
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Enhancing Fuzzing Using Stochastic Modeling and Generative AI

Permalink
https://escholarship.org/uc/item/9b60b2fc

Author
Hu, Jie

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9b60b2fc
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Enhancing Fuzzing Using Stochastic Modeling and Generative AI

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Jie Hu

September 2024

Dissertation Committee:

Prof. Heng Yin, Chairperson
Prof. Chengyu Song
Prof. Zhijia Zhao
Prof. Qian Zhang

Copyright by
Jie Hu
2024

The Dissertation of Jie Hu is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor, Dr.

Heng Yin. Without his invaluable help, I would not have reached this point. His extensive

knowledge, guidance, patience, encouragement, and support have been crucial throughout

my journey as a Ph.D student.

Additionally, I would like to thank the other members of my dissertation committee:

Prof. Chengyu Song, Prof. Zhijia Zhao and Prof. Qian Zhang, for their insightful questions

and comments.

I also extend my heartfelt thanks and big hugs to all my fellow labmates and

friends: Yue, Jinghan, Wei, Lian, Zixiang, Zhenxiao, Sheng, Zhaoqi, Xiao, and Xiaolin, for

their assistance with my research, their emotional support during the challenging times, and

most importantly, the fun moments we shared together.

Lastly, I would like to thank my parents, Gongwei Hu and Li Chen, for shaping

me who I am through their unwavering support and unconditional love. I also send lots of

kisses to my cat, Charlie, for being a sweet companion during the sleepless nights before

paper deadlines.

This dissertation includes previously published material entitled "Marco: A Stochas-

tic Asynchronous Concolic Explorer" published in the 46th IEEE/ACM International Con-

ference on Software Engineering. 2024, and "Augmenting Greybox Fuzzing with Generative

AI" released on Arxiv in 2023, and one material under submission entitled "How Well can

LLMs Generate Fuzzing Inputs".

iv

To my parents for all the love and support.

v

ABSTRACT OF THE DISSERTATION

Enhancing Fuzzing Using Stochastic Modeling and Generative AI

by

Jie Hu

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2024

Prof. Heng Yin, Chairperson

Fuzzing, or fuzz testing, is an automated program testing technique aimed at un-

covering security flaws in software. This method generates and injects crafted inputs into

a Program-Under-Test (PUT) to monitor for abnormal runtime behavior, with the goal of

identifying potential defects and vulnerabilities. A generic fuzzing framework involves two

essential components that influence its testing performance: 1) a Scheduler that deter-

mines the current optimal strategy for program state space exploration, and 2) a Mutator

that produces concrete inputs based on the scheduler’s strategy.

In this thesis, we propose an enhanced fuzzing framework leveraging stochastic

modeling and generative AI (genAI).

Firstly, we introduce an intelligent scheduler that models program execution traces

as Markov Chain, with transitions between branches stochastically represented. A rein-

forcement learning algorithm allows the scheduler to refine its exploration strategy for more

efficient and comprehensive testing of the PUT, by learning from outcomes of past explo-

rations. We integrate this scheduler in a whitebox fuzzer/concolic executor, Marco, and

vi

evaluate it against state-of-the-art concolic executors on real-world programs, demonstrat-

ing Marco’s superior performance.

Secondly, we propose to enhance the mutator using genAI. To fully reveal the poten-

tial of uncustomized, out-of-the-box large language models (LLMs) for producing high qual-

ity inputs for fuzzing, we conduct a comprehensive study of eight state-of-the-art (SOTA)

LLMs, encompassing both large and small models from three LLM families. This study es-

tablishes a baseline for the fuzzing capabilities of uncustomized LLMs and provides insights

for developing more effective collaboration strategies between conventional and LLM-based

mutators. We also showcase the performance of an LLM-empowered greybox fuzzer, Chat-

Fuzz, against state-of-the-art greybox fuzzers, demonstrating that ChatFuzz significantly

improves coverage findings, and is comparable to or better than the baseline approach for

vulnerability detection.

Finally, motivated to tackle the path divergence issue, where the input produced

by the mutator diverges from the desired path selected by the scheduler, and inspired by

LLMs’ potential as intelligent mutators, we propose a path-corrective LLM-based mutator to

further enhance fuzzing. Specifically, we identify path-divergent inputs and use specialized

prompts to instruct the LLM to generate corrected inputs that follow the desired paths. We

present encouraging preliminary results.

vii

Contents

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Thesis Statement . 4

2 Background 6
2.1 Whitebox Fuzzing . 6

2.1.1 Symbolic Execution . 6
2.1.2 Concolic Execution . 7
2.1.3 Branch Flipping Policies . 8

2.2 Greybox Fuzzing . 9
2.2.1 Coverage-guided Greybox Fuzzing . 9
2.2.2 Grammar-Based Test Generation . 10
2.2.3 Seed Scheduling . 11

2.3 Artificial Intelligence (AI) . 12
2.3.1 Large Language Models . 12
2.3.2 AI-based Fuzz Testing . 13
2.3.3 Human-in-the-loop Fuzzing . 14

3 Marco: A Stochastic Asynchronous Concolic Explorer 15
3.1 Motivation . 18
3.2 Methodology . 22

3.2.1 Overview . 22
3.2.2 A Running Example . 24
3.2.3 Asynchronous Concolic Execution Engine 25
3.2.4 CSTG Constructor . 29
3.2.5 Reachability-guided Branch Scheduler 31

3.3 Evaluation . 36
3.3.1 Evaluation Plan . 37
3.3.2 RQ1: Effectiveness of Marco . 39

viii

3.3.3 RQ2: Effectiveness of Design Choices 42
3.3.4 RQ3: Vulnerability Detection . 44

4 How Well can LLMs Generate Fuzzing Inputs? 47
4.1 Systematic Study . 50
4.2 Findings . 53

4.2.1 RQ1: Prompt Design . 53
4.2.2 RQ2: Diversity of LLM-generated Mutations 60
4.2.3 RQ3: Cost Effectiveness . 69

4.3 Integration with Traditional Greybox Fuzzer 74
4.3.1 RQ4: Coverage Efficiency . 78
4.3.2 RQ5: Security Application . 80

4.4 Discussion . 81
4.4.1 Target Program . 81
4.4.2 Prompt Formulation . 82
4.4.3 LLM Choice . 83
4.4.4 Collaboration with Traditional Fuzzer 84

5 Polaris: A Path-Corrective LLM Assistant for Concolic Execution 85
5.1 Background and Motivation . 86
5.2 System Overview . 89

5.2.1 Motivating Case Study . 91
5.3 Preliminary Results . 93
5.4 Discussion . 94

6 Conclusions 95

Bibliography 97

ix

List of Figures

1.1 Fuzzing Overview . 2

3.1 Marco Overview . 23
3.2 CSTG Construction of Example Program . 29
3.3 Coverage Difference Score of Real-world Programs and CGC Binaries 41
3.4 Coverage Difference Score Within Solving Budget 42
3.5 Number of Unique Bugs Detected . 43

4.1 Unique Code Coverage . 61
4.2 Pairwise Unique Coverage . 64
4.3 Mutation Diversity in Program Space . 66
4.4 Cost Effectiveness . 70
4.5 Mutation Generation Rate . 71
4.6 LLM-augmented Greybox Fuzzer . 74
4.7 End-to-End Fuzzing Coverage Growth . 78

5.1 Path Divergence Analysis of Marco . 87
5.2 Design Overview . 90
5.3 Build Seed Template . 91
5.4 Prompt LLM Mutator to Generate Corrected Seed 92
5.5 Path Correction Ratio . 93
5.6 Coverage Efficiency . 94

x

List of Tables

3.1 Code Coverage w/ Single-Pass Exploration . 19
3.2 Code Coverage w/ Continuous Exploration 20
3.3 Quality of Generated Testcases . 20
3.4 Path Divergence Rate . 21
3.5 Details of Real-world Applications Evaluated 38
3.6 Average Termination Time for SymSan . 41

4.1 Subject LLMs . 51
4.2 Benchmarks . 51
4.3 Prompt Designs . 54
4.4 Coverage Achieved by LLM_F and LLM_S 56
4.5 Coverage Achieved by LLM_F and LLM_FS 57
4.6 Seed Uniq Ratio(%) w/&o Sample Seed . 57
4.7 Coverage Achieved by LLM_S and LLM_FS 58
4.8 Seed Valid Ratio(%) w/&o Format Info . 59
4.9 Rare Coverage Ratio(%) . 60
4.10 Edge Coverage Achieved in 4h . 62
4.11 Dominating/Dominated Mutator Count

(obj: objdump) . 63
4.12 Distance to AFL++ Centroid . 67
4.13 KDE Centroid Density . 68
4.14 New Coverage Seeds (obj: objdump) . 72
4.15 LLM Mutator Configuration . 75
4.16 Benchmarks . 77
4.17 Unsupported Targets . 77
4.18 Coverage Analysis . 79
4.19 Bug Detection . 80

xi

Chapter 1

Introduction

In today’s fast-paced and digitally interconnected world, the reliability of software

systems has become more critical than ever. With industries and infrastructures relying

heavily on these systems, improving their robustness against potential security flaws has

become a top priority. One of the most popular techniques for finding security bugs in

software is program fuzz testing, i.e., fuzzing.

Fuzzing involves generating random pieces of data as program inputs and inputting

them to observe the behavior of the program under test (PUT). The primary goal is to

trigger bugs within the program under test (PUT), and the first crucial step is generating

an input that can reach the vulnerable code. Consequently, the key challenge in fuzzing

is the automatic generation of high-quality inputs that can effectively cover the program’s

code regions.

In a typical fuzzing framework, two essential components—the Scheduler and the

Mutator—significantly influence the quality of the generated seeds. During program fuzz

1

Program Under Test
(PUT)

Bugs

Scheduler

Mutator

Program Inputs

Runtime Info

Exploration
Strategy

Figure 1.1: Fuzzing Overview

testing, the scheduler determines the optimal exploration strategy for the program state

space based on runtime information from previous executions. Following this, the mutator

generates a series of new program inputs based on the chosen strategy to test the program

under test (PUT), as is demonstrated in Figure 1.1.

Despite notable progress in optimizing fuzzing techniques, several challenges con-

tinue to limit their effectiveness.

Whitebox fuzzing leverages symbolic tracing and constraint solving to generate

new inputs for program testing [10] and can be implemented through concolic execution. A

concolic execution engine performs symbolic tracing along a concrete path, exercised by a

2

concrete input, while collecting the path constraints of the untaken branches at each symbolic

branch point. By solving these path constraints, new program inputs are generated to

explore previously untaken branches. However, the number of branches and states increases

exponentially due to the existence of loops and function calls, which commonly exist in

almost all real-world programs. The high cost of solving path constraints and the existence

of path divergence make it impractical to thoroughly explore all branches and states within

reasonable time and resource limits. The State Explosion problem can be mitigated by

designing a more efficient scheduler for the fuzzing framework.

According to the optimal exploration strategy set by the Scheduler, the Mutator

component start to craft new program inputs for the testing. Depending on how new seeds

are generated, a mutator can follow either a random or directional approach. A random

mutator is commonly adopted by greybox or blackbox fuzzer, where a new seed is generated

by creating random variation of an existing one through random mutation, or constructed

from scratch based on knowledge of the grammar. Due to the random nature of such

generation, the fuzzer has little to no control over the path to be exercised by the new seeds.

The effectiveness of such random mutations in uncovering program states comprehensively

is questionable. In whitebox fuzzing, the mutator adopts a directional approach, where

new inputs are generated by solving path constraints collected from specific branches. The

resulting inputs are expected to follow paths through these targeted branches. However,

when the new input fails to traverse the predicted path, a phenomenon known as Path

Divergence occurs, which impairs the soundness and completeness of whitebox fuzzing.

To improve the performance of fuzzer, many recent works have adopted machine

3

learning techniques [29, 68, 22, 9]. Recent breakthroughs in attention-based large language

models (LLM) [64] have inspired us to explore the capability of LLM for fuzzing.

1.1 Thesis Statement

To sum up, although fuzzing has demonstrated its power in exposing security flaws

in computer systems, serious limitations still exist and hinder the effectiveness of fuzzers in

exploring deep program states. Leveraging the power of stochastic modeling and generative

AI has shown great potential for improving the quality of seeds. We present three projects

in this thesis that leverage stochastic modeling and generative AI to address the limitations

in the Scheduler and Mutator, thereby enhancing the performance of fuzzing:

Firstly, we present Marco, where we conducted a study to uncover significant

limitations in state-of-the-art branch-flipping policies and proposed an intelligent branch

scheduler to address these issues. Specifically, we model the symbolic execution trace as

a Markov Chain and introduce a novel metric called the reachability score. This metric

assesses each branch based on its potential to uncover new code coverage, incorporating

reinforcement learning techniques to progressively refine the evaluation of each branch’s

reachability, thereby facilitating the generation of higher-quality test cases for more effective

testing.

Secondly, we conduct a systematic study across a diverse range of large language

models (LLMs) to gain insights into their fuzzing capabilities. Based on the findings from

this study, we provide concrete guidelines for developing an LLM-empowered greybox fuzzing

framework. Such guidelines are designed to be adaptable to future LLM models and variants,

4

ensuring its continued relevance as the technology evolves. Leveraging the insights from this

study, we implement a generative-AI-augmented greybox fuzzer and introduce our proto-

type, ChatFuzz. Our evaluations of the prototype demonstrate its superior performance

compared to the baseline approach.

Thirdly, we aim to mitigate path divergence to further improve whitebox fuzzing.

We propose a path-corrective, LLM-based mutator that assists the concolic executor by

generating new mutations that correct the path-divergent seeds produced by the concolic

executor, thereby enhancing the overall performance of concolic execution. We integrate our

proposed mutator in a concolic executor, Marco, to present a prototype Polaris.

5

Chapter 2

Background

2.1 Whitebox Fuzzing

2.1.1 Symbolic Execution

Symbolic Execution (SE) is an automated program testing technique that aims

to maximize code coverage by generating specific inputs to satisfy every condition check

that is dependent on the input within the program under test. With SE, the program is

executed with symbolic expressions instead of concrete values. An SE engine maintains

1) the mapping between program variables and symbolic expressions, and 2) a set of path

predicates imposed by the sequence of branches visited along the execution path.

Two types of SE are extensively researched: 1) online symbolic execution and 2)

concolic execution. Online symbolic execution engines, such as KLEE [13] and S2E [23],

explore the program space via state forking: when encountering a branch point (whose di-

rection is dependent on the input), an SE engine will fork a new state to explore the opposite

6

branch direction (if it is feasible). As a result, the number of states grows exponentially,

leading to the state explosion problem. To tackle the state explosion problem, some recent

works [44, 34] resorted to machine learning. Legion [44] leverages Monte Carlo Tree Search

(MCTS) to model the state exploration as a sequential decision-making process on the tree-

structured program space. Symbolic execution is performed lazily and only when a state is

deemed promising. Learch [34] trains a regression model on a set of training programs to

learn the state selection policy based on a set of state-describing features. Then, the trained

model is used to test unseen target programs.

2.1.2 Concolic Execution

Unlike SE, concolic execution (CE) explores the program space iteratively. Given

an input, a CE engine (e.g., QSYM [75], SymCC [51], and SymSan [18]) executes the program

concretely and simultaneously collects symbolic constraints along its concrete execution

path. When a symbolic branch point (whose direction depends on the input) is encountered,

the CE engine collects the constraint of the current branch condition to dictate which branch

direction is taken by the concrete execution. Additionally, based on a branch-flipping policy,

the CE engine may decide to generate a new input that can traverse the untaken branch

direction. To do so, the CE engine constructs a constraint set that includes the negated

current branch condition and a number of preceding branch conditions and queries an SMT

(Satisfiability Modulo Theories) solver for a solution. Then a new input is generated by

replacing parts of the original input with the values suggested by the solution. After the

CE finishes processing the current input, it will pick and process one of the newly generated

inputs. Obviously, the branch-flipping policy is essential for concolic execution.

7

2.1.3 Branch Flipping Policies

The most naïve branch-flipping policy would be “flip all”. As the name suggests,

this policy tries to flip all possible branches. This policy can ultimately achieve the highest

code coverage, given unlimited computing resources and time. No one has ever adopted this

policy because computing resources and time are never unlimited, and many branches are

either redundant or unworthy to be flipped.

A more realistic branch-flipping policy is to flip every branch executed through a

unique execution path prefix. More specifically, this path prefix consists of a list of symbolic

branches along the execution path, while concrete branches are ignored. For this reason, we

refer to this policy as “PP policy”. However, even with this policy, the number of branches

to be flipped can still be enormous. This is because a program often contains loops and

function calls, and one branch that appears in different loop iterations and different calling

contexts will be flipped repeatedly due to its unique path prefix in each loop iteration and

each calling context. Yun et al. observed that constraints repetitively generated by the same

code are useless for finding new code coverage in real-world software [75].

Based on this observation, existing state-of-the-art CE engines (e.g., QSYM [75],

SymCC [51], and SymSan [18]) adopt a more restrictive branch-flipping policy, which was

first introduced in QSYM. This policy looks at branch bigrams. It will flip the current

branch if its bigram (i.e., the pair of the previous symbolic branch and the current one)

is new. We refer to this policy as the “BR policy” because it focuses on branches rather

than paths. Compared to the PP policy, the BR policy will flip significantly fewer branches

because only the last symbolic branch is included in the “context” of the current branch

8

instead of all preceding symbolic branches.

Some CE engines explore the branch selection heuristics with respect to the branch

locality. In particular, SAGE [28] executes inputs in descending order of their code coverage

and only flips branches that are located below the point where the current execution trace

branches off from its parent trace to avoid redundant exploration. To efficiently explore

uncovered branches, CREST [12] proposes a control flow graph (CFG) directed searching

algorithm to prioritize branches in close proximity to uncovered branches through the stat-

ically constructed control flow graph and call graph. Specifically, each branch is evaluated

by a scalar value obtained by adding up 1) the length of the shortest path to its nearest

uncovered branch and 2) the number of flipping attempts devoted to it. CREST then flips

branches in ascending order of this scalar value.

2.2 Greybox Fuzzing

2.2.1 Coverage-guided Greybox Fuzzing

Grey-box fuzzing begins with a seed input, executing the program and iteratively

generating new inputs by mutating the previous ones. New inputs are added to the queue

if they improve a specified guidance metric such as branch coverage. American Fuzzy Lop

is one of the most widely used fuzzing tools [76]. Traditional coverage-guided fuzz testing

faces challenges in efficiency and effectiveness due to a vast space of inputs and unbounded

program paths. Lemieux et al. tackle this by identifying rarely executed branches with

AFL-generated inputs and devising custom mutations to prioritize the exploration of these

branches [41]. As a result, it requires fewer fuzzing loops and achieves higher coverage in less

9

time. Other approaches incorporate symbolic execution in fuzzing to guide careful selection

and mutation of the inputs, invoking unique program paths [62, 16]. Padhye et al. introduce

Zest [48], which incorporates the semantic validity of input mutations by mapping bit-level

changes to valid structural modifications, reducing the search space of inputs.

The effectiveness of fuzz testing heavily relies on the quality of initial seeds. Yet,

commonly used seeds tend to traverse similar “high-frequency” paths. To expand path

coverage without significantly increasing the number of tests, researchers have designed

strategies for seed selections. AFLFast [8] models coverage-based greybox fuzzing as a

Markov chain, and assigns different selection probabilities for different seeds. EcoFuzz [74]

improves AFLFast’s Markov chain model and presents a variant of the Adversarial Multi-

Armed Bandit model. EcoFuzz sets three states of the seeds set and develops a unique

adaptive scheduling algorithm.

