UC Davis UC Davis Previously Published Works

Title

Discretization effects in the finite element simulation of seismic waves in elastic and elastic-plastic media

Permalink https://escholarship.org/uc/item/9b7945n4

Journal Engineering with Computers, 33(3)

ISSN 0177-0667

Authors

Watanabe, Kohei Pisanò, Federico Jeremić, Boris

Publication Date

2017-07-01

DOI

10.1007/s00366-016-0488-4

Peer reviewed

Discretization effects in the finite element simulation of seismic waves in elastic and elastic-plastic media

Kohei Watanabe¹ · Federico Pisanò² · Boris Jeremic^{'3,4}

Received: 14 September 2015 / Accepted: 23 September 2016 / Published online: 7 October 2016

spaceAbstract Presented here is a numerical investigation that (re-) appraises standard rules for space/time discretization in seis- mic wave propagation analyses. Although the issue is almost off the table of research, situations are often encountered where (established) discretization criteria are not observed and inaccurate results possibly obtained. In particular, a detailed analysis of discretization criteria is carried out for wave propagation through elastic and elastic-plastic media. The establish- ment of such criteria is especially important when accurate prediction of high-frequency motion is needed and/or in the presence of highly non-linear material models. Current dis- cretization rules for wave problems in solids are critically assessed as a *conditio sine qua non* for improving verification/ validation procedures in applied seismology and earthquake engineering. For this purpose, the propagation of shear waves through a 1D stack of 3D finite elements is considered, includ- ing the use of wideband input motions in combination with

☐☐Boris Jeremić jeremic@ucdavis.edu

Kohei Watanabe watanabe kohei@shimz.co.jp

- ¹ Shimizu Corporation, 16-1, Kyobashi 2-chome, Chuo-ku, Tokyo 104-8370, Japan
- ² Geo-Engineering Section/Offshore Engineering Section, Faculty of Civil Engineering and Geoscience, Delft University of Technology, Stevinweg 1, Delft 2628 CN, The Netherlands
- ³ Department of Civil and Environmental Engineering, University of California, 1 Shields Avenue, Davis 95616, CA, USA
- ⁴ Lawrence Berkeley National Laboratory, Berkeley 94720, CA, USA

spaceboth linear elastic and non-linear elastic-plastic material mod- els. The blind use of usual rules of thumb is shown to be some- times debatable, and an effort is made to provide improved discretization criteria. Possible pitfalls of wave simulations are pointed out by highlighting the dependence of discretization effects on time duration, spatial location, material model and specific output variable considered.

Keywords Wave propagation · Seismic · Discretization · Elastic · Elastic · Verification

1 Introduction

Federico Pisanò f.pisano@tudelft.nl

The study of wave motion is of utmost importance in many applied sciences, as it supports the understanding of transient phenomena in many natural and anthropic dynamic systems. In particular, seismic waves propagating through the earth crust deserve the highest consideration, especially in light of their destructive potential and socioeconomical impact.

In the last decades, mathematicians, geophysicists and engineers have devoted massive research efforts to the prediction of seismic motion, based on either analytical [21, <u>32–34</u>, <u>39</u>] or numerical methods [2, <u>53</u>, <u>63</u>]. When linear elastic wave problems are considered, either time-domain or frequency-domain solutions may be sought, whereas time-domain approaches are usually needed in the presence of non-linearities (constitutive or geometrical). In this respect, it should be remarked that much interest in earthquake engineering is nowadays on non-linear wave phenomena, since they govern (i) the occurrence of natural catastrophes (e.g., landslides and debris flows) induced by soil instabilities, such as liquefaction and strain localization [<u>18</u>, <u>24</u>, <u>63</u>]; (ii) the interaction between geomaterials and man-made structures [<u>13</u>, <u>16</u>, 20, 28, <u>53</u>, <u>59</u>].

space

spaceIt is thus apparent that reliable numerical simulations of seismic motion and earthquake-soil-structure interaction can only be performed by means of high-fidelity computational tools, capable of coping with the remarkable complexity of the aforementioned problems. The accuracy of

numerical predictions is in turn affected by, at least, the fol- lowing four factors:

- 1. selection of the numerical solution algorithm;
- mathematical description of material behavior (constitutive model);
- 3. computer implementation;
- 4. set-up of the computational discrete model.

The assessment of the above four items is the main core of a thorough verification and validation process [3, 45, 51]: is the mathematical problem numerically solved to the desired degree of accuracy? Do numerical results reasonably reproduce real world phenomena?

The present work focuses on the fourth item in the list, and specifically on the selection of appropriate time-step and element size in dynamic Finite Element (FE) computations. This problem seems to have been solved quite long ago in the form of "rules of thumb" for space/time discretization [38, 41], so that not many works on the subject have been pub- lished ever since [4, 5, 14, 55]. Furthermore, the relationship between discretization and accuracy in wave simulations has been mainly investigated for linear elastic problems.

In light of the above premises, the authors aim an upto-date contribution to the matter, also accounting for the large importance assumed in recent years by non-linear, elastic-plastic wave problems. The key features of the present work are hereafter summarized:

- only 1D shear wave propagation tests are performed for a more straightforward interpretation of numerical results;
- discretization effects have been illustrated in both time and frequency domains, and then quantified via modern misfit criteria formulated in the full time-frequency domain;
- since discretization effects depend in general on the numerical algorithm adopted, a widespread FE approximation scheme has been here adopted;
- the role of constitutive non-linearity (plasticity) is discussed;
- the whole study should be regarded as a numerical "falsification test" for the "rules of thumb" previously mentioned [<u>38</u>, <u>41</u>].

The ultimate goal of this work is to reopen the debate on the accuracy of wave simulations from a verification/ validation perspective, also in the presence of constitutive space

Fig. 1 One dimensional (1D) shear wave propagation through a soil layer

non-linearities. The results reported provide renovated critical insight into, and review of, traditional discretization rules for practical simulation purposes.

2 FE modeling of 1D seismic wave propagation

1D shear wave problems originate from the ideal situation in which wave propagation is nearly vertical, with no lateral geometrical/material inhomogeneities. In these conditions, all vertical cross-section can be regarded as symmetry planes and the soil deposit undergoes a "double plane-strain" deformation, with both horizontal direct strains prevented by symmetry [10, 49]. As a consequence, all variables only depend on time and vertical elevation (the problem is geometrically one-dimensional), whereas the stress state is still multi-axial [17]. The initial-boundary value problem under consideration is sketched in Fig. <u>1</u>.

Like in general 3D problems, the numerical analysis of 1D seismic wave propagation requires a suitable computational platform for (i) space/time discretization, (ii) material modeling and (iii) simulation under given initial/ boundary conditions. The Real ESSI Simulator has been used here for these purposes.

The Real ESSI Simulator is a software, hardware and documentation system developed specifically for high-fidelity, realistic modeling and simulation of earthquakesoil structure-interaction (ESSI). The Real ESSI program features a number of simple and advanced modeling features. For example, on the finite element side, available are solids elements (8, 20, 27, 8-27 node, dry and saturated bricks), structural elements (trusses, beams, shells), contact elements (frictional slip and gap, dry and saturated), isolator and dissipator elements; on the material

space

spacemodeling side, available are elastic (isotropic, anisotropic, linear and non-linear) and elastic-plastic models (isotropic, anisotropic hardening). The seismic input can be applied using the Domain Reduction Method [7, 61], while sequential and parallel versions of the program are available (the latter is based on the Plastic Domain Decomposition (PDD) method [25]). Recent applications of Engineering with Computers (2017) 33:519-545

Real ESSI to seismic problems are documented, for instance, in [1, 12, 27-30, 46, 56-58].

2.1 Space discretization and time marching

The Real ESSI program is based on a standard displace-

spacedescribed, namely (i) the standard linear elastic material model, (ii) the elastic-plastic von Mises model with linear kinematic hardening [26, 40] and (iii) the bounding surface elastic-plastic model by [48].

2.2.1 Linear elastic model

Discretization issues will be first addressed with reference to linear elastic problems. While relevant concepts in elas- todynamics can be found in [21], it is only worth remind- ing here the relationship between the shear wave velocity

 V_i and the two elastic parameters (Young's modulus E and Poisson's ratio):

spacement FE formulation, where displacement components are

taken as unknown variables in the numerical approximation

$\frac{L}{G}$

space(4)

space[62]. As for space discretization, the 1D FE model has been

built using a stack of properly constrained 3D brick ele-

space2(1 + ν) $\rho \rho$

spacements—as was previously done, for instance, by [<u>10</u>]. Real ESSI program enables the use of 8-, 20- and 27- node ele- ments, so that several options are given in terms of spatial interpolation order.

The well-known Newmark method has been adopted for time marching [43]. The main feature of the integration algorithm relates to the approximate series expan-

sion for displacement and velocity components, u and u

1

respectively:

spacewhere ρ is the soil mass density and G = E/[2(1 + C)]

ν)] the

elastic shear modulus.

