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spaceAbstract Presented here is a numerical investigation
that  (re-)  appraises  standard  rules  for  space/time
discretization  in  seis-  mic  wave  propagation  analyses.
Although  the  issue  is  almost  off  the  table  of  research,
situations  are  often  encountered  where  (established)
discretization  criteria  are  not  observed  and  inaccurate
results possibly obtained.  In  particular,  a  detailed analysis
of  discretization  criteria  is  carried  out  for  wave  propa-
gation  through  elastic  and  elastic-plastic  media.  The
establish-  ment  of  such  criteria  is  especially  important
when  accurate  prediction  of  high-frequency  motion  is
needed and/or in the presence of highly non-linear material
models. Current dis- cretization rules for wave problems in
solids are critically assessed as a conditio sine qua non for
improving  verification/  validation  procedures  in  applied
seismology and earthquake engineering. For this purpose,
the propagation of  shear waves through a 1D stack of 3D
finite elements  is considered, includ- ing the use of  wide-
band input motions in combination with
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spaceboth  linear  elastic  and  non-linear  elastic-plastic
material mod- els. The blind use of usual rules of thumb is
shown to be some- times debatable, and an effort  is  made
to provide improved discretization criteria. Possible pitfalls
of  wave simulations are  pointed  out  by  highlighting  the
dependence  of  discretization  effects  on  time  duration,
spatial  location,  material  model  and  specific  output
variable considered.

Keywords Wave propagation · Seismic · Discretization · 
Elastic · Elastic-plastic · Verification

1 Introduction

The study of wave motion is of utmost importance in many
applied sciences, as it supports the understanding of
transient  phenomena in many  natural and anthropic
dynamic systems. In particular, seismic waves propagating
through the earth crust deserve  the highest consideration,
especially in light of their destructive  potential and socio-
economical impact.

In the last  decades,  mathematicians, geophysicists and
engineers have devoted massive research efforts to the pre-
diction of seismic motion, based on either analytical [21,
32–34, 39] or numerical methods [2,  53, 63]. When linear
elastic  wave  problems are considered, either time-domain
or  frequency-domain  solutions  may  be  sought,  whereas
time-domain  approaches  are  usually  needed  in  the  pres-
ence of non-linearities (constitutive or geometrical). In  this
respect,  it  should  be  remarked  that  much  interest  in
earthquake engineering  is  nowadays  on  non-linear  wave
phenomena, since they govern (i) the occurrence of natural
catastrophes (e.g., landslides and debris flows) induced by
soil instabilities, such as liquefaction and strain localization
[18, 24, 63]; (ii) the interaction between geomaterials and
man-made structures [13, 16, 20, 28, 53, 59].

space

spaceIt is thus apparent that reliable numerical simulations
of seismic motion and earthquake-soil-structure interaction
can only be performed by means of  high-fidelity  compu-
tational tools, capable of coping with the remarkable com-
plexity of  the  aforementioned  problems.  The accuracy  of
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numerical  predictions is  in turn affected  by,  at least,  the
fol- lowing four factors:

1. selection of the numerical solution algorithm;
2. mathematical description of material behavior (consti-

tutive model);
3. computer implementation;
4. set-up of the computational discrete model.

The assessment of the above four items is the main core
of a thorough verification and validation process [3,  45,
51]: is the mathematical problem numerically solved to the
desired degree of accuracy? Do numerical results reason-
ably reproduce real world phenomena?

The present work focuses on the fourth item in the list,
and specifically on the selection of appropriate time-step
and  element  size  in  dynamic  Finite  Element  (FE)
computations.  This problem seems to have  been solved
quite long ago in the  form  of  “rules  of  thumb”  for
space/time discretization [38, 41], so that not many works
on the subject  have  been pub- lished ever  since [4, 5, 14,
55]. Furthermore, the relationship  between discretization
and accuracy  in wave  simulations has  been mainly
investigated for linear elastic problems.

In light of the above premises, the authors aim an up-
to-date contribution to the matter, also accounting for the
large  importance  assumed in  recent  years  by non-linear,
elastic-plastic wave problems. The key features of the pre-
sent work are hereafter summarized:

– only 1D shear wave propagation tests are performed for
a  more straightforward interpretation of numerical
results;

– discretization effects have been illustrated in both time
and frequency domains, and then quantified via mod-
ern misfit criteria formulated in the full time-frequency
domain;

– since  discretization  effects  depend  in  general  on  the
numerical algorithm adopted, a widespread FE approxi-
mation scheme has been here adopted;

– the role of constitutive non-linearity (plasticity) is dis-
cussed;

– the whole study should be regarded as a numerical “fal-
sification test” for the “rules of thumb” previously men-
tioned [38, 41].

The ultimate goal of this work is to reopen the debate on
the  accuracy  of  wave  simulations  from  a  verification/
validation perspective, also in the presence of constitutive

space

x

Fig. 1  One dimensional (1D) shear wave propagation through a soil
layer

non-linearities.  The  results  reported  provide  renovated
critical insight into, and review of, traditional discretization
rules for practical simulation purposes.

2 FE modeling of 1D seismic wave propagation

1D shear  wave  problems originate  from the  ideal   situ-
ation in  which wave propagation is nearly vertical,  with
no lateral  geometrical/material  inhomogeneities.  In  these
conditions,  all  vertical  cross-section  can  be  regarded
as  symmetry  planes  and  the  soil  deposit  undergoes  a
“double plane-strain” deformation,  with  both  horizon-
tal  direct  strains  prevented  by  symmetry  [10,  49].  As  a
consequence, all  variables only depend on time and ver-
tical  elevation (the  problem is  geometrically  one-dimen-
sional),  whereas  the  stress  state  is  still  multi-axial  [17].
The initial-boundary value problem under consideration is
sketched in Fig. 1.

Like in general 3D problems,  the  numerical  analysis
of 1D seismic  wave  propagation requires a suitable com-
putational  platform  for  (i)  space/time  discretization,  (ii)
material modeling and (iii) simulation under given initial/
boundary conditions.  The Real ESSI Simulator has been
used here for these purposes.

The Real ESSI Simulator is a software, hardware and
documentation  system  developed  specifically  for  high-
fidelity,  realistic  modeling and simulation of  earthquake-
soil structure-interaction (ESSI). The Real ESSI program
features a number of simple and advanced modeling fea-
tures.  For  example,  on the finite  element  side,  available
are solids  elements  (8,  20,  27, 8-27 node, dry and satu-
rated bricks), structural  elements (trusses,  beams, shells),
contact  elements  (frictional  slip  and  gap,  dry  and  satu-
rated), isolator and dissipator elements; on the material

space

spacemodeling  side,  available  are  elastic  (isotropic,  aniso-
tropic,  linear  and  non-linear)  and  elastic-plastic  models
(isotropic, anisotropic hardening). The seismic input can  be
applied using the Domain Reduction Method [7, 61], while
sequential  and  parallel   versions   of   the   program  are
available  (the  latter  is  based  on  the  Plastic  Domain
Decomposition (PDD) method [25]). Recent applications of
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Real  ESSI  to  seismic  problems  are  documented,  for
instance, in [1, 12, 27–30, 46, 56–58].

2.1 Space discretization and time marching

The Real ESSI program is based on a standard displace-

spacedescribed,  namely  (i)  the  standard  linear  elastic
material  model, (ii)  the elastic-plastic  von Mises model
with  linear  kinematic  hardening  [26,  40]  and  (iii)  the
bounding surface elastic-plastic model by [48].

