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Microbiome

Tunturi virus isolates 
and metagenome‑assembled viral 
genomes provide insights into the virome 
of Acidobacteriota in Arctic tundra soils
Tatiana Demina1,2*, Heli Marttila1, Igor S. Pessi1,2,3, Minna K. Männistö4, Bas E. Dutilh5,6, Simon Roux7 and 
Jenni Hultman1,4 

Abstract 

Background  Arctic soils are climate-critical areas, where microorganisms play crucial roles in nutrient cycling pro-
cesses. Acidobacteriota are phylogenetically and physiologically diverse bacteria that are abundant and active in Arctic 
tundra soils. Still, surprisingly little is known about acidobacterial viruses in general and those residing in the Arctic 
in particular. Here, we applied both culture-dependent and -independent methods to study the virome of Acidobac-
teriota in Arctic soils.

Results  Five virus isolates, Tunturi 1–5, were obtained from Arctic tundra soils, Kilpisjärvi, Finland (69°N), using Tun-
turiibacter spp. strains originating from the same area as hosts. The new virus isolates have tailed particles with podo- 
(Tunturi 1, 2, 3), sipho- (Tunturi 4), or myovirus-like (Tunturi 5) morphologies. The dsDNA genomes of the viral isolates 
are 63–98 kbp long, except Tunturi 5, which is a jumbo phage with a 309-kbp genome. Tunturi 1 and Tunturi 2 share 
88% overall nucleotide identity, while the other three are not related to one another. For over half of the open reading 
frames in Tunturi genomes, no functions could be predicted. To further assess the Acidobacteriota-associated viral 
diversity in Kilpisjärvi soils, bulk metagenomes from the same soils were explored and a total of 1881 viral operational 
taxonomic units (vOTUs) were bioinformatically predicted. Almost all vOTUs (98%) were assigned to the class Cau-
doviricetes. For 125 vOTUs, including five (near-)complete ones, Acidobacteriota hosts were predicted. Acidobacteriota-
linked vOTUs were abundant across sites, especially in fens. Terriglobia-associated proviruses were observed in Kilpis-
järvi soils, being related to proviruses from distant soils and other biomes. Approximately genus- or higher-level 
similarities were found between the Tunturi viruses, Kilpisjärvi vOTUs, and other soil vOTUs, suggesting some shared 
groups of Acidobacteriota viruses across soils.

Conclusions  This study provides acidobacterial virus isolates as laboratory models for future research and adds 
insights into the diversity of viral communities associated with Acidobacteriota in tundra soils. Predicted virus-host 
links and viral gene functions suggest various interactions between viruses and their host microorganisms. Largely 
unknown sequences in the isolates and metagenome-assembled viral genomes highlight a need for more extensive 
sampling of Arctic soils to better understand viral functions and contributions to ecosystem-wide cycling processes 
in the Arctic.

*Correspondence:
Tatiana Demina
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Full list of author information is available at the end of the article
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Introduction
Huge amounts of carbon and nitrogen are accumu-
lated in Arctic permafrost-affected tundra soils and are 
expected to be released with increasing temperatures due 
to climate change [1]. Despite seemingly harsh environ-
mental conditions, Arctic soils host diverse and active 
microbial communities that decompose soil organic 
matter and contribute to greenhouse gas cycling [2–6]. 
Arctic soil microbial communities have been shown to 
experience compositional and functional changes with 
permafrost thawing [7–12]. However, the Arctic covers 
a large geographic area with diverse environments, and 
more studies are needed to understand and predict the 
responses of microorganisms to climate change, includ-
ing the increased amounts of soil carbon and nitrogen 
being released from Arctic permafrost. In particular, 
the contribution of viruses to ecosystem-wide cycling 
processes in soils has been little explored compared to 
aquatic environments [13–15].

Soil viruses are abundant and diverse [13, 16] and have 
various impacts on their host microorganisms [17, 18]. 
By lysing microbial cells, viruses indirectly affect biogeo-
chemical cycling in soil [19]. With lysogenic conversion, 
i.e., the expression of genes encoded by a lysogen, tem-
perate viruses may support the fitness of their hosts, e.g., 
by protecting them from other viral infections [20] or 
increasing their ability to form biofilms [21]. Moreover, 
a variety of auxiliary metabolic genes (AMGs) have been 
predicted in soil viruses [22] and some soil virus AMGs 
involved in carbon cycling have been experimentally con-
firmed to be active [23, 24]. Finally, experimental warm-
ing of tundra soils from the Alaskan permafrost region 
resulted in an increased abundance of viral AMGs (gly-
coside hydrolases) in warmed soils [25].

Acidobacteriota are widespread and abundant in vari-
ous environments, especially in acidic soils [26–30]. 
Despite their abundance, a relatively limited number of 
Acidobacteriota species have been isolated and char-
acterized, as their cultivation is often challenging [31, 
32]. While the information on their ecological functions 
remains fragmentary, soil Acidobacteriota seem to have 
significant roles in carbon [33–37], nitrogen [6], and sul-
fur [38] cycling. Moreover, the phylum  Acidobacteriota 
includes many putative keystone taxa, i.e., strong driv-
ers of microbiome structure and functioning, in soils and 
as part of plant-associated microbiota [39]. Acidobacte-
riota are phylogenetically diverse and comprise 15 taxo-
nomic classes [40]. The members of the class Terriglobia 
are typically dominant and active in Arctic tundra and 
boreal forest soils [6, 28, 41, 42] and are represented by 
several cultured isolates [37, 43–45]. Recently, the genus 
Tunturiibacter has been described in the class Terriglo-
bia [46]. The type species, Tunturiibacter lichenicola, 

was originally known as Edaphobacter lichenicola [45]. 
Tunturiibacter representatives are Gram-negative aero-
bic rods, which produce extracellular polysaccharide-like 
substances and are able to hydrolyze various polysaccha-
rides [46].

