor systems, it has also been
suggested that CISS could play a role in the charge recombination
of donor–acceptor systems.8,15 However, the proposed theories of
CISS in charge recombination are either limited to simple one-step
electron transfer15 or are purely phenomenological,8 and thus far,

the role of CISS in experimentally realized donor–bridge–acceptor
systems2,19–21 has not been explored. Motivated by this, in this paper,
we aim to answer the question: Does chirality lead to spin-selective
charge recombination in donor–bridge–acceptor molecules?

In systems where chirality and spin–orbit coupling have no
effect on charge recombination of charge separated (CS) states, the
treatment of spin-selective recombination is well understood.22–25

We describe the system with a time-dependent spin density operator
for the CS state, σ̂CS, which spans the set of near-degenerate sin-
glet and triplet spin states of the CS state. This spin density operator
obeys the well-established Haberkorn quantum master equation

d
dt
σ̂CS(t) = −i[Ĥ, σ̂CS(t)] +Kσ̂CS(t), (1)

where Ĥ is the spin Hamiltonian for the CS state and K is the
reaction superoperator, which is given by

Kσ̂CS = −{K̂, σ̂CS} = −{
kCR,S

2
P̂S +

kCR,T

2
P̂T, σ̂CS}, (2)
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in which and kCR,S and kCR,T are the singlet and triplet spin
selective reaction rate constants, respectively, and P̂S = ∣ S⟩⟨ S∣ and
P̂T = ∑α=x,y,z ∣Tα⟩⟨Tα∣ are projection operators onto singlet and
triplet spin states of the CS state.22,23,25 K describes the full effect of
the reaction process on the dynamics of the CS state, and the reaction
operator K̂ encodes how population is lost from the CS state. In what
follows, we will refer to K as the reaction superoperator and K̂ as the
reaction operator. It should be noted that this equation does not con-
serve the trace of σ̂CS because population is lost from the CS state by
recombination, and it further assumes that the recombination of the
CS state is irreversible.

It has been postulated by Luo and Hore that in chiral
donor–acceptor systems, the reaction operator K̂ for a CISS
mediated recombination process should be given by8

K̂ =
kCR

2
∣ϕχ⟩⟨ϕχ ∣, (3)

in which ∣ϕχ⟩ = cos (χ/2)∣S⟩ + sin (χ/2)∣Tz⟩, ∣S⟩ = 1
√

2
(∣↑D↓A⟩

− ∣↓D↑A⟩), and ∣Tz⟩ =
1
√

2
(∣↑D↓A⟩ + ∣↓D↑A⟩), where the quantization

axis, z, is the molecular frame spin-polarization axis, and the mixing
angle χ is a phenomenological parameter that parameterizes the
extent of spin polarization selectivity. This form of the reaction
operator is based on the assumption that in a chiral molecule,
the recombination process is partially spin selective, and it is
straightforward to verify that the total decay rate of the CS state with
this model is dependent on the difference in z-spin components on
D and A, i.e., the spin-polarization ⟨ΔSz⟩ of the CS state (where the
spin polarization operator is defined as ΔŜz = ŜDz − ŜAz). The limit
of full spin-selectivity is recovered for χ = π/2 and ∣ϕχ⟩ = ∣↑D↓A⟩,
where the recombination only occurs if the donor and acceptor
electrons have specific opposite spin orientations in the molecular
frame. It should be noted that this reaction operator has not been
derived from any microscopic models of chirality induced spin
selectivity, and there is no direct experimental evidence that it
provides a reasonable model of spin selective recombination in
chiral donor–acceptor systems.

In the previous work, we have derived a different reaction
superoperator to that, given by Eq. (3), for a simple one-step elec-
tron transfer between a donor and an acceptor D●+–A●− → D–A,
invoking the modest approximations.25 Specifically, it is assumed
that the coupling between the charge transfer states is weak, that
the nuclear degrees of freedom are initially at local thermal equi-
librium on one of the charge transfer potential energy surfaces,
and that the Condon approximation holds for the direct charge
transfer coupled, VDA, and the spin–orbit mediated charge trans-
fer coupling ΛDA (essentially the same approximations as Mar-
cus theory26–28). The model electronic Hamiltonian for the singlet
and triplet D●+–A●− (CS) and D–A (S0) states in this theory is
given by

ĤDA = ES0 ∣S0⟩⟨S0∣ + ∑
Θ=S,Tx ,Ty ,Tz

ECS,Θ∣CS,Θ⟩⟨CS,Θ∣

+ VDA(∣CS, S⟩⟨S0∣ + ∣S0⟩⟨CS, S∣)

+ i
ΛDA

2
(∣CS, Tz⟩⟨S0∣ − ∣S0⟩⟨CS, Tz ∣), (4)

and from this, the reaction superoperator can be derived to be

Kσ̂CS = −{
kCR

2
∣ψθ⟩⟨ψθ∣, σ̂CS} − i[δϵ∣ψθ⟩⟨ψθ∣, σ̂CS], (5)

where ∣ψθ⟩ = cos θ∣S⟩ + i sin θ∣Tz⟩, with tan θ = ΛDA/(2VDA),
where the quantization axis z is defined by the molecu-
lar frame spin–orbit coupling vector. This state is not spin
polarized, i.e., ⟨SDz⟩ = ⟨SAz⟩ = ⟨ΔSz⟩ = 0, so, in this case, the
recombination process is not selective for spin polariza-
tion. However, the recombination process is selective for the
imaginary part of the coherence between ∣S⟩ and ∣Tz⟩ states,
measured by the operator Π̂STz = −i(∣ S⟩⟨Tz ∣ − ∣Tz⟩⟨S∣)/2, which
we refer to simply as the S − Tz coherence. The shift term
δϵ ≈ (V2

