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Abstract

Hierarchical Approaches for E�cient and Scalable Solution of Inverse Problems
Governed by Partial Di�erential Equations

by

Tucker Andrew Hartland

Doctor of Philosophy in Applied Mathematics

University of California, Merced

Noémi Petra, Chair

Inverse problems governed by partial di�erential equations (PDEs) is a means to
learn, from data, unknown or uncertain aspects of PDE-based mathematical models.
PDE-based models often are constructed from scienti�c principles and are pervasive
in science and engineering. The improvement of such a model can be accomplished
by determining a �best� set of model parameters, or by reducing the uncertainty of
the parameters that characterize the model. Ultimately, the goal is to improve the
predictive capacity of such models and quantitatively understand the limitations of
model-based predictions.

In this dissertation, we describe algorithmic approaches for the Newton-based solu-
tion of large-scale computational inverse problems governed by PDEs. We present and
motivate hierarchical matrix approximations of the Hessian, a key-component of New-
ton's method, as a means to exploit localized sensitivities of underlying elliptic PDE
operators and which perform well for inverse problems with highly-informative data.
To circumvent the computational challenges associated with generating hierarchical
matrix approximations of matrix-free operators, such as the Hessian, we describe a
local point spread function methodology, whose computational cost is independent of
the problem discretization. It is numerically demonstrated that hierarchical matrix
approximations of the Hessian can be e�ective for large-scale ice sheet inverse prob-
lems with highly informative data and thin ice sheets. Lastly, we present a scalable
means to solve PDE- and bound-constrained optimization problems by an interior-
point �lter line-search strategy that leverages performant algebraic multigrid linear
solvers. Bound constraints arise naturally in many inverse problems as a means to
enforce sign-de�niteness as dictated by e.g., physical principles. The inclusion of
bound constraints does add particular computational challenges such as non-smooth
complementarity conditions as part of the conditions for optimality. The Newton
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linear system solve strategy described in Chapter 4 is accelerated due to the inclu-
sion of bound-constraints, wherein the performance of many other strategies is nega-
tively impacted by such bound-constraints. A theoretical analysis is provided which
demonstrates the algorithmic scaling of the approach. In addition, we demonstrate
algorithmic and parallel scaling of the described approach by applying the framework
to an example elliptic PDE- and bound-constrained problem.
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Chapter 1

Introduction and Background

Newton's laws of motion is one systematic means by which knowledge of the system
that an entity interacts with, can be encoded into a (system of) di�erential equa-
tion(s), and whose solution contain physics-based model predictions of the entity
state. The information which the entity state refers to depends on the model. The
entity state can e.g., be the location of an object through time, as in various time-
dependent di�erential equations or the steady-state con�guration of an extended body
as in various time-independent partial di�erential equations [1]. However, having de-
tailed system knowledge is uncommon, rather such knowledge is often incomplete and
the knowledge that is available is always uncertain. In this thesis, it is assumed that
this described system knowledge uncertainty is mathematically manifest through a
model di�erential equation, of a known functional form, with an uncertain spatially
distributed parameter �eld m(x).

An inverse problem is a mathematical means to utilize data to update and po-
tentially improve system knowledge. Inverse problems governed by PDEs can be
formulated as PDE-constrained optimization problems [2], wherein one seeks to min-
imize a (regularized) data-mis�t functional

min J(u,m) =
1

2
‖Bu− d‖2︸ ︷︷ ︸
data-mis�t

+
1

2
R(m)︸ ︷︷ ︸

regularization

, such that u = F (m). (1.1)

The functional J(u,m) measures a regularized discrepancy between observation data
d and the associated model predictions Bu, where F (m) is the parameter-to-PDE-
solution mapping, u(x) is referred to as the state variable or PDE-solution, and
B is the observation operator which maps the PDE-solution to model predictions
associated to the data d. We note that Equation (1.1) is intentionally ambiguously
de�ned and clarity is provided in Section 1.1. An example inverse problem that is
described in more detail in Chapters 2 and 3 of this thesis, is that of determining a
basal friction �eld from available surface velocity observation data in PDE-based ice
sheet models [3, 4, 5]. The basal friction �eld locally quanti�es the ease by which an
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ice sheet can slide across the ground which supports it. Model based predictions of
sea level rise are in�uenced by the basal friction �eld as it impacts the predicted rate
at which the ice �ows out to sea. Determining this basal friction �eld and how it is
impacted by data uncertainty, is then of critical importance.

Computing solutions of inverse problems governed by PDEs is often computation-
ally intensive, especially so for parameter �elds that vary continuously over a spatial
domain Ω. The central challenges are that under mesh re�nement, PDE-solution
computation requires more computational resources and the discretized parameter
dimension can be made arbitrarily large. It is then imperative that the employed nu-
merical optimization methods [6] perform well in this large-scale setting, namely that
they are e�cient and not adversely impacted by changes in the underlying discretiza-
tion of the di�erential equation model, that is the methods are mesh-independent.
Due to these considerations, a natural choice for the optimization algorithm is one
based on Newton's method, due to its rapid mesh-independent rate of convergence.
Newton's method may converge rapidly, but it is not without challenges as each
�outer� Newton optimization step requires the (inexact) solution of a system of lin-
ear equations. Such linear systems can be large, ill-conditioned and, as discussed in
Section 1.3, there may not even be direct access to elements of the system matrix,
which precludes the use of a signi�cant number of linear system solution methods.
In this thesis, we focus on the design of preconditioners for e�cient Krylov-subspace
based solution of Newton linear systems in inverse problems governed by PDEs. By
reducing the cost to compute these linear system solutions further enables our ability
to solve large-scale inverse problems governed by PDEs. The preconditioners that
are discussed in this thesis are obtained by exploiting the rich underlying PDE-based
problem structure that underlies inverse problems governed by PDEs.

1.1 Full- and reduced-space methodologies

We next focus on two distinct approaches to solve the optimization problem described
by Equation (1.1), namely the so-called full- and reduced-space approaches. In the
full-space approach the optimization problem

(u?,m?) = arg min
(u,m)

J(u,m) =
1

2
‖Bu− d‖2 +

1

2
R(m), such that u = F (m), (1.2)

is to determine the primal optimization variable (u?,m?). During an iterative full-
space optimization algorithm, the PDE constraint u = F (m) is not necessarily sat-
is�ed, however the sequence of iterates generated by the optimization algorithm is
expected to converge to a point where the constraint u = F (m), is satis�ed. In
the reduced-space approach, the PDE-solution u, is formally eliminated, so that
u = u(m) := F (m), and the resultant optimization problem

m? = arg min
m

J(m) = J(u(m),m) =
1

2
‖Bu(m)− d‖2 +

1

2
R(m), (1.3)
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is absent of explicit constraints. With the reduced-space approach the primal opti-
mization variable is only m, and so the optimum m? is sought in a smaller space,
thus the terminology reduced-space. A computational challenge of the reduced-space
approach is that evaluating the reduced-space objective J(m) requires the evaluation
of the potentially expensive parameter-to-PDE-solution map F . An attractive feature
of the reduced-space approach is that the objective functional is a merit functional,
a critical object for ensuring robust convergence to a local minimizer and which pro-
vides a criterion to accept or reject trial steps based on whether a proposed trial
step provides at least the minimum required reduction of the merit functional, hence
indicating progress towards the optimizer.

Solving Newton linear systems for large-scale inverse problems, using either the
reduced- or full-space approach is computationally challenging. Direct methods have
unfavorable computational complexity and so their use is precluded for large-scale
problems and instead here we pursue Krylov-subspace methods [7], for which e�ec-
tive preconditioners are needed. The full-space Newton system matrix (see Equa-
tion (1.19)) is a symmetric inde�nite saddle-point matrix, and developing precon-
ditioners for such matrices is challenging and an active area of research [8]. The
reduced-space Newton system matrix i.e., Hessian (see Equation (1.24)) is a matrix-
free, formally dense, operator for which there is a means to compute its action on
vectors but not a cheap means to evaluate its entries. It is not feasible to use a sig-
ni�cant number of preconditioning strategies for such matrix-free operators, which is
an additional challenge for reduced-space methods.

1.2 Adjoint-based gradients

Here, for completeness we describe the adjoint-method [2, 9, 10] to compute a gradient
of a scalar-valued function Φ(u(m),m), with respect to m ∈ Rn1 , wherein Φ both
explicitly depends on a variable m and implicitly on m through an intermediate
variable u ∈ Rn2 , that is de�ned by c(u(m),m) = 0. Here c : Rn1+n2 → Rn2 ,
is assumed to have a nonsingular Jacobian ∂c/∂u and admits a unique solution
u = u(m) for each m. We begin by di�erentiating on the manifold de�ned by
u = u(m),

dΦ

dm
=

∂Φ

∂m
+

(
du

dm

)>
∂Φ

∂u
, (1.4)

dc

dm
=

∂c

∂m
+
∂c

∂u

du

dm
= 0. (1.5)



CHAPTER 1. INTRODUCTION AND BACKGROUND 4

We note that one could follow a sensitivity approach [10], wherein each column of the
sensitivity matrix du/dm is computed as

du

dmi

= −
(
∂c

∂u

)−1
∂c

∂mi

.

Each column of the sensitivity matrix requires the solution a system of linear equations
with system matrix ∂c/∂u, which is a computational bottleneck for large problems.
The adjoint-based approach avoids the dim(u) dependent number of linear system
solves with system matrix ∂c/∂u by �rst formally eliminating the sensitivity matrix

du

dm
= −

(
∂c

∂u

)−1
∂c

∂m
, (1.6)

dΦ

dm
=

∂Φ

∂m
−
(
∂c

∂m

)> [(
∂c

∂u

)−>
∂Φ

∂u

]
, (1.7)

and then de�ning the adjoint variable, λ ∈ Rn2 as the unique solution of the adjoint
equation (

∂c

∂u

)>
λ :=

∂Φ

∂u
. (1.8)

Having computed the adjoint variable, it is utilized to compute the adjoint-based
gradient

dΦ

dm
=

∂Φ

∂m
−
(
∂c

∂m

)>
λ. (1.9)

We note that computing dΦ/dm, by the adjoint-based approach requires a single
linear system solve with the adjoint system matrix (∂c/∂u)>, as opposed, with the
sensitivity approach, to n2 linear system solves with the system matrix ∂c/∂u. Lastly,
we note that the conditions for stationarity of Φ(u(m),m)

∂Φ

∂u
−
(
∂c

∂u

)>
λ = 0, (1.10)

∂Φ

∂m
−
(
∂c

∂m

)>
λ = 0, (1.11)

c = 0, (1.12)

are identical to that obtained by the Lagrangian formalism with Lagrangian L(u,m,λ) =
Φ(u,m)− λ>c(u,m) and Lagrange multiplier λ.
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1.3 Newton linear system

We next detail the in�nite-dimensional Newton linear system, which is a key compo-
nent for Newton-based solution of inverse problem governed by PDEs. We note that
by �in�nite-dimensional� we refer to the determination of an object, a parameter �eld,
that is an element of an in�nite-dimensional function space. The forward problem is
formulated as: for a given parameter m(x) ∈M, determine u(x) ∈ V , such that

c(u,m, λ) = 0, ∀λ ∈ V0. (1.13)

HereM, V and V0 are appropriately de�ned sets of functions and λ is a test function.
M is the space of admissible functions m(x), and V0 is a homogeneous version of the
space V , that is (u+v) ∈ V for any u ∈ V and v ∈ V0. Next, we invoke the Lagrangian
formalism to solve

min
(u,m)∈V×M

J(u,m) =
1

2
‖Bu− d‖2 +

1

2
R(m), such that c(u,m, λ) = 0, ∀λ ∈ V0,

(1.14)
by �rst de�ning the Lagrangian functional

L(u,m, λ) = J(u,m) + c(u,m, λ), (1.15)

where λ now acts as a Lagrange multiplier associated to the partial di�erential equality
constraint in Equation (1.13). The �rst-order necessary conditions for optimality are
then

Luũ = 0, ∀ũ ∈ V0, (1.16a)

Lmm̃ = 0, ∀m̃ ∈M, (1.16b)

Lλλ̃ = 0, ∀λ̃ ∈ V0, (1.16c)

where Luũ indicates the variational derivative [11]

Luũ :=

[
d

dε
L(u+ εũ,m, p)

]
ε=0

, (1.17)

and Lmm̃, Lλλ̃ are likewise de�ned. In the reduced-space approach Equation (1.16)
should be understood as the state equation (1.16c) being a condition that the PDE
constraint is satis�ed, the adjoint Equation (1.16a) being a condition for determin-
ing the adjoint variable λ and Lmm̃ then being the gradient which at an optimum
is required to vanish by Equation (1.16b). The optimality conditions (see Equa-
tion (1.16)) is a system of nonlinear equations, which we choose to solve by Newton's
method which requires the linearization [12]

