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Abstract

Inference and Uncertainty Quantification for High-Dimensional Tensor

Regression with Tensor Decompositions and Bayesian Methods

by

Daniel Spencer

The recent emergence of complex datasets in various disciplines presents a press-

ing need to devise regression models that have tensors either as a response or as a

covariate, often under assumptions of sparsity in the corresponding tensor-valued

coefficients. Models that involve tensors often require special treatment in a mod-

eling setting due to their potentially large structures and general assumptions of

sparsity in regard to associations with covariates. Importantly, scenarios with

small sample sizes benefit from Bayesian methods that allow for flexible model

conditions while also rigorously defining the uncertainty in any conclusions drawn

from a model.

We begin with general introductions to Bayesian analysis, neuroimaging, and

tensor notations in the first chapter. The goal in these short overviews is not

to provide a comprehensive background, but to inform the casual reader about

key concepts that will be referenced throughout this dissertation. Afterwards, we

proceed through new methods in Bayesian modeling of tensor-valued variables,

covering three different analysis scenarios.

The goal in the second chapter is to develop a Bayesian tensor response re-

gression in order to identify contiguous spatial regions that are associated with

a given covariate. The method is then applied to detecting neuronal activation

in functional magnetic resonance imaging (fMRI) experiments in the presence of

tensor-valued brain images and a scalar predictor for a single subject. We pro-

pose to regress responses from all cells (called voxels in brain activation studies)

xi



together as a tensor response on scalar predictors, accounting for the structural

information inherent in the tensor response. To estimate model parameters with

proper cell specific shrinkage, we propose a novelmultiway stick breaking shrinkage

prior distribution on tensor structured regression coefficients, enabling identifica-

tion of cells which are related to the predictors. The major novelty of this chapter

lies in the theoretical study of the contraction properties for the proposed shrink-

age prior in the tensor response regression when the number of cells grows faster

than the sample size. Specifically, estimates of tensor regression coefficients are

shown to be asymptotically concentrated around the true sparse tensor in L2-sense

under mild assumptions. The method is then applied to a single subject within

a balloon-analog risk-taking fMRI experiment to make inferences about parts of

the subject’s brain that are activated by a stimulus.

In the third chapter, the Bayesian tensor response regression is expanded to

compare multiple subjects with multiple tensor responses per subject. This allows

for inference on a tensor-valued coefficient, as well as correlations between the

different tensor response groups. These two types of inference are referred to

in neuroimaging as activation and connectivity, respectively. Brain activation

and connectivity analyses in task-based fMRI experiments with multiple subjects

are currently at the forefront of data-driven neuroscience. In such experiments,

interest often lies in understanding activation of brain voxels due to external

stimuli and strong association or connectivity between the measurements on a set

of pre-specified groups of brain voxels, also known as regions of interest (ROI).

This chapter proposes a joint Bayesian additive mixed modeling framework that

simultaneously assesses brain activation and connectivity patterns from multiple

subjects. In particular, fMRI measurements from each individual obtained in the

form of a multi-dimensional array/tensor across time are regressed on functions of

xii



the stimuli. A low-rank parallel factorization (PARAFAC) decomposition on the

tensor regression coefficients corresponding to the stimuli to achieve parsimony.

The multiway stick-breaking shrinkage priors that were developed in the first

chapter are employed to infer activation patterns and associated uncertainties in

each cell within the tensor responses. Further, the model introduces region specific

random effects which are jointly modeled with a Bayesian Gaussian graphical prior

to account for the connectivity among pairs of ROIs. Empirical investigations

under various simulation studies demonstrate the effectiveness of the method as

a tool to simultaneously assess brain activation and connectivity. The method is

then applied to the balloon-analog risk-taking fMRI experiment across multiple

subjects in order to make inference about how the brain processes risk.

In the fourth chapter, we propose a method to parsimoniously model a scalar

response with a tensor-valued covariate using the Tucker tensor decomposition.

This method retains the spatial relationship within a tensor-valued covariate,

while reducing the number of parameters varying within the model. Simulated

data is analyzed to demonstrate model effectiveness, with comparisons made to

both classical and Bayesian methods. The method is then applied to data from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to make inferences about

the effects of Alzheimer’s disease on the brain and to provide a more quantitative

framework on which to make diagnoses.

Finally, we conclude with a brief review of the topics covered, research in

progress, and future directions for scholastic pursuit.
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Chapter 1

Introduction

New technological advances continue to inundate industry and research pro-

fessionals with more data than ever before. As a function of this proliferation, the

format and structure of data also continues to change and evolve. One such data

structure is that of the tensor, also known as a multidimensional array. These data

expand on the notion of a vector or matrix into an arbitrary dimension, typically

codifying information about a datum in its position within the tensor.

One of the first areas of research to emerge with tensor-valued data is medical

imaging. Imaging scanners use a variety of methods to obtain information about

different parts of a body, such as a lung or brain. These images are sometimes two-

dimensional, showing a slice of a three-dimensional structure. In other cases, the

images are three-dimensional, capturing information throughout an entire organ

or body part. Accurate analytical techniques for these types of data are useful for

quantifying medical diagnosis and treatment.

In the following chapters, three different methods for analyzing such tensor-

valued data will be presented, along with results from applications to neuroimag-

ing studies. However, in order to improve readability, general introductions on

neuroimaging data and tensor notation will be presented within this chapter.
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1.1 A Crash Course in Neuroimaging

In this dissertation, a fair amount of time will be spent discussing applications

to neuroimaging datasets. As such, much of the inference, even within simula-

tion studies, may rely on some familiarity with some basic neuroscience concepts

and vocabulary. As the focus will be on image analyses, most of this introduc-

tion will be centered around discussion of magnetic resonance images (MRIs) and

functional magnetic resonance images (fMRIs).

MRIs are performed using large magnetic resonance scanners, which pass

strong magnetic fields through a person’s body. These fields have an effect on

the directions that electrons in certain atoms within the body spin, and when

large enough groups of atoms exhibit the same spin direction, a radiofrequency

signal is generated, which can be detected by antennae placed close to the body.

Hydrogen atoms are particularly good for having their spin changed, and since

they are a key part of both water and fat, they can relate a fair amount of informa-

tion about what is going on inside a human body (Brown et al., 2014). Since the

brain is mostly made of water and fat, magnetic resonance is particularly effective

at capturing images of the brain.

These images are received from the scanner after scanner-specific corrections

are made by technicians. In the case of an MRI, a single three-dimensional array is

returned. In all of the MRI scans used in analyses in this dissertation, T1-weighted

scans are used, which present high contrasts within fats. These types of scans are

well-suited to detecting different physical structures within the brain, and they

are sometimes called T1-weighted structural scans. These images are in greyscale,

the brightness of each volumetric pixel, or voxel (Lazar, 2008), a relative measure

of the resonance picked up by the antennae within the scanner. An example of

a T1-weighted scan from a subject within the Alzheimer’s Disease Neuroimaging

2



Figure 1.1: An example of a T1-weighted image from the Alzheimer’s Dis-
ease Neuroimaging Initiative (adni.loni.usc.edu) before any preprocessing is
applied.

Initiative (ADNI) image repository (adni.loni.usc.edu) can be seen in figure

1.1. These scans contain information about all of the structures within the head,

such as the eyes, skull, mouth, and neck. Before any of these scans may be

used in an analysis, several processing steps must be performed in order to be

able to make accurate inference regarding brain structures or functions. In a

structural scan, the first such step is to perform brain extraction, which removes

all structures outside of the brain from a given image (Smith, 2002b). If multiple

images from the same subject or images from multiple subjects are going to be

used, registration needs to be performed in order to ensure that the same voxels

from different images correspond to the same locations. In the case when a single

subject is being analyzed, all T1-weighted images are typically registered to occupy

the same space of a single image through a linear transformation (movement and

rotation) or nonlinear transformation (movement, rotation, and scaling). When

multiple subjects are within the same analysis, they are typically registered to a

standard template. Standard templates, such as the MNI152 standard template

(Grabner et al., 2006), are created by linearly coregistering the scans of multiple

people, 152 in the case of the MNI152 standard, to create a standard space, which

3
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can be used to compare results across multiple analyses.

In an fMRI scan, a four-dimensional array is output, three dimensions rep-

resenting physical space, and a fourth dimension representing time. Functional

scans measure something called the blood-oxygen-level dependent (BOLD), which

measures changes in oxygen saturation using the magnetism of hemoglobin. These

scans tend to be lower in resolution as they come out of the scanner, that is, before

any preprocessing is performed. An example of an fMRI scan at a fixed time after

brain extraction was performed is shown in figure 1.2 (Schonberg et al., 2012).

Scans of the brain volume are taken around every two seconds, resulting in a

time series measurement for each voxel within the scan. These scans also contain

information about an entire part of a person’s body, which must be processed

before analysis. In addition to brain extraction, multiple steps must be taken to

create analysis-ready image data (Sweeney et al., 2014). The images are motion-

corrected to adjust for movements resulting from heart beats, breathing, and small

conscious movements. The voxel-wise time series are typically high-pass filtered

to correct for low-frequency shifts in the magnetic field, and to further correct

for breathing motions. Registration takes place by first registering a T1-weighted

image from the subject to a standard template, then registering the fMRI scan to

the T1-weighted image, and finally by combining the two operations to register

the fMRI scan to a standard space. To increase the signal-to-noise ratio within the

scan, spatial smoothing is applied, such as Gaussian kernel smoothing. Finally,

values in the scan may be multiplied by 1 if they are within the standard tem-

plate space, and 0 if they fall outside that standard template in a process referred

to as masking. All of the previously-listed preprocessing steps are implemented

in multiple software packages, such as FSL (Smith, 2002b; Smith et al., 2004)

and FreeSurfer (surfer.nmr.mgh.harvard.edu). Additional processing may be

4
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Figure 1.2: An example of the low resolution seen in fMRI data.

performed to facilitate computation. For example, in a standard space there is

typically a large volume around the brain within the image that contains only

zeros in the array. Occasionally, this empty space may be trimmed off in order

to speed up any computation that depends on the image. Once the image data

are preprocessed, the array dimensions for the scan vary widely, depending on the

standard space that the data are registered to. The MNI152 template at a resolu-

tion of 2mm3 represents a three-dimensional volume in a tensor with dimensions

91× 109× 91, which has 902,629 voxels. Note that in an fMRI scan registered to

the MNI152 template, the number of elements in the tensor would be 902, 629×T ,

where T is the number of time steps. The number of time steps is the length of

the scan, in seconds, divided by the repetition time, often denoted as TR. The

TR is the number of seconds between each brain volume image, and is typically

around 2 seconds. Therefore, in a 10-minute fMRI session within an experiment,

T is usually around 300.

fMRI studies are centered around either task-related or resting-state scans,

depending on whether subjects are instructed to receive stimuli during the scan or

not. We will focus on the analysis of task-related fMRI here and in future chapters.

An important consideration to take into account when analyzing fMRI data when

5



the subjects are completing any kind of task is the delay between the presentation

of a stimulus and the physiological response observed in the scan. There are several

functions that are used to apply this delay to a covariate that changes through

time in an experiment. These functions are then convolved with the values of the

event-related covariates. Collectively known as haemodynamic response functions

(HRFs), they vary in their parameterization, affecting the shape and scale of

the function. The most commonly-used HRF is referred to as the canonical, or

double-gamma, HRF. The canonical HRF is characterized via six parameters,

with default values given in the neuRosim package in R (Welvaert et al., 2011)

shown in parentheses assigned as follows: delay of response relative to onset (6),

delay of undershoot relative to onset (12), dispersion of response (0.9), dispersion

of undershoot (0.9), scale of undershoot (0.35), and amplitude (1). A plot of the

function with these default parameters can be seen in figure 1.3. While there

are bodies of work surrounding the use of different HRFs and proper modeling of

their parameters (Lindquist et al., 2009; Gössl et al., 2001; Marrelec et al., 2003),

for the work done in the following chapters we will use the canonical HRF with

the default values for the parameters. While the differences in the physiological

responses may have an effect on inference, the treatment of these differences will

be explored in future research.

Single-subject neuroimaging studies tend to be simpler, as they do not require

registration to a standard template, and they can provide helpful insight into a

subject’s neurological function and health. However, many researchers conduct

multiple-subject studies with the goal of learning about brain mechanics that

are common to everyone within a population. The size of image data can be

prohibitive in such studies, in which computing resources do not allow for the ac-

curate, simultaneous analysis of data from dozens or hundreds of subjects. Several
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Figure 1.3: The canonical (double-gamma) haemodynamic response function

strategies have been proposed, which will be explored in later chapters.

1.2 An Introduction to Tensor Notation

Before proceeding to the next several chapters, the notation and conventions

that will be used for tensor representations will be briefly explained. The term

tensor is a generalization of an arrayed data structure. A tensor of order D is a

multi-dimensional array data structure B ∈ Rp1×...×pD . Therefore, a vector is a

tensor of order 1, a matrix is a tensor of order 2, a box-shaped array is a tensor

of order 3, and so forth.

The vectorization of a tensor B ∈ Rp1×···×pD : D ≥ 2 results in a tensor of

order 1 of length ∏D
j=1 pj, that is vecB ∈ Rp1...pD . The inner product of two

tensors A and B is the crossproduct of the vectorized elements of the tensors,

that is 〈A,B〉 = (vecA)T (vecB).

The kth-mode matricization of a tensor, represented as B(k) is a matrix rep-

resentation of a tensor of order 2 or higher such that the kth index becomes the
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first index and all other tensor indices are combined in order into a second index.

That is, B(k) ∈ Rpk×p1···×pk−1×pk+1×···×pD .

Let β1 = (β11, . . . , β1p1)′ and β2 = (β21, . . . , β2p2)′ be p1×1 and p2×1 vectors,

respectively. The vector outer product β1◦β2 is a p1×p2 array with (i, j)-th entry

β1i β2j. A D-way outer product between vectors βj = (βj1, . . . , βjpj), 1 ≤ j ≤ D,

is a p1 × · · · × pD dimensional array denoted by B = β1 ◦ β2 ◦ · · · ◦ βD with

entries Bi1,...,iD = ∏D
j=1 βjij . Define a vec(B) operator as one that stacks elements

of this tensor into a column vector of length ∏D
j=1 pj. From the definition of outer

products, it follows that vec(β1◦β2◦· · ·◦βD) = βD⊗· · ·⊗β1, where ⊗ represents

the Kronecker product. A tensor B ∈ ⊗Dj=1Rpj is known as a D-way tensor. A

mode-k fiber of a D-way tensor is obtained by fixing all dimensions of a tensor

except the k-th one. For example, in a matrix (equivalently a 2-way tensor), a

column is a mode-1 fiber and a row is a mode-2 fiber. A k-th mode vector product

of a D-way tensor B and vector a ∈ Rpk , denoted by B×̄ka, is a tensor of the

order of p1 × · · · × pk−1 × pk+1 × · · · × pD, whose elements are the inner product

of each mode-k fiber of B with a.

Finally, tensors can be represented via different tensor decompositions. A com-

mon decomposition that is currently in use is the canonical decomposition/parallel

factorization, also known as CANDECOMP/PARAFAC, or CP Tucker (1966).

This decomposition represents the tensor B as

B =
R∑
r=1
β1,r ◦ · · · ◦ βD,r, (1.1)

in which βj,r ∈ Rpj is one of R principal components for the jth dimension of B.

Here, R is known as the rank of the CP decomposition. The ◦ operator denotes

the outer product. At each value of r ∈ {1, . . . , R}, the series of outer products
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β1,r ◦ · · · ◦βD,r results in a D-dimensional tensor summand Br ∈ Rp1,...,pD . As the

value of R increases, the resolution allowed by the CP decomposition improves.

All tensors can conform to this CP decomposition for some appropriate rank R.

In practice, low-rank decompositions have been found to be adequate to estimate

sparse, smooth tensor coefficients. Using the CP decomposition reduces the pa-

rameter space for estimating B from ∏D
j=1 pj to R

∑D
j=1 pj, which results in better

accuracy detecting signal that is sparse and in contiguous box-shaped groupings.

However, it is possible that not all dimensions of a tensor require all R principal

components in order to be faithfully represented by such a decomposition. In or-

der to address such a situation, the CP decomposition is extended to the Tucker

decomposition, which can be written as

B =
R1∑
r1=1
· · ·

RD∑
rD=1

gr1,...,rDβ1,r1 ◦ · · · ◦ βD,rD , (1.2)

where

(g1,...,1, g2,...,1, . . . , gR1,...,RD) = G ∈ RR1,...,RD

is the core tensor composed of elements, which assigns weights of importance to

each of the ∏D
j=1 Rj tensor summands that compose the tensor B (Tucker, 1966).

This representation is more flexible and parsimonious than the CP decomposi-

tion, as it allows for different ranks for different tensor dimension margins. The

parameter space for estimating B can be reduced from R
∑D
j=1 pj when using the

CP decomposition to ∑D
j=1 Rjpj with the Tucker decomposition.

With these basic conventions, a linear model can be built using the Tucker

decomposition that is parsimonious with regard to the parameter space.

With these basic concepts in mind, we can now apply them in the analysis of
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large datasets in neuroscience, starting with a tensor response regression.
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Chapter 2

Bayesian Tensor Response

Regression With an Application

to Brain Activation Studies

We begin with a tensor response regression model for one subject in which the

response and the covariate are time varying. This particular model relies on the

simpler CP/PARAFAC tensor decomposition, combined with a novel prior struc-

ture. The method will be applied to simulated data to show its effectiveness under

modeling assumptions, and then applied to a single subject fMRI experiment.

2.1 Introduction

Neuroscience and related imaging applications routinely encounter regression

scenarios involving a multidimensional array or tensor structured response and

scalar predictors. An important motivating example occurs in single-subject Func-

tional MRI (fMRI) studies to detect localized regions where neuronal activation

takes place in presence of external stimuli (e.g., during a task).
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The tensor response at each time point is presumed to be associated with the

task related predictors and it is of scientific interest to delineate the nature and

region of activation using a regression framework involving the tensor response

and task related predictors. Similarly, in electroencephalography (EEG) stud-

ies voltage values are measured from numerous electrodes placed on scalp over

time. The resulting data are in a two-dimensional matrix where the readings

are both spatially and temporally correlated. These matrix responses are often

regressed on a set of scalar predictors (e.g. if a subject is an alcoholic or not)

to identify their variation with the predictors. All these applications involve a

response tensor Yt ∈ Rp1×···×pD and a vector of predictors xt ∈ Rm at time t

respectively. The objective in these experiments is to understand which cells in

Y t are influenced by the changes in xt, and by how much. Although the ten-

sor response regression framework is motivated by aforementioned neuroimaging

studies, the proposed methodology equally applies to a variety of scientific appli-

cations, including chemometrics (Bro, 2006), psychometrics (Kiers and Mechelen,

2001) and relational data (Gerard and Hoff, 2015), among others, where tensor

valued responses are collected routinely.

Rather than analyzing cells in a tensor response together, the popular General

Linear Model (GLM), sometimes referred to as a mass univariate analysis (MUA),

fits a regression model at each cell in the tensor response independently of the

others and calculates the test statistic corresponding to each cell to identify if

the response is significantly associated with a predictor in that cell, accounting

for multiple testing corrections (Penny et al., 2011; Friston et al., 1995; Genovese

et al., 2002; Lindquist and Mejia, 2015). While the acronym GLM may cause

statisticians to think of the generalized linear model, we will be referring to the

General Linear Model to remain consistent with the neuroimaging literature. The

12



GLM is conceptually simple and computationally efficient, though it fails to ac-

commodate spatial associations across cells in the tensor response. Additionally,

neuroimaging data are usually pre-processed using a kernel convolution based

spatial smoothing approach. Performing a GLM on pre-smoothed data may re-

sult in inaccurate estimation and testing of the covariate effects (Chumbley and

Friston, 2009; Li et al., 2011). More principled approaches vectorize the tensor

response to construct a multivariate vector response regression. Some notable

structures employed to estimate parameters in the multivariate vector response

regression include sparse regressions with various penalties incorporating corre-

lated response variables (Similä and Tikka, 2007; Peng et al., 2010), reduced-rank

regressions (Yuan et al., 2007; Chen et al., 2013) and sparse reduced-rank re-

gressions (Chen and Huang, 2012). While these methods view tensor response

as a high dimensional vector without any spatial association among its cells, our

goal is to incorporate spatial information in the multidimensional tensor into the

proposed model.

To this end, sophisticated approaches include adaptive multiscale smoothing

methods and spatially varying coefficient (SVC) models. The former estimates

parameters by building iteratively increasing neighbors around each cell and com-

bining observations within the neighbors with weights (Li et al., 2011). The SVC

models add spatial components in the cell by cell regression that account for the

spatial correlations between cell (Zhang et al., 2015, 2014b; Descombes et al.,

1998; Zhu et al., 2014). There is a parallel literature to model spatial dependence

among regression coefficients induced by Markov random fields (MRF) (Smith and

Fahrmeir, 2007). These approaches introduce distinct parameters for different cell

specific regressions and propose to model them jointly. For a tensor response of

dimensions p1 × · · · × pD, where p1,. . . , pD are moderately large, such strategies
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lead to the joint modeling of at least ∏D
i=1 pi parameters, which may turn out to

be computationally challenging.

Recently, Li and Zhang (2017) propose a novel approach of regressing the ten-

sor variate response on scalar predictors, where recently developed envelope tech-

nique by Cook et al. (2010) is employed to yield point estimates of the parameters.

Subsequently, Sun and Li (2017) provide convergence rates of the frequentist pe-

nalized regression approaches with a tensor response and vector predictors. This

approach proposes low rank decomposition of the tensor coefficient and introduces

multiple constraints on the parameter space. While such constraints can be easily

accommodated by frequentist optimization algorithms, they offer a steep challenge

for Bayesian implementation. Additionally, frequentist optimization frameworks

are dependent on tuning parameters (e.g., the envelope dimensions in Li and

Zhang (2017)), with choices for these parameters being sensitive to the tensor

dimensions and the signal-to-noise ratio (degree of sparsity).

In the same vein as Li and Zhang (2017), we propose a regression scenario with

tensor response Y t and predictors xt, referred to as the tensor response regression

(TRR). The coefficient corresponding to each predictor in the vector xt is a tensor,

and is assumed to possess a “low rank" canonical decomposition/parallel factor-

ization decomposition (CANDECOMP/PARAFAC, or CP), which is defined in

Section 1.2. The model is also designed to be generalizable to any value of D for

possible application in other research areas. For the Bayesian implementation, we

employ a novel multiway stick-breaking shrinkage prior distribution to shrink the

cells of the tensor coefficient corresponding to unimportant voxels close to zero

while maintaining accurate estimation and uncertainty of cell coefficients related

to important voxels. Our framework is, to the best of our knowledge, the first

Bayesian framework for regressing a tensor response on scalar predictors. Addi-
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tionally, TRR retains the tensor structure of the response to implicitly preserve

correlations between cells and yet substantially reduces the number of parameters

using the CP decomposition to accrue computational benefits. The TRR frame-

work with the multiway stick-breaking prior gives rise to model-based shrinkage

towards a “low rank" solution for the tensor coefficient, with a carefully con-

structed shrinkage prior that naturally induces sparsity within and across ranks

for the tensor coefficient and results in identification of important cells in the

tensor related to a predictor. In addition, there is a strong need for uncertainty

quantification for parametric estimates, especially when the tensor dimension far

exceeds the sample size, or the signal to noise ratio is low, motivating the Bayesian

TRR (BTRR) approach.