2.2.2 Grammar-Based Test Generation

One challenge in grey-box fuzz testing is generating valid inputs, especially for

highly-structured inputs and object-oriented programs. This has led to research efforts to

minimize unfruitful fuzzing iterations by generating legal inputs for the target program

using input grammars. For example, CodeAlchemist [32] is a code generation engine that

can systematically generate both syntactically and semantically correct JavaScript code

snippets. Token-Level AFL [56] mutates JavaScript programs at a token level. Tokens

from a dictionary are used when mutating programs to replace, insert, or overwrite existing

tokens. Le et al. propose a grammar-based fuzzing approach called Saffron that relies on

a user-defined grammar [39]. During fuzzing, if an input generated by the grammar leads

10

to a program failure, Saffron reconstructs the grammar according to newly learned input

specifications of the program. Wang et al. leverage a user-provided grammar, but instead of

arbitrary mutations, they introduce grammar-specific mutations to diversify test inputs for

tightly formatted input domains such as XML and JSON [67]. Gopinath et al. highlight that

the state-of-art grammar-aware fuzzer dharma [1] is still two orders of magnitude slower than

a random fuzzer and suggest guidelines for efficient grammar-aware fuzzing [31]. In their

follow-up work, they present an approach to infer an input grammar from the interactions

between an input parser and input data [30].

All existing grammar-based techniques require developers and users to understand

the input grammar or manually create data generators. Additionally, fuzzing techniques

developed for one type of grammar may not readily translate to other grammar types. In this

work, we leverage large language models to automatically infer grammar from seed inputs

and generate new valid test cases, mitigating the need for manual grammar specification.

2.2.3 Seed Scheduling

Many techniques have been proposed to improve fuzzing [17, 43, 69, 77, 33, 27, 7,

78, 47, 66], with one key optimization being seed selection [54, 35]. AFLfast [8] prioritizes

less explored paths by allocating more resources to them. Vuzzer [53] emphasizes test cases

that are more likely to expose vulnerabilities. Entropic [6] uses information-theoretic entropy

to schedule seeds, optimizing for coverage gains and bug discovery. AFL-Hier [65] applies

reinforcement learning to schedule seeds clustered by multi-level coverage metrics, while K-

scheduler [59] utilizes graph centrality analysis to prioritize seeds with higher potential for

reaching new code coverage.

11

2.3 Artificial Intelligence (AI)

2.3.1 Large Language Models

Pre-trained Large Language Models(LLMs) represents a category of neural net-

works characterized by a huge amount of parameters. Typically, these models are trained

on a large corpus of text data in an autoregressive manner, where they learn to predict

the next token in a text sequence. Such extensive pre-training enables them to operate as

one-shot or zero-shot learners [11]. In other words, these models can undertake a variety of

tasks when given only one single example of the task or natural language-based instructions.

The instructions, alongside any supplementary input data, provided to LLMs are commonly

referred to as prompts.

Previous works leveraging LLMs have employed various optimization methods,

including finetuning and prompt engineering, to tailor the LLMs for specific tasks. Finetun-

ing involves updating the model parameters of a pretrained LLM on a task-specific dataset,

specifically collected for the subsequent tasks. Prompt engineering, on the other hand, does

not involve model parameter updating. It focuses on developing effective natural language

prompts to instruct the LLM towards desired outputs. In this paper, our focus remains on

prompt engineering without modifying the internal working of the LLMs. In other words,

we investigate the baseline performance of LLMs as an advanced program input generator

without modifying the internal parameters.

12

2.3.2 AI-based Fuzz Testing

Previous research has explored the application of AI techniques in program and

test case generation [58, 57, 70]. For example, NEUZZ [58] introduces a gradient-descent

based approach to fuzz testing by creating a smooth surrogate function to approximate

the target program’s discrete branching behavior. AthenaTest [63] trains local transformer-

based networks to generate test inputs from a corpus of focal methods and test inputs.

Jigsaw [37] is a program synthesis tool based on LLMs and validates their correctness using

existing test cases, which diverges from the focus of this paper.

The use of the prompting LLMs has also gained prominence in recent research

efforts. Bareiß et al. employ Codex by providing prompts containing one method-test

pair and the method to be tested, enabling the generation of test oracles and test cases [5].

ChatUniTest [72] uses ChatGPT to generate Junit test cases. FuzzGPT [24] leverages LLMs

to generate unusual programs seeking to trigger abnormal behavior in deep learning library

APIs. CodaMosa [40] uses Codex as a black-box tool to generate tests without requiring

explicit training, and incorporate these tests into a search algorithm.

In ChatAFL [46], LLM is prompted to extract the machine-readable grammar of

the target protocol, which is used for structure-aware mutation. Throughout the fuzzing

process, LLM is leveraged to diversify the input corpus and to generate appended messaged

to existing sequences, enabling state transition into deeper program space when the fuzzer

reaches a coverage plateau and gets stuck. In ChatAFL, the LLM has to have comprehensive

understanding of the subject protocol for it to work. During the grammar extraction stage,

the only target-related information included in the prompt is the name of the protocol,

13

highlighting ChatAFL’s reliance on LLM’s extensive knowledge of the target protocol’s

interval working to generate accurate grammar. The scalability of ChatAFL to protocols

with complex state space has not been thoroughly investigated.

Fuzz4All [71] utilizes a powerful LLM, GPT4, to distill a concise and informative

prompt for fuzzing. This involves extracting information from the documentation of the

System Under Test (SUT), example code snippets, or specifications. Subsequently, it lever-

ages a generation LLM, StarCoder, to use the previously generated prompt for generating

new test cases. In essence, to operate effectively as a seed mutator, the LLM is provided

with information regarding the target program’s functionality as well.

2.3.3 Human-in-the-loop Fuzzing

Prior works have explored human-in-the-loop approach for fuzzing [38, 3, 60]. In

HaCRS [60], humans are provided information related to the target application’s behavior

and interact with the application via a text-based window to figure out how to trigger

certain behavior of the target. Evaluation result suggests that even non-expert human can

significantly enhance the bug detection ability of the vulnerability detection tool. IJON [3]

allows human analyst annotate the target program to guide the fuzzer to explore deep

program states. Our approach incorporates LLM to assist fuzzer. The LLM is pretrained

on enormous amount of data and can grasp and preserve the format of the sample input

while generating new variations.

14

Chapter 3

Marco: A Stochastic Asynchronous

Concolic Explorer

Concolic execution (CE), which conducts concrete and symbolic execution of the

program under test (PUT) simultaneously, is a program testing technique used for code

exploration and vulnerability detection. Unlike dynamic symbolic execution (DSE), which

explores the program space by using symbolic inputs [13], concolic execution is performed

with a concrete input exercising a concolic path consisting of branches that are dependent on

a subset of input bytes. Each input-dependent branch in the concolic path has two directions:

1) a visited direction that is traversed by the concrete execution; 2) an unvisited direction

that can potentially lead to a new path. Concolic execution effectively explores the program

space by generating new inputs that traverse these unvisited directions of input-dependent

branches.

Although powerful, concolic execution is known to be costly. As a result, many

15

efforts have been made to improve the runtime efficiency of CE over the past few years, in

terms of both constraint collection and constraint solving [75, 51, 52, 18, 19].

In contrast, another essential component in concolic execution, branch-flipping pol-

icy, has not yet received enough attention. A branch-flipping policy dictates which symbolic

branch needs to be flipped to generate a new testcase traversing the flipped branch. State-

of-the-art (SOTA) CE engines employ a very restrictive branch-flipping policy – to flip only

a very small fraction of symbolic branches that are most likely to reach new code coverage

– in order to suppress testcase/path explosion problems, where the number of generated

testcases quickly surpasses CE’s processing capacity.

In this project, we conduct the first study on this branch-flipping policy and have

a few unique observations. On the one hand, we show that this policy is too strict, and

misses many good branches that could lead to much higher code coverage. On the other

hand, this policy is not as effective as expected since only a small fraction (on average 27%)

of branches selected by this policy can actually lead to new code coverage. Consequently,

we observe that this rigid and nearsighted branch-flipping policy significantly undermines

the effectiveness of CE.

Moreover, we show that the path divergence problem [4] (i.e., the testcase generated

by CE does not follow the expected path) can be as high as 50% in practice and is a norm

rather than an exception due to the imperfect design and implementation of CE. Therefore,

we argue that a good branch-flipping policy needs to model the path divergence on each

symbolic branch when selecting the next branch to flip.

To overcome the limitations, we propose a global-view new-coverage directed branch

16

scheduling algorithm for concolic execution. To find out which symbolic branch is the best

to flip, we estimate the potential of each symbolic branch (i.e., how likely we can reach

new code coverage by flipping this branch) and select the branch with the highest potential.

Specifically, we model the concolic execution as a Markov process: each branch transition

is a probabilistic event, and an execution path is a sequence of branch transitions, and

thus a sequence of probabilistic events. To obtain a global view of all testcases, we observe

the executions of all testcases and construct a stochastic Concolic State Transition Graph

(CSTG) to characterize transition probabilities between states and estimate the probability

of a given branch reaching any unvisited states. We refer to this probability as reachability

score. This reachability score is further dampened by the path divergence rate observed on

this branch.

To select the best branch (i.e., one with the highest reachability score) to flip, our

branch selection must be asynchronous. When encountering a symbolic branch, the exist-

ing CE engines decide synchronously whether to flip it based on the historical information

collected up to this point. This decision, however, might not be globally optimal because

a seemingly good branch to flip might have already been traversed by the remaining exe-

cution of the current testcase or the remaining testcases that have not been processed yet.

Therefore, we propose to process all testcases to maintain an up-to-date global view (in

the form of CSTG) and then asynchronously select the best branch to flip. To do so, we

develop an efficient concolic state saving and restoring mechanism. We save the symbolic

expression table and branch dependency information for quick reloading after the highest

potential state is identified.

17

To evaluate the efficacy of this idea, we implement a prototype called Marco1, atop

SymSan [18]. We evaluated Marco on 16 real-world programs and 71 programs from the

DARPA Cyber Grand Challenge (CGC) binary set to demonstrate that Marco, on average,

increases edge coverage by 13.03%. For 3 out of the 11 programs where Marco finds more

coverage, it also covers all edge coverage found by SymSan. We further evaluate its bug

detection efficiency on 14 programs from Unifuzz [42]. The result shows that our approach

can find 33.52% more unique bugs than the SOTA CE engine SymSan. Furthermore, Marco

can uniquely find more than twice of bugs than SymSan does. On 5 of the tested programs,

Marco finds more unique bugs in 12h than any of the seven fuzzers evaluated in UniFuzz

(excluding QSYM, which is configured as a hybrid fuzzer) can find in 24h experimental runs.

We evaluate the state-of-the-art branch-flipping policy and reveal several important

yet unreported limitations. We propose a stochastic and asynchronous branch scheduling

algorithm that is able to effectively pick the most promising branch for new input generation.

We implement a prototype Marco and evaluate its efficacy on 16 real-world applications.

The experimental results demonstrate that Marco can constantly outperform the SOTA

in terms of coverage finding and bug detection. We open-source the implementation of our

prototype at https://zenodo.org/record/8339481.

3.1 Motivation

To understand the effectiveness of different branch-flipping policies, we conducted

a measurement study. We equipped SymCC [51], one of the SOTA CE engines, with both
1Named after Marco Polo, and is also short for Markov Concolic Explorer.

18

https://zenodo.org/record/8339481

PP and BR policies. We selected four programs in binutils (objdump, size, nm-new, and

readelf) and assembled an input corpus of 1000 seeds for each of them. We made the

following four observations.

Table 3.1: Code Coverage w/ Single-Pass Exploration

Program Code Coverage
BR PP

objdump 3571 4032(+13%)
size 2128 2192(+3%)
nm-new 1995 2040(+2%)
readelf 2461 3527(+43%)

(1) The BR policy is so overly strict that it filters out many promising branches. We

investigate if the branches discarded by the BR policy are indeed useless for reaching

higher code coverage. To answer this question, for each program, we compared the

code coverage after SymCC processed the same input corpus and attempted to flip the

branches according to the BR and PP policies, respectively. To simplify the evaluation,

we did not allow SymCC to further process testcases generated from the initial input

corpus. Table 3.1 lists the results. We can see that for all four programs, the PP policy

achieved higher code coverage than the BR policy. For readelf, the PP policy achieved

a whopping 43% higher code coverage. This evaluation shows that the BR policy can

miss promising branches that could lead to higher code coverage2.

(2) The strict BR policy often leads to early termination. Observation 1 tells us that the

BR policy filters out promising branches that directly lead to new code coverage. A

promising branch may indirectly lead to new code coverage after several generations of
2Edge coverage measured by SanitizerCoverage tool.

19

Table 3.2: Code Coverage w/ Continuous Exploration

Program Total Cov. BR
Coverage Time-to-Term.

objdump 82442 6252(7.58%) 2.68h
size 57871 3777(6.53%) 2.48h
nm-new 58378 3996(6.85%) 4.33h
readelf 31622 4394(13.90%) 0.52h

testcases that are derived from a testcase traversing this branch. Ideally, a good branch-

flipping policy would recognize this kind of branch and make continuous progress by

iteratively processing newly generated testcases. Therefore, we would like to see how

well a CE engine performs when it continuously processes newly generated testcases.

Table 3.2 presents the results of this continuous exploration under the BR policy. We

can see that the CE engine terminated within five hours3 for all four programs, because

it exhausted its attempts to flip all available branches in all initial inputs and generated

testcases. Moreover, the final code coverage only covers 6.53% to 13.90% of the total

coverage2.

Table 3.3: Quality of Generated Testcases

Program BR
New-cov Testcases Total Testcases

objdump 231(10.83%) 2,132
size 387(26.51%) 1,460
nm-new 493(45.23%) 1,090
readelf 873(27.25%) 3,204

(3) Branches selected by the BR policy are of low quality. As described above, the BR

policy uses branch bigrams to select promising branches to flip. We would expect that

most of these selected branches could lead to new code coverage. Table 3.3 illustrates our
3All experiments conducted in this paper are measured in terms of wall time.

20

findings on the quality of the new inputs generated from these selected branches. In fact,

on average, only 27.46% of the generated inputs from the branches selected by the BR

policy can lead to new coverage. In other words, the majority (72.54%) of the flipping

and solving efforts do not immediately translate into code coverage gain. One major

reason why BR policy cannot select high-quality branches is that the branch-flipping

decision is only made based on the testcases that have been previously processed and

the current testcase that is processed up to this point. It does not have a chance to

examine the remaining execution of the current testcase or the remaining testcases to

make a globally optimal decision.

Table 3.4: Path Divergence Rate

Program PD
Count

Total Solving
(excluding unsat)

PD
Rate

objdump 4628 16926 27.34%
size 5304 10728 49.44%
nm-new 4668 16975 27.50%
readelf 1551 11614 13.35%
Overall 16151 56243 28.72%

(4) Path divergence (PD) rate of concolic execution is exceedingly high that many constraint

solving efforts go wasted. We observe that oftentimes, a generated testcase does not

traverse the intended unvisited path. This problem is referred to as path divergence

problem [28]. Table 3.4 lists our findings with respect to path divergence. We can

see that path divergence is very common (as high as almost 50% for size, and on

average 28.72%). We also observe that the path divergence issue is program-specific

and branch-specific. Many branches do not have path divergence at all, while other

branches constantly lead to path divergence. Unfortunately, current branch-flipping

21

policies do not take this into account, leading to the low performance of CE.

Based on the observations, we are motivated to design a new concolic execution

scheme that can overcome the aforementioned limitations for more efficient testing.

3.2 Methodology

In this project, we introduce Marco, a novel stochastic and asynchronous con-

colic explorer. Specifically, to tackle the first two limitations, unlike SymSan, Marco keeps

all path constraints from a unique path prefix and incorporates extra information, includ-

ing calling context and branch direction, into branch definition to retain more meaningful

branches. To address the third limitation, our system implements a reachability-guided

branch scheduler that can accurately assess the potential of finding new code coverage for

every branch. The scheduler then conducts asynchronous solving to make sure our decisions

are globally optimal. Furthermore, to overcome the PD problem, Marco models the PD

rate for each branch and takes it into consideration when making scheduling decisions.

3.2.1 Overview

As shown in Figure 3.1, Marco comprises three major components: 1) the asyn-

chronous concolic execution engine, 2) the CSTG constructor, and 3) the reachability-guided

branch scheduler.

At the beginning of the testing process, the asynchronous concolic execution engine

receives an initial seed input and a binary program as input. It then performs concrete

and symbolic execution simultaneously, without any constraint solving, to collect concolic

22

traces. These traces comprise symbolic branches encountered, along with the path constraint

information needed for branch flipping.3/29/23, 10:51 PM reach-workflow (copy)

https://whimsical.com/reach-workflow-copy-4A229fpRUxELa3wvrMXnvx 1/1

Asynchronous

CE Engine

PUT AST

Initial/New input

1

CSTG Constructor

Concolic State

Transition

Graph

3

2

Reachability-guided

Branch Scheduler

constraint

data

trace

Figure 3.1: Marco Overview

The resulting trace is then passed to the CSTG constructor, which incrementally

constructs a CSTG using branch points and branches as nodes, and branch point-to-branch

transitions, as well as branch-to-branch point transitions as edges. The reachability-guided

state scheduler assesses the potential of each node in the CSTG, calculates a reachability

score for each node, and ranks them based on their scores. The highest-ranked node has

the greatest potential to lead to new code coverage. The asynchronous CE engine will be

invoked to solve a path constraint from the top-ranked node for new testcase generation.

Marco then executes the testcase to collect traces and repeat the process.

23

3.2.2 A Running Example

To better explain our design, we will use an example program from [15], illustrated

in Listing 3.1. The program takes two symbolic inputs, x and y, as input parameters for

the function testme(). This function contains two symbolic branches located at Line 7

and 8 respectively. The directions taken at these two branches depend on the values of the

symbolic inputs.

Listing 3.1: A Running Example

1 int twice (int v) {

2 return 2*v;

3 }

4

5 void testme (int x, int y) {

6 z = twice (y);

7 if (z == x) {

8 if (x > y+10) { ERROR; }

9 }

10 }

11

12 int main() {

13 x = sym_input ();

14 y = sym_input ();

15 testme(x, y);

16 return 0;

17 }

24

3.2.3 Asynchronous Concolic Execution Engine

Unlike synchronous CE engines [75, 51, 52, 18] that perform symbolic tracing and

branch flipping simultaneously, Marco takes an asynchronous approach. Specifically, it

decouples branch flipping logic (which includes path condition collection and new testcase

generation) from the symbolic tracing logic and defers it until after all branch points uncov-

ered are assessed, and a global optimal branch choice is made. It is worth mentioning that

although some prior works (e.g., SAGE and CREST) collect execution traces and then replay

them offline for branch-flipping, the branch selection is made while processing the current

trace. In other words, their branch-flipping policy adopts only a local view as compared to

Marco, which will evaluate all branches to make a global optimal selection.

Specifically, the asynchronous CE engine alternates between two modes: 1) the

symbolic tracing mode, where it executes the target program with existing testcases to

collect data for educated branch prioritization, and 2) the path exploration mode, where it

flips a selected branch to find a new path.

Symbolic Tracing Mode

In this mode, the CE engine takes one Program Under Test (PUT) and one testcase

as input and produces a concolic path and an AST table. Since our implementation is

based on SymSan [18], the AST table stores all the necessary information for reconstructing

symbolic expressions.

