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ABSTRACT OF THE DISSERTATION

GPU Rasterization Methods

for Path Planning

and Multi-Agent Navigation

by

Renato Farias

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Merced, 2020

Professor Marcelo Kallmann, Chair

In this dissertation I present new GPU-based approaches for addressing path planning and

multi-agent navigation problems. The proposed methods rely on GPU rasterization tech-

niques to construct navigation structures which allow us to address these problems in novel

ways.

There are three main contributions described in this document.

The first is a new method for computing Shortest Path Maps (SPMs) for generic 2D polyg-

onal environments. By making use of GPU shaders an approach is presented to implement

the continuous Dijkstra’s wavefront propagation method, resulting in an SPM representa-

tion in a GPU’s buffer which can efficiently give a globally optimal shortest path between

any point in the environment and the considered source point. The proposed shader-based

approach also allows several extensions to be incorporated: multiple source points, multiple

source segments, and the incorporation of weights that can alter the wavefront propagation
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in order to model velocity changes at vertices. These extensions allow SPMs to address a

large range of real-world situations.

The second contribution addresses the global coordination of multiple agents flowing from

source to sink edges in a polygonal environment. The same GPU-based SPM methods are

extended to compute a Continuous Max Flow in the input environment, which can be used

to guide agents through the environment from source edges to sink edges, leading to a flow

representation stored in the frame buffer of the GPU. A method for extracting flow lanes

respecting clearance constraints is also presented, achieving the maximum possible number

of lanes to route agents across an environment without ever creating bottlenecks.

In order to address decentralized autonomous agents, the third contribution presents a new

method for dynamically detecting and representing in SPMs regions where agents are bot-

tlenecked. The incorporation of weighted barriers are proposed to model the corresponding

time delays in corridors of the SPMs, in order to provide agents with alternative paths avoid-

ing bottlenecks. In this way, a novel type of SPM is defined, providing optimal solutions

from weights which reflect dynamic delays in the corridors of the environments.

The methods proposed in this dissertation present novel approaches for addressing optimal

paths and agent distribution in planar environments. Given the continuous development of

high-performance GPUs, the proposed methods have the potential to open new avenues for

the development of efficient navigation algorithms and representations.
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CHAPTER 1

Introduction

My work has focused on developing new GPU-based rasterization techniques for path

planning and multi-agent navigation. Global navigation often depends on efficient path

planning which is thus crucial in various applications from motion planning for robots to

autonomous agents in virtual environments. Because of this, approaches for planning paths

among obstacles have been extensively explored in diverse fields such as Artificial Intelli-

gence (AI), Robotics, and Computer Animation.

While the problem has been extensively explored and many approaches have been in-

troduced in recent years for computing paths among obstacles, efficiency of computing

collision-free paths without global optimality guarantees has been the main focus. This

reflects the fact that computing optimal paths efficiently is not a trivial task. No notable re-

cent advancement has been achieved on practical methods for computing globally optimal

shortest paths, which in regular planar environments are also known as Euclidean shortest

paths.

One way of computing Euclidean shortest paths is by constructing a visibility graph of

the environment and then running graph search on it. Unfortunately in the worst case

the number of edges in the visibility graph is Θ(n2), where n is the number of vertices

describing the obstacles, which can significantly slow down path queries based on search

algorithms running on the graph. Furthermore, each path query requires a new search.
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Euclidean shortest paths can however be computed in optimalO(n log n) time with Short-

est Path Maps (SPMs). SPMs are constructed with respect to a “source point”, and like

Voronoi diagrams, SPMs partition the space into regions. Whereas regions in Voronoi dia-

grams share the same closest site, regions in SPMs share the same parent points along the

shortest path to the source, which means that an SPM encodes shortest paths between a

specified source and all other points in a particular planar environment.

While SPMs have been studied in Computational Geometry for several years, they have

not been popular in practical applications. This is because their computation involves sev-

eral complex steps, even when considering non-optimal construction algorithms. We have

developed a GPU-based method that greatly simplifies the process while also introducing

several novelties, as discussed in Chapter 3.

Beyond point-to-point path planning, another important class of problems relates to multi-

agent navigation. The problem of optimally deploying multiple agents traversing a polygo-

nal environment has important applications in many areas, for example, to control multiple

robots in warehouses, to coordinate autonomous cars across narrow streets and to evalu-

ate evacuation scenarios. While optimality can be defined by taking into account different

variables such as energy, time, or distance travelled, in all cases the problem is difficult to

be solved in a planar domain and is usually addressed in a discrete representation of the

environment.

One main challenge in multi-agent navigation is to generate trajectories minimizing bot-

tlenecks in generic polygonal environments with many obstacles. While many methods

utilize a global path planner to generate goal points for agents, the avoidance or correction

of bottlenecks is usually done with local collision avoidance heuristics. The alternative is

to address the problem as an expensive global planning problem, which is the approach

taken in the area of multi-agent path planning. We present two methods for dealing with

this problem.
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First, we present the approach detailed in Chapter 4 for taking into account the maximum

flow capacity of a given polygonal environment to generate a system of bottleneck-free

trajectories which do not require local collision avoidance. As a result we are able to

generate trajectories of maximum flow from source to destination edges across a generic set

of polygonal obstacles, enabling the deployment of large numbers of agents optimally with

respect to the maximum flow capacity of the environment and guaranteeing no bottlenecks

are formed.

In Chapter 5 we detail another approach where agents utilize an SPM to navigate to-

wards the goal and our method dynamically detects bottlenecks and modifies the SPM

with “weight barriers” in order alleviate the bottlenecks by making some agents prefer al-

ternative paths. This reduces the impact of bottlenecks, generates agent behavior that is

more realistic, and avoids the length inefficiency problem of max flow lanes.
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CHAPTER 2

Literature Review

Our work is related to various different areas, from path planning and GPU computing to

the computation of distance fields. The literature review below is organized according to

these related areas.

2.1 Discrete Search Methods

Researchers in AI usually approach path planning with discrete search methods on grid-

based environments, sometimes making use of hierarchical representations. Several ad-

vancements on discrete search methods have been proposed such as heuristic search, dy-

namic replanning, anytime planning [31], etc.; however, with few attempts to approximate

Euclidean shortest paths. Probably the only exception is the work on “any-angle path plan-

ning” [42], which significantly improves the computed paths on grids with respect to get-

ting close to a global optimal. However, still not guaranteeing to achieve paths with global

optimality. The difficulty is that grid-based search leads to distance metrics that accumu-

late distances between centers of adjacent cells, and global optimality requires visibility

computations along arbitrarily long straight line segments in any orientation. Nevertheless

grid-based methods are robust and simple to be implemented, and thus very popular in

many applications.

In Computer Animation, while several approaches have been introduced in recent years for
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efficiently computing paths among obstacles, the state-of-the-art has focused mostly on the

efficiency of computing collision-free paths. For instance, recent work has addressed new

definitions of navigation meshes [16][44][25] but mostly addressing contributions related

to speed of computation and computing paths with clearance. Given the complexity of the

problem and the high computational cost of the simple approaches to it, global optimality

is simply not addressed.

One way to compute globally-optimal Euclidean shortest paths is to first build the visibility

graph of the environment [65] [45] [54] and then run a graph search algorithm on it [43]

[8]. Previous work [30] has presented specific cases where the problem can be solved with

greedy O(n log n) time algorithms without explicitly building the entire visibility graph.

However, a visibility graph can have Θ(n2) nodes, where n is the number of vertices

describing the environment, making it expensive to be computed, updated and queried.

In addition, a new graph search is needed for each path query. It is therefore difficult to

develop efficient methods based on visibility graphs.

2.2 Multi-Agent Path Planning

Related to planning paths for agents from their initial positions to target positions, and

an important problem for a variety of applications, is the problem of Multi-Agent Path

Planning (MAPP).

The vast majority of MAPP approaches developed to date are based on grid representations.

In this case, the problem consists of finding trajectories for agents from given initial cells

to given target cells in the environment grid, while avoiding cells marked as obstacles [35].

A popular approach to this problem is to plan paths individually for each agent and sub-

sequently solve all conflicts. Different strategies for solving conflicts exist. For example,

one approach is to recursively solve conflicts between pairs of agents [51]. Another is to

have agents to follow paths which may have conflicts, and to let each agent address the
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conflicts reactively in response to the local environment and nearby agents [62]. A num-

ber of variations and extensions exist, such as integration with roadmaps for scalability

to higher dimensional problems including articulated structures [10]. While finding opti-

mal solutions for several versions of the multi-agent path finding problem is known to be

NP-hard [73, 57], unlabeled variations can be solved in polynomial time [71, 53].

2.3 Distance Fields on Meshes

Computing distance fields is a problem closely related to computing SPMs. While these

methods do not represent the boundaries of a SPM decomposition, many of the methods

could be extended to do so. Previous work including methods for computing distance fields

are numerous and we include here just an overview of the area.

A popular method to compute distance fields is to rely on window propagation on meshes.

The approach of Mitchell et al. [41] propagates front windows in unfolded triangles while

solving front events during propagation, taking O(n2 log n) time to compute geodesics. It

is also possible to perform window propagation without handling all events [7] [68], reach-

ing O(n2) time but in practice processing a high amount of windows. Window pruning

techniques have also been investigated to improve practical running times [49].

Among other related methods, previous work has already addressed multiple types of

sources, for instance when computing geodesic Voronoi diagrams with multiple sources

[48] as well as polyline-sourced Voronoi diagrams [34] [69]. Such concepts however have

not been implemented in the context of shortest path maps.

Mitchell et al. [41] present an algorithm to solve this discrete geodesic problem on arbitrary

polyhedral surfaces using the continuous Dijkstra technique. Surazhsky et al. [56] build

upon this method using a parametrization of the distance function over the edges of the

mesh.
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Qin et al. [49] achieve faster geodesic computation via a window pruning strategy, whereas

Torchelsen et al. [60] focus on the creation of lower resolution meshes by identifying

regions on the input mesh that can be unfolded with minimal area distortion. Lipman et al.

[32] present a new distance metric called “biharmonic distance” based on the biharmonic

differential operator.

2.4 GPU Methods

Previous work has investigated computing geodesic distances in parallel on GPUs [70][64]

as well as rasterization-based GPU techniques for related applications such as Voronoi di-

agrams [23]. Although we also employ rasterization techniques to accumulate distances,

our approach introduces the significant insight of placing clipped primitives at accumu-

lated heights in order to compute a SPM. Furthermore, we employ new techniques taking

advantage of modern programmable shaders such that it is no longer necessary to dis-

cretize geometry for rasterization, and instead we rely on specialized fragment shaders that

directly fill in pixels during front expansions and without introducing errors from geometry

discretization.

GPU methods have also been explored for path planning from grid-based searches, for

example by performing multiple short-range searches in parallel [21], by parallelizing ex-

pansions per-pixel on uniform grids [26] and based on a quad-tree scheme [15]. However,

grid-based approaches do not address global optimality in the Euclidean sense. We nev-

ertheless compare reported times from some of these works with our approach (Table 3.2)

and show that in addition to global optimality our method is also faster in most cases. The

method based on the quad-tree scheme [15] can be faster but since it searches on a coarse

space the produced paths can be very distant from an optimal.

GPU methods for performing grid-based search have also been explored, including a GPU

implementation of randomized A* search called R*GPU [21], where instead of one state
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being explored at a time, multiple short-range searches are performed in parallel based on a

graph of sparsely placed states connected by edges and guided by a heuristic function; and

parallelized wavefront expansion approaches with expansions per-pixel on uniform grids

[26] and based on a quad-tree scheme [15].

Additional GPU methods have also been proposed to compute related structures. Delaunay

triangulations have been computed in the GPU by mapping sites to a texture, computing

the Voronoi diagram of the sites, deriving from it a triangulation that approximates the

Delaunay triangulation, then repairing and flipping edges to obtain the final Delaunay tri-

angulation [47]. Local collision avoidance has also been addressed in the GPU by applying

the notion of velocity obstacles and computing the motion for many agents in parallel using

a discrete optimization method [18]. Finallly, GPU methods for computing shortest path

trees on graphs have also been proposed based on Dijkstra’s algorithm and contraction hi-

erarchies (CH) [9]; the graph, distance labels, and CH search space are copied to the GPU,

where each vertex of the graph search can then be processed in parallel in its own thread.

