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Abstract: 

Evapotranspiration (ET) is a major hydrologic flux used in water resources 

planning and irrigation management. While recent advances in remote 

sensing (RS) have enabled availability of high spatial and temporal resolution 

ET data, a lack of information related to error in the estimations has made it 

challenging to use this data for on-farm irrigation management decision 

making. In this study, three commonly used single-source RS ET models 

(pySEBAL- a new version of Surface Energy Balance Algorithm for Land; SEBS-

Surface Energy Balance System algorithm; and METRIC - Mapping 

Evapotranspiration at High Resolution with Internalized Calibration) were used

to estimate daily actual evapotranspiration (ETa) for almond, processing 

tomato, and maize in the Central Valley of California. Model evaluation was 

conducted by comparing the predicted ETa from RS with in-situ measured ETa 

using surface renewal. Results indicated that the RS-based ETa estimations for

all three models were within acceptable levels of uncertainty and agreed well 

with surface renewal estimates except for the underestimation by pySEBAL 

and METRIC during early season growth stages of processing tomatoes. This 

underestimation was attributed to the lack of accuracy when using single 

source ET models under lower vegetation cover condition (when ET is 

dominated by soil evaporation). Better estimates of ETa with pySEBAL and 

METRIC were detected at full cover, which explains the applicability of these 

two models to irrigation management during peak crop water demand. SEBS 

performed the best among the three RS-based models for daily ETa estimation

for all crops. This suggests that SEBS-based ETa estimates can be adopted in 

operational irrigation management programs for farms that have not installed 

in field ET sensors such as Tule Sensors (Tule Technologies Inc.). In addition, 

RS based ET is spatially distributed which can help to identity spatial 

variability between different irrigation zones.
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1. Introduction 

Climate change and population growth have put a lot of pressure on the finite 

fresh water resources on the earth (Mancosu et al., 2015; Nyolei et al., 2019). 

California’s Central Valley is one of the most productive agricultural regions in 

the world. According to the recent USDA Irrigation and Water Management 

Survey, in 2018 California had approximately 3.403 million hectares of 

irrigated farmland (USDA, 2018). California’s agriculture is very diverse 

ranging from livestock, to field crops and specialty crops. According to the 

California Department of Food and Agriculture, in 2018 California farms and 

ranches received approximately $50 billion dollars in cash receipts for their 

output (CDFA, 2018). However, the recent multi year drought, competition for 

water from other users (urban and environmental), and groundwater depletion

threaten sustainability of California’s irrigated agriculture. To remain viable, 

California farmers will need to optimize agricultural water management by 

increasing water productivity through adoption of advanced management 

practices such as site-specific zone irrigation Management. 

Recent new water regulations such as the Sustainable Groundwater 

Management Act (SGMA) will be forcing farmers to adapt to constrained water

supplies when the new regulations are fully implemented. ET is a major 

hydrological flux that links water, energy, and carbon cycles, and plays an 

important role in hydrology, meteorology, and agricultural water management

(Li et al., 2009; Su, 2002; Anderson et al., 2008; Allen et al., 2011a; Hu et al., 

2018; Zhao et al., 2013). Site-specific irrigation management requires 

knowing crop ETa for each management zone. Conventional ET estimation 

techniques, such as Bowen ratio, eddy covariance, surface renewal, weighing 
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lysimeter, soil water balance, and scintillometer, can provide relatively 

accurate estimates of ETa at field scale but are not spatially explicit and some 

are expensive and not readily available to growers (Wang and Dickinson, 

2012; Long et al., 2014). The ability of remote sensing based models to 

provide ETa at high spatiotemporal resolutions makes them suitable for scaling

up and commercialization in precision agricultural water management (Lian 

and Huang, 2016; Rango, 1994). Because of its potential benefits, this topic 

has attracted a lot of attention from researchers over the past several 

decades (Bastiaanssen et al., 1998; Su, 2002; Jiang and Islam, 1999; Allen et 

al., 2007a; Senay et al., 2016). Despite differences in theory and complexity 

of these models, they generate reasonable ETa maps for different specific 

conditions with acceptable error and uncertainty (Khan et al., 2010; Tasumi 

and Kimura, 2013). 

Most RS-based ETa estimation models estimate only instantaneous or daily ETa

on the satellite overpass date, while most practical applications in water 

resources and agricultural managements long require time-series of daily ETa 

at the field scale. Therefore, it is essential to obtain long time-series estimates

of ETa. Landsat 8 provides an opportunity for an 8-day overpass frequency 

(usable images can be impacted by clouds) which makes it suitable for 

monitoring water use and vegetation conditions. Landsat allows calculation of 

the Normalized Difference Vegetation Index (NDVI) at 30 m resolution. Land 

surface temperature is acquired at different spatial resolutions based on the 

Landsat mission (120 m for the thermal band in Landsat 5, 60 m for Landsat 

7, and 100 m for Landsat 8). Landsat also provides the longest most 

continuous measurements of relevant bands for agricultural water 

management. Over the past two decades, RS-based ET models using Landsat 

imagery have been validated both at the field scale and the regional scale 

(Mohamed et al., 2004; Whitfield et al., 2011; Bastiaanssen et al., 2002; Allen 

et al., 2007a; Evett et al., 2012).
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The most commonly used RS based ETa models can be divided into two 

categories. The first is based on semi-empirical methods using vegetation 

indices from surface reflectance data to estimate crop coefficients (Kc) and 

then calculating ETa using the estimated Kc and reference evapotranspiration 

(ET0), and the second on biophysical processes such as the surface energy 

balance. One major weakness of the semi-empirical models is the requirement

of prior knowing site-specific parameters, which limits the application of these

models to estimate ETa over regional scales with variable surface conditions. 