A concolic path consists of a list of symbolic branches that follow the execution

path and some auxiliary information. Below are related definitions:

25

Branch Point. A branch point bp is defined as:

bp = (addr, ctx) , (3.1)

where addr is the address of the branching instruction, and ctx represents the calling context,

which is calculated as a hash of all the call sites on the call stack. The context-sensitive

definition of branch point allows Marco to differentiate a branching instruction under

different calling contexts and characterize program exploration status more accurately.

For the running example, we have two branch points {L7, main → testme} and

{L8, main → testme} at Line 7 and 8 respectively. For brevity, we refer to them as L7 and

L8 in the following discussion.

Branch. A branch brc is defined as:

brc = (bp, dir) , (3.2)

where bp is a branch point defined by Definition (3.1), and dir is the direction taken from

the branch point. Each branch point has two branches. We use T and F to denote “then”

and “else” branches respectively. In the running example, we have four branches denoted as

L7T, L7F, L8T, and L8F.

For each symbolic branch, we need to collect essential information about its path

constraints. In traditional symbolic execution, the path constraints include all preceding

symbolic branches. However, this strategy is often overly strict: generating a new input

that follows the exact same path and visits the untaken branch is often impossible [23].

However, there may exist a new input that follows a slightly different path and successfully

visits the desirable branch. EXE [14] presents constraint independence optimization which

26

divides path constraints into subsets which are dependent on disjoint sets of input bytes

to solve them separately. This idea is then adopted by QSYM [75] and SymSan [18] for

concolic execution. Specifically, when negating a branch, SymSan includes any preceding

branch that shares data-flow dependencies with the current branch or another preceding

branch already included. The resulting set of branches are referred to as nested branches

in SymSan. Since we perform concolic execution asynchronously, we prefer not to collect

branch constraints right away. Instead, we just record their nested branches.

Nested Branch Set. We define Nested Branch Set NBS for a branch brc as a set of

branches in a recursive manner: if a branch brci has a data-flow dependency with the target

branch brc, then brci ∈ NBS(brc); and if ∃brcj ∈ NBC(brc) and brci has a data-flow

dependency with brcj , then brci ∈ NBS(brc).

Concolic Path. A Concolic Path CP is defined as a list of 2-tuples:

CP =[(brc0, NBS(brc0)), (brc1, NBS(brc1)),

..., (brcn, NBS(brcn))] ,

(3.3)

where brci is the i-th symbolic branch encountered in the execution trace, and NBS(brci)

is the nested branch set of brci.

For the running example, there are three unique concolic paths including: {(L7F,∅)},

{(L7T, ∅), (L8F, {L7T})}, {(L7T, ∅), (L8T, {L7T})}.

Loop Pruning Optimization. Furthermore, we employ optimization to speed up the

concolic path collection. Real-world programs often have many loops. Symbolic branches

in loops will repeatedly appear in the concolic paths. It takes time to collect their nested

branch sets, even though it is much faster than collecting the nested branch constraints. It

27

is also unlikely to iterate through all these sets in order to generate new testcases in the

later stage. Therefore, we decide to prune the nested branch sets early on. More specifically,

during the execution, we trace the visit count of each encountered symbolic branch. For a

branch whose visit count does not evaluate to the power of 2, we do not generate its NBS.

In other words, its NBS is ∅.

In summary, in symbolic tracing mode, the CE engine traces all the testcases in the

queue to collect the concolic paths and AST tables. Then it switches into path exploration

mode.

Path Exploration Mode

In this mode, the CE engine invokes the reachability-guided branch scheduler (dis-

cussed in subsection 3.2.5) to find a global optimal branch choice. With the constraint data

of the chosen branch, the CE engine will assemble the path constraint set for traversing this

branch and solve it to generate a new testcase.

The constraint data of the chosen branch consists of 1) brcn, the chosen branch; 2)

NBSn, nested branch set of brcn; and 3) the AST table of the execution where the chosen

branch is encountered.

We start by initializing the PC, the path constraint set as ∅. Then we query the

AST table for the branch predicate of brcn and add it into PC. If NBSn is not empty, we

query the AST table for each branch in NBSn for their branch predicates and add them

into PC. Then we reuse the solving strategy proposed in QSYM [75]. Specifically, if PC is

not satisfiable, we resort to optimistic solving, which will only solve the branch predicate of

the target branch and disregard any predicates collected from NBSn. If optimistic solving

28

is not viable either, the branch scheduler will be prompted again to generate another set of

constraint data until a new seed is generated.

3.2.4 CSTG Constructor

After collecting concolic paths in the asynchronous CE engine, we seek to construct

CSTG, which further enables the reachability-guided branch scheduler. The graph is a

directed heterogeneous graph defined as follows.

3/29/23, 10:46 PM reach-example (copy)

https://whimsical.com/reach-example-copy-Uy7imjT6ZQUvQSNUzdE8cX 1/1

program

entry

L7F

L7

L7T

program

entry

L7F

L7

L7T

L8

L8F L8T

program

entry

L7F

L7

L7T

L8

L8F L8T

branch

brc-to-bp edge

bp to brc edge

branch point

(a) (b) (c)

vis = 1

win = 0

atp = 0

vis = 1

win = 0

atp = 0

vis = 2

vis = 1

vis = 1

win = 0

atp = 0

vis = 3

vis = 2

win = 0

atp = 0

vis = 1

win = 0

atp = 0

vis = 1

vis = 2

unvisited (edge/node)

visited (edge/node)

Figure 3.2: CSTG Construction of Example Program

Concolic State Transition Graph (CSTG). A CSTG is defined over a set of CP s as:

G = (V,E) , (3.4)

where V is a set of branch points and branches, and E is a set of vertex transitions. In

addition, a virtual root vertex denotes the program entry point. Each vertex v ∈ V is

associated with a set of attributes including: 1) v.vis: the number of concrete visits at v;

29

2) v.atp: the number of branch flipping attempts at v; 3) v.win: the number of successful

branch flipping attempts at v; and 4) v.pcq: the queue of path constraint sets for generating

new testcase that potentially will traverse v. Note that attributes 2) to 4) only apply to

vertices representing branches instead of branch points. Each edge e ∈ E is associated with

a concrete visit count e.vis.

Algorithm 1 illustrates how Marco constructs the CSTG incrementally. Initially,

the graph contains one root node R as the program entry, and the edge set is empty. The

procedure takes as input the graph G and a new concolic path CP as defined in (3.3). The

algorithm then performs a preprocessing step to retain a set of visited branches along with

their concrete path prefixes and remove from CP any branch that is visited through the

observed path prefix. When a new branch (according to the Definition 3.2) is observed for

the first time, we insert three nodes (one for its branch point bp and two for the taken and

untaken branches brc0 and brc1, and three edges into the current graph (Ln.6-10). If the

branch has been observed and thus has already existed in the graph, we simply retrieve the

existing three nodes (one branch point and two branches) from the graph (Ln.12-14). Then,

the algorithm calls updateNode to update the nodes’ attributes defined in subsection 3.2.4

as needed (Ln.16-17). Specifically, for bp and brc0, we update visit count v.vis. If brc0

matches lastChosen, we update its win count v.win. For brc1, we update the path constraint

queue v.pcq to include the new path constraint collected from the current execution path to

potentially force execution down brc1. Further, if the currently taken branch brc0 is equal to

the node picked by the last scheduling round to perform branch flipping on lastChosen, it

means the testcase generated from the last round (i.e., the current testcase) indeed traverses

30

the selected branch. In this case, it will increase the current branch’s win count by one.

In our running example, we consider three concolic paths {(L7F,∅)}, {(L7T, ∅),

(L8F, {L7T})}, {(L7T, ∅), (L8T, {L7T})}. Marco gradually constructs CSTG of the

example program as illustrated in Figure 3.2 (a), (b), and (c).

Initially, the graph is empty with a root node, which denotes the program entry.

For the first concolic path {Ł7F}, since node L7F is a new node, we add three nodes, i.e.

L7, L7F, and L7T, and three edges, i.e. (R, L7), (L7, L7F), (L7, L7T), into the graph.

We increase the visit counts of node L7, L7F, edge (R, L7), (L7, L7F) from 0 to 1. After

processing this concolic path, the graph is presented as Figure 3.2(a). Similarly, Marco

then takes the second concolic path {L7T, L8F} as input. As the first branch L7T already

exists in the graph, we increase the visit counts of node L7, L7T and edge (L7, L7T) by

1. However, the second branch L8F is not an existing node in the graph. Therefore, we

insert three nodes, i.e. L8, L8F and L8T, and three edges (L7T, L8), (L8, L8F), (L8, L8F)

into the graph. And we update the visit counts accordingly. After processing this concolic

path, the graph is shown as Figure 3.2(b). Moreover, we make similar changes as discussed

above for the concolic path {L7T, L8T}. Hence, after processing the three concolic paths,

Figure 3.2(c) is the final CSTG, which will then be used for branch scheduling.

3.2.5 Reachability-guided Branch Scheduler

Reachability-based branch scheduler aims to find the branch that bears the highest

potential for new code coverage and gives the path constraint data of the top-ranked node

to the asynchronous CE engine for input generation.

Essentially, we assess the potential of a branch by the number of reachable yet

31

unvisited branches deeper in the execution paths that traverse the branch. To do so, we

generate a reward score for each untaken branch, consider a concolic trace as Markov Chain

and compute a transition probability to take the path divergence (PD) rate into consider-

ation, and further accumulate the rewards up to calculate a node reachability score that

estimates the potential of every branch in the CSTG, in order to pick the best one for fur-

ther exploration. However, one technical challenge is that the transition probability between

nodes and the estimated reward of nodes are unknown at the beginning of the testing. Here

in this section, we discuss how Marco tackles this challenge.

Edge Transition Probability Calculation. The transition probability of an edge cap-

tures how likely an execution will branch to the end node from the start node. As discussed

in subsection 3.2.4, there are two types of edges in Marco: 1) the bp-to-brc edges and 2)

the brc-to-bp edges. And we calculate their transition probability differently.

The transition probability of a bp-to-brc edge is associated with the success rate

of generating a testcase traversing brc by solving a path constraint associated with brc, i.e.,

the opposite of the path divergence rate of this edge. The total solving attempt count at brc

is brc.atp, and the success count is brc.win. Intuitively, the estimated transition probability

is brc.win/brc.atp. The estimation is relatively accurate when the attempt count at brc

is high enough. But this assumption does not always hold, especially at the early stage

of testing and for the less-explored code regions. For better estimation of the transition

probability and to balance between exploration and exploitation, we resort to Thompson

Sampling (TS) [55]. The key idea of TS is to sample the success rate of an action over the

Beta Distribution defined by the outcomes of the past trials. The Beta distribution is defined

32

by two positive parameters α, denoting the win count, and β, denoting the loss count. It

becomes more and more concentrated around the empirical success rate α/(α + β) as the

number of total trials (α + β) grows. For a bp-to-brc edge, α is brc.win and β is (brc.atp -

brc.win). The transition probability of a bp-to-brc edge is calculated by Equation 3.5.

p(bp, brc) = τ(y.win, y.atp− y.win) , (3.5)

where τ denotes Thompson Sampling. Note that, each bp has two bp-to-brc edges, each

leading to one viable branch. We normalize the transition probabilities of these two edges

to ensure they sum up to one.

The brc-to-bp edge transition differs from that of bp-to-brc edge in the following

aspects: 1) CE engine cannot actively steer execution from a brc node to one particular bp

node through path constraint solving; 2) one bp node has two outgoing edges, each leading

to one viable branch, while a brc node potentially has zero to multiple succeeding bp nodes;

3) each brc has only one parent node which is its branch point while each bp can potentially

have multiple preceding brc nodes. Therefore, Equation 3.5 does not apply to computing

the transition probability for a brc-to-bp edge.

The transition probability of an edge leading from brc to bp can be estimated as the

success rate of transitioning from brc to bp. In this case, each visit at edge ebrc,bp is considered

a win. The total amount of trials for visiting this edge includes the visit count and attempt

count at brc. In other words, each time brc is visited or attempted, but the subsequent

execution does not lead from brc to bp is considered a losing attempt. Similarly, when the

total trial count is low, the accuracy of the estimation can be low. Again, we leverage TS

33

for the transition probability computation for brc-to-bp edge with α being ebrc,bp.vis and β

being brc.vis+ brc.atp− ebrc,bp.vis as shown in Equation 3.6.

p(brc, bp) = τ(ebrc,bp.vis, brc.vis+ brc.atp− ebrc,bp.vis) (3.6)

Again, we normalize the transition probabilities of the edges leading from the same

brc node and ensure they sum up to one.

In summary, we leverage Thompson Sampling to dynamically optimize the estima-

tion of transition probabilities of the two types of edges in CSTG which allows us to balance

between exploration and exploitation.

Node Reachability Score Calculation. We compute a node reachability score for each

node in CSTG, which indicates the nodes’ potential for leading to new code coverage in

future testing. We then use it to guide the path prioritization in concolic execution.

The reachability score of the brc node should capture two aspects: 1) potential

new code coverage reachable from brc and 2) the difficulty of generating a new testcase

that visits the brc node. We measure a node’s reachable new code coverage as a numerical

value denoted as Coverage Score and compute it by Equation 3.7 (for leaf nodes) and

Equation 3.8 (for interior nodes).

N.score = τ(0, N.vis+N.atp) (3.7)

The coverage score of a leaf node is calculated by Equation 3.7. In particular,

for an unvisited leaf node, the coverage score is affected by the number of solving attempts

devoted to it. When the number of attempts grows but the node remains unvisited, it means

34

that this node could be too hard to reach. Therefore, our limited resources are better off

being relocated to other nodes. For a visited leaf node, apart from the attempt count, the

visit count also affects its coverage score. Each visit to a node without steering the execution

into a deeper state is considered a failed attempt. Consequently, the exploration should try

to avoid such nodes. As the visit count and the attempt count grow, the coverage score of

a visited leaf node will decrease.

We compute an interior node’s coverage score by Equation 3.8:

N.score =

n∑
i=0

p(N,Mi) ∗Mi.score , (3.8)

where Mi (i ∈ [0, n]) denotes a child node of N . Essentially, the coverage score of an interior

node is affected by two major factors. First, a node that is adjacent to a large number of

unvisited nodes is in general of higher potential than a node that has only a small number of

unvisited neighbor nodes. Hence, the number of a node’s unvisited successors in CSTG can

strongly indicate its potential for new code coverage. Second, given any path in a program,

the number of inputs that go through the child node is strictly less than or equal to the

number of inputs that go through the parent node. Subsequently, the distance between a

node and its unvisited successors also plays an essential role in estimating the potential for

new coverage.

The coverage score of each node in CSTG is updated periodically to reflect the

most recent changes. Apparently, CSTG can be a cyclic graph which imposes a challenge

for efficiently updating each one of the nodes for an updated coverage score. We periodically

perform the whole graph score updates by first performing a post-order traversal over the

35

graph to extract all the nodes into an ordered list. Then we traverse the list to update each

node’s coverage score. The reachability score for each brc node in the graph is computed by

Equation 3.9.

brc.rs = p(bp, brc) ∗ brc.score (3.9)

Essentially, for a branch brc with a high path divergence rate (i.e. low in-edge

transition probability), it is hard to generate a testcase traversing that branch and it renders

the coverage score in vain. We then prioritize the branch nodes in CSTG for scheduling by

their reachability score.

Branch Prioritization. After calculating reachability scores, the node (i.e., branch) with

a better potential of reaching new code will have a higher score and be promoted in the

scheduling. The path constraint associated with this top-ranked node is sent to the Path

Constraint Solver for new input generation. In case of an unsatisfiable path constraint, the

scheduler is prompted again until a new testcase is successfully generated and the testing

continues.

3.3 Evaluation

We evaluate the efficacy of our proposed approach by answering the following

research questions:

• RQ1: Effectiveness of end-to-end concolic execution. Can our model improve the

performance of end-to-end concolic execution?

• RQ2: Effectiveness of design choices. What are the unique contributions of each

36

design choice in Marco?

• RQ3: Vulnerability detection. Can Marco be more effective when detecting vulner-

abilities?

3.3.1 Evaluation Plan

To better answer the aforementioned research questions, we use the following con-

figurations:

• SymSan [18], the SOTA CE engine, which adopts the traditional synchronous solving

(i.e., the constraint solving is conducted at the time when the branch is encountered) with

the same native branch flipping policy as QSYM [75]. This baseline is to directly compare

with Marco.

• SymSan-pp, a variant of SymSan that adopts a PP branch-flipping policy, where each

branch is defined by its path prefix. The testcases are executed in a First-In-First-Out

(FIFO) order, with all branches flipped by the visit order. This baseline is to show that

simply selecting more branches to flip will not improve CE performance.

• Marco-rdm, a variant of Marco that defines each branch by its path prefix and picks

a random branch from the last visited program path to flip and generate a new testcase.

This configuration is to demonstrate the effectiveness of our branch scheduling strategy.

• Marco-cfg, a configuration that applies the CFG-directed searching algorithm of CREST [12]

on our dynamically generated CSTG. The assessment of each branch is determined by the

branch count between the branch itself and the nearest unvisited branch, as well as the

flipping attempt count. This configuration is used to show the effectiveness of our branch

scheduling strategy.

37

• Marco-uv, a variant of Marco which only allows the scheduler to pick from unvisited

nodes. This configuration is used to show the necessity of flipping the visited branches.

• Marco-MC, a variant of Marco with Markov Chain modeling but no Thompson Sam-

pling. This configuration evaluates the importance of Thompson Sampling in Marco.

• Marco, our full-fledged system.

To answer RQ1, we compare the code coverage metric of the full-fledged model

against SymSan. The experiment is conducted on real-world programs listed in Table 3.5.

For RQ2, we compare the code coverage per path constraint solving for all the configurations

listed to showcase the effectiveness of each design choice. Finally, to answer RQ3, we run

both Marco and SymSan on the UniFuzz dataset, and compare the number of unique bugs

found by them.

Table 3.5: Details of Real-world Applications Evaluated

No. Program Version No. Program Version
1 nm-new 2.33.1 16 libtiff 2e822691
2 readelf 2.33.1 17 tcpdump 4.8.1 + libpcap 1.8.1
3 objdump 2.33.1 18 flvmeta 1.2.1
4 size 2.33.1 19 tiffsplit libtiff 3.9.7
5 libpng 1.2.56 20 jhead 3.00
6 libxml2 2.9.2 21 imginfo jasper 2.0.12
7 file 5.42 22 jq 1.5
8 vorbis c1c2831f 23 lame lame 3.99.5
9 curl 2481dbe 24 wav2swf swftools 0.9.2
10 lcms 430f916 25 mujs 1.0.2
11 woff2 9476664 26 sqlite3 3.8.9
12 libjpeg-turbo b0971e47 27 mp3gain 1.5.2-r2
13 sqlite3 c78cbf2 28 mp42aac Bento3 1.5.1-628
14 tcpdump 4.99.1 29 cflow 1.6
15 freetype cd02d359a 30 infotocap ncurses 6.1

38

Dataset. We collect a dataset consisting of 30 popular real-world programs as shown

in Table 3.5, as well as 71 programs from the DARPA Cyber Grand Challenge (CGC)

dataset. To answer RQ1 and RQ2, we conduct experiments on the CGC programs, as well

as programs No. 1 to 16 (Binutils and Fuzzbench [2] binaries). To answer RQ3, we further

leverage programs No. 17 to 30, which are the subset of the Marco compatible Unibench

dataset proposed in UniFuzz [42]. We configure the experiment to align with the original

setup in UniFuzz, including each program’s execution option and the initial seed corpus

used.

