Lawrence Berkeley National Laboratory
LBL Publications

Title
A fourth-order Cartesian grid embedded boundary method for Poisson’s equation

Permalink
https://escholarship.org/uc/item/9b97g2dg

Journal
Communications in Applied Mathematics and Computational Science, 12(1)

ISSN
1559-3940

Authors

Devendran, Dharshi
Graves, Daniel
Johansen, Hans

Publication Date
2017

DOI
10.2140/camcos.2017.12.51

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/9b97g2dg
https://escholarship.org/uc/item/9b97g2dg#author
https://escholarship.org
http://www.cdlib.org/

A Fourth Order Cartesian Grid Embedded
Boundary Method for Poisson’s Equation

Dharshi Devendran T Daniel T. Graves f Hans Johansen |

Terry Ligocki T
March 17, 2016

Abstract

In this paper, we present an fourth order algorithm to solve Poisson’s
equation in two and three dimensions. We use a Cartesian grid, embedded
boundary method to resolve complex boundaries. We use a weighted least
squares algorithm to solve for our stencils. We use convergence tests to
demonstrate accuracy and we show the eigenvalues of the operator to
demonstrate stability. We compare accuracy and performance with an
established second order algorithm. We also discuss in depth strategies for
retaining higher order accuracy in the presence of non-smooth geometries.

1 Prior Art

There are many numerical approaches to solve Poisson’s equation in complex
geometries. Green function approaches [25, 16, 8], such as the fast multipole
method, are fast and near-optimal in complexity, but they are not conserva-
tive. Also, they cannot be easily extended to variable and tensor coefficient
Poisson operators, which are important in the earth sciences and multi-material
problems.

Another popular approach is to use the finite element method, which has
a number of advantages. These advantages include negative-definite discrete
operators, higher-order accuracy, and ease of extension to variable coefficients.
The conditioning and accuracy of the discrete finite element operator can be
strongly mesh-dependent, however [6]. Unfortunately, generating meshes with
higher-order conforming elements for complex 3D domains is still an expensive,
globally-coupled computation, and an open area of research [29].

This motivates the need for simpler grid generation. Cut cells are a sim-
ple way of addressing this. In a cut cell (or embedded boundary) method,

fLawrence Berkeley National Laboratory, Berkeley, CA. Research at LBNL was supported
financially by the Office of Advanced Scientific Computing Research of the US Department of
Energy under contract number DE-AC02-05CH11231.

the discrete domain is the intersection of the complex geometry with a reg-
ular Cartesian grid. Such intersections are local, and can be calculated very
efficiently in parallel, enabling fast computation of solution-dependent moving
boundaries [1, 32, 26]. Cut cells have been used successfully to solve Poisson’s
equation in finite volume [19, 31] and finite difference [14, 23] discretizations.

For many problems, such as heat and mass transfer, discrete conservation is
important. Finite volume methods are discretely conservative by construction
because they are in discrete flux-divergence form [22]. Previous finite volume
methods for Poisson’s equation are first order in truncation error near the em-
bedded boundary and second order in solution error [19, 31]. Our finite volume
discretization of Poisson’s equation is third order in truncation error and fourth
order in solution error. The discretization is in flux-divergence form and there-
fore strongly conservative.

The second order, finite volume, strongly conservative Schwartz, et al. algo-
rithm [31] has been used in many larger applications, including incompressible
Navier Stokes with moving boundaries [26], compressible Navier Stokes [15] and
a DNA-transport application [37]. We compare our algorithm to the Schwartz,
et al. algorithm by comparing both eigenvalue spectrums and the how many
degrees of freedom are required to achieve a given degree of accuracy. We also
provide a strategy for maintaining higher-order accuracy in the presence of ge-
ometric discontinuities.

2 Underlying Analysis
Given a charge density p, Poisson’s equation can be written as
V- (Vo) =p (1)

for the potential ¢. If we integrate this equation over a control volume V' and
apply the divergence theorem, this becomes

/avws.ﬁ dA:/Vp av (2)

where n is the outward-facing unit normal to the surface. Our volumes are
Cartesian cells cut by an embedded boundary.

Formally, the underlying description of space is given by rectangular control
volumes on a Cartesian mesh Y; = [(i— u)h, (i+ Ju)h],i € ZP, where D is the
dimensionality of the problem, h is the mesh spacing, and u is the vector whose
entries are all one (note we use bold font u = (uy,...,uq,...,up) to indicate
a vector quantity). Given an irregular domain 2, we obtain control volumes
Vi =TiNQ and faces A;; 1e, Which are the intersection of the boundary of 9V;
with the coordinate planes {x : z4 = (iq £ 3)h} (eq is the unit vector in the
d direction). We also define Ap; to be the intersection of the boundary of the
irregular domain with the Cartesian control volume: Ap; = 0Q () Y;. Figure 1
illustrates a volume cut by an embedded boundary.

f°
i

Figure 1: Illustration of cut cell notation. The shaded region is outside the
solution domain. The volume V; is connected to other volumes via the faces
aligned with the coordinate planes. The EB face is formed by the intersection
of the embedded boundary and the cell.

Throughout this paper, we use the following compact “multi-index” nota-
tion:

D

(x = %)P = [[(wa — za)

d=1
D
p! =[] ra!
d=1

Given a point in space X, and a D-dimensional integer vector p, we define m{ (X)
to be the p** moment of the volume V; relative to the point X.

() =[x = xPdv 3)
Vi

The volume of the cut cell |V;| = m?, where z is the zero vector. We define the

face moments mipiled (%) to be the p*" moments (relative to the point %) of the
2

faces Aji1g,-

mfi%ed (x) = / (x —x)PdA (4)

Aii%ed

We define two moments corresponding to the embedded boundary face Ap ;:
mp; and my ; g

mh) = [(- xPda 5)
Api

and

where g is the d*" component of the outward-facing unit normal to the EB face
(note that fig = fq(x)).

We define flux function to be the gradient of the potential (F = V¢). Given
a volume V; we can rewrite the integral form of Poisson’s equation (2) as a sum
of integrals over each face in the volume.

D
/v-(w) av =>"
Vi d=1

/ Fy dA— / FddA+/FdﬁddA . (7)
A, ABi

i+%ed i—ley B

Nl

We use the following notation to denote the averages of ¢ over a computa-
tional volume:

1
@h =i [o av (8)
Vil
Vi
The average flux over a coordinate face is defined as

1
<Fd>ii%ed = Aipro | / Fy dA,
itleq

? ii%ed

and the average flux at the irregular face is given by

. 1 .
(Fa fa)p; = Apal / Fyng dA.

B,i

To create a conservative divergence operator, we discretize our divergence op-
erator as a sum of average fluxes. We define the volume fraction x to be the
fraction of the volume of the cell inside the solution domain, so that

k=h"P|Vi| = h"Pm?% . 9)

Given a flux function F, the k-weighted divergence of the flux is defined to be
the volume average of the divergence multiplied by «:

1

kL(p); = k(V - F>i = WD v

V.-FdV

D
1 .
= 5> (i g (Fadig o, = i go, [(Fadiyo, + 148l (Fa 1a)p5)
d=1
(10)

We weigh the conservative divergence this way to avoid small-x numerical insta-
bilities. Implicit algorithms for Poisson’s equation (1) solve the discrete system

£ (V- Vo) =k (p); (11)

for ¢ [19, 31], which avoids very large negative eigenvalues from terms with x~!
Up to this point, no approximations have been made.