ETa estimation models based on the surface energy balance can be divided 

into two groups: one-source and two-source models. One-source models 

consider soil and vegetation as an integration with a unified surface 

temperature to do land surface energy exchange (Bastiaanssen et al., 1998; 

Allen et al., 2007b; Su, 2002; Carlson, 2007; Senay et al., 2007). Two-source 

models simulate evaporation and transpiration separately (Norman et al., 

1995; Zhang et al., 2005; Mu et al., 2011; Long and Singh, 2012). The most 

difficult part in using two-source ET models are that they require the pre-

knowledge of surface temperature of soil and vegetation, which is usually not 

directly obtainable from satellite images. Thus, single-source models are often

used among many RS-based ET estimation models: e.g., Surface Energy 

Balance Algorithm for Land (SEBAL) (Bastiaanssen et al., 1998), Mapping 

Evapotranspiration at High Resolution with Internalized Calibration (METRIC) 

(Allen et al., 2007b), the Simplified Surface Energy Balance (SSEB) (Senay et 

al., 2007) and the Surface Energy Balance System (SEBS) (Su, 2002). SEBAL 

has long been recognized as the most suitable RS-based model to estimate 

ETa without prior knowledge of the field conditions, such as crop types, soils 

and management practices (Bastiaanssen et al., 2005; Nyolei et al., 2019). 

The SEBAL model and its variant METRIC model employ the contextual 

method in ET estimation, in which pixel-wise sensible heat flux and latent heat

flux are calculated under the constraint of selected hot and cold extreme 
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pixels within an area of interest. It uses the information of the whole satellite 

image for the estimation of ETa at each pixel. SEBS, based on single-pixel 

method, calculates sensible heat flux (H) and latent heat flux (λE) by solving 

the surface energy budget for each pixel independently from other pixels, 

which requires the ground observation of vegetation height, surface wind 

speed and air temperature.

SEBAL and METRIC, employ the contextual method that requires the user to 

select “anchor” pixels with extreme temperature and vegetation conditions, 

which affects the accuracy of these models for ETa estimation when/where a 

hot/cold pixel cannot be easily selected by the user. Consequently, selecting 

pixels manually causes bias in ETa estimation, and the process of manually 

selecting anchor pixels is time-consuming and subjective. To overcome the 

challenges of manual anchor pixel selection, semi-automated and automated 

selection procedures to identify cold and hot pixels were developed recently 

(Jaafar and Ahmad, 2019). This work demonstrated that semi-automated and 

automated anchor pixel selection procedures could be used to identify hot and

cold pixels based on parameters characterizing extreme conditions in the 

satellite image, such as surface albedo, roughness length, land surface 

temperature, and NDVI. A new python version of SEBAL model 3.0, pySEBAL, 

incorporates an automation pixel selection procedure and is currently under 

development and testing at the IHE-Delft Institute (UNESCO-IHE, 2018). 

Bhattarai et al. (2017) proposed a fully automated procedure and applied it to 

SEBAL and METRIC models based on an exhaustive search algorithm, and the 

comparison of the ETa results with manual pixel selection procedures showed 

good agreement. Although the automated pixel selection procedure still 

requires pre-defined information of the hot and cold pixels, this technique can 

help in eliminating user subjectivity.

  Spatial field-scale ETa estimation from RS-based models are widely used in 
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irrigation management. They provide the amount of water that needs to be 

applied to each irrigation zone to meet crop water needs (Sanchez et al., 

2017). Validation of ETa results from RS-based models are usually done using 

conventional ground-based ETa measurement techniques such as weighing 

lysimeters and micrometeorological methods (eddy covariance, surface 

renewal, Bowen ratio energy balance, etc.). Allen et al. 2011b concluded that 

considerable accuracy of ground-based ETa measurements can be obtained 

once these instruments were correctly installed and operated. Most of these 

ground-based ETa measurement techniques are expensive to implement and 

need to be installed and operated by experienced technicians (Snyder et al., 

2008). 

However, simpler micrometeorological approaches such as surface renewal 

can significantly reduce cost but require trained technicians to operate 

properly. With the surface renewal, crop ETa can be determined by calculating 

it as the residual of the energy balance. H derived from the surface renewal 

techniques obtained by a simpler and less expensive method, which uses fine 

wire thermocouples to measure high frequency air temperatures at the 

surface-atmosphere interface (Mengistu and Savage, 2010; Hu et al., 2018; 

Shapland et al., 2012). In general, surface renewal measurements costs much 

less than many other ground-based ET measurement techniques such as eddy

covariance, thus it provides a low-cost way to measure crop ETa but requires 

measuring or estimating net radiation. As early as 1995, Kyaw et al. (1995) 

reported that the surface renewal method could be used accurately for stable 

conditions for canopies of 6 m high or lower, and calibration against eddy 

covariance or other methods may be needed under unstable conditions when 

the surface renewal errors are greater. Later, the application of surface 

renewal in ETa estimation has been conducted for various crops, including 

processing tomato (Rosa et al., 2013), grapevine (Spano et al., 2000), pecans 

(Simmons et al., 2007), cotton (Payero and Harris 2010), etc. Good correction 
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between surface renewal method and other ground-based ET measurements, 

such as lysimeters and eddy covariance, were reported in these researches. 

These results, however, are preliminary and additional testing with other 

crops and environments are now underway. Great potential has been 

demonstrated for using the surface renewal method as a cheaper alternative 

to lysimeters and eddy covariance for directly measuring daily ET. In 

California, the surface renewal approach has been successfully 

commercialized by Tule Technologies Inc. (http://www.tuletechnologies.com/). 

The farmer pays an annual subscription fee, the company processes surface 

energy fluxes, and delivers field specific daily ETa to the farmer. Since 2017, 

many studies reported the good correlation between the ET estimations from 

the Tule Technologies surface renewal stations and eddy covariance flux 

towers (Fulton et al., 2017; Rieger, 2017; Zaccaria et al., 2017; Montazar et 

al., 2018). 