DA + (ΛDA/2)2
)/(ES0 − ECS) appearing in this reaction

superoperator is a superexchange mediated spin–orbit coupling
interaction in the CS state that emerges as a result of the spin–orbit
interaction between the CS state and the S0 ground-state, which
cannot, in general, be neglected.7,15

In the subsequent work, it was found that an interplay of
spin–orbit coupling and exchange interactions in a two-step charge
separation following photo-excitation can produce spin polariza-
tion, whereas a single-step electron transfer cannot.7 This naturally
raises the question: What role does chirality-induced spin selectiv-
ity play in the charge recombination of a donor–bridge–acceptor
system? To address this question, we will consider charge recom-
bination in a chiral D–B–A molecule and derive a reaction operator
that describes the superexchange and incoherent hopping limits of
the charge recombination process.

II. CISS IN DONOR–BRIDGE–ACCEPTOR CHARGE
RECOMBINATION

As a minimal model for a spin–orbit coupling mediated
charge recombination process in a chiral donor–acceptor system,
we consider the recombination of a donor–bridge–acceptor system
from a charge separated (CS) state, D●+–B–A●−, back to a closed
shell ground state (S0), D–B–A. We will also assume that direct
A●− → D●+ tunneling of the electron does not occur, so, the elec-
tron either hops via an intermediate CS⋆ state, D●+–B●−–A, in which
the bridge B is charged, or the electron tunnels via indirect superex-
change coupling through virtual transitions to intermediate charge
transfer states. Both the CS and CS⋆ states can exist in either sin-
glet or triplet electron spin states, whereas the S0 ground state is
assumed to exist only in a pure singlet state. For simplicity we will
assume that only the B●− → D●+ electron transfer is mediated by
spin–orbit coupling, and that the initial hopping step is not spin
selective. The transition from superexchange mediated tunneling to
hopping is controlled by the energy of the CS⋆ state (at fixed electron
transfer reorganization energy). When the intermediate CS⋆ state is
very high in energy (compared to thermal energy kBT), hopping is
unfeasible; thus, superexchange dominates, but when the interme-
diate CS⋆ is thermally accessible, hopping becomes the dominant
mechanism.26,29,30 This is illustrated schematically in Fig. 1.20,29 For
simplicity, we ignore any direct tunneling between D and A, which is
justified, given that direct tunneling would require overlap between
D and A orbitals, which would be minimal in this system due to the
spatial separation of D and A by B.
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FIG. 1. Diagram summarizing the charge transfer states involved in the
donor–bridge–acceptor system, indicating the incoherent rate processes with
arrows and superexchange coupling with dashed lines, for the superexchange limit
(left) and hopping limit (right).

Within this model, the spin quantization (i.e., the spin
polarization axis) is defined by the spin–orbit coupling vec-
tor between the D●+–B●−–A and D●+–B–A●− states. Assuming
an effective one-electron picture, this vector is given by iΛDB

= ∑α ∫ drψD(r)ξ̂αℓ̂αψB(r), where the sum is over nuclei in the
molecule, ψD(r) is the donor localized electron orbital wave-
function, ψD(r) is the bridge localized orbital wave-function, ξ̂α is a
function of the electron distance from nucleus α, and ℓ̂α is the orbital
angular momentum about the nucleus α. This vector ΛDB, defin-
ing the quantization axis, can be computed using ab initio methods
or its direction can be approximated with simple symmetry-based
physical arguments. For example, for electron transport between
covalently linked π-systems, as in Ref. 19, this vector lies approxi-
mately along the direction of charge transfer. This follows from the
fact that for two orthogonal p-orbitals on covalently linked atoms,
this vector lies along the axis linking the atoms, which would approx-
imately coincide with the charge transfer axis.31 (Further discussion
of the SOC vector can be found in the supplementary material
of Ref. 15 and the references therein.)

A. The superexchange limit
First, in order to understand the superexchange mediated

electron transfer limit, we consider the following model for the
electronic Hamiltonian for the S0, CS, and CS⋆ states:7,26,29

ĤDBA = ES0 ∣S0⟩⟨S0∣ + ∑
Θ=S,Tx ,Ty ,Tz

ECS⋆ ,Θ∣CS⋆,Θ⟩⟨CS⋆,Θ∣

+ ∑
Θ=S,Tx ,Ty ,Tz

ECS,Θ∣CS,Θ⟩⟨CS,Θ∣

+ ∑
Θ=S,Tx ,Ty ,Tz

VBA(∣CS⋆,Θ⟩⟨CS,Θ∣ + ∣CS,Θ⟩⟨CS⋆,Θ∣)

+ VDB(∣CS⋆, S⟩⟨S0∣ + ∣S0⟩⟨CS⋆, S∣)

+
iΛDB

2
(∣CS⋆, Tz⟩⟨S0∣ − ∣S0⟩⟨CS⋆, Tz ∣). (6)

Here,Θ = S, Tx, Ty or Tz , denotes the total electron spin state for the
charge separated states, VDB and VBA denote the spin-conserving
diabatic (i.e., direct tunneling) couplings between electronic states,
and ΛDB denotes the spin–orbit coupling between the CS⋆ and S0
ground state. For simplicity, we assume that SOC only mediates the
D↔ B coupling, but the general result that we obtain holds when
SOC mediates the B↔ A electron transfer process as well. We also

assume that direct and spin–orbit mediated D↔ A couplings are
negligible due to the spatial separation of D and A.