Experiment Setup. All evaluation was done on a workstation with two-socket, 48-core,

96-thread Intel Xeon Platinum 8168 processors. The workstation has 768G memory. The

operating system is Ubuntu 18.04 with kernel 5.4.0.

3.3.2 RQ1: Effectiveness of Marco

To demonstrate the effectiveness of Marco in terms of exploring new code cover-

age, we measure the edge coverage during testing and compare our full-fledged model with

SymSan. Each configuration is repeated 10 times to reduce randomness.

We collect the edge coverage at the end of each 24h trial and measure the cover-

age improvement ratio of Marco over the baseline SymSan. For each program, we further

investigate the relative code coverage between SymSan and Marco with the formula pro-

posed in QSYM [75]. For code coverage A (Marco) and B (SymSan), we can quantify the

coverage difference using:

39

d(A,B) =


|A−B|−|B−A|
(A∪B)−(A∩B) if A ̸= B

0 otherwise

(3.10)

With the coverage difference score d(A,B), we can infer the number of unique edges

that A covered, out of the total edge coverage that either A or B can uniquely explore. A

positive score means A (Marco) finds more unique coverage than B (SymSan). The value

will be 1 if A (Marco) not only finds more coverage than B (SymSan) but also covers all

edge coverage explored by B (SymSan).

In our experiment, we evaluate the performance of Marco on 16 real-world pro-

grams (programs No.1 to 16 in Table 3.5). On average, Marco is able to cover 13.03%

more edges, with a maximum improvement on readelf for 88.56%. This indicates the ef-

fectiveness of our approach in improving the effectiveness of concolic testing for real-world

programs. Out of the 16 tested programs, Marco finds more edge coverage than SymSan on

11 programs (68.75%). Moreover, Marco dominates the coverage findings on three targets

(file, lcms, and sqlite3), where it also covers all the edges found by SymSan.

We further evaluate the performance of Marco on 87 programs (71 DARPA CGC

binaries + 16 real-world programs) and compute the coverage difference score between

Marco and SymSan. Inspired by [75], we visualize the results in Figure 3.3: the blue

color indicates that Marco finds more edge coverage than SymSan, and the red color indi-

cates that SymSan finds more. The results indicate that Marco can do better than SymSan

on 49 programs, and worse on 17 programs.

Further investigation (Table 3.6) shows that SymSan would terminate within 5

40

Real-world programs

CGC binaries

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Figure 3.3: Coverage Difference Score of Real-world Programs and CGC Binaries

hours on 75% (12/16) of the real-world programs, even though there still exist many edges

unexplored. This is due to the overly strict branch definition and ill-advised branch-flipping

strategy adopted in SymSan.

Table 3.6: Average Termination Time for SymSan

Program Term. Time(h) Program Term. Time(h)
nm-new 4.33±1.40 curl 0.10±0.03
readelf 0.52±0.05 lcms 0.06±0.01
objdump 2.68±0.54 woff2 >24
size 2.48±0.31 libjpeg-turbo 15.43±2.90
libpng 0.05±0.01 sqlite3 0.02±0.00
libxml2 1.57±0.16 tcpdump 0.75±0.81
file 0.27±0.01 freetype 10.36±0.79
vorbis 8.66±0.79 libtiff 1.93±0.26

To evaluate the scalability of Marco, we investigate the graph size growth and

the memory cost for each of the 16 real-world programs during testing. The results show

that the number of nodes in CSTG grows sub-linearly during the 24h trials. At the end

41

of each trial, the minimum, maximum, average, and median values of the node counts are

0.26k, 118.98k, 13.89k, and 3.10k correspondingly. We then record the amount of memory

taken by storing the AST tables and see that the disk usage grows linearly. At the end of

the trial, the minimum, maximum, average, and median values of memory usage are 7.88G,

63.19G, 23.90G, and 20.66G.

3.3.3 RQ2: Effectiveness of Design Choices

As discussed earlier, SymSan terminates very early in 75% of the tested programs,

meaning only a limited number of solving attempts have been made. In RQ2, we allocate

the same amount of solving attempts for the other configurations and assess their new

code coverage. By doing so, we can demonstrate the effectiveness of our design choices in

improving the branch prioritization scheme.

SymSan-pp
Marco-rdm
Marco-cfg
Marco-uv

Marco-MC

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Figure 3.4: Coverage Difference Score Within Solving Budget

We look into the edge coverage for SymSan-pp, Marco-rdm, Marco-cfg, Marco-

uv, and Marco-MC with the 16 real-world programs and compute the coverage difference

scores compared with Marco as defined in Equation 3.10. The experimental results are

displayed in Figure 3.4. Each row depicts the coverage difference score of A (Marco) and

42

B (the baseline labeled to the left of the row). The blue color indicates that Marco finds

more edge coverage than the corresponding baseline, and the red color suggests otherwise.

The results exhibit a few major conclusions:

0

2

4

6
imginfo

0

5

10
jhead

0.0

2.5

5.0

7.5

tiffsplit

0

2

4
lame

2.5

5.0

7.5

10.0
mp3gain

2

4

wav2swf

0

2

4

flvmeta

0.0

2.5

5.0

7.5
mp42aac

0

2

4

6

cflow

0.0

2.5

5.0

7.5
infotocap

0

1

2
jq

0

2

4
mujs

0

2

4

sqlite3

0

5

10

tcpdump

AFL
AFLFast
Angora
Honggfuzz
MOPT

T-Fuzz
VUzzer64
SymSan
Marco

Figure 3.5: Number of Unique Bugs Detected

Firstly, Marco outperforms SymSan-pp and Marco-rdm on all 16 programs. On

average, Marco covers 55.99% and 86.64% more code than SymSan-pp and Marco-rdm.

This result explicitly demonstrates that the novel branch prioritization strategy in Marco,

other than a simple FIFO or random selection, is extremely useful when it comes to code

exploration.

Secondly, Marco outperforms Marco-cfg on 13 out of 16 tested programs. For

the other three programs (vorbis, curl, and woff2) where Marco-cfg finds more coverage,

the differences are slight (<1%). Marco is able to find 83.92% more code coverage than

Marco-cfg. This result indicates that our branch flipping strategy is better than the CFG-

directed approach.

Thirdly, compared with Marco-uv, Marco manages to find more coverage on 15

43

programs out of 16, with only one exception curl. On average, Marco finds 29.22% more

code coverage than Marco-uv. This shows that it is indeed a good strategy to deem both

visited and unvisited nodes as candidates for path constraint solving.

Lastly, Marco outperforms Marco-MC on 12 out of 16 tested programs with an

average coverage improvement ratio of 57.21%, indicating that modeling edge transition and

reachability score with Thompson Sampling to balance between exploration and exploitation

is crucial to making effective branch prioritization decisions.

We further evaluate the significance of difference comparing Marco and the other

configurations in Figure 3.4 across the 16 tested programs on their code coverage findings

using p-values from the Mann-Whitney U-Test. We use p-value < 0.05 as the threshold for

statistical significance. We observed p-values above 0.05 in only two programs, curl (0.07)

and woff2 (0.48), when comparing Marco and Marco-cfg. For the rest of the results, the

p-values are below 0.001 for majority of the cases. The result suggests significant difference

between Marco and the other configurations.

3.3.4 RQ3: Vulnerability Detection

Lastly, we showcase the capability of vulnerability detection for Marco by using

the UniFuzz dataset, which consists of 14 programs. Specifically, we run both Marco and

SymSan 5 times for 24 hours and compare the average number of unique bugs detected.

According to the results, Marco is able to find 33.52% more bugs (47.8 v.s. 35.8) than

SymSan. Among them, Marco can uniquely identify 2.41 times the bug count of SymSan

(20.5 v.s. 8.5). More concretely, Marco finds more unique bugs than Symsan on 7 programs,

less on 2, and the same amount on 5. These numbers show that Marco has its unique

44

advantages when finding vulnerabilities compared with state-of-the-art CE engines.

We further cross-check our results with that reported in UniFuzz paper4 in Uni-

Fuzz [42] paper for 7 fuzzers (AFL [76], AFLFast [8], Angora [20], HonggFuzz [73], MOPT [45],

T-Fuzz [50] as well as VUzzer64 [53]) in 24h. We draw the box plot of all 8 baselines in Fig-

ure 3.5. According to the result, Marco is able to find more unique bugs in 12h than any of

the 7 fuzzers can find in the 24h trial on 5 (imginfo, jhead, mp42aac, jq and tcpdump) out

of the 14 tested programs. Marco ranks the second place on mujs and sqlite3, second to

Angora and MOPT respectively. We further explore the statistical rankings among Marco

and the 7 fuzzers by their average unique bug detection counts for each program. Marco

beats 6 fuzzers and is second to MOPT only. This demonstrates that Marco can find bugs

very efficiently.

4We contacted the authors for the original experiment data but didn’t get a response by the
time of submission. Therefore we repopulated the bug detection result based on the data reported
in their supplementary result: https://github.com/unifuzz/supplementary_results/blob/master/
UNIFUZZ_Supplementary_Paper.pdf

45

https://github.com/unifuzz/supplementary_results/blob/master/UNIFUZZ_Supplementary_Paper.pdf
https://github.com/unifuzz/supplementary_results/blob/master/UNIFUZZ_Supplementary_Paper.pdf

Algorithm 1 The CSTG Construction Algorithm
1: lastChosen← state chosen from last scheduling round

2: procedure GraphUpdate(G, CP, lastChosen)

3: lastnode = R

4: while ! CP.empty() do

5: (addr, ctx, dir) = CP.pop()

6: if !G.findNode(addr, ctx) then

7: bp = G.newNode(addr, ctx)

8: brc0 = G.newNode(addr, ctx, dir)

9: brc1 = G.newNode(addr, ctx, !dir)

10: G.newEdge(<lastnode, bp>,<bp, dp0>,<bp, dp1>)

11: else

12: bp = G.getNode(addr, ctx)

13: brc0 = G.getNode(addr, ctx, dir)

14: brc1 = G.getNode(addr, ctx, !dir)

15: end if

16: for s ∈ [bp, brc0, brc1] do

17: G.updateNode(s, lastChosen)

18: end for

19: for e ∈ [<lastnode, bp>,<bp, brc0>] do

20: e.vis++

21: end for

22: lastnode = brc0

23: end while

24: end procedure

46

Chapter 4

How Well can LLMs Generate

Fuzzing Inputs?

Fuzz testing has emerged as a powerful technique for uncovering security flaws in

software systems. During the fuzzing process, we execute the Program Under Test (PUT)

with large amount of testcases and monitor its runtime behavior to find vulnerabilities. In

particular, greybox fuzzing proves to be very effective. A greybox fuzzer (e.g., AFL [76])

chooses a seed from the seed queue, generates new inputs by performing a set of manually-

crafted mutations on it, and then executes the instrumented PUT with these new inputs.

If a new input causes new code coverage, it will be kept as a new seed and put in the seed

queue.

Recently, Large Language Models (LLMs) have demonstrated its success in many

fields, including natural language processing, automatic code generation, vulnerability de-

tection, automatic program repair. A natural question to ask here is “can LLMs help

47

with fuzzing?”. Indeed, some recent research efforts have already incorporated LLMs into

fuzzing. Specifically, ChatAFL [46], a protocol fuzzer, queries LLM (gpt-3.5-turbo) to

extract machine-readable form of the PUT grammar to help fuzzer perform structure-aware

mutation.

Apart from the grammar extraction, ChatAFL only uses ChatGPT for limited

queries for testcase generation: to diversify the initial corpus before commencing fuzzing

campaigns and to escape coverage plateau when the fuzzer counterpart gets stuck. Fuzz4All [71],

on the other hand, targets systems taking in programming or formatted inputs and conducts

much more frequent LLM queries to generate testcases for testing. As a result, a smaller

LLM, StarCoder, is selected as the generation LLM for the interest of efficiency. To provide

the generation LLM with better context and instruction, a larger and more capable LLM,

gpt-4-0613, is employed as the distillation LLM. It synthesizes prompts for the generation

LLM by summarizing the usage and functionality of the PUT.

Despite these initial successes in adopting LLMs in fuzzing, the research community

lacks a good understanding of out-of-the-box LLMs’ fuzzing performance in general. That

is, without making any customizations or optimizations (such as fine-tuning, in-context

learning, distillation, and prompt optimization), how well can an out-of-the-box LLM work

for fuzzing? The evaluation of the out-of-the-box LLMs’ fuzzing performance can establish

a baseline for any followup research in this direction. To the best of our knowledge, this is

the first measurement study of this kind.

More specifically, we evaluated two online models (ChatGPT 3.5 and ChatGPT 4.0)

and four locally-deployed models (Llama2 and Code Llama chat and completion models),

48

and found answers to the following questions. First of all, should an LLM generate a testcase

from scratch or mutate an existing testcase? We observe that all six models produce better-

quality testcases by mutating an existing one than generating one from scratch, with respect

to more valid and diverse testcases and higher code coverage.

Second, among these models, which model produces best mutations? Mutations

are considered good, if they are not only syntactically distinct, but also semantically diverse

(i.e., exploring unique program execution space). Our study suggests that the two online

models (ChatGPT 3.5 and ChatGPT 4.0) significantly outperform the four local models,

and ChatGPT 3.5 is the best despite that ChatGPT 4.0 is more recent.

Third, which model is the most cost-effective, in terms of time and monetary cost?

A common belief is that larger online models like ChatGPT are more expensive than those

smaller local models, and thus less cost-effective. Our study disapproves it: under the same

time or monetary budget, ChatGPT models can achieve much higher code coverage than

those local models. Moreover, ChatGPT 3.5 is more cost-effective than ChatGPT 4.0, in

terms of both time and monetary cost.

At last, can LLMs completely replace existing manually-crafted mutators? The

answer is “No”. Our study shows that despite some overlaps, different LLMs and AFL++

tend to explore separate regions in the program execution space.

In this paper, we design three research questions to drive a systematic study on

LLMs’ fuzzing capabilities, and present our findings. This study across a wide range of

models allows us to understand how fuzzing performance can be influenced by model size,

family and computational needs and be able to derive insights that remain relevant as

49

newer variants emerge. Based on the study conducted across these models, we provided

concrete insights and guidelines for LLM-augmented fuzzing in the discussion section, such as

PUT (Program-under-test) selection, effective prompt engineering, and LLM model selection

which also disproved the assumptions made in prior works. These insights and guidelines

offer a resilient framework that can be adapted to future LLM models and variants, ensuring

their relevance even as the technology progresses.

4.1 Systematic Study

1) Subjects: To conduct a systematic study on the capability of LLMs for program input

generation, we choose eight representative LLMs as shown in Table 4.1. These LLMs belong

with three LLM family, ChatGPT, Llama 2 and Starcoder. The three ChatGPT models

are of larger size (175 billion parameters and above) and closed source, therefore can only

be accessed remotely via API calls. The Llama 2 and Starcoder models are relatively small

compared with ChatGPT models. The Llama 2 models come in three model sizes: 7, 13 and

70 billion parameters. We choose the 7-billion model to fit our GPU infrastructure (NVIDIA

Tesla V100 SXM2 16GB). For Starcoder we choose the 7b model for the same reason. To

comprehensively evaluate our study subjects, we further include AFL++ [26] (the State-of-

the-art greybox fuzzer), and Gramatron [61] (a grammar-aware fuzzer, dubbed as GRAM) to

provide a perspective on how well LLM mutators perform compared to conventional fuzzers.

2) Benchmark Programs: We conduct experiments on four program, of which three (jq, php,

mujs) takes in text-based inputs that adhere to the syntax rules of JSON, PHP, JavaScript

50

Table 4.1: Subject LLMs

Mode Model Endpoint Abbreviation Size Environment

instruct/chat

gpt-3.5-turbo-1106 GPT3.5
large remote

via APIgpt-4-1106-preview GPT4.0
gpt-4o GPT4O

CodeLlama-7b-instruct CL-in

small local
model inference

llama-2-7b-chat LL-in

completion
CodeLlama-7b CL

llama-2-7b LL
starcoder2-7b STAR

source code; and one (objdump) takes in non-text-based inputs in ELF format. Note that

the subject LLMs only accept and produce text and do not support non-text-based inputs

or outputs. To query the LLMs to generate ELF format seeds, we first encode the sample

ELF input using the command xxd into text, then decode the output text from the LLMs

with the command cut -d’ ’ -f2-9 output.txt | xxd -r -p > output.bin into binary

form.

Table 4.2: Benchmarks

Program Input Format Syntax Check Command
jq json jq . @@

php PHP xmllint –noout @@
mujs JavaScript node @@

objdump ELF readelf -a @@

For each program, we prepare a set of 20 unique seeds of which 10 are syntactically

valid and 10 are of broken syntax. The commands used to validate the testcases’ syntax

validity is shown in Table 4.2, where @@ denotes the testcase file name.

3) Experiment Setup: To utilize the ChatGPT models, we have registered for the OpenAI

API service. For the four Llama 2 models and one Starcoder model, each trial is pinned on

one GPU, the computing instances are allocated using the Google Cloud Platform.

51

Please note that the OpenAI API service imposes different rate limits for different

usage tiers. Our experiment for the three ChatGPT models was conducted using Tier 5,

which offers the highest rate limit among all usage tiers1. Additionally, the four Llama

2 models and one Starcoder model were run on a VM instance with NVIDIA V100 GPU

(NVIDIA Tesla V100 SXM2 16GB) using the Google Cloud Platform, with costs calculated

at an hourly rate of $3.67.

4) Research Questions: Here we explain the purpose for each research question as well as

the corresponding experiments.

RQ1: How to formulate the prompt for an LLM to act as an effective program input

generator? Prompting is a critical step in utilizing LLMs, as it provides context and guidance

to the model. However, there are no established empirical guidelines for optimizing prompts

for program testing tasks. For this RQ, we conduct experiments involving three prompt

designs to find the effective prompt that directs the LLM to generate better program inputs

for automated fuzz testing. The information provided in the prompt significantly influences

the quality of generated testcases. In particular, depending on whether or not a sample

testcase is included in the prompt, the LLM can operate either in mutation-based mode or

generative mode. By specifying the expected format of the program input in the prompt,

we can direct the LLM to produce syntactically valid seeds to mitigate the risk of early

rejection in the execution path.

RQ2: Can LLMs produce diverse seed mutations? For this RQ, we examine cov-

erage efficiency of subject LLMs compared with conventional fuzzers. For this research
1https://platform.openai.com/docs/guides/rate-limits/usage-tiers?context=tier-one

52

https://platform.openai.com/docs/guides/rate-limits/usage-tiers?context=tier-one

question, we examine the coverage efficiency of LLM mutators compared with conventional

mutators in terms of unique coverage findings, as well as their explored region diversity and

sparsity. Our goal is to determine whether LLM mutators can entirely replace conventional

greybox fuzzers, and if not, which LLM mutator contributes the most to the fuzzer. To

that end, we further investigate the explored-region diversity of LLM-generated mutations

to identify which LLM has the most potential for collaborating with a greybox fuzzer.

RQ3: Are LLMs cost effective for fuzzing? One practical consideration when

utilizing LLMs for program analysis tasks, such as fuzzing, is the associated cost. Is the

performance gain achieved by adopting LLM methods justified by the resources expended?

In this RQ, we explore the coverage findings relative to the time and monetary costs involved

for the tested LLMs, and help the community determine whether or not LLM should be used,

and if so which one offers the most cost-effective solution.