2.2.1 Linear elastic model

Discretization issues will be first addressed with reference
to  linear  elastic  problems.  While  relevant  concepts  in
elas- todynamics can be found in [21], it  is only worth
remind- ing here the relationship between the shear wave
velocity
Vs and the two elastic parameters (Young’s modulus E and
Poisson’s ratio ):
spacement FE formulation, where displacement 
components are
                                                                                                                    
    

spaceV  = =  
taken as unknown variables in the numerical approximation
                                                                                                                     
E                                                                                                                   
 G
space(4)
space[62]. As for space discretization, the 1D FE model has
been
s

built using a stack of properly constrained 3D brick ele-

space2(1 + ν)ρ ρ
spacements—as  was  previously  done,  for  instance,  by
[10]. Real ESSI program enables the use of 8-, 20- and 27-
node ele- ments, so that several options are given in terms
of spatial interpolation order.

The well-known Newmark method has been  adopted
for time marching [43].  The main feature of the integra-
tion algorithm relates to the approximate series expan-
sion  for  displacement  and  velocity  components,  u  and
u˙
respectively: 1
spacewhere ρ is the soil mass density and G = E/[2(1 + 

ν)] the
elastic shear modulus.

2.2.2 Elastic-plastic:  von  Mises  kinematic
hardening (VMKH) model

The relationship among discretization, accuracy and mate-
rial non-linearity will be first explored through the elastic-
plastic von Mises kinematic hardening (VMKH) model,
of the same kind described in [26, 40].space  
n+1u = nu + �t  nu˙ + �2t      − β  nu¨ + β n+1u¨

n+1u˙ = nu˙ + �t  (1 − γ ) nu¨ + γ  n+1u¨

space(1)

(2)
spaceThe VMKH model is very well-known in literature

and widely employed for cyclically loaded metals, while
the  application  to  soil  dynamics  is  limited  to  undrained
loading conditions in combination with total stress analysis
[44,  63].  Although the assumption of linear hardening is
not the
spacebetween two subsequent time-steps n and n + 1. 
Impor-
tantly, the expansion uses two parameters, β and γ, govern-
ing the accuracy and stability properties of the algorithm.  It
is  worth  reminding  that  the  algorithm  is  unconditionally
stable as long as [23]:
spacemost accurate for soils1, it has been here introduced
for  numerical  convenience.  In  fact,  owing  to  linear
hardening,  the  post-yielding  stiffness  is  constant,  not
strain-dependent:  this  implies  an  unrealistic  unbounded
strength,  but  allows  to  identify  the  elastic-plastic  shear
stiffness  with  no  ambi-  guity.  Only  four  constitutive
parameters need to be set:space1 1 1  2

spaceγ  ≥ 
2 

,    β = 
4 

(γ + 
2 

 

space(3)
space

– two elastic parameters—E and ;
– one yielding parameter—k—proportional to the initial
spaceγ = 1/2 is required for second-order accuracy, 
whereas
any γ value larger than 1 / 2 introduces numerical
attenua- tion (damping). In this study, the pair γ = 1/2
and β = 1/4 (no algorithmic dissipation) is exclusively
considered.

2.2 Material modeling

The Real ESSI program  provides  a  number  of  mate-  rial
modeling  options,  ranging  from  simple  linear-elastic   to
advanced elastic-plastic constitutive relationships for

spacesize of the cylindrical yield locus in the stress 
space;

– one hardening parameter—h—governing the post-yield-
ing (elastic-plastic) stiffness.

2.2.3 Elastic-plastic: Pisanò bounding surface (PBS) 
model

The more sophisticated constitutive relationship recently
proposed by [48] will be also used. At variance with the

spacecyclically loaded soils [18, 63]. Hereafter, the material
                                                                                                        

2
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models adopted for wave  propagation analyses  are briefly
1 Non-linear hardening models should rather be used–see e.g., [9, 10]
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s
:

1. spacedevelopment  of  inelastic  strains  from  the  very
onset of loading. This is reproduced by exploiting the
concept of “vanishing yield locus”;

2. frictional shear strength, i.e., depending on the effec-
tive confining pressure;

3. non-linear hardening, implying a continuous transition
from small-strain to failure stiffness;

4. coupling between deviatoric and volumetric responses;
5. stiffness degradation and damping under cyclic shear

loading.

A remarkable feature  of the PBS  constitutive formulation
is  the  low  number  of  input  parameters  required  (only
seven),  which  makes  the  model  particularly  suitable  for
practical use:

– two  elastic  parameters—E  and  —to  characterize  the
material behavior at vanishing strains;

space

(a) Time history

(b) Amplitude of Fourier spectrum

Fig. 2 Ormsby wavelet ( f1=0.1 Hz, f2=1 Hz, f3=18 Hz, f4=20 Hz)

space
    

(π f4)2
 2

space(π f3)2
 2

4– spaceone shear strength parameter—M—directly related 
to the material frictional angle;

spaceu(t) = A

spaceπ f4

space− π f3

spacesinc  (π f4t) − 
π f

space− π f3

spacesinc  (π f3t)
– spacetwo parameters—kd and ξ—governing the 

development
space

    
(π f2)2

 2
space(π f1)2

 2

spaceof plastic volumetric strains during shearing;
– two hardening parameters—h and m—to be identified 

on the basis of stiffness degradation and damping cyclic
curves.

space−
π f2

space− π f1

spacesinc  (π f2t) − 
π f

space− π f1

spacesinc  (π f1t)

(5)
space

Interested  readers  are  addressed  to  [48]  for  details  about
formulation, performance and calibration of the PBS model.

2.3 Initial/boundary conditions and input motion

All the FE results hereafter presented have been obtained
under the  following  initial  and  boundary  conditions (Fig.
1):

1. the system is initially at rest (nil initial velocities and
accelerations);

2. a horizontal  x-displacement time history is imposed at
the bottom boundary to reproduce rigid bedrock condi-
tions;

3. no loads are applied to the top boundary (free surface);
4. the  aforementioned  “double  plane-strain”  conditions

has  been  achieved  by  preventing  y-displacements
throughout the model, as well as imposing master/slave
connections to nodes at the same elevation (tied nodes).

As for the input displacement, the Ormsby wavelet [52] fits
the authors’ intent:
spacewhere t denotes the physical time and A the
signal ampli- tude,  sinc(x) = (sin x)/x  is  the  cardinal
sine  function,   fi (i = 1, 2, 3, 4) stand for the low-cut,
low-pass, high-cut and  high-pass   frequencies,
respectively. The  meaning  of  the  fi

frequencies  can be grasped from Fig.  2b, illustrating the
amplitude Fourier spectrum of function (5). In particular,
the  suitability of the Ormsby wavelet  has a twofold
motivation:

1. function (5) has a number of sign reversals and will
induce several  loading/unloading cycles into the soil
undergoing wave motion (Fig. 2a);

2. the peculiar flat branch in the amplitude Fourier spec-
trum  (Fig.  2b)  is  convenient  for  frequency  domain
analysis (see next section).

The above features of the Ormsby wavelet will enable
the analysis of discretization effects over frequency ranges
of choice. Although most seismic energy relates to frequen-
cies  lower  than  20  Hz,  ensuring  accuracy  at  higher

frequen- cies may be relevant when seismic serviceability
analyses are to be performed for structures, systems and

2
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components (SSCs) related to nuclear power plants and
other industrial objects.

space

2.4 spaceMisfit criteria

The  analysis  of  discretization  effects  requires  objective
criteria to quantify the discrepancy (misfit) between differ-
ent numerical solutions. In numerical seismology, the dif-
ference seismogram between the numerical solution and a
reliable  reference  solution  is  often  adopted  for  this
purpose,  although  it  only  enables  visual/qualitative
observations;  simple  integral  criteria  (e.g.,  root  mean
square misfit)  can provide some quantitative insight, but
still with no distinc- tion of amplitude or phase errors.

A significant improvement in this area was introduced
by [36], who compared seismograms on the basis of the
time-frequency  representation  (TFR)  obtained  through
continuous wavelet transformation [22]. The TFR of signal
misfit allows to extract the time evolution of the spectral
content,  and thus to  define  the  following local  time-fre-
quency envelope difference:

3 spaceLinear elastic wave simulations

In this section, the influence of discretization on accuracy
is first discussed for linear elastic problems.