Lu,u(ũ, û) + Lu,m(ũ, m̂) + Lu,λ(ũ, λ̂) = −Luũ, ∀ũ ∈ V0, (1.18a)

Lm,u(m̃, û) + Lm,m(m̃, m̂) + Lm,λ(m̃, λ̂) = −Lmm̃, ∀m̃ ∈M, (1.18b)

Lλ,u(λ̃, û) + Lλ,m(λ̃, m̂) + Lλ,λ(λ̃, λ̂) = −Lλλ̃, ∀λ̃ ∈ V0, (1.18c)
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of Equation (1.16). Upon discretization by �nite elements Equation (1.18) becomesHu,u Hu,m J>u
Hm,u Hm,m J>m
Ju Jm 0

 ûm̂
λ̂

 = −

rurm
rλ

 , (1.19)

where e.g., û is the vector of �nite element coe�cients of û(x) =
∑

i ûiφi(x), and {φi}i
is a basis for the �nite element space V0

h ⊂ V0 de�ned over a mesh with characteristic
discretization length scale h. Operators are likewise de�ned, for instance the blocks
of the Hessian of the Lagrangian with respect to u and m are given by

(Hu,u)i,j = Lu,u(φi, φj), (Hu,m)i,j = Lu,m(φi, ψj), (1.20)

(Hm,u)i,j = Lm,u(ψi, φj), (Hm,m)i,j = Lm,m(ψi, ψj), (1.21)

and Ju and Jm are the Jacobians of the PDE constraint with respect to u and m
respectively

(Ju)i,j = cλ,u(φi, φj), (Jm)i,j = cλ,m(φi, ψj), (1.22)

where {ψi}i is a basis for the spaceMh ⊂ M, from which we approximate m̂(x) =∑
i m̂iψi(x). Finally the linear system residuals are (ru)i = Luφi, (rm)i = Lmψi and

(rλ)i = c(u,m, φi). We note that Equation (1.19) is the Karush-Kuhn-Tucker (KKT)
linear system [6], which is an inde�nite saddle-point linear system [8]. In the reduced-
space approach, the state u and adjoint λ, are computed so that ru = rλ = 0, and
rm is the adjoint-based reduced-space gradient g. Furthermore, the Hessian H of
the reduced-space objective is obtained by taking the Schur complement of the 2, 2
block of the system matrix in Equation (1.19) and allows for the description of the
reduced-space Newton system

Hm̂ = −g, (1.23)

H = Hm,m + Jm
>Ju

−>Hu,uJu
−1Jm − (Hm,uJu

−1Jm + Jm
>Ju

−>Hu,m).
(1.24)

Due to the Hessian component inverse operators Ju
−1, Ju

−>, which lack sparsity,
the reduced-space Hessian cannot be formed directly for large-scale problems, as
an excessive number of �oating point operations and CPU memory is required for
the computation and storage of such inverses. It is then computationally necessary
that the Hessian is kept in a matrix-free format, for which we only have access to
it through matrix-vector products each of which costs two linearized PDE model
solves, speci�cally the incremental-state and incremental-adjoint solves described in
Algorithm 1.
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Algorithm 1 Hessian-vector product computation.
Input: Hessian H and vector m̂.
Output: Hessian-vector product y = Hm̂.

1: Solve Juû = −Jmm̂ for û {incremental-state equation}
2: Solve J>u λ̂ = −(Hu,uû+Hu,mm̂) for λ̂ {incremental-adjoint equation}
3: Compute y = Hm,uû+Hm,mm̂+ J>mλ̂ {Hessian-vector product}

1.4 Role and structure of the Hessian in inverse

problems governed by PDEs

The availability of the Hessian is an algorithmic prerequisite for reduced-space Newton-
based optimization methods. The Hessian is useful for additional tasks, such as in
the Bayesian statistical setting [13] wherein the Hessian locally characterizes uncer-
tainty of the inverse problem solution that is due to both prior knowledge and data
uncertainty. In particular, the Hessian inverse is the posterior covariance when the
parameter-to-observable map F is linear, the additive data noise and prior distribu-
tions are Gaussian [14]. Throughout this thesis the parameter-to-observable map F
is de�ned as the composition of a (potentially nonlinear) parameter-to-PDE-solution
map u(m) and a linear observation operator B, F(m) = Bu(m).

It is critical to have computationally e�cient means to manipulate the Hessian,
in order to determine important quantities such as Newton-based inverse problem
solutions and posterior uncertainties [15]. However, as described in Section 1.3, the
Hessian is a formally dense matrix that is only accessible through it's action on
vectors. Given the matrix-free form of the Hessian, a natural choice for solving
linear systems with Hessian system matrices is a Krylov-subspace method [7, 16],
as such methods only require a means to compute system matrix-vector products.
However, the number of Krylov-subspace iterations, needed to solve a linear system
depends strongly on the system matrix eigenstructure; the number of Krylov-subspace
iterations needed to determine the linear system solution is small when the system
matrix has clustered eigenvalues.

The number of Krylov-subspace iterations is of particular relevance for large-scale
inverse problems governed by PDEs as each iteration requires at least one Hessian-
vector product and two linearized PDE solves are needed for each Hessian-vector
product computation [9, 2]. Preconditioners are a standard means to reduce the
number of Krylov iterations [7], by solving a mathematically equivalent precondi-
tioned linear system, wherein more computation is generally required per Krylov
iteration. A more established means to generate preconditioners for reduced-space
Newton systems in inverse problems governed by PDEs is by exploiting the ill-posed
nature of unregularized inverse problems [4, 17, 18, 14, 19]. The Hessian of the data
mis�t-component of the objective functional (Equation (1.1)) has eigenvalues that
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rapidly decay and furthermore the eigenvalues of the regularization preconditioned
data-mis�t Hessian has been proved in particular applications and shown numerically
in others to be mesh-independent, e.g., [20] and references within. The convergence of
the preconditioned conjugate-gradient (CG) Krylov-subspace method is consequen-
tially mesh-independent as the number of iterations required to resolve the k most
dominant modes of the error is proportional to k. Furthermore, one can invoke a
low-rank approximation of the regularization preconditioned data-mis�t Hessian to
generate a preconditioner which further reduces the number of Kyrlov-subspace iter-
ations. The cost to generate such low-rank approximations is also mesh-independent
due to the aforementioned mesh-independence of the regularization preconditioned
data-mis�t Hessian eigenvalues.

While regularization preconditioning and methods that leverage low-rank data-
mis�t approximations of the Hessian are mesh-independent, the number of Hessian
applies to complete a designated task may still be too large. The size of the aforemen-
tioned costs may be large because such methods, while they scale well with respect
to the discretized parameter dimension, they do not scale well with respect to the
amount of information contained in the data [21, Chapter 4]. An exorbitant amount
of PDE solves may thus be needed to solve inverse problems with highly informative
data. It is then crucially important to develop problem structure exploiting methods
that are computationally e�ective for Hessians in inverse problems in the highly in-
formative data regime [21]. In Chapter 2 of this thesis we exploit localized sensitivity
structure, contained in a large class of problems that is due to the underlying PDEs,
in large-scale ice sheet inverse problems by generating hierarchical o�-diagonal low-
rank (HODLR) matrix approximations of the data-mis�t Hessian. It is found that in
the data informative regime, the HODLR matrix format can be more suitable than
the global low-rank format for approximating data-mis�t Hessians.

While there has been some recent advances [22] in mesh-independent black-box
hierarchical matrix compression algorithms, the cost to generate HODLR Hessian ap-
proximations by purely algebraic peeling methods, i.e., a class of methods that only
require Hessian-vector products, is mesh-dependent. Hierarchical matrices with more
complex hierarchical partitioning patterns are expected to be better suited to exploit
localized sensitivity problem structure. Unfortunately, the cost to compute a hier-
archical matrix approximation of a matrix-free operator by a peeling method grows
with the complexity of the hierarchical partitioning. To overcome these challenges in
Chapter 3 of this thesis we summarize a method, which obviates the need to compute
hierarchical matrices by peeling. This method exploits local mean translation invari-
ance of localized point spread functions associated to the Hessian. It is shown, in a
ice sheet model inverse problem, that the number of PDE solves needed to solve the
inverse problem by an inexact Newton-CG method can be signi�cantly reduced with
the outlined local point spread function formalism.

In Chapters 2 and 3 the parameter of interest, the basal friction �eld, is a quantity
which can only be positive, as friction only acts to oppose motion and mathemat-
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ically is sign-de�nite. Furthermore, parameters which violate speci�ed inequality
constraints can cause the optimization algorithm to fail, for instance in an inverse
problem in which a distributed di�usion coe�cient is sought in a steady-state heat
equation. In this problem, having upper and lower bound constraints on the di�u-
sion coe�cient can bound the condition number of the matrix of the linear system
whose solution is the state u. Including constraints on the parameter to account
for sign-de�niteness of a friction �eld makes the necessary conditions for optimality
signi�cantly more complex and so it not uncommon to reparametrize the problem
and solve for the sign-inde�nite log basal friction �eld. If one does not modify the
regularization term to have greater complexity for the log basal friction parameter
�eld then the reparametrized inverse problem is not equivalent to the inverse problem
from which it was derived.

In Chapter 4 of this thesis ongoing research is presented on the computationally
scalable solution of PDE-constrained optimization problems which include additional
bound constraints. Here, both the optimizer and linear system solutions are computed
in the full-space. We utilize a robust interior-point approach to handle the bound-
constraints through a regularizing log-barrier penalty term. The log-barrier term
penalizes the parameter from being too close to the problem bounds and is then
homotopically relaxed therein permitting the parameter to approach the bounds along
what is commonly referred to as the central path [6, Chapter 14]. The log-barrier
subproblem is solved with a �lter line-search so that a proposed iterate is accepted
if it properly reduces either the partial di�erential equality constraint violation or
log-barrier objective. To solve the Newton linear systems that arise in this context
we utilize multigrid. Multigrid is a linear system solution technique that exploits the
relationship between PDE-solutions for di�erent levels of resolution as determined
by the degree of mesh re�nement. For large systems of equations which arise from
the discretization of an elliptic PDE, multigrid is computationally attractive due to
its optimal performance, with respect to computational complexity. Here we use a
generalized minimal residual (GMRES) Krylov-subspace solver for the interior-point
Newton linear system, with a block Gauss-Seidel preconditioner. The eigenvalues of
the block Gauss-Seidel preconditioned interior-point Newton system matrix depend
on the informativeness of the data, which is mesh-independent, and so the number of
Krylov-subspace iterations is also mesh-independent. We leverage available mature
multigrid solvers for the scalable application of the block Gauss-Seidel preconditioner.
Finally with the given framework we achieve a scalable means to solve an example
PDE- and bound-constrained optimization problem.
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Chapter 2

HODLR Approximation of Hessians

in Inverse Problems, with Application

to Ice Sheet Model Initialization

2.1 Introduction

Model-based simulation of complex physical systems plays an essential role in un-
derstanding real world phenomena. These models are often characterized by partial
di�erential equations (PDEs), and are typically subject to uncertainties stemming
from unknown coe�cient �elds, constitutive laws, source terms, initial and/or bound-
ary conditions, geometries, etc. When observation data exist, these parameters can
be estimated by solving an inverse problem governed by the underlying model (e.g.,
PDE). It is well known that uncertainty is a fundamental feature of inverse problems,
therefore in addition to inferring the parameters of interest, we need to quantify the
uncertainty associated with this inference. This uncertainty quanti�cation can be
done via Bayesian inference. Solving Bayesian inverse problems governed by complex
PDEs can be extremely challenging due to high-dimensional parameter spaces that
stem from discretization of in�nite-dimensional parameter �elds and the need to re-
peatedly solve the underlying PDEs. To overcome these computational challenges, it
is essential to exploit problem structure, when possible. For example, the underlying
PDE-solution operator is often di�usive, that observation data may be sparse or only
contain limited information about the parameter �eld. These particularities give rise
to a low-rank structure in the second derivative of the data-mis�t component of the
inverse problem objective (or of the negative log likelihood), hereafter referred to as
the data-mis�t Hessian. In previous work [4, 15] this low-rank structure in the con-
text of inverse ice sheet �ow problems was exploited. However, for cases when this
�low-rank� is in fact large, as is the case for many inverse problems of practical in-
terest, where the observation data are highly informative, low-rank approximation is
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insu�cient. In this article, we exploit the local sensitivity of model predictions to pa-
rameters, which gives rise to an o�-diagonal low-rank structure. We do so by invoking
hierarchical o�-diagonal low-rank (HODLR) matrix approximations and detail how
they can be used to reduce the computational cost to solve large-scale PDE-based
inverse problems.

