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spaceAbstract Presented here is a numerical investigation
that (re-) appraises standard rules for space/time
discretization in seis- mic wave propagation analyses.
Although the issue is almost off the table of research,
situations are often encountered where (established)
discretization criteria are not observed and inaccurate
results possibly obtained. In particular, a detailed analysis
of discretization criteria is carried out for wave propa-
gation through elastic and elastic-plastic media. The
establish- ment of such criteria is especially important
when accurate prediction of high-frequency motion is
needed and/or in the presence of highly non-linear material
models. Current dis- cretization rules for wave problems in
solids are critically assessed as a conditio sine qua non for
improving verification/ validation procedures in applied
seismology and earthquake engineering. For this purpose,
the propagation of shear waves through a 1D stack of 3D
finite elements is considered, includ- ing the use of wide-
band input motions in combination with
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spaceboth linear elastic and non-linear elastic-plastic
material mod- els. The blind use of usual rules of thumb is
shown to be some- times debatable, and an effort is made
to provide improved discretization criteria. Possible pitfalls
of wave simulations are pointed out by highlighting the
dependence of discretization effects on time duration,
spatial location, material model and specific output
variable considered.

Keywords Wave propagation - Seismic - Discretization -
Elastic - Elastic-plastic - Verification

1 Introduction

The study of wave motion is of utmost importance in many
applied sciences, as it supports the understanding of
transient phenomena in many natural and anthropic
dynamic systems. In particular, seismic waves propagating
through the earth crust deserve the highest consideration,
especially in light of their destructive potential and socio-
economical impact.

In the last decades, mathematicians, geophysicists and
engineers have devoted massive research efforts to the pre-
diction of seismic motion, based on either analytical [21,
32-34, 39] or numerical methods [2, 53, 63]. When linear
elastic wave problems are considered, either time-domain
or frequency-domain solutions may be sought, whereas
time-domain approaches are usually needed in the pres-
ence of non-linearities (constitutive or geometrical). In this
respect, it should be remarked that much interest in
earthquake engineering is nowadays on non-linear wave
phenomena, since they govern (i) the occurrence of natural
catastrophes (e.g., landslides and debris flows) induced by
soil instabilities, such as liquefaction and strain localization
[18, 24, 63]; (ii) the interaction between geomaterials and

space

sacelt i thus apparent that reliable numerical simulations
of seismic motion and earthquake-soil-structure interaction
can only be performed by means of high-fidelity compu-
tational tools, capable of coping with the remarkable com-
plexity of the aforementioned problems. The accuracy of


mailto:jeremic@ucdavis.edu
mailto:f.pisano@tudelft.nl
mailto:ohei@shimz.co.jp
mailto:watanabe_kohei@shimz.co.jp

2

1,
| | stress'state |
T12 o Y

numerical predictions 1s In turn aitected Dy, at least, the
fol- lowing four factors:

1. selection of the numerical solution algorithm;
mathematical description of material behavior (consti-
tutive model);

3. computer implementation;

4. set-up of the computational discrete model.

The assessment of the above four items is the main core
of a thorough verification and validation process [3, 45,
51]: is the mathematical problem numerically solved to the
desired degree of accuracy? Do numerical results reason-
ably reproduce real world phenomena?

The present work focuses on the fourth item in the list,
and specifically on the selection of appropriate time-step
and element size in dynamic Finite Element (FE)
computations. This problem seems to have been solved
quite long ago in the form of “rules of thumb” for
space/time discretization [38, 41], so that not many works
on the subject have been pub- lished ever since [4, 5, 14,
55]. Furthermore, the relationship between discretization
and accuracy in wave simulations has been mainly
investigated for linear elastic problems.

In light of the above premises, the authors aim an up-
to-date contribution to the matter, also accounting for the
large importance assumed in recent years by non-linear,
elastic-plastic wave problems. The key features of the pre-
sent work are hereafter summarized:

— only 1D shear wave propagation tests are performed for
a more straightforward interpretation of numerical
results;

— discretization effects have been illustrated in both time
and frequency domains, and then quantified via mod-
ern misfit criteria formulated in the full time-frequency
domain;

— since discretization effects depend in general on the
numerical algorithm adopted, a widespread FE approxi-
mation scheme has been here adopted;

— the role of constitutive non-linearity (plasticity) is dis-
cussed;

— the whole study should be regarded as a numerical “fal-
sification test” for the “rules of thumb” previously men-
tioned [38, 41].

The ultimate goal of this work is to reopen the debate on

the accuracy of wave simulations from a verification/

validation perspective, also in the presence of constitutive
space
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Fig. 1 One dimensional (1D) shear wave propagation through a soil
layer

non-linearities. The results reported provide renovated
critical insight into, and review of, traditional discretization
rules for practical simulation purposes.

2 FE modeling of 1D seismic wave propagation

1D shear wave problems originate from the ideal situ-
ation in which wave propagation is nearly vertical, with
no lateral geometrical/material inhomogeneities. In these
conditions, all vertical cross-section can be regarded
as symmetry planes and the soil deposit undergoes a
“double plane-strain” deformation, with both horizon-
tal direct strains prevented by symmetry [10, 49]. As a
consequence, all variables only depend on time and ver-
tical elevation (the problem is geometrically one-dimen-
sional), whereas the stress state is still multi-axial [17].
The initial-boundary value problem under consideration is
sketched in Fig. 1.

Like in general 3D problems, the numerical analysis
of 1D seismic wave propagation requires a suitable com-
putational platform for (i) space/time discretization, (ii)
material modeling and (iii) simulation under given initial/
boundary conditions. The Real ESSI Simulator has been
used here for these purposes.

The Real ESSI Simulator is a software, hardware and
documentation system developed specifically for high-
fidelity, realistic modeling and simulation of earthquake-
soil structure-interaction (ESSI). The Real ESSI program
features a number of simple and advanced modeling fea-
tures. For example, on the finite element side, available
are solids elements (8, 20, 27, 8-27 node, dry and satu-
rated bricks), structural elements (trusses, beams, shells),
contact elements (frictional slip and gap, dry and satu-
rated), isolator and dissipator elements; on the material

space

sacemodeling side, available are elastic (isotropic, aniso-
tropic, linear and non-linear) and elastic-plastic models
(isotropic, anisotropic hardening). The seismic input can be
applied using the Domain Reduction Method [Z, 61], while
sequential and parallel versions of the program are
available (the latter is based on the Plastic Domain
Decomposition (PDD) method [25]). Recent applications of
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Real ESSI 10 seismic problems are documented, Ior

2.1 Space discretization and time marching

The Real ESSI program is based on a standard displace-

spacedescribed, namely (i) the standard linear elastic
material model, (ii) the elastic-plastic von Mises model
with linear kinematic hardening [26, 40] and (iii) the
bounding surface elastic-plastic model by [48].