Surprisingly little is known about viruses that infect 
Acidobacteriota. With the use of genomic data, pro-
viral sequences have been predicted in acidobacte-
rial genomes [47], and viral populations extracted from 
metagenomic datasets have been putatively linked to 
acidobacterial hosts [23, 25, 48, 49]. Here, we used both 
culture-dependent and -independent methods to study 
the diversity of viruses that infect Acidobacteriota in Arc-
tic soils. Soil samples were obtained from meadows and 
fens in Kilpisjärvi, northern Finland. Using Tunturiibac-
ter (Terriglobia) strains originating from the same area 
(Kilpisjärvi) [46], we isolated five viruses, Tunturi 1–5, 
which to the best of our knowledge, represent the first 
reported isolates of viruses that infect Acidobacteriota. 
In addition to virus isolation, we explored virus-host 
interactions in Kilpisjärvi soils by bioinformatically pre-
dicting viral operational taxonomic units (vOTUs) from 
bulk metagenomes and linking them to their putative 
microbial hosts. A group of 125 vOTUs could be linked 
to Acidobacteriota, and among vOTUs that could be 
linked to putative hosts, this group was one of the most 
dominant ones across samples and especially in fens. Ter-
riglobia-linked proviruses that were found among Kilpis-
järvi vOTUs shared similarities with other proviruses 
predicted in Acidobacteriota strains that reside in vari-
ous remote environments. Finally, Tunturi 1–5 showed 
genus- or higher-level links to Kilpisjärvi vOTUs, as well 
as vOTUs from other soils, but not with NCBI reference 
sequences. The viruses and vOTUs reported here provide 
a glimpse into the viral diversity associated with Acido-
bacteriota hosts in climate-critical Arctic soils.

Materials and methods
Soil samples
The sampling sites are located in the oroarctic mountain 
tundra area in Kilpisjärvi, northwestern Finland (69.04°N, 
20.79°E) [6, 42]. The main vegetation cover in the sites 
was fens and meadows (Supplementary Table  S1). 
Metagenomes from soil cores that were collected in July 
2017 and July 2018 [6] were analyzed for viral sequences 
(see below, Identifying viral sequences in metagenomes). 
For virus isolation, fresh samples from the same area 
were collected in April 2021. Snow depth ranged from 
72 to 99  cm and the mean air temperature was − 2.9  °C 
in Kilpisjärvi in April 2021 (https://​en.​ilmat​ietee​nlait​os.​
fi/​downl​oad-​obser​vatio​ns). Snow and frozen plant mate-
rial were removed, and samples were chiseled from the 
top 5 cm of soil surface, spooned into ziplock bags, and 

https://en.ilmatieteenlaitos.fi/download-observations
https://en.ilmatieteenlaitos.fi/download-observations
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stored at 4 °C. All sampling tools were sterilized with 70% 
ethanol prior to usage.

Bacterial strains and growth conditions
The 18 acidobacterial strains used as potential viral hosts 
in this study (Table  S2) were previously isolated from 
Kilpisjärvi, Finland [44, 46]. The tested strains belonged 
to four different genera of the class Terriglobia: Tunturii-
bacter, Granulicella, Acidicapsa, and Terriglobus. The 
strains were grown in DSMZ medium 1284, containing 
0.5 g  L−1 glucose, 0.1 g L−1 yeast extract (Neogen, Lan-
sing, USA), 0.1  g  L−1 casamino acids (MP Biomedicals, 
Solon, USA), 0.04 g  L−1 MgSO4 × 7 H2O, and 0.02 g  L−1 
CaCl2 × 2 H2O (https://​www.​dsmz.​de/​micro​organ​isms/​
medium/​pdf/​DSMZ_​Mediu​m1284.​pdf ), pH 5.5. For 
plates and top-layer agar, 15 and 4 g of agar were added 
per 1 L, respectively. All culturing was done aerobically at 
room temperature (RT).

Virus isolation
Infectious phage particles were extracted by resus-
pending soil samples in the DSMZ medium 1284 broth 
(approximately 1:3 ratio [wet weight]) and incubated 
with aeration at RT for 30 min. The supernatants (Table 
Eppendorf centrifuge, 2500 × g, RT, 30 min) were filtered 
(0.22  μL LLG Syringe Filters Spheros filters) and the 
phage extract was applied to freshly grown host strains 
in the plaque assay: 100–150 μL of the supernatant were 
mixed with 300  μL of the host culture and 3  mL of the 
soft agar (46 °C), and spread as a top layer on agar plates. 
The plates were incubated at RT and monitored for 
plaque formation regularly. The observed single plaques 
were picked up with a sterile pipette tip, resuspended 
in the DSMZ medium 1284 broth, and subjected to the 
plaque assay, which was repeated three consecutive times 
to ensure the purity of virus isolates.

Preparation of agar stocks
The top layers of semi-confluent plates were collected 
and mixed with the DSMZ medium 1284 broth (3  mL 
per plate), incubated aerobically at RT for 1  h, and the 
agar, as well as cell debris, were removed by centrifuga-
tion (F15-6 × 100y, 10,000 × g, 4  °C, 30  min). The super-
natant was collected, filtered (0.22 μL LLG Syringe Filters 
Spheros filters), and stored at 4  °C. Stocks were titrated 
by the plaque assay method as described above.

Virus host range testing
To determine viral host ranges, stocks were first sub-
jected to the spot test. Plates having 300 μL of the bac-
terial liquid culture and 3  mL of the soft agar as a top 
layer were prepared, and 7-μL drops of undiluted and 
100-fold diluted virus stocks were applied to them. The 

drops of broth containing no virus samples were used as 
a negative control. The plates were incubated at RT and 
monitored for growth inhibition. When inhibition was 
observed, the virus-host pair was additionally tested by 
plaque assay with a range of dilutions to verify the spot 
test results.

Virus purification
Viruses were precipitated from agar stocks by mixing 
with polyethylene glycol 8000 (PEG 8000, Thermo Sci-
entific, final concentration 10% [w/v]) and NaCl (final 
concentration 0.5  M) and incubated with stirring at 
4  °C for 1  h. The pellets (F15-6 × 100y, 10,000 × g, 4  °C, 
30  min) were resuspended by adding the SM buffer 
(50  mM MES, pH 5.5; 100  mM NaCl; 8  mM MgSO4) 
in the amount of ~ 1.5% (v/v) of the original stock vol-
ume. If the resuspended pellets were highly viscous, the 
resuspension step was repeated with more SM buffer, 
and in some cases, DNase (Stemcell Technologies) was 
also applied to reduce the viscosity (final concentration 
of 300 μg mL−1). The resuspended samples were further 
pelleted (F15-6 × 100y, 10,000 × g, 4 °C, 10 min) and either 
the supernatant or both the supernatant and the pel-
let (separately) were used for purification by rate-zonal 
ultracentrifugation in 10–30% (w/v) sucrose gradients in 
the SM buffer. The light-scattering zones observed after 
ultracentrifugation (Sorvall AH629 112,142.4 g or TH641 
103,557.6 × g, 10 °C, 20–60 min) were collected and pel-
leted (Sorvall T1270, 113,488.6 × g, 4 °C, 3 h). In case no 
clear light-scattering bands could be observed, the gradi-
ents were fractionated, and the fractions with the highest 
virus titers were used for pelleting. Pellets were resus-
pended in 50–100 μL of the SM-buffer, titrated by plaque 
assay, and stored at 4 °C.