2.5 Shader Programming

With respect to previous work in shader programming techniques, our work mainly relies

on the use of shadow volumes. For a thorough overview of real-time shadow algorithms, we

refer the reader to [11]. Algorithms for rendering hard shadows in real time can be roughly

sorted into three categories: shadow mapping [66, 29, 33], alias-free shadow maps [1, 24,

52], and shadow volumes [14, 20]. The method used in our work relies on the generation

of shadow volumes with a variation of the z-fail approach [6, 4, 12]. This approach is

known to be slower than methods using shadow maps, due to higher overdraw and the need

for near and far clipping geometry [28]; however, it does not suffer from (quite severe)

resolution aliasing artifacts, and it is not camera-dependent, allowing in a single pass to

generate shadows in every scene directions.
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CHAPTER 3

Optimal Path Maps on the GPU

3.1 Introduction

This chapter presents our GPU-based method for the computation of optimal path maps

which allow for the efficient extraction of optimal trajectories for agents in virtual environ-

ments. While several algorithms exist for computing shortest path maps, available methods

are either too complex for practical use or too expensive for real-time applications. The

proposed GPU computation approach greatly simplifies the process of building SPMs, al-

lowing them to be easily computed with rasterization procedures triggered from OpenGL

shaders without any pre-computation needed.

We call our maps Optimal Path Maps (OPMs) because they contain all of the functionality

of SPMs and in addition address important extensions: maps with multiple sources of

different types and maps representing velocity changes at vertices. See Figures 3.1 and 3.6

for examples.

Our approach introduces several advantages. While most representations require a point

localization technique in order to determine the region containing the query point, in the

proposed approach point localization is reduced to a simple constant time grid buffer map-

ping. After this mapping, since every point in the OPM has direct access to its parent point

along the shortest path to the closest source, agents have direct access to the next point to

aim when executing their trajectories. In addition, if the entire shortest path is needed, it
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Figure 3.1: Example of a multi-source Optimal Path Map computed on a polygonal scene

with obstacles. There are three source points in the upper half of the scene, and two line

segment sources in the lower half. The contour lines represent equal distances to their

closest source. Contour lines are directly extracted from a distance field which is stored

in the Z-Buffer as a result of our method. The blue cylinders are agents and each has a

polygonal line representing its shortest path to the closest source.

can be retrieved only in linear time with respect to the number of points in the shortest path.

Our approach is based on the idea of cone rasterization from sources and obstacle ver-

tices. Unlike our initial work in this area [5], in the present method we do not require

pre-computation of the shortest path tree of the environment and we also do not need to

create any geometry for the rasterized cones. Instead we use dedicated fragment shaders to

simply fill in the pixels that have direct line-of-sight to the vertices, improving computation

speed and also eliminating errors that were introduced from discretizing cone geometry into

triangles.
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Our shaders operate on the original coordinates of the input vertices for all distance compu-

tations, therefore, when the buffer resolution is appropriate, our maps produce exact results

not affected by the grid resolution. In addition, our new approach allows us to introduce a

new type of map not addressed before: maps with weights at vertices, which allow account-

ing for speed changes at vertices, an interesting situation leading to new types of optimal

path maps.

Our method can produce relatively complex dynamically-changing OPMs at real-time rates.

Several examples and benchmarks are presented which demonstrate the various unique ap-

plications of OPMs and that in many cases our paths can be computed faster than competing

approaches.

3.2 Related Work

The first proposed method based on Shortest Path Maps (SPMs) has worst-case time com-

plexity ofO(kn log2 n) [37], where k is a parameter called the “illumination depth”, which

is bounded above by the number of different obstacles touching a shortest path. Later, the

first worst-case sub-quadratic algorithm for Euclidean shortest paths was proposed apply-

ing the continuous Dijkstra expansion, which naturally leads to the construction of SPMs

[40]. The continuous Dijkstra technique simulates expanding wavefronts, which are the

set of all points equally distant from a given source point. The expansion requires solving

various events such as wavefront self-collisions forming hyperbolic boundaries. The result

of the wavefront propagation is a spatial partition which is the SPM.

A nearly optimal algorithm for computing SPMs has been proposed taking optimalO(n log n)

time to preprocess the environment, allowing distance-to-source queries to be answered in

O(log n) time, and paths to be returned in O(log n + k) time, where k is the number of

turns along the path [22]. Unfortunately, these methods and all the known algorithms with

good theoretical running times involve complex techniques and data structures that over-
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burden their practical implementation in applications and prevent the development of useful

extensions. In contrast, our GPU-based approach is relatively simple and is less affected

by typical robustness difficulties encountered in many geometric computations for building

spatial subdivisions relying only on floating point operations.

Alternative GPU approaches have also been explored in previous work. The first attempt to

compute SPMs in GPU was designed to take advantage of the GPU’s massive paralleliza-

tion capabilities [67]. The method first pre-computes in CPU the visibility graph and the

shortest path tree (SPT) of the environment. Afterwards, a brute-force but parallelized GPU

computation is used to determine the closest SPT point to each pixel in order to produce a

subdivision of the discrete screen space in SPM regions.

The idea of using shader rasterization as an efficient way to propagate wavefronts in the

GPU was introduced in our previous work [5] and in this work we present a completely

re-designed method incorporating several extensions and significantly improving the ap-

proach in multiple ways: 1) we eliminate the need to precompute the visibility graph and

SPT, 2) in doing so we are able to address segment sources and speed changes at vertices,

and 3) we no longer have to construct actual geometry for the rendered cones simulating

wavefront expansions; instead we simply employ a dedicated fragment shader to directly

fill in the relevant pixels, simplifying the process and most importantly eliminating error

accumulation from cone discretization.

3.2.1 Contributions

The proposed method is the first SPM generation method to be implemented entirely with

GPU shaders. It does not require any pre-computation, it addresses new capabilities not ex-

plored by previous navigation representations, and it enables multi-agent navigation based

on paths with global optimality, a characteristic which has been neglected in simulated

virtual environments developed to date. While advanced related methods in the geometry
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processing area are available, they have not been applied to represent SPM boundaries or

to represent paths with speed changes. To our knowledge our work has produced SPM

diagrams of complexity not seen before in previous work.

3.3 Multi-Source Optimal Path Maps

Figure 3.2: Top row: example steps for computing a single-source SPM. Bottom row:

corresponding 3D perspective view of each step.

We first describe the base OPM case with multiple source points. Let ns be source points

{s1, s2, ..., sns} in the plane, such that si ∈ D, i ∈ {1, 2, ..., ns}, and where D ⊂ R2

defines a polygonal domain containing all sources. In all our examples D is a rectangular

area delimiting the environment of interest, and the GPU framebuffer will be configured to

entirely cover D. A set of polygonal obstacles O, with a total of n vertices, is also defined

in D such that shortest paths will not cross any obstacles in O.

Given source points the respective OPM will efficiently represent globally-shortest paths

π∗(p), which are optimal collision-free paths from any point p ∈ D − O to its closest

source point si, in the sense that si = minjλ
∗(p, sj), where λ∗(p, sj) denotes the length

of the shortest path π∗(p, sj), j ∈ {1, 2, ..., ns}. Our OPM also efficiently represents the

values of λ∗ for all pixels of the framebuffer by storing them in a dedicated buffer created

in the OpenGL pipeline. This representation gives us direct access to the distance field of

the environment and allows us to easily draw the white isolines that can be seen in most of
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the figures in this chapter. Depending on the situation source points can represent the start

or the end point of a path. In most of the presented examples sources will represent goals

to be reached by agents placed anywhere in the environment.

The plane represented by the framebuffer is located at z = 0. The basic idea of our method

is to rasterize “clipped cones” with apices placed below source points and obstacle vertices,

at the correct z heights, so that the final rendered result from an orthographic top-down view

is the desired OPM (see Figure 3.2).

The process is implemented as follows. An array containing the ns source points and n

obstacle vertices is stored in the GPU. At each iteration one point or vertex is copied into

a reserved position of a data array where it will be used to rasterize a clipped cone. The

point or vertex that is selected to generate the clipped cone at each iteration is referred to

as that iteration’s “generator.” Each point and vertex is processed once, such that the result

is given after ns + n iterations.

Important to our approach is the fact that we do not actually need to create discretized

geometry for representing and then drawing cones. Instead we simply fill in pixels that

have direct line-of-sight to the generator, which is an equivalent operation. A cone apex is

located below the generator relative to the z = 0 plane. The depth values of the affected

pixels increase proportionally to their Euclidean distances to the apex, as with the slope of

a cone. Because the depth is accumulated over iterations, it represents the distance back

to the source point along the shortest path, λ∗. When all clipped cones are drawn at their

respective heights, the GPU’s depth test will maintain, for each pixel, the correct parent

generator point, which is the immediate next point on the shortest path from that pixel to

the closest source point. We say that a cone “loses” to another at a given pixel when its

depth is greater, leading it to be discarded in favor of the “closer” cone.
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3.3.1 Method Description

Given polygonal obstaclesO with n vertices and ns source points, ns ≥ 1, the total number

of vertices to be processed is ntotal = n + ns. These vertices are stored in array DATAAR-

RAY of size ntotal + 1. The extra position is reserved for storing at each iteration the current

generator that will be used for cone rasterization. By convention this is the first position

in the array, DATAARRAY[0], and will be referred to as gcur. Once DATAARRAY is con-

structed, it is stored in the GPU as a Shader Storage Buffer Object. Each of the ntotal + 1

positions in DATAARRAY stores:

• x, y : The original coordinates of the point or vertex in D.

• STATUS : A flag that can be equal to SOURCE for sources, OBSTACLE for obstacle ver-

tices, or EXPANDED for points or vertices which have already generated a cone.

• DISTANCE : The current known shortest path distance to the closest source point, λ∗.

This will always be 0 for source points and is initially undetermined for obstacle vertices.

• PARENTID : Array index into DATAARRAY of the current parent point, which is the next

point on the shortest path back to the closest source point. Since sources have no parent

point, by convention they simply store their own index.

The framebuffer stores similar information for the pixels. For each pixel, its red and green

components store the x and y coordinates of its parent point (equivalent to DATAARRAY[PARENTID].xy),

its blue component stores λ∗ (equivalent to DISTANCE), and its alpha channel stores either

0 if the pixel has yet to be reached by a cone or >0 otherwise. When the buffer is drawn,

the color of each pixel is mapped in the following way: x is used as the red component, y

is used as the green component, and the blue component is zeroed. Although this mapping

is arbitrary, it allows to visualize the location of a region’s parent from the red and green

intensities.

The OPM generation consists of four steps which repeat ntotal times such that each point

and vertex is processed once. The steps are presented in Procedures 1-4. The hat notation
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(e.g., n̂) denotes unit vectors.

Step 1 is a search in DATAARRAY where the position with the smallest DISTANCE is copied

into the reserved position of the array, index 0. Only points or vertices which have not yet

generated a cone (STATUS 6= EXPANDED) are considered in this search, and once one is

chosen its status is updated to EXPANDED so that it cannot be processed again. The point

that is chosen becomes gcur, the current generator. This step can be skipped in the first

iteration of the algorithm as we can just start with one of the source points.