The accuracy of the method is dependent only upon the accuracy of the dis-
cretization of the average fluxes. Previous conservative algorithms for embedded
boundaries compute fluxes that are second order [28, 26, 31, 13, 15, 27, 9]. In
those algorithms, the cell-averages of ¢ are approximated to second order by
pointwise values at the centroids of faces, and fluxes are constructed by differ-
encing those pointwise values. For fourth-order accurate fluxes, we need to use
the cell-averages of ¢ directly in the local polynomial expansion of ¢.

For some integer @, suppose we want an O(h?) approxmation to the flux
F = V¢. Given a sufficiently smooth function ¢, we can approximate ¢ in the
neighborhood of X using a multi-dimensional Taylor expansion:

dx) =Y j¢ @ (%) (x = %)+ O(hH), (12)
lal<=@Q @

Here we use the the multi-index partial derivative notation
o 04

@ = pag= " 13
If we put the expansion (12) into one of the integrals in (7) over a coordinate-

aligned face, we get

3x dA= > dcq/ %)97% dA + O(h®) (14)
d
Aii%% lal<=Q
= D dacamist (%) +O(h?) (15)
lal<=Q
where ¢, = gi)(q (x). The flux equation at the irregular boundary becomes

06 . e
8—xdnd dA = Z qdcq/ (x — x)9 %0y dA+ O(h?) (16)

Ay lal<=Q AB.s
D> queqm$ (%) + O(h9) (17)
lal<=Q

All the moments can be generated to any order as shown in Schwartz, et al.
[32]. Therefore, generating an O(h?) algorithm for Poisson’s equation reduces
to finding the coefficients cq.

3 Algorithm

3.1 Basic Methodology

We define ./\fi+%ed to be the set of volumes in the neighborhood of face i+ 1ey
(our neighborhood algorithm is described in §3.4). We put the expansion (12)

into (8) for every volume Vj € Nj 1,

1 _
W=7 X ca | xmmppe) av (18)
I al<=@ i
1)
= Wi cqmi (Xt 1e,): (19)
I al<=@

where X3, 1., = h(i+ 1ey) is the center of the target face. This forms a system
of equations for the coefficients cq.
Define C to be a column vector composed of the Taylor coeflicients cq. In

C, the powers of q are listed in lexicographical order. For example, in 2D, for
Q=2
C(O’O)
C(l,O)

(2,0)
2(0,1) : (20)
(1,1
(0,2)

Define ® to be the column vector of all (¢); such that Vj € J\/’i+%ed. Define
M to be the matrix of the neighbors’ volume moments normalized by their
volumes. Each row of M corresponds to a particular neighbor. In particular,
suppose N'H_%ed ={Vj,,...,Vjy}- Then the I* row of M are the moments for
neighbor Vj,. Each column of M corresponds to a particular power q. Because
the volume of Vj is m¥, the first column is made of ones.

For example, in 2D with @ = 2, the moment matrix M takes the form

(1,0) (2,0) (0,1) (1,1) (0,2)
m m m m m
1 J1 J1 J1 J1 J1
MO0 00 (00) (0.0) (0.0)
J1 J1 J1 J1 J1
M= : : : : : : . (21)
(1,0) (2,0) (0,1) (1,1) (0,2)
1 myl miy miy myl myl
(0,0) (0,0) (0,0) (0,0) (0,0)
IiN IN IN IN IN

Extending both C' and M to @ = 4 simply requires adding the extra moments
in Pascal’s triangle in lexicographical order. All moments in the system of
equations are cented around the target face at X;, 1., = h(i+ 1e,). The system
of equations formed by (8) over the neighborhood N, 1o, takes the form

o = MC. (22)

Say there are P coeffcients we need and N neighbors in Afi-&-%ed' If N> P, we
have an overdetermined system that we can solve by weighted least squares. We
define a weighting matrix W and use it to multiply both sides of our system

Weé=WMC

The choice of weighting matrix is discussed in §3.3. Taking the Moore-Penrose
pseudoinverse, we solve for the Taylor coeffcients

C=WM)'wWao

and use these coefficients to compute the flux at the face. Recall from (15)
that we need to shift and transform the coefficients to compute the average

gradient at the face. Define G to be the row vector G = [...ggm3 ...] where

—e
1+ eq
|a| <= Q. Equation 15 becomes

|A1+ ed|<Fd>i+%ed =GC

We express this flux calculation as a stencil. Because these are all linear opera-
tors, we know we can express the flux as a column vector 5, 1, acting on the

solution, |A; 1 ed|<Fd>i+%ed Sz; o, & Where
Sit1e, = GWM)'W (23)

At every face in the domain, we solve for the stencil S, 1 4 le, For faces near the
domain boundaries and the embedded boundary we add boundary equations to
the system (22). This is discussed in §3.2. We solve for our stencils using the
singular value decompostion framework from LAPACK [2].

Putting the flux stencils from (23) into (10), we get the stencil for our oper-

ator kL:
1 D
l:ﬁ2(1+ leg = i—%ed+SiEB)a (24)
d=1

where SEB| the stencil for the embedded boundary flux, is discussed in §3.2.

Once our stencils are calculated, we use the Chombo infrastructure [10, 11],
which uses the Martin and Cartwright multigrid algorithm [24], to solve the
system. The bottom solver for our multigrid algorithm is the PETSc alger-
braic multigrid solver [5, 3, 4]. For eigenvalue calculations, we use the SLEPc
infrastructure [18, 17, 7]. For details of our adaptive multigrid algorithm, see
Devendran, et al. [12].

3.2 Boundary Conditions

Boundary conditions for this algorithm are used in two ways. First, we need to
calculate the fluxes at the boundary to complete our finite volume discretization
(see (24)). Second, to improve the stability of the operator, we include boundary
condition equations in the system (22) that we solve to obtain the polynomial
expansion.

To calculate boundary fluxes, we need different procedures for different types
of boundary conditions. For Neumann boundary conditions, the flux is the
specified boundary condition. For Dirichlet boundary conditions, on the other
hand, we need to compute a stencil to calculate the flux. For Dirichlet domain

boundary faces, we solve for the flux stencil as we would for any other face.
For Dirichlet boundary conditions on embedded boundary faces, we follow the
same procedure except that we use the polynomial expansion from (17) where
the derivatives of the normal to the boundary are included.

To improve the stability of the operator, we add equations that contain
boundary condition information to the system (19) used to compute polynomial
coefficients. Suppose a volume Vj in the neighbor set N +1le, CONtains a domain

face j+ %ed which has a Dirichlet boundary condition <¢>J. tley = opp. We
add the equation

1
¢pp = / ¢ dA (25)
|Aj+%ed|
A.H»%ed
1
= > cq/ (x =Xy 10,)% dA (26)
Hyrsedl \gfZa s,
1

= Aol > Cqml+ 1o, (XKirle,) (27)
29! |q|<=Q

to the system (19). If Vj contams an embedded boundary face with a Diriechlet

boundary condtion <¢)> = ¢pp we add the appropriate form of (17):
OEB Z cq/ x —X)Ing dA (28)
|] Z Cq™m B,,d (29)
Hlal<=@Q

to our equation set (19). The extension of this process to Neumann boundary
conditions is straightforward.

3.3 Weighting Matrix

Using weighted least squares adds a great deal of flexibility to a least-squares
system solver. We use a diagonal weighting matrix W in (23). Using a diag-
onal weighting matrix amounts to assigning relative importance to the various
equations in the system; larger weights mean that equation will more heavily
influence the solution to the system [35]. We have found that the choice of
weighting function strongly influences the eigenvalues of the resulting operator,
and thus its stability.