Related work Global low-rank approximation of Hessians in inverse problems
have been successfully utilized in [4, 17, 18, 14, 19], with deterministic and ran-
domized methods [23, 14] being available to generate said approximations. How-
ever, some problems, speci�cally those with highly informative observation data, are
not amenable to global low-rank approximation, and thus other structure-exploiting
strategies are needed such as those based on local translation invariance and localized
sensitivities [24, 25, 26]. Here we focus on hierarchical low-rank methods for which
convenient randomized methods are available [27, 28].

Hierarchical matrices have been demonstrated in [29, 30] to be an e�ective means
to approximate covariance matrices associated to large-scale Gaussian processes. In [31],
hierarchical matrix approximations with general hierarchical partitioning patterns are
utilized for the construction of explicit representations of Hessian inverses. In one of
the examples studied, the authors �nd that the di�usivity of the parameter-to-PDE-
solution map and the informativeness of the observation data impact whether the
data-mis�t Hessian is more suited for compression with hierarchical or global low-
rank formats. Here, we build on this study and focus on a speci�c inverse problem
arising in land ice modeling.

Contributions The main contributions of this work are as follows. (1) We motivate
the use of HODLR compression for data-mis�t Hessians in inverse problems governed
by PDEs, and present a detailed study for large-scale ice sheet inverse problems,
such as the Greenland ice sheet. (2) We describe a strategy that leverages the fast
manipulation of HODLR matrices to e�ciently generate approximate samples from
a Gaussian posterior distribution for uncertainty quanti�cation. (3) We numerically
study the in�uence of various problem setups on the o�-diagonal low-rank structure
of the data-mis�t Hessian. The results show the e�ectiveness of the HODLR approxi-
mation for various problem scales including for a Greenland ice sheet inverse problem,
which has a discretized parameter dimension of 3.2× 105.

2.2 Preliminaries

In this section, we summarize background material regarding the solution of dis-
cretizations of in�nite-dimensional inverse problems. We also brie�y review HODLR
matrices. Speci�cally, we de�ne HODLR matrices, list some of their properties and
summarize the computational complexities of computing symmetric HODLR matrix
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approximations of symmetric operators that are only available through their appli-
cation on vectors. We refer to [32, 33] for a more thorough discussion of hierarchical
matrices and to [28] for more detail on HODLR matrices.

2.2.1 Bayesian Inverse Problems

A means to account for uncertainty in parametric inference is to employ the Bayesian
approach to inverse problems [34, 13, 35], which takes as input observation data d,
i.e., the data, prior knowledge of the parameter and a model for the likelihood of
data conditional to β. Prior knowledge of the discretized parameter β is typically
determined by the expertise of domain scientists and mathematically encoded in
a probability density function πprior (β). The likelihood π (d|β) involves the data
uncertainty and the mathematical model for the parameter-to-observable process.
The solution of a Bayesian inverse problem is a probability density function for the
discretized parameter β, that is conditioned on the observation data according to
Bayes formula

πpost (β) = π (β|d) ∝ πprior (β) π (d|β) ,

which provides a formal expression for the posterior distribution. Here, �∝� means
equal up to a normalization constant. For a problem with Gaussian priorN

(
β,Γprior

)
and data noise η described by the zero mean Gaussian N (0,Γnoise), πpost(·) has the
following form

πpost (β) ∝ exp

(
−1

2
‖F(β)− d‖2

Γ−1
noise

− 1

2
‖β − β‖2

Γ−1
prior

)
, (2.1)

where F is the parameter-to-observable map. The notation ‖ · ‖A means that the

norm is weighted with the positive-de�nite matrix A, i.e., ‖v‖A =
√
v>Av. The

parameter-to-PDE-solution map is typically nonlinear, and consequently the posterior
distribution is not a Gaussian. One characteristic of the posterior distribution is the
point at which it is maximized, or equivalently the point which minimizes the negative
log-posterior, the so-called maximum a posteriori (MAP) point,

β? := argminβ J(β) :=
1

2
‖F(β)− d‖2

Γ−1
noise

+
1

2
‖β − β‖2

Γ−1
prior

. (2.2)

A means to compute the MAP point is to employ a (Gauss) Newton method for
optimization [6], which critically relies on the availability of the (Gauss-Newton)
Hessian. Since, J is de�ned implicitly in terms of the parameter-to-observable map,
which involves a PDE-solution operator, we utilize the adjoint method [2, 9, 10] to
compute it's gradient and Hessian-applies.

To fully explore posterior distributions, Markov chain Monte-Carlo (MCMC) tech-
niques [36, 37] can be used. Such techniques require a proposal distribution that ide-
ally approximates the posterior and is easily sampled from. One method to generate a
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Gaussian proposal distribution is through the Laplace approximation of the posterior
about βk (or around the MAP point)

π̃post (β,βk) ∝ exp

(
−1

2
〈β − µk,Hk (β − µk)〉`2

)
,µk = βk −H−1

k gk,

where gk, Hk are the gradient and Hessian of the log-posterior J(β) at βk. Another
MCMC sampling approach is the generalized preconditioned Crank-Nicholson (gpCN)
method [38, 39]. An attractive choice for the preconditioner is the Hessian at the MAP
point, [40].

For these and other MCMC samplers, one typically needs to apply the inverse
HessianH−1

k or its square rootH
−1/2
k repeatedly and e�ciently, which also motivates

the study presented in this paper. In particular, in Section 2.3.2 we discuss how
HODLR approximations can be used for the fast application of the Hessian square
root.

2.2.2 Symmetric HODLR Matrices

A HODLR matrix A ∈ RN×N , is a matrix equipped with a depth L ∈ N, hierarchical
partitionings of the index set I = {1, 2, . . . , N} into continguous subsets and low-
rank o�-diagonal blocks de�ned by the partition, which is described in greater detail
in e.g. [28]. The block rank-structure of a HODLR matrix for various hierarchical
depths is illustrated in Figure 2.1. An HODLR matrix must satisfy two additional
properties.

1. The depth of the hierarchical partitioning scales with the logarithm of the size
of the matrix, i.e.,

L = O (log N) .

2. The maximum rank of each hierarchical level ` o�-diagonal block, r`, is bounded
above by a number r that is independent of the problem size N , for each level `

max
1≤`≤L

r` ≤ r = O (1) .

Such matrices are referred to as data-sparse since the low-rank blocks allow for them
to be represented computationally with less than O (N2) �oating point numbers. In
particular, the storage of an HODLR matrix is O (N log N), O(N log N) �ops are
needed to compute a HODLR matrix-vector product [23], and O(N log2 N) �ops are
required for direct methods to compute an inverse HODLRmatrix-vector product [41],
as well as square root and inverse square root matrix-vector products [42].
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Figure 2.1: Rank-structure of a matrix A with hierarchical depths L = 1 (left), L = 2
(middle) and L = 3 (right). O�-diagonal blocks are assumed to be low-rank.

Compression We aim to generate HODLR approximations of data-mis�t Hessians
in inverse problems. For large-scale problems, the data-mis�t Hessian is available only
as a matrix-free operator. In order to construct HODLR approximations of symmetric
matrix-free operators, we employ previously developed randomized linear algebraic
routines which only require the matrix-free action on a limited number of random vec-
tors with speci�ed null entries, referred to as structured random vectors. The Hessian
action on these structured random vectors is used to sample row and column spaces
of o�-diagonal Hessian submatrices and allow for randomized approximate truncated
singular value decompositions of the aforementioned o�-diagonal submatrices. More
details can be found in the appendix, see Algorithm 5.

For the results that we present in Section 2.5 a rank-adaptive symmetric matrix-
free [43, 44], hierarchical compression algorithm is utilized, that is based on [28]. A
similar algorithm is presented in [45], wherein the hierarchical partitioning is more
general and the low-rank blocks have nested bases. The rank-adaptivity provides
a high probability means of resolving the o�-diagonal blocks to a desired level of
accuracy. By utilizing available matrix-vector product information and the Rayleigh
quotient, a rank adaptive relative tolerance algorithm is made possible.

Computational Cost of Generating HODLR Approximations The number
of matrix-vector products ζ, needed to compress a symmetric matrix using d over-
sampling vectors, into a level L HODLR matrix with o�-diagonal ranks {r`}L`=1 is
given by

ζ = 2 (〈r〉+ d)L+N/2L, where 〈r〉 :=
1

L

L∑
`=1

r`. (2.3)

Equation 2.3 can be understood from Algorithm 5 in Appendix A.1, as for each
level ` one needs to compute r` + d Hessian vector products, in order to compute Y
(line 7 of Algorithm 5) and r` + d Hessian vector products to compute Z (line 14 of
Algorithm 5). The remaining N/2L Hessian vector products arise from the need to
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determine the diagonal subblocks, which is detailed in [23]. We note that with an
adaptive procedure to determine an approximate basis Q, such as that in [44], for a
block matrix column space, the cost is reduced to ζadaptive = 2 (〈r〉+ d/2)L+N/2L but
with the additional computational burden of extra orthogonalization routine calls. We
note that ζ = O(log N) matrix-vector products are needed to generate an HODLR
approximation of a matrix with HODLR structure. For su�ciently large problems
HODLR compression is not expected to be more computationally e�cient than global
low-rank (LR) compression, as ζLR = r+ d, the number of matrix-vector products to
generate a rank r compression by the single-pass algorithm [28] with d oversampling
vectors is independent of the problems size. However, for problems of substantial size,
we observe that the HODLR format does o�er computational savings (see Section 2.6).

2.3 HODLR matrices in inverse problems governed

by PDEs

Here, we illustrate why data-mis�t Hessians in inverse problems governed by PDEs
may contain numerically low-rank o�-diagonal blocks, describe how one can permute
parameters to expose this HODLR structure, and show how HODLR approximations
can be leveraged to draw samples from Gaussian approximations of Bayesian posterior
distributions.

2.3.1 Motivation

Consider the following data-mis�t cost functional

Jmis�t (β) :=
1

2
‖F(β)− d‖2

Γ−1
noise

, with F(β) = Bu,

where B linearly maps the PDE-solution u = u(β), for the spatially-distributed pa-
rameter �eld β, to the model predictions associated to the data d. Moreover, Γnoise

is the covariance matrix describing the Gaussian noise of the observational data. For
illustration purposes, we assume that the parameter function β is de�ned on a region
Γ1 and the data d is observed on a region Γ2, which may or may not be distinct.
These quantities are related through the solution of the governing PDE and the mea-
surement operator B. The characteristics of this relation depends on properties of
the governing PDE. In the following, we assume that a spatially (or temporally) lo-
calized perturbation in the β �eld leads to a predominantly localized e�ect in the
PDE-solution u, and thus the model predictions Bu. This property is illustrated in
Figure 2.2, where we use a sensitivity cone to illustrate the in�uence of a local per-
turbation in β, de�ned over Γ1, on the PDE-solution u in Γ2. It is well known that
for an elliptic PDE, local perturbations in�uence the solution globally, but depend-
ing on the geometry of the domain and the equation, this global e�ect may rapidly
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perturbation ψi

sensitivity cone, δu
δβ

(β)(ψi) Γ2

Γ1

Figure 2.2: Sketch illustrating a case where the in�uence of changes in the parameter
β on the PDE-solution u in Γ2 is focused in a small area. To illustrate this, we show a
sensitivity cone, i.e., the PDE solution u is predominantly impacted in a cone about
the support of the localized parameter perturbation.

decay outside a subset of Γ2 that captures the main e�ects of the perturbation. For
instance, in a problem as in Figure 2.2, the in�uence of perturbations in β on u is
likely to become more localized when the distance between Γ1 and Γ2 decreases.

We next discuss the relationship between properties of the PDE as discussed
above and o�-diagonal blocks in the Hessian matrix (or its Gauss-Newton variant).
The data-mis�t Hessian, i.e., the Hessian of the data-mis�t part of the cost functional,
can be derived using the adjoint method [2, 9, 10]. However, we �nd that the HODLR
structure of the data-mis�t Hessian is most easily seen by studying a formal expression
of it in terms of the �rst and second order sensitivities δu/δβ, δ2u/δβ2

δ2

δβ2
Jmis�t (β) (β1, β2) = (Bu− d)> Γ−1

noise

(
B δ

2u

δβ2
(β) (β1, β2)

)
+(

B δu
δβ

(β) (β1)

)>
Γ−1
noise

(
B δu
δβ

(β) (β2)

)
,

where δu/δβ (β) (β1) is the �rst variation [11] of u with respect to β in direction β1,
and δ2u/δβ2 (β) (β1, β2) is the second variation of u with respect to β in directions
β1, β2, that is,

δu

δβ
(β) (β1) :=

[
d

dε
u (β + εβ1)

]
ε=0

,

δ2u

δβ2
(β) (β1, β2) :=

[
d

dε

δu

δβ
(β + εβ2) (β1)

]
ε=0

.