2.2.2 Elastic-plastic: von Mises kinematic hardening (VMKH) model

The relationship among discretization, accuracy and material non-linearity will be first explored through the elasticplastic von Mises kinematic hardening (VMKH) model, of the same kind described in [26, 40].

$${}^{n+1}u = {}^{u}u + \mathbf{}^{t}u + \mathbf{}^{t}u + \mathbf{}^{t}u - 2^{-\beta u} + \beta {}^{u+1}u$$

$$u^{n+1}u^{\prime} = u^{\prime} + \mathbf{O}t \quad (1 - \gamma)^{\prime}u^{\prime} + \gamma^{\prime} + u^{\prime}$$

space(1)

(2)

spaceThe VMKH model is very well-known in literature and widely employed for cyclically loaded metals, while the application to soil dynamics is limited to undrained loading conditions in combination with total stress analysis [44, 63]. Although the assumption of linear hardening is not the

spacebetween two subsequent time-steps n and n + 1. Impor-

tantly, the expansion uses two parameters, β and γ , governing the accuracy and stability properties of the algorithm. It is worth reminding that the algorithm is unconditionally stable as long as [23]:

spacemost accurate for soils¹, it has been here introduced for numerical convenience. In fact, owing to linear hardening, the post-yielding stiffness is constant, not strain-dependent: this implies an unrealistic unbounded strength, but allows to identify the elastic-plastic shear stiffness with no ambi- guity. Only four constitutive parameters need to be sets

$$\frac{\text{space} \gamma \geq 1}{2}, \quad \beta = \frac{1}{4} (\gamma + \frac{1}{2})$$

space(3) space

- two elastic parameters—E and ;

- one yielding parameter—k—proportional to the initial space**y** = 1/2 is required for second-order accuracy,

whereas

any γ value larger than 1 / 2 introduces numerical attenua- tion (damping). In this study, the pair $\gamma = 1/2$ and $\beta = 1/4$ (no algorithmic dissipation) is exclusively considered.

2.2 Material modeling

The Real ESSI program provides a number of mate- rial modeling options, ranging from simple linear-elastic to advanced elastic-plastic constitutive relationships for

- spacesize of the cylindrical yield locus in the stress space;
- one hardening parameter—*h*—governing the post-yielding (elastic-plastic) stiffness.

2.2.3 Elastic-plastic: Pisanò bounding surface (PBS) model

The more sophisticated constitutive relationship recently proposed by [48] will be also used. At variance with the spacecyclically loaded soils [18, 63]. Hereafter, the material

	(mr	Ormsby Wa	avelet 20Hz
	ent (r	Engineering wit	Computers (2017) 22:510 545
4 models adopted for wave propagation analyses are briefly	C@m	Engineering.wa	
¹ Non-linear hardening models should rather be used–see e.g., [9, <u>10</u>]	s ispla		
space	u		
a	r		(s)
f	f		
0	а		
r	C		
e	e		
111 P	(
n	P		
t	В		
i	S		
0)		
n			
e	m		
d	0		
	d		
V	e 1		
M V	1		
К Н	C		
11	a		
f	n		
0			
r	q		
m	u		
u	i		
1	t		
a	e		
t .			
1	a		
0	C		
11	и 11		
,	r		
t	a		
h	t		
e	e		
	1		
Р	у		
i			
S	r		
a	e		
n	p		
0	1		
b	d		
0	u		
u	С		
n	e		
d			
i	i		
n	m		
g	р		

1

n

t

h

e

e f f

e

С

t i

v

e

S

t r

e

S

S

f

r

а

m

e

w

0

r

k

[<u>3</u> <u>5</u>

,

4 4

,

<u>6</u> 0]

,

s u

С h

а

- а S р e
- С t S
- 0 f
- m
- 0 n
- 0 t
- 0 n
- i С
- / С
- у С 1
- i С
- S 0
- i 1
- b
- e
- h а
- v i
- 0 r
- W
- i
- t h

6

S

•

(5)

- 1. spacedevelopment of inelastic strains from the very onset of loading. This is reproduced by exploiting the concept of "vanishing yield locus";
- 2. frictional shear strength, i.e., depending on the effective confining pressure;
- 3. non-linear hardening, implying a continuous transition from small-strain to failure stiffness;
- coupling between deviatoric and volumetric responses; 4.
- stiffness degradation and damping under cyclic shear 5. loading.

A remarkable feature of the PBS constitutive formulation is the low number of input parameters required (only seven), which makes the model particularly suitable for practical use:

two elastic parameters—E and —to characterize the material behavior at vanishing strains;

space

(a) Time history

(b) Amplitude of Fourier spectrum

Fig. 2 Ormsby wavelet (f1=0.1 Hz, f2=1 Hz, f3=18 Hz, f4=20 Hz)

 $(\pi f_4)^2$ space

space $(\pi f_i)^2$

spaceone shear strength parameter—*M*—directly related to the material frictional angle;

spaceu(t) = A

space πf_4

space $-\pi f_{i}$ spacesinc $(\pi f_i t) - \pi f_i$ space $-\pi f_{i}$ spacesinc $(\pi f_i t)$ spacetwo parameters— k_i and ξ —governing the development space $(\pi f_1)^{L_2}$ space $(\pi f_1)^2$

_of plastic volumetric strains during shearing;

two hardening parameters—*h* and *m*—to be identified on the basis of stiffness degradation and damping cyclic curves.

space
$$\pi f_1$$

spacesinc $(\pi f_1 t) = \pi f$
space πf_1
space (5)

sp

Interested readers are addressed to [48] for details about formulation, performance and calibration of the PBS model.

2.3 Initial/boundary conditions and input motion

All the FE results hereafter presented have been obtained under the following initial and boundary conditions (Fig. **1**):

- 1. the system is initially at rest (nil initial velocities and accelerations);
- 2. a horizontal x-displacement time history is imposed at the bottom boundary to reproduce rigid bedrock conditions:
- no loads are applied to the top boundary (free surface); 3.
- 4_{co} the aforementioned "double plane-strain" conditions ^{*} das₇. b<u>een achieved by preventing y-displacements</u> throughout the model, as well as imposing master/slave olitude connections to nodes at the same elevation (tied nodes).

As for the input displacement, the Ormsby wavelet $\begin{bmatrix} 52 \end{bmatrix}$ fits the authors' intent:

spacewhere t denotes the approximation time and A the signal ampli- tude, $\operatorname{sinc}(x) = (\sin x)/x$ is the cardinal sine function, f_i (i = 1, 2, 3, 4) stand for the low-cut, low-pass, high-cut and high-pass frequencies, respectively. The meaning of the f_i

frequencies can be grasped from Fig. 2b, illustrating the amplitude Fourier spectrum of function (5). In particular, the suitability of the Ormsby wavelet has a twofold motivation:

- 1. function (5) has a number of sign reversals and will induce several loading/unloading cycles into the soil undergoing wave motion (Fig. 2a);
- 2. the peculiar flat branch in the amplitude Fourier spectrum (Fig. 2b) is convenient for frequency domain analysis (see next section).

The above features of the Ormsby wavelet will enable the analysis of discretization effects over frequency ranges of choice. Although most seismic energy relates to frequencies lower than 20 Hz, ensuring accuracy at higher

frequen- cies may be relevant when seismic serviceability analyses are to be performed for structures, systems and components (SSCs) related to nuclear power plants and other industrial objects.

space

2.4 spaceMisfit criteria

The analysis of discretization effects requires objective criteria to quantify the discrepancy (misfit) between different numerical solutions. In numerical seismology, the difference seismogram between the numerical solution and a reliable reference solution is often adopted for this purpose, although it only enables visual/qualitative observations; simple integral criteria (e.g., root mean square misfit) can provide some quantitative insight, but still with no distinc- tion of amplitude or phase errors.

A significant improvement in this area was introduced by [36], who compared seismograms on the basis of the time-frequency representation (TFR) obtained through continuous wavelet transformation [22]. The TFR of signal misfit allows to extract the time evolution of the spectral content, and thus to define the following local time-frequency envelope difference:

3 spaceLinear elastic wave simulations

In this section $f_t | \mathbf{\mathfrak{F}} E(t, f) |$ of discretization on accuracy astic problems.