Electron microscopy
The samples for transmission electron microscopy 
(TEM) were prepared by applying a drop of a PEG-pre-
cipitated or purified virus sample on the Mesh 200  cu 
grid for 1 min and rinsing it twice with ultrapure water. 
The samples were stained by applying a drop of Vitroease 
(Thermo Scientific) or 3% (w/v) uranyl acetate (pH 4.5) 
for 1  min, which was repeated twice. The images were 
taken with the JEOL 1400 electron microscope operat-
ing at 80  kV at the Electron Microscopy Unit, Institute 
of Biotechnology, University of Helsinki. The size of viral 
particles was measured with the ImageJ program [50]. 
The head size was measured as the distance between 
opposite vertices of icosahedral particles, except for the 
virus Tunturi 4, which had a prolonged icosahedral head. 
The number of particles used for head/tail measurements 
was 27/9, 10/7, 14/10, 27/12, and 5/11 for Tunturi 1–5, 
respectively.

https://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium1284.pdf
https://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium1284.pdf
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Genome sequencing and annotation of virus isolates
For the DNA extraction from virus stocks, the protocol 
by Santos [51] was used with modifications as described 
in [52]. The extracted DNA was purified using the 
GeneJET Genomic DNA purification Kit (Thermo 
Scientific). The purified DNA was sequenced using 
the Nextera XP kit and Illumina MiSeq (paired-end, 
325 bp + 285 bp) at the DNA Sequencing and Genom-
ics Laboratory, Institute of Biotechnology, University of 
Helsinki. The quality of raw Illumina reads was assessed 
with FastQC v. 0.11.8 (https://​www.​bioin​forma​tics.​
babra​ham.​ac.​uk/​proje​cts/​fastqc/). Cutadapt v. 2.7 was 
used for removing adaptors and trimming reads (-q 30 
-m 50) [53]. The virus isolate genomes were assembled 
using Spades v. 3.15.0 (-k 55,77,99,127) [54].

Geneious Prime v. 2021.2.2 (https://​www.​genei​ous.​
com) was used for the analyses of the viral genomes. 
Genome annotations were performed by Phold v. 0.2.0 
[55] with Foldseek v. 9.427df8a [56], ProstT5 [57], and 
Colabfold v. 1.5 [58] as core dependencies, as well as 
PHROGs database [59]. In addition, DRAM-v v. 1.5.0 
[60] was used for gene function predictions. Viral 
genome sequences produced circular maps, and in each 
virus isolate, ORFs were numbered starting from the 
ORF putatively encoding the terminase large subunit. 
The HHPred search against the PDB_mmCIF70_8_Mar 
and SCOPe70_2.08 databases [61] was used to verify 
large teminase subunit predictions if contradictory pre-
dictions were produced by Phold and DRAM-v. tRNA 
genes were predicted using tRNAscan-SE v. 2.0 using 
bacterial search mode [62]. The programs fastANI v. 
1.33 [63] and pyani v. 0.2.12 [64] were used for calcu-
lating average nucleotide identities (ANI) between the 
virus genomes. Overall nucleotide identities were cal-
culated using Emboss Stretcher [65]. Intergenomic 
similarities were calculated with VIRIDIC [66]. Pair-
wise similarities between the genomes were visualized 
using Easyfig v. 2.2.2 with the BLASTn E-value thresh-
old 0.001 [67].

The virus isolate genomes were searched against 
the IMG/VR v. 4  database [68] using BLASTn v. 
2.13.0 with the E-value threshold 1e-5. Similarities 
between genomes were visualized with Circoletto 
using the BLASTn E-value threshold 1e-5 [69]. To 
detect sequences related to virus isolates in Kilpisjärvi 
metagenomes, amino acid sequences from the five iso-
lates were clustered with MMseqs2 v. 14 [70] to gener-
ate a non-redundant protein set (≥ 50% identity, ≥ 90% 
coverage). Quality-filtered metagenomic reads were 
then mapped to the set of non-redundant proteins with 
Diamond v. 2.1.6.160 [71] using the E-value threshold 
1e-5.

Identifying viral sequences in metagenomes
Previous metagenomic data from Kilpisjärvi fen and 
meadow soils [6] were analyzed for the presence of viral 
sequences. Raw reads were quality-checked and trimmed 
as described in [6]. Each of the 22 samples (Table S1) was 
assembled separately using metaSpades v. 3.14.1 (k-mers 
55, 99, and 127) [54]. QUAST v. 5.0.2 [72] was used for 
the quality assessment of the assemblies. Quality-fil-
tered metagenomic reads were mapped to the assem-
blies using Bowtie2 v. 2.4.1 [73]. For the identification 
of viral contigs, Virsorter v. 2.2 [74], PPR-Meta [75] and 
DeepVirFinder v. 1.0. [76] were used within the What-
the-Phage pipeline [77]. These tools were recently bench-
marked as having high sensitivity and precision [78]. The 
contigs identified as viral by the three tools with scores/p-
values sum > 0.75 were selected. In addition, geNomad v. 
1.4.0 [79] was used for extracting viral sequences from 
the metagenomic assemblies. The predictions from the 
four tools were combined, their taxonomy was predicted 
using geNomad v. 1.4.0 [79], and the resulting contigs 
were checked for quality and completeness with CheckV 
v. 0.8.1 [80]. The contigs that were ≥ 5  kbp long or pre-
dicted as ≥ 50% complete (but not shorter than 1 kbp), 
had at least one viral gene, and no more than 1.5 host-
to-viral gene ratio were selected for the final set of viral 
contigs. The set was dereplicated using CheckV -anicalc 
and -aniclust functions and all contigs within 95% aver-
age nucleotide identity and 85% alignment fraction were 
assigned to the same vOTU cluster, following the sug-
gested standard thresholds [81]. For annotations and 
AMGs predictions in vOTUs, DRAM-v v. 1.5.0 [60] was 
used with the viral sequences preprocessed by the Vir-
sorter v. 2.2.4 [74, 82].

Linking vOTUs to their putative hosts
Putative hosts for vOTUs were predicted with iPHoP 
v. 1.3.3 [83] using the minimum score cutoff of 90 and 
75 for the genus- and family-level predictions, respec-
tively. Both the default database (iPHoP_db_Aug23_rw) 
and a custom database that included 796 metagenome-
assembled genomes (MAGs) previously obtained from 
Kilpisjärvi metagenomes [6] were used. For proviruses, 
both proviral sequences and their corresponding larger 
contigs with remaining host regions were used as input. 
For building the custom database, Kilpisijärvi MAGs 
were first classified using GTDB-tk v. 2.3.2 [84] with 
the GTDB release 214 (https://​data.​gtdb.​ecoge​nomic.​
org/). One host prediction obtained for the vOTU 
o12215_NODE_6138, which clustered with Tunturi 3 
in the VConTACT2 analysis (see below), was manually 
inspected and found to be based on a short entirely viral 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.geneious.com
https://www.geneious.com
https://data.gtdb.ecogenomic.org/
https://data.gtdb.ecogenomic.org/
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contig present in a MAG [85], so this prediction was dis-
carded as unreliable.

