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Abstract: Background: The release of a broad, longitudinal anatomical dataset by the Parkinson’s
Progression Markers Initiative promoted a surge of machine-learning studies aimed at predicting
disease onset and progression. However, the excessive number of features used in these models often
conceals their relationship to the Parkinsonian symptomatology. Objectives: The aim of this study is
two-fold: (i) to predict future motor and cognitive impairments up to four years from brain features
acquired at baseline; and (ii) to interpret the role of pivotal brain regions responsible for different
symptoms from a neurological viewpoint. Methods: We test several deep-learning neural network
configurations, and report our best results obtained with an autoencoder deep-learning model, run on
a 5-fold cross-validation set. Comparison with Existing Methods: Our approach improves upon results
from standard regression and others. It also includes neuroimaging biomarkers as features. Results:
The relative contributions of pivotal brain regions to each impairment change over time, suggesting a
dynamical reordering of culprits as the disease progresses. Specifically, the Putamen is initially the
most critical region accounting for the overall cognitive state, only being surpassed by the Substantia
Nigra in later years. The Pallidum is the first region to influence motor scores, followed by the
parahippocampal and ambient gyri, and the anterior orbital gyrus. Conclusions: While the causal link
between regional brain atrophy and Parkinson symptomatology is poorly understood, our methods
demonstrate that the contributions of pivotal regions to cognitive and motor impairments are more
dynamical than generally appreciated.

Keywords: Parkinson; deep learning

1. Introduction

Machine Learning (ML) is quickly affirming itself as a valuable tool for Parkinson’s Disease (PD)
diagnosis [1–4]. ML methods typically learn specific sets of functions to perform data categorization,
with deep-learning networks being able to detect more complex patterns in massive datasets [5,6].
Numerous studies have leveraged the predictive capabilities of deep-learning models for Alzheimer’s
symptomatology [7–10]. However, the high variability of Parkinsonian brains, the smaller sample size
compared to Alzheimer’s datasets, and the lack of longitudinal atrophy progression for individual
patients pose a challenge even to state-of-the-art machine-learning methods.

The first ML studies with PD patients were aimed at predicting their current condition or
cognitive/motor scores using baseline parameters such as demographic data, CSF, and blood protein
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analysis, speech, movement, or genetics [11–13]. Here, we estimate future motor and cognitive states of
PD patients using an autoencoder deep-learning model to reduce the dimensionality of the problem [5].
While other ML studies in PD also report high levels of accuracy [14–16], our focus is to highlight
the brain regions that play a pivotal role in the model-based predictions. We show that their relative
contribution to the observed symptoms changes over time, suggesting a dynamical reordering of
culprits for each functional impairment as the disease progresses. This provides new insight to the
poorly understood causal link between regional atrophy and PD symptomatology. The high accuracy
levels reported herein indicate that ML models such as ours, once trained on a larger dataset than
currently available publicly, could also be effective as a prognostic clinical tool.

Highlights

• We implemented an autoencoder neural network for the prediction of future motor/cognitive
impairment

• Our best model prediction performed with 85% accuracy, 80% specificity, and 100% sensitivity
• The autoencoder significantly improves upon standard statistical regression results
• Pivotal impaired regions change their relative contributions to Parkinsonian symptomatology

over time

2. Material and Methods

PPMI Study Data: All data used in this study was obtained from the Parkinson’s Progression
Markers Initiative (PPMI) database [17]. We selected 42 healthy controls (27 males, 15 females,
age = 59.3±11.0, and MoCA = 28.5 ± 1.2) and 116 PD patients (74 males, 42 females, age = 59.8 ± 9.5,
MoCA = 27.5 ± 2.1, MDS-UPDRS-III = 20.6 ± 8.6) that had complete baseline features. Within the
initial 116 PD patient cohort, the mean duration of disease at the time of baseline is 6.26 months (±6.25).
The fraction of patients for left/right/symmetric side dominance is 24/86/6. Scores for MDS-UPDRS-III
were acquired when patients were off medication [18]. Subjects missing more than two input features
were not included in our analysis.