3.1 Standard rules for spac₂?/time discretization

The selection of appropriate grid spacing²_and time-step size is usually based on very simple rules. As for space dis- cretization, [41] stated that "the accuracy of the finite ele-ment method depends on the ratio obtained by dividing the length of the side of the largest element by the minimum wavelength of elastic waves propagating in the system. For accurate results this ratio should be smaller than 1/12". Since then, it has been believed that approximately ten nodes per wavelength are appropriate in most cases, whereas fewer than ten nodes are likely to result in unde- sired numerical attenuation/dispersion. Accordingly, suita-

space $\mathcal{O}E(t,f) = |W(t,f)| \cdot |W_{\mathbb{H}}(t,f)|$

and time-frequency phase difference:

space(6)

spaceble maximum grid spacing is usually determined by con- sidering the minimum relevant wavelength (or highest frequency f_{max}) in the input signal [28]:

space
$$P(t, f) = |W_{\mathbb{H}}(t, f)|$$

spacearg $W(t, f)$
space- arg $W_{\mathbb{H}}(t, f)$ (7)
spacet, $\Box \Box \Box \Box x \leq$

space $\underline{\cdot}_{\min} V_s$

spacet, $\Box \Box \Box \Box \Box x$

 V_{s}

10 10*f*_{mit} space

(10)

spacewhere W(t, f) and $W_{EE}(t, f)$ are the TFR (wavelet trans- form) of the signal "under evaluation" and the reference seismogram, respectively. As explained by [36], it is also

possible to obtain purely time- or frequency-dependent misfit measures by projecting **t**,. $\Box \Box \Box E$ and **t**,. $\Box \Box \Box \Box P$ onto one of the two domains. In particular, the following single-values measures for envelope misfit (EM)

spaceOn the other side, the time-step size also needs to be lim- ited to ensure accuracy and stability [2]. In principle, the smallest fundamental period of the system should be rep- resented with about ten time-steps—same as for space dis-

cretization. However, t,. $\Box \Box \Box \Box \Box t$ is often selected on the basis of a

different physical argument, i.e., to avoid that a given wave front reaches two consecutive nodes at the same time (this would happen for too large t, $\Box \Box \Box \Box t$ values):

space $_{t}|W$ space $_{REF}$ space $(t, f)|^{2}$ space(8)

t..
$$\Box \Box \Box \Box \Box t \leq t$$

space

(11)

spaceand phase misfit (PM)

spaceCondition (<u>11</u>) ensures algorithmic stability in many explicit schemes for hyperbolic differential problems [<u>50</u>], space $f_t | \mathbf{\Psi} P(t, f) |$

spaceand is also often regarded as an accuracy criterion for space*PM* =

space $_t | W$ space $_{REF}$ space $(t, f)|^2$ space(9)

spaceimplicit (unconditionally stable) time marching as well (see Sect. <u>2.1</u>).

spacemay be employed to separate amplitude and phase errors

when comparing different signal couples. It should be recalled that the envelope function of an oscillating signal is the smooth curve outlining its extremes, and therefore, carries more information than single amplitude values at given time. While the theoretical background for the above misfit criteria is widely described by [36, 37], open-source routines for misfit analysis are available at <u>http://www.nuquake.eu/ComputerCodes/</u> (TF-MISFITS package). Discretization effects in wave propagation simulations will be assessed in the following on the basis of EM and PM criteria, as previously done by a number of authors [6, 19, 31, 42, 47].

space

3.2 Model parameters

The geometrical/mechanical parameters adopted for elastic wave simulations are here reported. A uniform soil layer has been considered, having thickness H 1 km and made

of an elastic material with $\rho = 2000 \text{ kg/m}^3$, V = 1000 m/s and $\nu = 0.3$ (corresponding to G = 2 GPa). No Rayleigh

damping has been introduced.

space

space lable 1 List of elasti	space Table	1	List	of	elasti	c
------------------------------	-------------	---	------	----	--------	---

space

opace				
Case #	<i>f</i> _{max} (Hz) U <i>t</i> (s)	Ux _{std} (m) Brick type	$ut_{\mathrm{std}}(s)$	ux (m)
spacesimu	lations	_		
		EL1	20	5
		EL2	20	5
		EL3	50	2
		EL4	50	2
		EL5	20	5
		EL6	20	5
		EL7	20	5
		EL8	50	2
		EL9	50	2
		EL1	0 20	5

space

As for the input motion, two different Ormsby wavelets have been employed, corresponding with the following input parameters in Eq. (5):

- input 1: $f_1 = 1$ $f_2 = 1$ $f_3 = 1$ $f_4 = 1$
- input 2: $f_1 = = = = = Hz;$

the amplitude parameter *A* has been always set to produce at the bottom of the layer a maximum displacement of 1 mm.

As previously mentioned (Sect. <u>2.3</u>), both inputs 1 and 2 have been used to explore the interplay of discretization effects and input bandwidth.

3.3 Discussion of numerical results

The influence of grid spacing and time-step size are discussed separately for the sake of clarity. Since the Real ESSI program is based on a displacement FE formulation, displacement components are the most reliable output; however, some attention is also paid to accelerations, postcalculated through second-order central differentiation.

Table <u>1</u> provides a list of the comparative simulations performed for linear problems. Each case is denoted by: (i) maximum frequency f_{max} in the input wavelet (f_i in (5)); (ii) grid spacing $\mathbf{U}_{x_{ii}}$ and (iii) <u>in</u>-step size $\mathbf{U}_{t_{ii}}$ from standard discretization rules (<u>10</u>) (<u>11</u>); (iv) \mathbf{U}_x and (v) \mathbf{U}_t actually used; (vi) type of brick elements adopted.

The results being presented aim to assess the quality of standard discretization rules, as well as the improvements attainable through refined discretization. For this purpose, the numerical results are discussed in both time and frequency domains—the Fourier spectra of considered time histories are plotted in terms of (i) amplitude and (ii) phase difference with respect to the analytical solution (known at the free surface). Additional quantitative insight is also gained through the EM and PM misfit criteria introduced space

in Sect. <u>2.4</u>. Unless differently stated, numerical outputs at the top of the soil layer are considered.

3.3.1 Influence of grid spacing

Grid spacing effects at the top of the FE model are illustrated in Figs. 3, 4, 5, 6 for the cases EL1–EL5 (Table 1) in terms of: (a–b) displacement time history; (c) Fourier amplitude and (d) phase difference at the surface; (e) EM and PM misfit (for each numerical solution, misfits are calculated with respect to the exact analytical solution). Starting from Fig. 4, displacement time histories are not - compared with the input motion (as done in Fig. 3a) for the sake of brevity, whereas only a reduced time window around the output motion is displayed for clearer visualisation (e.g., as in Fig. 3b)

Figs. <u>3</u>, <u>4</u>, <u>5</u>, <u>6</u> suggest the following observations (some of which expected):

– even though $\mathbf{U} x_{sl}$ is set on the basis of the maximum frequency f_{max} , its suitability is not uniform over the input spectrum. Indeed, increasing inaccuracies in the frequency domain are clearly visible as f_{max} is

² Henceforth, t, $\Box \Box \Box x$ will always denote the vertical node spacing, coin- ciding with the element thickness in the case of 8-node bricks.

- approached (check for instance the Fourier amplitudes compared in Figs. <u>3</u>c and <u>4</u>, <u>5</u>, <u>6</u>b). Grid spacing affects output Fourier spectra both in amplitude affect phase;
- in all cases, envelope and phase histits, EM and PM are quantitatively very similar (Figs.¹<u>3</u>e and <u>4</u>, <u>5</u>, <u>6</u>d);
- reducing \mathbf{U}_x below $\mathbf{U}_{x_{al}}$ is beneficial only if \mathbf{U}_t is also lower than $\mathbf{U}_{t_{al}}$. This is apparent in Fig. 3e, where an increase in EM and PM is observed as \mathbf{U}_x gets lower than $\mathbf{U}_{x_{al}}$. Conversely, monotonic EM/PM trends are
- shown in Figs. <u>4</u>, <u>5</u>d;
- at given grid spacing *ux*, reducing the time-step improves the numerical solution mostly in terms of Fou-

rier phase, not amplitude (compares Figs. 3c-d, 4b-c). It may be generally stated that, when ux is not appropri- ate, reducing the time-step size does not produce sub-

stantial improvements;

space

Fig. 3 Influence of grid spacing, displacement plot, case EL1 ($f_{max} = 20 \text{ Hz}$, $u_{xstd} = 5 \text{ m}$, $u_{tstd} = 0.005 \text{ s}$, $u_x = 2$, 5, 10 m, $u_t = 0.005 \text{ s}$, 8-node brick)

The above conclusions apply to 8-node brick elements, while Fig. $\underline{6}$ shows that "ten elements per wavelength" are still suitable when higher-order elements (here 27-node bricks³) are employed. However, this lighter requirement for grid

³ For a given number of nodes per wavelength, the size ux of 27-node elements along the propagation direction is double than for 8-node bricks. SDaCe

spacing seems to perform well in combination with

 $\oint t \le \oint x/2V_s$, and results in EM and PM lower than 10 % even for $\oint x/\oint x_{st} = 2$.

It is also important to evaluate grid spacing effects on $\Delta x(m)$ 10.0 15.0

acceleration components, as they will affect the inertial forces transmitted to man-made structures on the ground surface. Since acceleration time histories are dominated by high fre- quencies, the poorer performance of standard discretization rules at high frequencies becomes more evident. In Figs. Z and 8, grid spacing plays qualitatively

as in Figs. <u>3</u>, <u>4</u>, <u>5</u>, although the EM/PM trends—similar in 10

shape—are shifted upwards. This means that, in the presence of low-order ele- ments, more severe discretization requirements should be ful- filled if very accurate accelerations are needed.