In the superexchange mediated electron transfer limit, where
ECS⋆ ,Θ ≫ ECS,Θ, ES0 , we do not need to explicitly include the interme-
diate charged bridge state, CS⋆, and we can treat the charge recombi-
nation of the CS state to the S0 state as a two-electron-transfer-state
problem, with an effective Hamiltonian given by

ĤDBA,eff = (ES0 + δES0)∣S0⟩⟨S0∣

+ ∑
Θ=S,Tx ,Ty ,Tz

(ECS,Θ + δECS,Θ)∣CS,Θ⟩⟨CS,Θ∣

+ VDA,eff(∣CS, S⟩⟨S0∣ + ∣S0⟩⟨CS, S∣)

+ i
ΛDA,eff

2
(∣CS, Tz⟩⟨S0∣ − ∣S0⟩⟨CS, Tz ∣). (7)

A derivation of this effective Hamiltonian is given in Appendix A.
We see from this that in the superexchange limit, there is
an effective spin-conserving diabatic coupling between the S0
and CS states, given by VDA,eff = VDBVBA/(Ē − ECS⋆ ,S), as well
as an effective spin–orbit interaction, with coupling strength
ΛDA,eff = ΛDBVBA/(Ē − ECS⋆ ,Tz

), where Ē is the average energy of the
S0 and CS states.

Because the electronic Hamiltonian reduces to an effective two-
state model in the superexchange limit, the electron transfer can be
regarded as occurring in a single step

D●+ − B −A●−
kCR
ÐÐ→ D–B–A.

The electron transfer rate kCR is mediated by the spin-
conserving superexchange coupling term VDA,eff, and the spin–orbit
coupling mediated superexchange coupling ΛDA,eff, and (when the
Condon approximation is applied to the interstate superexchange
couplings26) the theory reduces to that presented in Ref. 15, and
the recombination superoperator is given exactly by Eq. (5), where
ΛDA = ΛDA,eff and VDA = VDA,eff. We see that in the superexchange
limit, there is no selectivity for spin-polarization and only selectivity
for spin-coherence.

B. The hopping limit
In the limit where charge recombination is controlled by hop-

ping via an intermediate charge-separated state in which the bridge
is charged,29 D●+–B●−–A, which we denote CS⋆, the kinetic scheme
for this mechanism is simply

D●+ − B −A●−
kf
Ð⇀↽Ð

kb

D●+ − B●− − A
kCR
ÐÐ→ D − B − A.

The forward and backward hopping rates are given by kf and kb,
respectively, and the recombination from the CS⋆ state is assumed
to occur irreversibly at a rate kCR. We start by writing down cou-
pled equations of motion for the spin density operators of the CS⋆

[D●+–B●−–A] and CS [D●+–B–A●−] states, as derived in Refs. 7, 15,
and 25,

d
dt
σ̂CS⋆(t) = −{

kCR

2
∣ψθ⟩⟨ψθ∣, σ̂CS⋆(t)} − kbσ̂CS⋆(t)

− i[δϵ∣ψθ⟩⟨ψθ∣ + 2JP̂S, σ̂CS⋆(t)] + kfσ̂CS(t)
= LCS⋆ σ̂CS⋆(t) + kfσ̂CS⋆(t), (8)
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d
dt
σ̂CS(t) = −i[Ĥ, σ̂CS(t)] + kbσ̂CS⋆(t) − kfσ̂CS(t), (9)

where LCS⋆ = −{kCR/2∣ψθ⟩⟨ψθ∣, ⋅} − kb − i[δϵ∣ψθ⟩⟨ψθ∣ + 2 JP̂S, ⋅].
Here, we have assumed that the intermediate state is sufficiently
short-lived that we need only include the exchange interaction J and
the spin–orbit coupling shift term δϵ in the spin Hamiltonian for the
CS⋆ state, and we can safely neglect hyperfine, dipolar, and Zeeman
interaction terms. This equation assumes that there is no long-lived
coherence between different charge transfer states, and, thus,
individual hopping steps can be treated as incoherent processes. We
also assume that the CS⋆ spin states are near-degenerate (relative to
thermal energy), so, we do not need to account for spin-selectivity
in the forward/backward hopping processes.7

Before proceeding further, we will outline a qualitatively how
spin polarization selectivity can emerge in hopping-mediated charge
recombination. When spin–orbit coupling mediates the charge
recombination from the intermediate CS⋆ state, it will selectively
remove the ∣ψθ⟩ state. Molecules in electron spin states orthogonal
to ∣ψθ⟩, which have a non-zero spin-coherence, e.g., ∣ψθ�⟩ = sin θ∣S⟩
− i cos θ∣Tz⟩, will not react, and, subsequently, they will evolve
coherently under the exchange interaction J in the intermediate state
to generate a spin- polarized state.7

This spin polarization is then transferred back to the CS state.
In this sense, we see that the effective loss of spin polarization from
the CS state is a result of the opposite spin polarization being gen-
erated in the intermediate state in molecules that do not recombine,
which is transferred back to the CS state.