Structural MRI acquisition: Structural MRI data acquisition occurs at baseline and is used to
predict future outcomes in PD patients. PPMI protocol requires a 3-dimensional T1-weighted scan,
using either a Magnetization Prepared Rapid Gradient Echo (MPRAGE) or a Spoiled Gradient Recalled
(SPGR) sequence [17]. The field of view must include the vertex, cerebellum, and pons, and have a
slice thickness of no greater than 1.5 mm without an interslice gap. The repetition and echo times
are set according to the individual manufacturer’s recommendations. Sagittal 3D T1-weighted MR
images were obtained with the following parameters: slice thickness 1.2 mm, slice gap 0 mm, voxel size
1 mm × 1 mm × 1.2 mm, and matrix 256 × 256 × 170–200. Data were acquired at PPMI centers using
scanners from three different manufacturers (GE, Chicago, IL, USA; Siemens, Erlangen, Germany and
Philips, Amsterdam, The Netherlands). Additional details regarding these subjects, including study
inclusion and exclusion criteria, are available at the PPMI website (www.ppmi-info.org/data).

DBM and Brain Connectome: The main features used in our model are deformation-based
morphometry (DBM) values, which consists of a calculation of regional brain atrophy based on the
displacement to a standard MNI152-2009c parcellation template provided by Zeighami et al. [19]. DBM,
also referred to as the determinant of the Jacobian transformation matrix, was used to calculate the
local change in tissue density. This method spatially transforms the MRI data to a stereotaxic template
linearly and then non-linearly [19]. This change in local deformation is measured and presented as
atrophy maps. The baseline DBM atrophy map includes 78 brain regions, since atrophy values from
cerebellum regions are not considered. While PPMI also acquired Diffusion-weighted imaging (DWI)
images, which are arguably more sensitive compared to structural imaging [3,20], we opted for using
MRI-derived atrophy dataset to facilitate comparisons with previous studies and to ensure that our
results were not driven by our use of a different imaging modality.

www.ppmi-info.org/data
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Predicted outcome variables: The predicted Montreal Cognitive Assessment (MoCA) scores
were classified into two categories: normal cognition vs. mild cognitive impairment. This choice
was based on the work of Hoops et al. [21], where the cutoff score (26/27) effectively differentiated
the two groups. The predicted MDS-UPDRS-III scores were classified into two categories as well:
mild motor impairment vs. moderate motor impairment, using the optimal cutoff score (32/33) validated
by Martínez-Martín et al. [22]. All figures and text with UPDRS refer solely to MDS-UPDRS-III.
These categorical outcomes are used over the individual raw scores due to the wide variability of raw
scores as well as disease progression. Figure 1a shows the averaged MDS-UPDRS-III and MoCA scores
over four years.
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Figure 1. (a) Average Montreal Cognitive Assessment (MoCA) scores over time (top left), number of
subjects in each category at baseline (BL) and following years (mid left), and observed change in cognition
over the years (bottom left). I, S, M mean Improved, Stable, and Moderate Impairment, respectively.
Analogous plots for MDS-UPDRS-III scores on the right. (b) Architecture of the implemented two-step
deep autoencoder neural network (NN). Deformation-based Morphometry (DBM) features were selected
using a Spearman’s correlation statistical test (top) and then used as input, along baseline predictors,
for the NN (bottom). The two hidden layers were comprised of stacked sparse autoencoders using the
logistic sigmoid activation function. A final SoftMax layer was used for classification. (c) Performance
of MoCA (top, blue) and UPDRS (bottom, red) predictions for test sets in both regression (light tone)
and Autoencoder (dark tone) models. Accuracy, sensitivity, and specificity are shown from left to right.
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Logistic regression and Autoencoder: Logistic Regression (LR) is a powerful statistical algorithm
for binary categorization and a natural choice for classifying moderate vs. mild symptomatology in PD
patients. It will perform poorly, however, if the classification requires non-trivial combinations of the
input features. In this scenario, neural networks may excel if enough training samples are available.
Thus, we opted to implement a LR model and investigate whether the classification could be improved
by employing a neural network architecture to the same dataset.

Strategies to avoid overfitting: The number of parameters in neural network models scales
with the number of input features and with the number of neurons used in each layer. Since the
number of input features in our model is of the order of the number of cases in our training set,
we combine two strategies to avoid overfitting: feature selection and an autoencoder model. To select
features, we calculated the Spearman’s rank correlation coefficient between the DBM features and the
motor/cognitive scores, removing those with p values above 0.05 (see Tables 1 and 2). The selected
features are then combined with baseline demographics and biospecimen measurements to create the
input layer that is then fed into a deep autoencoder network.