Upon discretizing β with �nite elements we obtain the following formal expression for
the (i, j)-entry of the data-mis�t HessianHmis�t and of the Gauss-Newton data-mis�t
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Hessian HGN
mis�t

(Hmis�t)i,j =
δ2

δβ2

(
Jmis�t (β)

)
(ψi, ψj) , (2.4)

(
HGN

mis�t

)
i,j

=

(
B δu
δβ

(β) (ψi)

)>
Γ−1
noise

(
B δu
δβ

(β) (ψj)

)
, (2.5)

where {ψj}Nj=1 is a basis for the nodal �nite-element space, which is used to approxi-
mate β.

When sensitivities are predominantly local as discussed above and when the sup-
port of two �nite element basis functions ψi, ψj are well separated, the terms(

B δu
δβ

(β) (ψi)

)>
Γ−1
noise

(
B δu
δβ

(β) (ψj)
)

and B
(δ2u

δβ2
(β) (ψi, ψj)

)
,

are rather small (assuming diagonally dominant noise covariance matrices). This
is, e.g., due to Bδu/δβ(β)(ψi) having small values when Bδu/δβ(β)(ψj) is large.
Now, let I,J be disjoint index subsets of {1, 2, . . . , N}, then the entries in the ma-
trix block {(Hmis�t)i∈I,j∈J } of the data-mis�t Hessian are relatively small whenever
∪i∈Isupp (ψi) and ∪j∈J supp (ψj) are well separated. Such Hessian blocks are well
suited for approximation by low-rank matrices. When the degrees of freedom cor-
responding to the �nite element basis functions ψi are ordered such that I,J are
contiguous, (Hmis�t)I,J is an o�-diagonal subblock of Hmis�t and Hmis�t tends to
have HODLR structure as de�ned in Section 2.2.2. The Gauss-Newton data-mis�t
Hessian may have HODLR structure for the same reasons. In both cases, the order
of the basis functions and thus the degrees of freedom in�uence this structure. Ide-
ally, one wants an order that maintains locality, i.e., consecutive indices correspond
to basis functions that are close to each other, and as a consequence, basis function
with signi�cantly di�erent indices are far from each other such that the corresponding
o�-diagonal blocks have small entries and can be well approximated using a low-rank
matrix approximation. We defer to Section 2.6.2 for a discussion of methods and
numerical experiments regarding the order of the degrees of freedom.

2.3.2 Application of HODLR structure for fast sampling of

Gaussian posterior approximations

In [15], the following expressions of the Gaussianized posterior covariance are pro-
vided,

Γpost =
(
Hmis�t + Γ−1

prior

)−1
= Γ

1/2
prior (H ′mis�t + I)

−1
Γ
>/2
prior,

H ′mis�t := Γ
>/2
priorHmis�tΓ

1/2
prior,

Γ
1/2
post = Γ

1/2
prior (H ′mis�t + I)

−1/2
,
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where the matrix square-root A1/2 is such that A = A1/2
(
A1/2

)>
. For Bayesian

inverse problems with a parameter �eld that is distributed spatially over a bounded
subset of Rm, m = 2, 3, a reasonable choice is to use the square of an inverse elliptic
PDE operator for the prior covariance [35], which permits a means of obtaining a
symmetric square root of Γprior. In previous works such as [4, 17, 18, 14, 19], the
prior-preconditioned data-mis�t Hessian H ′mis�t, was approximated by global low-
rank compression. This strategy provides an e�cient means of approximating the
posterior covariance matrix in inverse problems with data sets that contain su�-
ciently small amounts of information. Here we propose to exploit HODLR problem
structure and generate approximate posterior covariance matrices by HODLR ap-

proximations of the prior-preconditioned data-mis�t H̃
′
mis�t, see Appendix A.3 for

an analysis on how such an approximation impacts the accuracy of the approximate
posterior covariance

Γ̃post = Γ
1/2
prior

(
H̃
′
mis�t + I

)−1

Γ
>/2
prior.

A symmetric square-root factorization of H̃
′
mis�t+I is then generated withO

(
N log2 N

)
�ops [42]. The symmetric factorization allows for a O (N log N) means of applying
both the square root and inverse square root.

2.4 Bayesian inverse ice sheet problems

The simulation of the dynamics of ice sheets (e.g., the Greenland or Antarctic ice
sheets) is an important component of coupled climate simulations. Such simulations
require estimation of a present state of the ice that is consistent with available ob-
servations, a process sometimes referred to as model initialization. This estimation
problem can be formulated either as a deterministic inverse problem (i.e., as nonlin-
ear least squares optimization governed by PDEs) or as a Bayesian inverse problem
(i.e., as a statistical problem which aims to characterize a distribution of states). The
latter approach, while more expensive, provides uncertainty estimates in addition to
determining a best parameter �t.

Ice sheet dynamics [46] is typically governed by nonlinear Stokes equations or
simpli�cations thereof, such as the �rst-order equations (see e.g., [47]). Generally, the
most uncertain component in ice sheet simulations is the basal boundary condition,
i.e., how the ice sheet interacts with the rock, sand, water or a mix thereof at its base.
Estimating an ice sheet's e�ective boundary condition from velocity observations on
the top surface, the ice sheet's geometry and a model for its dynamics is thus an
important problem that can mathematically formulated as an inverse problem [4, 48,
49, 50, 3].

We summarize the formulation of this inverse problem next. As common in the
literature, we use a snapshot optimization approach, where all the data are assumed
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to be collected over a short period of time during which changes in the ice geometry
are negligible. We denote the bounded domain covered by ice by Ω ⊂ Rm, m ∈ {2, 3},
and the basal, lateral and top parts of the domain boundary ∂Ω by Γb, Γl, and Γt, as
illustrated in Figure 2.3.

The governing equations are nonlinear incompressible Stokes equations whose so-
lution is the ice �ow velocity u : Ω → Rm and the pressure p : Ω → R given as
follows:

−∇ · σu = ρg in Ω, (2.6)

∇ · u = 0 in Ω, (2.7)

σun = 0 on Γt, (2.8)

u · n = 0 and T (σun+ exp (β)u) = 0 on Γb, (2.9)

along with additional lateral boundary conditions. Here, β is a basal sliding param-
eter �eld, ρg the body force density, where ρ is the mass density of the ice and g
the acceleration due to gravity. Equation 2.6 describes the conservation of momen-
tum, 2.7 the conservation of mass, and 2.8 are stress-free boundary conditions for
the top surface (the ice-air interface). In normal direction, Equation 2.9 states a
non-penetration condition, i.e., the ice cannot �ow into the rock/sand layer which
supports it (here n denotes the outward unit normal to the boundary ∂Ω and T the
tangential operator, Tv = v − n(n>v)). In tangential direction, Equation 2.9 spec-
i�es a tangential sliding condition that relates the fraction of tangential sliding and
tangential stress through the (logarithmic) basal sliding �eld β = β(x), x ∈ Γb. We
employ Glen's �ow law [51], a constitutive law for ice that relates the stress tensor
σu and the strain rate tensor ε̇u = 1

2

(
∇u+ ∇u>

)
,

σu = 2η (u) ε̇u − Ip, with η (u) =
1

2
A−1/nε̇

1−n
2n
II , (2.10)

where η is the e�ective viscosity, I is the unit matrix, ε̇II = tr
(
ε̇2
u

)
is the second

invariant of the strain rate tensor, A is a �ow rate factor, and n is Glen's exponent. Ice
is typically modeled using n ≈ 3, which corresponds to a shear-thinning constitutive
relation, here we use n = 3.

As discussed above, the parameter containing the largest uncertainty is the (loga-
rithmic) basal sliding �eld β = β(x). Thus, it is usually the parameter inferred from
(typically, satellite) observation data d, here in the form of surface velocity mea-
surements. Using an appropriate point observation operator B that extracts point
data from the solution u of the governing equations 2.6-2.9, and assuming additive
observation errors η, the relationship between model and data is now of the typical
form

d = Bu+ η. (2.11)
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Assuming that the observation errors η and the prior for the parameter �eld β fol-
low Gaussian distributions, we are in the framework of Bayesian inverse problems
summarized in Section 2.2.1.

2.5 Example I: Two-dimensional ISMIP-HOM

benchmark

We �rst study the prospects of compressing the Gauss-Newton data-mis�t Hessian in
a problem inspired by the ISMIP-HOM collection of ice sheet simulation benchmark
problems [52]. This problem set was used to explore inverse ice sheet problems in [50,
3]. After a short description of the problem setup, we present results such as the MAP
point estimate β? and approximate Gaussianized posterior samples using an HODLR
compression of the posterior covariance. Then, we study the impact that various
problem features have on the suitability of the Gauss-Newton data-mis�t Hessian for
compression to the HODLR and global low-rank formats.

2.5.1 Problem setup

This problem setup consists of a rectangular piece of ice on a slope, as sketched in
Figure 2.3. This simple example allows us to study the in�uence of the domain aspect
ratio, the number of observations and the level of mesh re�nement on the properties
of the Gauss-Newton data-mis�t Hessian matrix. Unless otherwise speci�ed, the
domain has a width of W = 104 [m] and a height of H = 102 [m]. Periodic boundary
conditions are employed along the lateral boundaries such that the setup models an
in�nite slab of ice on a slope. The governing equations and other boundary conditions
are as discussed in Equations 2.6-2.9.

The Stokes equations are discretized using Taylor-Hood �nite elements on a mesh
over Ω = [0,W ] × [0, H] of 256 × 10 rectangles, each subdivided into two triangles.
To compute a MAP estimate, we generate synthetic surface velocity data using the
true logarithmic basal sliding �eld, βtrue (x) := log

(
1 200 + 1 100 sin

(
2πx
W

))
. Given

this basal sliding �eld, we solve Equations 2.6-2.9, extract the tangential velocity
component at 100 uniformly distributed points on the top boundary Γt, and add 1%
relative Gaussian noise to each data point, resulting in the synthetic data d.

It remains to de�ne the prior distribution for the parameter �eld β. The average
value of βtrue is used as constant prior mean β (x) = 6.73315 ≈ 1

W

∫W
0
βtrue (s) ds.

The prior covariance matrix Γprior is a discretization of the covariance PDE operator
C := (δI − γ∆)−1, with γ = 6 × 102 and δ = 2.4 × 10−3, with Robin boundary
conditions [53]. These values are chosen in order to provide a relatively large prior
correlation length of 103 [m] [54]. Next, we summarize the computation of the MAP
point and the compression of the Gauss-Newton data-mis�t Hessian matrix at the
MAP point.
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Figure 2.3: Schematic of two-dimensional slab of ice used for Example I in Section 2.5.
The blue circles show representative (random) measurement locations. The angle θ
is the slope of the ice slab.
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Figure 2.4: Shown for Example I are on the left the MAP point β? (red) and the
truth basal sliding parameter βtrue (black) used to generate synthetic observations of
the tangential velocity component on the upper surface Γt. Shown on the right are
noisy synthetic observations (black dots) used for computing the MAP point and the
associated tangential surface velocity reconstruction (red).

2.5.2 MAP point and HODLR Gaussianized posterior

The nonlinear optimization problem for �nding the MAP estimate is solved using an
inexact Gauss-Newton minimization method with backtracking linesearch [6], where
the linear systems are iteratively solved by the conjungate gradient method. The
resulting MAP point is shown in Figure 2.4. The MAP parameter �eld β?, closely
resembles the true parameter βtrue, which is a consequence of the large amount of
available data and relatively small noise level.

Next, we use the Gaussianized posterior distribution with a compressed prior-
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Figure 2.5: Results for Example I: Two random samples (red), mean β (blue) and
boundaries of the region R = {(x, y) such that 0 ≤ x ≤ W and β(x)− 2σ(x) ≤ y ≤
β(x)+2σ(x)} (dashed black) are shown for the prior (left) and a HODLR Gaussianized
posterior using the scheme described in Section 2.3.2 (right).

preconditioned data-mis�t HessianH ′mis�t to generate approximate samples from the
posterior distribution. Upon construction of the HODLR compression of the prior-
preconditioned data-mis�t Hessian (details and comparisons can be found below in
Section 2.5.3), we draw samples from the HODLR Gaussianized posterior as outlined
in Section 2.3.2. In Figure 2.5, we compare the mean, pointwise standard devia-
tion and samples from the prior and the posterior distributions. As expected, we
�nd that the data updates our belief about the spatially distributed parameter �eld
and reduces the uncertainty. In particular, the 2σ bounds on the one-dimensional
point marginals σ (x), σi = [Γi,i]

−1/2 of the Gaussianized posterior and the prior
distributions are shown, in order to verify that the samples are largely contained
within two standard deviations of their respective means. The prior-preconditioned
data-mis�t Hessian H ′mis�t, is compressed using a relative tolerance of 10−6, that

is ‖H ′mis�t − H̃
′
mis�t‖2/‖H ′mis�t‖2 ≤ 10−6, with high probability.