There is a recent literature on regressing a scalar response on a tensor covariate

(Guhaniyogi et al., 2017; Zhou et al., 2013; Zhou and Li, 2014) that focuses on

identifying voxels in the tensor which are related to the response. In contrast,

we flip the role and regress a tensor response on scalar predictors. Our approach

differs from the existing frequentist and Bayesian tensor modeling approaches

(Gerard and Hoff, 2015; Dunson and Xing, 2009) as we offer a supervised tensor

regression framework that accommodates scalar predictors.

One important contribution of this chapter remains proving posterior consis-

tency for the proposed BTRR model with the multiway stick-breaking shrinkage

prior. Theory of posterior contraction for high dimensional regression models has

gained traction lately, though the literature is less developed in shrinkage priors

compared to point-mass priors. For example, Castillo et al. (2012) and Belitser

and Nurushev (2015) have established posterior concentration and variable selec-

tion properties for certain point-mass priors in the many normal-means model.

The latter article also establishes coverage of Bayesian credible sets. Results on
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posterior concentration and variable selection in high dimensional linear models

are also established by Castillo et al. (2015a) and Martin et al. (2017) for certain

point-mass priors. In contrast, Armagan et al. (2013b) show posterior consistency

in the linear regression model with shrinkage priors for low-dimensional settings

where the number of covariates does not exceed the number of observations. Using

direct calculations, Van Der Pas et al. (2014) show that the posterior based on

the horseshoe prior concentrates at the optimal rate for the many normal-mean

problem. Song and Liang (2017) and Wei and Ghosal (2017) consider a general

class of continuous shrinkage priors and obtain posterior contraction rates in or-

dinary high dimensional linear regression models and logistic regression models

respectively, depending on the concentration and tail properties of the density of

the continuous shrinkage prior. In contrast, the study of posterior contraction

properties for tensor regression models in the Bayesian paradigm has been given

far too little attention. A recent article by Guhaniyogi (2017) is of interest in

this regard. Developing theory for tensor response regression models is faced with

two major challenges. While high dimensional regression models directly impose

a well-investigated shrinkage prior on the predictor coefficients, BTRR imposes

shrinkage priors on margins of the CP decomposition of tensor coefficients. As

a result, the prior distribution on voxel level elements of the tensor coefficient

is difficult to deal with. Additionally, in typical applications, the dimensions of

tensor coefficients are much larger than the sample size. Both of these present

obstacles which we overcome in this work. We also emphasize that the posterior

contraction of tensor regression in Guhaniyogi (2017) is shown for the Kullback-

Leibler neighborhood. In contrast, Bayesian tensor response regression develops

a much stronger result with L2-neighborhood around the true tensor coefficient.

The remainder of the chapter flows as follows. Section 2.2 introduces the model
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and describes prior distributions on the parameters. Section 2.3 describes results

on posterior consistency of the proposed model. Section 2.4 and 2.5 show per-

formance of the proposed model through simulation studies and brain activation

data analysis. Section 2.6 concludes the paper.

2.2 Framework and Model

2.2.1 Model framework

Let Y t = ((Yt,v))p1,..,pD
v1,...,vD=1 ∈ ⊗Dj=1Rpj denote a tensor valued response at time

t, where v = (v1, ..., vD)′ represents the position of voxel v in the D dimensional

array of voxels. Let xt = (x1,t, ..., xm,t)′ ∈ X ⊂ Rm be the m-dimensional mea-

sured vector predictor. Assuming that both response Y t and predictors xt are

centered around their respective means, the proposed tensor response regression

model of Y t on xt is given by

Y t = B1x1,t + · · ·+ Bmxm,t +Et, (2.1)

for t = 1, ..., T . Bk ∈ ⊗Dj=1Rpj , k = 1, ..,m is the tensor coefficient corresponding

to the predictor xk,t. To account for the temporal correlation of the response

tensor, the error tensor Et ∈ ⊗Dj=1Rpj is assumed to follow a componentwise

AR(1) structure, Et = κEt−1 + νt, where κ ∈ (−1, 1) is the autocorrelation

coefficient and νt ∈ ⊗Dj=1Rpj with each cell in νt following N(0, σ2/(1−κ2)). This

ensures both computational simplicity and stationarity in the AR(1) structure.

Naive voxel-by-voxel regression of Yt,v on xt requires introducing m regres-

sion parameters per voxel, hence a total of m∏D
j=1 pj parameters, resulting in an

ultra-high dimensional modeling pursuit, and fails to incorporate tensor struc-
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tural information into the estimation procedure. This necessitates imposing a

sufficiently expressive structure on Bk which simultaneously achieves a large di-

mensionality reduction. We propose flexible rank-R CP decomposition of each

Bk, i.e. Bk = ∑R
r=1 β1,r,k ◦ · · · ◦ βD,r,k, where βj,r,k = (βj,r,k,1, ...,βj,r,k,pj)

′ is a pj

dimensional vector, 1 ≤ r ≤ R, 1 ≤ j ≤ D and k = 1, ..,m.

A few remarks on (2.1) are in order. First, since we deal with modeling the

linear predictor part of the model, our framework can be extended to a GLM

set up. Second, the formulation also assumes easy extensions to settings with

a more complicated spatio-temporal correlation structure in Et. Additionally,

CP decomposition reveals that the cell-level parameters are nonlinear functions

of the tensor margins βj,r,k. Careful choice of prior distributions on the tensor

margins implicitly imposes correlations among voxels and facilitates identifying

significantly nonzero cells in Bk.

Imposing this additional rank-R CP structure on Bk remarkably reduces the

total number of parameters in the model from m
∏D
j=1 pj to Rm

∑D
j=1 pj. A crit-

ical question remains whether such a dimension reduced structure can identify

geometric sub-regions in the tensor response which are related to the predictors.

Additionally, we also intend to accurately estimate coefficients corresponding to

these sub-regions of the tensor coefficient. The next section proposes a careful

elicitation of the prior distribution on the tensor parameters to achieve this goal.

2.2.2 Multiway stick-breaking shrinkage prior on tensor

coefficients

Although the spike-and-slab prior for selective predictor inclusion (George and

McCulloch, 1993; Clyde et al., 1996) possesses attractive theoretical properties,

intractability of exploring an exponentially large space of predictor inclusion along
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with the belief that many regression coefficients may be small rather than exactly

zero has led to considerable growth in the appeal for continuous shrinkage priors.

An impressive variety of Bayesian shrinkage priors for ordinary high dimensional

regression with a scalar/vector response on high dimensional vector predictors has

been proposed in recent times, see for example Hans (2009); Carvalho et al. (2010);

Armagan et al. (2013a) and references therein. Shrinkage priors are based on the

principle of artfully shrinking predictor coefficients of unimportant predictors to

zero, while maintaining proper estimation and uncertainty of the important pre-

dictor coefficients. Polson and Scott (2010) further show that most of the existing

shrinkage priors can be expressed as the scale mixture of normal distributions with

a global parameter common to all predictors and predictor-specific local param-

eters. The global parameter imposes shrinkage globally while local parameters

carefully balance shrinkage for large and small coefficients.

Literature on the vector shrinkage priors provides an excellent starting point

for studying multiway shrinkage priors on tensor coefficient Bk, though the latter

presents a lot more challenges. Assuming that Bk admits a rank-R CP decomposi-

tion, proposing a prior on Bk is equivalent to specifying priors over tensor margins

βj,r,k. Given that every cell coefficient in Bk is a nonlinear function of the tensor

margins, care should be taken while imposing prior shrinkage on them. To this

end, Guhaniyogi et al. (2017) have characterized multiple restrictions on putting

prior distributions on Bk’s and have proposed the multiway dirichlet generalized

double pareto (M-DGDP) shrinkage prior satisfying all the restrictions. However,

in the context of BTRR, a straightforward application of M-DGDP prior on Bk

leads to inaccurate estimation due to less desirable tail behavior of the distribution

of Bv,k parameters.

Norm-based penalizations, such as the l0-norm regularized least squares re-
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gression model (Polson and Sun, 2019), may be considered as alternatives to con-

tinuous shrinkage priors like the generalized double-Pareto prior. Norm-penalized

variable selections rely on assumptions of relatively large signal-to-noise ratios

and scale to a few hundred different parameter values through the use of greedy

stepwise variable selection algorithms. These assumptions are violated in many

neuroimaging applications, with signal-to-noise and contrast-to-noise ratios of-

ten less than 1 (Welvaert and Rosseel, 2013), and predictors numbering in the

thousands and tens of thousands.

This chapter proposes a multiway stick-breaking shrinkage prior on Bk to

ensure desirable tail behavior for the tensor coefficient. More specifically, set

τr,k = φr,kτk, as the scaling specific to rank r = 1, ..., R. To achieve effec-

tive shrinkage across ranks we adopt a stick-breaking construction for the rank-

specific scale parameters φr,ks, φr,k = ξr,k
r−1∏
l=1

(1 − ξl,k), r = 1, ..., R − 1, and

φR,k =
R−1∏
l=1

(1 − ξl,k), where ξr,k
iid∼ Beta(1, αk). The global scale parameter

is modeled as τk ∼ Gamma(aτ , bτ ). Additionally, the local scale parameters

W j,r,k = diag(wj,r,k,1, ..., wj,r,k,pj) are employed to achieve margin level shrinkage

in the following way

βj,r,k ∼ N(0, τr,kW j,r,k),

wj,r,k,` ∼ Exp(λ2
j,r,k/2),

λj,r,k ∼ Gamma(aλ, bλ),

` = 1, ..., pj.

The construction tacitly exploits the finite stick-breaking construction for the

local parameters φr,k’s. As αk → 0, most of the φr,ks become more sparse. There-

fore, careful learning of αk leads to a sparse and parsimonious representation of
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the tensor. αk is assigned a discrete uniform prior on a grid and is learned using

a griddy-Gibbs algorithm. Additionally, flexibility in estimating tensor margins

{βj,r,k : 1 ≤ j ≤ D, 1 ≤ r ≤ R} is accommodated by modeling heterogeneity

within margins via element-specific scaling W j,r,k. A common rate parameter

λj,r,k encourages sharing of information between the margin elements. In fact, it

is easy to see that βj,r,k,`|φr,k, τk follows the well known generalized double Pareto

(GDP) (Armagan et al., 2013a) shrinkage prior distribution. Exploiting more effi-

cient computational techniques, TRR with the multiway stick-breaking shrinkage

prior accurately estimates the posterior distribution of Bk for a relatively large

number of cells compared to the ordinary spike-and-slab prior on cell coefficients.

Under a Bayesian framework, parameter estimation can be achieved via Markov

chain Monte Carlo (MCMC) algorithms, in which posterior distributions for the

unknown quantities are approximated with empirical distributions of samples from

a Markov chain. The full conditional distributions for developing Metropolis

within Gibbs sampling algorithms are provided in appendix A.2.

2.3 Posterior consistency in tensor response re-

gression

2.3.1 Notations

In what follows, we add a subscript (T ) to the dimensions of tensor mar-

gins p1,(T ), ..., pD,(T ) and the number of predictors m(T ) to indicate that the size

of both the response tensor Y t and covariates xt can increase with the sample

size T . This asymptotic paradigm is also meant to capture the fact that the

number of cells ∏D
j=1 pj,(T ) is typically larger than the sample size T for the ten-

sor coefficients B1,(T ), ..,Bm(T ),(T ). Define B as an Rm ⊗Dj=1 Rpj tensor with the
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(v1, .., vD, k)th cell being given by the (v1, ..., vD)th cell of Bk,(T ). Naturally, the

tensor coefficient B and tensor margins βj,r,ks are also functions of the sample

size T and we denote them by B(T ) and βj,r,k,(T )s respectively. We use superscript

(0) to indicate true parameters, e.g. the true tensor regression parameter and

the true error variance are denoted by B(0)
(T ) and σ(0)2 respectively. For simplic-

ity, we assume that σ2 = σ(0)2 is known and fixed at 1. We also assume that κ

is fixed and known, so that var(Ev) = S is fixed, where Ev = (E1,v, ..., ET,v)′.

While κ and σ2 are unknown in practice and are assigned prior distributions,

our setup assumes them to be fixed and known. This is a common assumption

in the asymptotic study (Van der Vaart and Van Zanten, 2011). Furthermore,

it is known that the theoretical results obtained by assuming these parameters

as known constants are equivalent to those obtained by assigning priors with

bounded supports on these parameters (Van der Vaart and Van Zanten, 2009).

For vectors, we let || · ||2 denote the L2-norm, || · ||1 denote the L1-norm and || · ||∞

denote the L∞ norm. With a slight abuse of notations, for a D-dimensional tensor

object A, the L1, L2 and L∞ norms are defined as ||A||1 = ∑
v1,...,vD |Av1,...,vD |,

||A||2 =
√∑

v1,...,vD A
2
v1,...,vD

and ||A||∞ = maxv1,..,vD |Av1,...,vD |. || · ||0 denotes the

L0-norm, i.e. the number of non-zero entries, for both vectors and tensors. Fur-

ther, assume F1 =
{
h1 = (v1, ..., vD) : 1 ≤ v1 ≤ p1,(T ), ..., 1 ≤ vD ≤ pD,(T )

}
, F2 ={

h2 = vD+1 : 1 ≤ vD+1 ≤ m(T )
}
. Denote ζ(0) = {(h1, h2) : B(0)

h1,h2,(T ) 6= 0,h1 ∈

F1, h2 ∈ F2} as a set of indices corresponding to the nonzero cells of the true ten-

sor coefficient, and also denote ζ(0)
1 = {h1 ∈ F1 : B(0)

h1,h2,(T ) 6= 0, for someh2 ∈ F2}.

Similarly, for any set ζ ⊆ F1 × F2, define ζ1 = {h1 ∈ F1 : (h1, h2) ∈ ζ} and

ζ2,h1 = {h2 ∈ F2 : (h1, h2) ∈ ζ}. |ζ| denotes the cardinality of the set ζ. We let

s(T ) (dependent on T ) denote the number of nonzero entries in the true tensor

coefficient, i.e., s(T ) = ||B(0)
(T )||0. Let emax(·) and emin(·) denote the largest and

22



smallest eigenvalues of a square matrix, respectively.

Since the shrinkage prior on B(T ) assigns zero probability at the point zero, the

exact number of nonzero elements of B(T ) is always m(T )
∏D
j=1 pj,(T ). A meaningful

comparison with the value s(T ) is made by considering s̃(T ), the number of elements

of B(T ) exceeding in absolute value a threshold aT , which will be specified later.

In other words, only elements with absolute value larger than aT will be treated

as significant and counted towards non-zero entries.

Define BT =
{
At least s̃(T ) absolute values of B(T ) are greater than aT

}
,

CT =
{
B(T ) : ||B(T ) −B(0)

(T )||2 > ε
}
and AT = BT ∪ CT . Further suppose πT (·) and

ΠT (·) are the prior and posterior densities of B(T ) with T observations, so that

ΠT (AT ) =
∫
AT f(Y 1, ...,Y T |BT )πT (BT )∫
f(Y 1, ...,Y T |BT )πT (BT ) ,

where f(Y 1, ...,Y T |B(T )) is the joint density of Y 1, ...,Y T under model (2.1).

This chapter intends to show

ΠT (AT )→ 0, a.s., when T →∞. (2.2)

2.3.2 Main results

The following theorem shows that (2.2) holds under mild sufficient conditions

on s(T ), s̃(T ) and pj,(T )s. The proof of the theorem is given in the appendix.

Theorem 2.3.1. Denote p(T ) = m(T )
∏D
j=1 pj,(T ). Let

(a) B(0)
k,(T ) assumes a rank-R0 CP decomposition, B(0)

k,(T ) = ∑R0
r=1 β

(0)
1,r,k,(T ) ◦ · · · ◦

β
(0)
D,r,k,(T ), for k = 1, ..,m(T ), with R > R0 and ||β(0)

j,r,k,(T )|| <∞;

(b) ||B(0)
k,(T )||0 = s(T ), with s(T ) log(p(T )) = o(T );
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(c) s̃(T ) log(p(T )) = O(T );

(d) m(T )
∑D
j=1 pj,(T ) log(pj,(T )) = o(T );

(e) There exists λ0, λ1 > 0 s.t. emin(X′∇S−1X∇) ≥ Tλ2
0 and emax(X′∇S−1X∇) ≤

Tλ2
1, for any set ∇ ⊆ {1, ...,m(T )}, where X∇ is a submatrix of X = [x′1 : · · · :

x′T ]′ with columns corresponding to the indices ∇.

Under conditions (a)-(e), (2.2) holds with aT = ε
2p(T )

.

Remark: Condition (a) in Theorem 2.3.1 assumes a low-rank decomposition

for the true tensor coefficient. This is a mild condition as most applications allow

low-rank structure for the true tensor coefficients. Regarding condition (b), note

that s(T ) is the sparsity of the true tensor and p(T ) is the total number of cells in the

tensor. When the tensor is just a scalar (D = 0), i.e., the tensor regression reduces

to an ordinary high dimensional regression with m(T ) predictors, the condition

reduces to s(T ) log(m(T )) = o(T ), which is a typical assumption in ordinary high

dimensional regression, see Song and Liang (2017). Condition (c) also assumes

the same condition for the “near sparsity" in the estimated B(T ) in the sense of BT .

Condition (d) in Theorem 2.3.1 requires that m(T )
∑D
j=1 pj,(T ) grows sub-linearly

with sample size T . However, the number of cells m(T )
∏D
j=1 pj,(T ) in the tensor

B(T ) can grow at a rate much faster than the sample size T ; hence, the modeling

framework allows large tensor responses even for moderate sample sizes. Condition

(e) is equivalent to a lower bounded compatibility number condition assumed in

the theoretical study of ordinary high dimensional regression, (see Song and Liang

(2017); Castillo et al. (2015b)). Finally, condition (e) also ensures emax(X′S−1X)

grows sub-linearly with T .
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Figure 2.1: Values taken by the simulated covariate through time when the
number of total time steps was set to T = 100.

2.4 Simulated Data Results

This section showcases parametric inference from Bayesian tensor response re-

gression (BTRR) with various simulation studies. Since the major motivation of

model development is drawn from the fMRI based brain activation study, the sim-

ulation study is performed on simulated datasets reminiscent of real world fMRI

data. Scalar predictors are simulated with the block experimental design. A single

stimulus block was convolved with the canonical double-gamma haemodynamic

response function. An example of the values taken by the covariate can be seen in

figure 2.1. A more thorough discussion on how the covariate values were generated

can be found below.

The block design consisted of a single discrete epoch of activity and rest,

with the “activity" representing a period of stimulus presentation, and the “rest"

referring to a state of rest or baseline. The stimulus was assumed to take place

at time t = 0 for a duration of one time step, with a stimulus value of 1. This

was done to assure that each simulated data set could be compared, as even data

sets with small values for T would have a covariate that exhibits a peak in the
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stimulus function.

The response tensor is simulated from (2.1) with D = 2, κ = 0, and σ(0)2 = 1.

Thus, the true coefficient tensor B(0) is assumed to be sparse and two-dimensional

(i.e. D = 2). The specifyregion function within the neuRosim package in R

(Welvaert et al., 2011) is employed to simulate the nonzero regions of the true

coefficient tensor B(0). Lengths of each dimension (p1, p2) of the tensor coefficient

are drawn from a Poisson distribution with shared parameter µ and the nonzero

elements assuming value η, which can be thought of as the contrast-to-noise ratio

when the observed noise is σ(0)2 = 1. The scenarios were created by constructing

a grid over different values for T ∈ {20, 50, 100, 200}, µ ∈ {5, 10, 20, 30}, and

η = {0.1, 0.25, 0.5, 0.75, 1, 1.5}. For all values of T , the covariate is generated

using the canonicalHRF function in the neuRosim package in R (Welvaert et al.,

2011) in which the delay of response relative to onset is T × 0.12, the delay of

undershoot is T × 0.5, the dispersion of response was set to 2, the dispersion of

undershoot is set to 1, and the scale of undershoot was set to 0.5. This setup was

used so that simulations could be run under different values of T without affecting

the number of stimulus blocks in the simulated data and without changing the

relative pattern of the simulated covariate values.

The model is fitted in each simulation scenario along with the General Linear

Model, in which the maximum likelihood estimator is found independently for each

element in the coefficient tensor B to highlight the advantages of joint Bayesian

modeling with tensor coefficients. In order to mirror the autoregressive error

structure in the BTRR models, the cochrane.orcutt function in the orcutt

package in R (Stefano et al., 2018) was used to perform the iterative process

necessary to estimate the values of B and κ. For the Bayesian models, the log-

likelihood was examined in order to verify that the Markov chain converged. The
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models witness rapid convergence, so that in each model fitting 1,100 draws are

taken from the joint posterior distribution, out of which the first 100 draws are

discarded as burn-in. Average effective sample sizes shown in Figure 2.2 for the

1, 000 post burn samples calculated using the coda package in R confirm sufficiently

uncorrelated post burn-in samples. The Deviance Information Criterion (DIC)

values for each of the shown models can be seen in table 2.1. Note that since

there is only one area of activation in each of these datasets, selecting the rank 1

model should produce the best results. This is reflected in the DIC values, as the

rank 1 models have the lowest DIC values.

η = 0.5 η = 1 η = 1.5
Rank 1 14128.27 7089.52 5585.77
Rank 2 14141.91 7090.09 5589.41
Rank 3 14137.61 7093.17 5593.56

Table 2.1: The Deviance Information Criterion corresponding to the estimates
in figure 2.3.

Point estimation of B. A comparison of the posterior mean of the elements of B

for different values of R and η when µ = 30 and T = 20 can be seen in Figure

2.3. We especially show figures in this case since this case represents higher

tensor dimensions and smaller sample size. The posterior mean estimates show

the effects of the regularization in the prior, which pulls the posterior mean values

corresponding to unimportant cells closer to zero. The true and the estimated

activation maps demonstrate excellent performance of BTRR in capturing the

true activation pattern under moderate contrast-to-noise ratio η. When contrast-

to-noise ratio drops below 1, identifying signal from noise remains a challenging

task which causes less accurate identification of activated regions. It should be

mentioned that this simulation scenario is well outside the umbrella of theoretical

guarantee observed in Theorem 2.3.1 since sT log(pT ) is much larger than T , and
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Figure 2.2: The average effective sample size for elements of B under each of
288 scenarios.

yet the model is able to identify the truly activated regions.

Figure 2.4 shows the root mean squared error of the estimates of B under different

scenarios. In each scenario, BTRR model with ranks R = (1, 2, 3) are tested, and

further testing suggests that additional ranks are not required. In a real data

application, the final rank used to fit a model can be selected using the deviance

information criterion (Gelman et al., 2014). The model at ranks 1, 2, and 3 is
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Figure 2.3: Posterior mean and true values for B0 when µ = 30 and T = 20
under different values for R and η. For comparison, the posterior mean estimate
from a Gaussian Markov Random Field (GMRF) is also included.

compared to a naive maximum likelihood estimate, which is found by regressing

each Yt,v on xt separately for each cell in the experiment.

Based on the results, the model performs well, both for low and high contrast-

to-noise ratio. Although the root mean squared error (RMSE) metric seems to

be lower for η = 0.5 compared to η = 1.5, this does not contradict Figure 2.3.

It is worth noting that the shrinkage mechanism pulls every coefficient towards

zero, with significant cell coefficients observing less shrinkage than unimportant

coefficients. Since for η = 0.5, even important coefficients are close to zero, all

estimated coefficients are close to the truth. On the contrary, for η = 1.5, shrink-

age of important coefficients leads to an increase in RMSE. When RMSE figures

are normalized with the true signal strength, the model shows much improved

performance for η = 1.5 than η = 0.5. Note that the naive MLE does not assume
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Figure 2.4: Root mean squared error from analyses on simulated data.

sparsity and uses more parameters in almost every case, which is a disadvantage in

low-signal sparse regressions. It is used as a comparison to show that the proposed

model provides a reasonable point estimate.