In order to derive the effective reaction superoperator, we apply
the steady-state approximation (SSA) to the CS⋆ spin density opera-
tor, d

dt σ̂CS⋆(t) ≈ 0, from which we obtain the following equation for
the CS⋆ density operator in terms of the CS density operator:

σ̂CS⋆(t) ≈ −kfL −1
CS⋆ σ̂CS(t), (10)

and from this, we can obtain the effective reaction superoperator as

Kσ̂CS(t) = −kf(1 + kbL −1
CS⋆)σ̂CS(t). (11)

Alternatively, we can derive the hopping reaction superoperator
without invoking the steady state approximation by first solving
Eq. (8) for σ̂CS⋆(t) to give

σ̂CS⋆(t) = kf∫

t

0
dτ eLCS⋆ τ σ̂CS(t − τ). (12)

Assuming that eLCS⋆ τ decays to zero on a time-scale faster than the
dynamics of σ̂CS(t − τ), we can invoke a Markovian approximation,
where we replace σ̂CS(t − τ)→ σ̂CS(t) in the integral, and we set
the upper limit of the integral to τ =∞. With this, we arrive at the
same result as the steady-state approximation for σ̂CS⋆(t), given by
Eq. (10), but this approach shows that the SSA approximation can
be expected to be accurate, provided that the spin dynamics of the
CS⋆ occur on a much faster time scale than those of the CS state.
Unfortunately, this reaction superoperator does not reduce to a sim-
ple form in the general case, although an analytical expression can
be obtained. However, we can examine particular limits and extract
the effective reaction operator K̂.

First, it is instructive to consider the case where θ = 0 and
δϵ = 0, i.e., when there is no spin–orbit coupling involved in the

charge recombination process and there is no CISS effect. In this
case, the reaction operator reduces to

Kσ̂CS = −{
k̃CR

2
P̂S, σ̂CS}− i[2J̃P̂S, σ̂CS] + k̃D(P̂Sσ̂CSP̂S −

1
2
{P̂S, σ̂CS}),

(13)

where k̃CR = kfkb/(kb + kCR) is the effective reaction rate,
2J̃ = 8 Jkbkf/[(4 J)2

+ (kCR + 2kb)
2
] is an effective exchange

coupling, and k̃D = kf((4 J)2
+ kCR(kCR + 2kb))/[(4 J)2

+ (kCR + 2kb)
2
] − k̃CR/2, is an effective singlet–triplet dephas-

ing rate. In the limit where J = 0, we can similarly obtain a simple
expression for the reaction operator

Kσ̂CS = −{
k̃CR

2
∣ψθ⟩⟨ψθ∣, σ̂CS} − i[δϵ̃∣ψθ⟩⟨ψθ∣, σ̂CS]

+ k̃D(∣ψθ⟩⟨ψθ∣σ̂CS∣ψθ⟩⟨ψθ∣ −
1
2
{∣ψθ⟩⟨ψθ∣, σ̂CS}), (14)

where the effective charge recombination rate k̃CR, decoherence rate
k̃D, and spin–orbit interaction δϵ̃ are given by the above expressions
with the simple replacement 2J → δϵ. In each case, we see that the
effective recombination operator can be decomposed into a shift
in the spin Hamiltonian δĤ, a Lindbladian decoherence term, with
Lindblad rates, and operators γj, and L̂ j , and a reaction term with the
reaction operator K̂,

Kσ̂CS = −{K̂, σ̂CS} − i[δĤ, σ̂CS]

+∑
j
γ j(L̂ j σ̂CSL̂†

j −
1
2
{L̂†

j L̂ j , σ̂CS}). (15)

First, we will consider the reaction operator K̂, although the decoher-
ence and Hamiltonian shift terms cannot, in general, be neglected,
and we will later evaluate their importance. In general, K̂ can be
decomposed into the following set of operators:

K̂ =
k̃S

2
P̂S +

k̃Tz

2
P̂Tz +

k̃z

2
ΔŜz +

k̃STz

2
Π̂STz , (16)

where P̂Tz = ∣Tz⟩⟨Tz ∣ is a projection operator onto the Tz
state, ΔŜz = (∣S⟩⟨Tz ∣ + ∣Tz⟩⟨S∣)/2 = ∣↑D↓A⟩⟨↑D↓A∣ − ∣↓D↑A⟩⟨↓D↑A∣ is
the spin polarization operator, and Π̂STz = −i(∣S⟩⟨Tz ∣ − ∣Tz⟩⟨S∣)/2
is the spin coherence operator. In general, the rates must satisfy
k̃S, k̃Tz ≥ 0 and k̃Sk̃Tz ≥ (k̃

2
STz
+ k̃2

z)/4 in order to preserve positiv-
ity of the density operator. We note that in the case of Luo
and Hore’s phenomenological theory, we have k̃S = kCR cos2

(χ/2),
k̃Tz = kCR sin2

(χ/2), k̃z = kCR sin (χ), and k̃STz = 0.8

We find, in general, that both k̃z and k̃STz are proportional to
sin(2θ), meaning that they only emerge in chiral systems. This is
because the spin coherence that is generated by the spin–orbit medi-
ated recombination is proportional to sin(2θ). Furthermore, we find
that the ratio of k̃z to k̃STz is given by

k̃z

k̃STz

=
4J(2kb + kCR)

(2kb + kCR)
2
+ 4δϵ2

+ 8Jδϵ cos 2θ
, (17)
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which shows that spin polarization selectivity can only arise if
J is non-zero, and if the back reaction and charge recombination
from the intermediate state are sufficiently slow to allow some
degree of coherent spin evolution in the intermediate state to
generate spin polarization.

The full expressions for the spin-selective rate constants
are somewhat cumbersome, although straightforward to evaluate
numerically, so, here, we will analyze some of their properties in spe-
cific limits. In Appendix B, we show how to obtain K in the weak
spin–orbit coupling limit, which we expect to be applicable to many
organic donor–bridge–acceptor systems where the reaction super-
operator parameters are relatively simple. In this limit, we find there
are two dominant decoherence processes, with Lindblad operators
L̂ j = P̂S and P̂Tz , and the recombination process is selective for both
the S and Tz states, as well as for the spin polarization and S-Tz
coherence Π̂STz . We also find that the spin-coherence and the spin-
polarization selectivity only emerge at first-order in the spin orbit
coupling, and spin-polarization selectivity is only non-zero if J is
non-zero.