Table 1. MDS-UPDRS-III Spearman’s rank correlation coefficients of only baseline predictors at four
time points past baseline.

Year Predictor Type Side R Value p Value

1

MDS-UPDRS-III 0.425 <0.001
Caudate SBR R −0.209 0.044
Putamen SBR R −0.351 <0.001

Hoehn and Yahr 0.292 0.005
Symbol Digit Modalities Score −0.28 0.007

MDS-UPDRS Total Score 0.401 <0.001
MDS-UPDRS-II PQ 0.293 0.005

Modified Schwab England ADL −0.205 0.049
UPSIT Total Score −0.243 0.019

Superior temporal gyrus, anterior part DBM R 0.204 0.049
Subthalamic Nucleus DBM R −0.23 0.026

2

MDS-UPDRS-III 0.494 <0.001
Hoehn and Yahr 0.357 <0.001

HVLT Immediate Recall −0.314 0.004
HVLT Delayed Recognition Hits −0.274 0.012
Symbol Digit Modalities Score -0.229 0.036

MDS-UPDRS Total Score 0.402 <0.001
MDS-UPDRS-II PQ 0.291 0.007

Modified Schwab England ADL −0.333 0.002
UPSIT Total Score −0.224 0.041

Hippocampus DBM L −0.244 0.022
Amygdala DBM R −0.12 0.025

Parahippocampal and ambient gyri DBM R −0.218 0.047
Inferolateral remainder of parietal lobe DBM R 0.22 0.045

Medial orbital gyrus DBM R 0.221 0.044
Superior temporal gyrus, anterior part DBM L −0.221 0.044

3

MDS-UPDRS-III 0.38 <0.001
Caudate SBR R −0.312 0.004
Putamen SBR R −0.326 0.002

Alpha-synuclein −0.237 0.03
Hoehn and Yahr 0.353 0.001

QUIP Positive Buying −0.223 0.041
QUIP Positive Hobbies −0.223 0.041

MDS-UPDRS Total Score 0.42 <0.001
MDS-UPDRS-I PQ 0.253 0.02
MDS-UPDRS-II PQ 0.382 <0.001
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Table 1. Cont.

Year Predictor Type Side R Value p Value

3

Modified Schwab England ADL −0.314 0.004
Fusiform (lateral occipitotemporal) gyrus DBM R 0.216 0.048

Pallidum DBM L 0.23 0.035
Superior frontal gyrus DBM L −0.251 0.021

4

Age 0.281 0.014
MDS-UPDRS-III 0.51 <0.001

Caudate SBR L −0.293 0.01
Caudate SBR R −0.334 0.003
Putamen SBR L −0.227 0.049
Putamen SBR R −0.282 0.014

Hoehn and Yahr 0.248 0.031
HVLT Delayed Recognition Hits −0.325 0.012

Benton Judgement of Line Orientation −0.302 0.008
QUIP Positive Eating 0.227 0.049

MDS-UPDRS Total Score 0.524 <0.001
MDS-UPDRS-I PQ 0.296 0.01
MDS-UPDRS-II PQ 0.348 0.002

SCOPA-AUT 0.255 0.026
Amygdala DBM R −0.249 0.03

Gyrus cinguli, posterior part DBM R −0.302 0.008
Caudate nucleus DBM L −0.309 0.007

Anterior orbital gyrus DBM L −0.257 0.025
Posterior orbital gyrus DBM L −0.232 0.043

Subcallosal area DBM L 0.25 0.03
Subthalamic Nucleus DBM R −0.266 0.02

Table 2. MoCA Spearman’s rank correlation coefficients of only baseline predictors at four time points
past baseline.