A Note on the Use of the Stick-Breaking Structure of Φj,k. The stick-breaking

structure in the prior of Φj,k allows for a flexible modulation of the effects of

additional ranks on the posterior densities of the elements within Bk at a very

small cost in computational efficiency. In a test with a simulated dataset with

a single covariate, Yt ∈ R30×30 and T = 100 with model rank 3, the cost of the

posterior updates for all parameters associated with the stick breaking structure

accounted for just over 2% of the total computation time.

Comparison to Gaussian Markov Random Field model. Tensor regression data

could also be modeled with spatial dependence through a Gaussian Markov Ran-

dom Field (GMRF) (Zhang et al., 2015; Gössl et al., 2001; Quirós et al., 2010). For

comparison, a model was created with a GMRF prior on the vectorized elements
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of B. That is,

vecB ∼ N(0, (λQ)−1),

λ ∼ Gamma(aλ, bλ),

Q =



nv, v = `

−1, v ∼ `

0, otherwise

,

where nv is the number of neighbors of element v and v ∼ ` denotes that elements

v and ` are neighbors (Zhang et al., 2015). In the case of these simulations, aλ was

set to 1 and bλ was set equal to 0.001. This was done to match the noninformative

prior in the BTRR model. The results in figure 2.3 show that while the GMRF

model can identify the region of activation, it does so with a higher variance in

the case when η ∈ {1, 1.5}, resulting in less precise inference. Thus, the BTRR

model is able to impose more sparsity and more precisely identify contiguous areas

within B that have nonzero values.

Parametric uncertainty of B. To assess uncertainty quantification of B from

BTRR, we focus on coverage and length of 95% credible intervals (CI) of cells of B,

shown in Figures 2.6 and 2.7 respectively. Given that in almost all the scenarios,

the coverage of the 95% credible intervals is close to nominal, attention turns to the

length of the 95% credible intervals. Two visible patterns emerge from the figures.

First, the 95% credible intervals shrink as T increases, since the posterior variance

lowers with increased observed data. Secondly, the credible intervals are wider for

higher contrast-to-noise ratio, which can be attributed to the fact that estimating

a few high signals with lots of zero coefficients involves more uncertainties. Finally,
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there is a drop in coverage for the 95% posterior credible intervals as the contrast-

to-noise ratio increases, especially for small tensor dimensions. This is due to the

fact that very low values for η mean that the true values for the elements in B

are very close to zero. Therefore, in conjunction with the regularization of the

parameter estimates stemming from the prior structure, many of the true values

are close enough to zero that they are all captured by credible intervals centered

at or near zero.

Simulations under an autoregressive error distribution.While some applications

of the BTRR model may have an error structure that is independent through time,

such as the application in section 2.5, such an assumption may not be tractable in

other situations. In order to show that the model still performs well in the face of

a stationary temporal error structure, tests were performed on a data set with an

error structure that is autoregressive with order 1. Data were simulated assuming

T = 100, µ = 30, η = 1, and κ = 0.5. Plots showing the estimated values for B

and the posterior density estimates for the autoregression coefficient from 1,000

samples from the posterior distribution can be seen in figure 2.5.

All scenarios conclusively establish the strength of BTRR as a principled Bayesian

approach that accurately detects brain activation with proper characterization of

uncertainties. It is particularly appealing to observe BTRR outperforming MLE

estimates in smaller contrast-to-noise ratios reminiscent of real fMRI data. We

have also replaced naive MLE by a few penalized optimizers (not shown here) and

found BTRR continuing to be the clear winner in sparse and low signal scenarios.

Application of the model to real data is explored in the following section.
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Figure 2.5: Plots of the posterior means of B next to the true value (top) and
the posterior densities of the autoregression coefficient (bottom). The true value
for the autoregression coefficient is indicated with a red line.
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Figure 2.6: The average coverage of the 95% posterior credible intervals for the
posterior draws for the elements of B under varying conditions.
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Figure 2.7: The average length of the 95% posterior credible intervals for the
posterior draws for the elements of B under varying conditions.

2.5 Application to Balloon Analog Risk Taking

Data

Neuroscientists at the University of California Los Angeles conducted an exper-

iment intended to make inference about the regions of the brain that are involved

in the process of evaluating risk (Schonberg et al., 2012). Sixteen young adults

(average age of 23.56 years) were subjects in an experiment with the following

design. Each subject entered an fMRI machine with a computer display and a

controller with two buttons. On the screen, the image of a balloon would be

shown, along with a payout amount, starting with a value of $0.25. The but-

tons on the controller allowed the subject to either inflate the balloon or take the
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payout. If the subject inflated the balloon, and the balloon did not explode, the

payout amount increased by $0.25. If the subject inflated the balloon, and the

balloon exploded, no payout was received, the payout value was reset to $0.25,

and a new balloon was displayed. Balloons were assigned a number of pumps

at which the balloon would explode from a discrete uniform distribution with a

lower bound of 1, and an upper bound of 8, 12, or 16, depending on whether the

balloon was red, green, or blue, respectively. A grey “control" balloon, offering no

payout and an upper bound of 12 pumps before exploding, was also part of the

trial to record a riskless scenario. Each subject participated in three runs. Each

run consisted of either 10 minutes, or 48 balloons exploding, whichever came first.

The proposed method is designed for single-subject data, and thus data from

a single run for one subject were analyzed. Before analysis, the data were prepro-

cessed to correct for motion and other nuisance variables, and to map the subject’s

brain into a standard space using FSL (Smith et al., 2004). The resulting images

were then sliced into a two-dimensional cross-section and separated into 9 dif-

ferent regions of interest based on the MNI atlas from the Montreal Neurological

Institute, which is distributed with the FSL software. Further details on the fMRI

image preprocessing can be found in the appendix. This separation was done in

order to speed up computation time by parallelizing the analysis of different re-

gions, and also to allow for different values of R to be selected depending on the

needs of a specific region. As regions of interest are not box-shaped in nature,

the smallest box-shaped region containing the region of interest was taken as the

response tensor. Parts of the box-shaped region that were not a part of the region

of interest were all assigned the value 0, which does not impact the inference on

the coefficients, as the multiway stick-breaking prior is able to assign the coeffi-

cient tensor values around zero. Table 2.2 records these Regions of Interest (ROI)
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Figure 2.8: The raw values of the demeaned number of pumps (points), their
convolution with the double-gamma haemodynamic response function (light lines),
and the final covariate resulting from their difference (heavy black line) for the
subject analyzed.

with the number of voxels in each. Finally, the first difference was taken for each

voxel-level time series in order to account for scanner drift, a phenomenon caused

by the fMRI scanner’s magnetic field drifting over time (Huettel et al., 2004). Our

preliminary investigation of the resulting data confirms that fitting the ROIs sep-

arately performs better than a single analysis of the whole brain due to differing

observed variance in different regions.

To measure the level of risk to a subject at a given time, we follow the procedure

used in Schonberg et al. (2012), the study from which these data were found. First,

we measure the centered number of pumps that an individual gives a “treatment"

balloon before they “cash-out" or the balloon explodes. It is assumed that the

higher the number of pumps becomes, the subject experiences a higher perceived

risk. This value is then convolved with the double-gamma haemodynamic response

function, which takes into account the physiological lag between stimulus and

response, and smooths the stepwise function for the centered number of pumps.

An illustration of this calculation can be seen in Figure 2.8.

Finally, the centered, convolved number of pumps on the control balloon is
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subtracted from the treatment series to provide a basis for comparison. The

multiway stick-breaking shrinkage model as defined in 2.1 is applied to this data

under ranks 1, 2, and 3 in each region, and each Markov chain is run for 1,100

iterations. As a note, no additional parameters were added to the model to correct

for slice timing and other potential nuisance signals. Such an extension of the

model may be explored in future work. The first 100 iterations are discarded as

burn-in after checking the stationarity of the log-likelihood. The point estimates

for activation coefficient for different ranks can be seen in Figure 2.9. As the brain

images are split into nine regions of interest and BTRR fitted separately for these

regions, the final estimate for activation coefficient B is obtained by using the

sequential 2-means post-processing algorithm proposed by Li and Pati (2017) in

each ROI, which is discussed further in chapter 3. The rank R used for estimation

in each ROI is chosen using the Deviance Information Criterion (DIC) (Gelman

et al., 2014). The final estimate obtained in this fashion is presented in Figure

2.10.

The same general linear model maximum likelihood estimate described in sec-

tion 2.4 is also added for comparison. The general linear model has estimates

that are somewhat larger than the Bayesian sparse tensor response regression es-

timates. This is likely due to the shrinkage prior favoring smaller values. However,

the final point estimates from the general linear model and the BTRR models show

generally coincident voxel-level effects, with the BTRR models showing fewer ac-

tive voxels due to the regularization that they impose and the sequential 2-means

variable selection method. This likely reduces the false positive rate of activation

detection, which improves inference on the experiment overall.
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Figure 2.9: A comparison of estimates of B under the general linear model max-
imum likelihood estimate, and the Bayesian Sparse Tensor Response Regression
models with ranks 1, 2, and 3.

2.6 Conclusion

This chapter proposes a Bayesian framework to regress a tensor valued re-

sponse on scalar covariates. Adopting the rank-R PARAFAC decomposition for

the tensor coefficient, the proposed model is able to reduce the number of free
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Figure 2.10: The final estimate of the effect of increased perceived risk on the
relative levels of oxygen in different regions of the brain after selecting R for each
region using the DIC.

parameters. We employ a novel multiway stick-breaking shrinkage prior distri-

bution on the tensor coefficient to be able to identify significantly nonzero cell

coefficients. New results on posterior consistency have been developed to show

convergence in L2 sense of the tensor coefficient to the true tensor as data size

increases.

As an illustrative example, the present chapter focuses on analysis of fMRI data

to detect voxels of the brain which exhibit neuronal activity in response to stimuli,

while simultaneously inferring on the association of spatially remote groups of

voxels with similar characteristics. Analysis of simulated fMRI time series and

real fMRI data demonstrates excellent performance of BTRR in identifying the
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Region p1 p2 Chosen Rank
Cerebellum 8 8 Rank 1
Putamen 34 19 Rank 1
Parietal Lobe 22 7 Rank 1
Caudate 19 9 Rank 1
Frontal Lobe 57 35 Rank 1
Insula 45 23 Rank 1
Occipital Lobe 56 31 Rank 1
Temporal Lobe 72 40 Rank 1
Thalamus 8 6 Rank 3

Table 2.2: The different values for R selected by the deviance information cri-
terion (DIC), along with the dimensions associated with the response tensors in
each region.

regions of activation with required uncertainties. Additionally, BTRR is able to

achieve remarkable parsimony, even as a Bayesian model. This facilitates its usage

in presence of images with a fine resolution.

The core idea of the proposal is to recognize the importance of retaining the

tensor structure of the image response during the entire statistical analysis for

studies including brain activation. An immediate extension to the proposed model

would be meant to investigate both voxel-level activation and ROI-level connectiv-

ity from multi-subject fMRI data. An additional extension may be to explore an

expansion of the error characterization to include spatial dependence in addition

to temporal dependence.
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Chapter 3

Joint Bayesian Estimation of

Voxel Activation and

Interregional Connectivity in

fMRI

Next, we extend the methods from chapter 2 to a scenario with multiple tensor

responses for multiple subjects, which increases the complexity of the model. Now

we are not only interested in the tensor-valued coefficients, but also the correla-

tions between the means of the response tensors. This increases the complexity

of the model, but also produces a rich inference that will be used to analyze all of

the subjects from the fMRI experiment in chapter 2.

3.1 Introduction

Expected activation patterns in task-based fMRI experiments include local

spatial dependence in the sense that voxels located next to each other tend to be
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jointly activated, as well as non-local dependencies in which groups of voxels in

distant regions of the brain are activated by a given thought process.

In addition to determining brain activation linked with a specific cognitive or

sensorimotor function, neuroscientists are often interested in the way in which dif-

ferent spatially-adjacent groups of voxels, referred to as Regions of Interest (ROIs)

in the brain work together to process information. These types of relationships

between ROIs are collectively referred to as functional connectivity (Hutchison

et al., 2013). The major contribution of this article is the proposal of a Bayesian

modeling framework that simultaneously detects voxel-level activation and con-

nectivity between different ROIs with precise characterization of uncertainty for

multi-subject fMRI data. These methods, applied to task-based fMRI experi-

ments, lead to meaningful inferences about the functions of the human brain in

such experimental settings.

Simultaneous analysis of multi-subject 3D fMRI scans is a challenging problem

due to the sheer amount of data. Our modeling framework addresses this issue by

using a mixed-effects tensor response regression analysis in which low-rank tensor

decompositions are combined with a multiway stick-breaking shrinkage prior to

achieve parsimony in the estimation of voxel-level activation. Such framework

provides a powerful and computationally-feasible setting for inferring activation

and connectivity in multi-subject task-related fMRI studies.

Before describing our proposed modeling approach, we present an overview

of currently available methods that separately infer activation at the voxel level

and connectivity at the region-specific level in Sections 3.1.1 and 3.1.2 respec-

tively. Section 3.1.3 then presents a review of models that jointly infer activation

and connectivity. Due to the space constraint, we mainly focus on describing

approaches that would be natural competitors to our proposed approach either
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because they share similarities in at least one of the modeling components (e.g.,

tensor-based approaches), or they use the same inferential paradigm (Bayesian

approaches).

3.1.1 Activation Models

Several approaches have been proposed for the analysis of brain activation.

Single-subject frameworks in particular have a rich background for modeling ac-

tivation. The simplest of them, known as the General Linear Model (GLM), fits

a regression model at each voxel with the observed voxel-specific BOLD response

regressed on activation related predictors and identifies if the response is signif-

icantly associated with the predictors in that voxel (Friston et al., 1995; Penny

et al., 2011), after accounting for multiple testing corrections. Many implementa-

tions of the GLM include clusterwise corrections to account for spatial association

using some variant of independent components analysis. However, work by Eklund

et al. (2016) suggests that many of these methods inflate false-positive rates. The

Banjamini-Hochberg correction (Benjamini and Hochberg, 1995), which works by

setting the false discovery rate, is a possible solution, but remains incomplete, as

it does not take spatial information into account. Another idea, which addresses

the sparse nature of fMRI activation (Olshausen and Field, 2004), assigns a spike-

and-slab prior on the regression coefficients (Brown et al., 1998; Yu et al., 2018)

across all voxels. These priors take the form

βv ∼ γvNormal(0, v1) + (1− γv)Normal(0, v0), (3.1)

with βv the activation parameter at voxel v. In this setting, v0 is relatively small,

v1 is relatively large. γv is a zero-one random variable such that Pr(γv = 1) = πv,

with πv being the probability that βv comes from the normal distribution with
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larger variance. While these methods tend to have robust sensitivity and speci-

ficity, they do not take spatial information into account. In fact, brain activation

is a local process in the sense that spatially contiguous voxels generally tend to

be activated together while performing a task. Spike-and-slab prior distribution

is unable to incorporate such structural information a priori.

Various approaches also account for spatial association in the neighboring

voxels by inducing dependence among voxel-specific regression coefficients us-

ing Markov random fields (Zhang et al., 2014b; Kalus et al., 2014; Smith and

Fahrmeir, 2007; Lee et al., 2014). In these approaches, the activation coefficients

are represented as having a multivariate normal prior with precision Σ−1. Within

Σ−1 the values on the diagonal are the number of neighbors that voxel v has.

The off-diagonal elements σvk are set equal to 1 if voxel v and voxel k are consid-

ered neighbors, and 0 otherwise. Models with this type of Markov random fields

components usually capture, at least partially, the underlying spatial structure in

fMRI data but tend to be computationally expensive. More complex Markov ran-

dom field structures may be proposed, but almost certainly at the cost of further

decreased computational efficiency. In contrast, our proposed tensor mixed effect

model improves inference by encouraging localized activation without explicitly

employing spatial dependence.

Other sophisticated approaches include spatially varying coefficient (SVC)

models which employ spatial basis functions to model activation-related coeffi-

cients (Flandin and Penny, 2007; Zhu et al., 2014). Besides being computationally

expensive, such models are sensitive to the selection of the basis functions, and

require specific knowledge to appropriately calibrate them.

More recently, tensor-based approaches have been proposed and applied to an-

alyze large-dimensional brain imaging data. Zhou et al. (2013) considers a frame-
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work that linearly models a given clinical outcome as a response and uses brain

images as tensor covariates. Estimation in this setting is achieved via maximum

likelihood and regularized tensor regression tools based on tensor decomposition

are also used to determine which regions of the brain are associated with the

clinical response. Tensor decomposition methods are covered in further detail

in Section 3.2. Guhaniyogi et al. (2017) proposes a Bayesian tensor regression

method in presence of a scalar response and a tensor predictor with shrinkage

priors to identify cells in the tensor predictor significantly related to the scalar

response. Tensor-based frequentist and Bayesian approaches for joint modeling

of the BOLD response across all voxels in the form of a tensor have also been

developed, as in the previous chapter (e.g., Li and Zhang, 2017). However, these

approaches have not been developed for multi-subject studies and do not allow us

to infer connectivity between brain regions.

3.1.2 Multi-subject and Connectivity Approaches

In order to overcome the computational challenge of having voxel-level data

analyzed for multiple subjects, early approaches combined information across vox-

els, either using the general linear model (GLM) parameter estimates or residual

variance. Two-stage methods, such as those by Bowman et al. (2008) and Sanyal

and Ferreira (2012), fit subject-specific GLMs, and then use regularization on the

parameter estimates to determine activation. Mixture models and non-parametric

Bayesian models (Zhang et al., 2016; Xu et al., 2009) have also been proposed to

analyze inter- and intra-subject variability, though they incur heavy computa-

tional cost for exact results via Markov Chain Monte Carlo (MCMC).

While there is considerable literature on activation-only models, literature on

Bayesian functional connectivity offers a much smaller number of distinct ap-
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proaches. Most of the available models consider connectivity across clusters of vox-

els that display similar activity patterns, or develop connectivity measures across

predetermined ROIs. To this end, Patel et al. (2006a) and Patel et al. (2006b)

discretized the fMRI time series between regions based on whether they had el-

evated activity according to a threshold, and then compared joint and marginal

probabilities of elevated activity. Bowman et al. (2008) modeled similarity within

and between ROIs based on estimates of elements of the covariance in a two-stage

model. A Dirichlet process prior was used by Zhang et al. (2014b) to cluster

remote voxels together, asserting that the clustering inferred an inherent connec-

tivity. Zhang et al. (2014a) went on to propose a dynamic functional connectivity

model, estimating connective phases and temporal transitions between them.

3.1.3 Joint Estimation of Activation and Connectivity

As mentioned above, there are several Bayesian modeling frameworks for as-

sessing activation or connectivity separately, however, models incorporating both

of them jointly in multi-subject fMRI studies with voxel-level data are compara-

tively rare in the literature. In the recent past, Kook et al. (2017) proposed an

approach in which a Dirichlet process (DP) mixture model is used to classify vox-

els as active or inactive via discrete wavelet transformations. The clustering of the

voxels through time via the mixture components is then used to derive a measure

of inter-voxel connectivity within- and between-subjects. While such model suc-

cinctly captures activation and connectivity, the use of a Dirichlet process hinders

computational efficiency. Variational Bayes methods were used to speed-up com-

putation, providing results in a fraction of the time that a full Markov chain Monte

Carlo simulation would require, however these variational approaches lead to ap-

proximate rather than exact posterior inference. In addition, the model of Kook
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et al. (2017) analyzes voxel-level connectivity, rather than region-of-interest con-

nectivity. Connectivity-informed activation detection was proposed by Ng et al.

(2011) using a two-step classical modeling process. First, a graphical LASSO or

oracle-approximating shrinkage is used to cluster voxels into groups, and then

cluster information is incorporated into the estimation for activation effects. This

model differs from our proposal in that it does not provide robust uncertainty

quantification, and regions can not be defined a priori. In addition, activation

is detected through an average over parcellated regions, and as such, voxel-level

activation inference is not possible.

The Potts model (Potts, 1952) could be considered as an alternative to ei-

ther the activation or connectivity model components. The model operates by

defining a fixed number of states, as well as a neighborhood structure for the

elements within the tensor coefficients or posterior precision between regions of

interest. When the number of states is equal to 2, the model is equivalent to the

Ising model (Ising, 1925), in which model parameters would simply be classified

as zero or nonzero. Using the tensor decomposition structure in conjunction with

the generalized double-Pareto prior allows for judgements not just about activa-

tion, but also about effect size in a continuous setting. The Potts model on the

connectivity would likely be problematic through the bias introduced by defining

neighborhoods and the number of states within the precision matrix.

Our article proposes a multi-subject Bayesian tensor mixed effect model that

provides exact posterior inference on voxel-level activation using the inherent spa-

tial structure of fMRI and region-of-interest-level connectivity measures in a single

model, while imposing shrinkage on both measures. Modeling activation and con-

nectivity in a single step reduces model bias over a two-step modeling process

by taking into account any interaction between the activation and connectivity
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components. In addition, our approach does not require a multiplicity correction

method when detecting activation and/or connectivity. To elaborate further, the

model envisions the BOLD response over all voxels together for a subject at any

time as a tensor and regresses this tensor object on the activation related predic-

tors. A tensor decomposition representation is then used in conjunction with a

novel prior structure to make the model more parsimonious while simultaneously

capturing the underlying spatial structure of the data in an efficient manner. This

is one of the key features of using a tensor representation, i.e., it enables the use

of a tensor decomposition structure, which essentially treats the principle axes

of the coordinate system as principal components, inherently preserving localized

spatial dependence while reducing the number of model parameters. This is an

advantage with respect to approaches such as those in Kook et al. (2017) which

explicitly model local spatial correlation among voxels using spatially dependent

prior distributions on voxel specific activation coefficients, and hence becoming

computationally prohibitive with a large number of voxels, particularly in large

multi-subject studies. In addition, our proposed model incorporates subject-ROI-

specific random effects with a Gaussian graphical prior, imposing regularization on

the precision matrix of the effects between regions (Wang et al., 2014). Both, the

activation and connectivity parameters are then classified into zero- and nonzero-

effect sizes using the sequential 2-means method proposed by Li and Pati (2017).

As a result, the model produces accurate measures of voxel-wise activation and

inter-regional connectivity with interpretable effect sizes without the need for fine-

tuning hyperparameters, basis functions or multiplicity corrections. In addition,

the model is computationally tractable to provide samples from the exact posterior

distribution for 2-D slices or 3-D volumes of brain images, as well as higher-order

tensor images.
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The upcoming sections proceed as follows. The model, including the prior

structure, is set forth in the Section 2. This is followed by a section on posterior

inference (Section 3) and a section on simulated studies to empirically validate the

model (Section 4). Sensitivity to hyperparameter specification and comparisons

with other models is also shown in Section 4. Section 5 then describes the multi-

subject fMRI data from the balloon-analog risk-taking experiment in detail, as

well as the results obtained from applying the proposed methodology to these

data. Finally, Section 6 summarizes our findings and provides a description of

some future extensions.

3.2 Methodology

This section begins by detailing the model framework and prior structures for

parameters estimating the activation and connectivity. A recommended setting for

the hyperparameter values is then outlined in order to provide reliable inference.

3.2.1 Model framework and prior structure

We assume that the whole tensor structure of the fMRI is partitioned into G

distinct brain regions, and that we are interested in effectively measuring brain

connectivity between these regions. Importantly, the proposed model does not

assume that the voxel-level activation and the functional connectivity between

predefined regions of interest are independent. As an aside, note that setting

G = 1 reduces the model to a simpler tensor response regression model, which is

explored in a single-subject context in the previous chapter. Our proposal extends

that model to a multi-subject tensor response regression setting. In addition, the

proposed model also takes inter-regional connectivity into account.
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Let Y i,g,t be the tensor of observed BOLD response data in brain region g

for the ith subject at the tth time point. Y i,g,t is observed in the form of a

tensor with dimensions p1,g × · · · × pD,g. In the context of fMRI data analysis,

the tensor dimension for a fixed time, subject, and region, denoted as D, is two

or three, depending on whether a single slice or regional volume is analyzed.