Proviral vOTUs were predicted by both geNomad v. 
1.4.0 [79] and CheckV v. 0.8.1 [80] and those assigned 
to Acidobacteriota hosts were further explored by com-
paring to previously reported acidobacterial proviruses 
[47] and UViGs that were retrieved from the IMG/VR v. 
4 [68] with Acidobacteriota as a host. In addition, acido-
bacterial proviral vOTUs were searched against the NCBI 
nr database (discontinuous MegaBLAST, searches dated 
Feb-Mar 2024, E-value threshold 0.001, query coverage 
threshold 10%) [86], and for bacterial genomes returned 
as hits satisfying the thresholds, proviral regions were 
predicted with geNomad v. 1.4.0 [79] and further used 
for comparisons. The sequence similarities were analyzed 
using Circoletto (BLASTn E-value threshold 1e-5) [69], 
and genome-to-genome comparisons were visualized 
with Easyfig v. 2.2.2 (BLASTn E-value threshold 0.001) 
[67]. High-quality vOTUs assigned to Acidobacteriota 
were annotated using Phold v. 0.2.0 [55] and DRAM-v v. 
1.5.0 [60].

vOTUs abundances
Quality-filtered metagenomic reads were mapped to 
acidobacterial vOTUs with Bowtie2 v. 2.5.3 [73] and 
the mapping output was sorted and indexed with SAM-
tools v. 1.16.1 [87]. CoverM v. 0.6.1 (https://​github.​com/​
wwood/​CoverM) was then used to count the number of 
reads mapping to each vOTU, considering only matches 

with ≥ 95% identity and ≥ 75% coverage. CoverM v. 0.6.1 
was also used to compute the fraction of each vOTU that 
was covered by at least one read (horizontal coverage, 
also known as breadth of coverage). Abundance values 
were normalized to reads mapped per kilobase of contig 
per million reads (RPKM), and the abundance of vOTUs 
with < 50% horizontal coverage was set to zero. Statistical 
analyses were done with the package vegan v. 2.6–6.1 in 
R v. 4.4.2 (https://​github.​com/​vegan​devs/​vegan, https://​
cran.r-​proje​ct.​org). Differences in vOTU abundances 
between meadow and fen samples were visualized using 
principal coordinates analysis (PCoA) and confirmed 
with permutational ANOVA (PERMANOVA) with 
9999 permutations. For both, distances were computed 
using the binary (presence/absence) Jaccard dissimilar-
ity metric. The contribution of soil physicochemical vari-
ables was also verified with PERMANOVA (using sample 
metadata available from [6]).

Whole‑genome comparisons using VConTACT2
Kilpisjärvi virus isolates genomes and vOTUs ≥ 10  kbp 
were used in the whole-genome gene-sharing network 
analysis by VConTACT v. 2.0 [88] together with previ-
ously reported vOTUs from peat permafrost microbial 
communities from Stordalen Mire, Sweden [23], as well 
as acidobacterial proviruses identified in this study. The 
NCBI ProkaryoticViralRefSeq211-Merged database was 
used to resolve taxonomic clustering. The network was 
visualized with Cytoscape v. 3.9.1 [89].

Table 1  Viruses isolated in this study

*Podo- podovirus (short non-contractile tail), sipho- siphovirus (long non-contractile tail), myo- myovirus (long contractile tail). For viruses Tunturi 1–3 and 5, the head 
size was measured as the distance between opposite capsid vertices. The head of Tunturi 4 is a 94.1-nm long and 54.2-nm wide prolate icosahedron

Virus name Host strain Sample site Morpho type*, size Virus genome

Length, bp GC% ORFs tRNA genes GenBank 
acc. 
number

Tunturi 1 Tunturiibacter psychrotolerans X5P2 12217 (fen) Podo-,
head 73.2 nm,
tail 23.5 nm

63,169 55.3 106 0 PP887698

Tunturi 2 Tunturiibacter psychrotolerans X5P2 12217 (fen) Podo-,
head 64.4 nm,
tail 24.3 nm

63,277 55.1 107 0 PP885685

Tunturi 3 Tunturiibacter psychrotolerans X5P2 181 (meadow) Podo-,
head 76.7 nm,
tail 21.1 nm

97,608 51.3 147 3 PP885686

Tunturi 4 Tunturiibacter empetritectus 
M8UP27

12222 (meadow) Sipho-,
head 94.1 × 54.2 nm,
tail 204.1 nm

88,042 55.4 115 1 PP885687

Tunturi 5 Tunturiibacter psychrotolerans X4BP1 12222 (meadow) Myo-,
head 112.7 nm,
tail 167.0 nm

308,711 58.4 350 43 PP885688

https://github.com/wwood/CoverM
https://github.com/wwood/CoverM
https://github.com/vegandevs/vegan
https://cran.r-project.org
https://cran.r-project.org
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Results
Virus isolation
Five new virus isolates, which we called Tunturi 1–5, 
were obtained from the Kilpisjärvi soil samples on Tun-
turiibacter psychrotolerans and T. empetritectus strains 
originating from the same area (Table  1). Clear plaques 
of 1–5 mm in diameter were observed after 5–8 days of 
incubation. Stocks with titers reaching 108–109 plaque-
forming units per mL (PFUs mL−1) could be obtained 
for the isolates. The initial spot tests for the virus-host 
range with 18 acidobacterial strains previously isolated 
from Kilpisjärvi soils (Table  S2) showed several inhibi-
tion zones, representing virus infections or bacterial 
growth inhibition by some chemical components of the 
virus stocks. Only one additional virus-host pair could be 
verified by plaque assay. The virus isolate Tunturi 4 could 
infect Granulicella sp. J1AC2, albeit with plating effi-
ciency lower than the one with its original isolation host 
(107 PFU mL−1 and 108 PFU mL−1, respectively).