2.5.3 Dependence of Hessian block spectra on problem

setting

Next, we study how problem features impact the numerical suitability of using global
low-rank and HODLR compressions to approximate the Gauss-Newton data-mis�t
Hessian. In this and subsequent sections we measure the cost to generate the matrix
compression in terms of Hessian vector products, which we also describe as Hessian
applies, as each said vector product requires two linearized PDE solves and thus
dominates the computational cost. We use the result of Appendix A.2, to claim ε
absolute error in a level L HODLR approximation, when there is no more than ε/L
absolute error in each o�-diagonal block. What is particular to this section, is that
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Figure 2.6: Comparison of HODLR and global low-rank (LR) compression costs of
the Gauss-Newton data-mis�t Hessian HGN

mis�t, for Example I with ice sheet aspect
ratio φ. This �gure shows that for low aspect ratios, HODLR becomes more e�cient
than global low-rank for medium levels of target accuracy.

adaptive single-pass and HODLR algorithms are used to generate global low-rank and
HODLR approximations, based on absolute tolerance criteria. The absolute tolerance
algorithmic input is scaled by the largest global low-rank singular value in order to
report relative approximation errors. We note that additional errors are neglected in
the reported approximation error such as that incurred in the peeling process [27, 28]
and additional approximation assumptions in the single-pass algorithm, both of which
are not expected to be signi�cant.

In�uence of aspect ratio Here, we vary the aspect ratio of the domain φ = H/W ,
whereH andW are the domain height and width respectively, in order to study how it
in�uences the block spectra of the Gauss-Newton data-mis�t Hessian and ultimately
the computational cost. Figure 2.6 shows that the global spectrum is more sensitive
to changes in the relative length scale φ than the spectra of the o�-diagonal blocks.
Low-rank approximations of the o�-diagonal blocks become computationally cheaper
as φ decreases as a result of the sensitivity cones becoming increasingly localized
as the ice sheet thickness decreases. Global low-rank approximations become more
expensive as φ decreases, a result of the data being more informative. We note that
realistic problems, such as the Humboldt glacier and the Greenland ice sheet studied
later in Section 2.6, have small aspect ratios and are thus expected to have data-mis�t
Hessians that are less amenable to global low-rank approximation.
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Figure 2.7: Dependence of HODLR and global low-rank (LR) compression costs of
the Gauss-Newton data-mis�t Hessian on dim (β), the dimension of the discretized
logarithmic basal sliding �eld for Example I. The cost of global low-rank compression
is almost constant, while the cost of HODLR compression increases as the mesh is
re�ned.

In�uence of the parameter dimension We now vary the level of mesh discretiza-
tion re�nement in order to study the in�uence of data informativeness, through the
discretized parameter dimension N = dim(β), on the computational cost to generate
HODLR and global low-rank approximations of the Gauss-Newton data-mis�t Hes-
sian. The hierarchical depth L is incremented for every doubling of the discretized
parameter dimension, in order that the hierarchical depth scales with the logarithm
of the size of the Hessian matrix, a condition described in Section 2.2.2. Figure 2.7
provides computational evidence of the claim made in Section 2.2.2, that the number
of applies needed to hierarchically compress an operator with HODLR structure is
O (log N). On the contrary, the number of applies to generate the global low-rank
approximation is rather insensitive to the level of mesh re�nement.

In�uence of the data dimension Figure 2.8 shows that the global rank grows
with the number of observations points and thus global low-rank compression tends
to be less e�cient for problems with strongly informative observation data. The rate
of spectral decay of the (Gauss-Newton) data-mis�t Hessian is related to the degree
of ill-posedness of the unregularized inverse problem. As the number of observations
increases, these associated model predictions are increasingly sensitive to small scale
variations in the basal sliding �eld. Thus, more data, generally makes the data set
more informative about the parameter and the (Gauss-Newton) data-mis�t Hessian
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Figure 2.8: Dependence of HODLR and global low-rank (LR) compression costs of
the Gauss-Newton data-mis�t Hessian on dim(d), the data dimension, for Example I.
The computational cost for global low-rank approximation increases with the number
of observations, while the cost for HODLR compression is rather insensitive.

have a weaker rate of spectral decay.

2.6 Example II: Humboldt glacier and Greenland

ice sheet

Here, we study the scalability of the proposed methods using large-scale ice sheet
problems which are typically used in climate simulations. Namely, we focus on the
Humboldt glacier in North-West Greenland, and the entire Greenland ice sheet. For
these simulations, we use the ice sheet model MALI, [55], which relies on Albany, [56],
a C++ multi-physics library for the implementation of the so-called �rst-order ap-
proximation of Stokes equations. This �rst-order approximation is based on scaling
arguments motivated by the shallow nature of ice sheets and uses the incompressibility
condition to reduce the unknows to the horizontal velocities. We use PyAlbany [57]
a convenient Python interface to the Albany package, which in turn builds upon
Trilinos [58]. Albany is designed to support parallel and scalable �nite-element dis-
cretized PDE solvers and various analysis capabilities. Details about the parameter,
state, data dimensions as well as the number of cores and hierarchical levels used in
the computations is provided in Table 2.1.

The following study is partially motivated by �ndings made in the Section 2.5,
namely that the role of the aspect ratio between the vertical and horizontal directions
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Humboldt Greenland
dim(β) 11 608 320 116
dim(u) 255 376 7 042 552
dim(d) 23 216 640 232

# of cores 120 2 048
L 8 10

Table 2.1: Problem speci�cations for the Humboldt glacier and Greenland ice-sheet
problems (Example II). Dimension of the discretized parameter �eld dim(β), dimen-
sion of the discretized velocity �eld dim(u), dimension of the observations dim(d),
processors employed for computations and L depth of HODLR hierarchical partition-
ing.

(see Section 2.5.3) in�uences the ability to use global low-rank compression and favors
HODLR compression. We generate HODLR and global low-rank approximations and
then based on the computed spectra, Equation 2.3 and ζLR = r + d, we estimate
the computational cost. Additionally, we study how the ordering of the degrees of
freedom impacts the spectral decay for o�-diagonal blocks of the data-mis�t Hessian.
We present results for both, the Humboldt glacier, which expands about 4× 102 [km]
laterally, and the Greenland ice sheet, which expands about 1.8 × 103 [km]. The
ice is at most 3.4 [km] thick, resulting in approximate aspect ratios of 8.5 × 10−3

for Humboldt and 1.9 × 10−3 for Greenland. We use a nonuniform triangulation of
the Greenland ice sheet, with mesh size ranging from 1 to 10 [km], and we then
extrude it in the vertical direction, obtaining a 3D mesh having 10 layers of prismatic
elements. The velocity observations at the top surface of the Greenland ice sheet
are obtained from satellite observations [59]. The MAP basal sliding �eld and the
temperature �elds are obtained as part of the initialization process, using a numerical
optimization approach to match the ice velocity observations and constrained by the
�rst-order �ow model coupled with a temperature model [5]. Additional details about
the mesh geometries and data, in particular regarding the Humboldt glacier, can be
found in [60].

In Figure 2.9, we show the observed surface velocity d in [m/yr], the MAP esti-
mates of the logarithmic basal sliding �eld β? (exp(β?) is in [kPa yr/m]) and surface
velocity in [m/yr] generated by the model.

2.6.1 HODLR compressability

We next generate global low-rank approximations of a Greenland and Humboldt
data-mis�t Hessian as well as low-rank approximations of various o�-diagonal blocks.
Plots of the estimated singular values are provided in Figure 2.10. We observe that
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Figure 2.9: Data and MAP estimates for Example II. Shown are the surface velocity
observation data (left), and the reconstructed surface velocity �eld (middle) that is
based on the MAP estimate of the logarithmic basal sliding �eld (right). Top row is
for the Humboldt glacier and bottom row for the Greenland ice sheet.

the spectrum of the Greenland ice sheet decays substantially slower than the one for
the Humboldt glacier. Besides the di�erent sizes of these two discretized problems,
this is also due to the di�erent aspect ratios. Having estimated singular values of the
data-mis�t Hessians and the appropriate o�-diagonal blocks, one is able to estimate
computational costs to compress them into the global low-rank and HODLR matrix
formats. The computational cost as a function of Hessian approximation target accu-
racy is given in Figure 2.11, wherein it is demonstrated that the HODLR compression
format can o�er a favorable means to approximate data-mis�t Hessians for large-scale
inverse problems governed by complex ice-sheet models.

2.6.2 Impact of parameter degree of freedom ordering

We seek to ensure that the o�-diagonal blocks, determined by the hierarchical parti-
tioning described in Section 2.2.2, of the data-mis�t Hessian are low-rank. For this
reason, the nodes {xi}i associated to the degrees of freedom (dofs) are ordered ac-
cording to a kd-tree, i.e., a recursive hyperplane splitting. The ordering provided by
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Figure 2.10: Singular values of the data-mis�t Hessian (left �gure) and various o�-
diagonal blocks of the data-mis�t Hessian (right �gure) for Example II. The color-
scheme in the right most �gure is consistent with Figure 2.1. On the left, the singular
values of the Humboldt and Greenland data-mis�t Hessians are shown using a solid
and dash-dotted line, respectively. On the right, we show the singular values of the
upper most blocks, that is A

(`)
1,2 as de�ned in Section A.2.

the kd-tree is such that the (i, j)-entry of the distance matrix Di,j = ‖xi − xj‖2,
is typically small whenever |i − j| is small, that is the dof ordering preserves some
notion of locality (see Section 2.3.1). In particular, a sparse permutation matrix B, is
determined, whose action reorders the dofs from the default ordering provided by the
�nite element discretization to that speci�ed by the kd-tree. The data-mis�t Hessian
with respect to the kd-tree ordering, Hkd

mis�t := BHmis�tB
>, is then amenable to

HODLR compression. Subsequently, B>H̃
kd

mis�tB is an approximation of the data-
mis�t Hessian with respect to the default ordering.

The dof ordering has no impact on a matrix's global numerical rank but does
indeed impact the numerical rank of its numerous submatrices that are de�ned by a
�xed partitioning scheme, such as the o�-diagonal blocks of an HODLR matrix (see
Section 2.2.2). Here, we study the HODLR compressibility of the Humboldt glacier
data-mis�t Hessian by comparing the rate of decay of an o�-diagonal block's singular
values using the default ordering provided by Albany and the ordering obtained by a
kd-tree recursive hyperplane splitting. As observed in Figure 2.12, the rate at which
the singular values of the level-1 o�-diagonal block decay, strongly depends on the dof
ordering. This is because the ordering given by the kd-tree better preserves locality,
and as a consequence, by the argument provided in Section 2.3.1, the singular values
decay much faster when using the kd-tree ordering. The kd-tree ordering therefore
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Figure 2.11: Estimated computational costs (measured by the number of Hessian
applies) to compress the Humboldt glacier (left) and Greenland ice-sheet (right)
data-mis�t Hessians into the global low-rank (LR) and hierarchical o�-diagonal
low-rank (HODLR) formats as a function of the approximation error ‖Hmis�t −
H̃mis�t‖2/‖Hmis�t‖2.

provides a substantially computationally cheaper means to generate an HODLR ap-
proximation of the data-mis�t Hessian. Figure 2.12 also shows distance matrices for
the default and kd-tree bases. These show the improved locality for the kd-orderings.
Note that data-mis�t Hessian matrices are expected to follow a similar structure as
these distance matrices, which explains why the former's o�-diagonal blocks can be
compressed more e�ectively in the kd-order than in the default order of dofs.

2.7 Conclusion

In this work, we motivated why data-mis�t Hessians which arise from a class of inverse
problems governed by PDEs have HODLR matrix structure. HODLR matrices can
e�ciently be inverted and factorized, operations needed for solving inverse problems
governed by PDEs by Newton's method, for constructing Gaussian approximations
and for Markov chain Monte Carlo sampling methods. We study inverse ice sheet
problems, for which, under certain regimes, HODLR matrices provide a more com-
putationally e�cient approximation format than the global low-rank matrix format.
These problems are those with highly informative data and small aspect ratio ice
sheets. While global low-rank matrices are favorable for large discretized parameter
dimension and small data dimension, we �nd that HODLR matrices can o�er compu-
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Figure 2.12: Singular values of the hierarchical level 1 o�-diagonal block, A
(1)
1,2, of

the Humboldt glacier data-mis�t Hessian, when expressed in a kd-tree basis and the
default basis. Shown also are heat maps of the distance matrices Di,j = ‖xi − xj‖2,
wherein the nodes {xi}i, associated to the �nite element degrees of freedom have been
ordered according to a default standard and a kd-tree.

tational savings for large-scale inverse problems such as a Greenland ice sheet inverse
problem with satellite observational data and a discretized parameter dimension that
exceeds 105.