Year Predictor Type Side R Value p Value

1

Age 0.373 <0.001
MoCA −0.402 <0.001

Amyloid Beta (1–42) −0.212 0.034
HVLT Immediate Recall −0.422 <0.001

HVLT Delayed Recognition Hits −0.252 0.011
Benton Judgement of Line Orientation −0.243 0.015

Semantic Fluency Score −0.436 <0.001
Symbol Digit Modalities Score −0.459 <0.001

MDS-UPDRS-I 0.214 0.032
Hippocampus DBM R −0.212 0.034

Amygdala DBM L −0.209 0.037
Putamen DBM R −0.221 0.027

Precentral gyrus DBM R 0.289 0.004
Subthalamic Nucleus DBM L −0.235 0.019
Subthalamic Nucleus DBM R −0.228 0.022

2

Age 0.29 0.003
MoCA −0.368 <0.001

Amyloid Beta (1–42) −0.269 0.007
HVLT Immediate Recall −0.379 <0.001

HVLT Delayed Recognition Hits −0.229 0.022
HVLT Delayed Recognition False Alarms 0.306 0.002

Semantic Fluency Score −0.296 0.003
Symbol Digit Modalities Score −0.375 <0.001

MDS-UPDRS Total 0.217 0.029
MDS-UPDRS-I 0.259 0.009
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Table 2. Cont.

Year Predictor Type Side R Value p Value

2

MDS-UPDRS-II PQ 0.245 0.014
Modified Schwab England ADL −0.26 0.009

Hippocampus DBM R −0.2 0.045
Amygdala DBM R −0.215 0.031
Amygdala DBM L −0.205 0.039
Putamen DBM L −0.282 0.004
Putamen DBM R −0.285 0.004
Thalamus DBM R −0.225 0.024

Precentral gyrus DBM L −0.21 0.035
Superior temporal gyrus, anterior part DBM R −0.198 0.047

Red Nucleus DBM L −0.203 0.042
Substantia Nigra DBM L −0.236 0.017
Substantia Nigra DBM R −0.255 0.01

Subthalamic Nucleus DBM L −0.208 0.037
Subthalamic Nucleus DBM R −0.28 0.005

3

Age 0.44 <0.001
MDS-UPDRS-III 0.286 0.003

MoCA −0.442 <0.001
SBR Right Putamen −0.205 0.038

Hoehn and Yahr 0.206 0.037
HVLT Immediate Recall −0.471 <0.001

HVLT Delayed Recognition Hits −0.41 <0.001
Benton Judgement of Line Orientation −0.235 0.017

Semantic Fluency Score −0.51 <0.001
Symbol Digit Modalities Score −0.518 <0.001

MDS-UPDRS Total 0.255 0.009
UPSIT Total Score −0.243 0.013

Hippocampus DBM R −0.197 0.046
Hippocampus DBM L −0.248 0.012

Amygdala DBM L −0.24 0.015
Anterior temporal lobe DBM L −0.217 0.028

Putamen DBM L −0.324 <0.001
Putamen DBM R −0.307 0.002
Thalamus DBM L −0.223 0.023
Thalamus DBM R −0.272 0.006
Pallidum DBM R −0.269 0.006

Red Nucleus DBM L −0.304 0.002
Red Nucleus DBM R −0.231 0.019

Substantia Nigra DBM L −0.258 0.009
Substantia Nigra DBM R −0.252 0.01

Subthalamic Nucleus DBM L −0.254 0.01
Subthalamic Nucleus DBM R −0.276 0.005

4

Age 0.452 <0.001
MoCA −0.438 <0.001

HVLT Immediate Recall −0.505 <0.001
HVLT Delayed Recognition Hits −0.344 <0.001

HVLT Delayed Recognition False Alarms 0.219 0.033
Semantic Fluency Score −0.424 <0.001

Symbol Digit Modalities Score −0.492 <0.001
MDS-UPDRS Total 0.276 0.007
MDS-UPDRS-I PQ 0.305 0.003
UPSIT Total Score −0.222 0.03

SCOPA-AUT 0.367 <0.001
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Table 2. Cont.