3.3.2 Influence of time-step size

For given grid spacings, the influence of Ut has been studied by varying the time-step size with respect to the limit space

(c) Phase difference of displacement Fourier spectrum

(d) EM/PM misfits (ref. solution: analytical)

(a) Displacement time history (2.2-2.8 s)(b) Amplitude of displacement Fourier spectrum

0.014

(c) Phase difference of displacement Fourier spectrum (d) EM/PM misfits (ref. solution: analytical)

Fig. 5 Influence of grid spacing, displacement plo \vec{P} case $\mathbf{H}\mathbf{L}\mathbf{4}$ ($f_{max} = 50$ Hz, $ux_{std} = 2$ m, $ut_{std} = 0.002$ s, ux = 0.8, 2, 4 m, ut = 0.001 s, 8-node brick)

spaceemerging from Eq. (11), i.e., $\mathbf{\Phi}_{t_{\text{sl}}} = \mathbf{\Phi}_x / V_i$. Time discre- tization effects are illustrated in Figs. 9, 10, 11, 12, 13, 14 and suggest the following inferences:

 spaceas observed in the previous subsection, ut mainly affects the Fourier phase, with comparable EM and PM values in all cases. Phase differences with respect to space

(d) EM/PM misfits (ref. solution: analytical)

Fig. 7 Influence of grid spacing, acceleration plot, cases (a–b) EL1 ($f_{max} = 20$ Hz, $ux_{std} = 5$ m, $ut_{std} = 0.005$ s, ux = 2, 5, 10 m, ut = 0.005

s, 8-node brick) and (c–d) EL2 ($f_{max} = 20$ Hz, $ux_{std} = 5$ m, $ut_{std} = 0.005$ s, ux = 2, 5, 10 m, ut = 0.002 s, 8-node brick)

 Δ

2.0

(d) EM/PM misfits (ref: solution: analytical)

Fig. 8 Influence of grid spacing, acceleration plot, cases (a–b) EL3 ($f_{max} = 50$ Hz, $ux_{std} = 2$ m, $ut_{std} = 0.002$ s, ux = 0.8, 2, 4 m, ut = 0.002

s, 8-node brick) and (c–d) EL4 ($f_{max} = 50$ Hz, $ux_{std} = 2$ m, $ut_{std} = 0.002$ s, ux = 0.8, 2, 4 m, ut = 0.001 s, 8-node brick)

(c) Phase difference of displacement Fourier spectrum

(d) EM/PM misfits (ref: solution: analytical)

Fig. 9 Influence of time-step size, displacement plot, case EL6

 $(f_{max} = 20 \text{ Hz}, ux_{std} = 5 \text{ m}, ut_{std} = 0.005 \text{ s}, ux = 5 \text{ m}, ut = 0.005 \text{ s})$

0.002, 0.005,

1.10 s, 8-node brick)

space

when 27-node bricks are used, the use of $\mathbf{U}x = \mathbf{U}x_{\text{sl}}$ and $\mathbf{O}t \leq \mathbf{O}t_{\text{sl}}/2$ is still an appropriate option, giv- ing rise to EM and PM lower than 5 % (Fig. <u>12</u>). Even

in this case, discretization errors are still governed by space

Bhase differences, while excelling Aerformance in terms of Fourier amplitude is observed;

 Eigs. <u>13</u> and <u>14</u> show that the above findings apply qual- itative to acceleration time histories as well. However,

space

5

2 10⁻¹

(c) Phase difference of displacement Fourier spectrum

(d) EM/PM misfits (ref: solution: analytical)

ſ			
ľ			
ľ			
ľ			
ſ			
ĺ			

10

1.5

2.0

2.5

3.Q

0.5

1.0

spaceEM and PM values are quite high (significantly larger than 10 %) when $Ut \ge Ut_{si}$, regardless of the grid spacing ratio. Accuracy is quickly regained when Ut is reduced and $vx < vx_s/2$.

spaceWhile the above conclusions have been all drawn on the basis of the first incoming wave, many reflected waves may in reality hit the ground surface because of soil lay- ering. In the present elastic case (no energy dissipation),

space

(a) Displacement time history (2.2–3.8 s)
 (b) Amplitude of displacement Fourier spectrum

(c) Phase difference of displacement Fourier spectrum(d) EM/PM misfits (ref: solution: analytical)

Fig. 12 Influence of time-step size, displacement plot, case EL10 ($f_{\text{max}} = 20 \text{ Hz}$, $\textcircled{}x_{\text{std}} = 5 \text{ m}$, $\textcircled{}t_{\text{std}} = 0.005 \text{ s}$, x = 5 m, t = 0.002, 0.005, 1.10 s, 27-node brick)

5

spaceperfect reflections occur at the lower rigid bedrock and never-ending wave motion is established. It is thus interp.@stering time a contract the orgen terms of terms

observed. Even though satisfactory accuracy $\frac{1}{15}$ achieved on the first antivelar, an increase in high-frequency phasediffer- ence is detected in Fig. <u>15</u>d, with negligiblevariation in

space

Δ

0

This section concerns discretization effects in presence of material non-linearity. As most commonly done in ^{space}Geomechanics [63], the non-linear cyclic response of geomaterials can be described in the framework of elastoplasticity, and here the VMKH and PM models described in

spacemarching rule may be regarded as an upper bound for non-linear problems (instead of $(\underline{11})$):

Фх

spaceSect. <u>2.2</u> have been adopted. Prior to presenting numerical results, some preliminary remarks should be made:

space $v \le t \le t$

space10V_s

space(12)

space

- the non-linear problem under consideration cannot be solved analytically. Therefore, the quality of discretization settings may only be assessed by evaluating the converging behavior of numerical solutions upon �*x t*
 - refinement;
- with no analytical solution at hand, one needs engineering judgement to establish when the (unknown) exact solution is reasonably approached. In this respect, light is shed on several expected pitfalls, all relevant to the global verification process [3, 45, 51];
- the accuracy of non-linear computations is highly affected by the input amplitude. This governs the amount of non-linearity mobilized by wave motion and, as a consequence, the accuracy of numerical solutions at varying discretization.

In non-linear (elastic-plastic) problems, discretization is not only responsible for the numerical representation of waves (dissipation, dispersion, stability), but also governs the accuracy of constitutive integration [8, 54]. For instance, changes in time-step size will affect the strain size driving the constitutive integration algorithm and, in turn, the final simulation results. This dependence of the consti- tutive response (material model and constitutive integra- tion algorithm) on the dynamic step size precludes direct development of automatic criteria for discretization. How- ever, as tangent elastic-plastic response can be established for any stress-strain combination, (lowest) elastic-plastic (shear) stiffness may be used to develop suitable discretiza- tion via Equation 4. Apparently, this approach assumes that the stress-strain response is already known, as is not the case when discretization is being set. This means that an iterative approach is in principle needed, whereby one will first design discretization based on an estimate of the strain level, run the dynamic simulation, and record the actual stress-strain response. After few iterations, a stable discre- tization will be usually achieved.

In this study, VMKH and PM constitutive equations have been integrated via the standard forward Euler, explicit algorithm [11, 15]. Although implicit algorithms may possess better accuracy/stability properties, explicit integration is often preferred for advanced constitutive formulations and cyclic loading [27]. There is also wide consensus on the poor performance in elastic-plastic computations of time-step sizes derived through elastic parameters and Equation (11), especially in combination with explicit stress-point algorithms. For this reason, the following time spaceIn the following, rules (10) and (12) will be assumed as starting discretization criteria and critically assessed. For shorter discussion, only input 1 ($f_{max} = 20$ Hz) and 8node

brick elements are employed for non-linear simulations.

4.1 VMKH model

4.1.1 Model parameters and parametric analysis

A heterogeneous 1 km thick soil deposit has been considered, formed by a 200 m thick VMKH sub-layer resting on an elastic stratum (remaining 800 m). At the surface, a thin layer (5 m) of elastic material has been added to prevent numerical problems with very strong motions and the so-called whip effect. The following constitutive parameters (see Sect. 2.2.2) have been set (same elastic parameters for both the VMKH and the elastic sub-layers), with no algorithmic nor Rayleigh damping introduced in numerical computations.:

- mass density and elastic properties: $ρ = 2000 \text{ kg/m}^3$, E = 5.2 GPa and 0.3, whence the elastic shear wave velocity $V_i = 1000 \text{ m/s}$ results (same elastic parameters employed for both the elastic and the VMKH sub-layers);
- yielding parameter (radius of the von Mises cylinder):
 k = 10.4 kPa;
- different *h* values (hardening parameter) have been set: h = 0.5E, 0.05E, 0.01E.