To simultaneously measure activation due to stimulus at voxels in the gth brain

region and connectivity among G brain regions, we employ an additive mixed

effect model with tensor-valued BOLD response and activation-related predictor

xi,t ∈ R,

Yi,g,t = Bgxi,t + di,g + Ei,g,t, (3.2)

for subject i = 1, . . . , n, in region of interest g = 1, . . . , G, and time t = 1, . . . , T .

Elements in the error tensor Ei,g,t are assumed to be independent and identically

distributed following a normal distribution with mean 0 and shared variance σ2
y,

though our framework can be extended to incorporate temporally correlated er-

rors. However, in testing with both simulated and task-based fMRI data, this

does not appear to have a large effect on the model inference.

The model in (3.2) has 3 components, namely, an activation component, a

connectivity component and an error component. The tensor coefficient Bg ∈

Rp1,g×···×pD,g is used to infer the strength of the association between xi,t and each

voxel in Yi,g,t. In particular, Bg[i1, ..., iD] = 0 implies that the (i1, ..., iD)th voxel

in the gth ROI is not activated by the stimulus. In fact, the activation pattern

is typically sparse and localized with only a few nonzero elements in Bg (Ol-

shausen and Field, 2004). di,g ∈ R are region- and subject-specific random effects

which are jointly modeled to borrow information across ROIs. This model views

connectedness through the elements of the precision matrix corresponding to dif-

ferent, pre-specified regions of interest, rather than between individual voxels. In
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this way, the detected relationship between regions is not directly determined by

the detected activation of a voxel. In the present context, the conditional dis-

tributions (di,g, di,g′)|{di,g′′ : g′′ 6= g, g′} are investigated to assess the strength

of connectivity between a pair of regions. As part of the model development,

we impose prior distributions that favor conditional independence between most

pairs di,g and di,g′ , effectively favoring connectivity only among a few pairs of re-

gions. Choosing a different number of regions will obviously change the network

of regions that inference can be applied to and also the inference in the model

parameters. However, since the partial correlation is used to measure connectiv-

ity, the connectivity measured between two given regions should not be greatly

affected by adding or removing other regions from the model.

As mentioned above, the coefficient tensor Bg ∈ Rp1,g×···×pD,g in equation (3.2)

characterizes a sparse relationship between the tensor response and the time-

varying covariate xi,t in region g. In order to achieve parsimony in the number

of estimated parameters, Bg is assumed to have a rank R parallel factorization

(PARAFAC) decomposition, which takes the form:

Bg =
R∑
r=1
βg,1,r ◦ · · · ◦ βg,D,r, (3.3)

with tensor margin effects βg,1,r, ..,βg,D,r. The PARAFAC tensor decomposition

dramatically reduces the number of parameters inBg from
∏D
j=1 pj,g to R

∑D
j=1 pj,g,

where the level of parameter reduction depends on R. Note that a smaller value

of R leads to more parsimony and computational gain, perhaps at the cost of in-

ferential accuracy. By contrast, a choice of even moderately large R entails higher

computation cost. Using R as a model parameter often increases computation

cost and is deemed unnecessary (Guhaniyogi et al., 2017). In view of the earlier

literature, this article proposes fitting the model with various choices of R and
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chooses the one that yields the lowest Deviance Information Criterion (DIC) (Gel-

man et al., 2014). More discussion on the choice of R is provided in the Simulation

Studies section.

A critical question remains how to devise a prior distribution on the low-

rank decomposition (3.3) to facilitate identifying geometric sub-regions in the

tensor response which share an association with the predictor. Additionally, the

model intends to build joint priors on region specific random effects di,gs to assess

connectivity patterns. The next two subsections propose careful elicitation of the

prior distributions on Bg and di,g to achieve our stated goals.

3.2.2 Multiway stick breaking shrinkage prior on Bg to

assess activation

Although the spike-and-slab priors for selective predictor inclusion (George and

McCulloch, 1993; Ishwaran et al., 2005) possess attractive theoretical properties

and an easy interpretation, they often lose their appeal due to their inability to

explore a large parameter space. As a computationally-convenient alternative,

an impressive variety of shrinkage priors (Carvalho et al., 2010; Armagan et al.,

2013a) in the context of ordinary Bayesian high dimensional regression have been

developed.

Shrinkage architecture relies on shrinking coefficients corresponding to unim-

portant predictors, while maintaining accurate estimation with uncertainty for

important predictor coefficients. The existing shrinkage prior literature serves as

a basis to the development of shrinkage priors on the tensor coefficients. How-

ever, constructing such a prior on Bg presents additional challenges. To elaborate

on it, notice that proposing a prior on a low-rank PARAFAC decomposition of

Bg is equivalent to specifying priors over tensor margins βg,j,r. Since every cell
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coefficient in Bg is a nonlinear function of the tensor margins, careful construc-

tion of shrinkage priors on βg,j,rs is important to impose desirable tail behavior

of Bg[i1, ..., iD] parameters. To this end, this article employs a multiway stick-

breaking shrinkage prior onBg to ensure desirable tail behavior. More specifically,

the following shrinkage prior is proposed on the tensor margins

βg,j,r ∼ N(0, φg,rτgWg,j,r) , Wg,j,r = diag
(
wg,j,r,1, . . . , wg,j,r,pj

)
,

where

wg,j,r,` ∼ Exp
(
λ2
g,j,r

2

)
, λg,j,r

iid∼ Gamma(aλ, bλ),

for j = 1, ..., D and g = 1, ..., G. Flexibility in modeling tensor margins are accom-

modated by introducingW g,j,rs. In fact, integrating outW g,j,r and λg,j,r yields a

generalized double Pareto shrinkage prior for the elements of βg,j,r conditional on

φg,r. The proposed prior defines a set of rank specific scale parameters φg,r using

a stick breaking construction of the form φg,r = ξg,r
r−1∏
l=1

(1− ξg,l), r = 1, ..., R − 1,

and φg,R = 1 −
R−1∑
r=1

φg,r =
R−1∏
l=1

(1 − ξg,l) that achieves efficient shrinkage across

ranks, where ξg,r iid∼ Beta(1, αg). Finally, the global scale parameters are modeled

as τ1, ..., τG
iid∼ Gamma(aτ , bτ ).

Without constraints on the values for φg,r ∈ Φg, where r = 1, . . . , R, identifia-

bility issues arise in the posterior sampling for the variance terms for βg,j,r ∈ Bg.

In order to address this issue, a stick-breaking structure is imposed on φg,r’s, as

described above. In effect, this prevents φg,r’s from switching labels across ranks

in which the variance of βg,j,r may be close together. The result of this constraint

is a more stable MCMC for the posterior draws of βg,j,r. The tuning parameter αg

in the stick-breaking construction determines which tensor rank R is favored by
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data. In particular, αg → 0 favors small values of most φg,r a-priori. Therefore, a

data-dependent learning of αg is essential in order to tune to the desired sparsity

in Bg. The subsection on hyperparameter specification discusses a model-based

choice of αg, along with the specific choices for aλ, bλ, aτ , and bτ .

3.2.3 Bayesian Graphical Lasso Prior for modeling con-

nectivity

Following Wang et al. (2012), to capture connectivity between different regions

for individuals, di,gs are jointly modeled with a Gaussian graphical lasso prior. To

be more precise,

di = (di,1, .., di,G)′ ∼ N(0,Σ−1), i = 1, ..., n,

p(σ|ζ) = C−1 ∏
k<l

[DE(σkl|ζ)]
G∏
k=1

[
Exp(σkk|

ζ

2)
]

1Σ∈P+ , (3.4)

where P+ is the class of all symmetric positive definite matrices and C is a nor-

malization constant. σ = (σkl : k ≤ l) is a vector of upper triangular and diagonal

entries of the precision matrix Σ. Using properties of the multivariate Gaussian

distribution, a small value of σkl stands for weak connectivity between ROIs k

and l, given the other ROIs. In fact, σkl = 0 (k < l) implies that there is no

connectivity between ROIs k and l, given the other ROIs. Thus, to favor shrink-

age among off-diagonal entries of Σ for drawing inference on connectivity between

pairs of ROIs, the Bayesian graphical lasso prior employs double exponential prior

distributions on the off-diagonal entries of this precision matrix. The diagonals

of Σ are assigned exponential distributions. Let η = (ηkl : k < l) be a set of

latent scale parameters. Using the popular scale mixture representation of double
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Figure 3.1: Plate Diagram Representation of the Proposed Model

exponential distributions (Wang et al., 2012), we can write

p(σ|ζ) =
∫
p(σ|ζ,η)p(η|ζ)dη,

with p(σ|ζ,η) given by

p(σ|ζ,η) = C−1
η

∏
k<l

[
1√

2πηkl
exp

(
− σ2

kl

2ηkl

)]
G∏
k=1

[
ζ

2Exp(−ζ2σkk)
]

1Σ∈P+ , (3.5)

where Cη is the normalizing constant, which is an analytically intractable function

of η. The mixing density of η in the representation above is given by

p(η|ζ) ∝ Cη
∏
k<l

ζ2

2 exp(−ζ
2

2 ηkl). (3.6)

The hierarchy is completed by adding a Gamma prior on ζ, ζ ∼ Gamma(aζ , bζ).

Finally, an inverse gamma prior σ2
y ∼ Inverse Gamma(aσ, bσ) is used on the

variance parameter σ2
y. A plate diagram of the model structure can be seen in

Figure 3.1.
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3.2.4 Hyperparameter Specification

The hyperparameters αg in the stick-breaking construction are assigned a dis-

crete uniform prior over 10 equally-spaced values in the interval [R−D, R−.10],

which will allow the data to dictate the level of sparsity appropriate for the prior

(Guhaniyogi et al., 2017). The posterior updating of αg under the griddy-Gibbs

sampling algorithm can be found in section B.1. Although our extensive explo-

ration with simulation data shows that a careful choice of fixed αg value is able

to produce inference as good as is offered by allowing αg to vary, in practice, it is

not clear how to choose such values. Consequently, a naive choice of αg may offer

incorrect conclusion from the model. On the other hand, the posterior updating

of αg in each iteration adds burden to computation. Therefore, this article allows

posterior updating of αg in the MCMC iteration, and fixes αg values after the

burn-in, at the value drawn in the nburn-th iteration, where nburn is the burn-in

for the MCMC chain. As we discuss later, nburn = 100 for simulation studies and

equals 200 for the real data analysis. This both allows αg to be learned while

reducing any research bias stemming from a user dependent fixed value for αg.

The strategy works for various simulation studies and moderate perturbation of

the prior range seems to produce robust inference. The values chosen for aλ and bλ

have a strong effect on the shrinkage properties of the generalized double-Pareto

prior, and setting aλ = 3 and bλ = 2D
√
aλ prevents the prior for λg,j,r from allowing

for insufficient variance for Bg[i1, ..., iD] to detect nonzero coefficients. Similar

to Guhaniyogi et al. (2017), the hyperparameters aτ and bτ are set to D − 1

and R1/D−1, respectively, in order to prevent overshrinkage with higher tensor

response dimensions. Following Wang et al. (2014), aζ and bζ are set to 1 and

0.01, respectively, in order to preserve relative noninformativity of the Gaussian

graphical prior. Finally, for both simulation studies and the real data analysis, aσ
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and bσ were set to be 1 and − log 0.95, respectively. While these hyperparameters

are specified to provide readers a specific set of choices and they produce desirable

results, we establish in section 3.4 that the inference is fairly robust with moderate

perturbation of these hyperparameters.

3.3 Posterior Computation

The model framework and prior structure allow sampling from the posterior

distribution using the Markov Chain Monte Carlo (MCMC) algorithm outlined in

section B.1. In order to speed convergence of the MCMC chain, values for βg,j,r are

initialized using the singular value decomposition of the mode-j matricization of

each B̂g,MLE, the maximum likelihood estimate of the tensor-valued coefficient for

the activation, assuming no connectivity component. This particular initialization

method limits the rank R of the model to an upper bound of ming,j pg,j. The

posterior distributions of unknown quantities of interest are approximated by their

empirical distributions from post burn-in MCMC samples.

Of particular interest in neuroscience is the assessment of whether a brain

voxel is active or not, which, in our modeling framework translates to verifying

whether Bg[i1, ..., iD] is nonzero for voxel (i1, ..., iD). It is well-acknowledged that

the problem of selecting important cell coefficients is a challenging task whenBg is

assigned a continuous shrinkage prior, since none of the cell coefficients is exactly

zero in any MCMC iteration. The sequential 2-means method recently developed

by Li and Pati (2017) was chosen over using posterior credible intervals to decide

whether an element in Bg is significantly different from zero because it does not

rely on choosing the size of posterior credible intervals through an arbitrary level

of credibility. Bayesian multiple testing corrections proposed by Wacholder et al.

(2004) and Whittemore (2007) provide analogs to the frequentist p-value that
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address the false discovery rate, but still rely on setting an arbitrary threshold,

which may be seen as undesirable for its subjectivity. Sequential 2-means, as

outlined in Algorithm 1 is thus used to classify whether a coefficient is zero or

nonzero from their post burn-in MCMC iterates. This is done separately for each

reconstructed regional coefficient tensor Bg. Following the suggestion in Li and

Pati (2017), the value of b in Algorithm 1 is set to be the median of the standard

deviations of the elements within Bg. Within the estimates obtained through the

use of the sequential 2-means method, nonzero-valued voxels are considered to be

active.
Result: Final estimate of θ with small elements set to be equal to 0

for s← 1 to S do
Cluster the absolute value of elements in θ(s) into two clusters, A and

B, where Ā ≤ B̄, where Ā and B̄ denote the mean of elements in the

clusters A and B respectively;

Cluster the elements of A into two clusters, A and A′ such that Ā < Ā′;

while |Ā − Ā′| > b do
Cluster the elements of A into two clusters, A and A′ such that

Ā < Ā′;

end

The number of elements remaining in A is the estimated number of true

zero-valued elements, n(s)
z , in θ(s)

end

Find n̂z = median value of nz ;

Find θ̂ = median values of the elements in θ(1:S) ;

Set elements in θ̂ with the n̂z smallest absolute values to 0
Algorithm 1: Sequential 2-means for posterior draws s = 1, . . . , S for parame-

ter θ

In order to obtain an interpretable measure of the connectivity between re-
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gions, the partial correlation between regions is examined. Since the partial corre-

lation accounts for the correlation between two regions after removing the influence

of all other regions (Das et al., 2017), it is expected to be an appropriate measure

of pairwise connections. First, the partial correlation matrix was calculated from

each posterior draw of Σ using the prec2part function in the DensParcorr pack-

age in R (Wang et al., 2018). Next, the sequential 2-means method (Li and Pati,

2017) was used on the upper-triangular elements of the partial correlation matrix

to classify them as zero or nonzero. Regions with nonzero partial correlations are

said to be connected (Warnick et al., 2018).

3.4 Simulation Studies

To validate the proposed methods, we simulate synthetic data with similar

structure to that found in data collected from human fMRI studies. The tensor

responses are simulated considering a block experimental design from the likeli-

hood in (3.2). In each simulation study, we construct G = 10 different coefficient

tensors corresponding to disjoint spaces, hereafter referred to as regions. For ease

of visualization, the coefficient tensors are created to be three-dimensional, but

can be generalized to any arbitrary dimension D so that the method may be

applied to other scenarios. Throughout the simulation study, a sample size of

n = 20 subjects is used, with the number of time points per subject being fixed

at T = 100.

The covariate, xi,t = xt, was set to be the same for all of the subjects, without

any loss of generality. A block experimental design is employed to generate the

covariate, which consists of several discrete epochs of activity-rest periods, with

the “activity" representing a period of stimulus presentations, and the “rest" re-

ferring to a state of rest or baseline. These activity-rest periods are alternated
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throughout the experiment to ensure that signal variation, scanner sensitivity and

subject movement have the similar effect throughout the experiment. To simulate

activity-rest periods, we use the stimulus indicator function zt as:

zt =


1, for kP < t < kP + P/2, k = 0, 1, . . .

0, otherwise

for all t, given a defined period P for the block design. In our simulations, P

is set to be 30. Next, the canonicalHRF function in the neuRosim package in

R (Welvaert et al., 2011) is used to convolve the stimulus indicator zt with the

double-gamma canonical hemodynamic response function (HRF), which corrects

for the expected delay between a stimulus and the resultant physiological response

in the brain (Friston et al., 1998). This HRF is set using the default function values

in neuRosim to have a delay of response relative to onset equal to 6 time steps, a

delay of undershoot relative to onset of 12, a dispersion of response equal to 0.9,

a dispersion of undershoot equal to 0.9, and a scale of undershoot equal to 0.35.

The resulting covariate xt is plotted in figure B.1. The dimensions of response

tensor margins p1,g, p2,g, and p3,g all set to 10 for each region g, resulting in 10

regions with 1,000 voxels in each.

In order to demonstrate the effectiveness of the shrinkage component of the

model, the true tensor coefficient values were randomly assigned using the

specifyregion function from neuRosim. This function allows for the definition

of tensors such that nonzero elements are spatially-contiguous spheres. In this

simulation, the coefficient tensors are designed such that all elements took the

value of either zero or 0.05. In real fMRI data, activation is typically observed in

a small number of voxels/regions. Therefore we set the sizes of the true activated

cells in our simulated data to be no greater than 5% of the total tensor size. The
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true values for a slice of one of the coefficient tensors can be seen in Figure 3.2.

The contrast-to-noise ratio, defined as Bg,v/σy for Bg,v 6= 0, was set to be equal

to 0.05, which is proposed as a realistic value for neuroimaging data by Welvaert

and Rosseel (2013). The connectivity between tensor regions was simulated by

setting two pairs of the ten regions to have a region-wide correlation of 0.9, while

all other regions were assigned correlations of zero. A covariance matrix (Σ−1)

was created from this correlation matrix, and the region effects for subject i were

simulated from a multivariate normal distribution with mean zero and covariance

Σ−1. The signal-to-noise ratio, defined as Σ−1
g,g′/σ

2
y for Σ−1

g,g′ 6= 0 was set to 1,

a realistic value based on Welvaert and Rosseel (2013). This quantity can be

thought of as the relative effect of the connectivity on the observed response

tensors. Finally, the observation-level variance (σ2
y) was set to be 1.

3.4.1 Competitors

We fitted our proposed Bayesian model to the simulated data using different

choices of rank R. In most of the real life applications, small values of R are

sufficient to attain the desired inference, so models up to rank 7 were fit to the

simulated data.

The performance of the proposed model is compared to that obtained from the

following models: a vectorized model with a Generalized Double Pareto (GDP)

shrinkage prior on the activation coefficients and a Gaussian graphical prior on

the connectivity parameters, referred to as the vectorized-GDP approach; another

vectorized model with a spike and slab prior on the activation coefficients referred

to as the spike-and-slab approach; a general linear model (GLM). Details about

these models are provided below.

The vectorized GDP model vectorizes the tensor response and builds a voxel
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specific linear mixed effect model by regressing the response on predictors, followed

by jointly estimating the voxel specific regression coefficients using a shrinkage

prior distribution. More precisely, if Yg,i,t,v1,v2,v3 is the response at voxel (v1, v2, v3)

in region g at time t for individual i, this mixed effect model proposes

Yg,i,t,v1,v2,v3
ind.∼ N(b∗g,v1,v2,v3xi,t + d∗g,i, σ

∗2), β∗g ∼ N(0, τ ∗gW∗
g), (3.7)

where β∗g = (b∗g,v1,v2,v3 : v1 = 1 : pg,1, v2 = 1 : pg,2, v3 = 1 : pg,3)′ ∈ Rpg,1×pg,2×pg,3 is

the vector of fixed effects and W∗
g = (w∗g,v1,v2,v3 : v1 = 1 : pg,1, v2 = 1 : pg,2, v3 =

1 : pg,3). The random effects d∗g,i’s are jointly assigned a Gaussian graphical

prior similar to (3.4). The hierarchical specification is completed by assigning

τ ∗g ∼ Gamma(aτ , bτ ), w∗g,v1,v2,v3 ∼ Exp
(
λ∗2g
2

)
, λ∗g ∼ Gamma(aλ, bλ). The vector-

ized GDP prior is a shrinkage prior on activation coefficients, which are envisioned

as approximations to the Bayesian variable selection priors. Hence, as it is also

the case with the spike-and-slab priors below, they take care of the multiplicity

issues. Comparison with this vectorized-GDP reveals the advantage of retaining

the tensor structure of the response to capture underlying local spatial structure

while simultaneously inferring connectivity, as well as the advantage due to the

parsimony offered by the PARAFAC decomposition. We also attempted to imple-

ment a spatially varying coefficient (SVC) model (Zhang et al., 2015) and found

it to be extremely computationally demanding due to large matrix inversions in

each MCMC iteration. Hence the comparison with SVC is not reported.

The spike-and-slab model utilizes the spike-and-slab prior, introduced in Equa-

tion (3.1) with v0 = 0.1 for the “spike", or the part of the prior distribution with

a high density around zero, and v1 = 10 for the “slab", or the part of the prior

distribution centered around zero, but with a much lower density around zero it-

self. The probability of inclusion in the spike prior component for voxel v, γv, was
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assigned a Bernoulli prior distribution with probability πv. Finally, each πv was

assigned a Beta(2, 2) prior distribution. As shown by Scott and Berger (2010),

keeping πv random as opposed to fixed addresses the multiple correction issue

in the spike and slab prior. As in the vectorized-GDP competitor, the random

effects d∗g,i for the subjects and regions are assigned a Gaussian graphical prior as

in (3.4).

Rather than using a cutoff to determine whether there is activation for a

particular voxel within the coefficient tensor and for consistency in the comparison

with the proposed approach, the sequential 2-means method outlined in Algorithm

1 is used on the posterior values of the coefficient tensor for the vectorized-GDP

and spike and slab models. Similarly, the sequential-2 means method is also used

to infer connectivity in both these competitors.

Finally, in order to improve the interpretability of the proposed model for those

familiar with neuroimaging, the general linear model (GLM) is also used for com-

parison. It is of importance to note that the GLM is only placed on the activation

components, as it fits each voxel to the covariate separately, which assumes that

each voxel is independent of the others. In addition, sparsity in the activation can-

not be built into the model assumptions, which has an effect on the uncertainty

quantification of the tensor coefficient elements. The connectivity estimates do

not have any uncertainty quantification at all. In order to determine activation,

the Benjamini-Hochberg method for multiple testing correction (Benjamini and

Hochberg, 1995) is used, as it allows for the control of the false discovery rate,

which is desirable in high-dimensional regression settings. The residuals from the

GLM are then summed within each region of interest and used to estimate the

covariance between the regions. The covariance estimate is then used to estimate

the precision and the partial correlation.
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3.4.2 Comparison Metrics

MCMC is run for 1,100 iterations for all competitors, with a 100-iteration

burn-in and the remaining used for inference. The assessment of convergence is

made by the Raftery-Lewis diagnostic test implemented in the R package “coda".

It shows a median effective sample size of 1,000 for the elements of all the Bgs in

the rank 1 model, and around 840 for the rank 2 through 7 models. Comparisons

among competitors are based on a model fitting statistic and point estimation of

Bg’s. The accuracy of detecting active and inactive voxels for each competitor

are also reported. Finally, we also compare competitors in terms of identifying

connectivity between regions as the main goal of our proposed approach is to

jointly detect activation and connectivity.