Year Predictor Type Side R Value p Value

4

Nucleus accumbens DBM R −0.26 0.012
Putamen DBM L −0.35 <0.001
Putamen DBM R −0.322 0.002
Thalamus DBM L −0.227 0.027
Thalamus DBM R −0.27 0.009
Pallidum DBM L −0.207 0.044
Pallidum DBM R −0.24 0.019

Red Nucleus DBM L −0.219 0.033
Red Nucleus DBM R −0.213 0.038

Substantia Nigra DBM L −0.202 0.049
Subthalamic Nucleus DBM L −0.252 0.014

Network architecture: Autoencoders are compression algorithms that learn a reduced
representation of the input data by minimizing the loss of information when decoding the compressed
data [23]. We analyzed the information loss in the input vector as a function of the data compressibility
(adjusted mean square error function with L2 and sparsity regularizers) and empirically select a Pareto
optimal compression. In our case, this compressed the data into a new vector containing only 20 and
10 features, respectively, to be fed into two hidden layers with 20 and 10 neurons each. Each layer was
followed by a logistic sigmoid function, which empirically outperformed both simple and positive
saturating linear transfer functions. See Figure 1b for details.

Our fully connected autoencoder uses backpropagation and scaled conjugate gradient descent
for training. The global error cost function of the proposed autoencoder is based on the adjusted
mean square error function. First, the 78 brain atrophy regions and the 78 predicted atrophy rates are
reduced to a smaller representation of data by only selecting statistically significant features based on
Spearman’s rank correlation coefficient. The reduced imaging features with and without the addition
of the analytical projections obtained from the NDM are combined with baseline demographics and
biospecimen measurements. Stacking of the individual sparse autoencoders at each layer creates a
deep autoencoder network. A supervised SoftMax classification layer is used to link the input to the
desired output. The SoftMax layer generates a probability matrix for each possible class. The entire
deep autoencoder model is finely tuned at the end so that it only takes one iteration to improve all the
weights simultaneously. To fine tune the model, we implement backpropagation on the entire stacked
autoencoder network by retraining it on the training data in a supervised fashion. The starting weights
and biases are set randomly at the start of each model training with a normal distribution of a small
value close to, but not equal to zero.

Initialization and adjustment of hyperparameters: Network weights were randomly initialized
from a Gaussian distribution with zero mean and small variance and optimized via scaled conjugate
gradient descent [24]. Optimal hyperparameters were adjusted in a sequential search by changing
one variable at a time [25]. Performance results from the training and validation sets were recorded
(see Figure 1c) and the best hyperparameters saved for the final performance evaluation on the test set.

To prevent overfitting of the training data, we declare specific parameters for the L2 weight
regularization, sparsity regularization, and sparsity proportion coefficients terms onto the cost function
at the start of model training. The range of values tested for L2 weight regularization, sparsity
regularization, and sparsity proportion are 0.001 to 0.009, 2 to 6, and 0.05 to 0.20, respectively.
L2 regularization helps drive outlier weights closer to zero. By regularizing or shrinking the L2 weight
coefficient, prediction accuracy may be improved, and the variance may be reduced. The larger
the sparsity regularization parameter, the greater its impact on activated training data. The sparsity
proportion specifies the amount of training examples a neuron reacts with, whereas the sparsity
regularization term controls the impact of sparsity for faster optimization and evaluation of the model.
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By implementing this restriction on sparsity, this pressures the neural network to reduce and store only
the essential features of the data.

Testing and cross-validation: For out-of-sample testing, we used 5-fold cross-validation:
we randomly split the data 5 different ways between a training (80%) and a hold-out testing set
(20%) for prediction purposes. All the data extraction, neural network modeling, and statistical analysis
were performed with MATLAB R2018a (MATLAB, Natick, MA) on an Intel Core i7-2620M CPU
@2.7GHz and 8GB RAM.

Linking regional brain atrophy to Parkinsonian symptomatology: To evaluate how strongly
brain region j affects motor/cognitive classification at a given year, we increase this region’s DBM value
(either by 10% or 20%) and record the corresponding impact on the prediction matrix P:

δ(j) = || Poriginal - P w/DBM increase in region j ||, (1)

where || || denotes the Frobenius matrix norm. We then use the normalized vector δ to rank the
most-impacting regions for each modality over time.

3. Results

Figure 1c shows the prediction accuracy, sensitivity, and specificity for classifying patients into
two cognitive categories (normal vs. mild impairment) based on their MoCA scores. Light tone
colors correspond to LR and darker tones to the autoencoder model. Their efficiency varies across all
future time points, with worse results at the first years and best ones at the last year. The autoencoder
method has the potential to correctly predict future cognitive categories with up to 80% accuracy,
significantly improving LR predictions. Figure 1c also shows the prediction accuracy for classifying the
MDS-UPDRS-III motor scores into two categories (mild vs. moderate decline) over the years. For this
case, the two methods performed similarly on all categories.