2.2.1 Linear elastic model

Discretization issues will be first addressed with reference
to linear elastic problems. While relevant concepts in
elas- todynamics can be found in [21], it is only worth
remind- ing here the relationship between the shear wave
velocity

V. and the two elastic parameters (Young’s modulus E and
Poisson’s ratio ):

spacement FE formulation, where displacement
components are

n=1

U ='u + Ot A=vy)u +y *u
space(1)

2

spaceThe VMKH model is very well-known in literature
and widely employed for cyclically loaded metals, while
the application to soil dynamics is limited to undrained
loading conditions in combination with total stress analysis
[44, 63]. Although the assumption of linear hardening is
not the
spacebetween two subsequent time-steps n and n + 1.
Impor-
tantly, the expansion uses two parameters, 3 and Yy, govern-
ing the accuracy and stability properties of the algorithm. It
is worth reminding that the algorithm is unconditionally
stable as long as [23]:
spacemost accurate for soils', it has been here introduced
for numerical convenience. In fact, owing to linear
hardening, the post-yielding stiffness is constant, not
strain-dependent: this implies an unrealistic unbounded
strength, but allows to identify the elastic-plastic shear

. . spacey = L=
taken as unknown variables in the fmerical approximation

stiffness with no ambi- guity. Only four constitutive

pararglgg%res]neeql to be stz

. = = =+
spacey =, B=(y+

E — — —

G

space(4) space(3)
space[62]. As for space discretization, the 1D FE model has space

been
S

built using a stack of properly constrained 3D brick ele-
space2(1 +v)p p

spacements—as was previously done, for instance, by
[10]. Real ESSI program enables the use of 8-, 20- and 27-
node ele- ments, so that several options are given in terms
of spatial interpolation order.

The well-known Newmark method has been adopted
for time marching [43]. The main feature of the integra-
tion algorithm relates to the approximate series expan-
sion for displacement and velocity components, u and
v
respectively: 1
spacewhere p is the soil mass density and G = E/[2(1 +
v)] the
elastic shear modulus.
kinematic

2.2.2 Elastic-plastic: ~ von  Mises

hardening (VMKH) model

The relationship among discretization, accuracy and mate-
rial non-linearity will be first explored through the elastic-
plastic von Mises kinematic hardening (VMKH) model,
of the same kind described in [%%azég].

n+1u =y + Ol‘ W+ Qll 2_ B nu.. + B v-Hu-.

— two elastic parameters—E and ;
— one yielding parameter—k—proportional to the initial
spacey = 1/2 is required for second-order accuracy,

whereas

any y value larger than 1 / 2 introduces numerical
attenua- tion (damping). In this study, the pair y = 1/2
and 3 = 1/4 (no algorithmic dissipation) is exclusively
considered.

2.2 Material modeling

The Real ESSI program provides a number of mate- rial

modeling options, ranging from simple linear-elastic to

advanced elastic-plastic constitutive relationships for
spacesize of the cylindrical yield locus in the stress
space;

— one hardening parameter—h—governing the post-yield-
ing (elastic-plastic) stiffness.

2.2.3 Elastic-plastic: Pisano bounding surface (PBS)
model

The more sophisticated constitutive relationship recently
proposed by [48] will be also used. At variance with the
spacecyclically loaded soils [18, 63]. Hereafter, the material
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Cpﬂf‘ﬂ—
S
Tfi
space— T fi
1. sacedevelopment of inelastic strains from the very spacesinc (T fi) — -
. - i f
onset of loading. This is reproduced by exploiting the space— T f;
concept of “vanishing yield locus”; spacesinc (T fit)
2. frictional shear strength, i.e., depending on the effec-
tive confining pressure; (5)
3. non-linear hardening, implying a continuous transition Space

from small-strain to failure stiffness;
4. coupling between deviatoric and volumetric responses;
5. stiffness degradation and damping under cyclic shear
loading.

A remarkable feature of the PBS constitutive formulation
is the low number of input parameters required (only
seven), which makes the model particularly suitable for
practical use:

— two elastic parameters—E and —to characterize the

material behavior at vanishing strains;
space

(a) Time history

(b) Amplitude of Fourier spectrum

Fig. 2 Ormsby wavelet ( f1=0.1 Hz, fo=1 Hz, f3=18 Hz, f4=20 Hz)

space

space(T f) ,

— spaceone shear strength parameter—M—directly related
to the material frictional angle;
spaceu(t) = A
spacer fi
space— T f;
spacesinc (Tt fif) — ny
space— T f;

spacesinc (Tt fit)
— spacetwo parameters—*k; and {—governing the
develogrnent

space (mf) ,

space(Tt f) ,

-of plastic volumetric strains during shearing;

— two hardening parameters—h and m—to be identified
on the basis of stiffness degradation and damping cyclic
curves.

(mf) 2

Interested readers are addressed to [48] for details about
formulation, performance and calibration of the PBS model.

2.3 Initial/boundary conditions and input motion

All the FE results hereafter presented have been obtained
under the following initial and boundary conditions (Fig.

1):

1. the system is initially at rest (nil initial velocities and
accelerations);

2. a horizontal x-displacement time history is imposed at
the bottom boundary to reproduce rigid bedrock condi-
tions;

3. no loads are applied to the top boundary (free surface);

the aforementioned (;:dguglascm ;gge—strain” conditions

tasr- been _achieved by preventing y-displacements
throughout the model, as well as imposing master/slave

connections to nodes at the same elevation (tied nodes).

Amplitude (mm*s)

Ag for the input displacement, the Ormsby wavelet [52] fits

thg authors’ intent:
spacewhere t denotes theaphysicdl time and A the
signal ampli- tude, sinc(x) = (sin x)/x is the cardinal
sine function, f(i = 1, 2, 3, 4) stand for the low-cut,
low-pass, high-cut and high-pass frequencies,
respectively. The meaning of the f

frequencies can be grasped from Fig. 2b, illustrating the

amplitude Fourier spectrum of function (5). In particular,

the suitability of the Ormsby wavelet has a twofold
motivation:

1. function (5) has a number of sign reversals and will
induce several loading/unloading cycles into the soil
undergoing wave motion (Fig. 2a);

2. the peculiar flat branch in the amplitude Fourier spec-
trum (Fig. 2b) is convenient for frequency domain
analysis (see next section).

The above features of the Ormsby wavelet will enable
the analysis of discretization effects over frequency ranges
of choice. Although most seismic energy relates to frequen-

cies lower than 20 Hz, ensuring accuracy at higher
2

frequen- cies may be relevant when seismic serviceability
analyses are to be performed for structures, systems and
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components (SSCs) related to nuclear power plants and
other industrial objects.
space

2.4 s..Misfit criteria

The analysis of discretization effects requires objective
criteria to quantify the discrepancy (misfit) between differ-
ent numerical solutions. In numerical seismology, the dif-
ference seismogram between the numerical solution and a
reliable reference solution is often adopted for this
purpose, although it only enables visual/qualitative
observations; simple integral criteria (e.g., root mean
square misfit) can provide some quantitative insight, but
still with no distinc- tion of amplitude or phase errors.

A significant improvement in this area was introduced
by [36], who compared seismograms on the basis of the
time-frequency representation (TFR) obtained through
continuous wavelet transformation [22]. The TFR of signal
misfit allows to extract the time evolution of the spectral
content, and thus to define the following local time-fre-
quency envelope difference:

3 spaceLinear elastic wave simulations

1 OEC )

In this secti
is first disc

of discretization on accuracy
astic problems.