Potential theory tells us that the effect of a charge in a Poisson system
should diminish quickly with distance [34]. To mimic this in our stencils, we
want volumes closer to the target face to have a much larger weight than those
further away. If the volume being weighted is j and the target face is i + ed,
the weight value W ; tle, is given by

W; = (Dj,i+%ed)75

i1
J;it+35eq

Figure 2: Neighbors of faces cut by the embedded boundary. Geometric con-
straints can greatly alter the number of neighbors available within a given radius

J
ing this weighting, we find that our stencil values in the interior appear to be

a perturbation off of a standard second-order stencil and our eigenvalues are
stable.

where Dj ;. 1oy 18 the distance between the volume and the target face. Us-

3.4 Neighborhood Algorithm

We define the neighborhood of the face to be the the set of of valid cells within
a discrete radius R = 3 cells of either cell of the face:

j\/}+%ed:{j:id—jd<R0rjd—(id+1)<Rf0rany1§d§D}. (30)

We use this many cells because we need enough cells in the system (22) so
that the system will be overdetermined even in the case where the embedded
boundary cuts out half of the cells in the neighborhood. Figure 2 illustrates
how the number of neighbor volumes can vary due to geometric constraints.
We detect if there are are not enough cells for any given face and, for that face,
we use a larger R.

4 Convergence Tests

To validate our algorithm, we present convergence tests to show that our al-
gorithm is converging at expected rates. We test both truncation error 7" and
solution error €. We evaluate convergence using Lq, Lo, and Ly, norms. Given
an error field E defined on volumes V; in €2, and a norm operator ||E||, the rate
of convergence w is defined as

ow, (1B
e E)

Given a computational domain 2, we define the L., norm of a field to be
maximum value over that field while the L; and L, norms are integral norms.

These take the form

E = FE;
1Blloc = mae ||

1 1
Elli=— | |EldV = — |V
£ VN/Q\ |dV VQ.EI Vi
ieQ
1 3
1 E 1
E|l2 = 7/ Ei2dv> = —§ Ei*V;
[1E]]2 (Vw Q| | (Vﬂieg| |

where Vg, is the volume of the whole domain.
Given a smooth input potential ¢¢, we compute the truncation error T' by
comparing the discrete operator L with the exact average Poisson operator L¢:

T = k(L(9°) — L(¢°)) (31)
where kKL(¢) is given in (10) and

L) = [V(96 V. (32)
i
We weight the operator this way because the volume fraction x can be arbitrarily
small and because this is the form of the operator that is used in the solution
process (see (11)). The solution error € is given by comparing the computed
solution ¢ to the exact solution ¢°:

€= ¢ — ¢°. (33)

We expect the truncation error to be larger at the embedded boundary since the
operator is formally third order in the cut cells. Potential theory tells us that
these truncation errors at the boundary should be smoothed out in solution
error. We therefore expect solution error to be uniformly fourth order in all
norms.

For these tests, we need a smooth geometry and preferably one whose cur-
vature varies. Our computational domain is the unit cube. Given a center point
Xp, we use the exterior of an ellipse of the form

D 2

2
Ta”Tod _y, (34)
d=1 "d

where r = (0.25,0.5,0.75) and xo = (0.5,0.5,0.5). A picture of this ellipse is
given in figure 7. We generate our geometric moments to O(h%) so that our
results would only reflect the accuracy of our Poisson discretization. Our finest
grid spacing in these tests is 1287 (h = 1/128). The exact potential field for
these tests is given by

D
¢° = H cos(mXq). (35)
d=1

10

4.1 Truncation Error

In Table 1, we present truncation error rates for the case where the domain
has Neumann boundary condtions and the irregular boundary has Dirichlet
boundary condtitions (¢|lsq = ¢°). In Table 2, we present truncation error
rates for the case where the domain has Dirichlet boundary conditions and the
irregular boundary has Neumann boundary conditions (V¢-n = V¢©-7). For the
two examples, we present convergence rates for both two and three dimensions.
The third-order truncation error at the embedded boundary dominates the error
on the domain, and the L., norm reflects this. The truncation error in the L,
norm, on the other hand, is fourth-order because the embedded boundary only
has codimension one.

il i

Norm l|e w ||e
L 1.290e-04 2.60 2.130e-05
Ly 5.336e-06 3.99 3.358e-07

D
2
2
2 Ly 1.200e-05 3.55 1.022e-06
3
3
3

Lo 9.222e-04 3.86 6.334e-05
Ly 1.071e-05 4.00 6.687e-07
Lo 2.507e-05 3.66 1.984e-06

Table 1: Truncation error convergence rates with Dirichlet boundary conditions
on the embedded boundary and Neumann boundary conditions on the domain.
The geometry is the exterior of the ellipse shown in Figure 7 and h = 1/128.

Norm _[[e*"]] @ [1"]
Lo 1979¢-04 299 2.485e-05
L 1.423¢-05 3.95 9.184e-07

D
2
2
2 L, 3.897e-05 3.46 3.530e-06
3
3
3

Lo 4.490e-04 2.22 9.645e-05
Ly 2.698e-05 3.95 1.747e-06
Ly 6.697e-05 3.44 6.161e-06

Table 2: Truncation error convergence rates with Neumann boundary conditions
on the embedded boundary and Dirichlet boundary conditions on the domain.
The geometry is the exterior of an ellipse shown in Figure 7 and h = 1/128.

4.2 Solution Error

Johansen [19, 20] shows that a method can have a lower-order truncation error
on the embedded boundary (which is a codimension one smaller set) than in
the interior and still maintain the proper order for solution error. We solve
kLo = kL(¢°) and compute the solution error. For this test ¢ is given by (35).
We present solution error rates for the case where both the domain and the

11

irregular boundary have Dirichlet boundary condtitions (¢|sq = ¢.) in Table
3. We present solution error rates for the case where both the domain and the
irregular boundary have Neumann boundary conditions (V¢ -7 = V¢© - 71) in
Table 4. In both cases, we show uniform fourth order convergence rates in all
norms. We also run this test at much higher resolutions in §6.1.

D Nom [= [

2 Lo 1.626e-07 3.94 1.060e-08
2 L4 8.934e-08 3.91 5.952e-09
2 Lo 1.032e-07 3.93 6.783e-09
3 Lo 3.060e-07 3.97 1.954e-08
3 L4 1.955e-07 3.95 1.265e-08
3 Lo 2.154e-07 3.96 1.386e-08

Table 3: Solution error convergence rates with Dirichlet boundary conditions
on the embedded boundary and Neumann boundary conditions on the domain.
The geometry is the exterior of an ellipse and h = 1/128.

Norm __[[e*"]] il

D

2 Lo 1.835e-07 3.96 1.176e-08
2 Ly 6.904e-08 3.95 4.459e-09
2 L, 8.678e-08 3.96 5.558e-09
3

3

3

w l|e

Lo 3.879-07 3.86 2.669e-08
Ly 9.325e-08 3.92 6.175e-09
Lo 1.315e-07 3.94 8.559e-09

Table 4: Solution error convergence rates with Neumann boundary conditions
the embedded boundary and Dirichlet boundary conditions on the domain. The
geometry is the exterior of an ellipse and h = 1/128.