Procedure 1 Search Compute Shader
Input: DATAARRAY

1: int generatorId← −1

2: float generatorDist← ∞

3: for ∀i, i ∈ 1, 2, ..., ntotal do

4: if DATAARRAY[i].STATUS 6= EXPANDED then

5: if DATAARRAY[i].STATUS = SOURCE or (generatorId = −1 or

DATAARRAY[i].DISTANCE < generatorDist) then

6: generatorId← i

7: generatorDist← DATAARRAY[i].DISTANCE

8: end if

9: end if

10: end for

11: DATAARRAY[0]← DATAARRAY[generatorId]

12: DATAARRAY[generatorId].STATUS← EXPANDED

Step 2 is to generate a shadow area in order to solve visibility constraints. Using a geometry

shader, we draw into a stencil buffer three triangles behind every obstacle line segment that

is front-facing with respect to gcur, in a manner illustrated in Figure 3.3. Any pixel covered

by one of these triangles is considered to be in shadow. The resulting buffer is used as a
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stencil buffer in the next step. Three triangles is the minimum number of triangles needed

to cover all possible shadow shapes. We use constant csv f > 0, which stands for shadow

vector factor, when computing the points that make up the triangles. This constant must be

large enough to handle shadows of all sizes. Since our coordinates are OpenGL normalized

coordinates in the [−1, 1] range, a value of 4 is always enough. Note that limiting shadows

to front-facing segments is merely for efficiency; generating triangles behind back-facing

segments would not affect the shadow area.

Step 3 draws a clipped cone with the generator gcur directly above its apex along the z

axis. As previously stated, we do not actually create geometry for the cone but instead

simply run a fragment shader over every pixel on the screen. The pixels that are not in

shadow have direct line-of-sight to gcur, so they calculate their Euclidean distance to gcur

and add it to gcur’s accumulated distance, DISTANCE. If this sum is smaller than the current

DISTANCE of the pixel (from the cone of a previous gcur), then its DISTANCE is updated

and its PARENTID is set to gcur’s index.

Finally, step 4 is to update the DISTANCE of all vertices visible from the current generator,

in a way similar to step 3. Each vertex not in shadow calculates its distance to gcur plus

gcur’s DISTANCE, and if that sum is smaller than its previous DISTANCE it stores the new

DISTANCE and gcur’s index in its PARENTID. The reason steps 3 and 4 are separate is

because step 3 is updating the framebuffer, while step 4 is updating the DATAARRAY. The

end of this step is a synchronization point in our GPU implementation.

After all points and vertices have been processed, which means ntotal iterations of steps 1-

4, the result in the framebuffer will be the desired OPM. Examples of OPMs with a single

source point are shown in Figure 3.17 and with multiple source points are shown in Figure

3.18.
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Procedure 2 Shadow Area Geometry Shader
Input: DATAARRAY

Input: gcur {Current generator point/vertex}

Input: e {One of the sides of a scene obstacle}

1: vec4 p1← first endpoint of e

2: vec4 p2← second endpoint of e

3: vec4 pm← (p1+p2)/2

4: vec4 pg← project and normalize vec4( gcur.xy, 0, 0 )

5: float dx ← p2.x − p1.x

6: float dy← p2.y − p1.y

7: vec4 ĝ← normalize( pm − pg )

8: vec4 n̂← normalize( vec4( dy,−dx, 0, 0 ) )

9: float d← dot( ĝ, n̂ )

10: if d < 0.1 then

11: vec4 v̂1← normalize( p1 − pg )

12: vec4 v̂2← normalize( p2 − pg )

13: vec4 p1s← p1 + csv f v̂1

14: vec4 p2s← p2 + csv f v̂2

15: vec4 pms← pm + csv f ĝ

16: EmitPrimitive( p1, pms, p1s )

17: EmitPrimitive( p2, p2s, pms )

18: EmitPrimitive( p1, p2, pms )

19: end if
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Figure 3.3: Example of a shadow area. The line segment e represents the side of an

obstacle. The red point pg is the generator, points p1 and p2 are the endpoints of e, and

point pm is the middle point of e. Vectors v̂1, v̂2, and ĝ are the normalized vectors from

pg to p1, pg to p2, and pg to pm, respectively. Points p1s, p2s, and pms are calculated in the

following way: p1s = p1 + csv f v̂1, p2s = p2 + csv f v̂2, and pms = pm + csv f ĝ. The three

triangles are sufficient to cover the entire area behind the segment. Using less than three

triangles may not result in a correct shadow if the generator is close to the segment because

the area becomes wide and thin. Value 4 is used for constant csv f such that shadows of any

size can be handled given that our obstacle coordinates are normalized.
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Procedure 3 Cone Fragment Shader
Input: DATAARRAY

Input: gcur {Current generator point/vertex}

Input: f ragCoord {xy coordinates of the pixel}

Output: vec4 f ragValue

1: bool inShadow← is the pixel in shadow or not?

2: vec4 currentValue← what’s currently stored in this pixel {Texture fetch}

3: vec4 f ragValue← currentValue {If nothing else, pass the current value on}

4: if inShadow = false then

5: vec2 p← normalize f ragCoord

6: vec2 pg← project and normalize gcur.xy

7: float newDist← distance( p, pg ) + gcur.DISTANCE

8: if there is no currently stored distance in the pixel or newDist < currentValue.z

then

9: f ragValue← vec4( gcur.xy, newDist, 1 )

10: end if

11: end if
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Procedure 4 Distance Compute Shader
Input: DATAARRAY

Input: gcur {Current generator point/vertex}

1: int id← index of the vertex to be updated

2: bool inShadow← is the vertex in shadow or not?

3: if inShadow = false then

4: vec2 p← project and normalize DATAARRAY[id].xy

5: vec2 pg← project and normalize gcur.xy

6: float newDist← distance( p, pg ) + gcur.DISTANCE

7: if there is no currently stored distance in DATAARRAY[id] or newDist <

DATAARRAY[id].DISTANCE then

8: DATAARRAY[id].DISTANCE← newDist

9: DATAARRAY[id].PARENTID← gcur’s original index

10: end if

11: end if
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3.4 Segment Sources

Line segment sources are one natural extension to our method, and are interesting as

sources for what they can represent. Many navigation goals in real-world scenarios are

not single points but segments, such as the finish line of a race, the thresholds of doorways

or hallways, or the boundary of a coastline. Many of these cases appear when planning

evacuation routes from buildings. Being able to compute OPMs with segments as sources

allows us to maintain global optimality in these practical situations.

Consider that we now have nl line segment sources {l1, l2, ..., lnl}, such that li, i ∈

{1, 2, ..., nl}, consists of two endpoints ∈ D. The OPM will then efficiently represent

globally-shortest paths π∗(p), which are now optimal collision-free paths from any point

p ∈ D −O to the closest reachable point on a segment source li.

Every line segment li can have nci critical points, nci ≥ 0. A critical point denotes a

point on the segment onto which at least one obstacle vertex projects. The obstacle vertex

must have direct line-of-sight to the segment. Critical points are where the visibility of the

scene changes with respect to the segment and are useful because in practice every path

that passes through the corresponding obstacle vertex will have its shortest path reach the

line segment on that critical point. See Figure 3.4. For each li, first the two endpoints

of the segment create two entries in DATAARRAY which are treated identically to source

points. Then, nci + 1 further entries are created, where nci is equal to the number of critical

points segment li possesses. Every one of these entries stores two pairs of xy coordinates

rather than just one, with STATUS set to SOURCESEGMENT, to represent the sub-segments

of li. If nci = 0, then the two endpoints are simply used because the segment has no

sub-segments. If nci > 0, then every adjacent pair of points, including both endpoints and

critical points, will create an entry in DATAARRAY.

The distance calculation of the OPM generation process is different when the generator’s
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Figure 3.4: The circled points on the segment sources are the critical points, which are

projections of obstacle vertices.

Figure 3.5: Line segment source examples. Left: SPM of two segment sources intersecting

at the center. Right: Several paths from agents represented as blue triangles to their closest

points in a segment source. In both cases the white contours represent the distance field

from the sources.
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STATUS is marked as SOURCESEGMENT. It is necessary to determine whether the point be-

ing updated is closer to one of the endpoints of the sub-segment, or somewhere inbetween.

If it is closer to one of the endpoints, the distance is simply the distance to that endpoint.

Otherwise, the distance is equal to the distance between the point and its projection on the

sub-segment.

The described changes are sufficient to handle both segments and points as sources. Figure

3.5 shows additional examples of OPMs with line segment sources.

3.5 Vertex Weights

Another useful extension is to consider weights assigned to the vertices of the scene. A

weight w on a vertex signifies that when an agent passes by the vertex its speed is changed

according to w, implying that the distance calculation for that particular generator’s cone

will be altered by a certain multiplicative factor which is given by the value of w. This is

the equivalent of changing the slope of the cone being rasterized, which is also equivalent

to changing the speed at which that wavefront propagates.

As with segment sources, vertex weights allow our maps to represent practical scenarios

that have not been explored previously. As an example, consider a virtual character that

needs to arrive at a certain destination. One option is to walk directly there; another is

to take a more roundabout path that at a certain point lets the character get on a bicycle

or another vehicle, speeding up the traversal of the remaining distance. This scenario is

illustrated in Figure 3.6. A shortest path map cannot answer which option is faster because

it cannot represent the change in speed, but an optimal path map considering vertex weights

can.

Given two points, pi and pj ∈ D − O, the Euclidean distance between them, d(pi,pj),

and a weight w, w > 0, let the weighted distance be equal to dw(pi, pj) = d(pi, pj)/w.
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Figure 3.6: Top: an agent on foot plots a constant-speed shortest path. Bottom: the top-left

vertex of the long rectangular obstacle has its weight increased representing the possibility

of using a bicycle to speed-up traversal time. That possibility leads to the fastest path.
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When all vertices have w = 1, a regular OPM is generated. When any vertex has w 6= 1,

the OPM is altered. For example, if a vertex has w = 2, agents that pass through the vertex

would move twice as fast. It represents the agent switching to a faster mode of travel.

If a generator with w 6= 1 becomes the parent of another vertex with w′ 6= 1, then the

weight stored in the vertex will be max(w, w′). This symbolizes the agent always prefer-

ring to stick with the fastest mode of travel that it comes across.

For every unique weight that exists in the scene, we must store an extra copy of each of the

obstacle vertices in the data array. In a regular OPM it is impossible for a cone to lose to

another in close distance but win over a long distance, so there is no need to propagate any

but the closest cone for each vertex. In a weighted OPM this is however possible. A cone

with a wider slope (higher w) may eventually poke out from under a cone with a narrower

slope (lower w). This makes it necessary to propagate the closest cone for every unique

weight, otherwise the resulting map may generate incorrect discontinuities.

In the example of Figure 3.7 the highlighted circled vertex (on the lower-left image quad-

rant) has a weight of 1.3, making it a more attractive option for optimal paths and thus

distorting the OPM towards it. However, as can be seen in (a), it generates a discontinuity

on the other side of the map (region highlighted with an arrow) because it was unable to

propagate to the area behind the upper-right obstacle. By giving an extra space for the

uniquely weighted vertex to propagate (b), an extra cone is drawn and the wavefronts line

up correctly.

Interestingly the isolated green region, the one which is not adjacent to a generator vertex

as indicated with the arrow in Figure 3.7, still appears in the correct version of the map.

This indicates that if the agent is located in that region, the shortest path to the source

first goes to the parent point of the green region, which is disconnected from the isolated

region. Therefore OPMs with speed changes do not have anymore the property that each
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(a) Incorrect (b) Correct

Figure 3.7: If generators with different weights are not allowed to propagate, they may

generate inconsistencies in the OPM. It is necessary to store an extra copy of the data array

for each uniquely weighted vertex in the scene, otherwise situations such as the above arise.
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region associated with a parent generator is singly-connected.

The inclusion of vertex weights requires additional solutions for the correct visualization

of the obtained OPMs. Consider the example shown in Figure 3.8. Although the selected

goal points (red crosses) in both (a) and (b) have the same parent, the paths that they

generate are not the same; one passes through the weighted vertex and the other does

not. Here we use dashed lines to differentiate regions with paths altered by the weighted

vertex. The inclusion of additional weighted vertices would require additional patterns in

the visualization. Because weighted vertices change the speed at which an agent traverses,

white isolines no longer denote equal distance to the source but rather equal time intervals.

Figure 3.9 shows the resulting OPM when the weight of the same vertex as in Figure 3.7 is

set to increasing values.