3.1 Standard rules for spacz/time discretization

The selection of appropriate grid spacing?_and time-step
size is usually based on very simple rules. As for space
dis- cretization, [41] stated that “the accuracy of the finite
ele- ment method depends on the ratio obtained by
dividing the length of the side of the largest element by
the minimum wavelength of elastic waves propagating in
the system. For accurate results this ratio should be
smaller than 1/12”. Since then, it has been believed that
approximately ten nodes per wavelength are appropriate
in most cases, whereas fewer than ten nodes are likely to
result in unde- sired numerical attenuation/dispersion.
Accordingly, suita-

space®E(t, ) = |W (1. )] = |Wu(r. )]
and time-frequency phase difference:
space(6)

spaceble maximum grid spacing is usually determined by
con- sidering the minimum relevant wavelength (or highest

frequency fmax) in the input signal [28]:

space®@P(t, f) = |Wul(t, f)]
spacearg W (1, f)

— w, ,
spT?ce arg Wu(t,f) 7

spacet,. IO O x <

space-min Vs

10 10f..
space
(10
spacewhere W (¢, f) and Wi(z, f) are the TFR (wavelet
trans- form) of the signal “under evaluation” and the
reference seismogram, respectively. As explained by [36], it
is also
possible to obtain purely time- or frequency-dependent
misfit measures by projecting t,, O [0 O [0 E and t,.
O O O O P onto one of the two domains. In
particular, the following single-values

measures for envelope misfit (EM)

spaceOn the other side, the time-step size also needs to be
lim- ited to ensure accuracy and stability [2]. In principle,
the smallest fundamental period of the system should be
rep- resented with about ten time-steps—same as for space
dis-

cretization. However, t,. JJOJO ¢ is often selected on
the basis of a

different physical argument, i.e., to avoid that a given wave
front reaches two consecutive nodes at the same time (this
would happen for too large t,. OO ¢ values):

spaceEM =
space ,|W

space
REF

space(r, f)|?

space(8)

t OO0 O:< spacet,. LJLIOILT x
,- <

V.
space
(11)

spaceand phase misfit (PM)

spaceCondition (11) ensures algorithmic stability in many

explicit schemes for hyperbolic differential problems [50],
P space ftf,&P(t, NI P

S nd is also often regarded as an accurac
chitétion for & y

spacePM =

!

space ,|W

space
REF

space(t, )|*
space(9)

spaceimplicit (unconditionally stable) time marching as well
(see Sect. 2.1).
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SDHCETT139 be EIHDRWEH 10 SEDHTHEE HHTPHEUHE and DHHSE — the arnpllfuae paramefer A has been always Set to pro-

e1Tors
when comparing different signal couples. It should be
recalled that the envelope function of an oscillating signal
is the smooth curve outlining its extremes, and therefore,
carries more information than single amplitude values at
given time. While the theoretical background for the above
misfit criteria is widely described by [36, 37], open-source
routines for misfit analysis are available at http:/www.
nuquake.eu/ComputerCodes/ (TF-MISFITS package). Dis-
cretization effects in wave propagation simulations will be
assessed in the following on the basis of EM and PM crite-
ria, as previously done by a number of authors [6, 19, 31,
42, 47].

space
3.2 Model parameters

The geometrical/mechanical parameters adopted for
elastic wave simulations are here reported. A uniform soil
layer has been considered, having thickness H 1 km and

made

of an elastic material with p = 2000 k%mi V.= 1000 m/s
and v = 0.3 (corresponding to G = 2 GPa). No
Rayleigh

damping has been introduced.

2 Henceforth, t,. 0 O O O x will always denote the vertical
node spacing, coin- ciding with the element thickness in the case
of 8-node bricks.

space

spaceTable 1 List of elastic

duce at the bottom of the layer a maximum displace-
ment of 1 mm.

As previously mentioned (Sect. 2.3), both inputs 1 and 2
have been used to explore the interplay of discretization
effects and input bandwidth.

3.3 Discussion of numerical results

The influence of grid spacing and time-step size are dis-
cussed separately for the sake of clarity. Since the Real
ESSI program is based on a displacement FE formulation,
displacement components are the most reliable output;
however, some attention is also paid to accelerations, post-
calculated through second-order central differentiation.
Table 1 provides a list of the comparative simulations

performed for linear problems. Each case is denoted by:

? maximum_ frequency fm in_ the input wavelet ( fiin
5)); (i) grid spacing” uUx; and (iii) Zme-step size Uty
rom standard discretization rules (105 (11); (iv) ux and
(v) ur actually used; (vi) type of brick elements

adopted.

The results being presented aim to assess the quality of
standard discretization rules, as well as the improvements
attainable through refined discretization. For this purpose,
the numerical results are discussed in both time and fre-
quency domains—the Fourier spectra of considered time
histories are plotted in terms of (i) amplitude and (ii) phase
difference with respect to the analytical solution (known at
the free surface). Additional quantitative insight is also
gained through the EM and PM misfit criteria introduced

in Sect. 2.4. Unless differently stated, numerical outputs at

Grid spacing effects at the top of the FE model are illus-
trated in Figs. 3, 4, 5, 6 for the cases EL1-EL5 (Table 1)
in terms of: (a—b) displacement time history; (c) Fourier
amplitude and (d) phase difference at the surface; (e) EM
and PM misfit (for each numerical solution, misfits are
calculated with respect to the exact analytical solution).
Starting from Fig. 4, displacement time histories are not
compared with the input motion (as done in Fig. 3a) for
the sake of brevity, whereas only a reduced time window

space space
Case # Jmax (Hz) Uxseq (M) Ufstd (S) ux (m)
ur (s) Brick type
spacesimulations o the top of the soil layer are considered.
EL1 20 5
EL2 20 5 3.3.1 Influence of grid spacing
EL3 50 2
EL4 50 2
EL5 20 5
EL6 20 5
EL7 20 5
EL8 50 2
EL9 50 2
EL10 20 5
space

As for the input motion, two different Ormsby wavelets
have been employed, corresponding with the following
input parameters in Eq. (5):

— inputl: f="°"7"7 " =277 7 7T " "_Hz
(plotted in
— input2: fi= = = =Hz;

around the output motion is displayed for clearer visualisa-
tion (e.g., as in Fig. 3b)

Figs. 3, 4, 5, 6 suggest the following observations (some
of which expected):

— even though ux, is set on the basis of the maximum
frequency fmax, its suitability is not uniform over the
input spectrum. Indeed, increasing inaccuracies in
the frequency domain are clearly visible as fnax is
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approached (check 1or 1mstance the kFourier amplitudes

compared in Figs. 3c and 4, 5, 6b). Grid spacing
affects output Fourier spectra both in arnplitm%a aAad

phase; & 2 1 -

— in all cases, envelope and phag ﬂrﬁsﬁts EM an& PBE

are quantitatively very similar %Frgs 3eand 4,5, %d) -

— reducing ux below ux, is beneficial only if ur 5 also
lower than Uz, This is apparent in Fig. 3e, wh
increase in EM and PM is observed as ux gets lower
than ux, Conversely, monotonic EM/PM trends
are
shown in Figs. 4, 5d;