The electron micrographs of purified virus isolates 
showed that all five viruses displayed tailed particles with 
icosahedral heads, varying in size (Fig. 1, Table 1). Viruses 
Tunturi 1–3 displayed icosahedral heads (~ 64–77  nm) 
and short (~ 21–24  nm) non-contractile tails of the 
podovirus morphotype. Tunturi 4 demonstrated 
a ~ 94-nm long and a ~ 54-nm wide elongated (prolate) 
icosahedral head and a ~ 204-nm long flexible tail, featur-
ing the siphovirus morphotype. Tunturi 5 had the largest 
head (~ 113 nm) and a ~ 167-nm long contractile tail typi-
cal for myoviruses, and both extended and contracted tail 
conformations were observed.

Genomic characterization of virus isolates
The genome length ranged from ~ 63 to ~ 98  kbp for 
the isolates Tunturi 1–4, while the Tunturi 5 genome 
was ~ 309 kbp long (Table 1). The GC content varied from 
51.3 to 58.4%, and the virus genomes were predicted to 
contain from 106 to 350 ORFs (Table 1, Table S3), tightly 
packed in the genomes (1.1–1.7 ORFs/kbp, coding den-
sity 88–96%). The genomes of Tunturi 1 and Tunturi 2 
were clearly related, having an ANI of 97.8% and an over-
all nucleotide identity of 87.8% (Fig. 2A). The other three 
genomes were not similar to one another. Based on the 
analyses of intergenomic similarities by VIRIDIC, all five 
isolates represent different species, but Tunturi 1 and 
Tunturi 2 clustered into the same genus.

The majority of ORFs (58–73%) had no predicted func-
tions (Fig.  2B). The functions that could be predicted 
were related to DNA/RNA metabolism, virion struc-
tural elements, lysis, or other functions typically found 
in phage genomes (Table  S3). Lysis-related genes were 
predicted in all five isolates, while recombinase and/or 
integrase genes could be annotated in  the Tunturi 3–5 

genomes. In addition, ORF functions categorized by 
Phold as “Moron, AMG, and host takeover” were pre-
dicted for Tunturi 2–5. In Tunturi 5, eight such ORFs 

Fig. 1  Electron micrographs of the five Tunturi virus isolates: A 
Tunturi 1, B Tunturi 2, C Tunturi 3, D Tunturi 4, E Tunturi 5. Virus 
particles were stained with Vitroease (in A, B, E) or 3% (w/v) uranyl 
acetate (in C and D). Scale bar in A, 200 nm, for all sections
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were found: glycosyltransferase (gp35), phosphoadeno-
sine phosphosulfate reductase (gp62), ADP-ribosyltrans-
ferase exoenzyme toxin (gp205), ribosomal protein S6 
glutaminyl transferase (gp297), galactosyl transferases 

(gp300 and gp301), DefenseFinder protein (gp317), and 
DarB-like anti restriction (gp350). In the HHPred search 
against the  PDB_mmCIF70_8_Mar and SCOPe70_2.08 
databases, Tunturi 5 DefenseFinder protein gp317 got 

Fig. 2  A Genomes of Tunturi 1–5. ORFs are shown as arrows and are colored according to the functional categories. Similarities 
between the genomes (BLASTn) are visualized by the shades of blue/yellow (direct/invert). B Distribution of ORFs according to the functional 
categories, 1–5 for Tunturi 1–5, respectively. The color code is the same for A and B 
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two best hits to BrxU, GmrSD-family Type IV restric-
tion enzyme (acc. no. 7P9K, 99.8% probability) and SspE 
protein (6JIV, 99.6%), i.e., enzymes involved in bacte-
rial systems of protection from viral infections. A few 
other > 95% probability HHPred hits included enzymes 
involved in chromosome segregation in bacteria.

The Tunturi 1 and 2 genomes had no predicted tRNA 
genes. Tunturi 3 encoded three tRNAs (Asn, Phe, and 
unknown), and Tunturi 4 encoded one tRNA (unknown). 
In contrast, Tunturi 5 genome contained 43 tRNA genes 
having the anticodon sequences of 20 different amino 
acids: Leu (4 tRNA genes), Cys (1), Tyr (1), Ser (3), Asn 
(1), Gln (2), Gly (2), Thr (3), Pro (3), His (1), Ala (3), Phe 
(1), Arg (5), Trp (1), Asp (1), Met (1), Ile (2), Lys (2), Glu 
(2), Val (1), and three unknown ones. In addition, Tun-
turi 5 was predicted to encode proteins involved in tRNA 
processing: tRNA nucleotidyltransferase (gp279) and 
tRNA splicing ligase (gp296).

When the  Tunturi genomes were searched against 
the IMG/VR database, many hits to soil metagenomes 
could be retrieved. Longer stretches of similarities (typi-
cally ≤ 70% nt identity) were observed, for example, 
against Arctic soil microbial communities from a glacier 
forefield, Greenland (Tunturi 1 and 2) and peat perma-
frost microbial communities from Stordalen Mire, Swe-
den (Tunturi 3 and 5) (Fig.  S1, Table  S4). However, the 
hits were not limited to the Arctic and included tropical 
soils from Puerto Rico (Tunturi 1 and 2) and soils from 
Indiana, Colorado, and Washington in the USA (Tunturi 
3 and 4). When comparing  the Tunturi viruses against 
Kilpisjärvi metagenomes, a small number of reads (up to 
0.025%) could be mapped to the Tunturi protein-coding 
sequences (CDSs, up to 50% CDSs per viral genome) 
(Fig.  S2). The Tunturi genomes were further compared 
to Kilpisjärvi vOTUs in a whole-genome analysis using 
VConTACT2 (see below).

The Tunturi genomes were further tested with iPHoP 
to assess the performance of the tool on viruses with a 
known host. For Tunturi 1, 2, and 5, hosts were predicted 
from the family Acidobacteriaceae (class Terriglobia). 
Tunturi 1 and 2 could be further predicted with a host 
from the genus Edaphobacter. These matches were mean-
ingful, taking into account that the isolation hosts of 
these viruses, i.e., T. psychrotolerans strains, were indeed 
formerly associated with the genus Edaphohacter. The 
new nomenclature has been proposed only recently and 
thus has not yet been reflected in the Genome Taxonomy 
Database (used for MAGs classification when including 
them into the custom iPHoP database) and the default 
iPHoP database. No hosts were predicted for Tunturi 3 
and 4 using iPHoP. Having host predictions for three 
viruses out of five in this test was consistent with the 
expected tool performance on soil viruses [83].