4.2 Findings

In this section, we analyze the experiment results and present our findings and

answer each research question.

4.2.1 RQ1: Prompt Design

To fully harness the potential of leveraging Large Language Models (LLM) for

program input generation or mutation to enhance fuzzing, a crucial step is to synthesize

an effective prompt to guide the model. Previous works, such as Fuzz4all and ChatAFL,

have demonstrated the efficacy of LLMs in understanding the internal workings of Programs

53

Under Test (PUTs) and utilizing this understanding to generate superior test cases. In this

paper, we aim to explore the potential of LLMs for fuzzing without prior knowledge of the

target program’s runtime logic.

Table 4.3: Prompt Designs

Type Program Input Info
Sample Input Format

LLM_S ✓ ✗

LLM_F ✗ ✓

LLM_FS ✓ ✓

To ensure our evaluation is not biased towards any particular LLM and to generalize

our findings, we assess three types of prompts across the eight subject LLMs. In Table 4.3,

we present the three prompt designs evaluated. In particular:

• With LLM_S prompt, the LLM operates in a mutational-based manner, where a sample

input is included in the prompt. The model is instructed to generate variations of this

sample input.

• With LLM_F prompt, the LLM operates in a generative manner, where the expected pro-

gram input format is included in the prompt. The model is instructed to generate testcases

that adhere to corresponding syntax rules.

• With LLM_FS prompt, both a sample input and the input format requirement is included

to instruct the LLM. The LLM operates in a mutational-based manner with additional

information specifying the expected format.

To determine the optimal prompt design and understand how the inclusion of

sample input and/or input format affect the quality of generated testcases, we conduct

experiments on the four real-world programs listed in Table 4.2. We start with a set of 20

54

initial seeds, comprising ten adhering to the specific format and ten not. Each of the eight

LLMs is in default parameter configuration and prompted with the three prompts mentioned

earlier to generate 100 new testcases per initial seed (for LLM_F the prompt does not include

any sample seed from the initial corpus but the number of new testcases generated is the

same). Such mutation budget is determined empirically as we observe that as the mutation

budget grows, the responses from LLMs start to repeat since the identical prompt is being

used repeatedly. In order for the unique mutation ratio among LLMs to become apparent, we

empirically set the mutation budget to 100 consistently across all LLMs for the experiments.

We then evaluate the quality of generated testcases based on the following metrics:

• Edge code coverage: This measures the extent of code covered by the testcases, which is

crucial for assessing the effectiveness of LLM for fuzzing. The edge coverage information

is collected using the afl-cmin tool from AFL++ toolbox.

• Ratio of unique testcases: This reflects a mutator’s ability to generate diverse mutations

from the initial input is essential for LLM to act as a seed mutator. A seed is uniquely

identified by its MD5 checksum value.

• Ratio of valid testcases: This reflects the proportion of generated seeds that is format-

conformed. We use the commands listed in Table 4.2 to verify the validity of seeds for

corresponding format.

LLM_F vs. LLM_S (Generative vs. Mutational-based approach)

By evaluating the quality of mutations generated from each LLM adopting LLM_F

and LLM_S, we try to determine whether the generative approach or the mutation-based

approach is more effective for using LLMs as program input generators. To that end, we

55

examine the code coverage achieved using the two prompt designs and present the result in

Table 4.4.

Table 4.4: Coverage Achieved by LLM_F and LLM_S

LLM
Mutator

jq php mujs objdump
-F -S -F -S -F -S -F -S

GPT3.5 5873 5909 21558 16041 4638 11223 2488 2902
GPT4.0 7646 6693 28585 17284 8395 12088 2080 2016
GPT4O 7554 6859 29719 19322 5945 15081 2077 3068
CL-in 4587 5316 15486 18571 6935 8344 1140 2102
LL-in 4675 5558 8906 21053 6977 10176 714 784
CL 3343 7421 31358 22852 3275 10269 1327 1599
LL 4011 7106 15768 17976 5051 12296 706 2199

STAR 10092 9876 32054 34385 14745 24727 717 1068

According to the results, the LLM mutator adopting the LLM_S design achieved

an average improvement of 26.34%, 6.29%, 103.81% and 54.55% over those using the LLM_F

design across the four targets. These results suggest that LLMs employing a mutational-

based approach generally perform better than those operating in a black-box generative

manner.

We further investigated LLM_S’s coverage improvement within the large LLM set

and small LLM set respectively. According to the results, with large LLMs using the LLM_S

prompt, the models on average find 7.02% and 33.37% less code coverage than those using

the LLM_F design for programs jq and php. However, for the other two targets, the LLM_S

models find 113.22% and 20.42% more coverage. As for small LLMs, the LLM_S prompt

consistently leads to higher code coverage compared to the LLM_F prompt.

56

LLM_FS vs. LLM_F (Impact of sample inclusion)

To further investigate the impact of including a sample input in the prompt, we

investigate the two prompt designs: LLM_FS and LLM_F in terms of the code coverage findings.

Table 4.5: Coverage Achieved by LLM_F and LLM_FS

LLM
Mutator

jq php mujs objdump
-F -FS -F -FS -F -FS -F -FS

GPT3.5 5873 6599 21558 22039 4638 12064 2488 3054
GPT4.0 7646 7663 28585 22639 8395 15069 2080 2874
GPT4O 7554 8150 29719 24225 5945 18915 2077 3239
CL-in 4587 6676 15486 19534 6935 13610 1140 1033
LL-in 4675 6010 8906 19335 6977 10359 714 869
CL 3343 7559 31358 24121 3275 10469 1327 1035
LL 4011 7189 15768 22556 5051 13157 706 2207

STAR 10092 9972 32054 33942 14745 24292 717 1186

Table 4.6: Seed Uniq Ratio(%) w/&o Sample Seed

LLM
Mutator

jq php mujs objdump
-F -FS -F -FS -F -FS -F -FS

GPT3.5 37.65 32.93 82.60 73.10 98.70 55.05 98.30 40.60
GPT4.0 89.32 42.37 99.95 72.25 99.95 78.10 82.60 97.45
GPT4O 99.80 48.75 100.00 65.30 100.00 82.85 98.90 82.60
CL-in 0.25 8.60 1.75 13.45 7.65 27.70 1.40 1.35
LL-in 0.75 52.15 0.35 58.45 8.65 80.70 15.20 25.75
CL 53.45 30.65 40.80 16.80 61.50 16.85 31.05 39.55
LL 30.60 36.30 20.05 22.40 11.95 25.25 26.70 27.25

STAR 99.20 92.35 97.90 98.60 98.00 98.70 94.65 97.65

As shown in Table 4.5, the LLM mutator adopting the LLM_FS design achieved an

average improvement of 37.34%, 16.51%, 130.92%, 48.15% over those using the LLM_F design

across the four targets. Across the five small LLMs, the LLM_FS design fairly consistently

outperforms LLM_F design by achieving an average coverage improvement of 55.65%, 33.82%,

117.92%, 53.67% on the four targets respectively. Across the large LLMs, LLM_FS design

57

gained 6.82%, 152.59% and 38.96% coverage improvement on jq, mujs and objdump while

ahieved 12.35% less coverage for php as compared with LLM_F design. The results indicate

that in general LLM_FS design leads to better code coverage than LLM_F design across both

large and small LLM set.

With LLM_F design, the LLM mutators are repeatedly queried using the identical

prompt which potentially could lead to higher duplicated responses and thusly low unique

seed ratio in the produced mutations. To validate this hypothesis, we investigated the ratio

of unique mutations for each LLM mutator adopting the two prompt designs respectively.

As demonstrated in Table 4.6, for large LLMs, incorporating a sample seed in the prompt

actually results in a lower unique seed ratio across the four targets. As for small LLMs, the

model adopting LLM_FS design is able to generate more unique mutations than its LLM_F

counterpart. The disparity between the large and small LLM set could be attributed to the

fact that large LLMs are trained on larger dataset and more intelligent, thus being more

resilient to duplicated prompts than small LLMs.

Table 4.7: Coverage Achieved by LLM_S and LLM_FS

LLM
Mutator

jq php mujs objdump
-S -FS -S -FS -S -FS -S -FS

GPT3.5 5909 6599 16041 22039 11223 12064 2902 3054
GPT4.0 6693 7663 17284 22639 12088 15069 2016 2874
GPT4O 6859 8150 19322 24225 15081 18915 3068 3239
CL-in 5316 6676 18571 19534 8344 13610 2102 1033
LL-in 5558 6010 21053 19335 10176 10359 784 869
CL 7421 7559 22852 24121 10269 10469 1599 1035
LL 7106 7189 17976 22556 12296 13157 2199 2207

STAR 9876 9972 34385 33942 24727 24292 1068 1186

58

LLM_FS vs. LLM_S (Impact of format inclusion)

To investigate the impact of incoporating the expected format of the generated

program inputs, we compare the code coverage findings achieved by LLM_FS and LLM_S

designs respectively. According to the result in Table 4.7, the LLM mutator adopting

the LLM_FS design achieved an average improvement of 10.34%, 15.06%, 16.21% for the

three targets executing text-based inputs, while for objdump where ELF format inputs are

expected, the code coverage dropped slightly for 1.31%. In particular, for the three large

LLMs, the LLM_FS consistently performed better than LLM_S by 15.00 to 31.25%. As for

the five small LLMs, the improvement of LLM_FS achieved 5.35 to 14.42% improvement over

LLM_S design while on objdump, the code coverage dropped for 12.77%.

Table 4.8: Seed Valid Ratio(%) w/&o Format Info

LLM
Mutator

jq php mujs objdump
-S -FS -S -FS -S -FS -S -FS

GPT3.5 48.02 92.63 89.35 97.90 50.75 64.20 48.80 40.40
GPT4.0 58.28 88.35 92.49 99.90 56.35 68.25 27.00 95.80
GPT4O 51.85 83.55 98.00 99.60 55.80 69.25 44.40 62.20
CL-in 49.65 87.40 74.40 63.70 55.00 59.05 40.40 0.20
LL-in 39.15 20.15 71.80 75.30 48.25 14.90 0.00 0.00
CL 27.90 30.10 88.70 71.15 29.80 46.30 0.45 0.05
LL 12.70 29.65 91.35 90.40 24.10 34.95 10.40 12.00

STAR 31.05 38.25 71.00 68.30 36.50 35.30 0.00 0.05

The assumption is that incorporating format information in the prompt could

enhance the chance of generating format-conformed seeds, and therefore enabling the ex-

ploration to deeper program states. We examined the ratio of valid seeds in the produced

mutations for each LLM mutator. As is shown in Table 4.8, across the three programs

executing text-based inputs, the LLM mutators adopting LLM_FS is able to produce higher

59

ratio of valid seeds than those adopting LLM_S. As for objdump, the small LLMs in general

produce less valid ELF inputs than larger LLMs.

In summary, LLMs perform better in mutation-based mode compared to generative

mode, especially when the expected format of the mutations is included in the prompt.

4.2.2 RQ2: Diversity of LLM-generated Mutations

Here, we delve deeper into the mutations generated by LLMs and contrast them

with those generated by the mutation engine of the conventional greybox fuzzers, AFL++

and Gramatron. We examine and compare the mutation quality across the subject LLM

mutators as well as the conventional greybox fuzzers.

Table 4.9: Rare Coverage Ratio(%)

Program GPT3.5 GPT4.0 CL-in LL-in CL LL AFL++
jq 16.55 7.19 0.00 0.00 0.00 0.00 76.26

php 13.52 15.74 0.00 0.06 0.03 2.13 68.52
mujs 26.39 46.67 0.00 0.00 0.00 0.00 23.97
xml 75.33 0.12 0.00 0.00 0.03 0.00 24.52

Average 32.95 17.43 0.00 0.02 0.02 0.53 48.32

Code coverage is classified as “rare” if it can only be triggered exclusively by one of

the seven mutators. We aggregate the code coverage findings across all mutators in the 8-

hour trials for each target program and identify the total rare code coverage for each target

program. Then, we compute the uniquely identified code coverage for each baseline and

calculate the ratio of rare code coverage against the total amount of rare coverage for each

baseline. The results are presented in Table 4.9.

60

The results suggest that larger LLMs uncover significantly more rare coverage (on

average 32.95% for GPT3.5 and 17.43% for GPT4.0) compared to smaller models, which on

average are below 1%. However, a big proportion of the rare coverage, 48.32%, can only be

detected using conventional mutators of AFL++, indicating that none of the tested LLMs

can fully dominate the coverage findings or replace the conventional mutator. Moreover,

there is potential for achieving even more code coverage by leveraging a collaborative ap-

proach between large LLMs and greybox fuzzers.

GPT3.5 GPT4.0 CL-in LL-in CL LL
101

102

un
iq

ue
 c

ov
er

ag
e jq

GPT3.5 GPT4.0 CL-in LL-in CL LL
100

101

102

103 php

GPT3.5 GPT4.0 CL-in LL-in CL LL

102

103

un
iq

ue
 c

ov
er

ag
e mujs

GPT3.5 GPT4.0 CL-in LL-in CL LL
100

101

102

103 xml

rare uniq

Figure 4.1: Unique Code Coverage

To determine which LLM collaborates more effectively with AFL++, we con-

duct further investigation to identify each LLM’s unique coverage findings not detected

by AFL++. We illustrate each LLM’s unique code coverage (labeled as “uniq”), as well as

the rare code coverage (labeled as “rare”) in Figure 4.1. Please note that in this figure a log

scale was applied to the y-axis to improve visualization clarity.

61

Based on the results, the GPT3.5 model generally outperforms the other five LLMs

and achieves the most unique code coverage that AFL++ cannot detect. Following closely

behind is the GPT4.0 model. In contrast, the four smaller LLMs detects significantly less

unique coverage compared to the larger models. These findings suggest that larger LLMs

may hold greater potential as collaborative components for conventional greybox fuzzers like

AFL++.

Substitution or Coordination?

Firstly, we examine the code coverage findings achieved by each of the ten mutators

and investigate the Pairwise Unique Coverage across the ten mutators on the four targets.

Note that for Gramatron, it does not support json or ELF format inputs.

Table 4.10: Edge Coverage Achieved in 4h

Mutator jq php mujs objdump
GPT3.5 5500 18713 12042 1817
GPT4.0 5133 18456 11669 1712
GPT4O 5207 20071 14067 1803
CL-in 4232 12892 5086 559
LL-in 4175 13151 5664 555
CL 4227 12391 5271 563
LL 4194 12922 5379 571

STAR 5125 15358 7493 574
AFL++ 5587 18735 8892 6029
GRAM - 18859 10092 -

According to Table 4.10, for objdump which takes non-text-based inputs, AFL++

demonstrates significant superiority over the three large LLMs, which in turn outperform

the five small LLMs. For the other three targets which take text-based inputs, the large

LLMs reached similar or higher code coverage than AFL++. The small LLMs in general

62

achieved less code coverage than large LLM, while STAR performs better than the other four

Llama 2 models. As for the grammar-aware fuzzer GRAM, it is able to outperform AFL++

in both php and mujs and ranked second place in php while performs worse than three large

LLMs in mujs.

Table 4.11: Dominating/Dominated Mutator Count (obj: objdump)

Mutator # dominating # dominated by
jq php mujs obj AVG jq php mujs obj AVG

GPT3.5 2 0 2 4 2.00 0 0 0 0 0.00
GPT4.0 1 0 0 4 1.25 0 0 0 1 0.25
GPT4O 4 1 3 5 3.25 0 0 0 0 0.00
CL-in 0 0 0 0 0.00 3 1 2 6 3.00
LL-in 0 0 0 0 0.00 3 0 0 7 2.50
CL 0 0 0 2 0.50 1 0 2 5 2.00
LL 0 0 0 3 0.75 1 0 1 4 1.50

STAR 1 0 0 1 0.50 0 0 0 1 0.25
AFL++ 0 0 0 5 1.25 0 0 0 0 0.00
GRAM - 0 0 - 0.00 - 0 0 - 0.00

We further investigate the dominant relationship between mutators to determine

if any mutator can fully substitute another by covering all of its discovered edges. One

mutator A dominates the coverage finding of another mutator B if A is able to cover all the

coverage of B. As is shown in Table 4.11, for each mutator we examine the average number

of other mutators that it dominates across four targets and report the rank as follows: GPT4O

(3.25) > GPT3.5 (2.00) > GPT4.0 = AFL++ (1.25) > LL (0.75) > STAR = CL (0.50) > CL-in

= LL-in = GRAM (0.00). In particular, AFL++ is able to dominate the coverage findings of all

five small LLMs but none of the three large LLMs for objdump. This indicates the weakness

of small LLMs for generating high quality seeds in non-text-based format.

The results also suggest that the four Llama 2 models are dominated by the highest

63

number of mutators: CL-in (3.00) > LL-in (2.50) > CL (2.00) > LL (1.50), followed by the

STAR and GPT4.0 models at 0.25 each. The two conventional fuzzers, AFL++ and GRAM,

along with the other two large LLMs, GPT3.5 and GPT4.0, are not dominated by any other

mutators.

GPT
3.5
GPT

4.5
GPT

4OCL-inLL-
in CL LL

STA
R
afl

pp

GPT3.5
GPT4.5
GPT4O

CL-in
LL-in

CL
LL

STAR
aflpp

No
t c

ov
er

ed
 b

y

jq

GPT
3.5
GPT

4.5
GPT

4OCL-inLL-
in CL LL

STA
R
afl

pp

objdump

GPT
3.5
GPT

4.5
GPT

4OCL-inLL-
in CL LL

STA
R
afl

pp
GRA

M

Covered by

GPT3.5
GPT4.5
GPT4O

CL-in
LL-in

CL
LL

STAR
aflpp

GRAM

No
t c

ov
er

ed
 b

y

php

GPT
3.5
GPT

4.5
GPT

4OCL-inLL-
in CL LL

STA
R
afl

pp
GRA

M

Covered by

mujs

0

250

500

750

1000

1250

0

1000

2000

3000

4000

5000

0

2000

4000

6000

0

2000

4000

6000

8000

Figure 4.2: Pairwise Unique Coverage

In summary, none of the LLMs can consistently outperform AFL++ and therefore

cannot substitute conventional fuzzer. The coordination mode is potentially a better choice.

64

To investigate the coordination potential between the tested mutators, we examine

the Pairwise Unique Coverage across the ten mutators and present the result in Figure 4.2.

Each colored box indicates the number of unique edges covered by the column mutator but

not the row mutator. A lighter-colored box indicates a higher potential for improving the

coverage of the row mutator by incorporating the column mutator. As depicted in the figure,

incorporating large LLMs has the high potential to improve the coverage efficiency of small

LLMs across the three targets expecting text-based inputs. Furthermore, for php and mujs,

large LLMs find unique coverage that the two conventional fuzzers cannot trigger. As for

objdump, it appears that AFL++ finds the most unique coverage compared to any of the LLM

mutators. Out of the five small LLMs, the four Llama 2 models in general finds way less

unique edges across the four targets, while STAR finds significant amount of unique edges

overlooked by the four Llama 2 models for program jq and php. As for the conventional

fuzzers, AFL++ finds more unique edges over small LLMs rather than large LLMs across

four targets.

In summary, it is promising to incorporate large LLM mutators in collaboration

with conventional fuzzers for better coverage efficiency, especially for testing programs that

expect text-based inputs.

Mutation Diversity in Program Space.

