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Abstract

Background: This study capitalized on coal and oil facility retirements to quantify their 

potential effects on fine particulate matter (PM2.5) concentrations and cardiorespiratory 

hospitalizations in affected areas using a generalized synthetic control method.

Methods: We identified 11 coal and oil facilities in California that retired between 2006 and 

2013. We classified zip code tabulation areas (ZCTA) as exposed or unexposed to a facility 

retirement using emissions information, distance, and a dispersion model. We calculated weekly 

ZCTA-specific PM2.5 concentrations based on previously estimated daily time-series PM2.5 

concentrations from an ensemble model, and weekly cardiorespiratory hospitalization rates based 

on hospitalization data collected by the California Department of Health Care Access and 

Information. We estimated the average differences in weekly average PM2.5 concentrations and 

cardiorespiratory hospitalization rates in four weeks after each facility retirement between the 

exposed ZCTAs and the synthetic control using all unexposed ZCTAs (i.e., the average treatment 

effect among the treated [ATT]) and pooled ATTs using meta-analysis. We conducted sensitivity 
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analyses to consider different classification schemes to distinguish exposed from unexposed 

ZCTAs, including aggregating outcomes with different time intervals and including a subset of 

facilities with reported retirement date confirmed via emission record.

Results: The pooled ATTs were 0.02μg/m3 (95% confidence interval (CI): −0.25 to 0.29μg/m3) 

and 0.34 per 10,000 person-weeks (95%CI: −0.08 to 0.75 per 10,000 person-weeks) following 

the facility closure for weekly PM2.5 and cardiorespiratory hospitalization rates, respectively. Our 

inferences remained the same after conducting sensitivity analyses..

Conclusions: We demonstrated a novel approach to study the potential benefits associated with 

industrial facility retirements. The declining contribution of industrial emissions to ambient air 

pollution in California may explain our null findings. We encourage future research to replicate 

this work in regions with different industrial activities.

Keywords

Quasi-experimental methods; air pollution; industrial facility; cardiorespiratory health

1. Introduction

It is well documented that air pollution contributes to the onset and exacerbation of 

cardiovascular and respiratory conditions (Alexeeff et al., 2021; Chen and Hoek, 2020; 

Dominici et al., 2006; Hoek et al., 2013; Orellano et al., 2021). Fine particulate matter 

(PM2.5) specifically, can be inhaled and enter cardiovascular and respiratory organ systems 

and trigger inflammation and oxidative stress (Brook et al., 2010; Pope and Burnett, 2007; 

Rajagopalan et al., 2018). Acute exposures to high levels of PM2.5 can exacerbate existing 

conditions and result in hospitalizations and increased mortality risk (Apte et al., 2015; 

Dominici et al., 2006; Hayes et al., 2020; Kioumourtzoglou et al., 2016; Orellano et al., 

2021; Shi et al., 2016). The chemical composition of PM2.5 varies substantially by emission 

source (e.g., vegetative burning, motor vehicles, and coal and oil facilities) and affects the 

toxicity of the pollution (Kim et al., 2003; Krall et al., 2013; Rohr and Wyzga, 2012; 

Thurston et al., 2016). Environmental regulatory policies, for example policies regulating 

energy sources for electricity production, can result in varying health benefits depending 

on the targeted emission source. Historically, coal and oil facilities fuel the majority of 

electricity production in the United States and emit hazardous air pollutants, including 

PM2.5. Over the last two decades, a combination of abundant and low-cost natural gas, 

changes in the economy, and environmental regulations have resulted in the closure of many 

coal and oil facilities nationwide (Lueken et al., 2016). Research that quantifies the change 

in health burden due to a well-defined intervention on air pollution, such as the closure of 

coal and oil facilities, can inform targeted interventions to improve population health (Zigler 

and Dominici, 2014).