5 Operator Eigenvalues

In this section, we compare the spectrum of our algorithm to the widely used,
second-order algorithm presented by Schwartz, et al. [31].

The eigenvalues of the Poisson operator will depend upon the geometry and
resolution of the problem as well as the operator boundry conditions. Due to
limitations in computational resources, we are only able to show the spectrum
for coarse two-dimensional problems (our resolution is 322). We use the Krylov-
Schur module in SLEPc [18] to compute the eigenvalues.

We present the spectrum for our fourth-order operator with Dirichlet bound-
ary conditions on the embedded boundary and Neumann boundary condtions
on the domain in Figure 3. We present the spectrum for the second-order op-
erator with identical conditions in Figure 5. We also present the fourth-order

12

spectrum for Neumann boundary conditions on the embedded boundary and
Dirichlet boundary conditions on the domain in Figure 4 and the second order
spectrum in Figure 6. In both cases, Dirichlet boundary conditions on the em-
bedded boundary introduce more complex eigenvalues. In both cases, all the
eigenvalues have negative real components and are therefore stable.

5000 ‘
s
4000 | i
3000 | + g
2000 |- ,
.
1000 | N . g
. .
ol + T —
-1000 - * . ,
.
-2000 | ,
-3000 | N ,
-4000 | g
.\
5000 ‘ ‘ ‘ ‘
25000 -20000 -15000 -10000 -5000 0

Figure 3: Eigenvalues for the fourth order cell-averaged two-dimensional Poisson
operator with Dirichlet boundary conditions on the embedded boundary and
Neumann boundary conditions on the domain boundary. The geometry implicit
function is described by (34) and the resolution is 322.

13

4

3
-10000 -9000 -8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 O

Figure 4: Eigenvalues for the fourth order cell-averaged two-dimensional Poisson
operator with Neumann boundary conditions on the embedded boundary and
Dirichlet boundary conditions on the domain boundary. The geometry implicit
function is described by (34) and the resolution is 322.

1000 ; ; ; ; ; : —
800 - . |
600 * ,
"
400 I —
PN
200 + ,
o i T4 e e mevon
200 |- T ,
+ 1 +
-400 w7 B
.
-600 N ,
-800 * —
N

1000
-9000 -8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 O

Figure 5: Eigenvalues for the two-dimensional, second-order Poisson operator
(described in [31]) with Dirichlet boundary conditions on the embedded bound-
ary and Neumann boundary conditions on the domain boundary. The geometry
implicit function is described by (34) and the resolution is 322.

14

0.2

0.15 - q

01 q

0.05 - q

ot

-0.05 - q

01 F 4

-0.15 q

¥
L

0.2
-9000 -8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 O

Figure 6: Eigenvalues for the two-dimensional, second-order Poisson operator
(described in [31]) with Neumann boundary conditions on the embedded bound-
ary and Dirichlet boundary conditions on the domain boundary. The geometry
implicit function is described by (34) and the resolution is 322.

6 Effect on Accuracy of Geometric Differentia-
bility

Fundamentally, the appeal of a higher-order method is that one can achieve
higher accuracy with fewer degrees of freedom. To reliably achieve this rate of
convergence, however, one needs a sufficiently smooth description of the geome-
try. To achieve O(hf) accurate fluxes, Schwartz, Percelay, et al. [32] show that
all geometric moments in the calculation must also converge to O(h?).

Unfortunately, geometric descriptions are not always sufficiently smooth.
This is not necessarily catastrophic. Johansen [20] shows that large truncation
errors can be ameliorated under certain circumstances. Specifically, Johansen
shows that O(1) truncation errors at a Dirichlet boundary condition will not
prevent second order solution error convergence. Similarly, O(h) truncation
errors at a Neumann boundary will not prevent second order solution error
convergence.

These competing effects present a bit of a complex picture. To see how
our algorithm fits into this picture, we compare our algorithm to the widely-
used Schwartz, et al. [31] algorithm for Poisson’s equation. We compare the two
algorithms using both a smooth and a non-smooth geometric description. These
comparisons are done for both Dirichlet and Neumann boundary conditions at
the embedded boundary. Because some of the techniques used in this section
are resource-intensive, we restrict our comparisons to two-dimensions so we can

15

achieve much higher resolutions.
All of these tests are done with an exact potential ¢,

D
Ge = H sin(mraq)
d=1

and an charge distribution p = V - V¢.. The calculation domain is the unit
square and there are Dirichlet boundary conditions on the domain boundary.
In all of these results we present both the resolution and the number points that
are in play in the calculation (those not completely covered by the embedded
boundary). This number of points represents the number of degrees of freedom
in the calculation.

6.1 Accuracy vs. Resolution for a Smooth Geometry

First we compare our algorithm to the Schwartz, et al. algorithm with a smooth
geometry. Here, our geometry is the exterior of the ellipse whose implicit func-
tion is described by (34). Figure 7 shows a solution error plot with Neumann
boundary conditions. Figure 8 shows a solution error plot with Dirichlet bound-
ary conditions. Both cases show that the solution error that is distributed
throughout the domain. Tables 5 and 6 show norms of our solution error at
many resolutions for Neumann and Dirichlet boundary conditions, respectively,
for both algorithms. For both Neumann and Dirichlet boundary conditions, we
get much smaller errors even with greatly reduced resolution. For example, in
the Neumann case, we get an order of magnitude smaller errors at 642 (less than
one thousand degrees of freedom) than Schwartz, et al. get at 10242 (almost
one million degrees of freedom).

16

Figure 7: Solution error for the ellipse geometry in two dimensions using Neu-
mann boundary conditions on the embedded boundary and Dirichlet boundary
conditions on the domain boundary. This is using the current fourth order
algorithm. Resolution is 5122

Figure 8: Solution error for the ellipse geometry in two dimensions using Dirich-
let boundary conditions both on the embedded and on the domain boundary.
This is using the current fourth order algorithm. Resolution is 5122.

17

Algorithm Resolution Num. Points Ly(e) Ly (e) La(e)
Schwartz 322 952 1.419e-03 3.354e-04 4.144e-04
Schwartz 642 3752 3.511e-04 8.645e-05 1.070e-04
Schwartz 1282 14884 8.639e-05 2.186e-05 2.709e-05
Schwartz 2562 59312 2.083e-05 5.443e-06 6.741e-06
Schwartz 5122 236832 5.167e-06 1.354e-06 1.677e-06
Schwartz 10242 946432 1.272e-06 3.380e-07 4.185e-07

Current 322 952 2.786e-06 1.041e-06 1.316e-06
Current 642 3752 1.833e-07 6.897e-08 8.670e-08
Current 1282 14884 1.176e-08 4.459e-09 5.557e-09
Current 2562 59312 7.431e-10 2.833e-10 3.512e-10
Current 5122 236832 5.045e-11 1.941e-11 2.396e-11
Current 10242 946432 1.809e-11 7.489¢-12 9.105e-12

Table 5: Error vs. refinement comparison with the second order Schwartz, et al.
algorithm with the elliptical geometry. This uses Neumann boundary conditions
on the embedded boundary and Dirichlet boundary conditions on the domain
boundary.