Starting from the weak spin–orbit coupling limit results in
Appendix B, it is instructive to consider the limit where coherent
dynamics of the CS⋆ spins are much slower than the incoherent
recombination process, i.e., kb, kCR ≫ J, δϵ. In this limit, we find

k̃S ≈ cos2 θ
kfkCR

kCR + kb
, k̃Tz ≈ sin2 θ

kfkCR

kb
, (18a)

k̃STz ≈ sin (2θ)
kfkCR

kCR + kb
, k̃z ≈

kfkCR

kCR + kb

4J sin 2θ
2kb + kCR

. (18b)

We see that the spin polarization that is removed from the CS
state is proportional to J in the intermediate state. Conversely, in the
limit where J ≫ kb, kCR, δϵ, it can be found that k̃z ≈ 0 and k̃STz ≈ 0.
This is because, in the large J limit, the spin polarization generated by
the exchange interaction oscillates many times in the intermediate
state prior to transfer back to the CS state, which averages the spin
polarization that is transferred back to zero.

It is also interesting to consider the limit where kCR is small and
δϵ = 0. In this case, we find

k̃S ≈ cos2 θ
kfkCR

kb
, k̃Tz ≈ sin2 θ

kfkCR

kb
, (19a)

k̃STz ≈
kfkCRkb sin 2θ

k2
b + (2J)2 , k̃z ≈

(2J)kfkCR sin 2θ
k2

b + (2J)2 . (19b)

In this case, if the initial charge separation goes via the same
intermediate CS⋆ state and if the initial charge separation follow-
ing photo-excitation forms the CS⋆ state in the ∣ψθ⟩ state, i.e.,
assuming ΛD⋆B/VD⋆B = ΛDB/VDB (where D⋆ denotes the excited
precursor donor orbital), the spin polarization in the initial CS state
is −(2 J)kb sin 2θ/(k2

b + (2 J)2
), and the initial spin coherence is

k2
b sin 2θ/(k2

b + (2 J)2
). So, in this limit, the charge recombination

is selective for the same spin-coherence as is initially generated, but
with the opposite spin polarization. It is straightforward to show that
this result also holds in the case where δϵ ≠ 0. It should be noted that
the situation is more complicated if the phaseΛD⋆B/VD⋆B is different
from ΛDB/VDB, which could be the case in a real system.

We now turn to the shift term, δĤ, in the full effective reac-
tion superoperator, which arises from the coherent dynamics that

occur transiently in the intermediate state. We can expand this
shift term in terms of the operators P̂S, P̂Tz , ΔŜz , and Π̂STz , as was
done for K̂:

δĤ = δϵ̃SP̂S + δϵ̃Tz P̂Tz + δϵ̃zΔŜz + δϵ̃STz Π̂STz. (20)

Evaluating the reaction superoperator, we find, in general, that
δϵ̃z = 0, while the other terms are non-zero. The non-zero terms
account for the shift in energy of the singlet and triplet states due
to the exchange coupling in the intermediate state, and an effective
spin–orbit coupling that arises due to the superexchange spin–orbit
interaction in the CS⋆ state [the term proportional to δϵ in Eq. (8)].
As with K̂, it is possible to obtain an exact expression for δĤ, but it
is very complicated; however in the weak spin–orbit coupling limit
(presented in Appendix B), it is relatively straightforward to evalu-
ate. The presence of this shift term (and the decoherence terms) cou-
ples and subsequently mixes the Remove space after hyphen. states
of the CS state, which means that there exists no “protected” spin
polarized CS state that can be generated from a non-polarized initial
spin state. Importantly, this implies that there can be no long-lived
spin polarization in the CS state. In the numerical tests presented in
Sec. III, we will show that this shift term is essential in accurately
calculating the spin polarization and coherence dynamics of the
CS state.

In this analysis, we have only considered a simple model where
there is a single intermediate charge transfer state and a single SOC
mediated electron transfer step. However, the framework that we
have employed here can be extended straightforwardly to include
multiple intermediate states and multiple SOC-mediated electron
transfer steps. In these more complex cases, analytic results are likely
not tractable, although the functional form of the reaction oper-
ator and the shift term would be the same, and the framework
used here can still be applied to compute the full effective reaction
superoperator numerically.

III. NUMERICAL TESTS FOR THE HOPPING LIMIT
In this section, we aim to evaluate the accuracy of the steady

state approximation used in Sec. II B to obtain the reaction super-
operator, as well as the relative importance of spin selectivity in
the reaction operator K̂ and the augmented spin dynamics gener-
ated by δĤ. As a first test, in Fig. 2, we show the dynamics of the
CS state population and the spin polarization in the CS state as a
function of time for the CS state, for a model chiral D–B–A sys-
tem undergoing hopping mediated charge recombination, where
the intermediate CS⋆ state has a lifetime of ∼10 ns (the complete
set of model parameters are given in the figure caption). We have
previously shown how photo-generated CS states formed by hop-
ping become spin-polarized.7 Given this, we set the initial CS state
spin density operator to be the spin polarized state that would be
formed if the initial photo-excitation generates the CS⋆ state in the
σ̂θ = ∣ψθ⟩⟨ψθ∣ state, as predicted by the theory in Ref. 7. Under the
assumption that the initial CS state formation is very fast compared
to charge recombination, the initial density operator is given by7