There is a need to compare this new technology with existing remote sensing 

models. The objectives of this study were to 1) compare ETa from three 

remote sensing based models (pySEBAL, METRIC, and SEBS) to ground-based 

measurements from surface renewal stations in almonds, processing 

tomatoes, and maize, and 2) evaluate energy balance components on satellite

overpass date from the three models to identify causes of deviation and to 

quantify sources of uncertainty.

2. Materials and Methods

2.1 Model description

Three single-source RS-based ET models (pySEBAL, METRIC and SEBS ) were 

selected for evaluation of ETa. This section describes the specific algorithms 

for each model. All three models are based on the surface energy balance. ETa

is calculated based on the acquisition of satellite imagery containing the 

radiometric information at the satellite overpass time. Thus, instantaneous ETa
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calculations are first conducted and then converted to daily ETa. Due to the 

lack of information on the surface resistances related to the evaporative 

process, the instantaneous latent heat flux from these three RS-based models 

are all computed as a “residual” of the surface energy balance equation 

(Kustas et al., 1994; Boegh et al., 2002):

                         λE=Rn−H−G                                 (1)

where λE is the instantaneous latent heat flux in the atmosphere boundary 

layer (W/m2), Rn is the instantaneous net radiation flux (W/m2), H is the 

instantaneous sensible heat flux (W/m2) and G is the instantaneous soil heat 

flux (W/m2). Similarities and differences between these three RS-based ET 

models are described in the next sections.

2.1.1 pySEBAL

pySEBAL is a version of the SEBAL algorithm that has been developed by 

Hessels et al. (2017) in Python environment, which is an open source platform

that run SEBAL by semi-automatically processing selected Landsat satellite 

imagery. Both pySEBAL and METRIC use an automated anchor pixel approach 

in selecting cold and hot pixels. The selection of cold and hot pixels involves 

setting a predefined criterion and then using computer algorithms to identify 

the pixels in the image that meet those criteria. The predefined criteria 

includes assessing ranges in NDVI, Ts, momentum roughness length (zom), and

α. Rn is calculated by deducting all outgoing radiation fluxes from all incoming 

radiation fluxes as:

Rn=(1−α ) Rs ↓+ε0RL↓−ε0σ T s
4                         (2)

Where RS↓ is the incoming shortwave radiation calculated at the satellite 

overpass time with clear sky conditions (W/m2), and RL↓ is the incoming 

longwave radiation (W/m2). α is the surface albedo (-). ε0 is the surface 

emissivity estimated by a semi-empirical relationship involving NDVI and Leaf 

Area Index (LAI), which can be retrieved from the red and near infrared bands. 
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σ is the Stephen-Boltzman constant as 5.67×10−8 (W/m2 K4), and T s is land 

surface temperature (composite soil and vegetation radiometric temperature) 

(K). G is calculated as a fraction of the Rn, and pySEBAL uses the empirical 

equation of G developed by Bastiaanssen (1995):

G=T s ,datum(0.0038+0.007α)(1−0.98NDVI4)× Rn              (3)

Where Ts,datum is the corrected land surface temperature (Ts) based on the DEM 

of the area of interest (AOI) by considering its slope and aspect. An internal 

calibration of H is applied in pySEBAL, thus no extra atmospheric correction of 

Ts is needed. H in pySEBAL is calculated using the bulk aerodynamic 

resistance equation:

H=
ρ ×Cp×dT

rah

                                   (4)

where ρ is the air density (kg/m3), and Cp is the specific heat of air at constant 

pressure which is 1,004 J/(kg K). rah is the aerodynamic resistance of heat 

transfer between z1 and z2 (s/m). dT parameter is the temperature difference 

between two near-surface height (z1 = 0.1 m and z2 = 2 m) above the canopy 

layer (K), which is estimated as a linear function of corrected surface 

temperature Ts,datum (Eq.5), being a major assumption for estimating sensible 

heat flux (Allen et al., 2005; Bastiaanssen, 1995). The coefficients “a” and “b” 

in the Eq.5 are determined iteratively for extreme anchors (cold and hot 

pixels), thus they are specific for every satellite image or area of interest. 

dT=a+b×T s ,datum                             (5)

a=
dT hot−¿dT cold

T s ,datum,hot−¿dT s , datum,cold
¿
¿                             (6)

b=
dThot−¿a

Ts ,datum ,hot

¿                                  (7)

In pySEBAL anchor pixels are determined by identify three-pixel populations 

namely i) cold vegetative pixels, ii) water pixels, and iii) hot pixels. The cold 
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vegetative pixels were automatically identified as those having maximum 

NDVI in the scene. Water pixels were classified using Top of Atmosphere 

reflectance bands involving a combination of non-freezing temperature and 

negative NDVI as described in Jaafar and Ahmad (2019). Ts for cthe cold 

pixels was selected from the minimum of vegetative and water pixels. Hot 

pixels were identified as those having NDVI values in the range of 0.03 and 

0.2. Detailed conditions applied for the anchor pixel/limit selection in the 

pySEBAL, METRIC and SEBS are represented in Table 1.

Based on the instantaneous Rn, H and G at the satellite overpass time, the 

instantaneous evaporative fraction (EFi) can be calculated (Eq.8) and 

converted into daily evaporative fraction (EF24) (Eq.9) by using an advection 

factor Ω, which is used to reduce errors caused by the ETa increase during the 

afternoon (Hong et al., 2014):

EF i=
Rn−H−G

Rn−G
                                  (8)

E F24=Ω ×EFi                                 (9)

where Ω is calculated as:

Ω=1+0.985×EF i×{exp [0.08 ×(es−ea ) ]−1 }              (10)

where es is the saturated vapor pressure at temperature of the air above

the canopy reference height, and  ea is the actual vapor pressure above

canopy height. The daily ETa is then calculated for each pixel in pySEBAL

as:

ET 24=8.64×107× Ω× EF i ×
(R¿¿n24−G24)

λ ×ρw

¿                        (11)

where ET24 is the daily ETa rate of the satellite overpass date (mm/d), and λ is

the latent heat of vaporization (J/kg), and  ρw is the density of water (kg/m3)

(Rwasoka et al., 2011). G24 is the daily average soil heat flux (W/m2), which is

assumed  as  0  for  soil  and  vegetation  surfaces. Rn24 is  the  average  net
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radiation of the day (W/m2), which can be calculated as: 

Rn24=[(1−α ) ×Ra−110]×τsw                        (12)

Where Ra is the daily extraterrestrial solar radiation (W/m2). τsw is the daily

atmospheric transmissivity affected by humidity, dust and other pollutants

in the air. More details of the algorithm in the pySEBAL can be obtained

from Hessels et al. (2017).