Algorithm Resolution Num. Points Ly (€) Ly(e) Lo(e)
Schwartz 322 952 5.415e-03 1.322e-03 1.715e-03
Schwartz 642 3752 1.590e-03 3.592e-04 4.665e-04
Schwartz 1282 14884 4.581e-04 9.569e-05 1.243e-04
Schwartz 2562 59312 1.259e-04 2.498e-05 3.247e-05
Schwartz 5122 236832 3.430e-05 6.449e-06 8.381e-06
Schwartz 10242 946432 9.289%-06 1.647e-06 2.142e-06

Current 322 952 7.190e-07 3.169e-07 3.841e-07
Current 642 3752 4.146e-08 1.907e-08 2.300e-08
Current 1282 14884 2.527e-09 1.173e-09 1.400e-09
Current 2562 59312 1.564e-10 7.370e-11 8.717e-11
Current 5122 236832 1.093e-11 5.195e-12 6.109e-12
Current 10242 946432 5.159¢e-11 2.583e-12 3.024e-12

Table 6: Error vs. refinement comparison with the the second order Schwartz,
et al. algorithm with the elliptical geometry. This uses Dirichlet boundary
conditions everywhere.

6.2 Accuracy vs. Resolution for a Non-smooth Geometry

Now we compare our compare our algorithm to the Schwartz, et al. algorithm
with a geometry that is only piecewise smooth. The geometry is given by the
exterior of four or circles as shown in Figure 9. The implicit function is C4
discontinuous. Figure 10 shows a solution error plot with Neumann boundary

18

conditions. Figure 11 shows a solution error plot with Dirichlet boundary con-
ditions. In both cases, the solution error is concentrated near the discontinuities
in the geometry; in the Dirichlet case, it is concentrated in a very small area.

For Neumann boundary conditions at the embedded boundary, Tables 7
and 8 compare our solution errors with the the Schwartz, et al. algorithm for
Dirichlet boundary conditions. The errors for the two algorithms are comparable
for Neumann boundary conditions though the higher order algorithm does show
better results with Dirichlet boundary conditions.

Rz

R:

Figure 9: Diagram for our four circle geometry. The computational geometry is
the region not covered by these four circles in the unit square. Ry = 0.2. Ry =
R; = Ry =0.1. P, =(0.5,0.5,0.5). P = (0.50.7350.5). P35 = 0.29650.38250.5.
Py = 0.70350.38250.5.

19

0.0000
l—o.no:a

0.0076
I_uAuug

~0.0152

Figure 10: Solution error for the four circle geometry oin two dimensions us-
ing Neumann boundary conditions on the embedded boundary and Dirichlet
boundary conditions on the domain boundary. This is using the current fourth
order algorithm. Resolution is 5122.

. 1.1860-04

—7.359e-05
2.658e-04
-4.580e-04

6.5020-04

Figure 11: Solution error for the four circle geometry in two dimensions using
Dirichlet boundary conditions both on the embedded and on the domain bound-
ary. This is using the current fourth order algorithm. Resolution is 5122. The
error is concentrated very near the cusps in the geometry.

20

Algorithm Resolution Num. Points Ly(e) Ly (e) La(e)
Schwartz 322 862 3.525e-02 3.006e-03 4.625e-03
Schwartz 642 3370 2.231e-02 9.703e-04 1.585e-03
Schwartz 1282 13318 1.291e-02 5.649e-04 1.134e-03
Schwartz 2562 52930 1.776e-03 8.885e-05 1.325e-04
Schwartz 5122 211136 3.576e-03 1.403e-04 2.192e-04
Schwartz 10242 843316 3.033e-03 1.417e-04 2.089e-04

Current 322 862 5.751e-02 4.869e-03 7.208e-03
Current 642 3370 3.096e-02 1.420e-03 2.721e-03
Current 1282 13318 2.817e-02 2.132e-03 3.204e-03
Current 2562 52930 1.969e-02 1.383e-03 2.020e-03
Current 5122 211136 1.517e-02 6.754e-04 1.042¢-03
Current 10242 843316 7.495e-03 3.419e-04 4.934e-04

Table 7: Error vs. refinement comparison with the second order Schwartz, et al.
algorithm for the four circle geometry. This uses Neumann boundary conditions
on the embedded boundary and Dirichlet boundary conditions on the domain
boundary.

Algorithm Resolution Num. Points Ly (€) Ly(e) Lo(e)
Schwartz 322 862 2.191e-02 1.333e-03 1.750e-03
Schwartz 642 3370 1.026e-02 3.717e-04 4.908e-04
Schwartz 1282 13318 2.850e-03 9.703e-05 1.300e-04
Schwartz 2562 52930 5.719e-04 2.654e-05 3.491e-05
Schwartz 5122 211136 8.178¢-04 6.686e-06 9.117¢-06
Schwartz 10242 843316 8.97%9e-04 1.620e-06 2.330e-06
Current 322 862 1.818e-02 1.604e-04 5.435e-04
Current 642 3370 2.797e-03 3.228e-05 1.089e-04
Current 1282 13318 2.317e-02 4.557e-06 7.391e-05
Current 2562 52930 2.705e-03 2.014e-07 4.966e-06
Current 5122 211136 6.502e-04 5.940e-08 2.263e-06
Current 10242 843316 3.345e-04 8.430e-09 4.955e-07

Table 8: Error vs. refinement comparison with the second order Schwartz, et al.
algorithm with the four circle geometry. This uses Dirichlet boundary conditions
everywhere.

6.3 Singular Solutions and Error Characteristics

One might be tempted to ascribe this loss in accuracy to a poor approximation
of geometric moments. After all, the implicit function from which the moments
are generated is not smooth near the corner. To test this theory, we use the
refinement algorithm described in [32] to refine the cells near circle intersections

21

by a factor of 10242 in each direction. Since we know the geometric moments
of the uncut subcells exactly and only one subcell contains the discontinuity,
this increases the accuracy of the geometric moments dramatically. When we
run this test, the solution errors do not change. The reason that our accuracy
degrades for the four circle geometry is that the solution to the error equation is
singular at these points. With homogeneous boundary conditions, the solution
of the Poisson equation is singular near corners whose angle is greater than /2
[21].

Given a truncaiton error T' (defined in (31)) and the solution error e (defined
in (33)), the error equation can be written

L(e) =T. (36)

The boundary conditions for € are homogeneous analogs of the boundary condi-
tions for ¢ (if ¢’s boundary conditions are inhomogeneous Dirichlet, €’s bound-
ary conditions are homogeneous Dirichlet). Because our equation is linear, we
can separate the truncation error into two parts. We define T to be the trun-
cation error in cells within the stencil width w of the singular points. We define
the non-singular component of the truncaiton error to be 7" =T — T%. We
then compute the convergence rate of the solution error €” in the absence of the
singular points of the truncation error by solving

Le" =T" (37)

with the appropriate homogeneous boundary conditions.
We are given a set of M circles {C...Cps}, which intersect at the set of
volumes P* = {P;...Py;}. The singular part of the truncation error T} is given

by
T ifvep®
s __

Iy = (0 otherwise) (38)
We solve (37) using both the current fourth-order algorithm and the second-
order Schwartz, et al. algorithm. The comparisons with the for the Schwartz,
et al. algorithm are given in tables 9 and 10. Again, we show that the current
algorithm has comparable errors at 322 resolution to the Schwartz, et al. algo-
rithm at 10242 resolution. So if one is able to remove the singular part of the
solution, she can achieve high accuracy with this algorithm even if the implicit
function which generates the geometry is not smooth.