σ̂CS(0) ≈ kb∫

∞

0
dt eLCS⋆ t σ̂θ = −

kb

ϕCS
L −1

CS⋆ σ̂θ, (21)
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FIG. 2. Dynamics of the hopping model, calculated with the full set of density
operator equations (solid lines) and various levels of approximation for the reac-
tion superoperator (dashed lines). In this example, J = 1000 mT, δϵ = −0.98J,
kf = 100 μs−1, kb = 100kf, and kCR = 10kf, and θ = 0.02, and the CS state is
initialized in a spin-polarized initial state, as defined by Eq. (21).

where ϕCS is the CS state quantum yield, given by ϕCS = −Tr
[kbL −1

CS⋆ σ̂θ]. For the parameters chosen here, this produces a state
which has ∼−12% initial spin polarization. For this example, we have
calculated the spin dynamics for the full model, Eqs. (8) and (9),
for the full steady state approximation, Eq. (11), and for the weak
spin–orbit coupling reaction superoperator obtained in Appendix B,
and neglecting the weak spin–orbit coupling contribution to the δĤ
[i.e., setting δϵ(1)STz

in Eq. (B20) to zero].
In the top panel of Fig. 2, we show the CS survival proba-

bility (blue), p(t) = Tr [σ̂CS(t)], and spin polarization (red), ⟨ΔSz⟩,
and spin coherence (gold), ⟨ΠSTz ⟩, for the full model, Eqs. (8) and
(9), (solid lines) and for the full effective reaction superoperator,
Eq. (11), (dashed lines). In this example, both spin coherence and
spin polarization are generated transiently by the hopping process,
and oscillations in these quantities induce oscillations in the CS
state decay rate. We also see that the net spin-polarization gen-
erated in the CS state eventually decays to zero. This is because
all spin-polarized states are coupled by effective interactions in
δĤ, which means that the CS state fully decays, leaving zero net
spin-polarization. We see that the full model result and effective
reaction superoperator obtained with the steady-state approxima-
tion agree to graphical accuracy, even in this model with physically
reasonable parameters where the frequency associated with 2J is sig-
nificantly faster than the decay rate of the intermediate state. In
the middle panel, we compare the full model (solid lines) and the
weak spin–orbit coupling reaction superoperator, Eq. (B7) (dashed

lines), which recovers most of the population and spin-polarization
dynamics, but is not quantitatively accurate for this example. In the
bottom panel of Fig. 2, we show results for the same calculation,
neglecting O(sin θ) contributions to δĤ in the weak spin–orbit cou-
pling reaction superoperator, Eq. (B7). This approximation fails to
capture the spin polarization dynamics accurately in this example,
which demonstrates that the emergent spin polarization in the CS
state is primarily generated by the augmentation of coherent spin
dynamics, rather than spin-selective recombination.

To further test the importance of δĤ, we have calculated the
decay rate, k(t) = −ṗ(t)/p(t), the spin polarization and spin coher-
ence for the same model for a range of exchange couplings J, and
δϵ values in the intermediate state, as shown in Fig. 3. In each
case, we calculate the full spin dynamics of the CS state (solid
lines), which agree to graphical accuracy with the full steady-state
approximation results, and compare these to the dynamics with
the steady-state approximation reaction superoperator with δĤ = 0
(dashed lines). We see that across a range of J values (with
δϵ = −0.98J in each case), δĤ cannot be neglected, even when the full
steady-state approximation for the reaction operator and the deco-
herence term are used. This approximation can even be qualitatively
wrong, for example, when δĤ is neglected in the J = 100 mT and
J = 1000 mT examples, the sign of the predicted spin polarization is
wrong. We also see that even when δĤ is set to zero, the decoherence
contributions to K destroy the long-lived spin polarization. Overall,
these tests show that both the reaction operator and the Hamilto-
nian shift play a significant role in determining the spin polarization
dynamics and survival probability of the CS state in this example,
and the Hamiltonian shift δĤ cannot simply be ignored, so, the full
reaction superoperator should always be used in calculations.

FIG. 3. Dynamics of the hopping model, calculated with the full set of density oper-
ator equations (solid lines) and the full steady state reaction superoperator, with
δĤ = 0 (dashed lines). In this example, J is varied, and in each case, δϵ = −0.98J,
kf = 100 μs−1, kb = 100kf, kCR = 10kf, and θ = 0.02.
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For simplicity in these tests, we have ignored any coherent spin
dynamics in the CS state other than those generated transiently in
the hopping process. However, in a real chiral D–B–A molecule,
dipolar and superexchange electron spin couplings would exist in
the CS state, as well as hyperfine couplings to nuclear spins. For the
model calculations performed here, with physically motivated para-
meter choices, δĤ produces electron spin dynamics on roughly a
200 ns time-scale, with a corresponding energy scale of ∼0.05 mT
hγe, the effect of which can be measured experimentally even in
the presence of competing interactions, as is observed, for exam-
ple, in the low magnetic field effect.32–35 However, in some systems,
other spin–spin interactions could well dominate over δĤ, and dis-
entangling δĤ effects from these other spin–spin interactions would
require detailed modeling of the system of interest.