Limited public health research has quantified the effect of real-world interventions on 

air quality and health effects of real-world interventions (Bell et al., 2011; Burns et 

al., 2019; Henneman et al., 2017). Previous epidemiologic studies of air pollution and 

cardiorespiratory outcomes typically use more traditional environmental epidemiologic 

methods to estimate a concentration-response function (e.g., the change in risk of the 

Chen et al. Page 2

Environ Res. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



outcome per unit change in air pollution exposure). Translating such results to evidence-

based action is challenging because of the heterogeneity in PM2.5 sources. Furthermore, 

these studies are subject to unmeasured confounding due to lifestyle behaviors like exercise, 

socioeconomic characteristics, and neighborhood characteristics which are difficult to 

sufficiently characterize with available data (Pope and Burnett, 2007).

Quasi-experimental methods offer a solution to some of these challenges in more traditional 

study designs and can isolate a causal effect due to a well-defined intervention (Bor, 

2016; Craig et al., 2017; O’Neill et al., 2020). The retirement of coal and oil facilities 

can be leveraged as a quasi-experiment (Remler and Van Ryzin, 2014, chap. 15). In this 

observational setting, we can capitalize on the difference between pre- and post- retirement 

changes between exposed and control areas to evaluate the effect of the intervention using 

quasi-experimental methods like difference-in-differences and generalized synthetic control 

(O’Neill et al., 2020).

In California, several coal and oil facilities closed between 2006 and 2014; these closures 

can be considered a quasi-experiment to quantify the effect of facility retirements on 

ambient levels of PM2.5 and cardiorespiratory hospitalizations in communities affected 

by the facility emissions. We implement a generalized synthetic control study design 

to create a synthetic control community that is unaffected by the facility emission and 

subsequent closure, and comparable to the communities affected in outcomes of interest 

after accounting for confounding (Xu, 2017). This approach allows us to isolate the effect of 

a specific source of air pollution, emissions from coal and oil facilities. The objective of this 

study is to estimate the effects of coal and oil facility retirements on ambient levels of PM2.5 

and cardiorespiratory hospitalizations to inform the public health relevance of environmental 

regulatory policy.

2. Methods

2.1. Measurement of Key Variables

We identified 15 coal and oil facilities in California that retired between January 1st 2006 

and December 31st, 2013 using data from US Energy Information Administration (EIA), US 

Environmental Protection Agency Air Markets Program (EPA AMPD), and the California 

Environmental Protection Agency Air Resources Board (California Air Resources Board, 

n.d.; US Energy Information Administration, n.d.; US Environmental Protection Agency, 

n.d.). Agency-reported retirement dates were used to define retirement dates for analysis. 

We used data from EIA for information on fuel type and the AMPD for facility geographic 

coordinates (US Energy Information Administration, n.d., n.d.).

The health outcome of interest for this study was cardiorespiratory hospitalizations. We 

obtained daily cardiovascular and respiratory hospitalizations in all California zip code 

tabulation areas (ZCTA) 2006 to 2013 from the California Department of Health Care 

Access and Information (formally known as the Office of Statewide Health Planning and 

Development) (“HCAI - Department of Health Care Access and Information,” n.d.). We 

combined cardiovascular and respiratory hospitalization counts for each ZCTA and retrieved 

population sizes from the 2010 U.S. Decennial Census to estimate weekly cardiorespiratory 
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hospitalization rates for each ZCTA. We used a weekly time interval for our main analyses 

to provide sufficient sample size.

We also included weekly ambient total PM2.5 concentrations as an outcome of interest for 

facility retirement. We calculated weekly ambient total PM2.5 concentrations from 2006 to 

2013 at the ZCTA level using previously estimated ZCTA level daily PM2.5 concentrations 

from an ensemble model that integrated multiple machine learning algorithms with a R2 of 

0.86 in 10-fold cross-validation (Aguilera et al., 2021). The ensemble model incorporated 

a large set of predictors such as meteorological variables, land-use variables and satellite-

derived variables to estimate ZCTA level daily PM2.5 concentrations in California (Aguilera 

et al., 2021). This exposure dataset has been utilized in other epidemiological studies 

(Aguilera et al., 2022; Letellier et al., 2022).