Figure 3.8: The weight of the highlighted vertex is increased. Paths to regions with blue

dashed lines pass through the “faster vertex”. With vertex weights, ambiguity is introduced

because while pixels in the same region still have the same parent, their paths after the

parent may be different. This happens because if the goal is sufficiently distant it becomes

advantageous to take a detour to pass through the weighted vertex and gain faster travel

mode.
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(a) Weight 1 (b) Weight 1.1 (c) Weight 1.2 (d) Weight 1.3

Figure 3.9: Resulting OPMs as the highlighted vertex has its weight increased. The region

generated by the clipped cone at that vertex gradually bloats outwards until it reaches both

sides of the map.

3.6 Results and Discussion

We have produced several agent simulations taking advantage of the new capabilities in-

troduced in this work.

Dynamically Changing Sources Figure 3.10 depicts the layout of a subway, with the

sources symbolizing train doors which dynamically change from non-existent to points

and then growing line segments as the doors open. The OPM is updated in real-time as this

happens and the paths of the agents adjust accordingly.

Figure 3.10: Simulation dynamically updating an OPM as its sources change from points

(left) to growing line segments (right).
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Moving Segment Sources We add motion to the segment sources in the simulation de-

picted in Figure 3.11. The segment sources represent dynamic goals (trains) that agents

attempt to reach. The trains move either left or right on their tracks while the map is con-

tinuously updated.

Figure 3.11: Simulation where agents attempt to reach moving trains represented by dy-

namic segment sources. As the trains move each agent has direct access to a shortest path

to the closest train.

Evacuation Analysis An OPM is used in Figure 3.12 to calculate a distance field where a

greener color indicates closer proximity to a source while a redder color indicates greater

distance from a source. Sources are segments indicating road exits and the illustrated map

is a region of the roads in the northwest area of Bodie, CA. Three segment sources represent

the exits, one in the northwest area and two in the northeast area. By varying the number

of passages leading out of the central area it is possible to visually analyze differences

in evacuation distances and the OPM boundaries delimiting different directions towards

closest exits. The encoded optimal paths are readily available for simulating autonomous

agents.

Multiple Vertex Weights Multiple vertices in the environment in Figure 3.13 have had

their weights increased due the availability of a faster transportation mode. Four agents with
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Figure 3.12: Evacuation simulation. Left: central area has 1 exit. Right: 3 exits.

identical start and end points navigate the environment, one at a time. Each time an agent

passes through a weighted vertex it uses the transportation resource and the corresponding

weight is reverted to regular, altering the OPM and resulting paths for subsequent agents.

Collision Avoidance Integration We have explored the approach of relying on SPMs with

local collision avoidance for providing optimal paths for agents to navigate around obsta-

cles towards their goals [50]. We have integrated our SPM implementation with the well-

known Reciprocal Velocity Obstacle (RVO) [61] approach for local collision avoidance.

As shown in Figures aa, when relying only on local behavior agents can easily become

trapped, but this does not happen when agents are guided by the velocity vector determined

by using the SPM of the environment.

3.6.1 Benchmarks

We evaluate the performance of our algorithm with several benchmarks where we use a

framebuffer resolution of 1000x1000 on a Nvidia GeForce GTX 970 GPU and an Intel

Core i7 3.40 GHz computer with 16GB of memory.

Table 3.1 shows average execution times for computing 100 single-source OPMs with ran-

dom source points inD−O. The table shows times both with and without transferring the
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Figure 3.13: Simulation with multiple vertex weights.
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Figure 3.14: Agents are trapped when relying only on collision avoidance (top), but not

when extracting directions from the SPM (bottom).

Figure 3.15: Top: Four groups of agents navigating toward their goal segments using

RVO-based local behavior without any global path planning. Bottom: SPMs are applied to

provide preferred velocity vectors aligned with shortest paths in order to guide the agents.
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Computation Comp.+Transfer

Map name P V Time (s) Time (s)

Concave1 2 12 0.0011 0.0207

Concave2 13 96 0.0088 0.0465

Spiral 1 38 0.0022 0.0274

SpmEx1 3 15 0.0016 0.0215

SpmEx2 13 91 0.0100 0.0470

Profiling0 4 16 0.0014 0.0221

Profiling1 16 64 0.0054 0.0404

Profiling2 36 144 0.0456 0.0858

Profiling3 64 256 0.1251 0.1680

Profiling4 100 400 0.2701 0.3099

Profiling5 196 784 0.8564 0.8863

Profiling6 400 1600 2.7371 2.8070

Table 3.1: Average time in seconds to compute a single-source OPM on various maps

(shown in Figure 3.17). P and V are the number of polygons and vertices.
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Method CPU GPU O V Optimality Time (s)

DS (1) – GF GT 650M – – Average 32.93

DS (1) – GF GTX 680 – – Average 21.25

DS (2) – – – – Average 14.12

DS (2) – – – – No 0.04

SPM (3) i7 2.66 GHz GF GTX 580 64 256 Best 1.42

OPM (4) i7 3.40 GHz GF GTX 970 64 256 Best 0.13

Table 3.2: A comparison of GPU-based techniques: (1) dynamic search using an uniform

grid [Kapadia et al. 2013], (2) dynamic search using a quad-tree [Garcia et al. 2014], (3)

brute-force SPM [Wynters 2013], and (4) our method. The number of obstacles (O) and

vertices (V) in the environment are included for the last two methods. Some hardware

details were not specified in the papers.

resulting OPM back to the host memory.

Figure 3.16 charts out computation times on the Profiling maps. These maps are composed

of uniform rows of square obstacles (see Figure 3.17) with large visible areas from all points

in the map. This represents a worst-case scenario for our method because there are large

areas visible from all vertices. Still we observe that the increase in computation time is not

too distant from linear, given the parallel execution of the GPU rasterization operations.

Table 3.2 shows that our method is able to compute an OPM and return optimal paths

faster than some previous GPU-based methods which are grid-based and thus non-optimal.

For example, Kapadia et al. [26] gives times to plan paths on a grid environment with

similar resolution to the buffer used in our benchmarks, 1024x1024, as follows: between

32.931 and 49.126 seconds for a GT 650M and between 21.246 and 30.778 seconds for

a GTX 680. While it would be disingenuous to directly compare these numbers to our

benchmarks, which used a newer GTX 970, we nevertheless believe that a new card will
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not offer the significant speed up that would be required to match even the 2.80 second

running time we achieved on our most complicated map. In a later work they employed

a quad-tree to speed up the computation [15], but sacrificing optimality even more in the

process.

We have also performed experiments against a window propagation method used for com-

puting geodesic paths on meshes. Table 3.3 shows a comparison between the average

number of path queries per second our method can answer compared to the CPU method

of Xin and Wang [68] available in CGAL. For both algorithms, one million points were

randomly generated on the map and then used as query points. As can be seen from the ta-

ble, in all cases tested our OPMs were able to answer a significantly larger number of path

queries per second. This follows from the fact that point location is a trivial constant time

operation in OPMs, and after that, paths are constructed by simple concatenation of parent

points from the query point. The faster query time basically follows from the grid-based

representation of our method. We found it difficult to compare construction times. Our

method was slower in computing our per-pixel SPM representation than the time taken by

the CGAL method to compute their sequence tree. However, a sequence tree only repre-

sents paths to the vertices of the obstacles, and trivially querying the structure to construct

path information for every pixel would lead to slower times.

3.6.2 Discussion

Although our method uses a framebuffer grid and thus samples the environment at the level

of pixels, distances are calculated exactly using the original coordinates of the sources and

obstacle vertices. This means that there is no accumulation of error introduced by the

method when integrating lengths of solution paths. In practice, only the region borders

formed by collision fronts are affected by the pixel approximation since they decide the

first parent point to take when starting a shortest path to the closest source. After the

first parent point is selected, all the next ones are determined only from floating point
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Queries per second

Map name F AVP CGAL OPM Improv.

Concave1 18 2.80 1,530,456 9,678,293 6.3x

Concave2 124 3.47 723,589 7,958,298 11.0x

Spiral 42 6.48 1,152,206 5,435,787 4.7x

SpmEx1 23 2.68 1,301,066 9,669,309 7.4x

SpmEx2 119 3.24 720,928 8,278,968 11.5x

Profiling0 26 2.58 1,150,880 10,511,710 9.1x

Profiling1 98 2.95 704,423 9,273,255 13.2x

Profiling2 218 3.29 457,435 8,164,065 17.8x

Profiling3 386 3.55 373,985 7,815,736 20.9x

Profiling4 602 3.90 232,336 7,267,917 31.3x

Profiling5 1178 4.57 153,881 6,075,666 39.5x

Profiling6 2402 5.54 92,909 5,011,099 53.9x

Table 3.3: Number of path queries per second. F is the number of faces (triangles) on each

map and AVP is the average number of vertices in the paths computed. The last column

shows the improvement obtained with OPMs.
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computations with the input vertices. If needed, it is however still possible to guarantee the

correct shortest path for a given query point on a pixel bordering two (or more) regions; in

that case we can test to see which of the neighboring regions’ parent points are in fact the

closest to the query point, using their exact accumulated distances to the closest source.

A suitable framebuffer grid resolution is expected to be chosen guaranteeing that every grid

pixel contains at most one source point or obstacle vertex, and no free space exists between

adjacent pairs of obstacle grid pixels or adjacent shadow regions. Under these conditions

our method will provide correct minimum shortest paths, with optimality guaranteed up to

the precision of half one pixel diagonal length for point queries on pixels at the boundaries

of the OPM regions.

Besides being resolution-sensitive the main limitation of our method is that it may only be

suitable for real-time simulations in environments of moderate size. Our method is slower

than state-of-the-art path finding solutions that focus on speed of computation instead of

global optimality [25]. However, our performance times have the potential to increase over

time given the rapid expansion of GPU-based computing hardware and techniques.

3.7 Conclusions

We have introduced in this chapter a novel shader-based GPU method for computing op-

timal path maps addressing multiple types of sources and weights at vertices representing

speed changes. We also uncover the interesting property that speed changes may lead to

maps with disconnected regions associated to a same parent generator, something that can-

not happen in traditional SPMs. The achieved capabilities have clear practical applications

and were not explored before in an optimal way. Our benchmarks show that our method

outperforms comparable approaches in many cases.

Our approach opens new directions for incorporating navigation mapping techniques within
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the graphics pipeline. Our maps can instantly guide agents in multi-agent simulations from

GPU buffers storing distances to the closest target and the next point to aim for from any

position in the environment.
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Figure 3.16: The x axis represents the number of obstacle vertices in the scene, and the y

axis represents the computation time in seconds.

(a) Concave1 (b) Concave2 (c) SpmEx1 (d) SpmEx2 (e) Spiral

(f) Profiling0 (g) Profiling1 (h) Profiling2 (i) Profiling5 (j) Profiling6

Figure 3.17: Single-source OPM results.
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Figure 3.18: Multiple-source OPM results.
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CHAPTER 4

Planar Max Flow Maps and Determination of Lanes with

Clearance

4.1 Introduction

The problem of optimally deploying multiple agents traversing a polygonal environment

has important applications in many areas, as for example, to control multiple robots in

warehouses, to coordinate autonomous cars across narrow streets and to evaluate evacua-

tion scenarios. While optimality can be defined by taking into account different parameters

such as energy, time, or distance traveled, in all cases the problem is difficult to be solved

in a planar domain and is usually addressed in a discrete representation of the environment.

In this chapter we present a method for agent deployment among obstacles based on com-

puting the continuous maximum flow of a 2D environment. In this case we address comput-

ing solutions based on disjoint lanes which are optimal with respect to the maximum flow

of agents traversing the environment. Our overall approach is based on GPU rasterization

techniques which allow us to compute maximum flows from polygonal representations and

to represent them in a max flow map discretized in a frame buffer in the GPU.

Additionally, we describe the clearance-based max flow map, which generates max flows

specifically for achieving the maximum possible number of lanes with a given clearance.

These maps achieve this property by incorporating during the flow generation a technique
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suggested for generating integer max flows [39]. We therefore describe in this chapter two

types of max flow maps: one insensitive to the clearance needed by agents, and another

specific for a given clearance. We also include definitions for the types of flows that are

represented in each case.