IV. CONCLUSIONS
In this work, we have derived a description of spin-selective

electron transfer in chiral donor–bridge–acceptor systems through
the reaction superoperator formalism. We have obtained expres-
sions for this superoperator, applicable in both the superexchange
and hopping regimes, for the recombination process. The form
of the reaction superoperator is very simple in the superexchange
limit, where it is not selective for spin polarization. However, in
the hopping mediated limit, the reaction superoperator becomes
more complicated, and we have found that the recombination is
selective for both spin-polarization and spin-coherence in this case.
The spin polarization selectivity should be understood as arising
from the spin-polarization being generated in molecules initially
in non-reactive spin states, which is transferred back to the CS
state in reverse-hopping. We also find that spin-polarization selec-
tivity emerges only when the intermediate charge separated state
is sufficiently long-lived and when an exchange coupling in this
state is large enough to generate spin polarization in molecules in
non-reactive spin states. We have also found that spin polariza-
tion selectivity can be reversed relative to the chirality induced spin
polarization generated by photo-excitation, and that the selectivity
depends on the phases couplings between bridge orbitals and the
orbitals in the ground state and the excited precursor. This inverse
spin polarization selectivity of formation recombination could have
some biological function, for example, in magnetoreception,8,36,37

or in hindering reverse electron transfer in photosynthetic reaction
centers.18,38

Numerical tests have shown that in hopping mediated charge
recombination, chirality dependent shifts in the spin Hamiltonian,
which are induced by transient dynamics in the intermediate state,
also play an essential role in determining the survival probabil-
ity and spin polarization in the charge separated state. This shift
Hamiltonian mixes all spin-polarized states, thereby destroying the
long-lived spin polarization in the CS state. In order to accurately
describe the dynamics of charge recombination in chiral molecules,
it is clearly necessary to account for both spin-selectivity in the
reaction and augmentation of the coherent dynamics by the recom-
bination process. It is important to note that the theory proposed
here is not fully consistent with the phenomenological treatments
of CISS that have been proposed recently,8 and that have been
used to investigate the role of CISS in avian magnetoreception.8,36,37

Although the theory that we have presented does not have the

simplicity of this phenomenological treatment, it is derived from
a physically reasonable model, and all parameters appearing in
the theory (such as forward and backward hopping rates) can, in
principle, be measured experimentally or calculated using computa-
tional approaches. Experimental and computational studies suggest
that hopping mediated charge recombination may play a role in
avian magnetoreception,39,40 and with the theory presented here, it
would be possible to rigorously study chirality-mediated spin effects
in magnetoreception. The spin density operator framework used
here can be extended straightforwardly to include other important
physics of spin-correlated charge separated states that are neces-
sary to understand real systems, such as hyperfine coupling effects
and spin relaxation.5,41–46 We anticipate that this framework for
understanding spin-selective charge recombination in chiral sys-
tems will be useful in numerous contexts involving molecular CISS,
such as in devising systems exploiting CISS for quantum informa-
tion science and in studies of CISS effects in biological electron
transfer.
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APPENDIX A: EFFECTIVE HAMILTONIAN THEORY
FOR SUPEREXCHANGE ELECTRON TRANSFER

Here, we derive the effective Hamiltonian, Eq. (7), starting from
the full model electronic state Hamiltonian given by Eq. (6). We
assume that the couplings ΛDB, VDB, and VBA are small and that
ECS⋆ ≫ ES0 , ECS,Θ. In this case, the eigenvectors of Ĥ = ĤDBA can
be partitioned into two approximate subspaces, one spanned by the
high energy CS⋆ states and one spanned by the low energy CS and
S0 states. With this observation, we can derive an approximate form
for the electronic Hamiltonian within the low-energy subspace. We
first define a projection operator onto the low- energy subspace
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P̂ = ∣S0⟩⟨S0∣ +∑Θ ∣CS,Θ⟩⟨CS,Θ∣, and its complement Q̂ = 1 − P̂. We
project the electronic energy eigenstate equation Ĥ∣Ψ⟩ = E∣Ψ⟩ to
obtain equations for ∣Ψ⟩ in the P̂ and Q̂ projected spaces,47

EP̂∣Ψ⟩ = P̂ĤP̂∣Ψ⟩ + P̂ĤQ̂∣Ψ⟩, (A1)

EQ̂∣Ψ⟩ = Q̂ĤP̂∣Ψ⟩ + Q̂ĤQ̂∣Ψ⟩. (A2)

Solving the equation for Q̂∣Ψ⟩ and substituting this into the equation
for P̂∣Ψ⟩ yields an effective equation for P̂∣Ψ⟩,

EP̂∣Ψ⟩ = [P̂ĤP̂ + P̂ĤQ̂(E − Q̂ Ĥ Q̂)−1Q̂ĤP̂]P̂∣Ψ⟩. (A3)

The effective Hamiltonian appearing on the right-hand side of
this equation is dependent on E, but by exploiting the large
separation between the low- and high-energy states, we can
replace (E − Q̂ Ĥ Q̂)−1

→ (Ē − Q̂ Ĥ Q̂)−1, where Ē is the mean
energy of the CS and S0 states. With this approximation, and
by noting that P̂ĤP̂, Q̂ĤQ̂, and P̂ĤQ̂, with Ĥ = ĤDBA, can be
written as

P̂ĤP̂ = ES0 ∣S0⟩⟨S0∣ +∑
Θ

ECS,Θ∣CS,Θ⟩⟨CS,Θ∣, (A4)

Q̂ĤQ̂ =∑
Θ

ECS⋆ ,Θ∣CS⋆,Θ⟩⟨CS⋆,Θ∣, (A5)

P̂ĤQ̂ =∑
Θ

VBA∣CS,Θ⟩⟨CS⋆,Θ∣

+ VDB∣S0⟩⟨CS⋆, S∣ −
iΛDB

2
∣S0⟩⟨CS⋆, Tz ∣, (A6)

Q̂ĤP̂ = (P̂ Ĥ Q̂)†, (A7)

we straightforwardly obtain Eq. (7) for ĤDBA,eff, where the energy
level shifts in Eq. (7) are given by