Model fitting is compared using the deviance information criterion (DIC), de-

fined in Gelman et al. (2014) as DIC = −2 log p(Y|B̂, d̂,X, σ̂2
y) + 2pDIC , where

pDIC = 2
(
log p(Y|B̂, d̂,X, σ̂2

y)− 1
S

∑S
s=1 log p(Y|Bs,ds,X, σ2(s)

y )
)
, θ̂ is the poste-

rior mean of any parameter θ, S is the total number of post burn-in posterior

samples. The superscript s denotes sth post burn-in posterior sample for a pa-

rameter, Y , X are the collection of all responses and predictors respectively.

For comparison between the models in terms of point estimation of Bg’s, we

compute the square root of the mean squared error (RMSE) between the estimated

tensor coefficient and true tensor coefficient,
√∑G

g=1
∑
v∈Rg(B̄g,v −B0

g,v)2, where

Rg represents region g, B0
g,v and B̄g,v are the true and the posterior mean of

the vthe cell coefficient in the gth region respectively. In addition, as mentioned

above, given the posterior mean estimates of Bg,v, sequential two-means approach

(Li and Pati, 2017) is employed to identify active and inactive voxels. The true

positive rate (TPR) and false positive rate (FPR) are computed for the different

approaches. Finally, a summary of the performance of the connectivity for each
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model is given as the Frobenius norm of the difference between the point estimate

of the partial correlation (Ω̂) and the true partial correlation matrix (Ω), with

Ω = Σ−1. The Frobenius norm is defined for matrix A as ||A||F =
√
trace(A′A).

3.4.3 Results

In order to clearly define applications under which the proposed tensor model is

expected to perform well, the following research hypotheses will be tested. Under

the structure of the proposed tensor model, it is expected that sparse, hypercubic

activation regions will be recovered well by the model. Sparse connectivity is also

expected to be recovered effectively if the true partial correlation between regions

is far enough away from zero. The model will also be tested in cases in which

the observation error in the simulated data is strongly autocorrelated. The tensor

models demonstrate benefit in terms of activation estimation, as seen in Figure

3.2. The slice of activation data shown was selected by finding the slice of one

of the tensor coefficients that had the most true activation to clearly show the

differences in the patterns of activation detection. The proposed model excels

in its ability to identify activation only in voxels in and around where there is

true activation, adequately capturing the localized spatial structure underlying

the activation mechanism. This is an advantage over all other competitors. In

particular, note that the spike-and-slab approach leads to a relatively large number

of isolated false positives, while the vectorized-GDP identifies no active sites. The

activation was also found using 99% posterior credible intervals, in which voxels

within Bg with intervals that included zero were considered to be inactive. The

plot created using this method can be found in appendix figure B.3.

Performance measures for all the competitors are summarized in Table 3.1.

Using the DIC as a model selection criterion, the rank 3 model is chosen among
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the proposed models. Overall, tensor models with rank greater than 1 outperform

the vectorized-GDP in terms of sensitivity, with a sensitivity that is on par with

the spike-and-slab. Due to the shrinkage imposed by the Bayesian models, the

GLM has a better sensitivity and specificity for activation, however, it does not

offer reliable uncertainty quantification, spatially localized activation, or reliable

estimates of connectivity. Note that the spike-and-slab and vectorized-GDP com-

petitors use far more parameters in their hierarchical models than the proposed

tensor regression models to estimate the tensor coefficient. Therefore, the spike-

and-slab and vectorized-GDP competitors are not compared with respect to the

deviance information criterion, as we have found this criterion to be unreliable to

compare models that have very large differences in the number of parameters due

to underestimation of the penalty term. When viewing Table 1, it is important

to keep in mind that we are interested in joint detection of activation and con-

nectivity. Similar to the tensor coefficient, the sequential two-means method (Li

and Pati, 2017) is used on the off-diagonal elements of the partial correlation ma-

trix calculated from the precision matrix Σ to recover the connectivity structure

among regions in the simulated data. In terms of the connectivity we see that the

best performance is obtained by the tensor model of rank 3 and the worst is that

obtained by the GLM approach. All unconnected regions are classified as having

a partial correlation of zero, and the connected regions have nonzero partial cor-

relations. The estimates from the model with the optimal rank as determined by

the DIC and the competitor models are shown in Figure 3.3, which shows that

the effect sizes are smaller than the true generative values. However, in settings

with low signal-to-noise ratio and sample size, the proposed tensor model with

rank 3 generally gives non-zero values for region pairs with true nonzero values,

while leading to significant shrinkage in the true zero values. The GLM on the
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Figure 3.2: Rank model estimates and true value for a single slice of a three-
dimensional coefficient tensor. Estimates are found using the sequential 2-means
variable selection method (Li and Pati, 2017). The spike-and-slab and vectorized
model estimates are also included for comparison.

other hand does not adequately estimate connectivity.

3.4.4 Sensitivity Analyses

Temporally correlated errors

Given that the model makes assumptions about independent errors, simula-

tion tests were also conducted under data generation scenarios that violate this

assumption. Therefore, in addition to having a scenario with independent errors

eg,i,t,` ∈ Eg,i,t as proposed in the original setting, we considered a new smaller scale
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Figure 3.3: Estimates of the partial correlation for all possible region pairs after
using the sequential 2-means method from Li and Pati (2017). The true partial
correlation values for all region pairs are shown for comparison.

simulation scenario in which the errors have an autoregressive structure of order

1. That is, eg,i,t,` = 0.9eg,i,t−1,` + ug,i,t,`, with ug,i,t,` assumed to be independent

and identically distributed with mean zero and variance σ2
y = 1. This structure

results in simulated data that are highly autocorrelated. In this new scenario we

simulated G = 5 regions, each with response tensors of size Yg ∈ R20×20 for n = 20

subjects and T = 100 time steps. Furthermore, in order to directly show the ef-

fect of the autocorrelated errors on the model performance, an otherwise identical

dataset of the same size was created in which the error in the data generation

model was not autocorrelated.

For each of the two settings in this new simulation scenario, B̂g for the spike-

and-slab competitor, the vectorized-GDP competitor, the GLM and the tensor
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# Parameters in B Time (Hrs) DIC RMSE for B
Rank 1 300 3.36 577863793 0.0247
Rank 2 600 4.08 577825593 0.0251
Rank 3 900 4.93 577724587 0.0252
Rank 4 1200 5.55 577877043 0.0252
Rank 5 1500 6.33 577823303 0.0252
Rank 6 1800 7.07 577849650 0.0252
Rank 7 2100 7.23 577806310 0.0252

Vectorized 10000 1.42 0.0232
Spike-and-Slab 10000 2.22 0.0241

GLM 10000 0.02 0.0037
Sensitivity Specificity ||Ω̂−Ω||F

Rank 1 0.4537 0.8124 1.1928
Rank 2 0.6146 0.7896 1.0930
Rank 3 0.6098 0.7891 0.9623
Rank 4 0.6098 0.7911 0.9822
Rank 5 0.6146 0.7934 1.1084
Rank 6 0.6098 0.7945 1.1701
Rank 7 0.6146 0.7954 1.1366

Vectorized 0.5756 0.8871 0.9989
Spike-and-Slab 0.6049 0.8696 1.2795

GLM 0.8634 0.9955 2.7857

Table 3.1: Performance diagnostics based on 1,100 draws from the posterior
distribution with multiple different models using the same simulated data. For
the performance measures of the Bayesian models, the first 100 draws from the
posterior distribution are discarded as a burn-in.

model are created using the sequential 2-means method. The sensitivity and

specificity were then found for each model, and can be seen in Table 3.2. It is

important to note that the GLM does not do well in this scenario due to the low

contrast-to-noise ratio combined with a smaller sample size in which only around

5% of the voxels in the coefficient tensor are actually nonzero. In spite of using the

same multiple corrections method used for the GLM in the calculation of Table

3.1, in this case the GLM leads to a very poor sensitivity of 0.0283. Note that

the specificity and sensitivity also go down for the other models also due to the

smaller sample size, but the key part here is that the sensitivity measures are not

affected by the induced temporal autocorrelation in the tensor models.
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Autocorrelated Error Uncorrelated Error
Sensitivity Specificity Sensitivity Specificity

Rank 1 0.5660 0.4836 0.5660 0.5290
Rank 2 0.5660 0.4182 0.5660 0.5090
Rank 3 0.5660 0.4134 0.5660 0.4979
Rank 4 0.5660 0.4113 0.5660 0.4836
Rank 5 0.5660 0.4097 0.5660 0.4667

Vectorized 0.5660 0.4266 0.5660 0.5026
Spike-and-Slab 0.5660 0.4261 0.5660 0.5048

GLM 0.0283 0.9974 0.0000 1.0000

Table 3.2: Comparison of Performance for Correlated and Uncorrelated Error

Contrast-to-noise comparisons

Next, we ran a set of scenarios in which the only change in the simulated

data was the contrast-to-noise ratio, something that should have a significant

impact on the activation inference. In each simulated dataset, again, the number

of subjects was set to n = 20, the number of time steps was set to T = 100, the

number of regions was set to G = 5, the signal to noise ratio was set to 5, and

the observation noise was set to σ2
y = 1. Figure 3.4 shows the sensitivity and

specificity for different values of the contrast-to-noise ratio. This shows that the

proposed model is more sensitive than Bayesian competitors at low contrast-to-

noise levels. This also shows that the higher-rank models have a higher specificity

than the Bayesian competitors at higher contrast-to-noise ratios.

Hyperparameter sensitivity

Finally, in order to test the robustness of the model to choices of the hyperpa-

rameters, a grid of hyperparameter values was made by scaling each of the “stan-

dard” values for aλ, bλ, aτ , bτ , aζ , bζ , aσ, and bσ, defined in Section 3.2.4, by 0.01,

1, and 100, resulting in 6,561 different combinations. Of these, 100 settings were

randomly sampled from the list and then tested with tensor model corresponding
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Figure 3.4: Sensitivity and specificity under varying contrast-to-noise ratios

to Rank 3. We graphed boxplots of the RMSE as well as length and coverage of

95% CI for all these hyperparameter combinations (these are available in figure

B.2). The results are fairly robust with all three metrics varying within a small

range under all different hyperparameter combinations. Overall, the simulation

study reveals excellent recovery of activation and connectivity among regions by

the proposed model. Although the computation time for the proposed model may

a bit on the higher side, the burden is somewhat lessened by the rapid MCMC

convergence for the model parameters allowing accurate inference even with a

small burn-in.

3.5 Real Data Analysis

We return to the Balloon Analog Risk-Taking Task fMRI experiment that was

described in section 2.5, now incorporating the data from multiple subjects in the

experiment. Including multiple subjects allows for the inference from the model

to be applied to more than one person, requiring different treatment of the data.

The preprocessing was done using FSL following what was done by Schonberg

et al. (2012) as closely as possible. The fMRI have a repetition time (TR) of
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2 seconds. In order to allow for T1 equilibrium effects, the first two scans were

dropped. The EPI images were motion corrected, then high-pass filtered using

a Gaussian least-squares linear fit with sigma = 50.0 seconds. Brain extraction

was done using the BET function in FSL. The anatomic (T1-weighted) scans were

registered using an affine transformation to standard Montreal Neurological In-

stitute (MNI) space, and the EPI scans were then registered to each subject’s

corresponding anatomic scan. Finally, the data were spatially smoothed using a

Gaussian kernel with a 5mm full-width half-maximum (FWHM). As these meth-

ods are implemented on the whole brain volumes all at once, the EPI scans were

downsampled to have voxels with volume 8mm3 to find areas of increased activ-

ity within the entire brain in order to choose slices within the brain that can be

analyzed at a higher resolution with voxels of volume 2mm3. For both cases, data

were separated into 9 regions of interest based on the MNI structural atlas pro-

vided within FSL (Collins et al., 1995; Mazziotta et al., 2001). The MNI structural

atlas is a hand-segmented atlas developed by Mazziotta et al. (2001) and Collins

et al. (1995) and distributed within the FSL library of neuroimaging tools (Jenk-

inson et al., 2012). Choice of atlas is dependent on particular hypotheses, and

can have a large effect on the connectivity inference of the proposed model. Split-

ting large regions of interest into two subregions has been found to be practically

unnecessary, as the partial correlation within these subregions has been observed

to be very high, even when the regions that were split apart are not physically

contiguous within the brain. This does not present meaningful additional infer-

ence in the results of the model, so the regions of interest are kept as defined by

the structural atlas in order to ease interpretation of the results. The voxel-level

activation results were observed to be practically unchanged by splitting the re-

gions of interest. One subject (subject 15) was removed from the dataset after
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exploratory data analysis showed unusually high variance and temporal patterns

that were not present in the scans of other subjects. In the whole-brain analysis,

the regions of interest varied in size between 99 voxels and 1667 voxels after the

BOLD response tensors were multiplied by binary masks, with a median region

volume of 649 voxels.

To measure the level of risk being processed by a subject at a given time,

we slightly modified the procedure used in Schonberg et al. (2012), described

as follows. Begin with the centered number of pumps that an individual gave

a âĂĲtreatmentâĂİ balloon before they âĂĲcashed-outâĂİ or the balloon ex-

ploded. It is assumed that the higher the number of pumps becomes, the more

risk is present to the individual. This value was then convolved with the double-

gamma haemodynamic response function (HRF), which takes into account the

physiological lag between stimulus and response, and smooths the stepwise func-

tion for the centered number of pumps. In this analysis, all subjects are similar in

age, and so they are assumed to have the same HRF. Future work may be done

to expand the model to account for variance in the HRF for different subjects.

The HRF used the default values in the canonicalHRF function in the neuRosim

package in R, which are described in the Simulated Data Analysis section. Finally,

we deviated from Schonberg et al. (2012) by subtracting the centered, convolved

number of pumps on the control balloon from the treatment series to provide

a basis of comparison between the two balloon types. To summarize, the final

covariate is calculated as

covariate =

(centered, convolved number of treatment pumps)

− (centered, convolved number of control pumps)
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Figure 2.8 shows the raw values for the centered number of control and treatment

pumps, as well as the convolved pump functions and the final values for the

covariate that were used in these analyses for a single subject.

The independent variable was then created as the difference between paramet-

ric modulation of the number of pumps on the treatment balloons and on the

control balloons. The first two covariate values for each subject were removed to

match the two dropped volumes in the EPI images. This covariate can be viewed

as a contrast that accounts for the effect of the treatment balloons that mitigates

any activation by subtracting the effect of increased pumps on the control balloon,

when subjects are aware that there is no risk. This is similar to, but not the same

as the analyses done in Schonberg et al. (2012) , which attempts to measure activ-

ity by subtracting effect estimates associated with the control balloons from the

effect estimates associated with the treatment balloons. In this scenario positive

coefficients imply more activity associated with treament balloons, negative coef-

ficients suggest higher activity levels for the control balloons, and values close to

zero imply no activity or similar activity for the treatment and control balloons.

The previous work done by Schonberg et al. (2012) concludes that areas within

the frontal lobe, insula, and occipital lobe show BOLD response associations with

risk-associated tasks. In this analysis, the data will be analyzed in order to verify

these conclusions and explore the functional connectivity between the defined

regions of interest. We hypothesize that our model will recover activations in the

frontal lobe and insula, and that there will be some positive partial correlations

between the two groups.

The proposed Bayesian tensor mixed effect models were fitted first on whole-

brain data with low ranks in order to identify regions of the brain that should

be examined further in a full-resolution analysis of a slice within the scans. This
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is done in order to perform an analysis over the whole brain, which produces

a dataset that does not fit into computer memory all-at-once at full resolution,

without sacrificing precision on the estimate of voxel-level activation. Next, low-

rank models were fitted to data from an axial slice in which z = 18 in the MNI

standard space. This slice was identified as being within a region showing activity

in the whole-brain analysis.

Due to the large size of the data, 2,200 samples were drawn from the joint

posterior distribution of all of the parameters, and the first 200 samples were

discarded as a “burn-in" measure. We believe that this is a sufficient posterior

sample size based on examinations of the log-likelihood and autocorrelation func-

tions, which can be seen in figures B.4 and B.5. In addition, the effectiveSize

function within the coda package in R is used to calculate median values for the

effective sample size for the 2,000 posterior draws of the elements in all Bg for

the different rank models, see Table 3.3. This table indicates uncorrelated post

burn-in posterior samples to draw reliable posterior inference.

The final estimates of the activation tensors were found following the sequential

2-means variable selection method as described in Li and Pati (2017), using the

median posterior standard deviations of the elements within each tensor Bg as the

tuning parameter. These estimates within the whole brain were then reorganized

to their original positions, and can be seen for a single axial slice in Figure 3.5.

Results for the high-resolution analysis of a single axial slice based on the whole-

brain analysis can be seen in Figure 3.6. Higher values of the coefficient suggest

that there is an increase in the BOLD response associated with higher levels of

perceived risk. Larger positive values suggest that blood flow increases in these

regions as risk increases. Larger negative values would suggest regions that exhibit

a decrease in blood flow as risk increases, though no such regions were observed
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in this analysis. The figures do show activations in the left posterior region of the

frontal lobe and the anterior portion of the left insula, as concluded in Schonberg

et al. (2012).

Similar to the simulation studies, the vectorized GDP, spike-and-slab, and

GLM competitors are also fitted to the data to assess the advantages of preserving

the tensor structure of the brain image in our proposed model. According to the

Deviance Information Criterion (DIC) (Gelman et al., 2014) given in Table 3.3,

Rank 2 is the best performing tensor mixed effect model for the higher resolution

2D slice data, while Rank 1 is the best performing model in the whole volume

data. Figures 3.5 and 3.6 show that all the models that use tensor decompositions

generally agree in terms of the posterior activation results. The vectorized model

provides much lower estimates of activation strength than those obtained from

the tensor decomposition models. These results suggest that the tensor mixed-

effects models using the tensor decomposition is more sensitive than the GLM or

vectorized GDP models, while also being more specific in detecting non-activation

in regions further from active regions than the spike-and-slab model.

Slice Whole Brain
ESS DIC ESS DIC

Rank 1 1826 1107186130 1743 1777033580
Rank 2 1742 1107078983 1583 1777227494
Rank 3 1742 1107160202 1211 1777227494
Rank 4 1709 1107130129
Rank 5 1705 1107130129

Spike-and-Slab 2000 2000
Vectorized 1774 2000

Table 3.3: The median effective sample size and log deviance information crite-
rion for the five tensor decomposition models and a vectorized model for compar-
ison.

The estimates for the significantly nonzero partial correlations between re-

gions for the whole brain shown in Figure 3.7 indicate a functional connectivity
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Figure 3.5: One Slice of Activity Estimates - Whole Brain
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Figure 3.6: One Slice of Activity Estimates - Single Slice
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Figure 3.7: The connected regions of the whole brain in the rank 1 model, based
on the partial correlation. The partial correlation here was found after using the
sequential 2-means method (Li and Pati, 2017) on the partial correlation matrix
elements across all MCMC samples. Thicker lines correspond to larger partial
correlations, as all of the estmates of the nonzero partial correlations are positive.

network that also supports our hypothesis that the frontal lobe and the insula are

connected. Other rank models lead to results with similar connective networks.

The whole-brain connectivity network is shown because the results are more inter-

pretable. Our finding agrees with earlier experiments suggesting that the frontal

lobe plays a role in the assessment of risk (Miller and Milner, 1985). The nu-

meric estimates for these partial correlations are small, which is to be expected

in high-noise smoothed data, especially given the strength of the regularization in

the Gaussian graphical prior (note that this prior induces strong shrinkage, see,

for example the strength of the regularization in Figure 3.3 that is obtained in a

much simpler simulation scenario with reasonable signal-to-noise data). However,

these detected connectivity network in the regions of interest are significant and

may be of investigative interest to neuroscientists.
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3.6 Conclusions and Extensions

We present a new Bayesian tensor model for joint detection of voxel-level ac-

tivation and region-specific connectivity in multi-subject studies. The proposed

model produces markedly improved inference over a vectorized GDP model both in

terms of identifying point estimation and quantifying uncertainty in a statistically

principled manner. In addition, the model performs especially well in scenarios

with low contrast-to-noise ratios, properly identifying hypercubic nonzero-valued

regions within tensor coefficients while also finding functional connectivity be-

tween predefined regions. We also found that the proposed model exhibits an ad-

vantage over other Bayesian models in that nonzero estimates of activation tend to

remain tightly clustered around true activation regions, preserving the underlying

localized spatial structure. This is in contrast to both the spike-and-slab and vec-

torized GDP models considered as competitors. Our sensitivity analysis exhibited

the robustness of the model to choices of hyperparameters. The proposed mod-

eling structure is also flexible as it does not require extensive parameter tuning,

adjustments for multiple testing, or selecting specific basis representations, mak-

ing it accessible to a wide range neuroscientists and statisticians alike. Analysis

of the model’s performance under misspecification showed that it does not appear

to be strongly impacted by the presence of temporal correlated errors. Due to the

shrinkage priors imposed on the activation and connectivity components of the

model, effect sizes are mildly underestimated, but activation and connectivity are

still detected in low contrast-to-noise and signal-to-noise settings. Furthermore,

our simulation studies show that the proposed tensor models performs better than

competing models, particularly in comparison to the GLM, in terms inferring the

connectivity structure across multiple regions.

Our analysis of a subset of the brain data examined by Schonberg et al. (2012)
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confirmed that increased risk was associated with activity in the insula and frontal

lobe. The inference was further improved by examining functional connectivity

between regions of interest to detect a functional connectivity network, which we

hope can be further explored in future research.

Our proposed approach assumes several important extensions. Notably, the

parsimony in activation coefficients achieved by a PARAFAC decomposition may

appear to be restrictive in certain applications, and can be replaced by a more

flexible Tucker decomposition. Additional shrinkage prior models may also be ex-

plored under different tensor decomposition prior structures to explore the effects

on posterior inference. Extensions of (3.2) that incorporate nonlinear regional ef-

fects through time could also be explored. Very importantly, extending the model

to include temporal and spatio-temporal dependent error structures may further

improve the model in its use with fMRI data. Finally, investigation into model-

driven choices for subject-specific haemodynamic response functions may improve

upon the accuracy of the proposed approach in real data applications.

81



Chapter 4

Bayesian Tensor Regression Using

the Tucker Tensor Decomposition

Now we leave behind the modeling settings with one or more tensors as the

response and examine a scenario in which each subject has a scalar response and

tensor- and vector-valued covariates. This has implications about image analy-

sis in general, but has features that are attractive to neuroimaging analyses in

particular.

4.1 Introduction

Image analysis has become an important application area with the develop-

ment of computer memory that allows for storing large datasets on local comput-

ing machines. Indeed, machine learning applications of image analysis are now

present in many fields of research, such as medical imaging, character transla-

tion, and self-driving cars. In many of these cases, a fast modeling structure that

provides inferential and/or prediction capabilities is all that is required. Such

models have been shown to be very effective in settings with billions or trillions
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of observed data points. However, scenarios in which models are built on smaller

sample sizes suffer from a sensitivity to unusual observations without imposing

additional constraints or assumptions.

The field of medical imaging is particularly rich in methods dealing with large

datasets and small sample sizes. Since its inception with the discovery of X-

rays in 1895 (Bercovich and Javitt, 2018), the field has grown to be a major

component of modern medicine. The digitization of medical imaging in recent

decades has opened the doors to analysts outside the purview of local hospitals

and radiology centers, which lifts some of the burden of diagnosis from that of

radiologists and reduces the rate of medical errors (Bruno et al., 2015). This shift

also allows researchers to develop new models that can provide insight into how

bodily mechanisms work inside living subjects by enabling the combined analysis

over a number of subjects. Due to the clinical importance inference and prediction

from these models, the assumptions and constraints must be carefully applied.