The accuracy of the data-mis�t Hessian can be increased by utilizing more complex
hierarchical matrix partitionings that satisfy a strong admissibility condition [33], as
they are better suited to exploit data-mis�t Hessian structure. However, the number
of Hessian vector products required to generate a hierarchical matrix approxima-
tion by the peeling method [27, 28], grows with the complexity of the hierarchical
partitioning. Ultimately, to further reduce the computational cost of Hessian approx-
imations in inverse problems governed by PDEs, exploiting further problem structure
is essential and that is precisely the content of the fourth chapter of this thesis.
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Chapter 3

A Point Spread Function Method to

Further Enable Hierarchical Hessian

Approximation in Inverse Problems

3.1 Introduction

Our motivation, as before, is Hessian approximation for spatially distributed param-
eter inverse problems governed by PDEs. The Hessian is an operator that is central
to e�cient methods for solving such inverse problems in both the deterministic and
Bayesian settings, but information about the Hessian is only accessible via application
of the Hessian to vectors [21, 20]. The most popular matrix-free Hessian approxima-
tion methods are based on low-rank approximation [61, 62, 63, 64, 65] because there
are matrix-free methods for constructing low-rank matrix approximations [66, 43] and
that a number of inverse problems contain prior-preconditioned data-mis�t Hessians
with small and discretization independent numerical rank. However, in many inverse
problems of practical interest this Hessian is high-rank [67, 68] and the computa-
tional cost to determine a low-rank matrix approximation grows with the numerical
rank. Moreover, the numerical rank of the data-mis�t Hessian grows as the data in
the inverse problem become more informative about the unknown parameter. Low-
rank approximation methods therefore su�er from a data predicament�if the data
are highly informative about the unknown parameter, then the numerical rank of
the data-mis�t Hessian is large, so a large number of operator applies are required
to form an accurate �low-rank� approximation [69, 21, 70]. Alternatively, the cost of
hierarchical-matrix, e.g., HODLR (see Chapter 2), data-mis�t Hessian approximation
is largely insensitive to the informativeness of the data and so o�ers a data-scalable
alternative to global low-rank approximation.

Hierarchical matrices that satisfy a strong-admissibility criteria, i.e. H-matrices [71,
72], are a natural matrix format for exploiting the narrow sensitivity structure of ellip-
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tic PDEs that gives rise to o�-diagonal low-rank Hessian matrices in inverse problems
(see Section 2.3.1). In this context, a strong admissibility criteria refers to a geometric
means of choosing which o�-diagonal blocks are approximated by low-rank matrices.
For inverse problems discretized by nodal �nite elements, the rows and columns of
an o�-diagonal block corresponds to clusters of points. An o�-diagonal block of an
H-matrix is approximated by a low-rank matrix when the cluster of points associ-
ated to it's row is su�ciently well separated from the cluster of points associated to
it's columns. Hierarchical matrices with a geometric based strong-admissibility cri-
teria are better suited to exploit the narrow-sensitivity structure of governing elliptic
PDEs than hierarchical matrices which do not satisfy this criteria, such as HODLR
matrices. Unfortunately, matrix partitioning patterns of H-matrices are generally
fairly complex and the number of matrix-vector products required to determine a
hierarchical matrix approximation of a matrix-free operator by a randomized peeling
process [73, 74, 75, 76], grows with the complexity of the hierarchical partitioning
pattern. Classical methods [71, 72] to construct H-matrices require evaluation of
matrix-entries and thus means to approximately evaluate Hessian entries are needed
to construct H-matrix approximations of Hessians.

We present an e�cient matrix-free point spread function (PSF) method for ap-
proximating operators, H : L2(Ω)→ L2(Ω)′, that have locally supported non-negative
integral kernels. Here Ω ⊂ Rd is a bounded domain, and L2(Ω)′ is the space of
real-valued continuous linear functionals on L2(Ω). Such operators arise as Hessian
operators in inverse problems governed by PDEs [77, 78] where

(H β1)(β2) =
δ2J

δβ2
(β1, β2),

for an objective functional J(β) and δ2J/δβ2(β1, β2) is the second variation of the
objective functional at and with respect to β in directions β1 and β2. Such operators
also arise as Schur complements in Schur complement methods for solving PDEs [79,
80], Poincare-Steklov operators in domain decomposition methods (e.g., Dirichlet-to-
Neumann maps), covariance operators in spatial statistics [81, 82, 83], and blurring
operators in imaging [84, 85]. By matrix-free we mean that there is a black box
computational procedure to apply H and its adjoint1, H†, to arbitrary functions,

β1 7→ Hβ1 and β2 7→ H†β2, (3.1)

but there is not a simple means to evaluate H's integral kernel. In applications,
evaluating the maps in (3.1) may require a costly computational procedure, such as
solving a large linear system.

1The adjoint operator H† : L2(Ω) → L2(Ω)′ is the unique operator satisfying (Hβ1) (β2) =(
H†β2

)
(β1) for all β1, β2 ∈ L2(Ω), where Hβ1 ∈ L2(Ω)′ is the result of applying H to β1 ∈ L2(Ω),

and (Hβ1) (β2) is the result of applying that linear functional to β2 ∈ L2(Ω), and similar for
operations with H†.
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Figure 3.1: Batches, ηb, of normalized impulses, φx, for the Stokes inverse problem
data-mis�t Gauss-Newton Hessian (Section 3.4). Black stars are point source loca-
tions. Dashed gray ellipses are estimated impulse support ellipsoids. The large circle
is ∂Ω.

We use impulse interpolation to form a high-rank operator approximation using
a small number of operator applies. The impulse, φx, associated with a point x is
the Riesz representation2 of the linear functional that results from applying H to a
delta distribution (i.e., point source, impulse) centered at x. We compute batches
of impulses by applying H to linear combinations of delta distributions associated
with batches of points scattered throughout the domain (see Figure 3.1). Then we
interpolate translated and scaled versions of these impulses to approximate entries of
the operator's integral kernel. Picking the batches of points requires us to estimate
the supports of the impulses φx before we compute them. The idea of estimating
the supports of the functions φx a-priori was inspired by techniques from resolution
analysis in seismic imaging. There, H† is applied to a random noise function, and
the width of φx is estimated to be the autocorrelation length of the resultant function
near x [86, 87]. We use polynomial functions instead of random noise functions (see
Section 3.3). Our method estimates the support of φx more accurately and reliably
than random noise probing but is applicable only to those operators H which have
non-negative integral kernels. Our impulse interpolation may be categorized as a PSF
method that is loosely based on product convolution (PC) approximations, which
are approximations of an operator by weighted sums of convolution operators with
spatially varying weights. PC and PSF methods have a long history dating back
several decades. We note the following papers (among many others), [88, 77, 89, 90,
91, 92, 93, 85, 26], in which the convolution kernels are constructed from sampling
impulses of the operator to scattered point sources. For background on PC and PSF
methods, we recommend the following papers: [94, 95, 96]. While PC approximations

2The Riesz representative of a functional ρ ∈ L2(Ω)′ with respect to the L2 inner product is the
unique function ρ∗ ∈ L2(Ω) such that ρ(w) = (ρ∗, w)L2(Ω) for all w ∈ L2(Ω).
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Figure 3.2: H is locally mean displacement invariant if φx(y) = φx′ (y − µ(x) + µ(x′))
when ‖x− x′‖ is small. Here µ(z) denotes the mean of φz.

are based on an assumption of local translation invariance, the method discussed in
this Chapter is based on a local mean displacement invariance property, which is a
generalization of local translation invariance.

The ability to rapidly approximate entries of H's integral kernel allows us to
form a H-matrix [71, 72] approximation of a discretized version of H. H-matrices
constitute a matrix format in which the rows and columns of the matrix are re-
ordered, then the matrix is recursively subdivided into blocks, in such a way that
many o�-diagonal blocks are low-rank, even though the matrix as a whole may be
high-rank. H-matrix methods permit us to perform matrix-vector products cheaply,
and perform other useful linear algebra operations that cannot be done easily using the
original operator. These operations include matrix-matrix addition, matrix-matrix
multiplication, matrix factorization, and matrix inversion. The work and memory
required to perform these operations for an N × N H-matrix scales nearly linearly
in N (i.e., o(N1+ε) for any ε > 0). The exact cost depends on the type of H-matrix
used, the operation being performed, and the rank of the o�-diagonal blocks [97]. The
ability to perform these operations permits, for example, fast solution of Newton linear
systems in PDE-constrained optimization, fast sampling of ill-conditioned posterior
distribution in Bayesian inverse problems, and construction of high-rank surrogate
models that can be used for uncertainty quanti�cation. There are matrix-free H-
matrix construction methods based on a peeling process [73, 74, 75, 76], which are not
used in this Chapter. These alternative methods have been applied to form H-matrix
representations of Hessians in inverse problems governed by PDEs [67, 98]. Methods
based on the peeling process are asymptotically scalable, (typically the number of
matrix-vector products required scales as O(logN)), but in practice the required
number of matrix-vector products is large.



CHAPTER 3. POINT SPREAD FUNCTION APPROXIMATION OF HESSIANS

IN INVERSE PROBLEM GOVERNED BY PDES 35

3.2 Preliminaries

Let Ω ⊂ Rd be a bounded domain (typically d = 1, 2, or 3). We seek to approximate
integral operators H : L2(Ω)→ L2(Ω)′ of the form

(Hβ1)(β2) :=

∫
Ω

∫
Ω

β2(y)Φ(y, x)β1(x)dxdy. (3.2)

Here the linear functional Hβ1 ∈ L2(Ω)′ is the result of applying H to β1 ∈ L2(Ω), the
scalar (Hβ1) (β2) is the result of applying that linear functional to β2 ∈ L2(Ω). The
integral kernel, Φ : Ω×Ω→ R, exists in principle but is not easily accessible. In this
section we describe how to extend the action of H to distributions, which allows us to
de�ne impulse responses (Section 3.2.1), we state the conditions onH that our method
requires (Section 3.2.2), and detail �nite element discretization (Section 3.2.3).

3.2.1 Distributions and impulses

The action of H may be extended to distributions if Φ is su�ciently regular. Let
ρ ∈ L2(Ω)′, and let ρ∗ ∈ L2(Ω) denote the Riesz representative of ρ with respect to
the L2(Ω) inner product. We have

(Hρ∗) (w) =

∫
Ω

∫
Ω

w(y)Φ(y, x)ρ∗(x)dx dy (3.3a)

=

∫
Ω

w(y)

∫
Ω

Φ(y, x)ρ∗(x)dx dy =

∫
Ω

w(y)ρ (Φ(y, ·)) dy, (3.3b)

where Φ(y, ·) denotes the function x 7→ Φ(y, x). Now let D(Ω) ⊂ L2(Ω) be a suitable
space of test functions and let ρ : D(Ω)→ R be a distribution. In this case, the Riesz
representative ρ∗ may not exist, so the derivation in (3.3) is not valid. However, if
Φ is su�ciently regular such that the function y 7→ ρ (Φ(y, · )) is well de�ned for
almost all y ∈ Ω, and if this function is in L2(Ω), then the right hand side of (3.3b)
is well de�ned. Hence, we de�ne the action of H on the distribution ρ to be the right
hand side of (3.3b). We denote this action by �Hρ∗,� even if ρ∗ does not exist.

Let δx denote the delta distribution(i.e., point source, impulse) centered at the
point x ∈ Ω. The impulse of H associated with x is the function φx : Ω→ R,

φx := (Hδ∗x)
∗ , (3.4)

that is formed by applying H to δx, then taking the Riesz representation of the
resulting linear functional. Using (3.3b) and the de�nition of the delta distribution,
we see that φx may also be written as the function φx(y) = Φ(y, x).
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3.2.2 Required conditions

We focus on approximating operators that satisfy the following conditions:

1. The kernel Φ is su�ciently regular so that φx is well de�ned for all x ∈ Ω.

2. The supports of the impulses φx are contained in localized regions.

3. The integral kernel is non-negative in the sense that

Φ(y, x) ≥ 0

for all (y, x) ∈ Ω× Ω.3

Our method may still perform well if these conditions are relaxed slightly. It is �ne
if the support of φx is not perfectly contained in a localized region, so long as the
bulk of the �mass� of φx is contained in a localized region. The integral kernel does
not need to be non-negative for all pairs of points (y, x) ∈ Ω × Ω, so long as it is
non-negative for the vast majority of pairs of points (y, x), and as long as the negative
numbers are comparatively small. If these conditions are violated, our method will
incur additional error. If these conditions are violated too much, our method may
fail.