3.1 Standard rules for space/time discretization

The selection of appropriate grid spacing2   and time-step
size is usually based on very simple rules. As for space
dis- cretization, [41] stated that “the accuracy of the finite
ele-  ment  method  depends  on  the  ratio  obtained  by
dividing the length of the side of the largest element by
the minimum wavelength of elastic waves propagating in
the  system.  For  accurate  results  this  ratio  should  be
smaller than 1/12”. Since then, it has been believed that
approximately ten nodes per wavelength are appropriate
in most cases, whereas fewer than ten nodes are likely to
result  in  unde-  sired  numerical  attenuation/dispersion.
Accordingly, suita-

space�E(t, f ) = |W (t, f )| − |WREF(t, f )|

and time-frequency phase difference:

space(6)
spaceble maximum grid spacing is usually determined by 
con- sidering the minimum relevant wavelength (or highest
frequency fmax) in the input signal [28]:

space�P(t, f ) = |WREF(t, f )|
spacearg W (t, f )

space− arg  WREF(t, f )   
(7)π

spacet,.  夰夰夰 夰 x ≤

space.minVs
=

10 10fmax

space
(10)
spacewhere W (t,  f  ) and WREF(t,  f  ) are  the  TFR  (wavelet
trans-  form)  of  the  signal  “under  evaluation”  and  the
reference seismogram, respectively. As explained by [36], it
is also
possible to obtain purely time- or frequency-dependent
misfit measures by projecting t,.  夰 夰 夰 夰 E and t,.
夰  夰  夰  夰  P  onto  one  of  the  two  domains.  In
particular, the following single-values
measures for envelope misfit (EM)

spaceOn the other side, the time-step size also needs to be
lim- ited to ensure accuracy and stability [2]. In principle,
the smallest fundamental period of the system should be
rep- resented with about ten time-steps—same as for space
dis-
cretization. However, t,. 夰夰夰夰 t is often selected on 
the basis of a
different physical argument, i.e., to avoid that a given wave
front reaches two consecutive nodes at the same time (this
would happen for too large t,. 夰夰夰夰 t values):

spaceEM = 
 
  

f

space
 

t |W

space
REF

space(t, f )|2

space(8)
spacet,. 夰夰夰夰 x

t,. 夰 夰夰 夰 t ≤
Vs

space
(11)

spaceand phase misfit (PM)

spaceCondition (11) ensures algorithmic stability in many 
explicit schemes for hyperbolic differential problems [50],

space
 

f

 

t |�P(t, f )|

fspaceand is also often regarded as an accuracy 
criterion for

spacePM = 
 
  

f
space

 
t |W

space
REF

space(t, f )|2

space(9)

spaceimplicit (unconditionally stable) time marching as well
(see Sect. 2.1).

 
f

 

t |�E(t, f )|

 

2

2
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spacemay be employed to separate amplitude and phase 
errors
when  comparing  different  signal  couples.  It  should  be
recalled that the envelope function of an oscillating signal
is the smooth curve outlining its extremes, and therefore,
carries more information than single amplitude values at
given time. While the theoretical background for the above
misfit criteria is widely described by [36, 37], open-source
routines  for  misfit  analysis  are  available  at  http://www.
nuquake.eu/ComputerCodes/ (TF-MISFITS package). Dis-
cretization effects in wave propagation simulations will be
assessed in the following on the basis of EM and PM crite-
ria, as previously done by a number of authors [6, 19, 31,
42, 47].

space
3.2 Model parameters

The  geometrical/mechanical  parameters  adopted  for
elastic wave simulations are here reported. A uniform soil
layer has been considered, having thickness  H 1 km and
made
of an elastic material with ρ = 2000 kg/m3, Vs = 1000 m/s
and ν = 0.3 (corresponding to G = 2 GPa). No  
Rayleigh
damping has been introduced.

2 Henceforth, t,. 夰 夰 夰 夰 x will always denote the vertical 
node spacing, coin- ciding with the element thickness in the case 
of 8-node bricks.

space

spaceTable 1 List of elastic
space

Case # fmax (Hz) uxstd (m) utstd (s) ux (m)
ut (s) Brick type

spacesimulations       

EL1 20 5

EL2 20 5

EL3 50 2

EL4 50 2

EL5 20 5

EL6 20 5

EL7 20 5

EL8 50 2

EL9 50 2

EL10 20 5

space
As for the input motion, two different Ormsby wavelets

have  been  employed,  corresponding  with  the  following
input parameters in Eq. (5):

– input 1:  f1    0.1 Hz,  f2    1 Hz,  f3    18 Hz,  f4    20 Hz 
(plotted in Fig. 2);

–   input 2:  f1    0.1 Hz,  f2    1 Hz,  f3    45 Hz,  f4    50 Hz;

– the amplitude parameter  A has been always set to pro-
duce  at  the bottom of the layer  a  maximum displace-
ment of 1 mm.

As previously mentioned (Sect.  2.3),  both inputs 1 and 2
have  been  used  to  explore  the  interplay  of  discretization
effects and input bandwidth.

3.3 Discussion of numerical results

The influence of  grid spacing and time-step size are dis-
cussed  separately  for  the  sake  of  clarity.  Since  the  Real
ESSI program is based on a displacement FE formulation,
displacement  components  are  the  most  reliable  output;
however, some attention is also paid to accelerations, post-
calculated through second-order central differentiation.

Table  1  provides  a  list  of  the  comparative  simulations
performed for linear problems. Each case is denoted by:
(i)  maximum  frequency   fmax in  the  input  wavelet  ( f4 in
(5));  (ii)  grid  spacing  uxstd and  (iii)  time-step  size utstd
from  standard  discretization  rules  (10)–(11);  (iv) ux and
(v) ut actually used; (vi) type of brick elements
adopted.

The results being presented aim to assess the quality of
standard discretization rules, as well as the improvements
attainable through refined discretization. For this purpose,
the numerical  results  are discussed in  both time and fre-
quency  domains—the  Fourier  spectra  of  considered  time
histories are plotted in terms of (i) amplitude and (ii) phase
difference with respect to the analytical solution (known   at
the  free  surface).  Additional  quantitative  insight  is  also
gained through the EM and PM misfit criteria introduced

space
in Sect. 2.4. Unless differently stated, numerical outputs at
the top of the soil layer are considered.

3.3.1 Influence of grid spacing

Grid spacing effects at the top of the FE model are illus-
trated in Figs.  3, 4, 5, 6 for the cases EL1–EL5 (Table  1)
in terms of:  (a–b) displacement time history;  (c)  Fourier
amplitude and (d) phase difference at the surface; (e) EM
and  PM misfit  (for  each  numerical  solution,  misfits  are
calculated  with  respect  to  the  exact  analytical  solution).
Starting from Fig.  4,  displacement  time histories are not
compared with the input motion (as done in Fig.  3a) for
the sake of  brevity,  whereas only a reduced time window
around the output motion is displayed for clearer visualisa-
tion (e.g., as in Fig. 3b)

Figs. 3, 4, 5, 6 suggest the following observations (some 
of which expected):

– even though uxstd  is set on the basis of the maximum
frequency  fmax,  its  suitability  is  not  uniform over  the
input spectrum.  Indeed,  increasing  inaccuracies   in
the frequency domain are clearly visible as fmax is

=

= = = =

= = = =

http://www.nuquake.eu/ComputerCodes/
http://www.nuquake.eu/ComputerCodes/
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approached (check for instance the Fourier amplitudes
compared  in  Figs.  3c  and  4,  5,  6b).  Grid  spacing
affects  output  Fourier  spectra  both in  amplitude and
phase;