For a program input generator, it is crucial that the generated inputs explore

sparse and distinct code regions. And the more different the explored region is compared

to a conventional fuzzer, the higher the potential for the two mutators to cooperate for

better coverage efficiency. Here, we explore the diversity of mutations generated from the

65

LLM mutator based on their trajectories into the program state space. In this evaluation,

we included two conventional fuzzers, AFL++ and GRAM, in the comparison to discuss the

diversity of the LLM explored region against that of conventional fuzzers. To ensure a

fair comparison, both conventional fuzzers were modified to retain all mutations without

filtering. For each target program, we collected 100 mutations derived from each mutator,

all originating from the same initial seed. We used afl-showmap to collect the execution

trace of each mutation in bitmap form. Then, we performed T-SNE transformation on the

set of bitmaps of each mutator to generate the visualization in Figure 4.3.

50 0 50
75

50

25

0

25

50

75 jq

20 10 0 10 20

10

5

0

5

10
php

GPT3.5
GPT4.0

GPT4O
CL-in

LL-in
CL

LL
STAR

AFL++
GRAM

20 0 20 40

10

5

0

5

10

15 mujs

100 0 100 200
200

100

0

100

200 objdump

Figure 4.3: Mutation Diversity in Program Space

66

In Figure 4.3, each dot represents one executed path in the program space. The

distance between two dots reflects the difference between two paths. A sparse set of dots

indicates that the corresponding mutator is exploring a diverse set of paths. As depicted

in the figure, each mutator’s explored paths can form one to several small clusters (e.g.,

STAR for jq). Some mutators appear to explore similar regions as another mutators (e.g.,

GPT4.0 and GPT4O for jq). For objdump, the figure appears less crowded than the other three

because of the high amount of duplicated paths. Intuitively, a sparser distribution of dots

suggests that an LLM mutator may perform better as a greybox fuzzer compared to denser

distributions. Moreover, if its dots are distant from those of AFL++, it could collaborate

more effectively with AFL++ to achieve higher coverage findings.

Table 4.12: Distance to AFL++ Centroid

Mutator jq php mujs objdump Stat. Rank
GPT3.5 83.33 35.81 58.47 278.57 2.25
GPT4.0 44.22 24.32 15.87 327.63 4.50
GPT4O 79.76 25.43 22.21 190.15 4.50
CL-in 85.97 42.68 64.14 276.82 2.00
LL-in 44.86 10.38 12.32 328.55 5.00
CL 29.43 24.22 56.35 147.12 6.00
LL 54.93 14.00 7.58 277.48 5.50

STAR 40.99 2.63 25.49 195.44 6.25
GRAM - 16.61 23.94 - -

For a quantitative analysis of the result and to help interpret the figure, we perform

Kernel Density Estimation (KDE) [49] to identify the centroid for each mutator’s coverage

bitmap set, using the distribution density of data points in the embedding space. The

centroid of each mutator’s bitmap set represents the center of the program space explored

by the corresponding mutations. Assuming that the data points around each centroid are

67

evenly distributed, if the distance between two centroids is large, the corresponding mutators

are exploring different regions of the program execution space. Conversely, if the distance

between two centroids is small, the two mutators are likely to be exploring overlapping

execution space. To assess the diversity of mutations generated by LLM and those generated

from AFL++, we calculate the centroid distance between each LLM and AFL++ and present

the results in Table 4.12.

Based on the results, CL-in emerge as the top LLM mutator that exhibits difference

from AFL++ in the program execution space, followed by GPT3.5 and then GPT4.0 and GPT4O.

If the distribution of the explored program space of each mutation is evenly distributed,

CL-in is expected to make the most unique contribution to AFL++, followed by GPT3.5

and then GPT4.0 and GPT4O.

Table 4.13: KDE Centroid Density

Mutator jq php mujs objdump Stat. Rank
GPT3.5 8.15 6.47 10.24 15.91 4.75
GPT4.0 5.24 9.82 7.14 15.42 3.25
GPT4O 5.51 10.07 6.96 6.54 3.00
CL-in 12.71 13.84 9.86 21.88 7.00
LL-in 14.68 11.84 17.02 15.52 7.00
CL 15.61 12.90 18.41 9.40 7.00
LL 11.34 9.86 14.59 10.55 5.25

STAR 6.54 4.41 4.49 5.46 1.50
AFL++ 9.43 14.29 6.25 26.34 6.25
GRAM - 13.32 11.69 - -

Additionally, for each mutator, it is crucial that its generated mutations explore a

sparse code space. If the execution trajectories are too dense, the mutator may not efficiently

explore new code coverage but instead focus on a narrow set of duplicated paths. To assess

the coverage diversity of each mutator, we present the density score of the corresponding

68

centroid in Table 4.13.

The result indicates that STAR overall has the highest rank with respect to its den-

sity score in exploring four targets. It is followed by three large LLMs. However, for CL-in

which explores regions most distant from AFL++, its mutations are densely distributed

around the center of its explored region.

Based on the statistical rankings of the eight LLM mutator in Table 4.12 and

Table 4.13, small LLMs either explore paths in close proximity with AFL++ (e.g., STAR,

CL and LL), or their explored regions are too dense (e.g., CL-in, LL-in, CL), making them

unsuitable as collaborator mutators for greybox fuzzers.

In summary, an effective LLM mutator should explore unique code regions that

are distant from the center of AFL++’s explored region. Additionally, its mutations should

cover a diverse set of paths rather than being too focused around a central point. Overall,

large LLMs tend to perform better than small LLMs.

In summary, while LLM mutators cannot entirely replace AFL++ mutators, they have

demonstrated great potential as collaborative components for conventional fuzzers, es-

pecially large LLMs. Furthermore, LLMs are capable of exploring diverse and distinct

code regions.

4.2.3 RQ3: Cost Effectiveness

Here, we examine the cost-effectiveness of the eight subject LLMs by assessing

their code coverage results under the same time or monetary constraints. Initially, given

a target program and its corresponding initial corpus, all seeds undergo a filtering process

69

based on their code coverage. Seeds that do not trigger any new code coverage are excluded

from the seed pool. Subsequently, each subject LLM is prompted with the LLM_FS design.

As discussed earlier, in this mode a sample input along with the desired data format of the

new mutations are included in the prompt. Such sample input is randomly selected from

the filtered seed pool. The LLM generates new mutations, which are then filtered to retain

only those that trigger new code coverage. This iterative process continues until the allotted

4-hour time budget is exhausted. We then assess the code coverage findings over time as

well as the monetary cost and present the result in Figure 4.4.

0 1 2 3 4

3500

4000

4500

5000

5500
jq

0 1 2 3 4

10000

12000

14000

16000

18000

20000
php

0 1 2 3 4

4000

6000

8000

10000

12000

14000
mujs

0 1 2 3 4
400

600

800

1000

1200

1400

1600

1800
objdump

0.0 2.5 5.0 7.5 10.0 12.5

3500

4000

4500

5000

0.0 2.5 5.0 7.5 10.0 12.5

9000

10000

11000

12000

13000

14000

15000

16000

0.0 2.5 5.0 7.5 10.0 12.5
3000

4000

5000

6000

7000

8000

9000

0.0 2.5 5.0 7.5 10.0 12.5

600

800

1000

1200

1400

1600
(a) Coverage vs. Time (h)

(b) Coverage vs. Monetary Cost($) GPT3.5
GPT4.0

GPT4O
CL-in

LL-in
CL

LL
STAR

Figure 4.4: Cost Effectiveness

Coverage Over Time

As depicted in Figure 4.4 (a), the three large LLMs ranked top-three across all four

targets by finding the most coverage by the end of 4h, when the four Llama 2 models all

70

reached coverage plateau. And STAR model consistently outperforms the other four small

LLMs across the four targets. Such result suggests that large LLMs exhibit greater coverage

efficiency compared to smaller models and Starcoder2 model consistently outperforms Llama

2 models. Surprisingly, despite GPT4.0 being perceived as more powerful than GPT3.5, it

actually performs worse than GPT3.5 as a seed mutator.

3500
12000
20500

210
415
620

70
95

120

jq php mujs objdump
0
4
8

12

ou

tp
ut

 /
m

in

GPT3.5
GPT4.0

GPT4O
CL-in

LL-in
CL

LL
STAR

AFL++
GRAM

Figure 4.5: Mutation Generation Rate

For further investigate this disparity in coverage gain, we examined the mutation

generation efficiency across the eight LLM mutators and compare them against the two

conventional fuzzers, AFL++ and GRAM and present the findings in Figure 4.5. According to

the results, conventional fuzzers, AFL++ and GRAM, have a much higher mutation generation

rate compared to LLM mutators. Within the LLM set, GPT3.5 has the highest rate, followed

by GPT4O, and then GPT4.0. Additionally, the large LLMs demonstrate a significantly higher

rate than the small LLMs, all of which are below 13 mutations per minute.

For each mutator, we examined the number of new coverage seeds discovered across

71

the 4-hour trials for each target program and reported the seed count as well as its ratio over

all mutations generated in Table 4.14. Recall that conventional fuzzers have the highest

mutation generation rate, followed by large LLMs, which then followed by small LLMs.

However, in terms of new coverage ratio, small LLMs are the best, followed by large LLMs

and then conventional fuzzers.

Table 4.14: New Coverage Seeds (obj: objdump)

Baseline # newcov seeds newcov ratio (%)
jq php mujs obj AVG jq php mujs obj AVG

GPT3.5 457 1033 1515 97 775.50 0.31 1.04 1.12 0.13 0.65
GPT4.0 207 753 950 63 493.25 0.66 4.27 4.57 0.27 2.44
GPT4O 312 1342 1936 80 917.50 0.35 2.57 2.22 0.12 1.32
CL-in 69 132 122 3 81.50 2.56 5.91 6.29 0.10 3.72
LL-in 69 100 114 4 71.75 3.65 5.07 6.30 0.22 3.81
CL 66 74 57 5 50.50 7.50 7.72 6.48 0.57 5.57
LL 55 60 82 6 50.75 4.53 6.79 8.02 0.65 5.00

STAR 125 203 240 7 143.75 19.00 30.43 36.09 1.06 21.65
AFL++ 663 2818 1683 1538 1675.50 0.07 0.22 0.06 0.03 0.10
GRAM - 2537 1544 - 2040.50 - 0.18 0.05 - 0.12

The results suggest that the high mutation generation rate does not proportionally

translate to the number of new coverage seeds discovered by each mutator. On the contrary,

small LLMs generate the highest ratio of new code coverage seeds, despite having the lowest

seed generation rate. In particular, for STAR, the new coverage ratio reached as high as

36% for php. For objdump, the ratio dropped to 1.06% but is still the highest across eight

LLM mutators and higher than AFL++. Furthermore, conventional fuzzers have the highest

generation rate but the lowest new coverage seed ratio across four targets. This indicates

that the high latency of small LLMs largely affected its efficiency in discovering new coverage

seeds.

72

In summary, LLM mutators have a higher probability of producing new coverage

seeds but are severely limited by their mutation rate. However, with the ongoing develop-

ment of hardware, the constraints on generation rate for LLMs could potentially be lifted,

paving the way for their substitution of conventional fuzzers in the future.

Coverage vs. Monetary Cost

Another practical factor to consider when utilizing LLM for software engineering

tasks is the monetary cost, particularly in fuzzing, where queries to the LLM are made as

frequently as possible to achieve higher throughput and generate more seeds within a given

unit of time. Common belief is that larger and more powerful LLMs, such as ChatGPT, are

too expensive when frequent queries are necessary, while smaller models that can be run on

local machines cost significantly less.

Several precedent works have based their design choices on this assumption and re-

sort to smaller LLMs for tasks requiring more frequent model queries. For instance, Fuzz4All

adopts the larger and more powerful LLM, GPT-4.0, to summarize PUT documentations

and generate informative prompts. These prompts are then used to frequently query a

smaller LLM, StarCoder, for seed generation in testing. Similarly in ChatAFL, seed gener-

ation queries to the LLM, GPT-3.5, are actively reduced to only when the fuzzer gets stuck.

These design choices aim to reduce costs by minimizing queries to larger LLM.

To verify this assumption, we assessed the code coverage findings achieved by each

mutator with respect to the monetary cost($) spent. We visualize the detailed coverage

growth in relation to monetary cost in Figure 4.4 (b), with the plot adjusted to reflect the

lowest cost per program for visual clarity. As is depicted in Figure 4.4 (b), large LLMs

73

consistently make greater coverage gain under the same monetary budget than the four

Llama 2 models. On two targets (mujs, objdump), large LLMs outperformed STAR as well.

Such results suggest that large LLM in general is more cost effective than small LLMs,

especially for programs that take non-text inputs.

In summary, under the same time and monetary budget, large LLMs are generally

more cost-effective than small LLMs and can scale beyond generating text-based in-

puts.

LLM-based Greybox Fuzzer

Conventional Greybox Fuzzer

Target Program

LLM
Mutator

AFL++
Mutator

Seed Pool

LLM prompt

new testcasenew testcase
new testcase

sample
seed

Figure 4.6: LLM-augmented Greybox Fuzzer

4.3 Integration with Traditional Greybox Fuzzer

We construct a GenAI-augmented greybox fuzzer by incorporating a gpt-3.5-turbo

LLM as assistant mutator for the state-of-the-art greybox fuzzer, AFL++. We present our

74

prototype, ChatFuzz, and evaluate its effectiveness in coverage finding and vulnerability

detection compared with baseline approaches. The optimal parameter configuration of the

LLM mutator is empirically decided and presented in Table 4.15.

Table 4.15: LLM Mutator Configuration

Model max_token n temperature
Prompt

format input
AI_CP 256 20 1.25 ✓ ✓

AI_CT 256 20 1.50 ✓ ✓

AI_noFORM_CP 256 20 1.25 ✗ ✓

AI_noFORM_CT 256 20 1.50 ✗ ✓

We evaluate the efficacy of ChatFuzz by addressing the following research ques-

tions: 1) Coverage Efficiency: Can ChatFuzz improve code coverage for end-to-end fuzzing?

How does its performance compare to that of non-assisted fuzzers and grammar-based

fuzzers? 2) Security Application: Is ChatFuzz more effective at detecting vulnerabilities?

Baselines. To better answer the aforementioned research questions, we use the following

baseline configurations:

• AFL++. The original AFL++ [26] fuzzer in non-deterministic mode. This configu-

ration has one AFL++ 4.03a instance and no chat mutator. This is the non-assisted

greybox fuzzing.

• TOKEN. This baseline utilizes the AFL++ fuzzer with a grammar-based mutator:

Autotokens2, implementing the concept introduced in [56]. This is the greybox fuzzer

assisted by grammar-based mutator.
2https://github.com/AFLplusplus/AFLplusplus/tree/stable/custom_mutators/autotokens

75

https://github.com/AFLplusplus/AFLplusplus/tree/stable/custom_mutators/autotokens

• ChatFuzz. The full-fledged ChatFuzz model integrating AI_CP mutator with

AFL++. In this configuration, AFL++ fuzzer instance and the chat mutator run as

two separate processes. The chat mutator randomly picks one seed from the fuzzer

queue as a sample input to prompt AI_CP model for new variations with the pa-

rameter configurations presented in Table 4.15. The expected format of the seeds is

included in the prompt. The AI model’s response will undergo parsing to eliminate

comments or leading words, ensuring that only the formatted input is retained. Fuzzer

instance periodically inspects the new seeds generated from AI model to import those

that trigger new edge coverage into the fuzzer queue. This and the following three

configurations are AI-assisted greybox fuzzers.

• ChatFuzz-C. This model substitutes the AI_CP model with AI_CT model in

ChatFuzz. Parameter configuration of the AI_CT model is presented in Table 4.15.

The AI_CT model has significantly higher latency than the AI_CP model but is able

to generate fewer duplicates and more valid seeds.

• ChatFuzz-F. This model integrates AFL++ with AI_noFORM_CP. Compared

with the full-fledged ChatFuzz, this baseline removes input format information from

the model prompt. In other words, this is the format-agnostic setting of ChatFuzz.

• ChatFuzz-CF. This model integrates AFL++ with AI_noFORM_CT. With this

model,we remove the input format information from the prompt of ChatFuzz-C

model’s AI mutator. This is the format-agnostic setting of the ChatFuzz-C model.

Dataset. Currently, ChatFuzz supports target programs that take in text-based format-

76

Table 4.16: Benchmarks

Type Program Version Input Format

data

jq jq-1.5 json
php php-fuzz-parser_0dbedb PHP
xml libxml2-v2.9.2 xml
jsoncpp_fuzzer jsoncpp json

code

mujs mujs-1.0.2 js
ossfuzz sqlite3_c78cbf2 SQL
cflow cflow-1.6 C
lua lua_dbdc74d lua

text

curl_fuzzer_http curl_fuzzer_9a48d43 HTTP response
openssl_x509 openssl-3.0.7 DER certificate
base64 LAVA-M .b64 file
md5sum LAVA-M md5 checksum

Table 4.17: Unsupported Targets
Benchmark Targets Unsupported Format Benchmark Targets Unsupported Format

Fuzzbench [2]

libjpeg-turbo-07-2017 image

Unibench [42]

exiv2 image
libpng-1.2.56 image gdk-pixbuf-pixdata image
bloaty_fuzz_target ELF, Mach-O, etc. imginfo image
freetype2-2017 TTF, OTF, WOFF jhead image
harfbuzz-1.3.2 TTF, OTF, TTC tiffsplit image
lcms-2017-03-21 ICC profile lame audio
libpcap_fuzz_both PCAP mp3gain audio
mbedtls_fuzz_dtlsclient other wav2swf audio
openthread-2019-12-23 other ffmpeg video
proj4-2017-08-14 other flvmeta video
re2-2014-12-09 other mp42aac video
systemd_fuzz-link-parser other nm binary
vorbis-2017-12-11 OGG objdump binary
woff2-2016-05-06 WOFF tcpdump network
zlib_zlib_uncompress_fuzzer Zlib compressed infotocap terminfo file

LAVA-M [25] who utmp file pdftotext pdf
uniq other

ted inputs. We inspect 45 programs from three benchmarks heavily evaluated in precedent

works: Unibench, Fuzzbench and LAVA-M and list 12 programs that ChatFuzz can gen-

erate realistic inputs for in Table 4.16. Specifically, we classify the 12 targets into three

categories based on the format of the input seeds: 1) formatted data file; 2) source code in

different programming languages; and 3) text with no explicit syntax rules. We further show

the reasons why the other 33 programs are not included in the evaluation in Table 4.17.

Experiment Setup. All experiments were conducted on a workstation with two-socket, 48-

77

core, 96-thread Intel Xeon Platinum 8168 processors. The workstation has 768G memory.

The operating system is Ubuntu 18.04 with kernel 5.4.0. Note that each fuzzing trial is

assigned one dedicated core to ensure fair comparison.