3.2.3 Finite element discretization

In computations, functions are discretized and replaced by �nite dimensional vectors,
and operators mapping between in�nite dimensional spaces are replaced by operators
mapping between �nite dimensional spaces. We discretize using continuous Galerkin
�nite elements satisfying the Kronecker property (de�ned below). With minor mod-
i�cations, our method could be used with more general �nite element methods, or
other discretization schemes such as �nite di�erences or �nite volumes.

Let ψ1, ψ2, . . . , ψN be a set of continuous Galerkin �nite element basis functions
used to discretize the problem on a mesh with mesh size parameter h, let Vh :=
Span (ψ1, ψ2, . . . , ψN) be the corresponding �nite element space under the L2 inner
product, and let ζi ∈ Rd, i = 1, . . . , N be the Lagrange nodes associated with the
functions ψi. We assume that the �nite element basis satis�es the Kronecker property,
i.e., ψi(ζi) = 1 and ψi(ζj) = 0 when i 6= j. For βh ∈ Vh we write β ∈ Rm

M to denote
the coe�cient vector for βh with respect to the �nite element basis, i.e., βh(x) =∑N

i=1 βiψi(x). Linear functionals ρh ∈ V ′h have coe�cient dual vectors ρ ∈ Rm
M−1 ,

with entries ρi = ρh(ψi) for i = 1, . . . ,m. Here M ∈ RN×N denotes the sparse �nite
element mass matrix which has entries M i,j =

∫
Ω
ψi(x)ψj(x)dx for i, j = 1, . . . , N .

3Note that having a non-negative integral kernel is di�erent from positive semi-de�niteness. The
operator H need not be positive semi-de�nite to use our method, and positive semi-de�nite operators
need not have a non-negative integral kernel.
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The space RN
M is RN with the inner product (u,w)M := u>Mw, and RN

M−1 is the

analogous space with M−1 replacing M . Direct calculation shows that RN
M and

RN
M−1 are isomorphic to Vh and V ′h as Hilbert spaces, respectively.
After discretization, the operator H : L2(Ω)→ L2(Ω)′ is replaced by an operator

Hh : Vh → V ′h, which becomes an operator

H : RN
M → RN

M−1

under the isomorphism discussed above. Our method is agnostic to the computational
procedure for approximating H with H . What is important is that we do not have
direct access to matrix entries H i,j. Rather, we have a computational procedure
that allows us to compute matrix-vector products β 7→ Hβ and w 7→ H>w, where
computing these matrix-vector products is assumed to be costly. Of course, matrix
entries can be computed via matrix-vector products asH i,j =

(
He(j)

)
i
, where e(j) =

(0, . . . , 0, 1, 0, . . . , 0)> is the length N unit vector with one in the jth coordinate and
zeros elsewhere. But computing the matrix-vector product e(j) 7→ He(j) is costly,
and therefore wasteful if we do not use other matrix entries in the jth column of H .
Hence, methods for approximating H are computationally intractable if they require
accessing scattered matrix entries from many di�erent rows and columns of H .

The operator Hh : Vh → V ′h can be written in integral kernel form, (3.2), but
with Φ replaced by a slightly di�erent integral kernel, Φh, which we do not know,
and which di�ers from Φ due to discretization error. Since the functions in Vh are
continuous at x, the delta distribution δx is a continuous linear functional on Vh, which
has a discrete dual vector δx ∈ RN

M−1 with entries (δx)i = ψi(x) for i = 1, . . . , N .
Additionally, it is straightforward to verify that the Riesz representation, ρ∗h ∈ Vh, of
a functional ρ ∈ V ′h has coe�cient vector ρ∗ = M−1ρ. Therefore, the formula for the
impulse from (3.4) becomes φx = (Ahδ

∗
x)
∗ = M−1HM−1δx, and the (y, x) kernel

entry of Φh may be written as Φh(y, x) = δ>y φx = δ>yM
−1HM−1δx. Now de�ne

Φ ∈ RN×N to be the following dense matrix of kernel entries evaluated at all pairs of
Lagrange nodes:

Φi,j := Φh(ζi, ζj). (3.5)

Because of the Kronecker property of the �nite element basis, we have δζi = ei. Thus,
we have Φh(ζi, ζj) =

(
M−1HM−1

)
i,j
, which implies

H = MΦM . (3.6)

Broadly, our method will construct an H-matrix approximation of H by forming
H-matrix approximations of Φ and M (or a lumped mass version of M), then mul-
tiplying these matrices per (3.6) using H-matrix methods. Classical H-matrix con-
struction methods require access to arbitrary matrix entries Φi,j, but these matrix
entries are not easily accessible. The bulk of our method is therefore dedicated to
forming approximations of these matrix entries that can be evaluated rapidly.
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Lumped mass matrix At the continuum level, Φ is assumed to be non-negative.
However, entries of Φh, involve inverse mass matrices, which typically contain negative
numbers. If there are too many negative numbers, or if the negative numbers are too
large, our algorithm will be less robust. We therefore recommend replacing the mass
matrix, M , with a positive diagonal lumped mass approximation. In our numerical
results, we use the lumped mass matrix constructed by replacing o�-diagonal entries
of the mass matrix by zero. Other mass lumping techniques may be used [99].

3.3 Summary of algorithmic methodology

We next summarize the algorithmic approach, whose goal is to have an means to
quickly approximate entries of H's integral kernel by approximating the impulse re-
sponse functions φx(y). Due to the locality of the impulse responses (see Figure 3.1),
it is feasible that they can be computed in batches,

∑
i

φxi(y) =

(
H
∑
i

δ∗xi

)∗
(y).

In order to determine which points xi are to be included in the Dirac comb
∑

i δxi ,
it is important that the supports of the associated impulse responses φxi(y) do not
overlap much. We make use of the identity(

H†w
)∗

(x) =

∫
Ω

Φ(y, x)w(y)dy = (φx, w)L2(Ω) , (3.7)

for which we see that by computing one operator application of H† to w, we simul-
taneously compute the L2 inner product of each and every impulse φx with w. By
taking w to be C, Li, and Qi,j, the following constant, linear, and quadratic functions:

C(x) := 1, Li(x) := xi, Qi,j(x) := xixj

for i, j = 1, . . . , d, we are able to determine the low-order moments of each and every
impulse response φx, that is

V (x) =
(
H†C

)∗
(x) = (φx, C)L2(Ω) , (3.8a)

µi(x) =
(
H†Li

)∗
(x)/V (x) =

(
φx, L

i
)
L2(Ω)

, (3.8b)

Σi,j(x) =
(
H†Qi,j

)∗
(x)/V (x)− µi(x) · µj(x) =

(
φx, Q

i,j
)
L2(Ω)

, (3.8c)

for i, j = 1, . . . , d. Having estimated these low-order moments we then approximate
the support of φx within the ellipsoid

Ex := {x′ ∈ Ω : (x′ − µ(x))>Σ(x)−1(x′ − µ(x)) ≤ τ 2}, (3.9)
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where τ is a �xed constant, for the numerical results in Section 3.4, τ = 3. With
knowledge of the approximate support of each and every impulse response we then
choose, via an ellipsoid packing problem, a batches sample points, Sk, such any two
distinct impulse responses φxi , φxj , associated to a batch of sample points, xi, xj ∈ Sk,
have supports that do not overlap. This is an e�cient means to generate many impulse
responses with a small number of applications of H†, it is however not scalable to
compute each and every impulse response in batches, which we denote by ηb.

We next describe a means to approximate unknown impulse responses φx from
those impulse responses φx′ which have already been computed. One approximation
scheme assumes that the underlying PDEs are locally translation invariant, that is
that the impulse responses are identical up to a shift given by the displacement in
the center's of the generating Dirac distributions i.e., φx(y) ≈ φx′(y − x + x′). Here,
to account for PDE models with nonuniform advection in addition to multiple scales
we utilize an approximation scheme that assumes that the impulse responses satisfy
a scaled local mean displacement invariance property

φx(y)/V (x) ≈ φx′ (y − µ(x) + µ(x′)) /V (x′). (3.10)

Once the impulse batches ηb are computed, we approximate the integral kernel Φ(y, x)
at arbitrary points (y, x) by interpolation of translated and scaled versions of the
computed impulses. The key idea behind the interpolation is the scaled local mean
displacement invariance assumption. Speci�cally, we approximate Φ(y, x) = φx(y)

by a weighted linear combination of the values V (x)
V (xi)

φxi(y − µ(x) + µ(xi)) for a small
number of sample points xi near x. The weights are determined by interpolation.

The ability to rapidly evaluate approximate kernel entries Φ(y, x) allows us to
construct anH-matrix approximation, ΦH ≈ Φ, using the conventional adaptive cross
H-matrix construction method. In this method, one forms low-rank approximations
of o�-diagonal blocks of the matrix by sampling rows and columns of those blocks. We
then useH-matrix methods to convert ΦH into anH-matrix approximationHH ≈H .
The complete algorithm for constructing HH is shown in Algorithm 2.

When H is symmetric positive semi-de�nite, HH may be non-symmetric and in-
de�nite due to errors in the approximation. In this case, one may (optionally) modify
the H-matrix representation ofHH to make it symmetric positive semi-de�nite using
a rational function method that is described in [25].
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Algorithm 2 Localpsf H-matrix approximation of the matrix-free Hessian.
Input: Linear operator H, parameter nb
Output: H-matrix HH approximation of H

1: Compute V, µ, and Σ
2: for k = 1, 2, . . . , nb do
3: Choose a batch of sample points, Sk
4: Compute a batch of impulse response ηk by applying H to a Dirac comb for Sk
5: end for

6: Form H-matrix approximation ΦH of integral kernel
7: Form H-matrix approximation HH of H
8: (optional) Modify HH to make it symmetric positive de�nite

3.4 Numerical results

3.4.1 Problem setup

We use our method to approximate the data-mis�t Gauss-Newton Hessian in an
inverse problem governed by a Stokes PDE (2.6)-(2.9), described in Chapter 2, which
models steady state ice sheet �ow [100]. The domain geometry is chosen so as to
model the �ow of ice down an irregular geophysical entity such as a mountain (see
Figure 3.3). As in Chapter 2 of this thesis, given observations of the tangential
component of the ice velocity on the top surface of the ice, we seek to invert for the
logarithm of the unknown spatially varying basal friction parameter which quanti�es
the local resistance to ice �ow across the ground which supports the ice sheet. The
domain that is �lled with ice is denoted by U ⊂ R3. The basal, lateral and top parts
of ∂U are denoted by Γb, Γl, and Γt, respectively. The governing equations are the
linear incompressible Stokes equations,

−∇ · σu = f in U, (3.11a)

∇ · u = 0 in U, (3.11b)

σun = 0 on Γt, (3.11c)

u · n = 0 and T (σun+ exp (β)u) = 0 on Γb, (3.11d)

σun+ su = 0 on Γl. (3.11e)

The solution to these equations is the pair (u, p), where u is the ice �ow velocity
�eld, and p is the pressure �eld. Here, β is the unknown logarithmic basal sliding
parameter �eld which is de�ned on the 2D surface Γb. The quantity f is the body
force density due to gravity, s = 106 is a Robin boundary condition constant, n is the
outward normal and T is the tangential projection operator that restricts a vector
�eld to its tangential component along the boundary. We employ Glen's �ow law [51],
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Figure 3.3: The ice sheet, discretized by a mesh of tetrahedra, bird's eye view (left)
and top down view (right). Color indicates the height of the base of the ice sheet (i.e.,
the mountain topography). The radius of the domain is 104 meters, the maximum
height of the mountain is 2.1× 103 meters, and the average thickness of the ice sheet
is 250 meters.

σu = 2ηε̇−Ip, which is a constitutive law for ice that relates the stress tensor, σu, to
the strain rate tensor, ε̇ = 1

2

(
∇u+∇u>

)
. Here η is a constant e�ective viscosity and

I is the unit matrix. Glen's exponent has been chosen to be one, which provides for
a linear Stokes model. Note that while the PDE is linear, the parameter-to-solution
map, β 7→ (u, p), is nonlinear.