2.1.2 METRIC

As a variant of the SEBAL model, the calculation method of instantaneous H 

and G in METRIC are the same as in pySEBAL, both assume a linear 

relationship between Ts and dT. However, there are some notable differences 

1) METRIC does not assume that Hwet=0 and that λEwet=Rn−G at the wet 

pixel, instead it uses a soil water balance to track soil water content to 

confirm that at the hot pixel latent heat approaches zero and at the wet pixel 

latent equals to 1.05*ETr (hourly alfalfa ET0 estimated using ASCE Penman-

Monteith); 2) cold pixel are typically selected in well irrigated agricultural 

areas, where the biophysical characteristics (for example crop height and LAI) 

are similar to the reference crop (alfalfa); and 3) the upscaling of 

instantaneous to daily ETa is based on the reference ET fraction. In METRIC the

automated anchor pixel selection starts by determining the minimum and 

maximum temperatures for the 5% quantile of the pixel values of the land 

surface temperature raster. Then the cold and hot pixel populations are 

determined by applying conditional selection based on the following surface 

parameters Ts, α, NDVI, LAI, and zom.

The two models also use similar approaches in estimation of Rn24, the only 

difference being the term τsw, in which METRIC uses air pressure and water 

content of atmosphere while pySEBAL uses height above mean sea level. 

Based on the calculated Rn, H and G, instantaneous ETa at each pixel within 

the AOI at the satellite overpass time can be computed as:
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ET ins=3600×
Rn−H−G

λ∗ρω

                             (13)

where ETins is the instantaneous ETa rate (mm/h). Then the reference 

evaporative fraction ETrF is calculated as:

ET r F=
ET ins

ET r

                                  (14)

where ETr is the ET0 of alfalfa per hour (mm/h) at the satellite overpass 

time, which is usually calculated from meteorological data from a nearby 

weather station. Assuming a constant daily ETrF, daily ET24 is computed 

as:

ET 24=ET r F× ET r ,24                              (15)

where ETr,24 is the cumulative daily ETr at the satellite overpass date (mm/

d), which can be calculated using Penman-Monteith equation (Allen et al., 

1998). For more detailed descriptions of algorithms in the METRIC the 

reader is referred to Allen et al. (2007b). Recently the METRIC model has 

been written and packaged in R programming language in the “water” 

package version 0.6 (Olmedo et al., 2017). Similar to pySEBAL, this 

“water” package also adopted an automated hot/cold pixel selection 

procedure. In addition, it accepts Level-2 Landsat atmospherically 

corrected surface reflectance products for Landsat 8 imagery.

2.1.3 SEBS

Just like pySEBAL, SEBS is another commonly used energy balance model for 

ETa estimation based on Eq. 1. The main equations constituting the SEBS 

algorithm are described below for a detailed description of this method the 

reader is referred Su (2002). The calculations of Rn in SEBS is similar to 

pySEBAL (Eq.2) except for a slight change in the equation of LAI, which refer 

to Choudhury (1987). SEBS uses the algorithm by Su (2002) to calculate the G

as a function of fractional canopy cover (fc) as follows:
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G=Rn¿                (16)

where Г is the soil heat flux ratio with constants of Гc=0.05 for full vegetation 

cover and Гc=0.315 for bare soil based on prior work by of Monteith (1973) 

and Kustas and Daughtry (1990).  

SEBS uses Monin–Obukhov similarity theory for pixel by pixel estimation of H 

using the available energy under dry and wet limit conditions as follows: 

H=
ρC p(θo−θa)

k u¿ [¿( z−do

zoh
)−Ψh(

z−do

L )+Ψh (
zoh

L )]                        (17)

u¿=
uk

[¿( z−do

zom
)−Ψh(

z−do

L )+Ψh(
zom

L )]                          (18)

Where u* is the friction velocity (m/s), u is the wind speed (m/s), k is the von 

Karman constant equal to 0.41 (-), do is the zero plane displacement height 

(m), z is height above the evaporating surface (m), zoh is roughness height for 

heat transfer (m), zom is roughness height for momentum transfer (m). θo and 

θa are the potential temperatures at the surface and at height z (K), and Ψm 

and Ψh are stability functions based on Brutsaert (1999) (-). L is the Obukhov 

length (m), for more details on the application of the similarity theory in SEBS 

the reader is referred to Su (2002). H, initially derived in SEBS at each pixel, is

scaled between the sensible heat under dry and wet limits. This scaling 

method is performed for each pixel within the image after calculating H based 

on Eq. (1) by considering the λE at the dry and wet limit conditions. At the dry 

limit, latent heat (λEdry) approaches zero and sensible heat (Hdry) reaches its 

maximum value as shown in equations 19 and 20:

λEdry=Rn−Go−Hdry ≡0 ,Hdry=Rn−Go                 (19)

On the other hand, at the wet limit sensible heat (Hwet) approaches its 

minimum values and latent heat (λEwet) occurs at its potential rate as 

described in equation below:
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λEwet=Rn−Go−Hwet ,Hwet=Rn−Go−λEwet               (20)

At the wet limit, the bulk surface internal resistance approaches zero and Hwet 

can be estimated from Penman-Monteith type combination equation as shown

by Su (2002).