Figure 4.1: Example max flow map from a source edge to a sink edge. While this flow

map has optimal flow capacity, path lanes are subsequently extracted taking into account

the required agent clearance and then optimized in length.

Our methods produce bottleneck-free lanes which can be used to safely deploy and guide

agents across a cluttered environment. If a large quantity of agents is deployed, the system

of lanes will optimally guide all agents to reach the destination region. Here optimality

is related to the maximum number of agents that can be deployed across the environment

from a source polygonal entrance to a sink polygonal exit without creating bottlenecks. See

Figure 4.1 for an example. Once a flow map is computed, lane trajectories are extracted

according to the size of the agents, and optimized in length while keeping constant the

maximum flow achieved by the system of trajectories.

As a result our methods are able to generate lanes of maximum flow from source to des-
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tination edges among a generic set of polygonal obstacles. When the system of lanes is

fully occupied by agents, no more agents can fit the environment without eventually cre-

ating bottlenecks. Agents can safely follow our computed lanes without having to employ

any complex local behavior strategies in order to reach the destination region. In terms of

length, our lanes are locally-optimal with respect to the total length of all lanes.

Simulations are also presented demonstrating the superior performance of our method in

deploying large quantities of agents across environments with obstacles, when compared

to having agents following their shortest paths to the destination.

4.2 Related Work

Our work develops a new approach to address multi-agent navigation in cluttered environ-

ments which is based on finding the maximum number of valid disjoint lanes that can be

routed from an initial polygonal source segment to a polygonal target segment.

The addressed problem has some resemblance to the well-known k-disjoint shortest paths

problem in graphs [3], which seeks to find the k pairwise disjoint shortest paths connecting

given initial graph nodes to corresponding target graph nodes. Our formulation however is

quite different in which it addresses a continuous polygonal environment, with polygonal

edges considered as entrances and exits, and addressing required clearance constraints.

Another difference is that there is no labeled target per agent, and instead agents can be

routed to any point in the exit segment. Our proposed approach solves this problem by

computing the continuous max flow of the input environment and then extracting paths

from it. While our solution is of max flow, the total path length is optimized only locally.

The literature review below makes an overview of the more generic Multi-Agent Path Plan-

ning (MAPP) problem, analyzes previous uses of max flow algorithms in MAPP problems,

and finally reviews the continuous max flow problem which is the approach taken in this
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work.

4.2.1 Multi-Agent Path Planning

The Multi-Agent Path Planning (MAPP) problem is related to planning paths for agents

from their initial positions to target positions. It is an important problem for a variety of ap-

plications and the problem has been extensively studied in different contexts, as discussed

in Chapter 2.

One important characteristic of methods to solve the MAPP problem is that, in order to find

a solution when one exists, time has to be discretized and the employed search procedure

has to take into account the time component. Our approach however focuses on finding

disjoint paths such that searching in the time component is not needed. While our approach

can be seen to be less generic in the sense that it does not solve agent coordination to

reach specific goal points, the proposed method addresses the spatial reasoning problem of

maximizing the flow of agents across an environment, and is better suited for optimizing

areas with high traffic of agents among obstacles. Once paths (or lanes) of maximum flow

are computed, an arbitrary number of agents can be deployed by simply following the lanes

in order to optimally traverse the environment.

4.2.2 Use of Flow Algorithms in Multi-Agent Path Planning

Discrete flow algorithms have clear applications to multi-agent path planning and the prob-

lem of computing maximum flows in a capacitated network graph has been an important

problem in combinatorial optimization. The problem is commonly studied in textbooks and

many polynomial-time algorithms exist. The connection between network flows and path

planning has started to be investigated in a number of works; however, to date all previous

works have been limited to investigations performed in discrete versions of the problem.

A Conflict-Based Min-Cost-Flow algorithm has been proposed to address the combined
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target assignment and path finding problem, where a min-cost max-flow algorithm on a

time-expanded network graph is used to assign all agents in a single team to targets [36]. Yu

and Lavalle [72] study the problem of computing minimum last arrival time and minimum

total distance solutions for multi-agent path planning on graphs. Their formulation relies on

discrete multi-commodity flow algorithms which address the problem of flowing different

types of commodities through a graph network. Heuristics for search-based algorithms

that systematically explore the state space have also been proposed based on commodity

flows [58, 27], and multi-agent path planning for goals that are permutation invariant has

been addressed with graph network flows [71].

In the area of multi-agent simulation, crowd-flow graphs have been developed to distribute

agents in an environment according to capacity information extracted from a harmonic field

computed in the environment [2].

While these works clearly show that solving flow problems represents a powerful approach

to address multi-agent path planning, previous work has used discrete max flow algorithms

applied to a time-expanded representation. No previous work in multi-agent navigation has

explored the use of a continuous flow formulation in order to directly generate lanes and

at the same time address planar environments described by polygonal boundaries. Such an

approach is important in order to reach optimality guarantees in the Euclidean sense, and

furthermore, to take into account specific geometric constraints (such as agent size) without

simplifications.

4.2.3 Continuous Max Flows

While the generalization of the maximum flow problem to a continuous domain is clearly

interesting, its computation is not obvious. Strang [55] describes an extension of the max-

flow min-cut theorem to continuous flows, showing that the maximum flow from sources

to sinks in a planar domain is determined by the minimal cut, just like the discrete version
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of the problem. This result opens a direction for computing max flows in continua.

Mitchell [38] addresses the problem of actually constructing the min cuts and max flows

in a clever approach based on the computation of Shortest Path Maps (SPMs) [37]. While

no implementations are presented, polynomial-time algorithms are given for varied max

flow scenarios involving source edges and sink edges in simple polygons. Similar to the

calculation of SPMs, a continuous Dijkstra paradigm forms the basis for the algorithms,

but in a specific form which solves the so-called 0/1/∞-weighted regions problem. In this

work we follow this approach in order to achieve our proposed flow maps.

While it is not straightforward to generate max flows and SPMs via CPU-based methods,

our GPU-based techniques represent a practical approach to achieve implementations solv-

ing these problems. Our underlying GPU-based approach takes advantage of the built-in

rasterization features of the OpenGL rendering pipeline in order to propagate costs during

the construction of our maps. A complete description with additional details, extensions

and benchmarks against other approaches for building SPMs was given in the previous

chapter. We are not aware of any other implementations to compute maximum flows.

4.2.4 Contributions

This work proposes two main contributions. First, we introduce methods to compute max-

imum flow maps for polygonal domains relying on the insight of applying GPU rasteri-

zation techniques previously used for computing shortest path maps. We then address the

new problem of extracting paths with clearance from max flows, presenting a specific flow

construction method that takes into account clearance, and addressing methods for lane

extraction and total length minimization.

47



4.3 Definitions and Overview

Let the input polygonal environment be delimited by a polygon P containing all obstacles

of interest in its interior. The set of polygonal obstacles is denoted by O. We are con-

sidering the situation where agents will enter P from given source edges Psrc and exit the

environment by crossing sink edges Psnk, while not colliding with any obstacles in O. In

our formulation Psrc and Psnk are polygonal lines which are pieces of the boundary of the

domain P . We also consider that Psrc and Psnk are connected polygonal lines.

Assuming Psrc is left of Psnk, as in the example of Figure 4.1, there are two additional polyg-

onal boundaries between Psrc and Psnk which appear at the bottom and top of the domain.

We call these additional polygonal lines as Pbot and Ptop. In this case the concatenation

of Psrc, Pbot, Psnk and Ptop completely covers the domain boundary in counter-clockwise

order.

With source and sink edges defined it is possible to define the max flow problem in P .

A few variations on the definitions have been presented in the literature. Mitchell [38]

defines the max flow problem as computing a vector field σ : P → R2 that maximizes

v =
∫

Psnk
σ · n ds, subject to: div σ = 0 and |σ| ≤ c in P .

In the above definition, vector n is the outward unit vector normal to Psnk, v is the value

of the flow σ, and c is a capacity constraint function that can be defined to limit the mag-

nitude of the vector field. Flow conservation comes from the divergence-free constraint,

which also implies that flow-in equals flow-out. A variation of this definition includes the

additional constraint σ · n = 0 on the boundary of obstacles [39]. There might be different

maximum flows for one given environment.

For our navigation applications we have found that having directions at the sink edges

orthogonal to the sink edges is not necessary for maximizing the number of outgoing agents

that can exit the environment. It is enough that directions are outgoing, i.e., that σ · n > 0.

48



Considering a more generic setting, we would also only be interested in maximizing the

flow with respect to outgoing directions at the sink edges which are reachable, by following

the flow, from a point in a source edge. These adaptations are addressed by function f in

our proposed Definition 1. This definition also specifies that the magnitude of the vector

field is always 1 when it is defined, or 0 in regions where the flow is not useful.

Definition 1. (MAX FLOW.) A max flow in P is a vector field σ : P → R2, that maximizes∫
Psnk

f (p) ds, subject to: div σ = 0 in P and |σ| ∈ {0, 1} in P , where:

f (p) =


1, σ · n > 0 and p is reachable f rom a source,

0, otherwise.

Point p in Definition 1 is the point in a sink edge at which normal vector n is computed.

Function f ensures that only the useful flow to route agents from source to sink is consid-

ered in the maximization. Function f will lead to a max flow insensitive to the outgoing

angles at sink edges, and to the possibility that parts of the flow encode arbitrary directions

not useful to routing agents from source to sink.

The computational methods proposed in this work are based on GPU-based rasterization

techniques that will generate a max flow according to Definition 1, but will represent it in

a discretized form, in a frame buffer grid in the GPU. The result will be a max flow map, as

defined below.

Definition 2. (MAX FLOW MAP.) A max flow map for P is a discrete vector field v : G →

R2, where G is a 2D grid covering P , and:

v(x) = σ(x), ∀x : |σ(x)| = 1, where σ is a max f low in P .

Definition 2 captures the types of flow that our computational method produces. Basically

a max flow map represents a max flow and also allows for additional directions to exist in
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parts of the environment that are not useful to route agents from source to sink. In both

cases the flow value, or the capacity of the flow, for routing agents from source to sink is

the same. The flow value can also be determined as the length of the polygonal min cut of

the environment [38], which captures the narrowest space constraining the flow capacity.

See Figure 4.2.

Figure 4.2: Left: this max flow routes agents from source to sink edges and is illustrated

with flow lines following the flow directions. The non-useful parts of the environment have

directions with magnitude 0 and are shown as gray regions. Right: our equivalent max

flow map includes non-null directions for the non-useful parts of the flow. While in this

work our flow maps present directions as they are generated by our computational method,

it would also be possible to design directions for the non-useful portions that lead agents

to a useful portion of the flow. The min cut of the environment is represented by the 3

illustrated segments. The sum of their lengths is equal to the max flow value.

Our flow map generation method requires the computation of Shortest Path Maps (SPMs)

to accumulate the values of a max flow, and so we define SPMs next. A complete exposi-

tion of the method including additional details and extensions is available in our previous

work [13], as was detailed in Chapter 3.

SPMs are structures constructed with respect to one or more source points or source seg-

ments, and that partition the space into regions that share the same sequence of points along

the shortest collision-free path to the closest source. An SPM therefore encodes shortest
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paths from all points in a given planar environment to the closest point in a source. For

any given point x, its shortest path π(x) to the closest source is reconstructed by retrieving

parent points along π(x) until a source is reached. A “source” here refers to a source of

the SPM and is not related to a source edge of a max flow.

Let source points and source segments be defined inside polygonal domain P , which also

contains the set of polygonal obstacles O. Our SPM representation encodes lengths and

parent points of shortest paths, and can be defined as follows.

Definition 3. (SHORTEST PATH MAP.) A shortest path map (SPM) in P is a grid-based

representation s = (sd, sp), sd : G → R, sp : G → R2, where G is a 2D grid covering P ,

sd(x) = length of π(x), and sp(x) = parent vertex of x along π(x). If x is a non-reachable

point (sd(x), sp(x)) = (−1, x).

An SPM therefore encodes, for each reachable point in P −O, 1) its geodesic distance to

the closest point in a source, and 2) the next “parent point” to reconstruct the shortest path

to the closest point in a source, which is always an obstacle vertex or a point in a source.