In the analysis of VMKH cases, the influence of the harden- ing parameter (*h*) and the input amplitude (*A*) has been also considered, as they affect the material elastic-plastic stiffness and the amount of plasticity mobilized. The VMKH simula-

4.1.2 Influence of grid spacing and time-step size

The results in Figs. <u>16</u> and <u>17</u> exemplify the role played by space discretization in elastic-plastic simulations. These results have been obtained by employing a time-step smaller than $\oint t_{sl}$ (cases VMKH1–2 in Table 2), a low input amplitude (A = 0.1 mm corresponds with a peak

tion programme is reported in Table 2, where f_{tal} has been determined through Equation (12) (i.e., $f_{tal} = \Phi x/10V$).

 Spacepropagation through a dissipative elastic-plastic mate- rial alters significantly the shape of the input signal. All plots display significant wave attenuation/distortion, while final unrecoverable displacements are produced by soil plastifications (Figs.

15 20

(c) Amplitude of displacement Fourier spectrum

(d) Phase difference of displacement Fourier spectrum

Fig. 17 Influence of grid spacing, displacement plot, case VMKH2 ($ux_{std} = 5 \text{ m}$, $ut_{std} = 0.0005 \text{ s}$, ux = 1 m, 5 m, ut = 0.0001 s, h = 0.05E, A = 0.1 mm)

(a) $\Delta x=5 \text{ m}$

Fig. 18 Influence of grid spacing, shear stress-strain response at the bottom of the VMKH sub-layer, cases VMKH1 (h = 0.5E) and VMKH2 (h = 0.05E), ($ux_{std} = 5$ m, $ut_{std} = 0.0005$ s, ut = 0.0001 s, A = 0.1 mm)

spaceslope stability problems [<u>17</u>]. The occurrence of soil failure may introduce additional discretization require- ments for an accurate representation of the collapse mechanism.

In addition, Fig. <u>18</u> illustrates the shear stress-strain VMKH response at the deepest integration (Gauss) point of the VMKH sub-layer. The material response is bilinear (elastic and elastic-plastic), with the elastic stiffness recovered upon stress reversal until new yield-ing occurs [<u>40</u>]. As mentioned above, the observable (small) differences in stress-strain response at different spaceUx may not be straightforwardly attributed to grid spac- ing deficiencies, but rather to the coupled influence of discretization in space and time on the global dynamics of the system.

The influence of the time-step size is illustrated for cases VMKH3–5 (Table 2) in Figs. <u>19</u>, <u>20</u>, encompassing three *h* values (0.5E, 0.05E and 0.01E) and also including

EM/PM plots (Fig. 19d). In the lack of analytical solutions,

rad)		
). E		
ב 10 ביים		
$-\pi/2$		

misfits have been determined on the basis of a "sufficiently accu- rate" reference solution, here obtained numerically Frequency (Hz) by set-

ting $\mathbf{O}_t = \mathbf{O}_{t_{\text{sl}}}/5 = 0.0001$ s. For a relatively small input amplitude (A = 0.1 mm), convergence seems overall quite fast, and even $\mathbf{U}_t = \mathbf{U}_{t_{\text{sl}}}$ results in both EM and PM values

space

0.5

1.0

 $\Delta t/\Delta t_{\rm std}$

1.5

2.0

2.5

0.0

Fig. 19 Influence of time-step size, displacement plot. cases VMKH3 (h = 0.5E), VMKH4 (h = 0.05E) and VMKH5 (h = 0.01E) ($ux_{std} = 5$ m, $ut_{std} = 0.0005$ s, ux = 5 m, ut = 0.0002, 0.0005, 0.001 s, A = 0.1 mm)

Space lower or close to 10 % (in combination with ux = $\mathbf{u}x_{\mathbf{x}}$). This inference is further corroborated by the shear stress- strain response at the bottom of the VMKH sublayer

(Fig. <u>20</u>), exhibiting little sensitiveness to the time-step $\Delta x=5m$, $\Delta t=0.0002s$ size. Some additional comment 10 h=0.01E plots in Fig. 19d:

- at variance with the previou (EM) and phase (PM) misfig different (EM > PM);
- EM/PM trends do not depe hardening parameter h. For PM values at h = 0.05E are obtained for h = 0.5E and h

Both findings are likely related to cretization on the residual disp than on other response variables accumulated displacement main the output signal, not its phase an non-monotonic relationship bet ₹ EM/PM values has not been det acceleration EM/PM plots (not obvious lack of residual accelera

4.1.3 Influence of input motion a

In non-linear problems, it is har sions on the interaction between

spaceand input amplitude. The 1 of soil non-linearity mobilized stiffness, in turn affecting the $r_{\Sigma}^{\mathbb{R}}$ constitutive integration.

In Fig. <u>21</u>, the parametric 访 rep-licated for a higher input and the same two different h v in Table 2).

The time-domain plots provided spacing on the predicted respo con- cern the final residual displacement,

more

pronouncedly as *h* decreases. The same previous uncertainties about the interplay of grid spacing and constitutive integration still apply to this case.

The discussion on the influence of Ut at higher input amplitude refers to Figs. 22, 23, illustrating the results obtained for $\mathbf{u}_x = \mathbf{u}_{x_{ij}}$ and h equal to 0.5*E*, 0.05*E* and 0.01E (cases VMKH8-10 in Table 2); EM/PM plots comes from the numerical reference solution corresponding with

$$t = t_{\rm st}/5 = 0.0001 \, {\rm s}.$$

The comparison of Figs. 21 and 22 suggests that, even with a much larger input amplitude, $\mathbf{u}x = \mathbf{u}x_{\text{st}}$ is still an appropriate grid spacing for elastic-plastic problems, as long as *Ut* is substantially reduced to comply with (explicit) constitutive integration requirements. This inference is sup-

ported by the following observations:

ut affects not only the residual component of displacement time histories (as in Fig. 21), but also their maximum/minimum transient values - i.e., the numerical

space

S

t r

e

s s s

t r a i n

r

e s

р

0 n s e

a t

t h

e

b

o t

t o

т

o f

t

h

e

V

M K H

s b l a y e r

,

c a s e s

V M K H 3

 $\binom{h}{h}$

(a) Displacement time history, h = 0.5E (2.2–3.8 S)

(b) Displacement time history, h = 0.05E(2.2-3.8 s)

Fig. 21 Influence of grid spacing, displacement plot, cases VMKH6 (h = 0.5E) and VMKH7 (h = 0.05E) ($ux_{std} = 5$ m, ut_{std}

This set of results suggests that Ut should be at least in the order of $\langle \mathbf{v}_x/20V_i \rangle$ for acceptable constitutive integration and overall accuracy in elastic-plastic simulations. However, this heuristic conclusion may be altered by the use of different material models (see next section) and stress-point algorithms.

4.2 PBS model

4.2.1 Model parameters and parametric analysis

The influence of space/time discretization is now explored in combination with the non-linear PBS soil model introduced in Sect. 2.2.3 [48]. As in real geomaterials, the PBS model features an elastic-plastic response since the very onset of loading (vanishing yield locus), with the stiffness smoothly evolving

spacefrom small-strain elastic behavior to failure (nil stiffness).

The results presented hereafter concern a 500 m thick soil layer, whose upper 100 m are made of a non-linear PBS soil resting on a 400 m elastic sub-layer. As done for the VMKH simulations, a thin layer (2.5 m) of elastic material has been added to prevent numerical problems with very strong motions and the whip effect at the ground

surface. Input 1 with A = 1 mm has been exclusively con-

sidered, along with the following set of PBS parameters [48] (the same elastic parameters for both the PBS and the elastic sub-layers have been set):

- ρ = 2000 kg/m³, E = 1.3 GPa and 0.3, implying an elastic shear wave velocity V_i = 500 m/s;
- shear strength parameter: *M* = 1.2, corresponding with

friction angle equal to 30 deg under triaxial compression;

- dilatancy parameters: $k_i = 0.0$ and $\xi = 0.0^4$;
- hardening parameters: h = 300 and 1.

The list of PBS simulations is reported in Table <u>3</u>, while the next figures will also illustrate the good performance of the PBS model in reproducing the cyclic soil behavior.