0 2 4 6 8

3000

3200

3400

3600

3800

4000

jq

0 2 4 6 8

5000

10000

15000

20000

php

0 2 4 6 8
2000

4000

6000

8000

xml

0 2 4 6 8
400

600

800

1000

1200

jsoncpp_fuzzer

0 2 4 6 8
2500

5000

7500

10000

12500

15000

mujs

0 2 4 6 8

20000

25000

30000

ossfuzz

0 2 4 6 8

2100

2200

2300

2400

2500

cflow

0 2 4 6 8

6000

8000

10000

12000

14000

16000

lua

0 2 4 6 8

9000

10000

11000

12000

13000

14000

curl

0 2 4 6 8

12000

14000

16000

18000

openssl_x509

0 2 4 6 8

330

340

350

360

370

base64

0 2 4 6 8
400

420

440

460

480

500

520

md5sum

AFL++ TOKEN ChatFuzz ChatFuzz-C

Figure 4.7: End-to-End Fuzzing Coverage Growth

4.3.1 RQ4: Coverage Efficiency

To demonstrate the coverage efficiency of ChatFuzz, we measure the edge coverage

achieved by running AFL++, TOKEN, ChatFuzz and ChatFuzz-C on 12 programs for

8h. To reduce randomness, we obtain the average code coverage across five trials for AFL++

and TOKEN. The coverage growth in 8h is shown in Figure 4.7. Programs that accept data

files as input are listed in the first row, those requiring source code files are in the second row,

and the programs in the last row do not have explicit syntax rules for their input. We further

78

report the coverage improvement of TOKEN, ChatFuzz and ChatFuzz-C over AFL++

and the unique coverage triggered by the corresponding assistant mutators in Table 4.18.

Table 4.18: Coverage Analysis

Program 8h Code Coverage Improvement over AFL++ (%) Uniq. cov. triggered by assist. mutator

AFL++ TOKEN ChatFuzz ChatFuzz-C TOKEN ChatFuzz ChatFuzz-C TOKEN ChatFuzz ChatFuzz-C
jq 4059 4057 4109 4101 -0.05 1.24 1.04 8 6 0

php 22089 21784 22509 22390 -1.38 1.90 1.36 126 361 167
xml 7304 6894 9551 9035 -5.61 30.76 23.70 118 28 1

jsoncpp 1240 1238 1248 1248 -0.19 0.61 0.61 4 0 0
mujs 9099 9406 16173 13205 3.37 77.74 45.12 345 1027 359

ossfuzz 28940 29535 32751 32582 2.06 13.17 12.59 933 889 761
cflow 2506 2519 2513 2495 0.54 0.30 -0.42 26 0 0
lua 15184 15132 15507 15657 -0.34 2.13 3.12 71 353 277
curl 13642 13624 13764 13687 -0.13 0.89 0.33 4 0 0

openssl_x509 18010 18001 17976 18016 -0.05 -0.19 0.03 0 0 0
base64 368 368 368 368 0.00 0.00 0.00 0 0 0

md5sum 489 488 523 523 -0.20 6.87 6.87 0 0 0
Average 10244 10254 11416 11109 0.10 11.44 8.44 136 222 130

Across the 12 target programs, ChatFuzz achieves a 11.44% increase in code

coverage compared to AFL++, while ChatFuzz-C exhibits an 8.44% improvement. TO-

KEN demonstrates similar performance to AFL++. The improvement varies significantly

across different programs. Notably, ChatFuzz and ChatFuzz-C achieved improvements of

over 10% compared to AFL++ for programs such as xml, mujs, and ossfuzz, which takes

highly structured data format: XML, Javascript and SQL. And for the four programs with

no explicit input format (curl, openssl_x509, base64, md5sum), TOKEN, ChatFuzz

and ChatFuzz-C were able to make only small to no improvement.

We further investigate the unique code coverage triggered by the assistant mutator

of TOKEN, ChatFuzz and ChatFuzz-C. By the end of the fuzzing campaign, no fuzzer-

originated seeds triggered this particular section of the code region. Therefore, it measures

the unique contribution of the assistant mutator. It’s important to note that zero unique

code coverage doesn’t necessarily mean there was no contribution from the assistant mutator.

There are cases where seeds from the assistant mutator triggered an edge early on, and seeds

79

from the fuzzer triggered it afterward. As a result, the fuzzer can explore more code coverage

due to this initial discovery. We delve deeper into this aspect in ??.

Based on the results, Autotokens in TOKEN uniquely triggered 1636 edges for 9

programs, while AI_CP in ChatFuzz uniquely triggered 2664 edges for 6 programs, and

AI_CT in ChatFuzz-C managed to uniquely discover 1565 edges for 5 programs. The result

indicates that grammar-based assistant is able to find unique coverage for more targets while

AI-assistant is able to find more unique code coverage.

In summary, AI-assisted fuzzing can significantly enhance code coverage compared to

both non-assisted fuzzer and the grammar-based approach.

Table 4.19: Bug Detection

Program
of crashes # of unique bugs

AFL++ ChatFuzz AFL++ ChatFuzz

-F -C -CF -F -C -CF
mujs 1.0 3.20 4.40 5.20 3.00 0.5 1.2 5.0 2.6 1.2
cflow 244.3 241.20 248.20 264.60 238.40 2.7 3.0 2.8 3.2 3.0

base64 81.1 80.40 80.50 80.00 81.00 45.8 46.4 45.8 44.4 46.6
md5sum 144.1 140.80 144.50 141.60 116.80 54.6 52.0 53.2 51.8 52.4
Average 117.6 116.40 119.40 122.85 109.80 25.9 25.7 26.7 25.5 25.8
Rank 2.8 3.8 2.0 2.5 4.0 3.5 2.8 2.5 3.3 2.3

4.3.2 RQ5: Security Application

In this section, we evaluate the bug detection ability of AFL++, and ChatFuzz

in four different configurations. Specifically, we inspect the program crashing inputs for

six programs including four from UniBench benchmark and two from LAVA-M dataset.

In Table 4.19, we present the number of unique bugs detected in 24h by each baseline

80

respectively. To reduce randomness, we report the average unique bug detection count

across five trials for ChatFuzz and its variations. For AFL++, we report the result across

ten trials. The results of jq and ossfuzz are omitted from the table as none of the tested

fuzzers was able to trigger any crash.

According to the result, ChatFuzz-C on average finds the highest number of

crashing inputs across all baselines, and ChatFuzz-F finds the highest amount of unique

bugs. Statistical ranking result suggests that AI-assisted fuzzers outperform AFL++ in

finding unique bugs.

In summary, AI-assisted fuzzers outperform non-assisted fuzzer in bug detection.

4.4 Discussion

Previous findings have demonstrated the ability of out-of-the-box LLMs to gener-

ate fuzzing inputs and, moreover, the potential for collaboration with conventional greybox

fuzzers. However, the efficacy of an LLM-based greybox fuzzer varies depending on several

practical factors such as the input type (text-based or non-text-based) of the target pro-

gram (1○ in Figure 4.6), access to sample inputs and/or its format to formulate the LLM

prompt (2○ in Figure 4.6) as well as the particular LLM (3○ in Figure 4.6) used. Here,

we provide a discussion on how to better leverage LLMs for greybox fuzzing.

4.4.1 Target Program

Based on prior findings, when testing programs expecting text-based inputs (e.g.,

jq, php, mujs), we can opt for an LLM-based greybox fuzzer and potentially achieve higher

81

coverage findings than with a conventional fuzzer. However, when testing programs expect-

ing non-text-based inputs (e.g., objdump), we still need to rely on conventional fuzzers.

As is demonstrated in our experiments, ChatFuzz can be utilized for fuzzing

programs that execute on text-based formatted input. Other data formats such as image,

video, audio or data format that requires particular data loader such as pdf, WOFF or

compressed file are not supported. ChatFuzz is limited by the AI model used in the chat

mutator. With a generative AI model that supports more data format, for instance DALL·E,

ChatFuzz will able to generate testcases in the format of image. For text-based input that

does not have explicit syntax rules like hash values, it is hard for generative AI to figure

out the underlying rule for the text and therefore the chat mutator could make low to none

contribution to the greybox fuzzer.

4.4.2 Prompt Formulation

According to our findings, LLM mutators generally produce mutations with better

coverage efficiency when both a sample input and the expected program input format are

included in the prompt.

Depending on the goal of the program input generator, the LLM prompt can be

formulated differently. In particular, for large LLMs, removing the sample from the prompt

can significantly increase the chance of producing a unique seed compared to including a

sample. However, for the instruction-mode Llama 2 models, including a sample introduce

higher chance of unique mutation.

If the goal is to generate as many syntactically valid mutations as possible, the

format information should be included in the prompt. However, if the format is unknown

82

to the testing engine, LLM mutators still have the potential to infer the format from the

sample and produce syntactically valid seeds, especially for large LLMs compared to small

LLMs.

4.4.3 LLM Choice

Previous works leveraging LLMs for generating fuzzing inputs, such as ChatAFL

and Fuzz4all, aim to reduce queries to large LLMs and/or delegate the frequent input-

generation queries to small LLMs, in the interest of saving time and monetary costs. This

design is based on the assumption that small LLMs, although less powerful than large

LLMs, are more cost-effective. Our findings disprove this assumption and demonstrate

that large LLMs are more cost-effective, both in terms of time and monetary cost, than

small LLMs. Moreover, for large LLMs, newer models do not necessarily guarantee better

performance. For example, GPT3.5 is consistently more effective than GPT4.0 across the

benchmark set, in both time and monetary cost. Therefore, when selecting an LLM for

generating fuzzing inputs, size matters more than timeliness. One should aim for larger

models but not necessarily the newest ones, while considering the time and monetary budget.

However, we acknowledge that the suboptimal results of small LLMs are partially

due to the lack of more powerful GPU instances, where the model query rate can be signif-

icantly enhanced and potentially lead to better results. According to our evaluation, small

LLMs actually have a better chance of generating new coverage seeds than large LLMs. For

instance, on mujs, 36.09% of the mutations generated from small LLM STAR have triggered

new code coverage which is exceedingly high, compared with that of large LLM GPT4.0

(4.57%) or that of SOTA greybox fuzzer AFL++ (0.06%). However, such advantage does not

83

translate to better coverage efficiency (GPT4.0 and AFL++ reached 1.6x and 1.2x the edge

coverage of STAR respectively) due to the high model latency. Therefore, researchers with

access to powerful GPU machines can opt for small LLMs to generate fuzzing inputs.

4.4.4 Collaboration with Traditional Fuzzer

Our findings have demonstrated the potential of collaborating LLM mutators with

conventional greybox fuzzers. This collaboration can expand the testing targets of LLM-

based greybox fuzzer from being limited to text-based inputs to include generic programs,

while also improving coverage efficiency.

One naive approach is to introduce an LLM mutator to operate in parallel with a

greybox fuzzer, while sharing the same seed pool with the fuzzer and relying on the fuzzer

to periodically synchronize the LLM-generated mutations. However, the seed scheduling for

the LLM mutator could be different from that of the conventional fuzzer. To ensure that

each seed is fuzzed for a sufficient duration, the LLM mutator needs to maintain a relatively

small and distinct set of seeds. With LLM mutators, what are the characteristics of a good

sample input remains an open question, and we will explore this in our future work.

84

Chapter 5

Polaris: A Path-Corrective LLM

Assistant for Concolic Execution

A whitebox fuzzer utilizes a directional mutator that generates new seeds by solv-

ing path constraints to explore a prioritized branch selected by the scheduler. In our earlier

work, we introduced and integrated a reachability-guided branch scheduler with a concolic

executor, resulting in the prototype system, Marco. In this approach, the scheduler prior-

itizes branches based on the estimated amount of new code coverage that could be reached

through a path passing that branch. However, there are instances where the newly gen-

erated seed from solving constraints does not traverse the expected branch, leading to a

phenomenon known as Path Divergence [4, 28, 21].

Previous concolic execution engines adopt a filter-based branch-flipping policy that

uniquely identifies branches using the bigram of the previous and current branch, flipping

only unique branches. This branch filter strategically skips solving constraints that are

85

likely to result in repeated exploration of previously visited branches and thereby avoid

repeated path exploration. However, this approach overlooks the issue of path divergence,

leading to over 29% redundant path exploration [36]. With Marco, we introduce a path

divergence-tolerant branch-flipping policy for concolic execution, prioritizing branches based

on a metric that deprioritizes branches prone to high path divergence. Nevertheless, while

this policy alleviates the impact of path divergence on concolic execution testing, it does

not fully resolve it.

Recent advancements have aimed to improve the efficiency of concolic execution

through various techniques, such as dynamic data-flow analysis [18], compiler-based sym-

bolic execution [51], just-in-time gradient descent search [19], and reachability-guided branch

scheduling [36]. Despite these developments, path constraint solving remains a major bot-

tleneck in concolic execution performance. Therefore, enhancing the soundness of each

constraint-solving attempt and addressing the path divergence issue has become a critical

challenge.

5.1 Background and Motivation

In a whitebox fuzzing framework based on concolic execution, the concolic execu-

tor runs the target program with a concrete input, guiding the execution down a specific

concrete path. Along this path, for each symbolic branch point, the path constraint of the

untaken branch is recorded. The branch scheduler then determines whether the branch

should be flipped. If so, the corresponding path constraint is sent to an SMT solver. As

is shown in Figure 5.1, the SMT solver then evaluates the constraint to determine if a

86

solution exists that satisfies it. If a solution is found, it is provided to the concolic execu-

tor to generate a new testcase, driving execution down the previously untaken branch. A

preliminary study conducted using Marco for testing libxml2 reveals that, out of the 4000

path constraints sent from the concolic executor to the SMT solver, 41.9% were satisfiable

and led to the generation of new inputs. Further investigation into the new testcases shows

that the majority executed the predicted path, accounting for 36.7% of the solving attempts,

while 5.3% of the solving attempts resulted in path divergence.

SAT?

Yes

No

new
testcase

path
constraint

58.1%

predicted
path

path
divergence

36.7%

5.3%

Optimistic
Solving

SAT?

new
testcase

Yes

No
N/A

41.9%

Figure 5.1: Path Divergence Analysis of Marco

Conventionally, if the path constraint is unsatisfiable or a viable solution is not

found within a preset time limit, the SMT solver abandons the attempt, resulting in no new

test case being generated from that path constraint. Our study on Marco shows that 58.1%

of the path constraints are unsatisfiable. However, Marco employs optimistic solving,

87

where we resort to only solving the constraint of the current branch, ignoring the other

constraints accumulated from preceding branches in the path sequence. This technique,

originally proposed in QSYM [75], has been shown to effectively improve coverage finding

and vulnerability detection in concolic execution engines and has become a common practice

in later concolic execution engines [18, 36]. However, the testcase generated from optimistic

solving is only an optimistic speculation of the true testcase that would traverse the predicted

path through the targeted untaken branch, and it may lead to path divergence. In this sense,

up to 63.4% of path constraint solutions may not actually traverse the predicted path, with

58.1% of these originating from optimistic solving.

To diagnose the root causes of path divergence, CREST [21] presented a empirical

study and identified eight divergent patterns of which the three most prevalent patterns lead

to 82% of total path divergence: exceptions, external calls and type casts. In particular,

when exceptions occur, execution will be directed to related exception handling routine and

thereby lead to an unexpected path. When the program initiate an external call which

concolic executor cannot perform symbolic tracing for, the associated constraints will not

be included in the generated path constraints. Type cast, which commonly exist in C pro-

grams, can lead to inaccurate symbolic tracing which eventually lead to the path constraint

being inaccurate. Such prevalent patterns lead to inaccurate path constraint and thereby

contribute to the path divergence.

To diagnose the root causes of path divergence, CREST [21] conducted an empirical

study and identified eight divergent patterns. Among these, the three most prevalent pat-

terns account for 82% of total path divergence: exceptions, external calls, and type casts.

88

Specifically, when exceptions occur, execution is redirected to related exception-handling

routines, leading to unexpected paths. When the program makes an external call that the

concolic executor cannot symbolically trace, the associated constraints are omitted from the

generated path constraints. Type casts, common in C programs, can lead to inaccurate sym-

bolic tracing, resulting in incorrect path constraints. These prevalent patterns contribute to

inaccurate path constraints and, consequently, to path divergence.

5.2 System Overview

We propose a path-corrective mutator that uses specialized prompts to instruct an

LLM-based mutator to produce new testcases that traverse the target branch that concolic

execution failed to explore due to path divergence.

The intuition is that each path divergence seed stems from an incomplete path

constraint. Given a set of true seeds that successfully visited the target branch, we can

identify their shared patterns, which likely represent the missing constraints in the incom-

plete path constraint. These patterns can then be leveraged to generate a new mutation

that corrects the path divergence. Using the set of true seeds and the path divergence seed,

a pattern identifier detects partial solutions from both, producing a seed template that in-

corporates key elements from each. This seed template is then passed to a prompt crafter,

which generates a specialized prompt to instruct an LLM mutator in creating a corrected

seed, ultimately resolving the path divergence for a concolic executor.

The path-corrective mutator can be integrated into a whitebox fuzzing framework

capable of detecting path divergence and providing the associated target branch along with

89

MarcoPath Corrective Mutator

Seed Pool

Concolic Executor

PD SeedTrue Seeds

Pattern Identifier

LLM Mutator

Seed
Template

Prompt Crafter

Corrected Seed

CSTG Constructor

Figure 5.2: Design Overview

any true seeds that successfully visited this branch. Using these inputs, the path-corrective

mutator generates corrected seeds, which are then supplied to the concolic executor as

additional seeds for testing the program under test (PUT). With Marco’s Concolic State

Transition Graph (CSTG), we can easily access each branch’s set of executing seeds and

identify path divergence when it occurs. Consequently, we integrated our proposed mutator

with Marco to test its effectiveness, resulting in the prototype system, Polaris. It is

important to note that this mutator can be incorporated into any whitebox fuzzer capable

of detecting path divergence and providing a list of true seeds for the target branch.

90

5.2.1 Motivating Case Study

We present a successful path correction case to demonstrate how pattern identifi-

cation and prompt crafting function in our proposed mutator, offering a motivating example

of effectively correcting path divergence.

<doc>

 <clean> </clean>

 <dirty0 A B

</dirty>

 <?xmLd0

<doc>

 <clean> </clean>

 <dirty0 A B

</dirty>

 <?ixed0

 A

 <clean> </clean>

 B

 </mixed>

</doc>

PD Seed Common Bytes in True seeds

<doc>

 <clean> </clean>

 <dirty0 A B

</dirty>

 <?xmLd0

Seed Template

Figure 5.3: Build Seed Template

At the start of path corrective mutation, Marco identifies a path divergence from

the PD seeds, as shown in Figure 5.3, along with a set of true seeds that successfully

traversed the target branch missed by the PD seed. The pattern identifier first detects

the solution that the CE engine used during path constraint solving to generate the PD

seed (highlighted in yellow) and then identifies the common bytes shared by the set of true

seeds (highlighted in green). These bytes represent a potential solution to the true path

constraint set of the target branch. The pattern identifier then overwrites the PD seed with

the extracted common bytes and trims any trailing bytes from the PD seed that do not

91

contain partial solutions, constructing the seed template, as is shown in Figure 5.3. This

seed template is an optimized speculation of the true seed capable of successfully visiting

the target branch.

<doc>

 <clean> </clean>

 <dirty0 A B ></dirty>

 <?xmLd0?>

</doc>

(System):
You are an xml object/file generator.
You generate valid xml file as
instructed.
(User):
Generate a valid xml by appending to
the below sequence:

<doc>

 <clean> </clean>

 <dirty0 A B </dirty>

 <?xmLd0

Prompt Corrected Seed

PD fixed!

LLM Mutator

Figure 5.4: Prompt LLM Mutator to Generate Corrected Seed

Using the seed template, the prompt crafter generates a specialized prompt to

guide the LLM mutator in creating a new mutation that corrects the path. As shown in

Figure 5.4, the LLM mutator is instructed to function as an XML object generator, append-

ing a sequence of characters to the end of the seed template with the goal of constructing a

syntactically valid XML object. The intuition behind this approach is that the new muta-

tion will retain the optimized speculation of the true seed while ensuring valid XML syntax

to avoid early rejection before reaching the target branch, thereby increasing the likelihood

of successful path correction. Evaluation indicates that the corrected seed presented in

Figure 5.4 successfully resolved the path divergence of the PD seed.