– in all cases, envelope and phase misfits, EM and PM,
are quantitatively very similar (Figs. 3e and 4, 5, 6d);

– reducing ux below uxstd is beneficial only if ut  is also
lower than utstd. This is apparent in Fig. 3e, where an
increase in EM and PM is observed as  ux  gets lower
than uxstd.   Conversely,   monotonic   EM/PM   trends
are
shown in Figs. 4, 5d;

– at  given  grid  spacing  ux,  reducing  the  time-step
improves  the  numerical  solution  mostly  in  terms  of
Fou-
rier phase, not amplitude (compares Figs. 3c–d, 4b–c).
It  may  be  generally  stated  that,  when  ux  is  not
appropri-  ate, reducing the time-step size does not
produce sub-
stantial improvements;

space

(a) Displacement time history (0.0-4.0 s)
(b) Displacement time history (2.2–3.8 s)

(c) Amplitude of displacement Fourier spectrum

(d) Phase difference of displacement Fourier 
spectrum

(e) EM/PM misfits 
(ref. solution: 
analytical)

Fig. 3 Influence of grid spacing, displacement plot, case EL1 (
fmax = 20 Hz, uxstd = 5 m, utstd = 0.005 s, ux = 2, 5, 10 m, ut =
0.005 s, 8-node brick)

space
– based on these initial examples, a grid spacing  ux  in

the   order   of   Vs/20fmax = �xstd/2  ensures   high
accuracy (EM and PM < 10 % ) in combination with
�t = �x/2Vs = �tstd/2. These enhanced discretization
rules hold for low-order FEs (8-node brick elements) but
are not affected by the frequency bandwidth of the input
signal. In the latter respect, Figs. 4, 5d show quan-
titatively similar EM-PM trends for fmax equal to 20 Hz
and 50 Hz.  Also, minimum misfits  are attained in  the
EL2 case (Fig.  4d), where a smaller  �t/�tstd  ratio has
been purposely set.

The above  conclusions apply to 8-node brick elements,
while Fig.  6 shows that “ten elements per  wavelength”  are
still  suitable  when  higher-order  elements  (here  27-node
bricks3) are employed. However, this lighter requirement for
grid

3 For a given number of nodes per wavelength, the size ux of  27-node
elements  along  the propagation direction is  double than for  8-node
bricks.

space
spacing seems to perform well in combination with
�t ≤ �x/2Vs, and results in EM and PM lower than 10 
% even for �x/�xstd = 2.

It is  also important  to  evaluate grid spacing effects on

acceleration  components,  as  they  will  affect  the  inertial
forces transmitted  to  man-made structures  on the  ground
surface. Since acceleration time histories are dominated by
high  fre-  quencies,  the  poorer  performance  of  standard
discretization  rules  at  high  frequencies  becomes  more
evident.  In  Figs.  7 and  8,  grid spacing plays qualitatively
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as in Figs. 3, 4, 5, although the EM/PM trends—similar in

shape—are  shifted  upwards.  This  means  that,  in  the
presence  of  low-order  ele-  ments,  more  severe
discretization requirements  should  be  ful-  filled  if  very
accurate accelerations are needed.

3.3.2 Influence of time-step size

For given grid spacings, the influence of ut has been stud-
ied by varying the time-step size with respect to the limit

space

(a) Displacement  time  history (2.2-3.8 s)
(b)  Amplitude  of  displacement  Fourier
spectrum

(c) Phase  difference  of  displacement Fourier
spectrum
(d) EM/PM misfits (ref. solution: analytical)

Fig. 4 Influence of grid spacing, displacement plot, case EL2 
( fmax = 20 Hz, uxstd = 5 m, utstd = 0.005 s, ux = 2, 5, 10 m, 
ut = 0.002 s, 8-node brick)

(a) Displacement  time  history (2.2-2.8 s)
(b)  Amplitude  of  displacement  Fourier
spectrum

(c) Phase difference of displacement Fourier spectrum
(d) EM/PM misfits (ref. solution: analytical)

Fig. 5 Influence of grid spacing, displacement plot, case EL4 (
fmax = 50 Hz, uxstd = 2 m, utstd = 0.002 s, ux = 0.8, 2, 4 m, ut 
= 0.001 s, 8-node brick)

spaceemerging  from  Eq.  (11),  i.e.,  �tstd  = �x/Vs.  Time
discre-  tization effects are illustrated in Figs.  9,  10, 11, 12,
13, 14 and suggest the following inferences:
– spaceas observed in the previous subsection, ut  mainly

affects the Fourier phase, with comparable EM and PM
values in all cases. Phase differences with respect to

space
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(a) Displacement  time  history (2.2–3.8 s)

(b)  Amplitude  of  displacement  Fourier
spectrum

(c) Phase difference of displacement Fourier
spectrum
(d) EM/PM misfits (ref. solution: analytical)

Fig. 6 Influence of grid spacing, displacement plot, case EL5 
( fmax = 20 Hz, uxstd = 5 m, utstd = 0.005 s, ux = 2, 5, 10 m, 
ut = 0.002 s, 27-node brick)

(a) Acceleration  time  history  (2.2– 3.8 s)
(b)    EM/PM  misfits  (ref.   solution:

analytical)

(c) Acceleration time history (2.2– 3.8 s)

(d)  EM/PM misfits (ref.  solution: analytical)

Fig. 7 Influence of grid spacing, acceleration plot, cases (a–b) 

EL1 ( fmax = 20 Hz, uxstd = 5 m, utstd = 0.005 s, ux = 2, 5, 10 

m, ut = 0.005
s, 8-node brick) and (c–d) EL2 ( fmax = 20 Hz, uxstd = 5 m, 

utstd = 0.005 s, ux = 2, 5, 10 m, ut = 0.002 s, 8-node brick)

spacethe exact solution decrease as ut is reduced – see 
for instance in Figs. 9, 10, 11, 12c;

– in     combination     with    �x = Vs/20fmax = �xstd/2,
ut = utstd  may  still  result  in  some  high-frequency
phase difference with the respect to the analytical

solu-

spacetion, (Figs. 9, 10, 11, 12c). As found by investigating
grid   spacing   effects,  �t  = �x/2Vs = �tstd/2    yields
sufficient accuracy (EM-PM lower than 10 %) to most
practical purposes (see Figs. 9, 10, 11, 12d);

space
 

(a)  Acceleration time history (2.2– 2.8 s)

(b)  EM/PM misfits (ref:  solution:  analytical)

(c) Acceleration time history (2.2– 2.8 s)

(d)  EM/PM misfits (ref:  solution:  analytical)

Fig. 8 Influence of grid spacing, acceleration plot, cases (a–b) 

EL3 ( fmax = 50 Hz, uxstd = 2 m, utstd = 0.002 s, ux = 0.8, 2, 4 

m, ut = 0.002
s, 8-node brick) and (c–d) EL4 ( fmax = 50 Hz, uxstd = 2 m, utstd 

= 0.002 s, ux = 0.8, 2, 4 m, ut = 0.001 s, 8-node brick)
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(a) Displacement time history (2.2–3.8 s)

(b) Amplitude of displacement Fourier 
spectrum

(c) Phase difference of displacement Fourier 
spectrum
(d) EM/PM misfits (ref: solution: analytical)

Fig. 9 Influence of time-step size, displacement plot, case EL6 

( fmax = 20 Hz, uxstd = 5 m, utstd = 0.005 s, ux = 5 m, ut = 

0.002, 0.005,
1.10 s, 8-node brick)

space
– when  27-node   bricks   are   used,   the   use   of ux  =

uxstd and  �t ≤ �tstd/2  is  still  an  appropriate  option,
giv- ing rise to EM and PM lower than 5 % (Fig. 12).
Even
in this case, discretization errors are still governed by

space
phase differences, while excellent performance in 
terms of Fourier amplitude is observed;