⁴ Soil volume changes under shear loading have been inhibited for the sake of simplicity. This aspect would further affect the overall stiffness of the soil layer and require additional parametric analyses. space

Fig. 23 Influence of time-step size, shear stress-strain response at the bottom of the VMKH sub-layer, cases VMKH8 (h = 0.5E), VMKH9 (h = 0.05E) and VMKH10 (h = 0.01E) ($ux_{std} = 5$ m, $ut_{std} = 0.0005$ s, ux = 5 m, A = 1 mm)

0.00

Strain(%)

0.05

-0.05

0.00

Strain(%)

(c) $\Delta t = 0.001 \text{ s}$

space

space Table 3 List of PBS simulations

-50

-0.05

Case#	ux _{std} (m)	$ut_{\mathrm{std}}(\mathrm{s})$	ux (m)	u <i>t</i> (s)	A (mm)
PBS1	2.5	0.0005	0.5, 2.5	0.0001	1
PBS2	2.5	0.0005	0.1, 0.5,	0.00002	1

Misst of the issues observed in 1VMKH2 simulations appea2 to be magnified by the more complex PBS model. A summary of the main inferences drawn on the basis of Figs. <u>24</u>, <u>25</u>, <u>26</u>, <u>27</u>, <u>28</u>, <u>29</u>, <u>30</u> is provided here below:

 $\frac{1}{2}$ grid spacing turns out to be influential again (Figs. $\frac{24}{24}$, $\frac{100}{100}$, as a consequence of more severe variations (than in VMKH cases) in sheae (shiffness during cyclic loading. In fact, one would have to follow the stiffness reduction

(a) Displacement time history (0.0–4.0 s) (b) Displacement time history (2.2–3.8 s)

Fig. 24 Influence of grid spacing, displacement plot, case PBS1 $(ux_{std} = 2.5 \text{ m}, ut_{std} = 0.0005 \text{ s}, ux = 0.5, 2.5 \text{ m}, ut = 0.0001 \text{ s},$ A = 1 mm)

(a) At the top of the layer

(a) Displacement time history (2.2–3.8 s) (b) EM/PM misfits (ref. solution: $\Delta x =$ 0.1 m)

(b) At the bottom of the layer (b) Displacement time history (2.2–3.8 s)

Fig. 27 Influence of time-step size, displacement plot, case PBS3 ($ux_{std} = 2.5 \text{ m}$, $ut_{std} = 0.0005 \text{ s}$, ux = 2.5 m, ut = 0.0002,

$$\Delta x(m)$$
 5.0 7.5
0.0005, 0.001 s,
 $A = 1 \text{ mm}$)

-0.01 0.00 0.01 -0.01 0.00 Strain(%) Strain(%)

0.01

spaceEM/PM plots in Fig. 26b, where EM errors larger than 10% arise even when a very small time-step size is

used ($\mathbf{v}_t = \mathbf{v}_t / 25 = 0.00002$ s); conversely, phase

misfits are less affected by residual displacements and

thus always quite limited. In presence of high nonlinearity, it seems safer to use $ux \ 4 \ \div \ 5$ times smaller than $v_{xstd} = V/10f_{max}$;

the combination of explicit constitutive integration and high non-linearity makes time-stepping effects quite prominent, as is shown by Figs. 27 and 28. Further,

Fig. <u>29</u> leads to conclude that $\mathbf{O}t = \mathbf{O}t_{\text{sl}}/50$ may be

needed to obtain EM errors lower than 10 % (Figs. 29, <u>30</u>). Apparently, analysts have to compromise on accuracy and computational costs in these situations;

as expected, the shear stress-strain cycles in Figs. 25 and 28 show that the sensitivity to discretization Ebuilds up as increasing non-linearity 00 is - mobilized. EThisdisdere ease for instance at the top of the PBS Elayer, where cycles are more dissipative than at the Ebottom due to lower exerbunden stresses and dynamic amplification. -0.4

Displā 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Since displacement components' result from strains through spatial integration, the displacement performance can be well-predicted on condition that strains are accurately computed all along the soil domain. For the same reason, the discretization requirements for asplacements

Fig. 31 Influence of grid spacing at different locations along the PBS layer, displacement plot, PBS2 case ($ux_{std} = 2.5 \text{ m}$, $ut_{std} =$ 0.0005 s.

ux = 0.1, 0.5, 1 m, ut = 0.00002 s, A = 1 mmspace

(c)	x=460 m
(d)	x=440 m

Fig. 32 Influence of time-step size at different locations along the PBS layer, displacement plot, PBS4 case (� x_{std} = 2.5. m, ut_{std} = 0.0005 s,

 $\mathbf{O}_{x} = 2.5 \text{ m}, \mathbf{O}_{t} = 0.00001, 0.00002, 0.0001 \text{ s}, A = 1 \text{ mm})$

spaceconvergence are not uniform along the soil deposit. Figs. <u>31</u> and <u>32</u> illustrate in the time-domain the displacements simulated at different depths in the non-linear sub-layer (the vertical *x* axis points upward—Fig. <u>1</u>) and at different

 $\mathbf{\hat{v}}_x$ and \mathbf{u}_t . These figures clearly point out that accuracy

spacerequirements may be more or less hard to satisfy depend- ing on the specific spatial location. In 1D wave propaga- tion problems, faster convergence is attained far from the ground surface, since it requires satisfactory accuracy in a lower number of nodes and integration points. space

1.6

- *Elastic simulations* Setting grid spacing (element size) and time-step size as per standard rules ($v_{xst} = V_s/10f_{max}$ and $v_{t_{st}} = v_t/V_i$) has proven not always appropriate, especially to reproduce high-frequency motion compo- nents (this can be clearly visualized in the Fourier phase
- spaceplane). When linear elements (8-node bricks) are used,
- 0.6 $\bigotimes_{x} \approx \bigotimes_{x \neq 2} x_{\neq 2}$ and $\bigotimes_{t} \approx \bigotimes_{t \neq 2} t_{\neq 2}$ seem to ensure sufficient The curacy over the whole frequency range (both in ampli-

tude and phase); higher-order elements (e.g., 27-node bricks) will allow the use of $\oint x = \oint x_{tt}$ still in combination with $\oint t \approx \oint t_{tt}/2$. Preserving accuracy in simulations

- 1.2 with large domains and/or time durations seems intrinsically more difficult, since attenuation/dispersion phenomena are cumulative.
- 1.4 Elastic-plastic simulations Conclusive criteria for elas- tic-plastic problems can be hardly established, as space/ time discretization also interferes with the integration of non-linear constitutive equations. In this respect, different outcomes may be found depending on (i) kind of non-lin- earity associated with the material model (stiffness varia- tions during straining), (ii) stress-point integration algorithm (e.g., explicit or implicit), (iii) input motion amplitude. The experience gained through the use of the PBS model (explicitly integrated in 8-node brick elements) suggests

that $\mathbf{v}_{std} = V_s/10 f_{max}$ and $\mathbf{v}_{td} = \mathbf{v}_s/10V_s$ may need to be reduced by factors up to $4 \div 5$ and 50, respectively, in the

presence of strong input motions and severe stiffness variations. Importantly, these conclusions also depend on which output component is considered and where within the computational domain.

The present study is, however, not conclusive, especially when it comes to non-linear elastic-plastic problems. There are in fact several aspects that will deserve in the future further consideration, such as the implications space

space of using higher-order finite elements. The same comment applies to geometrical effects (e.g., wave scattering) in 2D/3D problems, whose influence on discretization criteria for elastic-plastic simulations would be per se a whole research topic.

Acknowledgments The Authors wish to acknowledge the financial support from the US-NRC, US-DOE and Shimizu Inc. Corporation (Japan).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (<u>http://creativecommons.org/licenses/by/4.0/</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Fig. 34 Influence of time-step size at different locations along the PBS layer, acceleration plot, PBS4 case ($\textcircled{x}_{std} = 2.5 \text{ m}$, $\textcircled{t}_{std} = 0.0005 \text{ s}$,

 $\mathbf{O}_{x} = 2.5 \text{ m}, \mathbf{O}_{t} = 0.00001, 0.00002, 0.0001 \text{ s}, A = 1 \text{ mm})$

SpaceConversely, the close relationship between plastic strains and residual displacements has slender influence on accel- eration components. In this respect, Figs. <u>33</u> and <u>34</u> show that, as long as reasonable grid spacing is set (possibly in

the order of $(x_{std}/2 = V_s/20f_{max})$, the sensitivity of acceleration components to (t) is much weaker than for residual

displacements.

5 Concluding remarks

Previously established criteria for space/time discretization in wave propagation FE simulations have been reappraised and critically discussed to strengthen verification proce- dures in Computational Dynamics. The 1D propagation of seismic shear waves (Ormsby wavelets) through both linear and non-linear (elastic-plastic) media has been numerically simulated, with focus on capturing high-frequency motion and exploring the relationship between material response and discretization effects. After initial linear computa- tions, two different non-linear material models (referred to as VMKH and PBS) have been used at increasing level of complexity. The main conclusions inferred are hereafter summarized: 28