Figure 2 highlights the regions with highest impact (saliency) in the model predictions. The phase
space of all regions comprising the input layer is shown as shaded areas in the background. For both
MoCA and UPDRS, a brain area is numbered if its contribution to the model prediction, relative to all
the other contributing areas, exceeds a threshold (∆Pj > 0.04). We highlight areas as they appear for the
first time, relative to previous years. As it can be seen, a different set of regions is involved in predicting
patient future classification, with no single region being salient across all four years of classification.
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Figure 2. Emergence of distinct salient regions when predicting MoCA (top) and UPDRS (bottom)
scores for different years. Numbered regions represent areas with relative saliency above a 4% threshold
and are highlighted whenever they first appear, compared to the previous years. Shaded background
regions correspond to the range of brain regions used as input for the neural network. A list of complete
regions and their relative saliencies is shown in Figure 3.

Figure 3 provides a quantitative assessment of the saliency regions for each year, showing all
(i.e., non-thresholded) areas from the NN’s input layer. For each model prediction (MoCA and
UPDRS), regions are uniquely colored and then ranked by their relative contribution to that year’s
prediction. The reordering of colors, observed from year to year, illustrates the malleable nature of this
ranking, emphasizing how the roles played by regions significantly differ depending on the stage of
PD progression being predicted.
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Figure 3. Relative saliency of different regions over time. From top to bottom, percentual value
of saliency for each neural network predicting MoCA (left) and UPDRS (right) for all 4 years 1–4.
Colors follow each region and show the reordering of principal salient regions responsible for the score
predictions. Right hemisphere regions are emphasized to show that similar reordering also happens in
the level of the whole brain. See SI for full names of abbreviated regions.
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4. Discussion

In this study, we predicted future motor and cognitive states of a patient using only features
collected at baseline. We implemented and finely tuned an autoencoder deep-learning model to
significantly improve the results from standard LR. Our model can predict cognitive and clinical
status of de novo PD patients over a period of 1 to 4 years. Our approach relies on well-established
neuroimaging software pipelines and is based on low-dimensional features derived from regional DBM.
Consequently, the training and testing of our model is far quicker and computationally inexpensive
compared to full-stack neural networks that ingest entire imaging volumes and perform prediction on
voxel-level information.

4.1. Rationale for Variable Selection

Our autoencoder predicts a patient’s cognitive score and motor score over a few years based
on anatomical brain features recorded at baseline. We choose the MoCA over the Mini Mental
State Examination due to is better sensitivity [21,26], and differentiate three cognitive stages of PD:
no cognitive impairment, mild cognitive impairment, and dementia. A few shortcomings of MoCA
datasets include the clinicians’ biases at the time of testing and the cumulative scoring basis of its
subtests [26]. Undergoing studies are trying to improve the MoCA scale to better reflect the cognitive
state of different PD patients. Regarding our motor-score predictions, we use the Unified Parkinson’s
Disorder Rating Scale Part III (MDS-UPDRS-III) as it provides an efficient and reliable test to evaluate
the motor capabilities of PD subjects [27]. In fact, Greffard et al. [28] demonstrated that this score is
linearly linked to neuronal density, which in turn, may reflect neuronal damage and regional atrophy.

In this study, we have eschewed the most commonly used approach in AI, which is the use of
voxel-level entire imaging datasets as features. We have instead elected to employ regional volumetric
information available from established neuroimaging analysis pipelines, in this case, using the DBM
measure of regional atrophy. This choice certainly entails some loss of information but also leads to
a tremendous reduction in dimensionality—which we consider is essential when using NN models
on limited training samples. In the field of medical imaging, the number of training examples is
practically and ethically severely limited, and we believe an evidence-based dimensionality reduction
is essential. Indeed, regional volumetric analysis is bread-and-butter in the field of neuroimaging,
especially for degenerative disease, which are highly stereotyped spatially. Thus, by exploiting a
priori neurophysiological knowledge regarding regional distribution of atrophy in PD, we were able to
overcome high dimensionality without losing disease-relevant information.