Fig. 4.3 shows an example SPM computed for a single segment source at the bottom of the

environment.

Our max flow maps are obtained by composing SPMs computed for source polygonal lines

from P and O. This process will be described in Section 4.4. However, obtaining a flow

map only partially solves the navigation problem of routing multiple agents to traverse P .

After a flow map is obtained, we still need to determine where to direct agents to enter Psrc,

a process we address by determining lanes in the map. In addition, we are also interested in

minimizing the length of the lanes such that the overall travel time is reduced when agents

follow the lanes. Our overall approach is illustrated in Figure 4.4.

While the process illustrated in Figure 4.4 represents a complete methodology for routing

agents using max flows, an alternative max flow map construction method is needed in
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Figure 4.3: Shortest Path Map (SPM) example. Contour lines represent points equidistant

to the SPM’s source segment (highlighted bottom segment. Discs represent agents whose

polygonal shortest paths are also shown. Each region of the SPM, denoted with a same

color, shares the same vertex to be taken when reconstructing a shortest path to the source

segment.

order to guarantee that the final system of lanes utilizes the optimal maximum capacity of

the environment. This alternative method is needed because the max flow map encodes a

flow without observing clearance constraints. The capacity of the max flow can therefore

be only guaranteed to be optimal for particles of infinitesimal size. If a max flow uses

corridors in the environment with less clearance than the clearance required by an agent,

that portion of the flow will not be useful for that particular agent.

We therefore introduce in this work (in Section 4.5) an alternative method for generating

a max flow map that takes into account the size of agents. The approach is to contract

the corridors of the environment such that the minimum width of the flow passing by each
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(a) (b) (c) (d)

Figure 4.4: Overview of the main steps of our overall approach. (a) Max flow map of the

input environment. (b) Lanes extracted from the flow map. (c) Optimized lanes. (d) Using

lanes to guide agents from source to sink.

corridor becomes a multiple of the agent size. In this way the generated flow will allow

agents to fully utilize the maximum capacity of the environment. We define this clearance-

based max flow map below.

Definition 4. (CLEARANCE-BASED MAX FLOW MAP.) A clearance-based max flow map

for paths with clearance c in P is a max flow map vc : G → R2, where ∀x : |σ(x)| = 1,

the minimum width of the flow passing by x is a multiple of 2c.

In the above definition the minimum width of the flow passing by x is restricted to be

a multiple of 2c, such that the generated flow can always be fully utilized by paths of

clearance c, and the restriction is limited to the flow lines that go from Psrc to Psnk. If a

disc agent has radius r, the path clearance needed is r, and the width of a lane is 2r. The

construction of clearance-based max flow maps is presented in Section 4.5. An improved

lane determination method is also presented based on points evenly spaced along segments

used to determine the flow width, which are called gates.

Overall, our presented methods are able to produce lanes among obstacles that achieve

maximum flow, minimize total length, and can ensure a given clearance r.
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4.4 Computing Max Flow Maps

We compute max flow maps following the approach described by Mitchell [38] which is

based on applying Shortest Path Maps (SPMs) [37] to accumulate distances across the

environment. The distance accumulation however requires to compute the SPM for the

special case of considering 0/1/∞-cost regions. This is a limited case of the general

Weighted Region Problem where only three weights exist: 0 (no cost), 1 (cost proportional

to distance traveled), and ∞ (impassable region) [17]. Figure 4.5 illustrates the difference

between a traditional shortest path considering an obstacle of ∞ cost, and a shortest path

considering a 0-cost obstacle.

Figure 4.5: Shortest pats for obstacles of infinite (left) and zero (right) cost. When an

obstacle has zero cost it means that the portion of the path passing through the obstacle

does not add any amount to the total cost of the path.

Given the polygonal domain P , its obstacles O, source edges Psrc and sink edges Psnk, the

max flow map from Psrc to Psnk will be obtained by computing the SPM with source as Pbot

or Ptop, and considering the obstacles to be 0-cost regions. We will denote the target SPM

considering obstacles to have cost 0 as the SPM0.

SPM0 will accumulate distances from one boundary of the domain to the other without

considering distances across obstacles. The distances that are accumulated will only encode

the width of the free corridors in the environment, which will specify how much flow can

pass by each corridor. The vector field defining the max flow map will then consist of the
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vectors orthogonal to the isolines of the obtained SPM0.

In order to compute SPM0 we will apply our SPM method for regular regions multiple

times, updating distances at each stage according to information obtained by first building

the so-called critical graph of the environment.

4.4.1 Critical Graph

The critical graph of a polygonal domain captures key visibility information in the envi-

ronment [38, 17]. Our critical graph is comprised of the shortest line segments connecting

every pair of obstacles, every pair of obstacle and boundary, and Pbot and Ptop, such that

each segment does not cross an obstacle. In our representation these segments become the

edges of the critical graph, and the obstacles become the nodes. The source and sink edges

do not need to be considered for the purpose of computing SPM0.

Figure 4.6 illustrates all shortest segments that are considered in order to identify the short-

est ones composing our critical graph.

Figure 4.6: Segments considered (left) in order to identify the shortest segments connecting

pairs of obstacles and boundaries that compose our critical graph (right).

The critical graph encodes the width of all the corridors in the environment, and as well

the pairs of obstacles and boundaries that delimit the narrowest parts of corridors. This

information will be used to compute SPM0.
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4.4.2 Main Algorithm

Once the critical graph of the environment is available we start by computing the SPM

for segment sources which are either Pbot or Ptop. In this section we choose Pbot as the

starting polygonal line source. The process consists of the steps described below, which

use Figure 4.7 as reference:

1. First, the segments of Pbot are set to be the initial SPM segment sources and the SPM

of the scene is computed. The result is shown in Figure 4.7a.

2. For each obstacle Oi in the domain, the set Ei of the edges of the critical graph that

connect to Oi is determined. Let pij be the points that the edges in Ei connect to

Oi. These are the narrowest corridor points in Oi. At each point pij the accumulated

distance sd(pij) from the current SPM generation can be obtained from the SPM

buffer. Considering all the edges in Ei, let di be the smallest sd(pij). Each value

sd(pij) is compared against di. If di is not found to be smaller than any sd(pij), then

no shorter path to Oi was found. If this is true for every Oi, the algorithm stops and

SPM0 has been obtained. Otherwise, proceed to the next step.

3. Here di has a smaller distance than some sd(pij), because the 0-cost of the obstacle

has not been considered. The boundary of Oi is included in the list of line segments

to be used as segment sources for the SPM construction of the next iteration, with the

modification that di is used as the initial distance for the segment sources generated

from Oi. The same is performed for every other obstacle Ok which is found to have

a smaller dk and is thus contributing to the new set of segment sources. Once all

segment sources are identified, a new SPM is generated. However, the new values

sd(pij) generated will only go to the current buffer if they represent smaller distances

than the values already in the buffer. Figure 4.7b shows the result obtained after the

second SPM execution in the illustrated environment.
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(a) SPM generated with lines sources taken from Pbot. The red line is the source and the blue

line is the sink.

(b) Obstacles A and B have shortest distances than the ones accumulated by the previous SPM,

and a new iteration was performed with the boundaries of A and B as sources, altering the map.

(c) Obstacle C had a shortest distance, through obstacle B, and generated one additional itera-

tion, finalizing the max flow map.

Figure 4.7: Example steps to generate a max flow map.
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4. Go to step 2.

The iterations will stop when no more updates are needed. At this point SPM0 will be

obtained. Figure 4.7c shows the final result for the illustrated environment.

Once the process above is completed each direction of the max flow map is set to be the

unit vector orthogonal to the final distance field, i.e., the max flow map vector field will

store vectors parallel to the white isolines of the SPM0 shown in Figure 4.7c.

4.4.3 Lane Extraction from a Max Flow Map

The max flow map as computed in this section can be directly used to route agents to

traverse the environment. However, depending where each agent enters a source edge, it

may arrive or not at the sink edge, and it is also useful to know how many agents can be

deployed at the same time without creating collisions between agents. It is therefore useful

to extract lanes from the flow so that agents can quickly select a free lane to use.

Lanes are represented with paths originating at Psrc and following the flow field until reach-

ing Psnk. By following lanes agents will move towards the sink in an orderly fashion with-

out any bottlenecks. Agents always have a certain size, and although the max flow map

described in this section does not consider agent size, lanes can still be determined with

the needed clearance so that agents following lanes will not collide with obstacles or with

other agents in adjacent lanes. We consider that each agent is represented by a circle of

radius r and a lane determination process for clearance value r is therefore necessary.

We employ a simple lane determination procedure that is implemented as follows. We take

points along Psrc from an extreme endpoint towards the other extreme endpoint in order

to determine candidate starting points for lanes. If the current candidate lane is found to

be invalid, due lack of clearance or not reaching Psnk, we advance by a small increment ∆

along Psrc and try again. In our scenarios we have set ∆ to be the height of a pixel, such
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that we consider lanes starting at every center of a cell in our grid representation G of the

flow map. If a valid candidate lane is found, we advance by 2r because we know adjacent

lanes must be spaced by at least 2r. Because of this, and the fact that lanes run aligned with

each other, we do not need to check for collisions with previously-accepted valid lanes.

The lanes that are produced simply follow the flow and they can often display unnecessary

turns in the environment. Section 4.6 describes a length optimization procedure that can

greatly improve the overall system of lanes that is obtained. Although the lane determina-

tion procedure described in this section already incorporates clearance, the underlying flow

may pass by corridors that are too narrow for a lane to pass. This may lead to a sub-optimal

number of lanes generated. In order to achieve the maximum number of possible lanes

with a given clearance, it is possible to generate the flow already taking into account the

clearance value. This leads to a clearance-based max flow map, as described in the next

section.

4.5 Clearance-Based Max Flow Maps

Given a pair of disjoint obstacles, it is possible to capture the narrowest passage between

them with the shortest segment that connects them without crossing any obstacles. We will

refer to this segment as the gate of the corridor between the two obstacles. Such segments

will be directly available from the critical graph of the input environment (Figure 4.6-right).

The length of a gate determines the maximum number of lanes that can pass between those

two obstacles. Most of the time a gate will not exactly accommodate a whole number of

lanes, but rather will have some “leftover space” when a given number of lanes cross the

gate. For a lane candidate to be considered valid, all gates it crosses must have enough

clearance for it. However, in some cases the leftover space may be still used by the flow

instead of using other corridors that might still have space for lanes to pass. This means that

a clearance-insensitive max flow may flow through unpassable narrow corridors instead of
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Figure 4.8: Left: because of how the clearance-insensitive flow winds up in this example,

a lane with clearance that simply follows it might close off a space in a way that a corridor

is blocked and the maximum number of possible lanes in the environment is not extracted.

Right: In this environment, when the max flow map is generated from the bottom boundary,

the maximum number of lanes is correctly extracted. To ensure that generated flows always

generate the maximum number of lanes the desired clearance is taken into account during

the flow construction.

larger ones. See Figure 4.8 for an illustration of the problem.

In order to address such situations we need to eliminate the leftover space of all corridors

in the environment by forcing all gates to only fit a whole number of lanes. In this way we

prevent the creation of flow portions that cannot fit a lane, and obtain the correct maximum

capacity of the environment when considering lanes with clearance. The approach of con-

tracting edges of the critical graph has been already suggested for solving integer flows,

which addresses the equivalent case of routing wires that need to be spaced by 1 unit. The

implementation of this approach in our max flow map methodology requires that we alter

the boundary of the obstacles in a way equivalent to contracting gates.

First, by using the critical graph we are able to determine all the gates in the environment

between obstacles and P . We then contract every gate such that its new length is equal to

a whole number of lanes based on the needed agent clearance. To do this we pick one of
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the endpoints of the gates, point p, and displaced it along the gate, in the direction of the

gate mid-point, by distance l = lg mod 2r, where l is the leftover space, lg is the original

gate length, and r is the radius of the agent. In doing so we obtain the contracted point pc.