The instantaneous evaporative fraction Λr is calculated with energy balance at

limiting conditions according to Su (2002):

Λr=1−
H−Hwet

Hdry−Hwet

                               (21)

Assuming the Λr to be constant over daily time step, the daily evaporative

fraction (Λ24) and daily evapotranspiration (ET24) can thus be computed as:

Λ24=
Λr × λET wet

Rn−G
                                (22)

ET 24=8.64×107×
Λ24×(R¿¿n24−G24)

λ× ρω

¿                         (23)

2.2 Study area and data collection

2.2.1 Field experiments

In California, of the over 17.4 million hectares are used for agriculture, about 

40% is cropland and the rest is pasture and rangeland. The Central Valley has 

a Mediterranean climate with winter rainfall and hot summers and high annual

evaporative demand ranging from 889 to 1,270 mm (Williams, 2001). This 

study included fields located on two large commercial farms and one 

experimental farm in the Central Valley (Fig. 1). From north to south, three 

fields were planted with maize, processing tomatoes and almonds 

respectively. As a required input in pySEBAL, soil information of these fields 

was obtained from USDA NRCS’s Web Soil Survey (WSS) with soil texture 

ranging from fine sandy loam to silty clay (Table 2). Maize and processing 

tomato fields were irrigated using subsurface drip irrigation, and the almond 

orchards were irrigated using double line surface drip irrigation with variable 
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rate irrigation (VRI) capabilities for automation. The residual of energy balance

approach and surface renewal equipment were used for the actual crop water 

use (ETa) measurements. Tule Technologies systems 

(www.tuletechnologies.com) were installed in these three fields to measure 

daily ETa for almonds (May 11th of 2018 to May 13th of 2019), processing 

tomatoes (May 9th to August 18th of 2018) and maize (May 24th to September 

5th of 2018). The Tule surface renewal stations consist of a thin fine wire 

thermocouple placed about 3.3 feet above the crop canopies to estimate 

sensible heat H, and use spatially distributed Rn from the GOES satellite in 

evaluation of the energy balance. Daily G value is assumed negligible when 

compared to Rn, H and λE. According to the measurement principle of Tule 

sensor, the yellow rectangle in Fig.1 represents the approximate 

measurement zone of each monitoring point given what we know about the 

prevailing wind direction and the wind fetch length at the sensor height. The 

measured ET values are more or less representative of this measurement 

area. Data is transmitted through telemetry and the farmer access it through 

the web from this url https://www.tuletechnologies.com/.

2.2.2 Remote sensing based evapotranspiration model inputs 

(1) Remote sensing data

With clear sky conditions permitting, a total of 27 Landsat 8 OLI/TIRS images

(20 Path 42/Row35 images for the almond field, 7 Path 44/Row 33 images for

processing  tomato  and  maize  fields)  were  obtained  from the  USGS  Earth

Resources  Observation  and  Science  Center  (http://eros.usgs.gov/)  for  the

2018-2019  growing  season.  The  imagery  acquisition  dates  for  almond,

processing tomato and maize fields are presented in Table 3, in which tomato

and maize fields were located within the range of  one Landsat 8 imagery.

Three 90 m high-resolution Shuttle Radar Topography Mission (SRTM) - digital

elevation model (DEM) maps for these fields were downloaded from the USGS
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EROS Center. They were then clipped to the size of the study area to shorten

the  computation  time  in  pySEBAL.  All  the  preprocessing  of  images  were

conducted  with  QGIS  and  ArcGIS.  Based  on  empirical  equations,  DEM,

meteorological  and  soil  data,  Landsat  imagery  were  processed  with

atmospheric  correction  automatically  performed  in  pySEBAL  and  METRIC

(“water” package version 0.6). SEBS model was run in python environment. 

(2) Meteorological data

Three nearest automated weather stations from the California Irrigation 

Management Information System (CIMIS) (Table 4) provided the hourly and 

daily meteorological data such as relative humidity, wind speed, solar 

radiation and air temperature required for ETa estimation in pySEBAL, SEBS 

and METRIC in this study. 

2.3 Validation of ETa simulated by RS-based models 

RS-based ET models generated spatial ETa (mm/d) from instantaneous latent 

heat flux for each of the input satellite images. To reconstruct the time series 

of daily ETa and compare them with daily Tule-based ETa throughout the 

growing season, RS-based daily ETa values were interpolated between two 

adjacent satellite overpasses using the ET0 from the nearest weather station 

and the linear interpolated evaporative fraction. ET0 was estimated using the 

CIMIS Penman–Monteith equation (Doorembos and Pruitt, 1977) with hourly 

data of solar radiation, wind speed, air temperature and relative humidity 

from the nearest CIMIS weather station for each study field (Table 4). The 

estimated ETa values from three RS-based models were compared with 

surface renewal generated ETa from Tule Sensors at the three field sites. The 

area of each measurement zone equals to that of several remote sensing 

pixels (one pixel is 30×30m), thus the Tule-based ETa can represent the 

average ETa of whole measurement zone including several pixels (Fig.1). We 

took advantage of ArcGIS to calculate the average of RS-based ETa within the 
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range of each measurement zone and compared it with Tule-based ETa to see 

the model performance.

Statistical goodness of fit measures used in this study included the Root Mean 

Square Error (RMSE), Nash-Sutcliffe efficiency (NSE) and correlation coefficient

(R2). For an overview of goodness of fit measures typically used in hydrology, 

the reader is referred to (Legates and McCabe, 1999). 