— at given grid spacing ux, reducing the time-step
improves the numerical solution mostly in terms of
Fou-
rier phase, not amplitude (compares Figs. 3c—d, 4b—c).
It may be generally stated that, when ux is not
appropri- ate, reducing the time-step size does not
produce sub-

stantial improvements;

space
(a) Displacement time history (0.0-4.0 s)
(b) Displacement time history (2.2-3.8 s)
? — — — --- theory
£ 0.014-
E
g
=
<
g
5
2
5 ProyucTivy ey 15
20 5
15

10
Frequency (Hz)
20

(c) Amplitude of displacement Fourier spectrum

5.0

(d) Phase difference of dlsplaqeﬁnent Fourier
spectrum

Ax(m)

AX/ _\.x
Time (s) 2.0
2.5
3.0
(e) EM/PM misfits

(ref. solution:
analytical)

Fig. 3 Influence of grid spacing, dis Blacemem plot case EL1 (
max = 20 Hz, Uxgq = 5 m, Ufgg = 0.005s, ux =2,5,10 m, ur =

0.005 s, 8-node brick)

Sp@e —_ --- theory
—£ based on these initial exaj ples a grld spacing Ux in
the order of V5/20f ‘7 = xsm ensures high
ﬂJ ac v\ \VZ% lth

g accur
L@ = Oxlzv Otmlz

a

‘arules hold for low-order FEs (8-node brick elements) but
A are not affected by the frequencit-Bandividth lo# thelifiput
signal. In the latter respdf] #1g¢. 4, 5d show quan-

titatively similar EM-PM trends for fmax equal to 20 Hz

and 50 Hz. Also, minimum misfits are attained in the
@1/ €1, ratio has

--- theory

EL2 case (Fig. 4d) where a srnaller
been purposely set. — —

+7/2
0
—w/2

Phase Diff.(rad)

The above conclusions apply to 8-node brick elements,
while Fig. 6 shows that “ten elements per wavelength” are
still suitable when higher-order elements (here 27-node
bricks?) are employed. However, this lighter requirement for
grid

3 For a given number of nodes per wavelength, the size Ux of 27-node

elements along the propagation direction is double than for 8-node
bricks.

space
gacing seems to perform well in combination with

@/ V, and results in EM and PM lower than 10
% even for @ x/€Px, =

It is also important to evaluate grid spacing effects on
10.0 15.0
acceleration components, as they will affect the inertial
forces transmitted to man-made structures on the ground
ace. Since acceleration time histories are dominated by
high fre- quencies, ™e pporer performance of standard
discretization rules —at—high frequencies becomes more
evident. In Figs. 7 and 8, grid spacing plays qualitatively
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as I F1gs. 3, 4, 5, although the EM/PM frends—similar in

10 05 10 15 20 25
shape—are shifted upwards. This means that, in the AXSAX
presence of low-order ele- ments, more severe £
discretization requirements should be ful- filled if very (c) Phase difference of displacement Fouri@} spectfum
accurate accelerations are needed. (d) EM/PM misfits (ref. solution: anal%ical)
3.3.2 Influence of time-step size Fig. 5 Influence of grid spacing, displacement ploé case HL4A( 5
fmax = 50 Hz, Uxgg = 2 m, Utgg = 0.002 s, ux = 0.8, 2, 4 m, ur F
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4 Non-linear elastic-plastic wave simulations

This section concerns discretization effects in presence
of material non-linearity. As most commonly done in
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space

saceGeomechanics [63], the non-linear cyclic response of
geomaterials can be described in the framework of elasto-
plasticity, and here the VMKH and PM models described
in

spacemarching rule may be regarded as an upper bound for
non- linear problems (instead of (11)):

Ox
spaceSect. 2.2 have been adopted. Prior to presenting
numerical results, some preliminary remarks should be
made:

space@r <

spacel0V,
space(12)
space

— the non-linear problem under consideration cannot be
solved analytically. Therefore, the quality of discretiza-
tion settings may only be assessed by evaluating the
converging behavior of numerical solutions upon € x—
o1
refinement;

— with no analytical solution at hand, one needs engineer-
ing judgement to establish when the (unknown) exact
solution is reasonably approached. In this respect, light
is shed on several expected pitfalls, all relevant to the
global verification process [3, 45, 51];

— the accuracy of non-linear computations is highly
affected by the input amplitude. This governs the
amount of non-linearity mobilized by wave motion and,
as a consequence, the accuracy of numerical solutions
at varying discretization.

In non-linear (elastic-plastic) problems, discretization is
not only responsible for the numerical representation of
waves (dissipation, dispersion, stability), but also gov-
erns the accuracy of constitutive integration [8, 54]. For
instance, changes in time-step size will affect the strain
size driving the constitutive integration algorithm and, in
turn, the final simulation results. This dependence of the
consti- tutive response (material model and constitutive
integra- tion algorithm) on the dynamic step size precludes
direct development of automatic criteria for discretization.
How- ever, as tangent elastic-plastic response can be
established for any stress-strain combination, (lowest)
elastic-plastic (shear) stiffness may be used to develop
suitable discretiza- tion via Equation 4. Apparently, this
approach assumes that the stress-strain response is already
known, as is not the case when discretization is being set.
This means that an iterative approach is in principle
needed, whereby one will first design discretization based
on an estimate of the strain level, run the dynamic
simulation, and record the actual stress-strain response.
After few iterations, a stable discre- tization will be usually
achieved.

Tn this study, VMKH and PV COnstIttive equations
have been integrated via the standard forward Euler, explicit
algorithm [11, 15]. Although implicit algorithms may
possess better accuracy/stability properties, explicit
integration is often preferred for advanced constitutive for-
mulations and cyclic loading [27]. There is also wide con-
sensus on the poor performance in elastic-plastic computa-
tions of time-step sizes derived through elastic parameters
and Equation (11), especially in combination with explicit
stress-point algorithms. For this reason, the following time
spaceln the following, rules (10) and (12) will be assumed
as starting discretization criteria and critically assessed. For
shorter discussion, only input 1 ( fmax = 20 Hz) and 8-
node

brick elements are employed for non-linear simulations.

4.1 VMKH model
4.1.1 Model parameters and parametric analysis

A heterogeneous 1 km thick soil deposit has been consid-
ered, formed by a 200 m thick VMKH sub-layer resting on
an elastic stratum (remaining 800 m). At the surface, a thin
layer (5 m) of elastic material has been added to prevent
numerical problems with very strong motions and the so-
called whip effect. The following constitutive parameters
(see Sect. 2.2.2) have been set (same elastic parameters for
both the VMKH and the elastic sub-layers), with no algo-
rithmic nor Rayleigh damping introduced in numerical
computations.:

— mass density and elastic properties: p = 2000 kg/m?,
E = 5.2 GPa and 0.3, whence the elastic shear wave
velocity V. = 1000 m/s results (same elastic parameters

employed for both the elastic and the VMKH sub-lay-
ers);

— yielding parameter (radius of the von Mises cylinder):
k= 10.4 kPa;

— different h values (hardening parameter) have been set:

h = 0.5E, 0.05E, 0.01E.