We used values from a dispersion-based exposure model, the HYSPLIT Average Dispersion 

(HyADS) model in our ZCTA exposure definition. (L. R. F. Henneman et al., 2019). HyADS 

estimates ZCTA-specific, monthly exposure to facility sulfur dioxide (SO2) emissions after 

considering meteorological conditions using the HYSPLIT transport and dispersion model 

(L. R. F. Henneman et al., 2019). For each facility location, HyADS tracks 100 air parcels 

starting at four times through the day (12:00am, 6:00am, 12:00pm, and 6:00pm) as they 

travel through the atmosphere for 7 days, selected as a reasonable atmospheric lifetime 

of sulfur. Wind speed and direction are taken from NCEP/NCAR Reanalysis data (Kalnay 

et al., 1996). SO2 emission data are obtained from the Environmental Protection Agency 

and Energy Information Administration (US Energy Information Administration, n.d.; US 

Environmental Protection Agency, n.d.). Air parcel locations are aggregated by month and 

weighted by monthly emissions (parcels within the first 1 hour of emissions and those that 

reach a height of zero are removed). The model output is unitless (air parcel counts weighted 

by emissions) and is interpreted as a relative metric that quantifies the influences of emitted 

PM2.5 precursors from each facility on ZCTAs and their change over time. The model 

performs well against air pollution regulatory monitors and more sophisticated chemical 

transport models and has been applied in epidemiological studies (Casey et al., 2020a; 

Daouda et al., 2021; L. R. Henneman et al., 2019; Henneman et al., 2021). The HyADS 

model is appropriate in this study because of its ability to model exposure to emissions from 

a large number of facilities over long periods. Facilities without emission data were excluded 

from the main analysis (n = 4).

2.2. Statistical Analysis

We applied the generalized synthetic control (GSC) design, a quasi-experimental method 

recently proposed by Xu et al. to estimate the impact of each facility retirements 

on two outcomes separately (weekly PM2.5 concentration and weekly cardiorespiratory 

hospitalizations) in the four weeks after the facility retirement (Xu, 2017). To conduct 

these analyses, we 1) defined and classified ZCTAs as exposed or control for each facility 

retirement and obtained outcome data for these ZCTAs in 26 weeks before and 4 weeks after 

the facility retirements, 2) estimated the average treatment effect among the treated (ATT) 

by estimating the mean differences in outcomes during four weeks after facility retirement 
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between the observed exposed ZCTAs and the imputed synthesized control for each facility 

closure with GSC, and 3) combined ATTs across all facility retirements with meta-analysis.

2.2.1. Identification of the exposed and control ZCTAs—We classified California 

ZCTAs as “exposed” and “control” to facility retirements, a proxy for presence or absence 

of influence from facility-related emissions, respectively. Our primary exposure definition 

combined the distance to facility and the monthly ZCTA-specific HyADS values from 2005 

to 2013. The distance to facility restricts exposed ZCTAs to those relatively close (i.e., 40 

kilometers) to the facility, where emissions like primary PM2.5 are more likely to influence 

outcomes. The monthly HyADS value quantifies the influences of emitted PM2.5 precursors 

from each facility on ZCTAs.