– Figs. 13   and 14   show that the above findings apply 
qual- itative to acceleration time histories as well. 
However,

space

(a) Displacement  time  history (2.2–3.8 s)

(b)  Amplitude  of  displacement  Fourier
spectrum

(c) Phase difference of displacement Fourier 
spectrum
(d) EM/PM misfits (ref: solution: analytical)

Fig. 10 Influence of grid spacing, displacement plot, case EL7 (

fmax = 20 Hz, uxstd = 5 m, utstd = 0.005 s, ux = 2 m, ut = 0.001, 

0.002,
0.5 s, 8-node brick)

(a) Displacement  time  history (2.2–2.8 s)
(b)  Amplitude  of  displacement  Fourier
spectrum
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(c) Phase difference of displacement Fourier spectrum
(d) EM/PM misfits (ref: solution: analytical)

Fig. 11 Influence of time-step size, displacement plot, case EL9 

( fmax = 50 Hz, uxstd = 2 m, utstd = 0.002 s, ux = 0.8 m, ut = 

0.0005, 0.001,
1.2 s, 8-node brick)

spaceEM  and  PM  values  are  quite  high  (significantly
larger than  10  %)  when  ut ≥ utstd,  regardless  of  the
grid spacing ratio. Accuracy is quickly regained when ut
is reduced and �x < �xstd/2.

spaceWhile  the  above  conclusions  have  been  all
drawn on  the basis of the first incoming wave, many
reflected  waves  may  in  reality  hit  the  ground  surface
because of soil lay- ering. In the present elastic case
(no energy dissipation),

space

(a) Displacement  time  history (2.2–3.8 s)
(b)  Amplitude  of  displacement  Fourier
spectrum

(c) Phase difference of displacement Fourier spectrum
(d) EM/PM misfits (ref: solution: analytical)

Fig. 12 Influence of time-step size, displacement plot, case EL10 (

fmax = 20 Hz, �xstd = 5 m, �tstd = 0.005 s, �x = 5 m, �t = 

0.002, 0.005,
1.10 s, 27-node brick)
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(a) Acceleration  time  history (2.2–3.8 s)
(b) EM/PM misfits (ref: solution: analytical)

(c) Acceleration time history (2.2–3.8 s)

(d) EM/PM misfits (ref: solution: analytical)

Fig. 13 Influence of time-step size, acceleration plot, cases EL6 (
fmax = 20 Hz, �xstd = 5 m, �tstd = 0.005 s, �x = 5 m, �t = 
0.002, 0.005, 0.010 s, 8-node brick) and EL7 ( fmax = 20 Hz, 
�xstd = 5 m, �tstd = 0.005 s, �x = 2 m, �t = 0.001, 0.002, 0.005
s, 8-node brick)

spaceperfect reflections occur at the lower rigid bedrock
and  never-ending wave motion is established. It  is  thus
inter- esting to check how discretization errors propagate
in  time at the free surface, as is shown in Fig. 15. Subse-
quent wave arrivals are compared in the time (Fig. 15a,

b) spaceand  frequency  (Fig.  15c,  d)  domains,  where  a
gradual  “accumulation”  of  wave  dispersion  can   be
observed.  Even though satisfactory accuracy is  achieved
on  the  first arrival, an increase in high-frequency phase
differ-  ence is detected in Fig. 15d, with negligible
variation in

space

(a) Acceleration  time  history (2.2–2.8 s)
(b) EM/PM misfits (ref: solution: analytical)

(c) Acceleration time history (2.2–2.8 s)

(d) EM/PM misfits (ref: solution: analytical)

Fig. 14 Influence of time-step size, acceleration plot, cases EL8 (
fmax = 50 Hz, �xstd = 2 m, �tstd = 0.002 s, �x = 2 m, �t = 
0.001, 0.002, 0.005 s, 8-node brick) and EL9 ( fmax = 50 Hz, �xstd 
= 2 m, �tstd = 0.002 s, �x = 0.8 m, �t = 0.0005, 0.001, 0.002 s, 
8-node brick)

(a) Displacement time history (0.0-13.0 s)

(b) Displacement history (different time 
windows)

(c) Amplitude of displacement Fourier spectrum

(d) Phase difference of displacement Fourier spectrum

Fig. 15 Time evolution of wave dispersion, displacement plot, 
case EL7 ( fmax = 20 Hz, �xstd = 5 m, �tstd = 0.005 s, �x = 2 
m, �t = 0.001 s,8-node brick)

space
Fourier amplitude (Fig. 15c). Cumulative wave disper- sion
implies  that  selecting  suitable  �x  and  �t  becomes
increasingly delicate for large FE models and long

durations.
space

4 Non-linear elastic-plastic wave simulations

This section concerns discretization  effects  in  presence  
of material non-linearity. As most commonly done in
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space

spaceGeomechanics  [63],  the  non-linear  cyclic  response  of
geomaterials can be described in the framework of elasto-
plasticity, and here the VMKH and PM models described
in

spacemarching rule may be regarded as an upper bound for 
non- linear problems (instead of (11)):

�x
spaceSect. 2.2 have been adopted. Prior to presenting 
numerical results, some preliminary remarks should be 
made:
space�t ≤

space10Vs

space(12)
space

– the non-linear problem under consideration cannot be
solved analytically. Therefore, the quality of discretiza-
tion settings may only be assessed by evaluating the
converging behavior of numerical solutions upon �x–
�t
refinement;

– with no analytical solution at hand, one needs engineer-
ing judgement to establish when the (unknown) exact
solution is reasonably approached. In this respect, light
is shed on several expected pitfalls, all relevant to the
global verification process [3, 45, 51];

– the  accuracy  of  non-linear  computations  is  highly
affected  by  the  input  amplitude.  This  governs  the
amount of non-linearity mobilized by wave motion and,
as a consequence, the accuracy of numerical solutions
at varying discretization.

In  non-linear  (elastic-plastic)  problems,  discretization  is
not  only  responsible  for  the  numerical  representation  of
waves  (dissipation,  dispersion,  stability),  but  also  gov-
erns the accuracy of constitutive integration [8,  54].  For
instance,  changes  in  time-step  size  will  affect  the  strain
size driving the constitutive integration algorithm and, in
turn, the final simulation results.  This dependence of the
consti-  tutive  response  (material  model  and  constitutive
integra- tion algorithm) on the dynamic step size precludes
direct development of automatic criteria for discretization.
How-  ever,  as  tangent  elastic-plastic  response  can  be
established  for  any  stress-strain  combination,  (lowest)
elastic-plastic  (shear)  stiffness  may  be  used  to  develop
suitable discretiza-  tion  via  Equation  4.  Apparently,  this
approach assumes that the stress-strain response is already
known, as is not the case when discretization is being set.
This  means  that  an  iterative  approach  is  in  principle
needed, whereby one will first design discretization based
on  an  estimate  of  the  strain  level,  run  the  dynamic
simulation,  and  record  the  actual  stress-strain  response.
After few iterations, a stable discre- tization will be usually
achieved.

In  this  study,  VMKH  and  PM  constitutive  equations
have been integrated via the standard forward Euler, explicit
algorithm  [11,  15].  Although  implicit  algorithms  may
possess  better  accuracy/stability  properties,  explicit
integration is often preferred for advanced constitutive for-
mulations and cyclic loading [27]. There is also wide con-
sensus on the poor performance in elastic-plastic computa-
tions of time-step sizes derived through elastic parameters
and Equation (11), especially in combination with explicit
stress-point algorithms. For this reason, the following time
spaceIn the following, rules (10) and (12) will be assumed
as starting discretization criteria and critically assessed. For
shorter discussion, only input 1 ( fmax = 20 Hz) and 8-
node
brick elements are employed for non-linear simulations.