In the analysis of VMKH cases, the influence of the
harden- ing parameter (h) and the input amplitude (A) has
been also considered, as they affect the material elastic-
plastic stiffness and the amount of plasticity mobilized.

The VMKH simula-

tion programme is reported in Table 2, where Otm has
been defermined through Equation (I12) (i.e., @1, =
©x/10V).

4.1.2 Influence of grid spacing and time- step size

The results in Figs. 16 and 17 exemplify the role played
by space discretization in elastic-plastic simulations.

These results have been obtained by employing a time-

step smaller than @7, (cases VMKH1-2 in Table 2), a
low input amplitude (A = 0.1 mm corresponds with a peak
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C ' C - b 16, 17a). Steady irreversible deformations are associated
two different values of the hardening parameter (2 = ith . . T .
0.5E and h = 0.05E). The following observatiofs arise with promipent static gom; ponents, (gt nil frequency) in
from the = at=0.000thenfooegier amplitude sppc- trum (Figs. 16, 17c), not
two figures: e 0------ present in the jnput Orm: !‘; wavelet (Fig. 2b);
space g wmericalrepresenigiiien--of_wavelengths is domi-
saceTable 2 List of VMKH %’ ,,,,,, nated by soil plasticity, Producing more deviation from
space = the input waveform than variations in grid spacing. For
%ase # Xxf;gr(n“)’) Ursta (5) ux(m) & (s) tRifreadon, only two Ux values have Ben used in this
spacesimulations . subsection 1085 1iEbtrative purposes, whereas EM/PM
VMKH1 5 0.0005 plots have been deemed not necessary;
VMKH2 5 0.0005 spacethe influence of ux seems slightly magnified when
VMKH3 5 0.0005 lower h values, and thus lower elastic-plastic stiffness,
VMKH4 5 0.0005 are set (see Fig. 17). It is indeed not surprising that
VMKHS 5 0.0005 Wave propagation in softer media may be more affected
VMKH6 5 0.0005 DY space discretization, as in linear problems. However,
VMKH7 5 F 0.0005 it should be noted that 4}y majply.ipfluences the final
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N na. strong mativation to |suggest €x = V./20f..
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— Spacepropagation through a dissipative elastic-plastic
mate- rial alters significantly the shape of the input
signal. All plots display significant wave
attenuation/distortion, while final unrecoverable
displacements are produced by soil plastifications (Figs.
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(c) Amplitude of displacement Fourier spectrum

(d) Phase difference of displacement Fourier
spectrum

Fig. 17 Influence of grid spacing, displacement plot, case
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spaceslope stability problems [17]. The occurrence of
soil failure may introduce additional discretization
require- ments for an accurate representation of the
collapse mechanism.

In addition, Fig. 18 illustrates the shear stress-strain
VMKH response at the deepest integration (Gauss) point
of the VMKH sub-layer. The material response is
bilinear (elastic and elastic-plastic), with the elastic
stiffness recovered upon stress reversal until new yield-
ing occurs [40]. As mentioned above, the observable
(small) differences in stress-strain response at different

spaceux may not be straightforwardly attributed to grid
spac- ing deficiencies, but rather to the coupled influence
of discretization in space and time on the global dynamics
of the system.

The influence of the time-step size is illustrated for
cases VMKH3-5 (Table 2) in Figs. 19, 20, encompassing
three h values (0.5E, 0.05E and 0.01E) and also including
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SpacCelower or close to 10 % (in combination with Ux =
ux,). This inference is further corroborated by the shear
stress- strain response at the bottom of the VMKH sub-
layer

(Fig. 20), exhibiting little sensitiveness to the time-step

pronouncedly _as h decreases. Ihe same previous
uncertainties about the interplay of grid spacing and
constitutive integration still apply to this case.

The discussion on the influence of ur at higher input
amplitude refers to Figs. 22, 23, illustrating the results
obtained for ux = ux; and h equal to 0.5E, 0.05E and
0.01E (cases VMKHS8-10 in Table 2); EM/PM plots comes

from the numerical reference solution corresponding with

@1 = ¥1./5=0.0001s.

The comparison of Figs. 21 and 22 suggests that,
even with a much larger input amplitude, Ux = uUx; is
still an appropriate grid spacing for elastic-plastic
problems, as long as ur is substantially reduced to
comply with (explicit) constitutive integration
requirements. This inference is sup-
ported by the following observations:

— ur affects not only the residual component of displace-
ment time histories (as in Fig. 21), but also their maxi-
mum/minimum transient values — i.e., the numerical

space
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spaceand input amplitude. The ] h=0.01F
of soil non-linearity mobilized _  5f
stiffness, in turn affecting the Ix
constitutive integration.

In Fig. 21, the parametric ¢
rep- licated for a higher input
and the same two different h v
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[]
=
)
(]

=
O

"h=0.05E "h=0.5€

Stress(kPa)
O U'|

|
U'I

A

in Table 2). -10
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(@) Displacement time history, h = U.5F (2.2-3.8
s)
(b) Displacement time history, h = 0.05E (2.2—
3.85s) /
0.0 AU 6001
~ 10°
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DU TS et —e—EM_h=0.5E
5 —e—PM h=0.5E
------------ -+ -EM_h=0.05E
g 0 -«--PM_h=0.05E
o ek --m- EM_h=0.01E
o YR -m-PM_h=0.01F
& 0
=) 1hol32 14 16
Time (sht/At,
(c) Displacement time history, h = 0.01E (2.2—3.8 s)
(d) EM/PM misfits (ref. solution: At = 0.0001 s)
FllgI 22 Influence of time-step size, disglacem nt K[/)Ilot cases
VMIKAS (h = 0.5E), VMKHS (h = 0.05E) and VMKHI0 (/2 =
0.01E) (Uxsig = 5 m, Ufgg = 0.0005 s, ux = 5 m, ur = 0.0002,
0.0005, 0.001 s, A = 1 mm)
Spacerepresentation of plastic dissipation. This is
E > = C}e_gl‘b,Evis— ib&@ﬁsﬂig,ﬁa; — 5m-Hrear — Sm-linear
£ .
1=
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& - - . . =2 the shear stress-strain-loops iani% 23 S{IOW how inac-
a a .

(a) Displacement time history, h = 0.5E (2.2-3.8
S)
(b) Displacement time history, h = 0.05E
(2.2-3.8 5)

Fig. 21 Influence of grid spacing, displacement plot, cases
VMKHSE6 (h = 0.5E) and VMKHY7 (h = 0.05E) (Uxsid = 5 m, Ufsd
=0.0005 s, ux =

1, 5m, ur = 0.0001s, A = 1 mm)
space
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e
=
I P S
o 00 02 04 06 08 10 12 14 16
Time (s)
€ 5 —0.0002s — 0.0005s — 0.001s --- 0.001s-linear
£ “ Ax=5m, h=0.05E i
P R I
@ R
o \
bl e CE
o
w-2 . .. ... .- .- - .- -|- - - - - - o - - - - - ..
o 00 02 04 06 08 10 12 14 16
Time (s)

curate the sif%]éa(tg)dlc'&ﬁ;#ﬁti%e rgs?oné% cati be whén
ur is too large (e.g., ur = 0.001 s) and substantial
plas-

tic degradation of material stiffness takes place (see
the case & = 0.01E).