Several methods are already in use for these types of data within the neu-

roimaging community. One of the most commonly-used methods is referred to

as the general linear model (GLM), which is not to be confused with the gener-

alized linear model that is commonly used in statistics. This model performs a

massive univariate analysis in which the response is regressed independently on

each voxel within a tensor covariate, in addition to any additional vector covari-

ates (Friston et al., 1995; Penny et al., 2011). These models have the advantage

of being relatively inexpensive, computationally. However, they also assume that

the associations between different voxels in the tensor and the response are all

independent and not necessarily sparse. In practice, different multiple testing

corrections are used to preserve spatial relationships among proximal voxels via

independent components analysis, though work by Eklund et al. (2016) suggests
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that these inflate the false discovery rate. Methods that control the false dis-

covery rate are appealing (Benjamini and Hochberg, 1995; Lindquist and Mejia,

2015), but they fail to take spatial relationships within the tensor coefficient into

account.

A different class of approaches takes advantage of the tensor structure of the

data by decomposing the tensor covariates using one of two tensor decompositions

and imposing regularization constraints. Work done by Zhou et al. (2013) uses the

parallel factorization/canonical polyadic (PARAFAC/CP) tensor decomposition

in a classical tensor regression approach, which assumes that dimension margins

are principal components for construction of the tensor coefficients. This was

expanded in the work by Li et al. (2018) in the use of the more flexible Tucker

decomposition. Guhaniyogi et al. (2017) created a novel Bayesian prior structure

on the PARAFAC/CP tensor decomposition elements, which improved on the

uncertainty quantification from the model inference.

In this article, we will outline a model that satisfies the careful implementation

of assumptions of sparsity and spatial similarity within a tensor-valued coefficient.

This is accomplished through the use of the Tucker tensor decomposition (Tucker,

1966), which can be thought of as an analog to a principal components analy-

sis where the components are dimension margins. Through simulation studies,

we show the efficiency and accuracy of the model over a number of competitors,

including other tensor regression models. The method is also applied in a neu-

roimaging analysis of data from the Alzheimer’s Disease Neuroimaging Initiative.

4.2 Methodology

This section begins with the formulation of the Tucker tensor regression model

and the priors applied to the components within it. The identifiability of the model
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components is then discussed, followed by a discussion about the choice of rank

in analyses. Competitor models are then outlined, which validate our proposed

method as a useful and reliable tool in sparse tensor regression scenarios.

4.2.1 Tucker Tensor Regression Model

Assuming a scalar response yi, for i = 1, . . . , n and vector-valued and tensor-

valued predictors, ηi ∈ Rq and Xi ∈ Rp1×···×pD , respectively, the observed linear

model can be represented as

yi = 〈B,Xi〉+ γ ′ηi + εi, (4.1)

in which B ∈ Rp1×···×pD is a tensor-valued coefficient, γ ∈ Rq is a vector-valued

coefficient, and εi is an error term, which follows any distribution centered at

zero. Note that, since we are focusing on the methods to address tensor regres-

sion, we are restricting our attention to scenarios in which q is relatively small.

However, the model framework here does allow for a seamless extension to a high-

dimensional ηi.

Given the potentially large predictor space within the tensor-valued covari-

ate, it is reasonable to assume that some cases exist in which the association

between the elements in Xi and yi is sparse. In order to include this structure

into the model while simultaneously reducing the parameter space, the Tucker

tensor decomposition is used, as outlined in (1.2). Furthermore, in order to pro-

vide probabilistically-rigorous measures of uncertainty on the parameters in (4.1),

Bayesian modeling is used. Specialized priors are imposed to induce sparsity on

the estimates of the elements in B. Standard Bayesian modeling techniques are

applied to the γ and εi terms, as outlined below.
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4.2.2 Prior structure

A key goal of the model is to address assumed sparsity in the tensor-valued

coefficient. Classical regularization methods used to meet such a goal include var-

ious penalized regression algorithms like the LASSO (Tibshirani, 1996). However,

these methods lack the ability to provide a measure of uncertainty quantification

on the estimates for the parameters. Shifting to a Bayesian modeling structure

can serve to fill this gap, leading to improved inference in some cases.

Li et al. (2018) proposes a classical model for tensor regression using the Tucker

decomposition in which a penalty is applied to either the core tensor G or both

the core tensor G and each dimension component βj,rj in the decomposition. We

propose shrinkage priors on both the core tensor and all dimension components

in order to more strongly induce parameter regularization.

Following the previous work done by Guhaniyogi et al. (2017), an adapted

generalized double-Pareto prior is applied to the dimension components within

the Tucker tensor decomposition. That is,

B =
R1∑
r1=1
· · ·

RD∑
rD=1

gr1,...,rDβ1,r1 ◦ · · · ◦ βD,rD ,

βj,rj ∼ Normal
(
0, τWj,rj

)
,

τ ∼ Gamma(aτ , bτ ),

ωj,rj ,` ∼ Exponential
(
λ2
j,rj

2

)
,

λj,rj ∼ Gamma(aλ, bλ),

where Wj,rj is a diagonal matrix with elements ωj,rj ,` for ` = 1, . . . , pj. Integrating

over the element-specific scale parameters reduces the prior on βj,rj ,` to a double-
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exponential distribution centered at 0 with a scale parameter of λj,rj√
τ
, which has

heavier tails than a Gaussian distribution, while also allocating higher densities

around zero. This produces an analog to the adaptive LASSO, including its

desirable oracle properties of the maximum a posteriori estimator (Armagan et al.,

2013a).

In order to adequately select the proper rank for each dimension and to reduce

noise in the tensor coefficient estimates, the generalized double-Pareto prior is also

imposed on the elements of the core tensor G:

gr1,...,rD ∼ Normal(0, zvr1,...,rD),

z ∼ Gamma(az, bz),

vr1,...,rD ∼ Exponential
(
ϕ2
r1,...,rD

2

)
,

ϕr1,...,rD ∼ Gamma(aϕ, bϕ).

This combination ensures that only summands within the Tucker decompo-

sition that explain additional variance are included in the model. Selection of

important ranks can be done using the sequential 2-means post-hoc variable se-

lection procedure proposed by Li and Pati (2017).

For the purposes of the analyses in this article, a multivariate normal prior

with mean µγ and covariance Σγ is placed on the elements of γ. This is done

to maintain conjugacy while maintaining control over the expected effects of the

vector-valued coefficients. The errors εis in this model are assumed to be indepen-

dent identically distributed following a normal distribution with a mean of zero,

and a variance of σ2
y . An inverse gamma prior is placed on σ2

y with hyperparame-
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ters aσ and bσ.

γ ∼ Normal(µγ,Σγ)

εi
i.i.d.∼ Normal(0, σ2

y)

σ2
y ∼ Inverse Gamma(aσ, bσ)

4.2.3 Identifiability

The decomposition of the tensor coefficient raises questions about the identi-

fiability of the parameters in the model. That is, if the value of any voxel within

the tensor coefficient is estimated as

b̂v ∈ B̂ : b̂v = g1,...,1β1,1,v1 · · · βD,1,vD + . . .+ gR1,...,RDβ1,R1,v1 · · · βD,RD,vD ,

where v is the voxel location within the tensor (v = (v1, . . . , vD)), then any two

of these summands can be multiplied by c and 1
c
, respectively, and the estimate

for that voxel within the tensor coefficient b̂v would have the same value. Indeed,

the values of gr1,...,rD and βj,rj ,vj are not identifiable, but b̂v remains identifiable

through the shrinkage priors on the tensor decomposition components.

Something to consider when using this model for a data analysis is that

an identifiability problem exists between B and γ if there are voxels within

X, ∀i = 1, . . . , n that are collinear with any of the values in η, ∀i = 1, . . . , n.

This is a problem that may be undetected in two-step frequentist models with

regularization, as either elements in B or γ may simply be assigned values of

zero.
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4.2.4 Selection of Rank

A key consideration in the use of the proposed model structure is the selection

of each dimension rank. Increases in a margin’s rank can be made with an attempt

to increase the spatial resolution on the inference of the tensor coefficient. For

larger tensor covariates, this may require higher ranks than smaller tensors if the

nonzero coefficients are not hypercubic. Choice of unequal ranks may be prudent

if some of the tensor dimensions are much larger or smaller than others. Consider

an example in which the tensor covariate has dimensions 100 × 100 × 4. The

ranks for the first two dimensions may need to be considerably larger than the

rank for the final dimension, as there are only four possible margin locations in

the final dimension. One such realistic application would be to combine magnetic

resonance images that use different sequences (e.g. T1 weighted, T2 weighted,

effective T2, etc.) into a single tensor, using a low rank on the dimension that

represents different sequences. This is a clear advantage over the CP/PARAFAC

decomposition methods, as each dimension is not forced to have the same number

of ranks as all of the others.

Once a set of reasonable ranks is decided for each tensor dimension, the differ-

ent combinations of the ranks should be used to fit models and compare results

using some model selection criterion like the DIC.

4.2.5 Competitor Models

The effectiveness of the proposed Bayesian sparse tensor regression models is

shown by making direct comparisons to models commonly used in the field of

neuroscience. The first is the general linear model (GLM), in which the response

(y1, . . . , yn) = y is regressed on each voxel v within the tensor covariate X ∈

Rp1,...,pD independently with the vector-valued coefficients. The linear model for
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the GLM is written in equation (4.2). Note that the same responses (y1, . . . , yn) =

y are used to fit separate models for each voxel within the tensor covariate.

yi = bvXi,v + γ ′ηi + εi,v (4.2)

This model is an industry standard for its ease of implementation and rapid com-

pletion. However, this model often suffers from a high false discovery rate (Eklund

et al., 2016), and does not provide a single estimate for the vector-valued coeffi-

cient. We adjust for the high false discovery rate in our implementation by using

the Benjamini-Hochberg multiple testing correction (Benjamini and Hochberg,

1995), which fixes the false discovery rate (FDR). In the following trials, the FDR

is fixed at 0.05, in agreement with standard practice in neuroimaging. In order

to provide a single estimate for the vector of coefficients γ, a two-step GLM algo-

rithm could be used, which is described in algorithm 2. In the implementation of

these models, δ is set to be equal to 1.
Result: Estimates of γ and B

Initialize γ(0) as maxγ `(y,η,γ), B(0) as maxB `(y,η,X,γ(0),B) ;

repeat

Set γ(t+1) = maxγ `(y,η,X,γ,B(t)) ;

Set B(t+1) = maxB `(y,η,X,γ(t+1),B);

until max
(
max(B(t+1) −B(t)),max(γ(t+1) − γ(t))

)
< δ;

Algorithm 2: Two-step method for regressing response y on vector-valued co-

variates η and tensor-valued covariates X.
The advantage of the two-step GLM is that it produces single estimates of γ,

and as a result, tends to have a lower FDR. Here again, the Benjamini-Hochberg

multiple testing correction is used to limit the false discovery rate in deciding

which voxels in the tensor coefficient are significantly different from zero.

Direct tensor regression competitors are also used to validate the performance
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of the proposed model structure. Specifically, the frequentist tensor regression

using the PARAFAC/CP tensor decomposition (Zhou et al., 2013) and the Tucker

tensor decomposition (Li et al., 2018) are used to compare point estimates to

classical methods. Comparison to the Bayesian tensor regression using the

PARAFAC/CP tensor decomposition (Guhaniyogi et al., 2017) provides a more

direct comparison in terms of point estimates and uncertainty quantification.

4.3 Simulated Data Analysis

On order to demonstrate the efficacy of the proposed Bayesian model, data

were simulated from the linear model in (4.1) under the conditions B ∈ R50×50,

where nonzero-valued elements take the value of 1 in the middle of the regions,

fading outward to lowere nonzero values using the specifyregion function within

the neuRosim package in R (Welvaert et al., 2011). For the sake of these simu-

lations, three separate regions of activation are generated at random locations.

The elements of Xi are all independently generated from a standard normal dis-

tribution for i = 1, . . . , 1000. The elements for the vector-valued covariates ηi are

also independently generated from a standard normal distribution. The param-

eters for the vector-valued covariates are set as γ = (γ1, γ2, γ3) = (25, 3, 0.1) to

show how the different models estimate parameters of different size, relative to

the observation error, which is set to have a variance of 1. Finally, the elements

of y = (y1, . . . , yn) are generated according to (4.1) for εi ∼ Normal(0, 1).

The Bayesian models had the following hyperparameter settings: aσ = 3, bσ =

20, aλ = 3, bλ = a
1/(2D)
λ , µγ = 0, Σγ = 900Iq, aτ = 1, bτ = min(R1, . . . , RD)(1/D)−1,

az = 1, bz = min(R1, . . . , RD)(1/D)−1, aϕ = 3, and bϕ = a1/(2D)
ϕ . The prior on the

observation error variance is set to be relatively noninformative in the context of

the simulation, with a mean of 10 and a variance of 100. The priors for λ and ϕ
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are set to have modes between 1.5 and 2, getting closer to 2 as the tensor dimen-

sion increases, which places the prior expected value for vr1,...,rD and the elements

within Wj,rj to be between 2
3 and 1

2 . The priors for τ and z have a mean of 1

when all R1, . . . , RD = 1, increasing sublinearly with both the minimum value of

Rj for j = 1, . . . , D, and the tensor dimension D. The prior variance for τ and

z increases linearly in rank when D = 2, and superlinearly in rank when D > 2.

This prior specification allows for a slightly higher prior variance for βj,rj and

gr1,...,rD as rank and dimension increase in order to allow for moderately faster

exploration of the parameter space as the tensor dimension and rank increase.

The prior for γ is set to be relatively noninformative.

For all 16 models with R1, R2 ∈ {1, 2, 3, 4}, 11,000 Markov Chain Monte Carlo

(MCMC) simulations from the posterior distribution were drawn. After discarding

the first 1000 draws, the remaining draws were used to estimate B and γ.

Since the model does not produce exact zeros as estimates for zero-valued pa-

rameters, the sequential 2-means variable selection method proposed by Li and

Pati (2017) is used for variable selection within the tensor coefficient. The method

works by using 2-means clustering of any subset of the parameter space on the

absolute values of each draw from the posterior distribution. The number of val-

ues in the cluster in which the center is furthest from zero is taken as the number

of non-zero valued parameter estimates for that particular posterior sample. The

median number of non-zero parameter estimates across all of the posterior sam-

ples,m is then found. Finally, the parameters with them highest posterior median

absolute values are determined to have true non-zero values. These parameters are

then estimated with their posterior medians. This process is formally described

in algorithm 1.

Point estimates for the Bayesian and frequentist sparse Tucker tensor regres-
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sion and the Bayesian and frequentist sparse CP tensor regression can be seen in

Figure 4.1. In the interest of clarity, the only Tucker decomposition models shown

are the equivalents to the PARAFAC/CP models. It is worth noting that addi-

tional ranks are needed in order to accurately detect additional nonzero regions

in the true coefficient tensor. The Bayesian methods using the CP/PARAFAC

decomposition do not exhibit the same gains in nonzero region detection as the

Tucker decomposition models. All of the tensor regression methods show signifi-

cant improvement over the two-step GLM competitor. In order to choose between

the models, the deviance information criterion is used for the Bayesian sparse ten-

sor regression models, while the log-likelihood is used for the frequentist sparse

tensor regression models. The point estimates from these selected models, along

with the two-step GLM estimate and the true values are shown in figure 4.2.

The estimate shown for the two-step GLM tensor coefficient assigns values of zero

to voxels within the tensor that are not statistically significant after using the

Benjamini-Hochberg multiple testing correction.

In order to compare the performance of these models, the root mean squared

error (RMSE) for each element within B can be compared in Table 4.2. Explicitly,

the RMSE was found as
√

1
V

∑
v(B̂v −Bv)2, where B̂v is the point estimate for

tensor coefficient element v obtained from a model, Bv is the true value taken by

the coefficient tensor element v, and V is the total number of elements in the coef-

ficient tensor. These results show the effectiveness of the Bayesian sparse Tucker

tensor regression model in estimating true tensor coefficient values, exhibiting a

lower RMSE than other tensor regression methods using tensor decompostions.

In particular, significant improvements are seen over the Bayesian CP/PARAFAC

models when both R1 and R2 are greater than 1. This is also visible in figure 4.1,

where the gain in the true image recovery is much greater going from a rank 1,1
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Figure 4.1: Point estimates of the true tensor coefficient for the Bayesian sparse
Tucker tensor regression and the frequentist sparse Tucker tensor regression. The
Bayesian point estimate was found using the sequential 2-means posterior variable
selection method (Li and Pati, 2017).
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Figure 4.2: Point estimates of the true tensor coefficient for all competitors.
Bayesian models were chosen using the deviance information criterion, and the
frequentist models were chosen using the Bayesian Information Criterion.
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True Zero
R1/R2 1 2 3 4
1 0.955 0.955 0.955 0.955
2 0.955 0.965 0.965 0.966
3 0.959 0.966 0.968 0.970
4 0.959 0.965 0.971 0.975

Rank 1 Rank 2 Rank 3 Rank 4
BTR CP 0.968 0.991 0.994 0.998

True Nonzero
R1/R2 1 2 3 4
1 0.391 0.384 0.391 0.404
2 0.391 0.503 0.503 0.503
3 0.404 0.503 0.669 0.656
4 0.391 0.503 0.642 0.735

Rank 1 Rank 2 Rank 3 Rank 4
BTR CP 0.464 0.603 0.636 0.695

Table 4.1: Coverage probabilities of the 95% credible intervals for the true zero
and true nonzero values within B for different rank models.

to rank 2,2 model than it is in the Bayesian CP/PARAFAC models going from

Rank 1 to Rank 2. In addition, all of the competitor methods perform signifi-

cantly better than the two-step GLM model, which is often used in neuroimaging

studies.

The posterior densities for {γ1, γ2, γ3} under different models can be seen in

Figure 4.3. These results show that the posterior densities for each γj are centered

at or around the true values. When a coefficient is very far from zero relative to

the error in the likelihood distribution, as in the first column of plots in figure

4.3, the Bayesian models do show the effect of choosing a prior mean of 0. This

inference would be improved by choosing prior mean values that more accurately

reflect what is expected to be seen within the data, but the effect of this poorly

specified prior are not extreme. However, when the true value is very close to

zero, as in the last column of plots in figure 4.3, the Bayesian models still have
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BTR Tucker
R1/R2 1 2 3 4

1 0.0686 0.0686 0.0686 0.0686
2 0.0686 0.0413 0.0413 0.0413
3 0.0686 0.0413 0.0330 0.0330
4 0.0687 0.0413 0.0330 0.0276

FTR Tucker
R1/R2 1 2 3 4

1 0.0718 0.0697 0.0719 0.0752
2 0.0711 0.0467 0.0488 0.0544
3 0.0719 0.0475 0.0501 0.0591
4 0.0725 0.0491 0.0506 0.0617

CP/PARAFAC
Model Rank 1 Rank 2 Rank 3 Rank 4
BTR 0.0690 0.0614 0.0614 0.0633
FTR 0.0686 0.0420 0.0383 0.0297

No Ranks
GLM 0.1355

Table 4.2: The root mean squared error (RMSE) for the estimates of B under
Bayesian sparse tensor regression (BTR) and frequentist sparse tensor regression
(FTR) using the Tucker and CP tensor decompositions. The RMSE for the general
linear model (GLM) is provided as a comparison.

high posterior densities above 0, suggesting that they do detect the weak signal

for a small true coefficient value. Interestingly, the Bayesian sparse Tucker tensor

regressions show much higher posterior densities around the true coefficient values

in all cases. This is an effect of the improved inference estimating B.

4.3.1 Model Convergence

In all Bayesian modeling settings, it is important to ensure that the MCMC

converges around an area within the neighborhood of the global posterior mode.

Given that the posterior inference matches the inference shown within the fre-
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Figure 4.3: Posterior densities for {γ1, γ2, γ3} under different models. Points
indicate the estimates from the frequentist sparse tensor regression models. The
red line indicates the true value, and the black line indicates the estimate from
the two-step GLM frequentist model.
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Figure 4.4: The log-likelihoods for the models applied to the simulated data

quentist models, the model does converge to a global mean in the simulated data

settings when the assumption of normal error is satisfied, and the prior distribu-

tions are specified to be relatively uninformative. The log-likelihood values using

the posterior draws, shown in Figure 4.4, also show rapid convergence to a mode

and posterior stability.

4.3.2 Hyperparameter Sensitivity

Modeling in such a high-dimensional space with several hierarchical levels in

the prior structure requires careful selection of hyperparameter values. However,

the model is still expected to be somewhat robust to differences in prior specifi-

cation. In order to test this expectation, a large grid of hyperparameter values
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for aσ, bσ, aλ, aτ , az, and aϕ was created. First, the values for the hyperparameters

used to model the simulated data are taken and multiplied by 0.1, 1, or 10. One

hundred configurations were randomly selected from the 729 possible configura-

tions, and the model with ranks R1 = R2 = 3 was run with the same simulated

data as above for 11,000 iterations with each combination. In each case, 1,000

iterations in the MCMC were discarded as a burn-in.

Of the 100 configurations, 93 converged to have an RMSE for the tensor co-

efficient B between 0.03279 and 0.03336. The remaining 7 configurations all had

RMSEs within 10−8 of 0.1336523, which is the RMSE that results from predicting

B with a tensor of all zeros. The priors for these seven configurations all had

the smallest values for the prior variance for the elements of B (approximately

2×10−3) and/or the highest prior means (approximately 1010) and variances (over

1020) for σ2
y . Indeed, individual inspection of these models with larger RMSE val-

ues show that the estimates for γ are within the same range as the estimates

from the models that had a lower RMSE for the tensor coefficient, but they all

estimate that the tensor coefficient is zero. This highlights the need to carefully

balance the amount of shrinkage that can be applied to elements within B before

no image coefficients are recovered. In addition, the prior specification for σ2
y must

be reasonable in order to achieve interpretable results.

4.4 Neuroimaging Analysis

Data from magnetic resonance images (MRIs) of the brain have been found

to have sparse, spatially-contiguous associations with certain phenotypes, such

as cognitive performance scores or neurological disorders. In order to demon-

strate the efficacy of the Bayesian sparse Tucker tensor regression, data from the

AlzheimerâĂŹs Disease Neuroimaging Initiative (ADNI) database (adni.loni.
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usc.edu) were used. The ADNI was launched in 2003 as a public-private part-

nership, led by Principal Investigator Michael W. Weiner, MD. The primary goal

of ADNI has been to test whether serial magnetic resonance imaging (MRI),

positron emission tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of

mild cognitive impairment (MCI) and early AlzheimerâĂŹs disease (AD). For

these analyses, data from the “ADNI1: Complete 1 Yr 1.5T" image collection

were used. The phenotype data “AD Challenge Training Data: Clinical (Up-

dated)" were used in order to maintain consistency with a series of challenges put

forth by ADNI in 2014. The AD DREAM (Dialogue for Reverse Engineering As-

sessments and Methods) challenge invited researchers and analysts from all over

the world to use statistics and machine learning methods to try to address one of

three subchallenges. Subchallenge 3 had the stated goal to “Classify individuals

into diagnostic groups using MR imaging." This can be done either by predicting

the Mini-Mental State Exam (MMSE) or by using a classification model, such as

binomial or multinomial logistic regression models.

The MMSE is a diagnostic tool used to classify adults based on levels of cogni-

tive impairment (Pangman et al., 2000). The exam itself poses a series of questions

to test the subject’s ability to perform everyday tasks. The maximum score that

one can achieve on the test is 30, and the scores take integer values. These scores

can then be used in conjunction with other information to diagnose an individual.

In both the training and test samples used within this analysis, scores ranged from

20 to 30.