δES0 =
V2

DB

Ē − ECS⋆ ,S
+

Λ2
DB

4(Ē − ECS⋆ ,Tz
)

, (A8)

δECS,Θ =
V2

BA

Ē − ECS⋆ ,Θ
. (A9)

APPENDIX B: THE WEAK SOC REACTION OPERATOR

In order to derive the weak spin–orbit coupling reaction super-
operator, we partition LCS⋆ into a sum of a reference term, Ld, which
is diagonal in the singlet–triplet basis, and a term which couples the
singlet and triplet states, Lc. The diagonal term is given by

Ld = −{
kS

2
P̂S +

kTz

2
P̂Tz +

kb

2
, ⋅ } − i[ϵSP̂S + ϵTz P̂Tz , ⋅ ], (B1)

where the effective rate constants and energies are given by

kS = kCR cos2 θ, (B2)

kTz = kCR sin2 θ, (B3)

ϵS = 2J + δϵ cos2 θ, (B4)

ϵTz = δϵ sin2 θ. (B5)

The coupling term is given by

Lc = −{
kCR

2
sin (2θ)Π̂STz , ⋅ } − i[δϵ sin (2θ)Π̂STz , ⋅ ]. (B6)

We can expand the reaction superoperator to first-order in the cou-
pling term, which gives the following expressions for the reaction
superoperator:

K ≈ K (0) +K (1), (B7)

K (0) = −kf(1 + kbL −1
d ), (B8)

K (1) = kfkbL −1
d LcL −1

d . (B9)

The K (0) is given by

K (0) = −
⎧⎪⎪
⎨
⎪⎪⎩

k̃(0)S
2

P̂S +
k̃(0)Tz

2
P̂Tz , ⋅

⎫⎪⎪
⎬
⎪⎪⎭

− i[ϵ̃(0)S P̂S + ϵ̃(0)Tz
P̂Tz , ⋅ ]

+ γ(0)S (P̂S ⋅ P̂S −
1
2
{P̂S, ⋅ })

+ γ(0)Tz
(P̂Tz ⋅ P̂Tz −

1
2
{P̂Tz , ⋅ }), (B10)

where the effective rate constants are given by

k̃(0)S =
kfkS

kS + kb
, (B11)

k̃(0)Tz
=

kfkTz

kTz + kb
, (B12)

the effective energy shifts are given by

ϵ̃(0)S = 2kfkb(
ϵS − ϵTz

(2kb + kS + kTz)
2
+ 4(ϵS − ϵTz)

2

+
ϵS

(2kb + kS)
2
+ 4ϵ2

S
), (B13)

ϵ̃(0)Tz
= 2kfkb(

ϵTz − ϵS

(2kb + kS + kTz)
2
+ 4(ϵS − ϵTz)

2

+
ϵTz

(2kb + kTz)
2
+ 4ϵ2

Tz

), (B14)

and the decoherence rates are given by

γ(0)S = kf −
kfkb(2kb + kTz + kS)

(2kb + kTz + kS)
2
+ 4(ϵTz − ϵS)

2 −
kfkb(2kb + kS)

(2kb + kS)
2
+ 4ϵ2

S
,

(B15)

γ(0)Tz
= kf −

kfkb(2kb + kS + kTz)

(2kb + kS + kTz)
2
+ 4(ϵS − ϵTz)

2 −
kfkb(2kb + kTz)

(2kb + kTz)
2
+ 4ϵ2

Tz

.

(B16)

J. Chem. Phys. 158, 194101 (2023); doi: 10.1063/5.0150269 158, 194101-8

Published under an exclusive license by AIP Publishing

 12 February 2024 18:58:07

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Ignoring any decoherence corrections to K (1), K (1) can be written as

K (1) ≈ −
⎧⎪⎪
⎨
⎪⎪⎩

k̃(1)z

2
ΔŜz +

k̃(1)STz

2
Π̂STz , ⋅

⎫⎪⎪
⎬
⎪⎪⎭

− i[δϵ̃(1)STz
Π̂STz , ⋅], (B17)

where the spin polarization selective rate is given by

k̃(1)z = −
2 sin (2θ)kfkb(2kb + kS + kTz)(δϵ(kS − kTz) + kCR(ϵTz − ϵS))

(kb + kS)(kb + kTz)((2kb + kS + kTz)
2
+ 4(ϵS − ϵTz)

2
)

, (B18)

the spin coherence selective rate is given by

k̃(1)STz
=

sin (2θ)kfkb(4kCRkb(kS + kTz + kb) + kCR(kS + kTz)
2
+ 4δϵ(kS − kTz)(ϵS − ϵTz))

(kb + kS)(kb + kTz)((2kb + kS + kTz)
2
+ 4(ϵS − ϵTz)

2
)

, (B19)

and the Hamiltonian correction term is given by

δϵ̃(1)STz
=

2
3

sin (2θ)kfkb
⎛

⎝

2((2kb + kTz)(2δϵkb + δϵkS − kCRϵS) − ϵTz(2kCRkb + kCRkS + 4δϵϵS))

((2kb + kS)
2
+ 4ϵ2

S)((2kb + kTz)
2
+ 4ϵ2

Tz
)

+
4δϵk2

b + 4δϵkb(kS + kTz) + δϵk
2
S + kS(−kCRϵS + 2δϵkTz + kCRϵTz) + kTz(kCRϵS + δϵkTz − kCRϵTz)

(kb + kS)(kb + kTz)((2kb + kS + kTz)
2
+ 4(ϵS − ϵTz)

2
)

⎞

⎠
. (B20)
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