- 2. Argyris JH, Mlejnek HP (1991) Dynamics of structures. North-Holland, Amsterdam
- 3. Babuska I, Oden JT (2004) Verification and validation in compu- tational engineering and science: basic concepts. Comput Meth- ods Appl Mech Eng 193(36):4057–4066
- Bao H, Bielak J, Ghattas O, Kallivokas LF, O'Hallaron DR, Shewchuk JR, Xu J (1998) Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers. Comput Methods Appl Mech Eng 152(1–2):85–102
- Bayliss A, Goldstein CI, Turkel E (1985) On accuracy conditions for the numerical computation of waves. J Comput Phys 59(3):396–404
- Benjemaa M, Glinsky-Olivier N, Cruz-Atienza V, Virieux J, Piperno S (2007) Dynamic non-planar crack rupture by a finite volume method. Geophys J Int 171(1):271–285
- Bielak J, Loukakis K, Hisada Y, Yoshimura C (2003) Domain reduction method for three-dimensional earthquake modeling in localized regions. part I: theory. Bull Seismol Soc Am 93(2):817–824
- 8. Borja RI (2013) Plasticity modeling and computation. Springer, Berlin
- 9. Borja RI, Amies AP (1994) Multiaxial cyclic plasticity model for clays. J Geotech Eng 120(6):1051–1070
- Borja RI, Chao H-Y, Montáns FJ, Lin C-H (1999) Nonlinear ground response at lotung lsst site. J Geotech Geoenvironmental Eng 125(3):187–197
- 11 Chan WE Han DJ (1988) Plasticity for structural engineers.
- Cheng Z, Jeremić B (2009) Numerical modeling and simulation ot pile in liquefiable soil. Soil Dyn Earthq Eng 29(11):1405–1416
- Chopra AK (2000) Dynamics of structures: theory and applications to earthquake engineering, 2nd edn. Prentice Hall, Englewood Cliffs
- 14. De Basabe JD, Sen MK (2007) Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations. Geophysics 72(6):T81–T95
- Desai CS, Siriwardane HJ (1984) Constitutive laws for engineering materials with emphasis on geologic materials, Prentice– Hall. Englewood Cliffs, p 07632
- spacedi Prisco C, Pisanò F (2011) Seismic response of rigid shallow footings. Eur J Environ Civil Eng 15(sup1):185–221
- di Prisco C, Pastor M, Pisanò F (2012) Shear wave propagation along infinite slopes: a theoretically based numerical study. Int J Numer Anal Methods Geomech 36(5):619–642
- di Prisco CG, Wood DM (2012) Mechanical behaviour of soils under environmentallly induced cyclic loads, vol 534. Springer, Berlin
- Fichtner A, Igel H (2008) Efficient numerical surface wave propagation through the optimization of discrete crustal modelsa technique based on non-linear dispersion curve matching (DCM). Geophys J Int 173(2):519–533
- Gazetas G, Mylonakis G (1998) Seismic soil-structure interaction: new evidence and emerging issues. In: Geotechnical earth- quake engineering and soil dynamics III, ASCE, pp 1119–1174
- 21. Graff KF (1975) Wave motion in elastic solids. Courier Dover Publica /ork
- 22. Holschć č95) Wavelets: an analysis tool. Oxford Science Publications, Oxford
- 23. Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Dover Publications, New York
- 24. Ishihara K (1996) Soil behaviour in earthquake geotechnics. Oxford University Press, Oxford

Tsompanakis Y (eds) Progress in computational dynamics and earthquake engi- neering. Taylor and Francis, London

B, Yang Z, Cheng Z, Jie G, K Sett K, Taiebat M, Preisig M, Tafazzoli N, Tasiopoulou P, Mena JAA, Pisanò F, Watanabe K, Karapiperis K (2004) Lecture notes on computational geomechanics. In: Elastic finite elements for pressure sensitive materials. Technical Report UCD-CompGeoMech–01–2004, University of California, Davis, 1989-2015

- 27. JeremićB, Cheng Z, Taiebat M, Dafalias Y (2008) Numerical simular on of fully saturated porous materials. Int J Numer Anal Metho s Geomech 32(13):1635–1660
- JeremićB, Jie G, Preisig M, Tafazzoli N (2009) Time domain simula¹ on of soil-foundation-structure interaction in non-uniform s[,] ils. Earthq Eng Struct Dyn 38(5):699–718
- 29. JeremićB, Roche-Rivera R, Kammerer A, Tafazzoli J, Abell N, Kamranimoghaddam B, Pisanò F, Jeong C, Aldridge B (2013a) The nrc essi simulator program: current status. In: Proceedings of the structural mechanics in reactor technology (SMiRT) 2013
- Jeremić ć N, Blahoianu A (2013b) Seismic behavior of npp structures subjected to realistic 3D, inclined seismic motions, in variable layered soil/rock, on surface or embedded foundations. Nucl Eng Design 265:85–94
- Kaser M, Hermann V, de la Puente J (2008) Quantitative accuracy analysis of the discontinuous galerkin method for seismic wave propagation. Geophys J Int 173:990–999
- 32. Kausel E (2006) Fundamental solutions in elastodynamics: a compendium. Cambridge University Press, Cambridge
- 33. Kausel E, Manolis G (2000) Wave motion in earthquake engineering. Wit Press, Southampton
- Kolsky H (1963) Stress waves in solids, vol 1098. Courier Dover Publications, New York
- 35. Kramer S (1996) Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River, NJ
- Kristekova M, Kristek J, Moczo P, Day SM (2006) Misfit criteria for quantitative comparison of seismograms. Bullettin of the Seismological Society of America 96(5):1836–1850
- 37. Kristekova M, Kristek J, Moczo P (2009) Time-frequency misfit and goodness-of-fit criteria for quantitative comparison of time signals. Geophys J Int 178: 813–825

space

- spaceKuhlemeyer R, Lysmer J (1973) Finite element method accuracy for wave propagation problems. J Soil Mech Found Div, p 99 (Tech Rpt)
- 39. Lai CG, Wilmanski K (2005) Surface waves in geomechan-ics: direct and inverse modelling for soils and rocks, vol 481. Springer, Berlin
- 40. Lemaitre J, Chaboche (1990) Mechanics of solid materials. Cambridge university press, Cambridge
- 41. Lysmer J, Kuhlemeyer R (1969) Finite dynamic model for infinite media. ASCE J Eng Mech Div 95(EM4):859–877
- 42. Moczo P, Kristek J, Galis M, Pazak P, Balazovjech M (2007) The finite-difference and finite-element modeling of seismic wave prop- agation and earthquake motion. Acta Phys Slovaca 57(2):177–406
- 43. Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94
- 44. Nova R (2012) Soil mechanics. Wiley, New York
- 45. Oberkampf WL, Trucano TG, Hirsch C (2004) Verification, validation, and predictive capability in computational engineering and physics. Appl Mech Rev 57(5):345–384
- 46. Orbovi N, Jeremi B, Abell J, Luo C, Kennedy RP, Blaihoanu A (2015) Use of non-linear, time domain analysis for design. In: Proceedings of the structural mechanics in reactor technology (SMiRT) 2015 Conference, Manchester, 10–14 Aug 2015
- 47. Pérez-Ruiz J, Luzón F, García-Jerez A (2007) Scattering of elastic waves in cracked media using a finite difference method. Stud s Geod 51(1):59–88

25. Jeremić

- Pisanò F, Jeremi B (2014) Simulating stiffness degradation and damping in soils via a simple visco-elastic-plastic model. Soil Dyn Earthq Eng 63:98–109
- 49. Prevost JH (1989) DYNA1D: a computer program for nonlinear seismic site response analysis technical documentation. National Center for Earthquake Engineering Research
- 50. Quarteroni A, Valli A (2008) Numerical approximation of partial differential equations, vol 23. Springer, Berlin
- Roy CJ, Oberkampf WL (2011) A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing. Comput Methods Appl Mech Eng 200(25):2131–2144
- 52. spaceRyan H (1994) Ricker, Ormsby, Klauder, Butterworth—a choice of wavelets. Can Soc Explor Geophys 19(7):8–9
- 53. Semblat JF, Pecker A (2009) Waves and vibrations in soils: earthquakes, traffic, shocks, construction works. IUSS Press, Pavia
- 54. Simo J, Hughes T (1998) Computational Inelasticity, vol 7. Springer, Berlin
- Smith WD (1975) The application of finite element analysis to body wave propagation problems. Geophys J Int 42(2):747– 768
- 56. Taiebat M, Jeremi B, Dafalias YF, Kaynia AM, Cheng Z (2010) Propagation of seismic waves through liquefied soils. Soil Dyn Earthq Eng 30(4):236–257
- 57. Tasiopoulou P, Taiebat M, Tafazzoli N, Jeremi validation of fully coupled behavior of porous media using centrifuge test results. Coupled Syst Mech 4(1):37–65
- Tasiopoulou P, Taiebat M, Tafazzoli N, Jeremic B (2015b) Solution verification procedures for modeling and simulation of fully coupled porous media: static and dynamic behavior. Coupled Syst Mech J 4(1):67–98
- 59. Wolf JP (1985) Dynamic soil-structure interaction. Prentice Hall, Englewood Cliffs, NJ
- 60. Wood D (2004) Geotechnical modelling. Spon Press, London
- Yoshimura C, Bielak J, Hisada Y (2003) Domain reduction method for three-dimensional earthquake modeling in localized regions. part II: Verification and examples. Bull Seismol Soc Am 93(2):825–840
- 62. Zienkiewicz O, Taylor R (2000) The finite element method, vol. 1: its basis and fundamentals, 5th edn. Butterworth-Heinemann, London
- 63. Zienkiewicz OC, Chan A, Pastor M, Schrefler B, Shiomi T (1999) Computational geomechanics—with special reference to earthquake engineering. Wiley, Chichester

2.1 Space discretization and time marching

The Real ESSI program is based on a standard disment FE formulation, where displacement componentaken as unknown variables in the numerical approxin [62]. As for space discretization, the 1D FE model has built using a stack of properly constrained 3D bric ments—as was previously done, for instance, by [10] ESSI program enables the use of 8-, 20- and 27-nod ments, so that several options are given in terms of s interpolation order.