4.1 VMKH model

4.1.1 Model parameters and parametric analysis

A heterogeneous 1 km thick soil deposit has been consid-
ered, formed by a 200 m thick VMKH sub-layer resting on
an elastic stratum (remaining 800 m). At the surface, a thin
layer (5 m) of elastic material has been added to prevent
numerical problems with very strong motions and the so-
called whip effect. The following constitutive parameters
(see Sect. 2.2.2) have been set (same elastic parameters for
both the VMKH and the elastic sub-layers), with no algo-
rithmic  nor  Rayleigh  damping  introduced  in  numerical
computations.:

– mass density and  elastic  properties: ρ = 2000  kg/m3,
E  =  5.2 GPa and 0.3, whence the elastic shear  wave
velocity Vs = 1000 m/s results (same elastic parameters
employed for both the elastic and the VMKH sub-lay- 
ers);

– yielding parameter (radius of the von Mises cylinder):

k = 10.4 kPa;
– different h values (hardening parameter) have been set:

h = 0.5E, 0.05E, 0.01E.

In the analysis of VMKH cases, the influence of the
harden- ing parameter (h) and the input amplitude (A) has
been also considered, as they affect  the material elastic-
plastic stiffness  and the amount of plasticity mobilized.
The VMKH simula-
tion programme is reported in  Table 2, where �tstd  has
been  determined through Equation (12) (i.e., �tstd  =
�x/10Vs).

4.1.2 Influence of grid spacing and time-step size

The results in Figs.  16 and  17 exemplify the role played
by  space  discretization  in  elastic-plastic  simulations.
These  results  have  been  obtained  by  employing  a time-
step  smaller  than  �tstd (cases  VMKH1–2  in  Table  2),  a
low input amplitude (A = 0.1 mm corresponds with a  peak
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ground acceleration approximately equal to 0.05g), and
two different values of the hardening parameter (h  =
0.5E and h = 0.05E). The following observations arise
from the
two figures:

space

spaceTable 2 List of VMKH
space

Case # uxstd (m) utstd (s) ux (m) ut (s)
h A (mm)
spacesimulations       

VMKH1 5 0.0005

VMKH2 5 0.0005

VMKH3 5 0.0005

VMKH4 5 0.0005

VMKH5 5 0.0005

VMKH6 5 0.0005

VMKH7 5 0.0005

VMKH8 5 0.0005

VMKH9 5 0.0005

VMKH10 5 0.0005

(a) Displacement time history (0.0–4.0 s)
(b) Displacement time history (2.2–3.8 s)

(c) Amplitude of displacement Fourier spectrum
(d) Phase difference of displacement Fourier 
spectrum

Fig. 16 Influence of grid spacing, displacement plot, case 

VMKH1 (uxstd = 5 m, utstd = 0.0005 s, ux = 1, 5 m, ut = 0.0001
s, h = 0.5E,

A = 0.1 mm)

– spacepropagation through a dissipative elastic-plastic
mate-  rial  alters  significantly  the  shape  of  the  input
signal.  All  plots  display  significant  wave
attenuation/distortion,  while  final  unrecoverable
displacements are produced by soil plastifications (Figs.

16, 17a). Steady irreversible deformations are associated
with prominent static com- ponents (at nil frequency) in
the  Fourier  amplitude spec-  trum (Figs.  16,  17c),  not
present in the input Ormsby wavelet (Fig. 2b);

– the  numerical  representation  of  wavelengths  is  domi-
nated by soil plasticity, producing more deviation from
the input waveform than variations in grid spacing. For
this reason, only two ux values have been used in this
subsection for illustrative purposes, whereas EM/PM 
plots have been deemed not necessary;

– spacethe influence of ux seems slightly magnified when
lower  h values, and thus lower elastic-plastic stiffness,
are set (see Fig. 17). It is indeed not surprising that
wave propagation in softer media may be more affected
by space discretization, as in linear problems. However,
it should be noted that ux mainly influences the final
irreversible displacement (Fig.  17b, c), which leads to
presume substantial interplay of grid effects and consti-
tutive time integration;

– since the effects of ux reduction are quite small in both
time and frequency domains (for a given  ut),  there is
no  strong  motivation  to  suggest  �x = Vs/20fmax.
�x = Vs/10fmax = �xstd should be actually appropriate
in  common  practical  situations,  as  long  as  no  soil
failure mechanisms are triggered – as for example in
seismic

space

(a) Displacement time history (0.0–4.0 s)
(b) Displacement time history (2.2–3.8 s)
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(c) Amplitude of displacement Fourier spectrum

(d) Phase difference of displacement Fourier 
spectrum

Fig. 17 Influence of grid spacing, displacement plot, case 

VMKH2 (uxstd = 5 m, utstd = 0.0005 s, ux = 1 m, 5 m, ut = 

0.0001 s, h = 0.05E,

A = 0.1 mm)

Fig. 18 Influence of grid spacing, shear stress-strain response at 
the bottom of the VMKH sub-layer, cases VMKH1 (h = 0.5E) 
and VMKH2 (h = 0.05E), (uxstd = 5 m, utstd = 0.0005 s, ut = 
0.0001 s, A = 0.1 mm)

spaceslope stability problems [17].  The occurrence of
soil  failure  may  introduce  additional  discretization
require-  ments  for  an  accurate  representation  of  the
collapse mechanism.

In  addition,  Fig.  18   illustrates  the  shear  stress-strain
VMKH response at the deepest integration  (Gauss) point
of  the  VMKH  sub-layer.   The   material   response  is
bilinear  (elastic  and  elastic-plastic),  with  the  elastic
stiffness recovered upon  stress  reversal  until  new  yield-
ing  occurs  [40  ].  As  mentioned  above,  the  observable
(small) differences in stress-strain response at different

spaceux  may not be straightforwardly attributed to grid
spac- ing deficiencies, but rather to the coupled influence
of discretization in space and time on the global dynamics
of the system.

The influence  of  the  time-step  size  is  illustrated  for
cases VMKH3–5 (Table 2) in Figs. 19, 20, encompassing
three h values (0.5E, 0.05E and 0.01E) and also including

EM/PM plots (Fig. 19d). In the lack of analytical solutions,

misfits have been determined on the basis of a “sufficiently
accu- rate” reference solution, here obtained numerically
by set-
ting �t = �tstd/5 = 0.0001 s. For a relatively small input
amplitude (A  = 0.1 mm), convergence seems overall
quite fast, and even ut = utstd results in both EM and PM
values

space

(a) Displacement time history, h = 0.5E (2.2–3.8 s)

(b) Displacement time history, h = 0.05E (2.2–3.8 
s)
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(c) Displacement time history, h = 0.01E (2.2–3.8 
s)
(d) EM/PM misfits (ref. solution: ∆t = 0.0001 s)

Fig. 19 Influence of time-step size, displacement plot, cases 
VMKH3 (h = 0.5E), VMKH4 (h = 0.05E) and VMKH5 (h = 
0.01E) (uxstd = 5 m, utstd = 0.0005 s, ux = 5 m, ut = 0.0002, 
0.0005, 0.001 s, A = 0.1 mm)

spacelower or close to 10 % (in combination with ux =
uxstd).  This inference is further corroborated by the shear
stress-  strain response at the bottom of the VMKH sub-
layer
(Fig.  20),  exhibiting  little  sensitiveness  to  the  time-step
size.  Some additional  comments  stem from the  EM/PM
plots in Fig. 19d:

– at  variance  with the  previous  elastic  cases, envelope
(EM) and phase (PM) misfits  are quantitatively quite
different (EM > PM);

– EM/PM trends do not depend monotonically on the
hardening parameter  h. For  ut  =  0.0002 s, the EM/
PM values at h = 0.05E are indeed larger than those
obtained for h = 0.5E and h = 0.01E.