This set of results suggests that ur should be at least in the
order of €x/20V, for acceptable constitutive integration
and overall accuracy in elastic-plastic simulations. How-

ever, this heuristic conclusion may be altered by the use of
different material models (see next section) and stress-point
algorithms.

4.2 PBS model
4.2.1 Model parameters and parametric analysis

The influence of space/time discretization is now
explored in combination with the non-linear PBS soil
model introduced in Sect. 2.2.3 [48]. As in real geo-
materials, the PBS model features an elastic-plastic
response since the very onset of loading (vanishing yield
locus), with the stiffness smoothly evolving

spacefrom small-strain elastic behavior to failure (nil
stiffness).

The results presented hereafter concern a 500 m thick
soil layer, whose upper 100 m are made of a non-linear
PBS soil resting on a 400 m elastic sub-layer. As done for
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the VMKH simulations, a thin layer (Z.5 m) oI elastic

<]
D
[«2]
D
N
Y

L\A—JI T, uL—

material has been added to prevent numerical problems
with very strong motions and the whip effect at the
ground

surface. Input 1 with A = 1 mm has been exclusively
con-

sidered, along with the following set of PBS parameters
[48] (the same elastic parameters for both the PBS and the
elastic sub-layers have been set):

— p =2000kg/m*, E = 1.3 GPa and 0.3, 11'nply1ng
an elastic shear wave velocity V, = 500 m/s

_sol

h=0.01E

T S——

Stress(kPa)
o

h=0.05E

— shear strength parameter: M = 1.2, corresponding
with
friction angle equal to 30 deg under triaxial compres-
sion;

— dilatancy parameters: k; = 0.0 and & = 0.0%

—0.05 0.00 0.05

Strain(%)

Ax=5m, At=0.0005s

—0.05 0.00
Strain{%)

(a) At=0.0002 s

— hardening parameters: # = 300 and 1.

The list of PBS simulations is reported in Table 3, while
the next figures will also illustrate the good performance
of the PBS model in reproducing the cyclic soil behavior.

Stress(kPa)

* Soil volume changes under shear loading have been inhibited for
the sake of simplicity. This aspect would further affect the overall
stiffness of the soil layer and require additional parametric analyses.

500

h=0.01E

h=0.05E
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%Inﬂuen e of time-step Elze shear stress-strain response
ottom o VMKH su er cases VMKH8 h =
%—O 05FE) and V h=0.01E) (Uxgg =
Sm utstd—OOO 5s,Ux =5m, A—lmm)
space
space Table 3 List of PBS simulations
Case## UXsid Ufgd (s) Ux (m)  uz(s) A (mm)
(m)
PBS1 2.5 0.0005 0.5,2.5 0.0001 1
PBS2 2.5 0.0005 0.1,0.5, 0.00002 1
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thus always quite limited. In presence of high non-

linearity, it seems safer to use uUx 4 + 5 times
smaller than @ xy = V/lofmax,

— the combination of explicit constitutive integration and
high non-linearity makes time-stepping effects quite
prominent, as is shown by Figs. 27 and 28.
Further,

Fig. 29 leads to conclude that @ = ©V1./50 may
be

needed to obtain EM errors lower than 10 % (Figs. 29,
30). Apparently, analysts have to compromise on accu-
racy and computational costs in these situations;

— as expected, the shear stress-strain cycles in Figs. 25

and 28 show that the sensitivity to discretization
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(c) x=460 m
(d) x=440 m

Fig. 32 Influence of time-step size at different locations along the
PBS layer, displacement plot, PBS4 case (st[d =2.5.m, Utgqg =
0.0005 s,

©x = 2.5m, €= 0.00001, 0.00002, 0.0001 s, A = 1 mm)
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spaceconvergence are not uniform along the soil deposit.
Figs. 31 and 32 illustrate in the time-domain the
displacements simulated at different depths in the non-
linear sub-layer (the vertical x axis points upward—Fig. 1)
and at different

@x and ur. These figures clearly point out that accuracy

spacerequirements may be more or less hard to satisfy
depend- ing on the specific spatial location. In 1D wave
propaga- tion problems, faster convergence is attained far
from the ground surface, since it requires satisfactory
accuracy in a lower number of nodes and integration
points.
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Fig. 34 Influence of time-step size at different locations along the
PBS layer, acceleration plot, PBS4 case (sttd =2.5m, otstd =
0.0005 s,

@x = 2.5m, €= 0.00001, 0.00002, 0.0001 s, A = 1 mm)

spaceConversely, the close relationship between plastic
strains and residual displacements has slender influence on
accel- eration components. In this respect, Figs. 33 and 34
show that, as long as reasonable grid spacing is set
(possibly in
the order of @x/2 = %ZQfmax), the sensitivity of accel-

eration components to €7 is much weaker than for
residual

displacements.

5 Concluding remarks

Previously established criteria for space/time discretization
in wave propagation FE simulations have been re-
appraised and critically discussed to strengthen verification
proce- dures in Computational Dynamics. The 1D
propagation of seismic shear waves (Ormsby wavelets)
through both linear and non-linear (elastic-plastic) media
has been numerically simulated, with focus on capturing
high-frequency motion and exploring the relationship
between material response and discretization effects. After
initial linear computa- tions, two different non-linear
material models (referred to as VMKH and PBS) have
been used at increasing level of complexity. The main
conclusions inferred are hereafter summarized:

b=l ] . . oo pal . -1 . 1
LIASUC SITTIUTULIOTNS - STy SHIU SPdUIT CITIIICII DILE)

and time-step size as per standard rules (®xsg = Vo/ 10/
and €1, = @t/V) has proven not always appropriate,
especially to reproduce high-frequency motion compo- nents

(this can be clearly visualized in the Fourier phase
spaceplane). When linear elements (8-node bricks) are

used,
?sx = @x./2 and Y1 = €1./2 seem to ensure sufficient

Tiecuracy over the whole frequency range (both in

ampli-
tude and 1phase); higher-order elements (e.g., 27-node
bricks) will allow the use of €x = €x, still in combina-

tion with s = €1,/2. Preserving accuracy in simulations
with large domains and/or time durations seems intrinsi-
cally more difficult, since attenuation/dispersion phenom-
ena are cumulative.

Elastic-plastic simulations Conclusive criteria for
elas- tic-plastic problems can be hardly established, as
space/ time discretization also interferes with the
integration of non-linear constitutive equations. In this
respect, different outcomes may be found depending on (i)
kind of non-lin- earity associated with the material model
(stiffness varia- tions during straining), (ii) stress-point
integration algorithm (e.g., explicit or implicit), (iii) input
motion amplitude. The experience gained through the use
of the PBS model (explicitly integrated in 8-node brick

elements) suggests

that @xy = Vi/ 10fnex and @1, = ©x/10V, may need to
b};e reduced by factors up to 4 + 5 and 50, respectively, in
the

presence of strong input motions and severe stiffness varia-
tions. Importantly, these conclusions also depend on which
output component is considered and where within the com-
putational domain.