The well-known Newmark method has been as for time marc_ching [43]. The main feature of the in tion algorithm relates to the approximate series of sion for displacement and velocity components, urespectively: $^{6 B (2015a) On}$

$${}^{n+1}u = {}^{n}u + \Delta t \,{}^{n}\dot{u} + \Delta^{2}t \left[\left(\frac{1}{2} - \beta\right) \,{}^{n}\ddot{u} + \beta \,{}^{n+1}\ddot{u} \right]$$

$$u = u + \Delta t \left[(1 - \gamma) u + \gamma u + \gamma u \right]$$

between two subsequent time-steps n and n + 1. I tantly, the expansion uses two parameters, β and γ , go ing the accuracy and stability properties of the algo It is worth reminding that the algorithm is unconditi stable as long as [23]:

$$\gamma \ge \frac{1}{2}, \quad \beta = \frac{1}{4} \left(\gamma + \frac{1}{2}\right)^2$$

 $\gamma = 1/2$ is required for second-order accuracy, we any γ value larger than 1 / 2 introduces numerical at tion (damping). In this study, the pair $\gamma = 1/2$ and β (no algorithmic dissipation) is exclusively considered

2.2 Material modeling

$$\Delta E(t,f) = |W(t,f)| - |W_{REF}(t,f)|$$

and time-frequency phase difference:

$$\Delta P(t,f) = |W_{REF}(t,f)| \frac{\arg[W(t,f)] - \arg[W_{REF}(t,f)]}{\pi}$$

where W(t, f) and $W_{REF}(t, f)$ are the TFR (wavelet form) of the signal "under evaluation" and the refe seismogram, respectively. As explained by [36], it is possible to obtain purely time- or frequency-depe misfit measures by projecting ΔE and ΔP onto one of two domains. In particular, the following single-v measures for envelope misfit (EM)

$$EM = \sqrt{\frac{\sum_{f} \sum_{t} |\Delta E(t,f)|^2}{\sum_{f} \sum_{t} |W_{REF}(t,f)|^2}}$$

and phase misfit (PM)

$$u(t) = A \left[\frac{(\pi f_4)^2}{\pi f_4 - \pi f_3} \operatorname{sinc}^2(\pi f_4 t) - \frac{(\pi f_3)^2}{\pi f_4 - \pi f_3} \operatorname{sinc}^2(\pi f_2 t) - \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) - \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) - \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) - \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) - \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) - \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi f_1} \operatorname{sinc}^2(\pi f_2 t) + \frac{(\pi f_1)^2}{\pi f_2 - \pi$$

$$PM = \sqrt{\frac{\sum_{f} \sum_{t} |\Delta P(t,f)|^2}{\sum_{f} \sum_{t} |W_{REF}(t,f)|^2}}$$

Table 1 List of elastic simulations	Case #	f _{ma:}
	EL1	20
	EL2	20
	EL3	50
	EL4	50
	EL5	20
	EL6	20
	EL7	20
	EL8	50
	EL9	50
	EL10	20

As for the input motion, two different Orm have been employed, corresponding with t input parameters in Eq. (5):

- input 1: f₁ = 0.1 Hz, f₂ = 1 Hz, f₃ = 18 H: (plotted in Fig. 2);
- input 2: f₁ = 0.1 Hz, f₂ = 1 Hz, f₃ = 45 Hz
- the amplitude parameter A has been alway duce at the bottom of the layer a maxim ment of 1 mm.

Fig. 3 Influence of grid spacing, displacement plot, c 8-node brick)

- based on these initial examples, a grid in the order of $V_s/20f_{max} = \Delta x_{std}/2$ e accuracy (EM and PM < 10 %) in comb $\Delta t = \Delta x/2V_s = \Delta t_{std}/2$. These enhanced c rules hold for low-order FEs (8-node brid but are not affected by the frequency band input signal. In the latter respect, Figs. 4, 5c

(c) Phase difference of displacement Four

Fig. 4 Influence of grid spacing, displacement plot, c 8-node brick)

(a) Displacement time history (2.2-

(c) Phase difference of displacement Fourie

Fig. 6 Influence of grid spacing, displacement plot, ca 27-node brick)

(a) Acceleration time history (2.2-3

(a) Acceleration time history (2.2-2

Fig. 8 Influence of grid spacing, acceleration plot, case

s, 8-node brick) and (c-d) EL4 ($f_{max} = 50$ Hz, $\Delta x_{std} =$

(a) Displacement time history (2.2-

Fig. 10 Influence of grid spacing, displacement plot, 0.005 s, 8-node brick)

(a) Displacement time history (2.2-

(a) Displacement time history (2.2-

(c) Phase difference of displacement Fourie

Fig. 12 Influence of time-step size, displacement plot 0.010 s, 27-node brick)

Engineering with Computers (2017) 33:519-545

Fig. 14 Influence of time-step size, acceleration plot, 0.005 s, 8-node brick) and EL9 ($f_{max} = 50 \text{ Hz}, \Delta x_{std} =$

Н	Case #	$\Delta x_{\rm std}$ (m)
	VMKH1	5
	VMKH2	5
	VMKH3	5
	VMKH4	5
	VMKH5	5
	VMKH6	5
	VMKH7	5
	VMKH8	5
	VMKH9	5
	VMKH10	5

(c) Amplitude of displacement Fourier spectru

Fig. 16 Influence of grid spacing, displacement plot, case VM A = 0.1 mm)

Fig. 17 Influence of grid spacing, displacement plot, a = 0.1 mm

Fig. 19 Influence of time-step size, displacement plot, cas $(\Delta x_{std} = 5 \text{ m}, \Delta t_{std} = 0.0005 \text{ s}, \Delta x = 5 \text{ m}, \Delta t = 0.0002, 0.0005,$

Fig. 18 Influence of grid spacing, shear stress-strain : (h = 0.05E), ($\Delta x_{std} = 5 \text{ m}$, $\Delta t_{std} = 0.0005 \text{ s}$, $\Delta t = 0.0$

Fig. 22 Influence of time-step size, displacement plot, cas $(\Delta x_{std} = 5 \text{ m}, \Delta t_{std} = 0.0005 \text{ s}, \Delta x = 5 \text{ m}, \Delta t = 0.0002, 0.0005$

42

Table 3 List of PBS simulations

Case#	$\frac{\Delta x_{\rm std}}{(m)}$	$\Delta t_{\rm std}$ (s)	Δx (m)	Δt (s)
PBS1	2.5	0.0005	0.5, 2.5	0.0001
PBS2	2.5	0.0005	0.1, 0.5,	0.00002
PBS3	2.5	0.0005	2.5	0.0002, 0.00 0.001
PBS4	2.5	0.0005	2.5	0.00001, 0.0 0.0001

(a) Displacement time history (0.0

Fig. 24 Influence of grid spacing, displacement plot,

(a) At the top of the layer

Fig. 25 Influence of grid spacing, shear stress-strain $m, \Delta t = 0.0001 \text{ s}, A = 1 \text{ mm}$)

Fig. 27 Influence of time-step size, displacement plo A = 1 mm)

Fig. 28 Influence of time-step size, shear stress-strain response in the PBS sub-layer, case PBS3 $(\Delta x_{std} = 2.5 \text{ m}, \Delta t_{std} = 0.0005 \text{ s}, \Delta x = 2.5 \text{ m}, \Delta t = 0.0002, 0.0005, 0.001 \text{ s}, A = 1 \text{ mm})$

Fig. 30 Influence of time-step size, shear stress-strain n the bottom of the PBS sub-layer, case PBS4 ($\Delta x_{std} = 2.5$: 0.0005 s, $\Delta x = 2.5$ m, $\Delta t = 0.00001$, 0.00002,0.0001 s, A =

Fig. 31 Influence of grid spacing at different locations ale $\Delta x = 0.1, 0.5, 1 \text{ m}, \Delta t = 0.00002 \text{ s}, A = 1 \text{ mm}$

Fig. 32 Influence of time-step size at different locations along $\Delta x = 2.5 \text{ m}, \Delta t = 0.00001, 0.00002, 0.0001 \text{ s}, A = 1 \text{ mm})$

Fig. 33 Influence of grid spacing at different locations along $\Delta x = 0.1, 0.5, 1 \text{ m}, \Delta t = 0.00002 \text{ s}, A = 1 \text{ mm})$

Fig. 34 Influence of time-step size at different locations along the PBS $\Delta x = 2.5 \text{ m}, \Delta t = 0.00001, 0.00002, 0.0001 \text{ s}, A = 1 \text{ mm})$