Both findings are likely related to the influence of time dis-
cretization  on the  residual  displacement,  which  is  larger
than on other response variables. In fact, variations in the
accumulated  displacement  mainly affect  the  envelope  of
the output signal, not its phase attributes. However, such a
non-monotonic  relationship between  h  and displacement
EM/PM values has not been detected in the corresponding
acceleration EM/PM plots (not reported here), due to the
obvious lack of residual accelerations.

4.1.3 Influence of input motion amplitude

In non-linear problems, it is hard to draw general conclu-
sions on the interaction between space/time discretization

spaceand input amplitude. The latter governs the amount
of soil  non-linearity mobilized and the  resulting  local
stiffness, in turn affecting the requirements for accurate
constitutive integration.

In Fig.  21, the parametric study in Figs.  16,  17  is
rep- licated for a higher input amplitude  (A  = 1 mm)
and the same two different h values (cases VMKH6-7
in Table 2).
The time-domain plots provided testify the effects of grid
spacing  on  the  predicted  response:  again,  they  mostly
con-  cern  the  final  residual  displacement,  more

pronouncedly   as  h  decreases.  The  same  previous
uncertainties  about  the  interplay  of  grid  spacing  and
constitutive integration still apply to this case.

The  discussion  on  the  influence  of ut  at  higher input
amplitude  refers  to  Figs.  22,  23,  illustrating  the  results
obtained  for ux = uxstd and  h  equal  to  0.5E,  0.05E  and
0.01E (cases VMKH8-10 in Table 2); EM/PM plots  comes
from the numerical reference solution corresponding with

�t = �tstd/5 = 0.0001 s.
The  comparison  of  Figs.  21  and  22  suggests  that,

even  with a much larger input amplitude,  ux  = uxstd  is
still an  appropriate  grid  spacing  for  elastic-plastic
problems,  as  long as ut  is substantially reduced to
comply with (explicit)  constitutive  integration
requirements. This inference is sup-
ported by the following observations:

– ut  affects not only the residual component of displace-
ment time histories (as in Fig. 21), but also their maxi-
mum/minimum transient values – i.e., the numerical
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(a) Displacement time history, h = 0.5E (2.2–3.8 
s)
(b) Displacement time history, h = 0.05E 
(2.2–3.8 s)

Fig. 21 Influence of grid spacing, displacement plot, cases 

VMKH6 (h = 0.5E) and VMKH7 (h = 0.05E) (uxstd = 5 m, utstd

= 0.0005 s, ux =
1, 5 m, ut = 0.0001s, A = 1 mm)

space

(a) Displacement time history,  h = 0.5E (2.2–3.8
s)
(b) Displacement time history, h = 0.05E (2.2–
3.8 s)

(c) Displacement time history, h = 0.01E (2.2–3.8 s)
(d) EM/PM misfits (ref. solution: ∆t = 0.0001 s)

Fig. 22 Influence of time-step size, displacement plot, cases 
VMKH8 (h = 0.5E), VMKH9 (h = 0.05E) and VMKH10 (h = 
0.01E) (uxstd = 5 m, utstd = 0.0005 s, ux = 5 m, ut = 0.0002, 
0.0005, 0.001 s, A = 1 mm)

spacerepresentation of plastic dissipation. This is 
clearly vis- ible in Fig. 22a;

– EM/PM values are in general higher at larger input 
amplitude (Fig. 22d), and experience a slower decrease
as ut is reduced (still depending on the specific h
value);

– the shear stress-strain loops in Fig. 23 show how inac- 
curate the simulated constitutive response can be when
ut is too large (e.g., ut = 0.001 s) and substantial 
plas-
tic degradation of material stiffness takes place (see 
the case h = 0.01E).

This set of results suggests that ut  should be at least in the
order  of  �x/20Vs for  acceptable  constitutive  integration
and overall accuracy in elastic-plastic simulations. How-
ever, this heuristic conclusion may be altered by the use of
different material models (see next section) and stress-point
algorithms.

4.2 PBS model

4.2.1 Model parameters and parametric analysis

The  influence  of  space/time  discretization  is  now
explored  in  combination  with  the  non-linear  PBS  soil
model  introduced  in  Sect.  2.2.3   [48  ].  As  in  real  geo-
materials,  the  PBS  model  features  an  elastic-plastic
response since the very onset of loading (vanishing yield
locus), with the stiffness smoothly evolving

spacefrom small-strain elastic behavior to failure (nil 
stiffness).

The results presented hereafter concern a 500 m thick
soil  layer,  whose upper 100 m are made of a non-linear
PBS soil resting on a 400 m elastic sub-layer. As done    for
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the  VMKH simulations,  a  thin  layer  (2.5  m) of  elastic
material has been added to prevent numerical problems
with  very  strong  motions  and  the  whip  effect  at  the
ground
surface. Input 1 with A = 1 mm has been exclusively 
con-
sidered, along with the following set of PBS parameters
[48] (the same elastic parameters for both the PBS and the 
elastic sub-layers have been set):

– ρ = 2000 kg/m3, E  = 1.3 GPa and 0.3, implying 
an elastic shear wave velocity Vs = 500 m/s ;

– shear strength parameter: M = 1.2, corresponding 
with
friction angle equal to 30 deg under triaxial compres- 
sion;

– dilatancy parameters: kd = 0.0 and ξ = 0.04;
– hardening parameters: h = 300 and 1.

The list of PBS simulations is reported in  Table 3, while
the next figures will also illustrate the good performance
of the PBS model in reproducing the cyclic soil behavior.

4  Soil volume changes under shear loading have been inhibited for
the sake of simplicity. This aspect would further affect the overall
stiffness of the soil layer and require additional parametric analyses.

space

Fig. 23 Influence of time-step size, shear stress-strain response 
at the bottom of the VMKH sub-layer, cases VMKH8 (h = 
0.5E), VMKH9 (h = 0.05E) and VMKH10 (h = 0.01E) (uxstd =
5 m, utstd = 0.0005 s, ux = 5 m, A = 1 mm)

space

spaceTable 3 List of PBS simulations

Case# uxstd utstd (s) ux (m) ut (s) A (mm)
(m)

PBS1 2.5 0.0005 0.5, 2.5 0.0001 1
PBS2 2.5 0.0005 0.1, 0.5, 0.00002 1
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1

PBS3    2.5 0.0005 2.5 0.0002, 0.0005, 1
0.001

PBS4    2.5 0.0005 2.5 0.00001, 0.00002, 1
0.0001

4.2.2 spaceInfluence of grid spacing and time-step size

Most  of  the  issues  observed   in   VMKH  simulations
appear to be magnified by the more complex PBS model.
A summary of the main inferences drawn on the basis of
Figs. 24, 25, 26, 27, 28, 29, 30     is provided here below:

– grid spacing turns out to be influential again (Figs. 24,
26), as a consequence of more severe variations (than
in  VMKH  cases)  in  shear  stiffness  during  cyclic
loading. In fact, one would have to follow the stiffness
reduction

space

(a) Displacement time history (0.0–4.0 s)
(b) Displacement time history (2.2–3.8 s)

Fig. 24 Influence of grid spacing, displacement plot, case PBS1
(uxstd = 2.5 m, utstd = 0.0005 s, ux = 0.5, 2.5 m, ut = 0.0001 s, 
A = 1 mm)

Fig. 25 Influence of grid spacing, shear stress-strain response in
the PBS sub-layer, case PBS1 (uxstd = 2.5 m, utstd = 0.0005 s, 
ux = 0.5, 2.5 m, ut = 0.0001 s, A = 1 mm)

(a) Displacement time history (2.2–3.8 s)
(b)  EM/PM  misfits  (ref.  solution:  ∆x  =
0.1 m)

Fig. 26 Influence of grid spacing, displacement plot, case PBS2 
(uxstd = 2.5 m, utstd = 0.0005 s, ux = 0.1, 0.5, 1 m, ut = 0.00002 
s, A = 1 mm)

space

(a) Displacement time history (0.0–4.0 s)