The present study is, however, not conclusive, espe-
cially when it comes to non-linear elastic-plastic prob-
lems. There are in fact several aspects that will deserve in
the future further consideration, such as the implications

space

»ae0f using higher-order finite elements. The same comment
applies to geometrical effects (e.g., wave scattering) in
2D/3D problems, whose influence on discretization crite-
ria for elastic-plastic simulations would be per se a whole
research topic.

Acknowledgments The Authors wish to acknowledge the financial
support from the US-NRC, US-DOE and Shimizu Inc. Corporation
(Japan).

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http:/crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Englneerlng w1th Computers (2017) 33: 519 545

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Cheng Z, Jeremi¢

PhD the51s

nuclear power plants for near-field events.
University of California Davis

Argyris JH, Mlejnek HP (1991) Dynamics of structures. North-
Holland, Amsterdam

Babuska I, Oden JT (2004) Verification and validation in
compu- tational engineering and science: basic concepts.
Comput Meth- ods Appl Mech Eng 193(36):4057-4066

Bao H, Bielak J, Ghattas O, Kallivokas LF, O’Hallaron DR,
Shewchuk JR, Xu J (1998) Large-scale simulation of elastic
wave propagation in heterogeneous media on parallel
computers. Comput Methods Appl Mech Eng 152(1-2):85-102
Bayliss A, Goldstein CI, Turkel E (1985) On accuracy condi-
tions for the numerical computation of waves. J Comput Phys
59(3):396-404

Benjemaa M, Glinsky-Olivier N, Cruz-Atienza V, Virieux J,
Piperno S (2007) Dynamic non-planar crack rupture by a finite
volume method. Geophys J Int 171(1):271-285

Bielak J, Loukakis K, Hisada Y, Yoshimura C (2003) Domain
reduction method for three-dimensional earthquake mod-
eling in localized regions. part I: theory. Bull Seismol Soc Am
93(2):817-824

Borja RI (2013) Plasticity modeling and computation. Springer,
Berlin

Borja RI, Amies AP (1994) Multiaxial cyclic plasticity model for
clays. J Geotech Eng 120(6):1051-1070

. Borja RI, Chao H-Y, Montans FJ, Lin C-H (1999) Nonlinear

ground response at lotung Isst site. J Geotech Geoenvironmental
Eng 125(3):187-197
Chan WE Han NJ (1988) Plasticity for structural engineers.

B (2009) Numerical modeling and sim-
ulation ot pile in liquefiable soil. Soil Dyn Earthq Eng
29(11):1405-1416

Chopra AK (2000) Dynamics of structures: theory and applica-
tions to earthquake engineering, 2nd edn. Prentice Hall, Engle-
wood Cliffs

De Basabe JD, Sen MK (2007) Grid dispersion and stability cri-
teria of some common finite-element methods for acoustic and
elastic wave equations. Geophysics 72(6):T81-T95

Desai CS, Siriwardane HJ (1984) Constitutive laws for engineer-
ing materials with emphasis on geologic materials, Prentice—
Hall. Englewood Cliffs, p 07632

spacedi Prisco C, Pisano F (2011) Seismic response of rigid
shallow footings. Eur J Environ Civil Eng 15(sup1):185-221
di Prisco C, Pastor M, Pisano F (2012) Shear wave propagation
along infinite slopes: a theoretically based numerical study. Int
J Numer Anal Methods Geomech 36(5):619-642
di Prisco CG, Wood DM (2012) Mechanical behaviour of soils
under environmentallly induced cyclic loads, vol 534. Springer,
Berlin
Fichtner A, Igel H (2008) Efficient numerical surface wave
propagation through the optimization of discrete crustal mod-
elsa technique based on non-linear dispersion curve matching
(DCM). Geophys J Int 173(2):519-533
Gazetas G, Mylonakis G (1998) Seismic soil-structure interac-
tion: new evidence and emerging issues. In: Geotechnical
earth- quake engineering and soil dynamics III, ASCE, pp
1119-1174
Graff KF (1975) Wave motion in elastic solids. Courier Dover
Publice “ork
Holsch¢ @95) Wavelets: an analysis tool. Oxford Sci-
ence Pubucauons, Oxford
Hughes TJ (2012) The finite element method: linear static and
dynamic finite element analysis. Courier Dover Publications,
New York
Ishihara K (199A) Soil behaviour in earthquake geotechnics.
Oxford Universi' 7 Press, Oxford

B, Jie ¢ (2008) Parallel soil-foundation—structure

com- putations. In: Papadrakakis NLM, Charmpis DC,

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

space

38.

39.

40.

41.

42.

43.
44.
45.

46.

47.

25.

26.

earthquake engi- neermg Taylor and Franc1s London

B, Yang Z, Cheng Z, Jie G, K Sett K, Taiebat M, Preisig
M, Tafazzoli N, Tasiopoulou P, Mena JAA, Pisand F, Watanabe
K, Karapiperis K (2004) Lecture notes on computational geome-
chanics. In: Elastic finite elements for pressure sensitive materi-
als. Technical Report UCD-CompGeoMech—01-2004, Univer-
sity of California, Davis, 1989-2015
Jeremi¢B, Cheng Z, Taiebat M, Dafalias Y (2008) Numerical
simularion of fully saturated porous materials. Int J Numer Anal
Metho s Geomech 32(13):1635-1660
Jeremi¢B, Jie G, Preisig M, Tafazzoli N (2009) Time domain
simulation of soil-foundation-structure interaction in non-uni-
form s ils. Earthq Eng Struct Dyn 38(5):699-718
Jeremi¢B, Roche-Rivera R, Kammerer A, Tafazzoli J, Abell N,
Kamranimoghaddam B, Pisano F, Jeong C, Aldridge B (2013a)
The nrc essi simulator program: current status. In: Proceedings
nf the ctriictiiral mechanice in reactar technnlnov (SMiRTY 201

Jeremi¢ ¢ N, Blahoianu A
(2U13b) Seismic behavior of npp structures subjected to realistic
3D, inclined seismic motions, in variable layered soil/rock, on
surface or embedded foundations. Nucl Eng Design 265:85-94
Kaser M, Hermann V, de la Puente J (2008) Quantitative accu-
racy analysis of the discontinuous galerkin method for seismic
wave propagation. Geophys J Int 173:990-999

Kausel E (2006) Fundamental solutions in elastodynamics: a
compendium. Cambridge University Press, Cambridge

Kausel E, Manolis G (2000) Wave motion in earthquake engi-
neering. Wit Press, Southampton

Kolsky H (1963) Stress waves in solids, vol 1098. Courier
Dover Publications, New York

Kramer S (1996) Geotechnical earthquake engineering. Prentice
Hall, Upper Saddle River, NJ

Kristekova M, Kristek J, Moczo P, Day SM (2006) Misfit crite-
ria for quantitative comparison of seismograms. Bullettin of the
Seismological Society of America 96(5):1836-1850