Metagenome‑derived vOTUs
The 22 assembled metagenomes from fen and meadow 
Kilpisjärvi soil samples produced 491,604–2,617,348 
contigs per sample (Table S5). The reads were mapped 
back to the metagenomic assemblies with a 32–79% 
overall alignment rate (Table  S5). From these metage-
nomes, 1881 vOTUs were predicted, from which 184 
were of medium or high quality, including 46 vOTUs 
predicted as ≥ 90% complete virus genomes (Table S6). 
The vOTUs ranged from 2.3 to 208  kb in length 
(median 8.75  kb, note that each vOTU consisted of a 
single contig), and 794 vOTUs were ≥ 10 kbp. Based on 
the geNomad taxonomic assignments, the majority of 
vOTUs (1843 = 98%) were classified as dsDNA-tailed 
viruses belonging to the class Caudoviricetes, from 
which four vOTUs could be further classified to the 
family Herelleviridae and one to Straboviridae. Among 
other predicted classes, Tectiliviricetes (3), Malgran-
daviricetes (2), Polintoviricetes (1), Megaviricetes (1), 
Faserviricetes (1), and Herviviricetes (1) were found. In 
addition, one vOTU was assigned to the kingdom Bam-
fordvirae with no further levels of classification and 28 
vOTUs stayed unclassified. vOTUs classified as Cau-
doviricetes dominated across all samples (Fig. S3).

Virus‑host linkages
In total, 722 vOTUs could be linked to putative hosts 
using iPHoP (Fig.  3A, Table  S6). From all matches, 418 
were found from both default and custom databases, 166 
only from the default database, and 138 only from the 
custom one. Thus, adding Kilpisjärvi MAGs to the iPHoP 
database noticeably increased the number of predic-
tions, highlighting potential connections to local micro-
bial hosts. For 687 vOTUs, the host could be predicted 
at least at the phylum level. The largest predicted group 
of hosts was the phylum Pseudomonadota (162), followed 
by Actinomycetota (159) and Acidobacteriota (125). In 
addition to bacteria, 33 archaeal hosts were also pre-
dicted, most of which belonged to the phylum Halobac-
teriota (17).

Based on relative abundance (Fig. 3B), most of the sam-
ples were dominated by vOTUs with unknown hosts. 
However, vOTUs assigned to Pseudomonadota and 
Actinomycetota were abundant in many samples in both 
meadows and fens. Pseudomonadota-linked vOTUs were 
especially dominant in meadows. Acidobacteriota vOTUs 
were present in almost all samples, but their highest rela-
tive abundances were in fens. Chloroflexota vOTUs also 
constituted a large group in fens. Other vOTUs groups 
were noticeably less abundant. According to PCoA, 
Acidobacteriota-assigned vOTUs, as well as the whole 
set of vOTUs identified in this study, formed different 
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communities between Kilpisjärvi fens and meadows 
(Fig.  S4). PERMANOVA analysis showed that environ-
mental variables that contributed to these differences 
most were soil moisture, SOM, C, N content, and C:N 
ratio, but not soil layer (organic/mineral) or pH.

High‑quality vOTUs linked to Acidobacteriota
Among acidobacterial hosts, the families SbA1 (65) and 
Bryobacteraceae (24) were represented the most (Fig. 3A 
inset). Five Acidobacteriota vOTUs were of high qual-
ity: 96–100% complete, 44–59 kbp, all classified as 

Fig. 3  Host predictions for vOTUs obtained in this study. A Total number of vOTUs linked to different phyla. The inset shows the distribution 
of predicted Acidobacteriota hosts at the family level. Proviruses stacks are highlighted with dark gray. B Relative abundance of vOTUs assigned 
to different host phyla across samples (10 most abundant ones are shown colored). Color codes are the same for A and B 
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Caudoviricetes, and putatively assigned to the host fami-
lies SbA1 and Acidobacteriaceae. In these five vOTUs, 
most of the predicted ORF functions were those involved 
in head and packaging, tail structures, and DNA/RNA 
metabolism (Fig. S5, Table S7). Three out of five vOTUs 
had putative lysis genes and three had integrase genes. 
In each vOTU, moron, AMG, and host takeover pro-
teins could be predicted, including galactosyl and gly-
cosyl transferases, phosphoadenosine phosphosulfate 
reductase, DarB-like antirestriction, membrane protein, 
polysaccharide deacetylase, ferredoxin, acyl carrier pro-
tein, Ren-like exclusion protein and GtrB-like O-antigen 
conversion protein. Many ORFs (47–66%) remained with 
unknown functions (Fig. S5, Table S7).

Predicted Acidobacteriota proviruses
In total, 114 vOTUs were identified as proviruses, and for 
90 of them, bacterial hosts could be predicted, including 
eight predictions only at the domain level (Table S6). No 
archaeal hosts were predicted for proviral vOTUs. The 
three largest groups among predicted proviral hosts were 
Acidobacteriota (24 vOTUs assigned), Actinomycetota 
(13), and Pseudomonadota (10) (Fig. 3A). In acidobacte-
rial proviruses predicted in this study, two larger groups 
with shared sequence similarity and gene order could be 
identified: group (i) (Fig.  4) and group (ii) (Fig.  S6). All 
Kilpisjärvi vOTUs belonging to these two groups were 
classified as Caudoviricetes.

In addition to Kilpisjärvi Acidobacteriota-linked provi-
ral vOTUs, group (i) (Fig. 4) included Stordalen vOTUs 
[23] from the same VConTACT2 cluster (see below), 
and with iPHoP, all these Stordalen vOTUs could be 
putatively assigned to acidobacterial hosts from the 
family Bryobacteraceae. Two UViGs from the IMG/
VR database also belonged to the group: IMGVR_
UViG_639633060_000001 (Candidatus Solibacter usita-
tus Ellin6076) and IMGVR_UViG_2522125054_000002 
(Bryobacterales bacterium KBS 96). In addition, a few 
proviral regions predicted in acidobacterial genomes 
retrieved from NCBI shared similarities with these pro-
viruses. These NCBI references included Paludibaculum 
fermentans P105 (NZ_CP063849) isolated from a litto-
ral wetland of a boreal lake on Valaam Island (Karelia, 
Russia) [90] and three MAGs annotated as Bryobacte-
raceae bacterium (OY764903), Bryobacterales bacterium 
(OY764153), and Paludibaculum sp. (OY762268) origi-
nating from freshwater ciliate Cyclidium porcatum, 
UK (genome assembly GCA_963668605.1), marine 
sponge Geodia parva, Norway (GCA_963667885.1), and 
freshwater ciliate Heterometopus palaeformis, Croatia 
(GCF_963665245.1) metagenomes, respectively.