Among the various available options for regional volumetric analysis, we chose DBM [19]. For this
study, we chose to use an existing set of brain connectomes from healthy subjects as previously reported
in Zeighami et al. [19]. This choice was dictated by our desire to consider the most high-quality
connectomes, which the healthy connectome dataset provides. As we have previously argued [29,30],
it is usually sufficient to consider an average template healthy connectome for the purpose of graph
modeling, since the disease cohort under investigation is a de novo (i.e., early) group of PD patients,
whose connectome architecture may be considered relatively unimpaired. Studies show that DBM is
superior to voxel-based morphometry (VBM) in detecting subcortical irregularities in the temporal lobe
during epilepsy [31]. Moreover, VBM is less sensitive to subcortical atrophy and may not accurately
reflect MRI data, justifying the adoption of DBM features in all models. DBM may also be superior
on the current datasets to the common Freesurfer-based regional volume and cortical thickness
measures [32], since PPMI subjects are de novo early-stage patients whose brain atrophy has not yet
progressed to the point where large effect sizes in thickness or volumes can be sensitively measurable.
DBM might also be more appropriate for subcortical structures where Freesurfer typically is less
reliable than on the cortex.
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4.2. Pivotal Regions for Cognitive and Motor Decline Prediction

The upper plots in Figure 2 show influential areas identified by the neural network model as
“salient”: essential areas used by the NN model for classifying patients according to their cognitive
decline over the years. Those areas are well corroborated by current literature: Melzer et al. [33]
reported a grey matter reduction in the Putamen, among other areas, of PD patients with mild
cognitive impairment. The Substantia Nigra (pars compacta) along with the nigrostriatal dopaminergic
pathways are also likely compromised in PD [34]. Cognitive symptoms, such as intellectual fatigability,
decreased verbal fluency, and discrete memory impairment, have been reported in relation to Red
Nucleus deficits [35,36]. Finally, increased activity in the Subthalamic Nucleus activity was reported
during decisions requiring high cognitive burden and when linking cognitive and motor processes [37].
The last glass brain in Figure 2 for MoCA score predictions shows that four years after baseline, the new
most-impacting regions for MoCA are the Substantia Nigra and the Superior Temporal Gyrus. This is
again consistent with significant changes in grey matter reported in PD patients with MCI [38,39].
Amygdala was also a salient region in these analyses. Mesial and surrounding temporal cortices,
and amygdala, are well known as sites that govern cognitive and memory functions in the brain,
hence their involvement as salient regions for the prediction of MoCA is expected.

Figure 2 also shows the key regions responsible for UPDRS classification. During the first year,
those are the Pallidum and the Subcallosal Area. The Parkinsonian state is indeed characterized by
alterations in the temporal-spatial processing of information within the Pallidum [40]. For fourth
year predictions, the Caudate Nucleus become significant, consistent with descriptions of its key
involvement in motor responses [41–46]. In fact, animal studies show that the Caudate Nucleus
contributes significantly to the accuracy of directed movements [47]. Additionally, a large study
with elderly patients linked volume reduction of the Caudate Nucleus to age related decline of
motor performance [48]. The scoring of UPDRS-III reflects four most classic Parkinsonism syndromes:
tremor, rigidity, akinesia, and postural disturbances, which could be well explained by the death of
dopaminergic neurons in Substantia Nigra. Our method ranked the parahippocampal and ambient
gyri as pivotal regions for UPDRS-III, which is not strongly supported by the literature as these regions
are usually considered cognition rather motor related [49]. The inclusion of these regions might be
capturing, instead, a more general reflection of PD-related disability.

4.3. Dynamical Reordering of Culprits in Parkinsonian Symptomatology

Figure 3 shows that the relative contributions of different brain regions to either MoCA and
UPDRS scores change over time, suggesting a dynamical re-accentuation of regional contributions for
each symptom. Regarding the MoCA scores, the Red Nucleus (R) plays a consistent role throughout
years one to three, but a minor role in year four. The hippocampal contribution to MoCA, on the other
hand, seem to increase consistently over the years. There is no clearly dominant salient region until the
fourth year when the Substantia Nigra (R) dominates all others. Interestingly, the ML method is also
most accurate in this year. In all years, most significant contributions come, primarily, from the right
brain hemisphere, although dynamical rearrangement is also observed to occur.