Kristekova M, Kristek J, Moczo P (2009) Time-frequency misfit
and goodness-of-fit criteria for quantitative comparison of time
signals. Geophys J Int 178: 813-825

spaceKuhlemeyer R, Lysmer J (1973) Finite element method
accuracy for wave propagation problems. J Soil Mech Found Div,
p 99 (Tech Rpt)
Lai CG, Wilmanski K (2005) Surface waves in geomechan- ics:
direct and inverse modelling for soils and rocks, vol 481.
Springer, Berlin
Lemaitre J, Chaboche (1990) Mechanics of solid materials.
Cambridge university press, Cambridge
Lysmer J, Kuhlemeyer R (1969) Finite dynamic model for infi-
nite media. ASCE J Eng Mech Div 95(EM4):859-877
Moczo P, Kristek J, Galis M, Pazak P, Balazovjech M (2007) The
finite-difference and finite-element modeling of seismic wave
prop- agation and earthquake motion. Acta Phys Slovaca
57(2):177-406
Newmark NM (1959) A method of computation for structural
dynamics. J Eng Mech Div 85(3):67-94
Nova R (2012) Soil mechanics. Wiley, New York
Oberkampf WL, Trucano TG, Hirsch C (2004) Verification, vali-
dation, and predictive capability in computational engineering
and physics. Appl Mech Rev 57(5):345-384
Orbovi N, Jeremi B, Abell J, Luo C, Kennedy RP, Blaihoanu A
(2015) Use of non-linear, time domain analysis for design. In:
Proceedings of the structural mechanics in reactor technology
(SMIRT) 2015 Conference, Manchester, 10-14 Aug 2015
Pérez-Ruiz J, Luzén F, Garcia-Jerez A (2007) Scattering of elas-
i~ wrovag i cracked media using a finite difference method. Stud
s Geod 51(1):59-88
Jeremic

Jeremi¢



Engineering with Computers (2017) 33:519-545

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.
61.

62.

63.

T X T Tmulat T
damping in soils via a simple visco-elastic-plastic model. Soil
Dyn Earthq Eng 63:98-109

Prevost JH (1989) DYNA1D: a computer program for nonlinear
seismic site response analysis technical documentation. National
Center for Earthquake Engineering Research

Quarteroni A, Valli A (2008) Numerical approximation of partial
differential equations, vol 23. Springer, Berlin

Roy CJ, Oberkampf WL (2011) A comprehensive frame-
work for verification, validation, and uncertainty quantifica-
tion in scientific computing. Comput Methods Appl Mech Eng
200(25):2131-2144

spaceRyan H (1994) Ricker, Ormsby, Klauder, Butterworth—a
choice of wavelets. Can Soc Explor Geophys 19(7):8-9
Semblat JF, Pecker A (2009) Waves and vibrations in soils:
earthquakes, traffic, shocks, construction works. IUSS Press,
Pavia

Simo J, Hughes T (1998) Computational Inelasticity, vol 7.
Springer, Berlin

Smith WD (1975) The application of finite element analysis to
body wave propagation problems. Geophys J Int 42(2):747—
768

Taiebat M, Jeremi B, Dafalias YF, Kaynia AM, Cheng Z (2010)
Propagation of seismic waves through liquefied soils. Soil Dyn
Earthq Eng 30(4):236-257

Tasiopoulou P, Taiebat M, Tafazzoli N, Jeremi

validation of fully coupled behavior of porous media using cen-
trifuge test results. Coupled Syst Mech 4(1):37-65

Tasiopoulou P, Taiebat M, Tafazzoli N, Jeremic B (2015b)
Solu- tion verification procedures for modeling and simulation
of fully coupled porous media: static and dynamic behavior.
Coupled Syst Mech J 4(1):67-98

Wolf JP (1985) Dynamic soil-structure interaction. Prentice
Hall, Englewood Cliffs, NJ

Wood D (2004) Geotechnical modelling. Spon Press, London
Yoshimura C, Bielak J, Hisada Y (2003) Domain reduction
method for three-dimensional earthquake modeling in localized
regions. part II: Verification and examples. Bull Seismol Soc
Am 93(2):825-840

Zienkiewicz O, Taylor R (2000) The finite element method,
vol. 1: its basis and fundamentals, 5th edn. Butterworth-
Heinemann, London

Zienkiewicz OC, Chan A, Pastor M, Schrefler B, Shiomi T
(1999) Computational geomechanics—with special reference
to earthquake engineering. Wiley, Chichester

29
2.1 Space discretization and time marching

The Real ESSI program 1s based on a standard dis
ment FE formulation, where displacement componer
taken as unknown vanables 1n the numencal approxir
[62]. As for space discretization, the 1D FE model ha
built using a stack of properly constrained 3D bric
ments—as was previously done, for instance, by [10]
ESSI program enables the use of 8-, 20- and 27-nod
ments, so that several options are given in terms of
interpolation order.

The well-known Newmark method has been ac
tor ime marcqing [43]. The main feature of the 1n
tion algonthm relates to the approximate seres ¢
sion for displacement and veloc ity components,

: ¢ B (2015a) On
respectively:

; 2 1 o i
”_Ju="u+ﬁr"u-§—ﬂ"f i_ﬁ rlu+ﬁrl+]u

a4l ==

mHly ="+ At [[1 — ) M+ "

between two subsequent tme-steps noand n4 L I
tantly, the expansion uses two parameters, 5 and p, g
ing the accuracy and stability properties of the algo
It 15 worth reminding that the algorithm 15 unconditi
stable as long as [23]:

sk e A A
AT
¥ = 1/2 18 required for second-order accuracy, wil
any y value larger than 1 / 2 introduces numencal at
tion (damping). In this study, the pary = 1/2 and g
{no algonthmic dissipation) 15 exclusively considered

2.2 Material modeling
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AE(r,f) = Wt f)| — |[Wrer(t,f)

and time-frequency phase difference:

arg|[W(t,f)] — arg | Wrer (¢,f)
T

AP(1,f) = |Wrer(t,f1]

where Wit f) and Wgep(t,f) are the TFR (wavelet
torm) of the signal “under evaluation” and the refe
seismogram, respectively. As explamned by [36], 1t 1
possible to obtain purely ume- or frequency-depe
misfit measures by projecting AE and AP onto one ¢
two domains. In particular, the following single-y
measures for envelope mishit (EM)

Yo 2 |AE@ )P

EM =
Yo 2o |Weer ()12
and phase rmshit (PM)
y AP )2
pag — | 2ot 2 |APES)]

Yo 2 (Weer (1, )12
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Table 1 List of elastic

) \ Case if
simulations

fmu:

EL1
BEL2
EL3
EL4
EL5
ELa
EL7
ELE
EL%
EL1D

20
20
30
30
20
20
20
30
30
20

As lor the input motion, two different O
have been employed, commesponding with t

input parameters in Eq. (3):

- mput ! fi=0.1Hz, =1Hz, =18H

(plotted in Fig. 2);

- mput2: fi=01Hz, fr=1Hz, f;=45H:
— the amplitude parameter A has been alwa
duce at the bottom of the layer a maxim

mient of 1 mm.
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- based on these mitial examples, a grid
in the order of V;/20fqmax = Axeg/2 €
accuracy (EM and PM < 10 % ) in comt
At = Ax/2V; = Aty /2. These enhanced ¢
rules hold for low-order FEs (8-node bri
but are not affected by the frequency band
input signal. In the latter respect, Figs. 4, 5«
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Table 3 List of PRS simulations
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