Group (ii) (Fig.  S6) included Kilpisjärvi Acidobacteri-
ota-assigned proviral vOTUs and a few (6–18% complete) 

acidobacterial vOTUs from the same dataset that were 
not recognized as proviruses by geNomad or CheckV. 
These vOTUs, however, formed one cluster in the VCon-
TACT2 analysis. In addition, the group also included 
Stordalen vOTUs [23] from the same cluster. All these 
Stordalen vOTUs could be predicted with acidobacterial 
hosts, including the  families SbA1, Koribacteraceae, and 
Acidobacteriaceae  (the order Terriglobales). The group 
members shared similarities with the previously reported 
Acidobacteriota proviruses, like Candidatus Koribacter 
versatilis Ellin 345 [47]. Similar proviral regions were also 
predicted in Granulicella sp. WH15 (NZ_CP042596) iso-
lated from decaying wood in association with the white-
rot fungus Hypholoma fasciculare (Netherlands) [91] and 
a MAG annotated as Granulicella sp. (OY843766) from 
a lichen Cladonia squamosa metagenome, UK (genome 
assembly GCA_947623385.2, [92]).

AMGs predicted in vOTUs
Using DRAM-v, 65 AMGs could be predicted in 58 
Kilpisjärvi vOTUs (Table  S8). Most of the detected hits 
were one per vOTU, but five vOTUs had more than one 
AMG predicted. All of the vOTUs, for which AMGs were 
predicted, were assigned to the class Caudoviricetes and 
25 vOTUs had putative hosts, including two archaeal 
ones. Overall, the predicted AMG categories included 
transporters, carbohydrate utilization, organic nitro-
gen transformation, and miscellaneous functions. Of 21 
putative AMGs involved in carbon utilization, most (19) 
were glycosyl transferases (GT2), but also two glycoside 
hydrolases involved in xyloglucan oligo cleavage were 
predicted. Six vOTUs bearing carbon utilization AMGs 
could be linked to the hosts from a few different phyla: 
Chloroflexota (families EnvOPS12, Fen-1039), Halobac-
teriota (Methanosarcinaceae), Pseudomonadota (Gal-
lionellaceae, Nitrosomonadaceae), and Actinomycetota 
(Mycobacteriaceae). One vOTU with a predicted AMG 
(thymidylate synthase involved in pyrimidine deoxyribo-
nuleotide biosynthesis) could be linked to the Acidobac-
teriota (SbA1) host.

Whole‑genome comparisons
In the whole-genome gene-sharing network analysis by 
VConTACT2 with NCBI ProkaryoticViralRefSeq211-
Merged database (Fig.  5, Table  S9), Tunturi 1 and Tun-
turi 2 clustered together. Tunturi 5 was a singleton. 
Tunturi 3 clustered with one vOTU from the Kilpis-
järvi dataset (o12215_NODE_6138, predicted as Cau-
doviricetes) and three vOTUs from the Stordalen 
Mire dataset (QGNH01000767.1, QGNH01001143.1, 
QGNH01001870.1) [23] (Fig.  S7). Tunturi 4 also clus-
tered with one Stordalen vOTU (QGNH01000831.1) 
[23]. Using iPHoP, no hosts could be reliably predicted 
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Fig. 4  Putative Acidobacteriota-associated proviruses identified in this study and related IMG/VR UViGs, vOTUs reported in [23], and NCBI references. 
ORFs are shown as arrows and similarities between genomes (BLASTn) are in shades of gray (direct) or purple (invert). RC, reverse complement
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for o12215_NODE_6138 (see Materials and Methods) 
and these four Stordalen vOTUs.

From 794 Kilpisjärvi vOTUs used in the VConTACT2 
analysis, 375 got clustered, while the others were single-
tons, outliers or could  not be confidently placed into a 
single cluster (overlapped). From the clustered Kilpisjärvi 
vOTUs, 186 vOTUs shared clusters only with Stordalen 
vOTUs, and 181 vOTUs clustered only with other Kilpis-
järvi vOTUs. Four clusters were shared by Kilpisjärvi and 
Stordalen vOTUs and NCBI sequences. Four Kilpisjärvi 
vOTUs clustered with NCBI reference sequences only.

From 58 Kilpisjärvi Acidobacteriota-linked vOTUs 
that were included in the analysis, 32 could be clus-
tered. Almost all (31) of these vOTUs shared clusters 
with Stordalen vOTUs. From the five high-quality Aci-
dobacteriota vOTUs, o12205_NODE_77 was an outlier; 
o12215_NODE_1195 and o12215_NODE_1196 clustered 
together and with other Kilpisjärvi and Stordalen vOTUs; 
m12209_NODE_338 clustered with Stordalen vOTUs 
only; and m12211_NODE_265 with another Kilpisjärvi 

vOTU only. All Stordalen vOTUs that clustered with 
Kilpisjärvi high-quality Acidobacteriota vOTUs could 
also be predicted with Terriglobales hosts using iPHoP. 
Among Acidobacteriota proviruses included into the 
VConTACT2 analysis, one was an outlier, two were sin-
gletons, and the rest belonged to four clusters, which all 
contained Stordalen vOTUs linked to Terriglobia with 
iPHoP. Two larger clusters, VC_16_0 and VC_349_0, 
included proviruses from groups (i) and (ii), respectively, 
which were described above.

Discussion
In this study, we presented five viral isolates and 1881 
metagenome-assembled vOTUs from Arctic tundra 
soils, including 125 vOTUs bioinformatically linked to 
Acidobacteriota hosts. To the best of our knowledge, the 
viruses isolated on Tunturiibacter strains here are the 
first Acidobacteriota-infecting virus isolates reported. 
Following the suggested criteria for genome-based 
phage taxonomy [93], we propose that the five isolates 

Fig. 5  VConTACT2 gene-sharing network showing virus sequences as dots and connections between genomes as lines. The sequences are 
color-coded (see the color key). The insets show Tunturi viruses, highlighted with numbers 1–5 for Tunturi 1–5, respectively; and virus clusters 
VC_16_0 and VC_349_0 comprising putative proviruses shown in Fig. 4 and Fig. S6, respectively
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described in this study represent five different species, 
belonging to the class Caudoviricetes. Based on the set 
of strains tested in this study, the Tunturi viruses have a 
narrow host range, which may be limited to their origi-
nal isolation hosts, Tunturiibacter strains, or may include 
other genera, as in the case of Tunturi 4 being able to 
infect Granulicella sp. J1AC2. These virus-host pairs 
could be used as laboratory models for future studies, 
including developing genetic tools for the research on 
Acidobacteriota, which play important roles in key eco-
logical processes in soil and other ecosystems.