22

Algorithm Resolution Num. Points Lo (e™) Li(e™) Lo(e™)
Schwartz 322 862 6.121e-03 1.440e-03 1.875e-03
Schwartz 642 3370 1.552e-03 3.911e-04 5.066e-04
Schwartz 1282 13320 4.119e-04 1.002e-04 1.321e-04
Schwartz 2562 52930 1.355e-04 2.669e-05 3.515e-05
Schwartz 5122 211136 3.215e-05 6.797e-06 8.913e-06
Schwartz 10242 843316 9.172e-06 1.640e-06 2.152e-06

Current 322 862 5.126e-07 1.741e-07 2.236e-07
Current 642 3370 2.684e-08 1.080e-08 1.338e-08
Current 1282 13318 1.586e-09 6.380e-10 7.764e-10
Current 2562 52930 9.650e-11 3.882e-11 4.683e-11
Current 5122 211136 6.676e-12 2.693e-12 3.232e-12
Current 10242 843316 3.264e-12 1.320e-12 1.577e-12

Table 9: Convergence of the non-singular part of the solution error vs. refine-
ment for both the current algorithm and the Schwartz, et al. algorithm. This
uses Dirichlet boundary conditions everywhere.

Algorithm Resolution Num. Points Lo (™) Li(e™) Lo(e™)
Schwartz 322 862 1.329e-03 3.557e-04 4.370e-04
Schwartz 642 3370 2.881e-04 8.740e-05 1.073e-04
Schwartz 1282 13320 7.068e-05 2.084e-05 2.552e-05
Schwartz 2562 52930 1.777e-05 5.171e-06 6.327e-06
Schwartz 5122 211136 4.382¢-06 1.278e-06 1.564e-06
Schwartz 10242 843316 1.033e-06 3.222e-07 3.946e-07
Current 322 862 2.353e-06 7.242e-07 8.939e-07
Current 642 3370 1.864e-07 5.838e-08 7.354e-08
Current 1282 13318 1.133e-08 3.783e-09 4.735e-09
Current 2562 52930 7.215e-10 2.405e-10 2.993e-10
Current 5122 211136 5.392e-11 1.649e-11 2.046e-11
Current 10242 843316 1.235e-11 5.044e-12 6.154e-12

Table 10: Convergence of the non-singular part of the solution error vs. refine-
ment for the current algorithm and for the Schwartz, et al. algorithm. This uses
Dirichlet boundary conditions on the domain boundary and Neumann boundary
conditions on the embedded boundary.

7 Geometric Regularization and Accuracy
We recognize that the technique of removing the singular parts of the trunca-

tion error is not generally useful to larger applications. The tests presented in
Section 6.3 are predicated upon knowing a priori the singulr points. For high

23

order methods to be more generally useful, they must produce much better ac-
curacy than lower order methods in the presence of geometric discontinuities
without this prior knowledge. In this section, we present a method to smooth
the geometric description over a controlled length scale. We then show that, if
one is careful about how this length scale converges with grid refinement, she
can retain superior accuracy compared to lower order methods even when the
input implicit function is only C°.

7.1 Smoothing the Geometric Description

Recall that, to generate our geometric moments using the algorithm described in
[32], we must start with an implicit function F'(x) whose zero surface (or contour
in 2D) forms the the embedded boundary. Consider the geometry described in
Figure 9. The implicit function for each circle C;, with radius r; and center y;

is given by
D

Ci(x) =12 = S (@3 —y2).
d=1
The overall implicit function at any point is given by taking the maximum of
the four functions.
F(x)= max C;(x) (39)
1<=d<=4

Since our geometry is smooth away from specific intersection locations, we wish
to only smooth within a length scale ¢ from the intersections of implicit function
zero surfaces. To smooth this description we could use a mollifying function and
integrate the convolution directly as in [36]. This has the advantage that the
length scale over which the smoothing happens is well defined. These functions
can be delicate, however, to integrate numerically. Shapiro [33] presents an
alternative approach called R-functions (named for V. L. Rvachev, the origi-
nator of the concept [30]), in which logical functions such as maxima, minima
and absolute values are replaced by differentiable functions with the same zero
surfaces. Though this method is far more numerically tractable, the functions
for maxima that Shapiro presents do not have a well-defined length scale over
which they smooth. The smoothing method described here (which can be prop-
erly described as an R-function) provides both a well-defined smoothing length
and is numerically tractable.

One way to write the maxima function used in (39) is using an absolute
value:

1
max(a,b) = i(a +b+|a—10]|).

Let us define a function maxs which smooths the function max over a length
scale §

max(a,b) = %(a +b+ As(a—0)).

24

where A; is the convolution of the absolute function with a sufficiently smooth
function ¢s(x) with compact support in contained within z € [—4, d]:

%) (e’ 0
As(z) = / ol — 9)lyldy = / sl — y)ydy — / bs(— y)ydy.
—00 0 —0o0

Since our algorithm is fourth order in fluxes, we use geometric our geometric
moments to fourth order. The algorithm in [32] requires that the implicit func-
tion must have derivatives to fourth order. This implies that the mollifier 5
needs to be C* and these derivatives must also have compact support. We also
oo
require [9(y)dy = 1. Our choice of s
— 00
Locost(ZZ) if —6<ax<§
Ys(z) = 30 26 =r=0
0 otherwise

fulfills these requirements. We need to integrate only where the mollifier is non-
zero. If a and b are signed distance functions, then ¢§ is the length scale over
which As(a,b) represents a smoothing the of the absolute value function.

7.2 Regularization Length Scale and Grid Refinement

Now we investigate the obvious question in all of this, how does one pick the
length scale 7 For the piecewise-smooth geometric description presented in
Section 6.2, we present three different schemes for § and see how the accuracy
changes with grid refinement. First we use a constant 6 = 0.01. Second, we
make delta vary linearly with h (6 = 4h). Finally we make § = \ﬂth), where
R, is described in Figure 9. The convergence rates for the three schemes are
quite different.

First, we set our geometric regularization length to a constant § = 0.01. Ta-
bles 11 and 12 show error rates for Dirichlet and Neumann boundary conditions
at the cut faces, respectively. With this fixed §, the current algorithm shows
much smaller errors than Schwartz, et al. In the L; norm, we get better error
rates at 322 than Schwartz, et al. gets at 10242.

Next, we set our geometric regularization length to § = 4h. Tables 13 and
14 show the error rates for Dirichlet and Neumann boundary conditions at
the cut faces, respectively. With § converging linearly with grid refinement, the
improvement over Schwartz, et al. is far more modest, especially with Neumann
boundary conditions at the cut faces.

Finally, we set our geometric regularization length to § = \ﬂRl h). Tables
15 and 16 show the error rates for Dirichlet and Neumann boundary conditions
at the cut faces, respectively. With this formulation of §, we once again get
much better error rates than Schwartz, et al.. Here again, in the L; norm, we
get better error rates at 322 than Schwartz, et al. gets at 10242.

Clearly, how the regularization length varies with grid refinement is an im-
portant concern. We suspect that the optimal formulation will depend upon
the nature of the partial differential equation.