3. Results and Discussion 

3.1 Comparing remote sensing based evapotranspiration 

estimates to surface renewal measurements

Comparison of the estimated and measured daily ETa values are shown in 

Fig.2. Since the goal of comparing these RS-based ET models is to estimate 

daily ETa for irrigation scheduling, more focus was put on the RMSE between 

the model estimates and Tule measurements. For almonds, the performance 

of all the three RS-based ET models (pySEBAL, METRIC and SEBAL) was good 

with RMSE ranging from 0.9 mm/d to 1.6 mm/d, NSE ranged from 0.68 to 

0.77, and R2 ranged from 0.74 to 0.82. For processing tomatoes, SEBS 

performed best (RMSE = 0.6 mm/d, NSE = 0.66 and R2= 0.86) while pySEBAL 

(RMSE = 1.79 mm/d, NSE = 0.06 and R2=0.37) and METRIC (RMSE = 1.78, 

NSE= 0.11 and R2 = 0.41) performed poorly during the growing season due to 

the underestimation of daily ETa. For maize, overestimations were observed in

all three RS-based models, among which SEBS performed better (RMSE = 1.0 

mm/d, NSE = 0.46 and R2= 0.74) than pySEBAL (RMSE=1.08 mm/d, NSE = 

0.43 and R2 = 0.72) and METRIC (RMSE = 1.2 mm/d, NSE = 0.4 and R2 = 0.78).

Fig.3 shows the time-series daily ETa for the almond orchard (VRI and control 

blocks), processing tomato, and maize fields generated using pySEBAL, 

METRIC, SEBS, Tule measurements, and FAO-56 methodology. Mean daily ETa 

from pySEBAL, METRIC, and SEBS were 5.6, 6.5, and 4.9 mm/d during the 

almond growing season and 2.1, 2.6, and 2.4 mm/d during the dormant 
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season. Compared to the mean Tule measurements, it was determined that 

the average values of pySEBAL, METRIC, and SEBS’s estimates were 

respectively 26%, 36%, and 11% higher during the almond growing season 

(May 11th 2018 to October 31th 2018) and 4%, 1% and 7% higher during the 

dormant season (November 1st 2018 to February 28th 2019) and part of the 

growing season before full coverage (March 1st 2019 to May 13th 2019). The 

overestimations of daily ETa were likely from the warmer cold/wet pixels 

selected within the well-watered farmland. Long et al. (2011) and Lian and 

Huang (2016) reported that a warmer cold pixel selection in the initial stages 

of the growing season might lead to a decrease in estimated H and an 

increase in estimated ETa. Because when the vegetation fraction was 

relatively low at during initial growth stages, a cold extreme pixel selected 

from irrigated farmland rather than from a water body might not meet the 

potential ET requirement. They also found that the continuous linearly 

interpolated daily ETa between two clear-day ETa may be higher than daily ETa 

when cloudy-days exist in this period. 

For processing tomatoes, mean daily ETa from pySEBAL, METRIC, and SEBS 

during the growing season were 4.1, 4.3, and 4.9 mm respectively, which 

were 22%, 19%, and 7% respectively less than mean Tule measurements. The

underestimation of pySEBAL and METRIC models for the tomato field during 

the early stage of crop growth (from May 9th to June 26th) may be attributed to

small vegetation cover early in the season. As a single-source model, if a large

portion of the soil is exposed and water stress conditions occur early in the 

season, both G and H may be large and errors in the two energy balance 

components will significantly affect the instantaneous λE. With full vegetation 

cover at the medium-late growth stages, H is usually small and λE is not 

substantially affected by H even if the sensible heat flux is not accurately 

estimated. Some researchers also reported underestimations of ETa using 

SEBAL and METRIC models for crop’s initial growth stages with low vegetation 
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coverage and water stress conditions (Mcebisi et al., 2015; Allen et al., 2011). 

With regards to METRIC, using a constant ETrF to estimate daily ETa may result

in underestimation of water stress conditions (Allen et al., 2011). Compared to

the Tule estimates and SEBS, the underestimation of daily ETa by pySEBAL 

and METRIC may also be attributed to the underestimated daily average net 

radiation calculated by empirical equations when upscaling instantaneous ETa 

to daily ETa. The use of empirical formula for daily average net radiation in 

pySEBAL when upscaling the instantaneous ETa to daily ETa may not work on 

cloudy days. Applying either measured or modeled daily net radiation for 

upscaling instantaneous ETa could reduce the errors in daily ETa estimation 

(Olmedo et al., 2017). Some previous studies also reported the need for 

calibrating the empirical equation of daily average net radiation to account for

local atmospheric conditions to improve the daily ETa estimation (Zhang et al.,

2013; Ramesh and Gabriel, 2015). For maize, most of the RS-based ET models

were above the 1:1 line indicating they overestimated ETa. The pySEBAL, 

METRIC and SEBS-based mean daily ETa were 6.4, 5.8, and 5.1 mm/d, 

overestimating daily ETa by 31%, 26%, and 12%, respectively. 

Overall, when using surface renewal estimates from Tule as a reasonable 

reference (although we acknowledge there is level of measurement 

uncertainty with this method), SEBS model performed better than both 

pySEBAL and METRIC with lower RMSE and higher R2 and NSE for the time-

series ETa estimations of almonds, processing tomatoes, and maize at the 

field scale. This suggests that SEBS could improve the spatiotemporal ETa 

estimation over orchards or field crops, because the SEBS model is more 

sensitive to the influence of differences in underlying surface characteristics 

on the resistance to heat transfer (Gao and Long, 2008; Verhoef et al., 1997). 

Many researchers have reported that SEBS performance was better than 

METRIC and SEBAL for ETa estimation (Gowda et al., 2013; Wagle et al., 2017; 

Bhattarai et al., 2016; Paul, 2013). In addition, as pySEBAL, METRIC, and SEBS
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all used reference ET approach to reconstruct time-series of daily ETa between

cloud free days, the cloudy-day evaporative fraction (EF or ETrF) can be 

linearly interpolated based on two nearby clear-day ETrF, which is similar to 

generating seasonal Kc with two Kc values of two days. Thus, the calculation of

instantaneous ETa and different approaches embedded in different RS-based 

models used for upscaling instantaneous ETa to daily ETa were the main cause 

of bias in time-series daily ETa estimates. 