92

5.3 Preliminary Results

We evaluate Polaris against Marco on the program libxml2 to compare the

coverage achieved under the same seed generation budget (8300) and to assess the path

correction rate of Polaris.

LLM mutations

P
D

 c
or

re
ct

io
n

ra
te

0.00%

2.50%

5.00%

7.50%

10.00%

12.50%

200 400 600 800 1000

Figure 5.5: Path Correction Ratio

The results show that Marco corrects approximately 7.5% of path divergence

occurrences in concolic testing, as demonstrated in Figure 5.5, leading to an 8.3% improve-

ment in coverage, measured by node count in the CSTG, as shown in Figure 5.6. These

results demonstrate the potential and highlight the significant opportunity for enhancing the

soundness and completeness of concolic testing through the adoption of the path-corrective

mutator.

93

Seed Count

of

 n
od

es

0

10000

20000

30000

40000

2000 4000 6000 8000

Marco Polaris

Figure 5.6: Coverage Efficiency

5.4 Discussion

Path divergence remains an open challenge in whitebox fuzzing, impacting the

soundness and completeness of testing. Addressing this issue could make a significant contri-

bution to the field and enhance concolic testing performance. The successful path correction

case and preliminary results show that the LLM mutator can generate new mutations for

path correction, improving the soundness and completeness of concolic testing. While the

current results are not yet optimal, we are confident in the potential for future improvements.

The key challenge now is to categorize path divergence by its root causes and determine how

the LLM can contribute meaningfully to resolving this issue. This will be a focus of our

future research.

94

Chapter 6

Conclusions

In this thesis, we highlight three major limitations in fuzzing—state explosion,

random mutation effectiveness, and path divergence—that impair overall performance. We

present three contributions aimed at addressing these challenges and enhancing fuzzing

efficiency.

First, to tackle the state explosion problem, we introduce a stochastic modeling

of the concolic trace as a Markov Chain and propose a novel reachability metric for more

accurately assessing each branch’s potential for new coverage. We adopt a reinforcement

learning-based approach and integrate this scheduling scheme into a whitebox fuzzing frame-

work, introducing the prototype Marco. We evaluate Marco against state-of-the-art con-

colic executors and greybox fuzzers, demonstrating its superior performance in coverage

discovery and vulnerability detection.

Next, we conduct a systematic study of the fuzzing capabilities of out-of-the-box

large language models (LLMs). We present insights from the experimental results and offer

95

guidelines for constructing optimized GenAI-augmented mutators for fuzzing. We integrate

our proposed mutator into a greybox fuzzer, presenting the prototype ChatFuzz. Eval-

uations of ChatFuzz show enhanced performance in coverage discovery and vulnerability

detection compared to baseline approaches.

Lastly, we identify an important research direction addressing the impact of path di-

vergence on the soundness and completeness of fuzzing, with over 60% of path constraint so-

lutions potentially leading to divergence. To mitigate this issue, we propose a path-corrective

solution using an LLM-based mutator, which we integrate with the Marco framework, in-

troducing the prototype Polaris. Preliminary studies demonstrate significant potential

and room for improvement in this area.

With these three contributions, we present an enhanced fuzzing framework featur-

ing a reachability-guided scheduler and a GenAI-augmented path-corrective mutator.

96

Bibliography

[1] Mozilla security - dharma. https://github.com/mozillasecurity/dharma, 2020.

[2] Fuzzbench: Fuzzer benchmarking as a service. https://google.github.io/
fuzzbench, 2022.

[3] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten Holz. Ijon: Explor-
ing deep state spaces via fuzzing. In 2020 IEEE Symposium on Security and Privacy
(SP), pages 1597–1612. IEEE, 2020.

[4] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene
Finocchi. A survey of symbolic execution techniques. ACM Computing Surveys
(CSUR), 51(3):1–39, 2018.

[5] Patrick Bareiß, Beatriz Souza, Marcelo d’Amorim, and Michael Pradel. Code generation
tools (almost) for free? a study of few-shot, pre-trained language models on code, 2022.

[6] Marcel Böhme, Valentin JM Manès, and Sang Kil Cha. Boosting fuzzer efficiency:
An information theoretic perspective. In Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 678–689, 2020.

[7] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury.
Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 2329–2344, 2017.

[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based greybox
fuzzing as markov chain. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1032–1043, 2016.

[9] Konstantin Böttinger, Patrice Godefroid, and Rishabh Singh. Deep reinforcement
fuzzing. In 2018 IEEE Security and Privacy Workshops (SPW), pages 116–122. IEEE,
2018.

[10] Ella Bounimova, Patrice Godefroid, and David Molnar. Billions and billions of con-
straints: Whitebox fuzz testing in production. In 2013 35th International Conference
on Software Engineering (ICSE), pages 122–131. IEEE, 2013.

97

https://github.com/mozillasecurity/dharma
https://google.github.io/fuzzbench
https://google.github.io/fuzzbench

[11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christo-
pher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Lan-
guage models are few-shot learners, 2020.

[12] Jacob Burnim and Koushik Sen. Heuristics for scalable dynamic test generation. In
2008 23rd IEEE/ACM International Conference on Automated Software Engineering,
pages 443–446. IEEE, 2008.

[13] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: unassisted and auto-
matic generation of high-coverage tests for complex systems programs. In 8th USENIX
Symposium on Operating Systems Design and Implementation, volume 8, pages 209–
224, 2008.

[14] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R Engler.
Exe: Automatically generating inputs of death. ACM Transactions on Information and
System Security (TISSEC), 12(2):1–38, 2008.

[15] Cristian Cadar and Koushik Sen. Symbolic execution for software testing: three decades
later. Communications of the ACM, 56(2):82–90, 2013.

[16] Sang Kil Cha, Maverick Woo, and David Brumley. Program-adaptive mutational
fuzzing. In Proceedings of the 2015 IEEE Symposium on Security and Privacy, SP
’15, page 725–741, USA, 2015. IEEE Computer Society.

[17] Hongxu Chen, Shengjian Guo, Yinxing Xue, Yulei Sui, Cen Zhang, Yuekang Li, Haijun
Wang, and Yang Liu. Muzz: Thread-aware grey-box fuzzing for effective bug hunting
in multithreaded programs. arXiv preprint arXiv:2007.15943, pages 2325–2342, 2020.

[18] Ju Chen, Wookhyun Han, Mingjun Yin, Haochen Zeng, Chengyu Song, Byoungyoung
Lee, Heng Yin, and Insik Shin. Symsan: Time and space efficient concolic execution via
dynamic data-flow analysis. In 31st USENIX Security Symposium (USENIX Security
22), pages 2531–2548, 2022.

[19] Ju Chen, Jinghan Wang, Chengyu Song, and Heng Yin. Jigsaw: Efficient and scalable
path constraints fuzzing. In 2022 IEEE Symposium on Security and Privacy (SP), pages
1531–1531. IEEE Computer Society, 2022.

[20] Peng Chen and Hao Chen. Angora: Efficient fuzzing by principled search. In 2018
IEEE Symposium on Security and Privacy (SP), pages 711–725. IEEE, 2018.

[21] Ting Chen, Xiaodong Lin, Jin Huang, Abel Bacchus, and Xiaosong Zhang. An empirical
investigation into path divergences for concolic execution using crest. Security and
Communication Networks, 8(18):3667–3681, 2015.

98

[22] Liang Cheng, Yang Zhang, Yi Zhang, Chen Wu, Zhangtan Li, Yu Fu, and Haisheng
Li. Optimizing seed inputs in fuzzing with machine learning. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion), pages 244–245. IEEE, 2019.

[23] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. S2e: A platform for
in-vivo multi-path analysis of software systems. Acm Sigplan Notices, 46(3):265–278,
2011.

[24] Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing
Yang, and Lingming Zhang. Large language models are edge-case fuzzers: Testing deep
learning libraries via fuzzgpt. arXiv preprint arXiv:2304.02014, 2023.

[25] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti,
Wil Robertson, Frederick Ulrich, and Ryan Whelan. Lava: Large-scale automated
vulnerability addition. In 2016 IEEE symposium on security and privacy (SP), pages
110–121. IEEE, 2016.

[26] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. Afl++ combining
incremental steps of fuzzing research. In Proceedings of the 14th USENIX Conference
on Offensive Technologies, pages 10–10, 2020.

[27] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and Zuoning
Chen. Collafl: Path sensitive fuzzing. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 679–696. IEEE, 2018.

[28] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated whitebox fuzz
testing. In Network and Distributed System Security Symposium, NDSS, volume 8,
2008.

[29] Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Machine learning
for input fuzzing. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 50–59. IEEE, 2017.

[30] Rahul Gopinath, Björn Mathis, and Andreas Zeller. Inferring input grammars from
dynamic control flow, 2019.

[31] Rahul Gopinath and Andreas Zeller. Building fast fuzzers, 2019.

[32] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. Codealchemist: Semantics-aware
code generation to find vulnerabilities in javascript engines. In NDSS, 2019.

[33] Wookhyun Han, Byunggill Joe, Byoungyoung Lee, Chengyu Song, and Insik Shin.
Enhancing memory error detection for large-scale applications and fuzz testing. In
Network and Distributed Systems Security (NDSS) Symposium 2018, 2018.

[34] Jingxuan He, Gishor Sivanrupan, Petar Tsankov, and Martin Vechev. Learning to
explore paths for symbolic execution. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pages 2526–2540, 2021.

99

[35] Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias Payer, and
Antony L Hosking. Seed selection for successful fuzzing. In Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis, pages
230–243, 2021.

[36] Jie Hu, Yue Duan, and Heng Yin. Marco: A stochastic asynchronous concolic ex-
plorer. In Proceedings of the 46th IEEE/ACM International Conference on Software
Engineering, pages 1–12, 2024.

[37] Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan Natarajan, Suresh
Parthasarathy, Sriram Rajamani, and Rahul Sharma. Jigsaw: Large language mod-
els meet program synthesis. In Proceedings of the 44th International Conference on
Software Engineering, ICSE ’22, page 1219–1231, New York, NY, USA, 2022. Associa-
tion for Computing Machinery.

[38] Ismet Burak Kadron, Yannic Noller, Rohan Padhye, Tevfik Bultan, Corina S Păsăreanu,
and Koushik Sen. Fuzzing, symbolic execution, and expert guidance for better testing.
IEEE Software, 2023.

[39] Xuan-Bach D. Le, Corina S. Pasareanu, Rohan Padhye, David Lo, Willem Visser, and
Koushik Sen. Saffron: Adaptive grammar-based fuzzing for worst-case analysis. ACM
SIGSOFT Software Engineering Notes, 44(4):14, 2019.

[40] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K Lahiri, and Siddhartha Sen. Co-
damosa: Escaping coverage plateaus in test generation with pre-trained large language
models. In International conference on software engineering (ICSE), 2023.

[41] Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted mutation strategy for increas-
ing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, pages 475–485, 2018.

[42] Yuwei Li, Shouling Ji, Yuan Chen, Sizhuang Liang, Wei-Han Lee, Yueyao Chen,
Chenyang Lyu, Chunming Wu, Raheem Beyah, Peng Cheng, et al. Unifuzz: A holis-
tic and pragmatic metrics-driven platform for evaluating fuzzers. In USENIX Security
Symposium, pages 2777–2794, 2021.

[43] Jie Liang, Mingzhe Wang, Chijin Zhou, Zhiyong Wu, Yu Jiang, Jianzhong Liu, Zhe
Liu, and Jiaguang Sun. Pata: Fuzzing with path aware taint analysis. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 1–17. IEEE, 2022.

[44] Dongge Liu, Gidon Ernst, Toby Murray, and Benjamin IP Rubinstein. Legion: Best-
first concolic testing. In Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering, pages 54–65, 2020.

[45] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song, and Ra-
heem Beyah. Mopt: Optimized mutation scheduling for fuzzers. In USENIX Security
Symposium, pages 1949–1966, 2019.

100

[46] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. Large lan-
guage model guided protocol fuzzing. In Proceedings of the 31st Annual Network and
Distributed System Security Symposium (NDSS), 2024.

[47] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Parmesan:
Sanitizer-guided greybox fuzzing. In Proceedings of the 29th USENIX Conference on
Security Symposium, pages 2289–2306, 2020.

[48] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves Le Traon.
Semantic fuzzing with zest. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 329–340, 2019.

[49] Emanuel Parzen. On estimation of a probability density function and mode. The annals
of mathematical statistics, 33(3):1065–1076, 1962.

[50] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz: fuzzing by program trans-
formation. In 2018 IEEE Symposium on Security and Privacy (SP), pages 697–710.
IEEE, 2018.

[51] Sebastian Poeplau and Aurélien Francillon. Symbolic execution with symcc: Don’t
interpret, compile! In 29th USENIX Security Symposium (USENIX Security 20),
pages 181–198, 2020.

[52] Sebastian Poeplau and Aurélien Francillon. Symqemu: Compilation-based symbolic
execution for binaries. In Network and Distributed System Security Symposium, NDSS,
2021.

[53] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and
Herbert Bos. Vuzzer: Application-aware evolutionary fuzzing. In NDSS, volume 17,
pages 1–14, 2017.

[54] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan Foote, David Warren,
Gustavo Grieco, and David Brumley. Optimizing seed selection for fuzzing. In 23rd
{USENIX} Security Symposium ({USENIX} Security 14), pages 861–875, 2014.

[55] Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al.
A tutorial on thompson sampling. Foundations and Trends® in Machine Learning,
11(1):1–96, 2018.

[56] Christopher Salls, Chani Jindal, Jake Corina, Christopher Kruegel, and Giovanni Vigna.
Token-Level Fuzzing. In 30th USENIX Security Symposium (USENIX Security 21),
2021.

[57] Dongdong She, Rahul Krishna, Lu Yan, Suman Jana, and Baishakhi Ray. Mt-
fuzz: Fuzzing with a multi-task neural network. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2020, page 737–749, New York, NY,
USA, 2020. Association for Computing Machinery.

101

[58] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, and Suman
Jana. Neuzz: Efficient fuzzing with neural program smoothing. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 803–817. IEEE, 2019.

[59] Dongdong She, Abhishek Shah, and Suman Jana. Effective seed scheduling for fuzzing
with graph centrality analysis. arXiv preprint arXiv:2203.12064, pages 2194–2211, 2022.

[60] Yan Shoshitaishvili, Michael Weissbacher, Lukas Dresel, Christopher Salls, Ruoyu
Wang, Christopher Kruegel, and Giovanni Vigna. Rise of the hacrs: Augmenting au-
tonomous cyber reasoning systems with human assistance. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pages 347–362,
2017.

[61] Prashast Srivastava and Mathias Payer. Gramatron: Effective grammar-aware fuzzing.
In Proceedings of the 30th acm sigsoft international symposium on software testing and
analysis, pages 244–256, 2021.

[62] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Ja-
copo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. Driller:
Augmenting fuzzing through selective symbolic execution. 01 2016.

[63] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel Sundare-
san. Unit test case generation with transformers and focal context, 2021.

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

[65] Jinghan Wang, Chengyu Song, and Heng Yin. Reinforcement learning-based hierarchi-
cal seed scheduling for greybox fuzzing. 2021.

[66] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Skyfire: Data-driven seed gen-
eration for fuzzing. In 2017 IEEE Symposium on Security and Privacy (SP), pages
579–594. IEEE, 2017.

[67] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Superion: Grammar-aware greybox
fuzzing. In Proceedings of the 41st International Conference on Software Engineering,
ICSE ’19, page 724–735. IEEE Press, 2019.

[68] Yan Wang, Peng Jia, Luping Liu, Cheng Huang, and Zhonglin Liu. A systematic review
of fuzzing based on machine learning techniques. PloS one, 15(8):e0237749, 2020.

[69] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yuqun Zhang, Guowei Yang, Huixin Ma,
Sen Nie, Shi Wu, Heming Cui, and Lingming Zhang. Evaluating and improving neural
program-smoothing-based fuzzing. In Proceedings of the 44th International Conference
on Software Engineering, pages 847–858, 2022.

102

[70] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yuqun Zhang, Guowei Yang, Huixin Ma,
Sen Nie, Shi Wu, Heming Cui, and Lingming Zhang. Evaluating and improving neural
program-smoothing-based fuzzing. In 2022 IEEE/ACM 44th International Conference
on Software Engineering (ICSE), pages 847–858, 2022.

[71] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming
Zhang. Universal fuzzing via large language models. arXiv preprint arXiv:2308.04748,
2023.

[72] Zhuokui Xie, Yinghao Chen, Chen Zhi, Shuiguang Deng, and Jianwei Yin. Chatunitest:
a chatgpt-based automated unit test generation tool. arXiv preprint arXiv:2305.04764,
2023.

[73] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. Designing new operating
primitives to improve fuzzing performance. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 2313–2328, 2017.

[74] Tai Yue, Pengfei Wang, Yong Tang, Enze Wang, Bo Yu, Kai Lu, and Xu Zhou.
{EcoFuzz}: Adaptive {Energy-Saving} greybox fuzzing as a variant of the adversar-
ial {Multi-Armed} bandit. In 29th USENIX Security Symposium (USENIX Security
20), pages 2307–2324, 2020.

[75] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. QSYM: A Practical
Concolic Execution Engine Tailored for Hybrid Fuzzing. In Proceedings of the 27th
USENIX Security Symposium (Security), pages 745–761, Baltimore, MD, August 2018.

[76] M. Zalewski. American fuzzy lop. http://lcamtuf.coredump.cx/afl/.

[77] G Zhang, P Wang, T Yue, X Kong, S Huang, X Zhou, and K Lu. Mobfuzz: Adaptive
multi-objective optimization in gray-box fuzzing. In Network and Distributed Systems
Security (NDSS) Symposium, volume 2022, 2022.

[78] Xiaogang Zhu and Marcel Böhme. Regression greybox fuzzing. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security, pages
2169–2182, 2021.

103

http://lcamtuf.coredump.cx/afl/

	List of Figures
	List of Tables
	Introduction
	Thesis Statement

	Background
	Whitebox Fuzzing
	Symbolic Execution
	Concolic Execution
	Branch Flipping Policies

	Greybox Fuzzing
	Coverage-guided Greybox Fuzzing
	Grammar-Based Test Generation
	Seed Scheduling

	Artificial Intelligence (AI)
	Large Language Models
	AI-based Fuzz Testing
	Human-in-the-loop Fuzzing

	Marco: A Stochastic Asynchronous Concolic Explorer
	Motivation
	Methodology
	Overview
	A Running Example
	Asynchronous Concolic Execution Engine
	CSTG Constructor
	Reachability-guided Branch Scheduler

	Evaluation
	Evaluation Plan
	RQ1: Effectiveness of Marco
	RQ2: Effectiveness of Design Choices
	RQ3: Vulnerability Detection

	How Well can LLMs Generate Fuzzing Inputs?
	Systematic Study
	Findings
	RQ1: Prompt Design
	RQ2: Diversity of LLM-generated Mutations
	RQ3: Cost Effectiveness

	Integration with Traditional Greybox Fuzzer
	RQ4: Coverage Efficiency
	RQ5: Security Application

	Discussion
	Target Program
	Prompt Formulation
	LLM Choice
	Collaboration with Traditional Fuzzer

	Polaris: A Path-Corrective LLM Assistant for Concolic Execution
	Background and Motivation
	System Overview
	Motivating Case Study

	Preliminary Results
	Discussion

	Conclusions
	Bibliography