From the five isolates, Tunturi 5 had the largest head 
and the largest genome, ~ 309  kbp. Myoviruses tend 
to have larger genomes than other tailed phages, but 
the genome length of > 200  kbp qualifies Tunturi 5 as a 
jumbo phage [94]. Jumbo phages have been isolated from 
various environments, but more frequently from water 
environments, rather than soils [94]. However, metagen-
omics-based studies reveal the presence of jumbo phages 
across ecosystems [95]. It has been observed that larger 
phage genomes tend to have more tRNA genes [95, 96]. 
Indeed, Tunturi 5 had 43 tRNA genes and also encoded 
enzymes putatively involved in tRNA modification and 
maturation. Larger sets of tRNA genes in larger phage 
genomes seem to represent codons that are highly used 
by phages, while being rare in host genomes, and thus, 
may contribute to higher efficiency in phage protein 
translation [96]. In addition, the large genome of Tun-
turi 5 contains several putative moron, AMG, and host 
takeover genes, which may specifically contribute to the 
mechanisms of virus-host interactions but need experi-
mental validation. Having laboratory isolates available 
makes it possible to link sequences with processes and 
genes with functions. For example, single-step life cycle 
experiments could be developed, the patterns of gene 
expression analyzed, knock-out mutants generated to 
determine essential genes, and gene functions confirmed 
with proteomics. Resolving molecular details of the inter-
actions between Acidobacteriota and their viruses could 
help understand factors affecting their dynamics and 
ecosystem functions, in particular, in climate-critical 
Arctic tundra soils.

The five Tunturi isolates displayed tailed particles, 
with all three different tail types, and the vast majority of 
metagenomic Kilpisjärvi vOTUs were classified as tailed 
viruses belonging to the class Caudoviricetes. Micros-
copy-based studies have shown that different soil types 
may be dominated by different virus morphotypes [97, 
98]. In omics studies, Caudoviricetes typically represent a 
large fraction of those dsDNA viral populations that can 
be classified [23, 25, 68, 99, 100]. It remains to be seen 
if the vOTUs identified here represent active members 
of viral communities in Kilpisjärvi soils. In Alaskan peat 

soils studied under simulated winter conditions with sta-
ble isotope probing targeted metagenomics, active viral 
populations constituted a large portion of the whole viral 
communities [49]. In Stordalen Mire soils, 58% of vOTUs 
predicted from metagenomes were detected also in 
metatranscriptomes, thus being presumably active [23].

About 62% of Kilpisjärvi vOTUs stayed with unknown 
hosts, which is in line with the iPHoP benchmark, where 
50–70% of virus genomes are expected to have no host 
prediction in soil [83]. From the predicted hosts, the 
most numerous predictions were for the phyla Pseu-
domonadota, Actinomycetota, and Acidobacteriota, i.e., 
bacteria that are abundant and active in Arctic soils [3, 
6, 42, 101, 102], as well as in other ecosystems [39]. Aci-
dobacteriota were one of the largest groups of hosts pre-
dicted for viral populations in Kilpisjärvi, similar to other 
(sub)arctic soils: Stordalen Mire soils [23, 48] and the 
active layer of Alaskan tundra soils at CiPEHR warming 
experiment [25]. vOTUs linked to Acidobacteriota were 
abundant across samples but formed different commu-
nities in fens and meadows. Soil moisture, SOM, C, N 
content, and C:N ratio contributed to the differences in 
viral communities across the two types of sites, similar to 
the factors driving Acidobacteriota in Kilpisjärvi [6]. We 
could not detect the effect of pH on viral communities in 
the tundra samples studied here, all of which were rather 
acidic (pH 4.7–6.5). It has been shown that, for example, 
soil moisture [97, 103, 103, 104], C and N content [25], 
soil depth [100], and pH [23] can be factors in modulat-
ing viral abundances and lifestyles. However, it is difficult 
to assess the causal relationships between environmental 
variables and dynamics in viral and host populations, as 
environmental parameters can be interconnected [105] 
and changes in viral communities can be linked to the 
processes going on with their hosts rather than directly 
environmental impacts. Our current understanding of 
soil ecology still lacks a clear view of how multiple biotic 
and abiotic factors collectively drive viral communities in 
soil [16, 22].

The Tunturi viruses demonstrated lytic infection 
cycles, but their genomes contained ORFs for putative 
integrases and recombinases. Near-complete Kilpisjärvi 
vOTUs linked to Acidobacteriota also contained recom-
binase/integrase-encoding ORFs and ~ 20% of Kilpis-
järvi Acidobacteriota-linked vOTUs were recognised 
as proviruses. Lysogeny is common in soils [106, 107], 
and the majority of prophages predicted in acidobac-
terial genomes have been found for strains originating 
from soil [47]. Based on the known/predicted hosts, two 
groups of Acidobacteriota-linked proviruses identified in 
this study seem to be specific for Bryobacterales (group 
(i)) and Terriglobales (group (ii)). The latter is related to 
previously detected proviruses, while the former is newly 
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reported in this study. A large set of Terriglobia-associ-
ated putative proviruses described here includes vOTUs 
from northern soils, as well as proviral sequences in aci-
dobacterial strains/MAGs originating from distant geo-
graphical locations and various environments, such as 
soil and ciliate-, sponge-, and lichen-associated biomes. 
These proviruses seem to be fairly widespread in Acido-
bacteriota across various environments and their diver-
sity is yet to be uncovered.

Only a very small fraction of Kilpisjärvi metagenomic 
reads could be mapped to Tunturi CDSs, which is not 
unexpected taking into account that bulk metagenomes 
typically contain only a small number of viral sequences 
compared to cellular ones [108] and cultivable viruses 
may be in fact rare in natural communities [109]. None-
theless, multiple genus- or higher-level links between 
the  Tunturi viruses, Kilpisjärvi vOTUs, and Stord-
alen vOTUs could be found with the network-based 
whole-genome gene-sharing profiles by vConTACT2. 
Using  the  IMG/VR  database, viral sequences related to 
the Tunturi viruses could be also detected in metagen-
omes from other Arctic and temperate soils, suggesting 
some shared viral diversity and functions across soils. 
Global species-level sequence conservation across soil 
habitats has been observed when viromes from boreal 
peatland in northern Minnesota were compared with the 
PIGEON database having viral sequences from diverse 
ecosystems [100]. Similarly, shared viral clusters have 
been reported when comparing viromes from Alas-
kan permafrost and Stordalen Mire [25]. It is, however, 
unclear whether the observed patterns truly represent 
biological diversity or are biased because of the avail-
able (and yet limited mostly to peats) deeply sequenced 
virome data [100]. Largely unknown viral sequences 
detected in soils highlight a need for more extensive 
sampling to better understand viral functions and con-
tributions to ecosystem-wide nutrient cycling processes, 
especially in the climate-wise vulnerable Arctic region.
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Supplementary Material 1. Figure S1. Similarities between the genomes of 
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