The challenge was judged based on correlations between actual and predicted

MMSE scores, which motivated the choice to model with the MMSE as the re-

sponse variable. More specifically, our analysis used the centered MMSE scores as
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the response y = (y1, . . . , yn) = (MMSE1, . . . ,MMSEn) −MMSE, where MMSE

is the average MMSE score. This centering was done in both the training and

testing datasets so that an intercept term would not need to be estimated, which

could cause identifiability problems with the other non-tensor coefficients in the

model. All data were accessed on September 30, 2019. For subjects with multiple

scans within the dataset, the scan used was matched to the scan referenced within

the ADNI data table found within the csv file labeled

ADNI_Training_Q3_APOE_CollectionADNI1Complete1Yr 1.5T_July22.2014,

distributed on the ADNI website. Some differences between the data used in this

analysis and the data used in the challenge must be highlighted. First, the testing

data were not publicly released, and our efforts to access the data from the lab

that provided them were rebuffed over concerns about privacy. This meant that,

in order to have a test dataset, the training dataset from the challenge had to be

subset to form the training and test datasets used in this analysis. Second, the

contestants also used subject data about their single nucleotide polymorphisms

(SNPs), which require their own special methods for processing and model use.

As this article focuses on tensor regression rather than other specialized meth-

ods, the SNP data are omitted from our modeling process. Third, as our method

uses volumetric data, we use the scans themselves, rather than the preprocessed

cortical surface data derived from the scans. Cortical surface information is a

form of preprocessing that structures the contents of an fMRI scan into a network

based on physical proximity accounting for folds and curvature in the brain. Since

the transformation functions for changing volumetric data to cortical surface data

were not released, we were unable to invert those transformations to obtain the

volumetric data that followed the same preprocessing pipeline as the one used in

the challenge. This also affected the number of subjects that produced usable
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data, which is further explained with the preprocessing steps below.

Brain extraction was performed on the downloaded scans using the fsl_bet

function from the fslr package in R (Muschelli et al., 2015; Smith, 2002a). Fi-

nally, affine linear registration to the MNI152 2mm T1-weighted brain template

was done using the flirt function from the fslr package in R (Muschelli et al.,

2015; Jenkinson and Smith, 2001; Jenkinson et al., 2002). After these functions

were performed, some scans needed to be removed from the sample, as not all

of the scans in the dataset were properly labeled to orient the structural scan

within the neuroimaging software. The result was a total of 403 usable structural

scans that matched to subjects within the ADNI dataset. From these subjects,

303 were randomly assigned to a training dataset, and 100 were assigned to a test

dataset. This resulted in a training dataset with 172 males and 131 females, with

a mean age of 76.01 years and standard deviation of 6.68 years, mean education

level of 15.42 years and standard deviation of 3.04 years, and mean MMSE score

of 27.03 and a standard deviation of 2.47. The testing dataset had 60 males and

40 females, with a mean age of 75.49 years and standard deviation of 6.61 years,

mean education level of 16.00 years and standard deviation of 2.91 years, and

mean MMSE score of 26.65 and standard deviation of 2.84. Since Alzheimer’s

disease (AD) is found to be significantly associated with larger ventricular volume

in the brain (Nestor et al., 2008), the 45th axial slice was chosen for analysis.

Since the ventricles are filled with fluid rather than white matter from the brain,

a positive association with the MMSE scores in the region of the ventricles would

be consistent with the results of Nestor et al. (2008). The selected axial slice con-

tains ventricular volume in healthy adults, which would be expected to expand

at a faster rate with age in adults with Alzheimer’s disease. The values within

each subject’s image slice had the mean value for the nonzero tensor covariate
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voxels subtracted from them, and then were divided by the standard deviation

of that subject’s nonzero voxels to remove any subject-specific effect in terms of

the unitless measure from the scanner. Finally, the parts of the axial slice that

fell outside the brain region within the template were removed from the covariate

tensor in order to try to improve the coefficient estimation. This resulted in a

tensor covariate for each subject Xi ∈ R70×87.

For the non-tensor covariates in each subject, ηi, the number of years of educa-

tion and the number of Apolipoprotein E4 (APOE4) alleles present in a subject’s

DNA (0, 1, or 2). The number of years of education shows a significant associ-

ation with the MMSE scores in an exploratory data analysis. APOE4 has been

identified as a genetic risk factor for Alzheimer’s disease (Strittmatter and Roses,

1996). The APOE4 covariate was treated as continuous, as exploratory data

analysis suggests a linear association with the MMSE.

For the comparison of models in these scenarios, the root mean squared pre-

dictive error and the Pearson correlation between the predictions and the actual

values in the test dataset are used. The Pearson correlation is included because

it was used as a performance metric in the DREAM challenge. Each Bayesian

model is run for 11,000 iterations, after which 1,000 iterations are discarded as a

burn-in. The point predictions for the response are calculated as the means of the

posterior predictive distributions, which are found for each subject as

ŷ
(s)
i = 〈B(s),Xi〉+ γ(s)′ηi, (4.3)

for each sample s from the posterior distribution. The frequentist tensor regression

models are run until the log-likelihood change between steps is less than 0.1, and

they predict the response value for each subject using their point estimates for B

and γ.
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Final point estimates for the tensor coefficient are found in the Bayesian models

by using the sequential 2-means post-hoc variable selection method (Li and Pati,

2017). The frequentist tensor regression models are not corrected for multiple

testing, as they use the LASSO to select the coefficients that are significantly

different from zero. The two-step GLM model estimate is found by applying the

Benjamini-Hochsberg multiple testing correction and setting voxels that are not

significant to have values of zero. The deviance information criterion is used to

select which Bayesian model should be used to fit the data, and the Bayesian

information criterion is used to select the frequentist rank models. The plots for

the final estimates can be seen in Figure 4.5. These estimates are very different

among the different models, which may suggest that there is very low signal within

these data to conclude that there are nonzero coefficient values. Nonetheless,

the point estimate from the BTR Tucker model shows some positive associations

along the medial wall and left posterior ventricle, which is consistent with studies

that show that increased ventricle volume is associated with Alzheimer’s disease

(Nestor et al., 2008), and thus, the MMSE. Point estimates for the non-tensor

coefficients (γ) were found as the posterior medians in the Bayesian models after

the burn-in. The estimates from the selected competitor models can be seen in

table 4.3, along with the 95% posterior credible intervals for the Bayesian models.

In order to further verify the fits of the models, the model fits to the training

data are used to predict the MMSE values in the test dataset. The Bayesian

models produce predictions as the means of their posterior predictive distributions.

The two-step GLM results are used to predict after the Benjamini-Hochsberg

multiple testing correction is applied to the tensor coefficient. That is, any voxels

within the tensor coefficient that are not deemed to be statistically significant

are assigned a value of zero. The frequentist tensor regression models do not
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Figure 4.5: Point estimates for the coefficients in the 45th axial slice of the
ADNI data training subset.

have any multiple testing correction applied, due to their use of the LASSO. For

comparison, the root mean squared predictive error and the Pearson correlation

are calculated for each of the selected models. These values can be seen in table

4.3. From the model predictions, the BTR Tucker and FTR CP models perform

best, though it is important to note that these two models produce coefficient

estimates that are very close to zero, further suggesting that there may be very

low signal in the dataset for a significant association between the MMSE and the

45th axial slice of the structural MRI scan.

4.5 Discussion

The Bayesian tensor regression using the Tucker decomposition shows improve-

ment over other tensor regression methods within simulation studies, under the

assumption of normally distributed error. Through simulation tests, it is shown
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Model RMSPE Pearson
BTR Tucker - Rank 4,2 2.752 0.236
BTR CP - Rank 1 2.772 0.220
FTR Tucker - Rank 1,1 4.438 0.029
FTR CP - Rank 1 2.761 0.215
Two-step GLM 161.308 0.057
No-image 2.762 0.213
Model γ̂Edu (95% Cred. Int.) γ̂APOE4 (95% Cred. Int.)
BTR Tucker - Rank 4,2 0.135 (-0.709,1.073) -0.814 (-1.546,0.127)
BTR CP - Rank 1 0.084 (-1.274,1.031) -0.842 (-1.839,0.126)
FTR Tucker - Rank 1,1 0.074 -0.953
FTR CP - Rank 1 0.04 -0.914
Two-step GLM 0.04 -0.914
No-image 0.04 -0.914

Table 4.3: The root mean squared prediction error, Pearson correlation for pre-
dictions in the test data, and the final point estimates of the non-tensor coefficients
for the selected competitor models.

that the BTR Tucker models slightly outperform the frequentist Tucker tensor

regression models, and it more drastically outperform the Bayesian tensor regres-

sion competitor models based on the CP/PARAFAC tensor decomposition. These

performance improvements are seen in the inference for both the tensor-valued co-

efficients, and the vector-valued coefficients.

In the analysis of the ADNI data, it was found that all of the different com-

peting models resulted in an inconclusive final inference about the voxels within

the axial slice that show significant correlations with the MMSE scores. Com-

paring the predictions made with the test data show that the BTR Tucker model

outperforms the BTR CP model, if only because it shrinks values in the tensor

coefficient to zero.

Future extensions of this model that are planned include using expectation-

maximization or variational algorithms to rapidly determine point estimates and

select for optimal ranks for a full Markov chain Monte Carlo posterior distribution
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simulation. These methods would enhance the analysis while speeding it up con-

siderably. Additionally, formalizing the software used in these and other Bayesian

tensor regression methods is a priority, in order to make these analyses accessi-

ble to neuroimagers that have not been formally trained in Bayesian statistical

modeling.
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Chapter 5

Conclusion

Within this dissertation, we have covered some new methods and applications

that can be used to incorporate tensor-structured data into Bayesian regression

analyses. All of the methods employed tensor decompositions in order to reduce

the parameter, shrinking the parameter space while preserving expected spatial

structures within the tensor-valued parameter spaces. We began with the develop-

ment and theoretic validation of a new prior for modeling scenarios with a tensor-

valued response and scalar covariates. Expanding on work done in Guhaniyogi

et al. (2017), the prior relies on the CP/PARAFAC tensor decomposition (Tucker,

1966) and a stick-breaking structure with proven posterior consistency under mild

assumptions. Through testing on simulated datasets, the prior was shown to offer

attractive estimation of a sparse tensor-valued coefficient. The prior was then

implemented in the analysis of single-subject fMRI data (Schonberg et al., 2012),

showing results consistent with beliefs about risk-processing from neuroimaging

literature. From there, we expanded the model structure using the CP/PARAFAC

tensor decomposition further to apply to scenarios with multiple tensor responses

with graphical inference to estimate network structures between the different re-

sponse tensors. This method was then applied to fMRI data with multiple sub-
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jects, providing applicable inference to whole brain and high-resolution brain slice

data in identifying risk-processing voxels within the brain while also identifying

a connectivity network between different regions of interest within the brain. Fi-

nally, we explored the use of the Tucker tensor decomposition (Tucker, 1966) to

flexibly regress scalar responses on tensor- and scalar-valued covariates. Simulated

data analyses show improvements in inference over other models using tensor de-

compositions proposed in Zhou et al. (2013), Li et al. (2018), and Guhaniyogi et al.

(2017). The model was then used to analyze data including structural magnetic

resonance images from the Alzheimer’s Disease Neuroimaging Initiative and make

inference on parts of the brain associated with scores on cognitive exams used

to diagnose Alzheimer’s Disease. Results show improved inference and prediction

abilities, confirming accepted ideas from the neuroscience community about the

structures within the brain that are associated with the disease.

I began this journey into tensor regression with the expectation that I would

be developing models to deal with “big data" problems. I came to appreciate the

size of the data and the computational challenges they impose through tests that

lasted hours and real data analyses that lasted days or even weeks. This research

has led to a deep appreciation for parallel computing and the computational re-

sources of large universities. The size of the data and the use of Bayesian methods

motivated me to study methods in computational efficiency. I have dabbled in

other programming languages (C, Python, Julia, etc.) in order to try and decrease

the amount of time I waited to see if my Markov Chain Monte Carlo simulations

would work under hundreds of different settings. In the end, I have stuck with

R in my software due to its adoption in many research groups, but the lure of

greater efficiency may eventually draw me away.

Working with neuroimaging data required learning enough neuroscience to
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avoid modeling mistakes that rendered my inference, no matter how sophisti-

cated, completely worthless. I still find myself learning important pieces of in-

formation about data that I have spent years looking at. Many people helped

me pick up information, which I gathered piecemeal, like breadcrumbs. Andrew

Jahn, who is now at the University of Michigan, freely posted many tutorials and

resources online that gave me a baseline of understanding using the open-source

neuroimaging software FSL. I learned more through the SpaceTime meetings with

contributors from UC Irvine, KARST, the University of Minnesota, Rice Univer-

sity, and others. Meeting other neuroimaging analysts at different workshops and

conferences changed my understanding of the problems that I was attempting to

address through modeling. When I first started earning my PhD, I believed that I

wanted the education to attain a high-paying job in the technology industry, but

this work has changed my career focus to the modeling of neuroimaging data.

Several expansions on these investigations are being considered as future work

to improve on the adoption and inference from these methods. An R software

package is in development with the goal of making these Bayesian inferential tools

available to neuroimaging labs, complete with data simulation and model diagnos-

tic tools. Formal comparisons of other shrinkage priors on components in tensor

decompositions may yield improved results in the inference of the tensor-valued

coefficients. Additional ongoing research with Dr. Amanda Mejia at Indiana Uni-

versity is underway to implement a Bayesian method of the analysis of fMRI data.

Current work is focused on the software implementation of the methods described

in Mejia et al. (2019) to analyze cortical surface fMRI data, with multiple research

projects planned in the area of Bayesian neuroimaging analysis. For example,

developing Bayesian methods in modeling the haemodynamic response function

(HRF) coefficients may significantly improve inference by removing the assump-
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tion of equal HRFs for different subjects. For analyses in which point estimates

in the tensor-valued parameters are desired, but full posterior distribution in-

ference is unnecessary, further research explorations in expectation-maximization

and variational Bayes methods are promising.
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Appendix A

Bayesian Tensor Response

Regression With an Application

to Brain Activation Studies

A.1 Proofs

The proof of Theorem 2.3.1 relies in part on the existence of exponentially

consistent sequence of tests.

Definition An exponentially consistent sequence of test functions ΦT for testing

H0 : B(T ) = B(0)
(T ) vs. H1 : B(T ) ∈ AT satisfies

EB(0)
(T )

(ΦT ) ≤ c1 exp(−b1T ), sup
B(T )∈AT

EB(T )(1− ΦT ) ≤ c2 exp(−b2T )

for some c1, c2, b1, b2 > 0.

Theorem A.1.1. There exist an exponentially consistent sequence of tests ΦT for

testing H0 : B(T ) = B(0)
(T ) vs. H1 : B(T ) ∈ AT .
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Proof. Let ζ ∈ F1 ×F2. For any h1 ∈ ζ1, let

B̂(T ),h1,ζ2,h1
= (X ′ζ2,h1

R−1Xζ2,h1
)−1X ′ζ2,h1

R−1yh1 ,

where yh1 = (Y1,h1 , ..., YT,h1)′ and Xζ2,h1
is a T × |ζ2,h1| dimensional matrix

whose tth row is given by (xj,t : j ∈ ζ2,h1). Define a test function ΦT =

max
|ζ|≤s̃T+sT ,ζ⊇ζ(0)

1
{
||B̂(T ),ζ −B(0)

(T ),ζ ||2 > ε/4
}
. In what follows, we will show that

ΦT is an exponentially consistent sequence of tests.

EB(0)
(T )

(ΦT ) ≤
∑

|ζ|≤s̃(T )+s(T ),ζ⊇ζ(0)

P
(
||B̂(T ),ζ −B(0)

(T ),ζ ||2 > ε/4
)

≤
∑

|ζ|≤s̃(T )+s(T ),ζ⊇ζ(0)

P

∑
h∈ζ1

∆h > ε2/16


where ∆h = (B̂(T ),h,ζ2,h −B(0)
(T ),h,ζ2,h

)′(B̂(T ),h,ζ2,h −B(0)
(T ),h,ζ2,h

)

≤
∑

|ζ|≤s̃(T )+s(T ),ζ⊇ζ(0)

P
( ∑
h∈ζ1

∆′h > Tλ2
0ε

2/16
)

where ∆′h = (B̂(T ),h,ζ2,h −B(0)
(T ),h,ζ2,h

)′(X ′ζ2,h
R−1Xζ2,h)(B̂(T ),h,ζ2,h −B(0)

(T ),h,ζ2,h
)

=
∑

|ζ|≤s̃(T )+s(T ),ζ⊇ζ(0)

P

∑
h∈ζ1

χ2
|ζ2,h| > Tλ2

0ε
2/16


=

∑
|ζ|≤s̃(T )+s(T ),ζ⊇ζ(0)

P
(
χ2
|ζ| > Tλ2

0ε
2/16

)
≤
(

p(T )

s̃(T ) + s(T )

)
exp(−Tλ2

0ε
2/16),

where the last inequality follows from Lemma A.1 and A.2 in Song and Liang

(2017). Note that

(
p(T )

s̃(T ) + s(T )

)
≤ p

s̃(T )+s(T )
(T ) ≤ exp((s̃(T ) + s(T )) log(p(T ))) ≤ exp(Tλ2

0ε
2/32),
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by assumptions (b) and (c). Thus EB(0)
(T )

(ΦT ) ≤ exp(−Tλ2
0ε

2/32). Let ζ̃ =

ζ(0) ∪ {(h1, h2) : |B(T ),h1,h2 | ≥ aT}

sup
B(T )∈AT

EB(T )(1− ΦT ) ≤ sup
B(T )∈AT

EB(T )(1− 1
{
||B̂(T ),ζ̃ −B(0)

(T ),ζ̃ ||2 > ε/4
}

)

= sup
B(T )∈AT

PB(T )

(
||B̂(T ),ζ̃ −B(0)

(T ),ζ̃ ||2 ≤ ε/4
)
.

Under AT , ||B(T ),ζ̃ − B(0)
(T ),ζ̃ ||2 ≥ ||B(T ) − B(0)

(T )||2 − ||B(T ),ζ̃c − B(0)
(T ),ζ̃c ||2 ≥ ε −

aTpT ≥ ε/2. Where the last inequality follows due to the fact B(0)
(T ),ζ̃c = 0 and

|B(T ),h1,h2 | ≤ aT for (h1, h2) ∈ ζ̃c.

Using the above fact

sup
B(T )∈AT

EB(T )(1− ΦT ) ≤ sup
B(T )∈AT

PB(T )

(
||B̂(T ),ζ̃ −B(0)

(T ),ζ̃ ||2 ≤ ε/4
)

≤ sup
B(T )∈AT

PB(T )

(
||B̂(T ),ζ̃ −B(T ),ζ̃ ||2 ≥ −||B̂(T ),ζ̃ −B(0)

(T ),ζ̃ ||2 + ||B(T ),ζ̃ −B(0)
(T ),ζ̃ ||2

)
≤ sup

B(T )∈AT
PB(T )

(
||B̂(T ),ζ̃ −B(T ),ζ̃ ||2 ≥ ε/4

)

≤ sup
B(T )∈AT

P

∑
h∈ζ1

∆h > Tλ2
0ε

2/16


where ∆h = (B̂(T ),h,ζ2,h −B(T ),h,ζ2,h)′(X ′ζ2,h
R−1Xζ2,h)(B̂(T ),h,ζ2,h −B(T ),h,ζ2,h)

≤ sup
B(T )∈AT

P

∑
h∈ζ1

χ2
|ζ2,h| > Tλ2

0ε
2/16


≤ P

(
χ2
|ζ| > Tλ2

0ε
2/16

)
≤ exp(−Tλ2

0ε
2/16).

Hence ΦT is a exponentially consistent sequence of tests.

Next, we provide a bound on the discrepancy between the true and fitted

tensor.
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Theorem A.1.2. Let K(θ) = − log{ΠT (B(T ) : ||B(T ) − B(0)
(T )||∞ < θ)} and

β̃j,k,vj ,(T ) = (βj,1,k,vj ,(T ), ..., βj,R,k,vj ,(T ))′, and β̃
(0)
j,k,vj ,(T ) = (β(0)

j,1,k,vj ,(T ), ..., β
(0)
j,R,k,vj ,(T ))′,

β
(0)
j,r,k,vj ,(T ) = 0 for r ∈ {R0 + 1, . . . , R}, R > R0. For k = 1, ...,m(T ), assume that

∆v,k is a positive root of the equations given, for all v ∈ F1 ×F2, by

x(x+ ||β̃(0)
2,k,v2,(T )||) · · · (x+ ||β̃(0)

D,k,vD,(T )||)+

||β̃(0)
1,k,v1,(T )||x(x+ ||β̃(0)

2,k,v2,(T )||) · · · (x+ ||β̃(0)
D,k,vD,(T )||)+

· · ·+ x||β̃(0)
2,k,v2,(T )|| · · · ||β̃

(0)
D,k,vD,(T )|| − θ = 0, (A.1)

and ∆ = minv,k∆v,k. Then, for some constant C,

K(θ) ≤
Rm(T )

D∑
j=1

pj,(T )

 ln
{

(2πR)1/2

(2∆)

}
− ln(C) +Rm(T )

D∑
j=1

ln
{

Γ(aλ)
Γ(aλ + pj,(T ))

}

+
m(T )∑
k=1

D∑
j=1

R0∑
r=1

(aλ + pj,(T )) ln
bλ +

pj,(T )∑
vj=1
{(β(0)

j,r,k,vj ,(T ))
2 + 2∆2}1/2


+ (R−R0)m(T )

D∑
j=1

(aλ + pj,(T )) ln
(
bλ + pj,(T )21/2∆

)
.
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Proof.

|Bv,k,(T ) −B(0)
v,k,(T )|

=
∣∣∣∣∣
R∑
r=1

β1,r,k,v1,(T ) · · · βD,r,k,vD,(T ) −
R∑
r=1

β
(0)
1,r,k,v1,(T ) · · · β

(0)
D,r,k,vD,(T )

∣∣∣∣∣
=

∣∣∣∣∣∣
R∑
r=1

(β1,r,k,v1,(T ) − β(0)
1,r,k,v1,(T ))

∏
j 6=1

βj,r,k,vj ,(T ) + · · ·

+(βD,r,k,vD,(T ) − β(0)
D,r,k,vD,(T ))

∏
j 6=D

β
(0)
j,r,k,vj ,(T )


∣∣∣∣∣∣

≤||β̃1,k,v1,(T ) − β̃
(0)
1,k,v1,(T )||2

∏
j 6=1
||β̃j,k,vj ,(T )||2 + · · ·

+ ||β̃D,k,vD,(T ) − β̃
(0)
D,k,vD,(T )||2

∏
j 6=D
||β̃(0)

j,k,vj ,(T )||2,

Note that (A.1) can be written as gv,k(x) = 0, where

gv,k(x) = aD,k,vx
D + · · ·+ a1,k,vx− a0,k,v

and the aj,k,v’s are suitably chosen to match the coefficient of xj in (A.1). By

Cauchy’s bound on the roots of polynomials, Eq. (A.1) has only one positive root,

namely the real ∆v,k that satisfies ∆v,k ≤ 1 + maxj=0,...,D|aj,k,v|, for all v and k.

From (A.1), the fact that ||β̃j,k,vj ,(T ) − β̃
(0)
j,k,vj ,(T )|| < ∆ for all vj ∈ {1, . . . , pj,(T )},

j ∈ {1, . . . , D} and k ∈ {1, ...,m(T )} implies

|Bv,k,(T ) −B(0)
v,k,(T )| ≤ gv,k(∆) + θ ≤ gv,k(∆v,k) + θ = θ,

which leads to ||B(T ) −B(0)
(T )||∞ < θ. Hence
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ΠT (B(T ) : ||B(T ) −B(0)
(T )||∞ < θ)

≥ ΠT (∀k∈{1,...,m(T )} ∀j∈{1,...,D} ∀vj∈{1,...,pj,(T )} ||β̃j,k,vj ,(T ) − β̃
(0)
j,k,vj ,(T )||2 < ∆).