First, we calculated the annual average HyADS value as the average of monthly values over 

the calendar year before the closure for each retired facility. Second, we used the median 

annual average HyADS value of ZCTAs within 40 kilometers of the retired facility as the 

threshold value (see Table A.1). Distance to a retired facility was calculated using 2010 

population weighted ZCTA centroids and GPS location of the facility. Third, ZCTAs were 

classified as exposed to a facility retirement if they 1) are located within 40 kilometers of the 

retired facility and 2) had annual HyADS value greater than the threshold. Finally, ZCTAs 

were classified as controls if they 1) are located more than 40 kilometers from the retired 

facility and 2) had annual HyADS values less than the threshold value. For example, if 

a facility closed on April 26, 2012, we first calculated the annual average HyADS as the 

average of values from January to December of 2011 for each ZCTA. Next, we calculated 

the threshold as the median of 2011-HyADS values of ZCTAs within 40 kilometers if the 

retired facility. Then we categorized ZCTAs within 40 kilometers of the facility as exposed 

if their 2011-HyADS value was greater than the threshold. We also categorized ZCTAs more 

than 40 kilometers from the facility as control if their annual HyADS value was less than the 

threshold value.

This approach classified ZCTAs as exposed to the influence of facility-related emissions or 

not (Figure 1). Similar approaches to dichotomize neighborhoods as exposed and unexposed 

using HyADS data have been previously described (Casey et al., 2020a). We aggregated the 

HyADS value for the year prior to closure date for calculation of threshold value to represent 

the average influence from facility emissions for an entire year. Since the computation 

burden for GSC increases with the number of exposed ZCTAs, we also included a distance 

buffer of 40 kilometers to restrict the number of exposed ZCTAs to below 100.

2.2.2. Estimation of the Average Treatment Effect among the Treated—
Application of the GSC estimates an average treatment effect among the treated (ATT); 

we consider facility retirement as the treatment in this study. The day of retirement was 

included as the first day of the post-retirement period. The analysis was restricted to ZCTAs 

with at least three weekly values of both outcomes in four weeks before and after the 

retirement date, respectively. For each facility retirement and outcome combination, we 

ran a GSC analysis with 26 weeks of data before the retirement and four weeks of data 

after the retirement. We selected 26 weeks because we expect half a year before facility 

retirement should capture the trend in outcome pre-retirement. We selected 4 weeks after 
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facility retirement because we hypothesized an acute effect on air pollution levels and 

hospitalizations.

Using the GSC approach, we first constructed a “synthetic” control for the ZCTAs exposed 

to each facility retirement using data prior to the retirement from the exposed ZCTAs 

and all data from the control ZCTAs after accounting for time-fixed and time-varying 

confounding. Using a combination of the traditional synthetic control (weighting scheme) 

and an interactive fixed-effects model, the GSC estimated latent factors, factor loadings, 

and coefficients for measured time-varying confounders that approximate outcomes of the 

ZCTAs exposed to the facility retirement in the pre-retirement period. For more information 

on how these factors were estimated, please see the original article by Xu (Xu, 2017). 

Specifically, we accounted for weekly average temperature and dew point temperatures in 

the construction of synthetic control, given their known association with cardiovascular 

outcomes and potential spatial variation across ZCTAs (Green et al., 2019; Son et al., 2019; 

Song et al., 2017). For facility retirements with multiple exposed ZCTAs, we allowed the 

pre-treatment outcomes to vary for each ZCTA. Next, we imputed the hypothetical trend 

in the exposed ZCTAs had there been no facility retirement using factors estimated above 

and observed time-varying confounders in the exposed ZCTAs post retirement. We evaluated 

the performance of GSC by visually inspecting the alignment of pre-treatment outcomes 

between the exposed and control ZCTAs. We estimated the ATT as the mean differences in 

outcomes during four weeks after facility retirement between the observed exposed ZCTAs 

and the imputed synthesized control. We reported the weekly differences in outcomes after 

facility retirement. We estimated 95% confidence intervals using parametric bootstrapping. 

Finally, we calculated ATT for each facility retirement and pooled the mean ATTs across 

facilities using random-effect meta-analysis (“meta” package in R).