25

Algorithm Resolution Num. Points Ly(e) Ly (e) La(e)
Schwartz 322 862 1.184e-02 1.869e-03 2.522¢-03
Schwartz 642 3368 1.715e-03 4.142e-04 5.414e-04
Schwartz 1282 13316 5.922e-04 1.023e-04 1.356e-04
Schwartz 2562 52916 1.355e-04 2.676e-05 3.527e-05
Schwartz 5122 211062 3.215e-05 6.784e-06 8.892¢-06
Schwartz 10242 843004 8.063e-06 1.644e-06 2.159e-06

Current 322 862 7.904e-03 4.768e-05 2.992e-04
Current 642 3368 9.380e-05 1.418e-06 4.421e-06
Current 1282 13316 2.921e-06 9.434e-09 5.098e-08
Current 2562 52916 2.745e-07 2.839e-10 2.146e-09
Current 5122 211062 3.223e-09 3.365e-12 3.125e-11
Current 10242 843004 1.063e-10 2.001e-12 2.434e-12

Table 11: Comparison of error rates with the four-circle geometry for the current
algorithm and for the Schwartz, et al. algorithm. The boundary conditions
are Dirichlet everywhere. Here we set the geometric regularization length to a
constant § = 0.01

Algorithm Resolution Num. Points Lo (e€) Ly (e) Lo(e)
Schwartz 322 862 1.989e-02 2.026e-03 3.003e-03
Schwartz 642 3368 2.593e-03 2.686e-04 3.564e-04
Schwartz 1282 13316 1.171e-03 1.207e-04 1.657e-04
Schwartz 2562 52916 2.522e-04 3.012e-05 4.093e-05
Schwartz 5122 211062 6.144e-05 7.472e-06 1.014e-05
Schwartz 10242 843004 1.417e-05 1.798e-06 2.436e-06

Current 322 862 1.525e-01 1.166e-02 1.905e-02
Current 642 3368 1.739e-03 5.812e-05 1.102e-04
Current 1282 13316 7.054e-05 3.077e-06 5.886e-06
Current 2562 52916 3.593e-06 4.053e-08 8.884e-08
Current 5122 211062 1.425e-07 9.227e-09 1.473e-08
Current 10242 843004 6.998¢-09 4.220e-10 6.809e-10

Table 12: Comparison of error rates with the four-circle geometry for the cur-
rent algorithm and for the Schwartz, et al. algorithm. The domain bound-
ary conditions are Dirichlet and the embedded boundary boundary conditions
are Neumann. Here we set the geometric regularization length to a constant
0 =0.01

26

Algorithm Resolution Num. Points Ly(e) Ly (e) La(e)
Schwartz 322 828 6.864e-03 1.527e-03 1.993e-03
Schwartz 642 3238 1.900e-03 3.941e-04 5.172e-04
Schwartz 1282 12810 4.826e-04 9.172e-05 1.213e-04
Schwartz 2562 50918 1.237e-04 2.394e-05 3.157e-05
Schwartz 5122 203052 3.354e-05 6.085e-06 8.008e-06
Schwartz 10242 810964 8.330e-06 1.513e-06 1.989e-06

Current 322 828 9.448e-05 1.965e-06 5.407e-06
Current 642 3326 9.659e-07 1.622e-08 4.080e-08
Current 1282 13266 2.179e-08 8.458e-10 1.295e-09
Current 2562 52886 2.110e-08 9.797e-11 2.689e-10
Current 5122 211088 1.028e-08 2.417e-11 1.331e-10
Current 10242 843270 8.976e-08 1.068e-11 2.235e-10

Table 13: Comparison of error rates with the four-circle geometry for the current
algorithm and for the Schwartz, et al. algorithm. The boundary conditions are
Dirichlet everywhere. Here we set the geometric regularization length to § = 4h

Algorithm Resolution Num. Points Lo (e€) Ly (e) Lo(e)
Schwartz 322 828 2.849e-03 4.876e-04 6.323e-04
Schwartz 642 3238 1.128e-03 1.457e-04 1.937e-04
Schwartz 1282 12810 2.555e-04 3.155e-05 4.091e-05
Schwartz 2562 50918 1.782e-04 1.154e-05 1.631e-05
Schwartz 5122 203052 4.259e-06 1.249e-06 1.554e-06
Schwartz 10242 810964 5.368e-06 2.148e-07 3.271e-07
Current 322 828 1.683e-03 1.122e-04 2.043e-04
Current 642 3326 6.971e-06 5.483e-07 9.162e-07
Current 1282 13266 6.512e-07 6.887e-08 9.896e-08

Current 2562 52886 8.852e-07 7.875e-08 1.125e-07
Current 5122 211088 4.898e-07 3.394e-08 5.000e-08
Current 10242 843270 3.257e-07 1.630e-08 2.439e-08

Table 14: Comparison of error rates with the four-circle geometry for the current
algorithm and for the Schwartz, et al. algorithm. The boundary conditions are
Dirichlet on the domain boundary and Neumann on the embedded boundary.
Here we set the geometric regularization length to § = 4h

27

Algorithm Resolution Num. Points Ly(e) Ly (e) La(e)
Schwartz 322 846 6.581e-03 1.499e-03 1.997e-03
Schwartz 642 3312 1.717e-03 3.672e-04 4.784e-04
Schwartz 1282 13088 4.546e-04 9.330e-05 1.220e-04
Schwartz 2562 52022 1.250e-04 2.548e-05 3.365e-05
Schwartz 5122 207510 3.837e-05 6.258e-06 8.146e-06
Schwartz 10242 828794 1.011e-05 1.600e-06 2.111e-06

Current 322 846 5.402e-06 2.143e-07 3.879e-07
Current 642 3330 2.792e-07 1.039e-08 1.807e-08
Current 1282 13252 1.421e-08 5.089e-10 7.016e-10
Current 2562 52794 2.260e-09 3.414e-11 7.429e-11
Current 5122 210856 4.074e-10 2.406e-12 5.238e-12
Current 10242 842726 3.629e-11 1.996e-12 2.390e-12

Table 15: Comparison of error rates with the four-circle geometry for the current
algorithm and for the Schwartz, et al. algorithm. The boundary conditions
are Dirichlet everywhere. Here we set the geometric regularization length to

§ =+/(Rih)

Algorithm Resolution Num. Points Lo (e€) Ly (e) Lo(€)
Schwartz 32° 846 1.579e-03 5.218e-04 6.538e-04
Schwartz 642 3312 3.690e-04 1.203e-04 1.507e-04
Schwartz 1282 13088 9.429e-05 3.133e¢-05 3.924e-05
Schwartz 2562 52022 3.297e-05 8.306e-06 1.045e-05
Schwartz 5122 207510 5.283e-06 1.822e-06 2.270e-06
Schwartz 10242 828794 1.309e-06 4.342e-07 5.399e-07

Current 322 846 6.139e-05 4.725e-06 8.113e-06
Current 642 3330 1.274e-06 8.435e-08 1.691e-07
Current 1282 13252 4.698e-07 4.297e-08 6.226e-08
Current 2562 52794 8.422e-08 7.356e-09 1.057e-08
Current 5122 210856 2.127e-08 1.846e-09 2.645e-09
Current 10242 842726 3.693e-09 2.843e-10 4.046e-10

Table 16: Comparison of error rates with the four-circle geometry for the current
algorithm and for the Schwartz, et al. algorithm. The boundary conditions are
Dirichlet on the domain boundary and Neumann on the embedded boundary.
Here we set the geometric regularization length to § = \ﬂth)

8 Conclusions
We present a fourth order, conservative discretization of Poisson’s equation in

the presence of complex geometry. We show that our algorithm converges at the
expected rate for smooth solutions and geometries. We show that our algorithm

28

has a similar eigenvalue spectrum to the a widely-used second order but is much
more accurate with a sufficiently smooth geometric description. We show that
the effect of geometric discontinuties on error rates can be profound. Even
in the presence of these discontinuities, however, higher order convergence can
be recovered if one removes the singular parts of the solution or smooths the
geometric description. To retain higher order accuracy, how the smoothing
length scale varies with grid refinement is an important concern.