3.2 Inter-comparison of daily evapotranspiration estimations

among three RS-based models

The inter-comparisons of interpolated daily ETa estimates from pySEBAL, 

METRIC, and SEBS were performed as density plots (Fig. 4) to examine the 

applicability and limitation of these models. The period of comparison was for 

almonds (May 11th of 2018 to May 13th of 2019), processing tomatoes (May 9th 

to August 18th of 2018) and maize (May 24th to September 5th of 2018. It is 

shown that there was some degree of linearity for ETa estimates from 

pySEBAL and METRIC and SEBS for almond and maize. For processing tomato,

the relationship between daily pySEBAL and METRIC based ETa was in good 

agreement, while poor linearity existed between pySEBAL and METRIC with 

SEBS (Fig.4b). The big variation was caused by the smaller daily ETa estimates

from pySEBAL and METRIC than SEBS during the early growth stages of 

processing tomato. To better understand the possible source for variations in 

the density plot involving three RS-based models, we presented comparison of

modelled fluxes for three RS-based models in Fig. 5. As we mentioned before 

that Rn used by Tule is modeled from GOES satellite and on a daily time scale 

G is zero in Tule. H is the only measured energy balance component from Tule

Sensors, thus we also include the comparison of measured H from Tule with 

simulated H from RS-based models in Fig.5. As there were similar values of 

energy fluxes between two adjacent almond fields with different irrigation 

management, only simulated energy balance components of the almond field 
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applied with VRI are presented in this paper. 

Compared to METRIC and SEBS, Rn was underestimated by pySEBAL for the 

whole growing season for all three crops, which could be one of the main 

reasons of the smaller daily ETa simulated by pySEBAL in Fig. 4a. The 

simulated G were relatively consistent among these three RS-based models, 

especially for the almond field (Fig.5). For the simulation of H, SEBS 

performed much better than pySEBAL and METRIC when compared to Tule 

measured H. pySEBAL and METRIC generated greater values than SEBS for 

these three crops on all satellite overpass dates, and relatively low Tule 

measured H for three crops indicated that they were almost at the potential 

evapotranspiration rate during their growing seasons. All three crop sites were

well irrigated during the growing season in this study, which matched with the

Tule measured H estimation results. The biases between estimated and 

measured H were ranked in the order of processing tomato > maize > 

almond. Simulation results showed similar performances of H estimates for 

almond among three models, while H estimates for processing tomato varied 

greatly among three models. As described above, derivation of H in pySEBAL 

and METRIC relies on the presence of extreme Ts (cold and hot or wet and dry)

pixels in the imagery. Especially for small areas, for homogeneous land-use 

types, or for imagery with low-moderate resolutions, the assumption that all 

possible extreme cold and hot endmembers of a landscape are presented 

within the image might be not valid. In other words, lack of presence of high 

water use crops (full vegetation or water-sufficient vegetation and soil) in the 

imagery may result in considerable errors in the estimation of H. In contrast to

contextual models, single-pixel methods (SEBS) estimate ET for each pixel 

independently from all other pixels in the image by solving the surface energy

balance equation. Besides, with less simulated Rn - G, pySEBAL and METRIC 

partitioned less available energy into H and λE. Poor performance and 

underestimation of λE by pySEBAL and METRIC for processing tomatoes was 
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exactly because of the overestimation of H, which can be attributed to the low

vegetation coverage and water stress conditions in the early growth stages. 

To improve the definition of the cold and hot anchor pixels in two contextual 

models (pySEBAL and METRIC), high resolution imagery such as UAS TIR 

imagery would be particularly suitable for routine application in contextual RS-

based ET models. However, due to the restriction of practical considerations 

including battery life and the need for high imagery overlap as well as the 

requirement of concerning the visibility of the UAS during operation, the 

applicability of high resolution UAS TIR imagery is under development.

4. Conclusions

The performance of three widely used single-source surface energy balance 

remote sensing ET models (pySEBAL, METRIC, and SEBS) were evaluated 

aganist surface renewal measurements in almond, processing tomato, and 

maize in California’s Central Valley during the 2018-2019 growing season. 

Based on combined scores from RMSE, NSE and R2, performance of the three 

RS-based ET models were ranked in the order of SEBS> pySEBAL> METRIC to 

estimate daily ETa. Our results showed that pySEBAL, METRIC, and SEBS could

provide resaonable ET estimates for almond, processing tomato, and maize 

during the growing season, except for the underestimation of pySEBAL and 

METRIC-based ETa estimates during early growth stages of processing 

tomatoes. Thus, they could be used in precision agriculture decision support 

tools for simulating daily ETa and provide information for optimizing irrigation 

management. Using site-specific ETa estimates from RS based models such as 

SEBS could have a huge impact on water use in agriculture given the large 

acreage of almonds in California. Performances of pySEBAL and METRIC in 

early growth stages of processing tomato indicated their limitation in daily ETa

estimation in the early growth stage (low vegetation coverage and water 

stress condition) and their usefulness after full canopy closure. For cropped 
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surfaces such as an orchard or row-crop field, SEBS can provide a better 

estimation of ETa than pySEBAL and METRIC. This study provided new 

information on potential applicability of remote sensing based ET models for 

guiding irrigation management at the field scale.
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 Table Captions

Table 1. Conditions applied for the hot (dry)/cold (wet) pixel selection in the 

pySEBAL, METRIC and SEBS.

Table 2. Summary of locations, size and soil types for three observation fields

Table 3. List of near-cloud free Landsat imageries used for ET estimation.