We then add the original point p as a vertex of the obstacle along its boundary, in case it is

not already a vertex, and replace its coordinates with pc. In this way we locally enlarge the

obstacle only enough such that the new gate will fit the same number of lanes as before,

but exactly. See Figure 4.9.

The eliminated leftover space will force any remaining flow to be generated in different cor-

ridors. An alternative method for gate contraction would be to displace each gate endpoint

by l/2, leading to a corrected flow with space l/2 at both sides of the corridor.

Figure 4.9: The gates, or shortest segments, between the boundary and obstacles, and

between pairs of obstacles, are contracted by displacing vertices of the obstacles such that

corridors will fit an exact number of lanes. Here, as an additional optimization, the convex

hull of the obstacles is adjusted. Because gate contraction is only important to distribute

flows in corridors, there is no need to contract the gate between Pbot and Ptop.

4.5.1 Improved Lane Extraction using the Min Cut

Given that the gates of the critical graph for a clearance-based max flow map are con-

tracted, an improved lane determination method can be generated based on the min cut of
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the environment.

The min-cut of the environment can be found with a Dijkstra search on the critical graph.

We consider the critical graph where each obstacle or boundary is a node, and the edges are

the gates connecting pairs of nodes. We then consider Pbot (or Ptop) to be the graph’s initial

node for the Dijkstra search, and Ptop (or Pbot) to be the goal node. The result of the search

will be the min cut, which consists of the collection of gates capturing the narrowest length

to cross the environment from source to sink. Its length also determines the maximum

number of lanes that can travel from source to sink.

Once the min cut of the environment is determined, we simply place lanes in the contracted

gates of the min cut, with starting points evenly spaced along the contracted gates, with

2r space between them and with r space to obstacles or boundaries. We then follow the

flow both ways from each starting point, to Psrc and Psnk, in order to create the initial set

of lanes. Since all gates can now fit a whole number of lanes, there is no longer a need to

check if a lane has sufficient clearance. Note that because the final number of valid lanes

depends also on the length of Psrc and Psnk, lanes still have to be tested to reach them before

being accepted, which is a trivial check.

This improved method can also be employed with the clearance-insensitive flow maps,

however, the full validity tests will still have to be executed for each candidate lane.

Figure 4.12 shows examples where the maximum number of lanes were achieved by the

clearance-based flow maps while some lanes were missed when using clearance-insensitive

flow maps.

4.6 Length Optimization of Flow Lanes

Utilizing the max flow maps described in the previous sections and assigning agents to the

extracted lanes provides an effective methodology to route agents through an environment.
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However, depending on the layout of the scene and the relative sizes of the source and

sink, the generated lanes may be inefficient with respect to the path they take through the

scene, taking extremely long detours when shorter, more direct paths are available. A post-

processing optimization process to reduce this inefficiency can then be applied.

For each lane, we randomly choose a pair of points p1 and p2 along its path, and check

to see if the segment p1p2 is a valid “shortcut.” This is only true if p1p2: does not inter-

sect with any other occupied lane or obstacle segment, keeps its minimum distance to all

obstacles and P as at least r, and keeps its distance to all other lanes as at least 2r.

This optimization can be applied individually to any lane, in any order, and repeated any

number of times. In practice, we start the process with the last assigned lane and work our

way backwards to the first. This is because if Psrc’s length is less than the min cut of the

environment, the lanes will not be able to use all available space up to the side opposite

of the one that initiated the generation of the max flow map, and therefore the last lane

tends to have the most open space to be optimized. As shortcuts are accepted and lanes are

shortened, they also free up new space for subsequent lanes.

The optimization does not change the original lane assignment, it only shortens the lanes

instead of searching new ways through the environment, so this optimization does not guar-

antee a globally-optimal configuration of lanes length-wise nor does it alter the maximal

flow. However, by iterating enough times, it converges to a locally-optimal solution. The

effect of this process on the lanes of our test environments is illustrated in Figure 4.10.

4.7 Results and Discussion

Our methods have been evaluated by producing several max flow maps and lane systems

for a variety of environments. We have also produced simulation examples comparing the

benefits of using our max flow trajectories versus having agents simply following their
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Scenario 1 Scenario 2 Scenario 3

min max avg n min max avg n min max avg n

S: 1.97 2.02 1.99 453 2.24 2.28 2.26 214 1.97 2.03 2.00 441

L: 2.57 3.92 3.06 1053 3.30 4.39 3.89 553 2.74 4.31 3.20 766

O: 1.97 2.52 2.39 1165 2.65 3.61 3.09 611 1.98 2.89 2.40 843

Table 4.1: The left-most column indicates the used method. S: shortest paths to sink using

SPMsnk. L: lanes from the max flow map. O: optimized lanes from the max flow map.

The simulations had the agents continuously spawn at the source whenever there was space

for them, and then the agents moved towards the sink according to the used method. The

simulated period was of 60 seconds. Columns min, max, and avg refer to the minimum,

maximum, and average path/lane lengths computed for the scene, respectively, and n is

the total number of agents that were able to reach the sink in the allotted time. The three

scenarios are illustrated in Fig. 4.10.
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(a) original lanes

(b) optimized lanes

Figure 4.10: Scenarios 1 (left), 2 (middle), and 3 (right).

shortest paths.

4.7.1 Efficiency for Flowing Agents

In order to illustrate the benefits of using our max flow trajectories we have produced

multi-agent simulations employing our generated lanes. One simulation is illustrated in

Figure 4.11 and the results obtained are summarized in Table 4.1. In each simulation we

define Psrc at the top of the domain boundary and Psnk at the bottom, then proceed to

construct three types of navigation environments:

1) The first type is based on the SPM computed with Psnk as source, such that agents will
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Figure 4.11: Snapshots of simulations on scenario 3. Despite both having the same amount

of space and 8 lanes to start with, the SPMsnk only permits 4 agents to reach the exit at a

time, while the max flow map permits all 8 to do so.

follow their shortest paths to Psnk. We call this SPM as SPMsnk. Paths are the shortest

possible but several bottlenecks occur which are handled with simple collision avoidance

between the agents. This SPMsnk simply encodes shortest paths and does not include any

flow information. The first row in Table 4.1 presents the results.

2) The second type uses our max flow map of the environment, built starting the underlying

generation from the Pbot side. The flow map provides directions to agents placed anywhere

in the covered regions of the environment but the retrieved lanes are used to guide the

agents. The lanes are optimal with respect to the flow capacity but their lengths can be

further optimized. The second row in Table 4.1 presents the results.

3) In the third type the lanes obtained from the max flow map are optimized leading to a

system of trajectories with minimized total length while still achieving the max flow of the

environment. The results are presented in the third row of Table 4.1.
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In each environment type we repeatedly spawn agents at the source edge whenever there is

space for them, as the agents use either the SPMsnk, lanes, or optimized lanes, to navigate

towards the sink. Whenever an agent reaches the sink, it is removed from the environment.

The example in Figure 4.11 shows a snapshot of the simulation running on scenario 3.

The simulations ran for 60 seconds, measuring the minimum, maximum, and average

lengths of the paths computed and the number of agents that were able to reach the sink

during that time, as can be seen in Table 4.1. The SPMsnk consistently computed the short-

est paths in every environment, which is to be expected since it gives the globally shortest

path for each point. However, fewer agents were able to reach the sink during the sim-

ulation. When too many agents try to follow their shortest paths to the sink, bottlenecks

emerge that slow down the majority of their progress.

The environment types relying on the max flow, as expected, despite having longer overall

lane lengths, were better for coordinating the movement of agents throughout the environ-

ment. No bottlenecks were created, and so the max flow map led to 2 or sometimes close to

3 times as many agents reach their destination. Also, agents using the max flow map lanes

did not require collision avoidance behavior. In these examples both the used max flow

maps and the respective clearance-based max flow maps would lead to the same number of

lanes. While lanes were slightly different, and with slightly different lengths, no significant

difference on the reported values would be expected.

Our results clearly show the benefits of computing optimal flow trajectories for deploying

large numbers of agents across generic polygonal domains. Because the computed flow is

optimal, no better solution can be found in terms of number of agents that can reach the

sink polygonal line at the same time without bottlenecks.

4.7.2 Additional Results

Several additional results are presented in Figures 4.12, 4.13, and 4.14.
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Figure 4.12: The top row shows a clearance-insensitive max flow map missing one lane

compared to the clearance-based max flow map in the bottom row. The right column shows

the same lanes after a length optimization process.

Figures 4.12 and 4.13 show the benefits of clearance-based flow maps. The top rows of

images in Figures 4.12 and 4.13 show clearance-insensitive flow maps which lead to lanes

being missed. The maps on the bottom rows are where we apply clearance-based flow maps

in order to find the maximum number of lanes.

Figure 4.14 presents the results of our methods on two additional environments with higher

number of obstacles. The lanes generated on the left images are unoptimized, whereas the

right images shows the same lanes after length optimization.

4.7.3 Limitations and Future Work

Our current lane determination algorithms evaluate lanes by considering positions at the

source or min cut edges without considering any additional global information from the
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Figure 4.13: In the top row, the clearance-insensitive max flow map misses two lanes

compared to the clearance-based max flow map in the bottom row. The right column shows

the same lanes after a length optimization process.
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environment. This may lead to a poor choice of lanes in some specific situations. For

example, the lanes shown in Figure 4.15 achieve the maximum possible flow but miss the

shortest path from source to sink. This situation might be addressed by first assigning

lanes in the gates containing a shortest path from source to sink, and then proceeding to

the remaining gates of the min cut. Another possible improvement is to allow updating the

endpoints of each lane to alternative positions, in Psrc or Psnk, in order to further optimize

their length. We have also noticed cases where the generated flow wraps around it and

comes to intersect again the source segment; however, our lane determination procedures

ensure that no lanes are generated in these areas.

One promising direction for future work is to address crossing flows. For instance, groups

of agents may be defined as each group having its own goal sink, and one specific flow

map for each group can be then computed. Later, it might be enough to deploy agents

with the right timing such that they do not collide with each other when following their

on flow paths. Reactive behaviors can also be used to avoid collisions at flow crossings.

Such possible approaches, among others, would allow the proposed methods to be used for

agents with different goal locations.

It is also possible to address max flow maps with multiple disconnected sources and sinks.

In this case there are disconnected edges in Psrc and/or Psnk and there is no longer just a

pair of segments on the boundary that can be divided into Ptop and Pbot, but rather many

segments. By applying every boundary segment that is not part of Psrc or Psnk to be the

starting sources of the underlying generation of SPM0, we can compute a map such as the

one illustrated in Fig. 4.16, which produces a flow routing multiple entrances to multiple

exits. This approach however has the limitation that any source may be routed to any sink.
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4.8 Conclusions

We have introduced in this chapter new techniques to compute max flow maps capturing

the maximum flow capacity of given generic polygonal domains. The proposed methods

are able to determine bottleneck-free lanes that are able to optimally guide agents to reach a

destination exit of the environment. Optimality is addressed with respect to the maximum

flow of agents across the environment. The presented simulations demonstrate that our

approach can dramatically increase the number of agents that successfully navigate towards

the goal exit of the environment in a given time frame.

The proposed approach introduces a new methodology for taking into account continuous

flows in polygonal domains, and exposes several promising directions for future work,

opening new research avenues in flow-based agent navigation.
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Figure 4.14: Examples generating the maximum number of lanes before (left) and after

(right) length optimization.
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Figure 4.15: In this environment lanes are inefficient in terms of length whether the map

is generated from both Pbot or Ptop.

Figure 4.16: A flow map with multiple sources and sinks. The red lines are source seg-

ments belonging to Psrc and the blue lines are sink segments belonging to Psnk. Every

segment on the boundary inbetween them is used in the SPM generation process and thus

the map is created such that agents from any source may travel to any sink, preventing

crossing lanes.
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CHAPTER 5

Multi-Agent Navigation with Shortest Path Maps and

Adaptive Weighted Barriers

5.1 Introduction

Shortest Path Maps can efficiently provide the globally optimal shortest path for every agent

traversing a polygonal environment to a given goal. However, as discussed in Chapter 4,

if a large group of agents simply follows these optimal paths, they may create bottlenecks

which slow the overall progress of the group. The continuous maximum flows method de-

tailed in that chapter deals with this problem by organizing agents into lanes, guaranteeing

maximum throughput but locking agents into predetermined paths.