For the UPDRS, we notice a substantial contribution of the Pallidum (years = 1,4) and a dominant
contribution of the parahippocampal and ambient gyri in the second year that decays afterward.
The role of the subcallosal area also grows over the years. As in the MoCA prediction, the UPDRS
prediction is also more accurate when there is a clearly dominant salient region (year = 2). Finally,
while the contributions in the first year come mostly from the regions in the left hemisphere, we observe
a mixed contribution in subsequent years. There is no apparent relationship between the salient regions
and the dominant side of the patient since the number of patients with right/left/symmetric dominance
is 68/21/4 in our cohort. These results strongly suggest that a dynamic reordering of salient regions
governs an evolving landscape of cognitive and motor dysfunction in PD. This aspect has received
almost no attention in the field, but one that we believe may be critical in a fuller understanding of
PD progression. A practical benefit from this study may be that a neurologist may become more
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motivated to probe in more detail the specific patterns of atrophy in these selected salient regions in
their patients’ brain. The salience of these regions also raises several unanswered questions about
their role in downstream cognitive and clinical disability. Some of these regions may be involved in
neurological and cognitive resilience in PD—an aspect that merits further investigation.

4.4. Limitations and Future Work

The PPMI database is one of the largest of its kind, but the number of patients with significant
longitudinal data is still small, precluding the application of several other machine-learning models
that require larger training sets. The validation of the autoencoder model was also restricted to a
narrow timespan range (1 to 4 years past baseline). There is a wide variability in atrophy patterns as
well as cognitive and motor scores across PD patients. Specifically, there may be significant biases
from the clinicians and/or study centers when scoring the MoCA and MDS-UPDRS-III tests. A more
comprehensive PD diagnosis and prognosis performed by neuropsychologists could dramatically
improve the training of the neural network. It is expected that our model will also improve its predictive
power with the increase of the dataset. In fact, new patients had their baseline measurements added to
the dataset and their longitudinal data is currently being processed.

Dopaminergic neurons loss in the Substantia Nigra (SN) has been widely considered to be the
cause of motor symptoms in PD. This study, however, was not able to detect SN as a salient region for
UPDRS classification. One possible explanation is that the neural network may find overall high levels
of atrophy across patients redundant for motor-score prediction when other sources of discrepancies
between motor versus non-motor PD patients are available. In other words, while the strong SN
atrophy is almost certainly contributing to the high mean UPDRS of our cohort of patients, the relative
differences in UPDRS are less correlated with differences in SN atrophy than they are to atrophy in the
regions shown in Figures 2 and 3.

An interesting avenue for future work is to explore promising imaging biomarkers from white
matter, including those related to demyelination (e.g., from T2 weighted MRI), and altered fiber
integrity (from diffusion weighted MRI). In fact, Bouhrara and colleagues [50] have shown that the
brainstem undergoes demyelination with aging, and have indicated that this may contribute to the
structural changes observed with aging. Since myelin loss is involved in PD, this modality could be
applied to quantitative MRI measures in addition to morphometry metrics used in this study.

4.5. Summary

Machine-learning methods are quickly firming themselves as automated diagnostic tools in
medicine due to their highly accurate predictions. We have reported an autoencoder-based neural
network model that can predict cognitive and clinical status of de novo PD patients over a period of
1 to 4 years. The applicability of the presented model in clinical diagnosis and prognosis is clear and
immediate. Our approach relies on well-established neuroimaging software pipelines and is based on
low-dimensional features derived from regional DBM. Consequently, the training and testing of our
model is far quicker and computationally inexpensive compared to full-stack neural networks that
ingest entire imaging volumes and perform prediction on voxel-level information. Although neural
network-based predictors are increasingly being used in medical imaging, they are so far confined to
giving predictions without providing understanding. Therefore, we should avoid using them merely
as “black boxes” that yield different scores for accuracy, specificity, and sensitivity, but also try to
interpret their results from a basic science viewpoint. In our study, the input features are directly
related to different brain regions, and our saliency analysis offer new insights regarding PD progression
and symptomatology. More specifically, we show that the relative contributions of these salient regions
change over time, suggesting a dynamical reordering of culprits for each functional impairment as the
disease progresses.
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