This study design accounts for measured and unmeasured time-fixed confounders (e.g., 

potential confounders that do not vary remarkably within months like age composition, 

socioeconomic status, and behavior characteristics of the population) and unmeasured 

time-varying confounders that vary with calendar time through the latent factors and 

factor loadings. The GSC approach also considers measured time-varying confounding by 

including covariates in the imputation of counterfactual trends in the exposed ZCTAs (Xu, 

2017). More details about this approach applied to environmental epidemiological settings 

and a discussion of differences with methods like difference-in-differences and traditional 

synthetic control have been previously described (O’Neill et al., 2020; Sheridan et al., 2022).

2.3. Sensitivity analyses

We conducted extensive sensitivity analyses to test the robustness of our results. First, 

we aggregated outcomes with different time intervals: daily and two weeks. Second, we 

explored different classification schemes to distinguish exposed from unexposed ZCTAs. We 

used the HyADS values in the same month of the retirement date during the year before 

instead of the annual average HyADS values to test any potential differential influence of 

emissions related to seasonal variations in metrological conditions. We also used a distance 

only approach to define exposure status. ZCTAs with a population-weighted centroid within 

5 kilometers of the retired facility were considered exposed and ZCTAs with centroids 
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outside of the 10km buffer of any retired facility were considered control. Finally, since the 

reported retirement date might not align with the date when emission stopped, we repeated 

the main analysis subset to facilities whose reported retirement date approximately aligns 

with the time when emissions was reported to be zero in the same or next month using data 

from the Environmental Protection Agency and the Energy Information Administration.

All analyses were conducted in RStudio with R version 4.1.0 (R Core Team, 2021; RStudio 

Team, 2021). Packages used are “gsynth” and “meta” (Balduzzi et al., 2019; Yiqing and 

Licheng Liu, 2021).

3. Results

We constructed a dataset with 11 facility retirements in California between 2006–01-01 and 

2013–12-31 (Figure 2). These facilities had a total facility-specific net generation capacity 

that ranges from 19 MW to 156 MW (Table A.1). The median number of exposed and 

control ZCTAs are 22 (min and max: 6 and 64 ZCTAs) and 1304 (min and max: 1203 and 

1382 ZCTAs), respectively. Table 1 summarizes the observed changes in average weekly 

outcome values in exposed and control ZCTAs during 26 weeks before and four weeks 

after facility retirement without adjusting for time-fixed or time-varying confounding, for 

each facility. Compared to control ZCTAs, we observed larger decreases in weekly average 

PM2.5 concentrations among exposed ZCTAs. There was no consistent pattern in change of 

weekly hospitalization rates; changes (post minus pre) in cardiorespiratory hospitalizations 

ranged from −0.7 to 1.0 in exposed ZCTAs and from −1.5 to 1.2 in control ZCTAs. We also 

included the average PM2.5 concentration and cardiovascular hospitalization rates before and 

after facility retirements separately in Table A.1.

Accounting for time-varying confounders with GSC method, we estimated facility-specific 

ATTs to evaluate the impact of each facility closure on weekly PM2.5 concentration and 

cardiorespiratory hospitalization rates separately. The GSC performs well with overlapping 

trends pre-retirement between the exposed ZCTAs and synthetic control, suggested by our 

facility-specific results (Figure 3, Figure A.1). Seven out of 11 facilities demonstrated 

negative ATTs for weekly PM2.5 concentration, suggesting a reduction in average weekly 

PM2.5 concentration during the four weeks post retirement of facility (Figure 4). Individual 

facility ATTs for weekly PM2.5 concentration ranged from −0.42 to 0.80 μg/m3. We 

also estimated the pooled ATT across all facility retirements, which is 0.02 μg/m3 (95% 

confidence interval (CI): −0.25 to 0.29 μg/m3) for weekly PM2.5 concentration. In analyses 

exploring the impact of facility closures on cardiorespiratory outcomes, nine out of 11 

facilities demonstrated positive ATT for weekly cardiorespiratory hospitalization rate, 

suggesting an increase in cardiorespiratory hospitalization rates post retirement (Figure 4). 