Table  4.  Locations  of  selected  nearest  California  Irrigation  Management
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Information System (CIMIS) weather stations

Table 1. Conditions applied for the hot (dry)/cold (wet) pixel selection in the

pySEBAL, METRIC and SEBS.

pySEBAL METRIC SEBS

Variabl
e Cold pixel Hot pixel

Variabl
e

Cold
pixel Hot pixel

Variabl
e wet pixel

dry
pixel

Ts

<Mean_Cold_Pixel
s +

Cold_Pixel_Consta
nt * Diff_Hot_Cold

Mean_Hot_Pixels
+

Hot_Pixel_Consta
nt * Diff_Hot_Cold

Ts
<Tmin+

ΔT
>Tmax-

ΔT
H Rn-G0

Water_
mask Yes - albedo

0.18-
0.25 0.13-0.15
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920
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NDVI - 0.03-0.25 NDVI
0.76-
0.84 0.10-0.28

LAI - - LAI 3-6 -

Slope - 0-10% Zom
0.03-
0.08 ≤0.005

Note: Mean_Cold_Pixels = mean temperature of all pixels defined as water; Mean_Hot_Pixels = mean 

temperature of all pixels defined as hot pixel (due to selection using NDVI and slope); 

Cold_Pixel_Constant = defined in your excel sheet, and default is 2; hot_Pixel_Constant = defined in 

your excel sheet, and default is 0.5; Diff_Hot_Cold = Mean_Hot_Pixels - Mean_Cold_Pixels;

Calculation method of Hwet in SEBS refers to Su (2002).

Table 2. Summary of locations, size and soil types for three observation fields

Field Location Elevati
on

Size of
field

Pixel
numbe

rs

Soil
type

Field
capacity

(%)

Wilting
point
(%)

Almond (37.15°N,
119.53°W) 12m

28.4
hectares

(760m*374
m)

264

Nord
fine
sand

y
loam

22.9 9.9

Process
ing

tomato

(38.53°N,
121.77°W)

15m

1.9
hectares

(240m*80m
)

14
Yolo
silty
loam

30.6 16.4

Maize (36.23°N,
119.45°W)

77m

25.2
hectares

(870m*290
m)

224

Capa
y

silty
clay

34.5 25.7

Table 3. List of near-cloud free Landsat imageries used for ETa estimation.

Crop field Image
acquisition
dates (Year

Landsat
type

Senso
r
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DOY)

Almond field

2018 90 8 OLI
2018 122 8 OLI

2018 138 8 OLI
2018 154 8 OLI
2018 170 8 OLI
2018 186 8 OLI
2018 202 8 OLI
2018 218 8 OLI
2018 234 8 OLI
2018 250 8 OLI
2018 266 8 OLI
2018 282 8 OLI
2018 298 8 OLI
2018 314 8 OLI
2018 346 8 OLI
2018 362 8 OLI
2019 13 8 OLI
2019 77 8 OLI

2019 109 8 OLI
2019 125 8 OLI

Processing
tomato and
maize fields

2018 104 8 OLI
2018 152 8 OLI
2018 168 8 OLI
2018 184 8 OLI
2018 200 8 OLI
2018 216 8 OLI
2018 232 8 OLI

Table 4. Locations of selected nearest California Irrigation Management

Information System (CIMIS) weather stations

Station Station
ID

Crop  Latitude Longitu
de

 CIMIS Region

Stratford 15 Almond 36.16°N 119.85°
W

San Joaquin Valley

Davis 6 Processing
tomato

38.54°N 121.78°
W

Sacramento Valley

Williams 250 Maize 39.21°N 122.17°
W

Sacramento Valley

Figure Captions

Fig. 1 Locations of field sites in the Central Valley of California. Orange point 
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marks indicate locations of Tule surface renewal stations and the yellow 

rectangles represent the ETa measurement areas of the Tule sensors, note that

the almond orchard had an experiment of VRI (variable rate irrigation) versus 

control. Note that the size of ET measurement area are 207m*65m for maize 

field, 105m*67m for processing tomato and 167m*88m*2 for almond field.

Fig. 2. Comparison of the estimated daily ETa from the pySEBAL, METRIC, and

SEBS models and measured daily ETa from surface renewal method in almond

(a, b, c), processing tomato (d, e, f) and maize (g, h, i).

Fig. 3. Time series of daily ETa based on three RS-based models (pySEBAL, 

METRIC, and SEBS) and surface renewal (Tule) for the (a-b) almond, (c) 

processing tomatoes and (d) maize field sites. Daily RS-based ETa values were 

linearly interpolated between two satellite overpass dates. 

Fig.  4. Density  plots  of  pairwise  comparison  of  estimated daily  ETa using

three RS-based ET models for (a) almond, (b) processing tomatoes and (c)

maize. Note that different colors in the density plots refer to the frequency of

data points at each location, with red for low frequency and blue for high

frequency.

Fig.  5. Boxplots  of  inter-comparison  of  simulated  instantaneous  energy

balance fluxes (Rn,  G,  H and  LE) using three RS-based ET models for three

crops on all satellite image acquisition dates. 
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Fig. 1 Locations of field sites in the Central Valley of California. Orange point 

marks indicate locations of Tule surface renewal stations and the yellow 

rectangles represent the ET measurement areas of the Tule sensors, note that 

the almond orchard had an experiment of VRI (variable rate irrigation) versus 

control. Note that the size of ET measurement area are 207m*65m for maize 

field, 105m*67m for processing tomato and 167m*88m*2 for almond field.
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Fig. 2. Comparison of the estimated daily ETa from the pySEBAL, METRIC, and

SEBS models and measured daily ET from surface renewal method in almond

(a, b, c), processing tomato (d, e, f) and maize (g, h, i).

Fig. 3. Time series of daily ETa based on three RS-based models (pySEBAL, 

METRIC, and SEBS) and surface renewal (Tule) for the (a-b) almond, (c) 
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processing tomatoes and (d) maize field sites. Daily RS-based ETa values were 

linearly interpolated between two satellite overpass dates. 

 

Fig.  4. Density  plots  of  pairwise  comparison  of  estimated daily  ETa using

three RS-based ET models for (a) almond, (b) processing tomatoes and (c)

maize. Note that different colors in the density plots refer to the frequency of

data points at each location, with red for low frequency and blue for high

frequency.

Fig.  5. Boxplots  of  inter-comparison  of  simulated  and  measured
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instantaneous energy balance fluxes (Rn,  G,  H and λE) using three RS-based

ET models for three crops on all satellite image acquisition dates. 
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