(b) Displacement time history (2.2–3.8 s)

Fig. 27 Influence of time-step size, displacement plot, case 

PBS3 (uxstd = 2.5 m, utstd = 0.0005 s, ux = 2.5 m, ut = 0.0002, 

0.0005, 0.001 s,
A = 1 mm)
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(a) Displacement time history (2.2–3.8 s)

(b) EM/PM misfits (ref. solution: ∆t = 0.00001
s)

Fig. 29 Influence of time-step size, displacement plot, case 
PBS4 (uxstd = 2.5. m, utstd = 0.0005 s, ux = 2.5 m, ut = 0.00001,
0.00002, 0.0001 s, A = 1 mm)

space

spacecurves arising from the constitutive response, and use 
minimum stiffness to decide on space discretization;

– as in VMKH simulations, grid spacing mainly affects 
residual displacements. This is clearly shown by the
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Fig. 30 Influence of time-step size, shear stress-strain response at
the bottom of the PBS sub-layer, case PBS4 (uxstd = 2.5 m, utstd =
0.0005 s, ux = 2.5 m, ut = 0.00001, 0.00002,0.0001 s, A = 1 mm)

spaceEM/PM plots in Fig. 26b, where EM errors larger
than 10% arise even when a very small time-step size
is
used  (�t = �tstd/25 = 0.00002  s);  conversely,  
phase
misfits are less affected by residual displacements and

thus always quite limited. In presence of high non-
linearity,  it  seems  safer  to  use  ux  4  ÷  5  times
smaller than �xstd = V /10fmax;

– the combination of explicit constitutive integration and
high  non-linearity  makes  time-stepping  effects  quite
prominent, as is shown by Figs. 27 and 28.
Further,
Fig.  2      9  leads  to  conclude  that �t = �tstd/50  may  
be
needed to obtain EM errors lower than 10 % (Figs. 29,
30). Apparently, analysts have to compromise on accu-
racy and computational costs in these situations;

– as expected, the shear stress-strain cycles in Figs.  25
and  28 show  that  the  sensitivity   to   discretization
builds  up as  increasing non-linearity   is   mobilized.
This is the case for instance at the top of  the  PBS
layer,  where  cycles  are  more  dissipative  than at  the
bottom due to lower overburden stresses and dynamic
amplification.

Since  displacement  components  result  from  strains
through spatial integration, the displacement performance
can be well-predicted on condition that strains are accu-
rately computed all along the soil domain. For the same
reason, the discretization requirements for displacement

space

(a) x=500 m
(b) x=480m

(c) x=460 m
(d)  x=440 m 

Fig. 31 Influence of grid spacing at different locations along the 

PBS layer, displacement plot, PBS2 case (uxstd = 2.5 m, utstd = 

0.0005 s,
ux = 0.1, 0.5, 1 m, ut = 0.00002 s, A = 1 mm)

space

(a)  x=500 m
(b)  x=480 m
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(c)  x=460 m
(d)  x=440 m

Fig. 32 Influence of time-step size at different locations along the 

PBS layer, displacement plot, PBS4 case (�xstd = 2.5. m, utstd = 

0.0005 s,
�x = 2.5 m, �t = 0.00001, 0.00002, 0.0001 s, A = 1 mm)

(a)  x=500 m
(b)  x=480 m 

(c) x=460 m
(d)  x=440 m 

Fig. 33 Influence of grid spacing at different locations along the 

PBS layer, acceleration plot, PBS2 case (�xstd = 2.5 m, utstd = 

0.0005 s,

�x 
= 0.1, 0.5, 1 m, �t = 0.00002 s, A = 1 mm)

spaceconvergence are not uniform along the soil deposit.
Figs. 31 and  32 illustrate  in  the  time-domain  the
displacements  simulated  at  different  depths  in  the  non-
linear sub-layer (the vertical x axis points upward—Fig. 1)
and at different

�x  and ut.  These  figures  clearly  point  out  that accuracy

spacerequirements  may  be  more  or  less  hard  to  satisfy
depend- ing on the specific  spatial location. In 1D wave
propaga- tion problems, faster convergence is attained far
from  the  ground  surface,  since  it  requires  satisfactory
accuracy  in  a  lower  number  of  nodes  and  integration
points.

space

(a)  x=500 m
(b) x=480 m 
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(c)  x=460 m
(d) x=440 m 

Fig. 34 Influence of time-step size at different locations along the 

PBS layer, acceleration plot, PBS4 case (�xstd = 2.5 m, �tstd = 

0.0005 s,
�x = 2.5 m, �t = 0.00001, 0.00002, 0.0001 s, A = 1 mm)

spaceConversely, the close relationship between plastic
strains and residual displacements has slender influence on
accel- eration components. In this respect, Figs. 33 and 34
show  that,  as  long  as  reasonable  grid  spacing  is  set
(possibly in
the order of �xstd/2 = Vs/20fmax), the sensitivity of accel- 
eration components to �t is much weaker than for 
residual
displacements.

5 Concluding remarks

Previously established criteria for space/time discretization
in  wave  propagation  FE  simulations  have  been re-
appraised and critically discussed to strengthen verification
proce-  dures  in  Computational  Dynamics.  The  1D
propagation  of  seismic  shear  waves  (Ormsby  wavelets)
through both linear and non-linear (elastic-plastic) media
has been numerically simulated, with focus on capturing
high-frequency  motion  and  exploring  the  relationship
between material response and discretization effects. After
initial  linear  computa-  tions,  two  different  non-linear
material models (referred   to as VMKH and PBS) have
been  used  at  increasing  level  of  complexity.  The  main
conclusions inferred are hereafter summarized:

Elastic  simulations  Setting  grid  spacing  (element  size)
and time-step size as per standard rules (�xstd = Vs/10fmax

and  �tstd = �t/Vs)  has  proven  not  always  appropriate,
especially to reproduce high-frequency motion compo- nents
(this can be clearly visualized in the Fourier phase

spaceplane).  When  linear  elements  (8-node  bricks)  are  
used,
�x ≈ �xstd/2 and �t  ≈ �tstd/2 seem to ensure sufficient
accuracy  over  the  whole  frequency  range  (both  in
ampli-
tude  and  phase);  higher-order  elements  (e.g.,  27-node
bricks) will allow the use of �x = �xstd still in combina-
tion with �t ≈ �tstd/2. Preserving accuracy in simulations
with large domains and/or time durations seems intrinsi-
cally more difficult, since attenuation/dispersion phenom-
ena are cumulative.

Elastic- plastic   simulations   Conclusive   criteria   for
elas- tic-plastic  problems  can  be  hardly  established,  as
space/  time  discretization  also  interferes  with  the
integration  of  non-linear  constitutive  equations.  In  this
respect, different outcomes may be found depending on (i)
kind of non-lin- earity associated with the material model
(stiffness  varia-  tions during straining), (ii) stress-point
integration algorithm (e.g., explicit or implicit), (iii) input
motion  amplitude. The experience gained through the use
of the PBS model (explicitly  integrated  in  8-node  brick
elements) suggests
that �xstd = Vs/10fmax and �tstd = �x/10Vs may need to
be reduced by factors up to 4 ÷ 5 and 50, respectively, in
the
presence of strong input motions and severe stiffness varia-
tions. Importantly, these conclusions also depend on which
output component is considered and where within the com-
putational domain.

The  present  study  is,  however,  not  conclusive,  espe-
cially  when  it  comes  to  non-linear  elastic-plastic  prob-
lems. There are in fact several aspects that will deserve in
the future further consideration, such as the implications

space

spaceof using higher-order finite elements. The same comment
applies  to  geometrical  effects  (e.g.,  wave  scattering)  in
2D/3D problems,  whose  influence  on discretization  crite-
ria for elastic-plastic simulations would be per se a whole
research topic.
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