Individual facility ATTs ranged from −0.58 to 1.29 per 10,000 person-time. The pooled ATT 

across all facility retirements is 0.34 per 10,000 person-time (95% CI: −0.08 to 0.75 per 

10,000 person-time) for weekly cardiorespiratory hospitalization rate.

Our sensitivity analyses led to minor changes in numerical results, but inferences remained 

the same as main analysis. Compared to the HyADS exposure definition, we found slightly 

larger positive ATT with distance approach and negative ATT with the closure month 
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HyADS approach for weekly PM2.5 concentration. ATTs for weekly cardiorespiratory 

hospitalization rate are smaller but positive for both alternative approaches (Table A.2). 

Using daily or bi-weekly outcomes instead of weekly outcomes did not change the direction 

of ATTs for cardiorespiratory hospitalization rate, while the ATTs for PM2.5 concentration 

became negative (Table A.2). Considering the subset of facilities where the administrative 

retirement date aligned with emissions data also led to no change in direction of ATTs for 

cardiorespiratory hospitalization rate but the ATTs for weekly PM2.5 concentration became 

more negative (Table A.2).

4. Discussion

In this study, we examined the effect of oil and coal facility retirement on weekly 

ambient levels of PM2.5 and on weekly cardiorespiratory hospitalization rates. This study 

demonstrates the use of a novel quasi-experimental study design, the generalized synthetic 

control, in environmental epidemiology. Our results suggest that facility closures did 

not result in either a measurable change in PM2.5 concentrations or cardiorespiratory 

hospitalization rates in California, 2006–2013.

Previous studies have looked at the closure of oil and coal facilities in relation to medium- 

or long-term change in perinatal outcomes, asthma outcomes and air pollution (Casey et 

al., 2020b, 2018). A prior study used quasi-experimental designs to look at the closure 

and retrofit of coal facilities with higher net generation capacity near Louisville, Kentucky 

and found a reduction in air pollution and asthma burden (Casey et al., 2020b, 2020a). 

In California, researchers used a difference-in-differences method and found that annual 

preterm was reduced and fertility rates increased after facility retirements, potentially due 

to reductions in air pollution (Casey et al., 2018).Here, we use a GSC method that is 

advantageous over other quasi-experimental designs like difference-in-differences but did 

not find an effect of facility retirements on ambient levels of PM2.5 or cardiorespiratory 

hospitalization rates in the month immediately after facility closure in California. The 

GSC can flexibly account for time-varying confounding instead of assuming a “parallel 

trend” (i.e., no time-varying confounding) (Sheridan et al., 2022). Furthermore, GSC can 

accommodate settings where there are multiple treated units (i.e., multiple ZCTAs affected 

by one facility closure) (Xu, 2017). However, like all controlled pre-post designs, GSC 

assumes no additional event coinciding with the facility retirement that affects only the 

exposed or majority of the controls. For example, a relatively small wildfire near the facility 

would likely affect the exposed zip codes only but we did not observe any wildfire smoke 

events in California around the facility closure periods. We do not expect any major events, 

including wildfire smoke events, in California during the study period.

Our largely null findings can be interpreted in different ways. First, the contribution of 

active oil and coal power plant to ambient PM2.5 in California might be minimal, especially 

given the relatively low net generation capacity of our retired facilities. The contribution 

of industrial emissions to ambient air pollution in the U.S. has declined while other major 

emitting sources like wildfires increased (Ford et al., 2018; Tschofen et al., 2019). Thus, low 

PM2.5 level pre-retirement might make detecting a small effect more challenging. Second, 

we focused on the impact of facility closure during the month immediately after facility 
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closure, while the impact might emerge after a longer period, especially in health outcomes 

like hospitalization. Third, evaluating impacts of facility retirement on ambient air pollution 

and health outcomes requires careful evaluation of the facility closure information. For 

example, our study design relies on the reported facility closure date to define the time 

after which we expect a change in air pollution and health outcomes due to emission 

reduction from the closure. However, true emissions changes may not coincide with these 

administrative dates, for example, plants may ramp down production in the lead-up to 

shutting down completely. To address this, we repeated the analyses among a subset 

of facilities where the trends in emissions approximately aligned with the administrative 

retirement date and found a more pronounced decrease in air pollution after closure of 

these facilities (Table A.2), suggesting that the discrepancy between administrative and true 

closure date may partly explain the null results in the main analysis.