We therefore introduce a method for leveraging both the optimal paths provided by the

SPM and knowledge of local bottleneck conditions that can arise during a multi-agent

navigation. The method dynamically detects regions where there is a bottleneck of agents,

and places a weighted barrier in them to alter the Shortest Path Map in order to encourage

some agents to choose alternative routes. This will be detailed in later sections.

The advantage of the method is that it is able to reduce the effects of bottlenecks by making

some agents take alternative paths while still leveraging the information provided by the

SPM to choose the best possible alternative path given the chosen parameters and the con-

ditions of the simulation. We show that this is more efficient than merely using the SPM in
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conjunction with local collision avoidance.

5.2 Related Work

There has been previous research into combining global path planning with local behavior.

Sharma et al. [50] explored the advantage of integrating Shortest Path Maps with local col-

lision avoidance. Their work demonstrated that even using an effective collision avoidance

technique, agents could easily become trapped in “pockets” of the environment. This did

not happen when they also utilized the SPM’s global planning.

The work of van Toll and Pettré [63] also explores the combination of global and local

navigation. They combine path planning with path following and collision avoidance to

define navigation strategies, which are a set of decisions for agents to pass obstacles and

agents on certain sides, or even to explicitly send agents in certain directions.

Van Toll et al. [59] incorporate crowd density information into global path planning. They

generate a navigation mesh with density values based on how many characters are inside

each region, and then perform an A* search on this graph. The density information encour-

ages characters to use a variety of routes, which is a goal similar to our own method. Other

works have also added this extra layer of local density information to global planning [19,

46].

5.3 Problem Definition

A Shortest Path Map (SPM) is a structure, constructed with respect to a “source,” which

partitions a polygonal environment into regions where each region shares the same parent

point on the shortest path back to the source. Once constructed, an SPM can efficiently and

optimally answer path queries for any point in the environment. The goal of our method

is to utilize the SPM with modifications to detect and alleviate the effects of bottlenecks
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so that a large amount of agents can traverse a polygonal environment in a more efficient

manner than just using the SPM with local collision avoidance.

The set of polygonal obstacles O of the environment, with a total of n vertices, is defined

in P , where P ⊂ R2 defines the polygonal domain containing the line segment sources

and obstacles. All shortest paths generated are collision free with respect to O.

Let nl be line segment sources {l1, l2, ..., lnl} defined in the plane, such that li, i ∈

{1, 2, ..., nl}, consisting of two endpoints ∈ P . These line segment sources represent

the goals the agents will attempt to reach, and will be used to construct the SPM of the

environment that will be used for path queries.

Given this, an SPM will be constructed following our method [13] discussed in Chapter 3

which will represent all globally-optimal collision-free paths from any point p ∈ P −O

to the closest reachable point on its closest segment source li. See Figure 5.1.

A “corridor” is loosely defined here as the space between a pair of obstacles in the envi-

ronment. This is where bottlenecks tend to occur and is where the weighted barriers will

be placed. Both the bottleneck detection process and how barriers modify the SPM are

discussed in the following sections.

5.4 Bottleneck Detection

In our multi-agent simulation, agents emerge from segment(s) in the environment and nav-

igate towards a common goal. Each agent queries the SPM of the environment to get its

shortest path to the goal and follows it. Naturally, bottlenecks will occur when the influx

of agents into a corridor is greater than the outflow on the other side. The first thing our

method must do is detect that a bottleneck is occurring.

Let ∆t be the timestep of the multi-agent simulation, and ∆dmax be the maximum dis-
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Figure 5.1: SPM computed from our simulation environment. The red segment on the

right is the segment source. Agents emerge from the blue segment on the left and follow

their shortest paths to the source.
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tance that an agent can cross in ∆t, when it is completely unobstructed and moving at

max speed. Let ∆dcurrent be the distance from the agent’s current location to the goal, and

∆dprev the distance from its location in the previous iteration to the goal, both following

the shortest path provided by the SPM. Thus, the difference between the two is given by

∆d = ∆dcurrent − ∆dprev.

If during an iteration ∆d < ∆dmax, we say that the agent was “slowed” and was not able

to make sufficient progress to the goal. This is usually the case when collision avoidance

forces an agent to locally modify its trajectory. We keep a counter that is incremented

every iteration an agent is “slowed,” and decremented otherwise. If the counter exceeds a

threshold thres that agent is considered to be in a “bottlenecked” state.

We consider that a bottleneck is happening when we are able to find a continuous chain of

neighboring bottlenecked agents from one side of the corridor to the other. We start a search

from every bottlenecked agent that is in contact with one of the pair of obstacles that forms

the corridor, and examine its neighbors. Bottlenecked neighbors have their own neighbors

examined recursively. If eventually we reach a bottlenecked agent that is in contact with

the other side of the corridor, then we have detected a bottleneck.

When a bottleneck is detected, a segment is created from the first bottlenecked agent of

the chain to the last, across the corridor. This is called a “candidate segment”, and it is

possible that many of these segments are created. Every interval seconds (the barrier

update interval), we: 1) take the bounding box of the set of candidate segments in the

corridor and place a weighted barrier down the middle of it connecting both obstacles, and

2) remove all of the candidate segments, starting the bottleneck detection search over again.

See Figure 5.2.

The weighted barrier alters the SPM in a manner explained in the next section.
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(a)

(b)

Figure 5.2: (a) Between update intervals, candidate segments are created when chains of

bottlenecked agents going from one side of the corridor to the other are identified. The

candidate segments are rendered beneath the agents as magenta lines. (b) Out of the set of

candidate lanes, a weighted barrier (cyan) is created and placed down the middle, modify-

ing the SPM. Previous candidate segments are removed.
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5.5 Weighted Barrier

As described in section 3.3, the normal computation of an SPM considers that the distance

between two points in the environment is simply the Euclidean distance between them.

Section 3.5 introduced an extension where this could be modified at the vertices of obstacles

with a weight that would act as a multiplier to the Euclidean distance. Weighted barriers

change the SPM in a similar way, however instead of acting at vertices, weighted barriers

are line segments connecting a pair of obstacles that apply a weight change on one side of

the barrier.

Given points a and b, let dist(a, b) be the Euclidean distance between them. Absent

weighted barriers, the SPM will simply use dist(a, b) for its distance computations. Now

consider that there is a weighted barrier inbetween a and b, with weight w and intersecting

ab at point c. The distance computation becomes a weighted sum of the two parts, such

that dist(a, b) = w × dist(a, c) + dist(c, b). This represents that the region beyond the

barrier is costlier to move through, as there is a bottleneck there.

As seen in Figure 5.3, the result is that the SPM will adjust such that other regions will

become more prevalent over the costlier region.

5.6 Results

In order to evaluate the effectiveness of the method, we executed a multi-agent simulation

in our example environment where 180 agents emerge from an entrance on the left side and

navigate to the goal on the right side using the paths given to them by the SPM. When an

agent reaches the goal, it is removed. The parameters used were: barrier weight w = 1.5,

bottleneck threshold thres = 30, and barrier update interval interval = 10. The simulation

ran until all agents had successfully reached the goal.

The two scenarios of the simulation are illustrated in Figure 5.4. In the first scenario, the
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(a) Normal (b) Weighted

(c) Normal (d) Weighted

(e) Normal (f) Weighted

Figure 5.3: Examples of how the SPM changes when weighted barriers are added. SPM

source segments are in red and weighted barriers in cyan.
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simulation ran with just the SPM and local collision avoidance, but no weighted barriers.

Predictably, a large bottleneck formed in the narrow corridor in the middle, which slowed

down the group. In the end it took 135.96 seconds for all of the agents to reach the goal.

In the second scenario, we applied bottleneck detection and weighted barriers, which made

some of the agents that would have waited in the bottleneck to prefer to go around the sides.

In this case it took the agents only 105.44 seconds to reach the goal, a reduction of almost

23%.

5.7 Conclusions

We have presented here a method to combine the global optimality of Shortest Path Maps

with local knowledge of bottlenecks that may arise during a multi-agent simulation. Our

method is able to alleviate the effects of bottlenecks by encouraging agents to take alterna-

tive paths. Because these paths are provided by a modified SPM, each agent will choose

the best possible alternative path given the conditions of the simulation and the parameters

chosen.
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(a) Only SPM and local collision avoidance

(b) With bottleneck detection and weighted barriers

Figure 5.4: A snapshot of the simulation running in two scenarios: a) using only the SPM

and local collision avoidance, agents form a large bottleneck in the middle, b) applying the

bottleneck detection process and placing weighted barriers, more agents prefer taking the

side routes, reducing the severity of the bottleneck.
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CHAPTER 6

Conclusions

In this dissertation I have presented new GPU-based approaches for the problems of path

planning and multi-agent navigation. The focus of my work has been on methods utiliz-

ing GPU rasterization techniques to construct structures which allow us to address these

problems in novel ways.

6.1 Discussion

Global navigation has been extensively explored in the past as it is a crucial element of

many applications in a wide variety of fields. However, computing optimal paths effi-

ciently is not a trivial task, and thus the focus of previous works applied to real application

has remained on efficiently computing collision-free paths without optimality guarantees.

My initial work on SPMs in Chapter 3 introduced a novel alternative to achieve both effi-

ciency while still maintaining optimality. The shader-based approach greatly simplified the

implementation of the SPM, and allowed us to develop multiple extensions such as vertex

weights. This method also served as the foundation for the other works presented here.

Our work on continuous maximum flows in Chapter 4 computed max flow maps that are

able to capture the maximum flow capacity of a polygonal domain. Optimality with re-

spect to the maximum flow of agents through the environment is maintained, as the ex-

tracted lanes are guaranteed to be bottleneck-free, not even requiring any sort of local col-
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lision avoidance. While previous works have been limited to discrete flow definitions, our

method is a first method suitable for implementation for computing maximum flow maps

in continuous domains, relying on the insight of applying GPU rasterization techniques.

Finally, our initial work in Chapter 5 on applying a bottleneck-detection process followed

by modifying the SPM with weighted barriers shows promising results. While bottleneck-

free navigation is not guaranteed as with max flows, this method also does not depend on

fixed pre-computed lanes, meaning it can easily handle agents entering the environment at

any point, and also generates paths which are efficient in terms of length.

6.2 Future Work

CPU Computation of Max Flows The medial axis provides much of the same information

as the critical graph in our max flow method, namely the capacities of the corridors of the

environment. In our method, the computed max flow map must be transferred from the

GPU to the CPU for the computation of lanes, and this transfer incurs a cost. It would be

interesting to explore an alternative approach that uses the medial axis as a starting point

for a CPU-only solution, to see how it compares in terms of efficiency.

Disconnected Sources and Sinks Extending our max flows method to be able to handle

multiple disconnected sources and sinks is an interesting direction. Figure 6.1 shows an

example of such an environment, where the flow from any source can go to any sink. Our

current max flow generation method appears to already be sufficient for generating the

map here, although generating lanes with efficient lengths will be even trickier than before,

because each lane has multiple possible goals to consider.

Crossing Flows A more difficult scenario is one where the flow from each source must

reach one specific sink. In this case the flows from different sources may cross, leading to

a much more difficult problem to solve globally. Optimality will likely not be possible and
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Figure 6.1: Multiple disconnected flow sources and sinks.

we will require some synchronization between lanes, such as incorporating timesteps, to

avoid collisions while also remaining bottleneck-free.

Adaptable Weighted Barriers Ideally, the weight w assigned to a weighted barrier should

be precisely chosen to divert just as many agents as necessary to eliminate its bottleneck

and prevent it from reoccurring. This should lead to better results overall, but would require

a more computationally intensive approach to exactly determine the weights needed. Ad-

ditionally, the weight and position of a barrier could be adjusted up or down dynamically,

if its current effect on its bottleneck could be measured.
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