29

References

[1]

M. J. Aftosmis, M. J. Berger, and J. E. Melton. Robust and efficient
Cartesian mesh generation for component-base geometry. AIAA Journal,
36(6):952-960, June 1998.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Pe-
ter Brune, Kris Buschelman, Victor Eijkhout, William D. Gropp, Di-
nesh Kaushik, Matthew G. Knepley, Lois Curfman Mclnnes, Karl Rupp,
Barry F. Smith, and Hong Zhang. PETSc users manual. Technical Report
ANL-95/11 - Revision 3.5, Argonne National Laboratory, 2014.

Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Pe-
ter Brune, Kris Buschelman, Victor Eijkhout, William D. Gropp, Di-
nesh Kaushik, Matthew G. Knepley, Lois Curfman Mclnnes, Karl Rupp,
Barry F. Smith, and Hong Zhang. PETSc Web page, 2014.

Satish Balay, William D. Gropp, Lois Curfman Mclnnes, and Barry F.
Smith. Efficient management of parallelism in object oriented numerical
software libraries. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors,
Modern Software Tools in Scientific Computing, pages 163—202. Birkh&user
Press, 1997.

Susanne Brenner and Ridgway Scott. The Mathematical Theory of Finite
Element Methods. Springer, New York, 2007.

C. Campos, J. E. Roman, E. Romero, and A. Tomas. SLEPc users manual.
Technical Report DSIC-11/24/02 - Revision 3.3, D. Sistemes Informatics i
Computacié, Universitat Politecnica de Valencia, 2012.

H. Cheng, L. Greengard, and V. Rokhlin. A fast adaptive multipole algo-
rithm in three dimensions. JCP, 155:468-496, 1999.

P. Colella, D. T. Graves, B. Keen, and D. Modiano. A Cartesian grid
embedded boundary method for hyperbolic conservation laws. J. Comput.
Phys., 211:347-366, 2006.

P. Colella, D. T. Graves, T. J. Ligocki, D. F. Martin, D. Modiano, D. B.
Serafini, and B. Van Straalen. Chombo Software Package for AMR Appli-
cations - Design Document. Technical Report LBNL-6616E, LBNL, July
2014.

P. Colella, D. T. Graves, T. J. Ligocki, G.H. Miller, D. Modiano, P.O.
Schwartz, B. Van Straalen, J. Pillod, D. Trebotich, and M. Barad.

30

[14]

[15]

[18]

[19]

Ebchombo software package for cartesian grid, embedded boundary ap-
plication. Technical Report LBNL-6615E, LBNL, 2014.

D. Devendran, D. T. Graves, and H. Johansen. A hybrid multigrid algo-
rithm for Poisson’s equation using an adaptive, fourth order treatment of
cut cells. Technical Report LBNL-1004329, LBNL, 2014.

Z. Dragojlovic, F. Najmabadi, and M. Day. ”An embedded boundary
method for viscous, conducting compressible flow”. J. Comp. Phys.,
216(1):37-51, 2006.

F. Gibou and R. Fedkiw. A fourth order accurate discretization for the
laplace and heat equations on arbitrary domains, with applications to the
stefan problem. J. Comput. Phys., 202:577-601, 2005.

D. T. Graves, P. Colella, D. Modiano, J. Johnson, B. Sjogreen, and X. Gao.
A Cartesian grid embedded boundary method for the compressible Navier
Stokes equations. Communications in Applied Mathematics and Compua-

tional Science, 8(1):99-122, 2013.

L. Greengard and J-Y Lee. A direct adaptive poisson solver of arbitrary
order accuracy. J. Comput. Phys., 125:415-424, 1996.

V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: Scalable Library for
Eigenvalue Problem Computations. Lecture Notes in Computer Science,
2565:377-391, 2003.

Vicente Hernandez, Jose E. Roman, and Vicente Vidal. SLEPc: A scalable
and flexible toolkit for the solution of eigenvalue problems. ACM Trans.
Math. Software, 31(3):351-362, 2005.

H. S. Johansen and P. Colella. A Cartesian grid embedded boundary
method for Poisson’s equation on irregular domains. J. Comput. Phys.,
147(2):60-85, December 1998.

Hans Svend Johansen. Cartesian Grid embedded Boundary Finite Differ-
ence Methods for Elliptic and Parabolic Partial Differential Equations on
Irregular Domains. PhD thesis, University of California, Berkeley, 1997.

L.D. Landau and E. M. Lifshitz. Fluid Mechanics. Pergammon Press,
Oxford, second edition, 1987.

Randall J. LeVeque. Numerical Methods for Conservation Laws.
Birkhauser-Verlag, Basel, Boston, Berlin, 1990.

R.J. LeVeque and Z. Ling. The immersed interface method for elliptic equa-
tions with discontinuous coefficients and singular sources. SIAM Journal
of Numerical Analysis, 31(4):1019-1044, 1994.

31

[24]

[25]

[26]

[29]

[30]

[31]

[32]

D. F. Martin and K. L. Cartwright. Solving Poisson’s equation using adap-
tive mesh refinement. Technical Report UCB/ERI M96/66 UC Berkeley,
1996.

A. McKenney, L. Greengard, and A. Mayo. A fast poisson solver for com-
plex geometries. J. Comput. Phys., 118:348-355, 1995.

G. H. Miller and D. Trebotich. An embedded boundary method for the
navier-stokes equations on a time-dependent domain. Communications in
Applied Mathematics and Computational Science, 7:1-31, 2012.

A. Nonaka, D. Trebotich, G. H. Miller, D. T. Graves, and P. Colella. A
higher-order upwind method for viscoelastic flow. Comm. App. Math. and
Comp. Sci., 4:57-83, 2009.

R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield, and M. L. Wel-
come. An adaptive Cartesian grid method for unsteady compressible flow
in irregular regions. J. Comput. Phys., 120(2):278-304, September 1995.

S. Pirzadeh. Advanced unstructured grid generation for complex aerody-
namic applications. ATAA Journal, 48(5):904-915, 2010.

V. L. Rvachev. On analytical description of some geometric objects. Reports
(Doklady) of Academy of Sciences, USSR, 1963.

P. Schwartz, M. Barad, P. Colella, and T. Ligocki. A Cartesian grid em-
bedded boundary method for the heat equation and Poisson’s equation
in three dimensions. Journal of Computational Physics, 211(2):531-550,
January 2006.

P. Schwartz, J. Percelay, T. Ligocki, H. Johansen, D. T. Graves, D. De-
vendran, P. Colella, and E. Ateljevich. High accuracy embedded boundary
grid generation using the divergence theorem. Communications in Applied
Mathematics and Computational Science 10-1.

Vadim Shapiro. Semi-analytic geometry with r-functions. Acta Numerica,
pages 1-65, 2007.

S. L. Sobolev. Partial Differential Equations of Matematical Physics. Dover
Publications, New York, NY, 1964.

Gilbert Strang. Linear Algebra and its Applications. Academic Press, New
York, NY, 1976.

Eitan Tadmor and Jared Tanner. Adaptive mollifiers for high resolution
recovery of piecewise smooth data from its spectral information. Found.
Comput. Math., 2:155-189, 2002.

D. Trebotich, G. H. Miller, and M. D. ByBee. A penalty method to model
particle interactions in dna-laden flows. Journal of Nanoscience and Nan-
otechnology, 8:3749-3756, 2008.

32