We will bound the right-hand side from below.

ΠT

(
∀k∈{1,...,m(T )} ∀j∈{1,...,D} ∀vj∈{1,...,pj,(T )} ||β̃j,vj ,T − β̃

(0)
j,vj ,T
||2 <

∆ | ∀k∈{1,...,m(T )} {φr,k}, τk, {Wjr,k}
)

=
m(T )∏
k=1

D∏
j=1

pj,(T )∏
vj=1

exp

−
R∑
r=1

β
(0)
j,r,k,vj ,(T ))2

2wj,r,k,vjφr,kτk

×
ΠT

(
||β̃j,k,vj ,(T )|| <

∆
2 | {φr,k}, τk, {Wjr,k}

)]

≥
m(T )∏
k=1

D∏
j=1

pj,(T )∏
vj=1

exp

−
R∑
r=1

β
(0)
j,r,k,vj ,(T ))2

(2wj,r,k,vjφr,kτk

 ×
R∏
r=1

[
exp

{
−∆2

(φr,kτkwj,r,k,vj)

}
2∆

(2πRφr,kτkwj,r,k,vj)1/2

]]

≥
m(T )∏
k=1

D∏
j=1

pj,(T )∏
vj=1

R∏
r=1

 2∆
(2πRφr,kτkwj,r,k,vj)1/2 exp

−2∆2 + (β(0)
j,r,k,vj ,(T ))2

2φr,kτkwj,r,k,vj

 ,
where Step 2 follows from Anderson’s lemma. Integrating out the wj,r,k,vj ’s, we

obtain, ∀k∈{1,...,m(T )} ∀j∈{1,...,D} ∀vj∈{1,...,pj,(T )},

Π
(
||β̃j,k,vj ,(T ) − β̃

(0)
j,k,vj ,(T )|| < ∆ | τk, {φr,k}, {λj,r,k}

)

≥
m(T )∏
k=1

R∏
r=1

D∏
j=1

( 2∆λj,r,k
(Rφr,kτk)1/2

)pj,(T )

exp

−λj,r,k pj,(T )∑
vj=1

(
(β(0)

j,r,k,vj ,(T ))2 + 2∆2
)1/2

(φr,kτk)1/2


 .
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Integrating out the λj,r,k’s, we then get, ∀k∈{1,...,m(T )} ∀j∈{1,...,D} ∀vj∈{1,...,pj,(T )},

ΠT

(
||β̃j,k,vj ,(T ) − β̃

(0)
j,k,vj ,(T )|| < ∆ | τk, {φr,k}

)

≥
m(T )∏
k=1

R∏
r=1

D∏
j=1

[{
2∆

(Rφr,kτk)1/2

}pj,(T )

×

Γ(aλ + pj,(T ))[
bλ +∑pj,(T )

vj=1 {(β
(0)
j,r,k,vj ,(T ))2 + 2∆2}1/2(φr,kτk)−1/2

]aλ+pj,(T )

{ baλλ
Γ(aλ)

}R(D)

≥
m(T )∏
k=1

R∏
r=1

D∏
j=1

[{
2∆

(Rφr,kτk)1/2

}pj,(T ) baλλ
Γ(aλ)

×

Γ(aλ + pj,(T ))(φr,kτk)(aλ+pj,(T ))/21{τk ∈ (0, 1)}[
bλ +∑pj,(T )

vj=1 {(β
(0)
j,r,k,vj ,(T ))2 + 2∆2}1/2

]aλ+pj,(T )


Integrating our φr,k’s together we obtain, ∀k∈{1,...,m(T )} ∀j∈{1,...,D} ∀vj∈{1,...,pj,(T )} ,

ΠT

(
||β̃j,k,vj ,(T ) − β̃

(0)
j,k,vj ,(T )|| < ∆ | τk

)

≥
m(T )∏
k=1

R∏
r=1

D∏
j=1

[{
2∆

(Rτk)1/2

}pj,(T ) baλλ
Γ(aλ)

×

Γ(aλ + pj,(T ))τ
(aλ+pj,(T ))/2
k 1{τk ∈ (0, 1)}[

bλ +∑pj,(T )
ij=1 {(β

(0)
j,r,k,vj ,(T ))2 + 2∆2}1/2

]aλ+pj,(T )

×
R−1∏
r=1

[
Beta(D,αk +D(R− r))

Beta(1, αk)

]
,

where Beta(m1,m2) is the integrating constant for the Beta density with param-

eters m1 and m2. Finally, integrating out τk, leads to,
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∀k∈{1,...,m(T )} ∀j∈{1,...,D} ∀vj∈{1,...,pj,(T )},

ΠT (||β̃j,k,vj ,(T ) − β̃
(0)
j,k,vj ,(T )|| < ∆)

≥
m(T )∏
k=1

D∏
j=1

{
Γ(aλ + pj,(T ))

Γ(aλ)

}R
×

m(T )∏
k=1

D∏
j=1

R∏
r=1

bλ +
pj,(T )∑
vj=1
{(β(0)

j,r,k,vj ,(T ))
2 + 2∆2}1/2

−aλ−pj,(T )

×

{2∆/(2πR)1/2}Rm(T )
∑D

j=1 pj,(T )C−1,

for some constant C. Hence, ∀k∈{1,...,m(T )} ∀j∈{1,...,D} ∀vj∈{1,...,pj,(T )},

K(θ) ≤ − log
[
ΠT (||β̃j,k,vj ,(T ) − β̃

(0)
j,k,vj ,(T )|| < ∆)

]

≤

Rm(T )

D∑
j=1

pj,(T )

 ln
{

(2πR)1/2

(2∆)

}
− ln(C) +Rm(T )

D∑
j=1

ln
{

Γ(aλ)
Γ(aλ + pj,(T ))

}

+
m(T )∑
k=1

D∑
j=1

R0∑
r=1

(aλ + pj,(T )) ln
bλ +

pj,(T )∑
vj=1
{(β(0)

j,r,k,vj ,(T ))
2 + 2∆2}1/2


+ (R−R0)m(T )

D∑
j=1

(aλ + pj,(T )) ln
(
bλ + pj,(T )21/2∆

)
.

Under assumptions (a)-(f), the R.H.S is o(T ). Thus, we present the next

theorem whose proof follows immediately from Theorem A.1.2.

Theorem A.1.3. For any constant θ > 0, under conditions (a)-(f) of Theo-

rem 2.3.1, K(θ) = o(T ).

Proof of Theorem 2.3.1

119



Proof.

ΠT (AT ) =
∫
AT f(Y 1, ..,Y T |B(T ))πT (B(T ))∫
f(Y 1, ..,Y T |B(T ))πT (B(T ))

=

∫
AT

f(Y 1,..,Y T |B(T ))
f(Y 1,..,Y T |B

(0)
(T ))

πT (B(T ))∫ f(Y 1,..,Y T |B(T ))
f(Y 1,..,Y T |B

(0)
(T ))

πT (B(T ))

= NT
DT
≤ ΦT + (1− ΦT )NT

DT
, (A.2)

where ΦT is the exponentially consistent sequence of tests given by Lemma A.1.1.

Note that

PB(0)
(T )

(
ΦT > exp(−Tλ2

0ε
2/64)

)
≤ EB(0)

(T )
(ΦT ) exp(Tλ2

0ε
2/64) ≤ exp(−Tλ2

0ε
2/64).

Therefore∑∞T=1 PB(0)
(T )

(ΦT > exp(−Tλ2
0ε

2/64)) <∞. Applying Borel-Cantelli lemma

PB(0)
(T )

(ΦT > exp(−Tλ2
0ε

2/64) infinitely often) = 0. Thus,

ΦT → 0 a.s. (A.3)

In addition, we have

EB(0)
(T )

((1− ΦT )NT ) =
∫

(1− ΦT )
∫
AT

f(Y 1, ..,Y T |B(T ))
f(Y 1, ..,Y T |B(0)

(T ))
πT (B(T ))f(Y 1, ..,Y T |B(0)

(T ))

=
∫
AT

∫
(1− ΦT )f(Y 1, ..,Y T |B(T ))πT (B(T ))

≤ sup
B(T )∈AT

EB(T )(1− ΦT )

≤ exp(−Tλ2
0ε

2/16).

Applying Borel-Cantelli lemma,
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PB(0)
(T )

((1− ΦT )NT exp(Tλ2
0ε

2/32) > exp(−Tλ2
0ε

2/64) infinitely often) = 0 so

exp(Tλ2
0ε

2/32)(1− ΦT )NT → 0 a.s.. (A.4)

Note that DT =
∫ f(Y 1..,Y T |B(T ))
f(Y 1,..,Y T |B

(0)
(T ))

πT (B(T )). Let b̃ = λ2
0ε

2/32. Consider the set

HT =
{

B(T ) : 1
T

log
[
f(Y 1,..,Y T |B

(0)
(T ))

f(Y 1,..,Y T |B(T ))

]
< υ

}
, for υ = b̃/2.

exp(b̃T )DT ≥ exp(b̃T )
∫
HT

exp
−T 1

T
log

f(Y 1, ..,Y T |B(0)
(T ))

f(Y 1, ..,Y T |B(T ))

 πT (B(T ))

≥ exp((b̃− b̃/2)T )ΠT (HT ).

In view of (A.2), (A.3) and (A.4), it is enough to show that − log(ΠT (HT )) ≤

T b̃/8.

1
T

log
f(Y 1, ..,Y T |B(0)

(T ))
f(Y 1, ..,Y T |B(T ))


= 1
T

−1
2
∑
v

(yv −
m(T )∑
k=1

B(0)
v,k,(T )xk)

′R−1(yv −
m(T )∑
k=1

B(0)
v,k,(T )xk)+

1
2
∑
v

(yv −
m(T )∑
k=1

Bv,k,(T )xk)′R−1(yv −
m(T )∑
k=1

Bv,k,(T )xk)
 .

ΠT

(
B(T ) : 1

T
log

f(Y 1, ..,Y T |B(0)
(T ))

f(Y 1, ..,Y T |B(T ))

 < υ
)

≥ ΠT

(
B(T ) : | 1

2T
∑
v

m(T )∑
k=1

(Bv,k,(T ) −B(0)
v,k,(T ))

′x′kR
−1xk(Bv,k,(T ) −B(0)

v,k,(T ))| < υ
)

≥ ΠT

(
B(T ) : ||B(T ) −B(0)

(T )||
2
2 < 2υ/λ2

1

)
≥ ΠT

(
B(T ) : ||B(T ) −B(0)

(T )||∞ <
√

2υ/λ2
1

)
≥ exp(−T b̃/8),

121



where the third line follows from assumption (e) of Theorem 3.1 and last inequal-

ity is immediate by applying Theorem A.1.3.

A.2 Posterior Sampling Algorithm

This posterior sampling algorithm can be done efficiently by sampling the

tensor-covariate-specific variables in parallel. The index k = 1, . . . ,m corresponds

to the kth tensor covariate.

(1) Draw αk via a Griddy-Gibbs algorithm as follows:

(a) For each possible value of αk, draw a sample of sizeM from the posterior

distributions of φr,k and τk.

(b) Evaluate the prior density using each of these individual samples using

the previous iteration values for all other parameters.

(c) Average these densities together for each possible value for αk in the grid,

and then sample one value using the averaged densities as weights.

(2) Using the posterior full conditional kernel of

p(ξr,k|β·,r,k,W·,r,k, ξ−r,k, τk) ∝

ξ
−
∑

pj/2
r,k (1− ξr,k)−(R−r)

∑
pj/2×

exp

− 1
τk

 1
ξr,k

D∑
j=1

(
βTj,r,kW−1

j,r,kβj,r,k
)

+

R∑
h=r+1

1
ξk,h

∏h−1
g=r (1− ξg)

D∑
j=1

(
βTj,r,kW−1

j,r,kβj,r,k
) ,

draw ξ
(s)
r,k for sample s using a Metropolis-Hastings step with a normal proposal

distribution with mean ξ(s−1)
r,k and variance 0.012. The value for the variance
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was chosen such that the datasets tested showed decent mixing. After drawing

ξ1,k, . . . , ξR−1,k, set φr,k = ξr,k ×
∏r−1
h=1(1− ξh,k), and set φR,k = 1−∑R−1

r=1 φr,k.

(3) Draw each τk from a generalized inverse Gaussian distribution,

gIG(ν, χ, ψ), where

ν = aτ −
R
∑
pj

2 , χ =
R∑
r=1

1
φr,k

 D∑
j=1
β′j,r,kW−1

j,r,kβj,r,k

 , ψ = 2bτ

(4) Draw each λj,r,k from a

Gamma
aλ + pj, bλ + 1√

φr,kτk

pj∑
`=1
|βj,r,k,`|



(5) Draw each wj,r,k,` from a generalized Inverse Gaussian distribution,

gIG(ν, χ, ψ), where

ν = 1
2 χ =

β2
j,r,k,`

τkφr,k
ψ = λ2

j,r,k

(6) When D = 2, draw each βj,r,k,` from a normal distribution with variance

Λ =
(

1
φr,kτkwj,r,k,`

+
n
∑
x2
tβ
′
−j,r,kβ−j,r,k
σ2
y

)−1

and mean

µ = Λ
∑
xtβ

′
−j,r,kŷt
σ2
y

where

ŷt = yt − xt
∑
r′ 6=r

β1,r′,k ◦ β2,r′,k
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(7) Draw κ from a truncated normal distribution with a lower bound -1, an upper

bound of 1, a variance of

σ2
ε∑T

t=2
∑
r′ ε

2
t−1,r′

,

and mean of

∑T
t=2

∑
r′ εt,r′εt−1,r′∑T

t=2
∑
r′ ε

2
t−1,r′

,

where

εt,r′ = yt,l −Br′xt.

(8) Draw σ2
ε from an inverse gamma distribution with shape parameter

aε +
∏
pj

2 ,

and scale parameter

bε + 1
2

T∑
t=2

∑
r′

(εt,r′ − κεt−1,r′)2

Following this algorithm, the MCMC converges rapidly to the region of the

maximum likelihood estimator.
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Appendix B

Joint Bayesian Estimation of

Voxel Activation and

Interregional Connectivity in

fMRI

B.1 Algorithm for Drawing from the Joint Pos-

terior Distribution

This posterior sampling algorithm can be done efficiently by sampling the

region-specific variables in parallel.

At MCMC iteration s:

(1) Draw αg via a Griddy-Gibbs algorithm as follows:

(a) For each possible value of αg, draw a sample of sizeM from the posterior

distributions of φg,r and τg.
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(b) Evaluate the posterior density using each of these individual samples

using the (s− 1)th values for all other parameters.

(c) Average these densities together for each possible value for αg in the grid,

and then sample one value using the averaged densities as weights.

(2) Using the posterior full conditional kernel of

p(ξg,r|βg,·,r,Wg,·,r, ξg,−r, τg) ∝

ξ
−
∑

pj/2
g,r (1− ξg,r)−(R−r)

∑
pj/2

× exp

− 1
τg

 1
ξg,r

D∑
j=1

(
β′g,j,rW−1

g,j,rβg,j,r
)

+
R∑

k=r+1

1
ξg,k

∏k−1
`=r (1− ξg,`)

D∑
j=1

(
β′g,j,rW−1

g,j,rβg,j,r
) ,

draw ξ(s)
g,r for sample s using a Metropolis-Hastings step with a normal pro-

posal distribution with mean ξ(s−1)
g,r and variance 0.012. The value for the

variance was chosen such that movement within the posterior distribution

of the individual parameters ξg,r could not exchange values at each itera-

tion, which better preserves identifiability. After drawing ξg,1, . . . , ξg,R−1, set

φg,r = ξg,r ×
∏r−1
k=1(1− ξg,k), and set φg,R = 1−∑R−1

r=1 φg,r.

(3) Draw each τg from a generalized inverse Gaussian distribution, gIG(ν, χ, ψ),

where

ν = aτ −
R
∑D
j=1 pg,j

2 , χ =
R∑
r=1

1
φg,r

 D∑
j=1
β′g,j,rW−1

g,j,rβg,j,r

 , ψ = 2bτ
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(4) Draw each λg,j,r from a

Gamma
aλ + pg,j, bλ + 1√

φg,rτg

pg,j∑
`=1
|βg,j,r,`|



(5) Draw each ωg,j,r,` ∈Wg,j,r (remember that Wg,j,r is a diagonal matrix) from

a generalized Inverse Gaussian distribution, gIG(ν, χ, ψ), where

ν = 1
2 χ =

β2
g,j,r,`

τgφg,r
ψ = λ2

g,j,r

(6) Draw each βg,j,r,` from a normal distribution with variance

Λ =
(

1
φg,rτg

W−1
g,j,r + diag

(∑
i

∑
t x

2
i,tvecB2

g,−j

σ2
y

))−1

and mean

µ = Λ

∑
i

∑
t xi,tBg,−j

(
Ỹg,i,t

)′
(j)

σ2
y

where

Ỹg,i,t = Yg,i,t − dg,i1− xi,t
∑
` 6=r
βg,1,` ◦ · · · ◦ βg,D,`

and

Bg,−j =
R∑
r=1
βg,1,r ◦ · · · ◦ βg,j−1,r ◦ βg,j+1,r ◦ · · · ◦ βg,D,r

and (•)(j) is the mode-j matricization of •.
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(7) Draw each di from a normal distribution


d1,i
...

dG,i

 = di ∼ N(θi,M)

where

M =
(

Σ + TV
σ2
y

)−1

and

θi = M
(∑

`

∑
t ỹi,t,`
σ2
y

)

for voxel `, subject i, and time t. T is the number of time steps in the fMRI

scan and V is a diagonal matrix where Vii is equal to the number of voxels

in region i, and

ỹi,t,` =


ỹ1,i,t,`

...

ỹG,i,t,`

 , ỹg,i,t,` = yg,i,t,` −Bg,`xi,t

(8) For each region g, draw δg from a gamma
(
n
2 + 1, Sgg+ζ

2

)
(9) Draw η from a multivariate normal distribution with covariance

ϕ =
(
(Sgg + ζ)Σ−1

−g,−g + diag(1/Υ−g,g)
)−1

and mean

L = −ϕSg,−g

Set Σg,−g = Σ−g,g = η and Σg,g = δg + ηTΣ−1
−g,−gη
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(10) For i > g, draw ug,i from an inverse Gaussian distribution with mean
√(

ζ2

Σg,i

)
and shape ζ2. Set Υg,i = Υi,g = 1/ug,i.

(11) Draw ζ from a gamma(a, b) distribution where

a = aζ + G(G+ 1)
2 b = bζ +

∑
i

∑
j |Σij|
2

Figure B.1: Values for the covariate xt in the simulated data.

Convergence Diagnostic Plots Figure B.4 demonstrates convergence through

the plot of the log-likelihood across the different ranks in the whole-brain analysis.

Figure B.5 shows the autocorrelation function for the different rank models for a

randomly-selected voxel within each region of interest.
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Figure B.2: Boxplots for the 95% interval coverage, interval length, and square
root of the mean squared error for the 100 randomly selected hyperparameter
settings.
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Figure B.3: Rank model estimates and true value for a single slice of a three-
dimensional coefficient tensor. Voxels with 99% credible intervals containing zero
were set equal to zero. The spike-and-slab and vectorized model estimates are
also included for comparison.
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Figure B.4: Log-likelihoods for the Whole Brain Analysis
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Appendix C

Bayesian Tensor Regression

Using The Tucker Tensor

Decomposition

Posterior Full Conditional Distributions

σ2
y

σ2
y|y,B,X,γ,η ∼ Inverse Gamma

(
aσ + N

2 , bσ + 1
2

N∑
i=1

(yi − 〈B,Xi〉 − γ ′ηi)
2
)

γ

First, set ỹi = yi − 〈B,Xi〉.

γ|y,B,X,η, σ2
y,V ∼ N

(V−1 + 1
σ2
y

I
)−1

η′ỹ
σ2
y

,

(
V−1 + 1

σ2
y

I
)−1


βj,rj

First, call B̃ = B \ βj,rj , and B∗ = B 3 βj,rj . Then,
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yi = 〈B∗ + B̃,Xi〉+ γ ′ηi + εi.

Next, set

ỹi = yi − γ ′ηi − 〈B̃,Xi〉.

Define the mode-k matricization X(j) of an array X ∈ Rp1×p2×···×pD to be

X(j) ∈ Rpj×p1p2···pj−1pj+1···pD . Set the B∗−j as the tensor composition of all β`,r`
such that ` ∈ {1, 2, ..., D} \ j, which has dimension D − 1. Finally using the

following notation:

ỹ =


ỹ1
...

ỹN

 , X∗ =


X1(j)B∗−j

...

XN(j)B∗−j

 ,

the posterior full conditional distribution for βj,rj can be written as

βj,rj |y,X, σ
2
y , τ, φj,rj ,Wj,rj ∼

N
( 1

τφj,rj
W−1

j,rj
+ 1
σ2
y

X∗′X∗
)−1 ỹ′X∗

σ2
y

,

(
1

τφj,rj
W−1

j,rj
+ 1
σ2
y

X∗′X∗
)−1


τ

p(τ |aτ , bτ ,φ,W,B) ∝ τaτ−
1
2
∑D

j=1 Rjpj−1e
−bτ τ− 1

2τ
∑D

j=1

∑Rj
rj=1

1
φj,rj

β′j,rj
W−1

j,rj
βj,rj

τ |aτ , bτ ,φ,W,B ∼ GIG
aτ − 1

2

D∑
j=1

Rjpj, 2bτ ,
D∑
j=1

Rj∑
rj=1

1
φj,rj

β′j,rjW
−1
j,rj
βj,rj

 ,
where GIG is shorthand for the Generalized Inverse Gaussian distribution.
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πj,rj

p(πj,rj |−) ∝ π
−pj/2
j,rj (1− πj,rj)α−(Rj−rj)pj/2−1×

exp
{
−1
τ

[
1
πj,rj

(
β′j,rjW

−1
j,rj
βj,rj

)
+

Rj∑
k=rj+1

1
πj,k

∏k−1
`=rj(1− πj,`)

(
β′j,kW−1

j,kβj,k
)

ωj,rj ,`

ωj,rj ,`|βj,rj ,`, τ, φj,rj ∼ Generalized Inverse Gaussian
(

1
2 , λ

2
j,rj
,
β2
j,rj ,`

τφj,rj

)

λj,rj

In order to find a posterior full conditional distribution in a closed form for

λj,rj , ωj,rj ,` must be integrated out of the prior for βj,rj ,`.

∫ ∞
0

1√
2πτφj,rjωj,rj ,`

exp
{
−

β2
j,rj ,`

2τφj,rjωj,rj ,`

}
λ2
j,rj

2 exp
{
−1

2λ
2
j,rj
ωj,rj ,`

}
dωj,rj ,`

=
λj,rj

2(τφj,rj)−1/2 exp
{
−
λj,rj |βj,rj ,`|
(τφj,rj)−1/2

}

p(λj,rj |βj,rj , τ, φj,rj) ∝ λaλ−1
j,rj exp

{
−bλλj,rj

}
×

pj∏
`=1

λj,rj exp
{
−
λj,rj |βj,rj ,`|
(τφj,rj)1/2

}

λj,rj |βj,rj , τ, φj,rj ∼ Gamma
(
aλ + pj, bλ +

∑ |βj,rj ,`|
(τφj,rj)1/2

)
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