Next, defining the exposed spatial unit is challenging. We classified ZCTAs as exposed 

or unexposed based on estimates from annual average HyADS values. Although HyADS 

values incorporate meteorological conditions to evaluate transport of pollutants in the air, 

utilizing the annual average might neglect the seasonal change in chemical transformations 

of emitted sulfur dioxide to sulfate PM2.5. However, when we conducted sensitivity analyses 

employing a similar definition that used the average HyADS value in the same month of 

facility retirement during the year prior to the retirement, results changed only minimally 

(Table A.2). Similarly, we found minimal change in the results when basing exposure on 

distance from the facility rather than HyADS values (Table A.2). Furthermore, because we 

only evaluated the impact of facility closure within a month, we might have missed potential 

long-term effects on exposure and health. Finally, we used changes in PM2.5 concentration 

to represent changes in ambient air pollution while other harmful air pollutants could have 

changed as well. For example, decreases in nitrogen oxides titration due to decreases in 

nitrogen oxides emission (which were not directly addressed here) might lead to increases 

in ground level ozone in ZCTAs nearby facilities with high nitrogen oxides concentrations 

(Qian et al., 2019). Such increases in ground level ozone might partly explain the observed 

small increase in cardiorespiratory hospitalization rates due to facility retirements.

Estimating the impact of a specific intervention like facility closure on ambient levels 

of PM2.5 and health outcomes with quasi-experimental methods still provides important 

information to policymakers (Burns et al., 2019; Health Effects Institute, 2003). Industrial 

activity and environmental policies have dramatically changed what constitutes air pollution 

in a local area. As we embark on an energy transition, we encourage future researchers to 

replicate our work in other regions and settings and have provided code to facilitate future 

applications.
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• We examined the impact of facility closures on air pollution and 

hospitalizations.

• We used a generalized synthetic control method to control for confounding.

• We observed no change in average weekly fine particulate matter due to 

closure.

• We observed no change in average weekly hospitalizations due to closure.
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Figure 1. Flowchart describing the identification of exposed and unexposed ZCTAs for eligible 
coal and oil facilities in California, 2006–2013.
This figure demonstrates exposure classification for Facility 7. This classification scheme is 

repeated for each eligible facility. Note: threshold HyADS value is defined as the median 

of annual average HyADS values of all ZCTAs within 40km of the facility the year 

before reported retirement date. We use 2011-HyADS for Facility 7 exposure definitions. 

Abbreviations: Sulfur dioxide, SO2; zip code tabulation area, ZCTA; fine particulate matter, 

PM2.5; HYSPLIT Average Dispersion, HyADS.
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Figure 2. Map of retired facilities in California, 2006–2013 and SO2 emissions the year prior to 
facility retirement.
Facilities retired in 2006 (Facility 2), 2010 (Facilities 1 and 4), 2011 (Facilities 3 and 11), 

and 2012 (Facilities 5 through 10).

Chen et al. Page 16

Environ Res. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Estimated trends in weekly average PM2.5 concentration and cardiorespiratory 
hospitalization rates of exposed and synthesized control before and after closure of example 
facility (Facility 7).
Black line indicates the estimated outcome for exposed ZCTAs, while blue dotted line 

indicates the counterfactual outcome estimated with synthetic control ZCTAs. Shades 

represent middle 90% of exposed (grey) and control (blue) ZCTAs.
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Figure 4. 
Forest plot of estimated average treatment effect among exposed (ATT) for weekly average 

PM2.5 concentration and cardiorespiratory hospitalization rates, across all facilities.
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