The pressure, p, is discretized with �rst order scalar continuous Galerkin �nite
elements de�ned on a mesh of tetrahedra. The velocity, u, is discretized with second
order continuous Galerkin �nite elements on the same mesh. The parameter β is
discretized with �rst order scalar continuous Galerkin �nite elements on the mesh of
triangles that results from restricting the tetrahedral mesh to the basal boundary, Γb.
Note that Γb is a 2D surface embedded in 3D due to the mountain topography. We
also generate a �attened version of Γb, denoted by Ω ⊂ R2, by ignoring the height
coordinate. The parameter β is dually viewed as a function on Γb for the purpose of
solving the Stokes equations, and as a function on Ω for the purpose of building our
Hessian approximations and de�ning the regularization. The true parameter �eld,
βtrue, and corresponding velocity �eld, utrue, are shown in Figure 3.4. We generate
synthetic observations by restricting the tangential component of utrue to the top
surface to get

ytrue = Tutrue|Γt .

We add 1% multiplicative Gaussian noise to all components of the �nite element
vector, ytrue, corresponding to the function ytrue, which yields noisy synthetic obser-
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Figure 3.4: True parameter, βtrue, (left) and true velocity utrue (right). In the right
plot, arrows indicate the direction of utrue and color indicates the magnitude of utrue.

vations, yobs which are used for the inversion. That is,

(yobs)j := (ytrue)j + 0.01 · ξj · | (ytrue)j |,

where j ranges over all entries of the vector of coe�cients representing the �nite
element functions ytrue and yobs, and ξj are independent and identically distributed
(i.i.d) random numbers drawn from the standard normal distribution. We also de�ne
the noise function, ξ, to be the �nite element function with jth vector entry ξj.

The reconstructed parameter �eld β is found as the solution to an optimization
problem of the following form:

min
β

J(β) := Jmis�t(β) +R(β). (3.12)

The �rst term in the objective function is

Jmis�t(β) :=
1

2

∫
Γt

‖yobs − Tu‖2
2 dS.

We call this term the data-mis�t, because it measures the di�erence between the
observed data and the predicted data based on a candidate parameter β. Here u =
u(β) denotes the velocity �eld solving Equation (3.11) for the given parameter β.
The second term,

R(β) :=
1

2

∫
Ω

|K(β − β0)|2 dx,

is a Bilaplacian regularization term. Speci�cally, β0 is the constant function β0(x) =
10.5, and K is the inverse of the solution operator for the following elliptic PDE:

−γ∆u+ δ u = f in Ω,

γ∇u · n+ s u = 0 on ∂Ω.
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Recall that Ω is the 2D �attened version of the basal surface Γb. Here f is a generic
forcing term, and s =

√
δγ/1.42 is a Robin boundary condition coe�cient [101], and

these quantities are di�erent from f and s in the Stokes equation (3.11). In all results
except for the regularization robustness study in Figure 3.6, γ is chosen so that the
Morozov discrepancy principle is satis�ed, i.e.,∫

Γt

‖yobs − Tu‖2
2 dS =

∫
Γt

‖ξ‖2
2 dS.

The value of γ satisfying the Morozov discrepancy principle is γ = 7.3 × 103. The
exception is Figure 3.6, where we vary γ to study how changing γ impacts the ef-
fectiveness of our preconditioner. The constant δ is chosen so that the correlation
length of functions drawn from the normal distribution with covariance K−2, given
by L =

√
γ/δ, is 1/10th the radius of the domain.

We solve the inverse problem with an inexact Newton preconditioned conjugate
gradient (PCG) scheme [102, Section 7.1], using β0 as the initial guess. The discretized

parameter, β is updated iteratively according to the formula βk+1 = βk+αkβ̂k, where

β̂k approximately solves one of the following Newton linear systems,

Hβ̂k = −gk or HGNβ̂k = −gk, (3.13)

and the step length αk ∈ R is chosen by line-search to satisfy the Armijo conditions
[102, Section 3.1]. Here gk is the discretized gradient of J , H is the discretized
Hessian, andHGN is the discretized Gauss-Newton Hessian, and these derivatives are
evaluated at βk. We use HGN for the �rst �ve iterations, and H for all subsequent
iterations. The Newton iteration terminates when ‖gk‖/‖g0‖ < 10−8. Systems (3.13)
are solved inexactly using an inner PCG iteration, which terminates when the norm

of the residual for the linear system is less than min
(

0.5,
√
‖gk‖

)
‖gk‖. PCG only

requires applying H (or HGN) to vectors. Each application of H (or HGN) to a
vector requires solving one incremental forward and one incremental adjoint Stokes
PDE of the form (3.11), but with di�erent right hand sides.

3.4.2 Numerical results

We use the framework described in this Chapter to generate Hessian preconditioners.
We build H-matrix approximations of the data-mis�t Gauss-Newton Hessian (the
term in HGN that arises from the data-mis�t) using 1, 5, and 25 impulse batches.
These approximations are denoted by PSF (1), PSF (5), and PSF (25), respectively.
The resulting H-matrices, which may be inde�nite due to approximation error, are
modi�ed to be symmetric positive de�nite. We approximate HGN rather than H
because H more often has negative values in its integral kernel, especially when
one is away from the optimal point. Our results show that our preconditioners are
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Figure 3.5: The log basal friction parameter after 1 (left), 3 (second from left), and
4 (third from left) Newton iterations, and the �nal Newton iterate (right). The PSF
(5) preconditioner is constructed between Newton iterations 3 and 4.

also good preconditioners for H . The H-matrix approximation of the data-mis�t
Gauss-Newton Hessian is added to a H-matrix approximation of the Hessian of the
regularization term to form a H-matrix approximation of HGN. Straightforward cal-
culation shows that the discretized Hessian of the regularization term is given by
(γK+δM )M−1(γK+δM ) whereK is a �nite element sti�ness matrix with appro-
priate boundary conditions, andM is the �nite element mass matrix. These matrices
are sparse, so we form H-matrix representations of these matrices and combine them
using standard sparse H-matrix techniques. We factor the overall Gauss-Newton
Hessian approximation, denoted H̃ , using fast H-matrix methods, then and use the
factorization as a preconditioner.

Table 3.1 shows the performance of our preconditioner for accelerating the solution
of optimization problem (3.12). We build the PSF (5) preconditioner in the third
Gauss-Newton iteration, and reuse it for all subsequent Gauss-Newton and Newton
iterations. No preconditioning is used in the Gauss-Newton iterations before the PSF
(5) preconditioner is built. We compare our method with the most commonly used
existing preconditioners: no preconditioning (NONE), and preconditioning by the
regularization term in the Hessian (REG). Using PSF (5) reduces the total number
of Stokes PDE solves by a factor of six compared to no preconditioning, and by a
factor of nine compared to regularization preconditioning4. In Figure 3.5 we show
select Newton iterates using our PSF (5) preconditioner.

Next, we build PSF (1), PSF (5), and PSF (25) preconditioners based on the
Gauss-Newton Hessian evaluated at the converged solution β. We use PCG to solve
a linear system with the Hessian as the coe�cient operator and a right hand vec-
tor with random i.i.d. entries drawn from the standard normal distribution. In the
left most �gure of Figure 3.6 we compare the convergence of PCG for solving this
linear system using the PSF (1), PSF (5), PSF (25), REG, and NONE precondition-
ers. PCG converges fastest with the PSF preconditioners, with PSF (25) converging

4Interestingly, we observe that no preconditioning outperforms regularization preconditioning
here because the noise level (and hence γ) is small.
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PSF (5) REG NONE

Iter #CG #Stokes ‖g‖ #CG #Stokes ‖g‖ #CG #Stokes ‖g‖
0 1 4 2.0e+7 1 4 2.0e+7 1 4 2.0e+7

1 2 6 5.8e+6 2 6 7.9e+6 2 6 5.8e+6

2 4 10 2.4e+6 5 12 3.9e+6 4 10 2.4e+6

3 2 6+22 5.8e+5 13 28 1.6e+6 13 28 5.8e+5

4 5 12 5.6e+4 42 86 4.8e+5 33 68 9.1e+4

5 10 22 3.5e+3 84 170 7.7e+4 57 116 6.2e+3

6 14 30 2.7e+1 125 252 5.0e+3 76 154 1.1e+2

7 0 2 4.1e-2 194 390 7.9e+1 117 236 2.3e-1

8 � � � 0 2 1.6e-1 0 2 4.1e-2

Total 38 114 � 466 950 � 303 624 �

Table 3.1: Convergence history for solving the Stokes inverse problem using precondi-
tioned inexact Newton PCG. Preconditioners shown are our method with �ve impulse
batches (PSF (5)) constructed at the third iteration, regularization preconditioning
(REG), and no preconditioning (NONE). Columns titled #CG show the number of
PCG iterations used to solve the Newton system for β̂k. Columns titled ‖g‖ show
the `2 norm of the gradient at βk. Columns titled #Stokes show the total number
of Stokes PDE solves performed in each Newton iteration. This consists of Stokes
solves for u performed during the linesearch going from βk−1 to βk, plus one adjoint
Stokes solve to compute the gradient at βk, plus one incremental forward and one
incremental adjoint Stokes solve per PCG iteration for solving the Newton system.
In the PSF (5) portion of row 3, we write 6 + 22 to indicate that 6 Stokes solves were
used during the standard course of the iteration, and 22 Stokes solves were used to
build the PSF (5) preconditioner.

fastest, followed by PSF (5), followed by PSF (1), as expected. PCG converges much
slower with no preconditioning and regularization preconditioning than it does with
PSF preconditioning, with no preconditioning outperforming regularization precon-
ditioning. In the right most �gure of 3.6, we perform PCG solves on linear systems
of the same form, except now we vary γ. The performance of our PSF precondition-
ers is good and relatively stable over a wide range of γ's. All PSF preconditioners
perform the same for medium and large values of γ. For small values of γ PSF (25)
performs slightly better than PSF (5), which performs slightly better than PSF (1).
As expected, regularization preconditioning performs well for large γ and poorly for
small γ. Our PSF preconditioners outperform no preconditioning and regulariza-
tion preconditioning for medium and small γ, and perform similarly to regularization
preconditioning for large γ.
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Figure 3.6: Left shows the convergence history for solvingHx = b using PCG, where
b has i.i.d. random entries drawn from the standard normal distribution. Here we
use γ = 7.3× 103, which is determined by the Morozov discrepancy principle. Right
shows the number of PCG iterations required to achieve ‖b −Hxk‖/‖b‖ < 10−6,
where xk is the kth PCG iterate, for a range of di�erent γ. Results in these �gures
are shown for our preconditioner with 1, 5, and 25 batches of impulses (PSF (1),
PSF (5), and PSF(25), respectively), regularization preconditioning (REG), and no
preconditioning (NONE). The preconditioner is constructed using HGN. For a fair
comparison, even as γ changes, H and HGN are always evaluated at the same β,
which is the optimal point for the inverse problem with γ = 7.3× 103.

The left most �gure of Figure 3.7 shows the generalized eigenvalues for the gen-
eralized eigenvalue problem Hu = λH̃u. Here H is the Hessian evaluated at the
reconstructed parameter β for a regularization parameter γ chosen to satisfy the Mo-
rozov discrepancy principle. The matrix H̃ is one of the PSF (1), PSF (5), or PSF
(25) Gauss-Newton Hessian approximations constructed at that β, or the regulariza-
tion Hessian. The PSF preconditioners cluster the eigenvalues of the Hessian near
one, with more batches tending to yield better clustering. The regularization precon-
ditioner clusters the trailing eigenvalues but ampli�es leading eigenvalues. The right

most �gure of Figure 3.7 we show the condition numbers of H̃
−1
H and H̃

−1
HGN, for

various preconditioners H̃ . The PSF preconditioned Hessians have the the smallest
condition numbers, wherein more batches tend to improve the conditioning. Regu-
larization preconditioning and no preconditioning yield preconditioned Hessians with



CHAPTER 3. POINT SPREAD FUNCTION APPROXIMATION OF HESSIANS

IN INVERSE PROBLEM GOVERNED BY PDES 47

0 300 600 900 1,200
10−1

100

101

102

103

104

k, generalized eigenvalue #

λ
k

REG

PSF (1)

PSF (5)

PSF (25)

κ(H̃
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REG 7.02e+3 7.02e+3
NONE 8.71e+2 9.22e+2
PSF (1) 1.75e+1 1.76e+1
PSF (5) 1.39e+1 1.39e+1
PSF (25) 1.03e+1 1.06e+1

Figure 3.7: Left: eigenvalues for generalized eigenvalue problem Huk = λkH̃uk.
Here H is the Hessian and H̃ is the PSF approximation constructed using the
Gauss-Newton Hessian, HGN, for 1, 5, and 25 batches (PSF (1), PSF (5), and PSF
(25), respectively), or the regularization Hessian (REG). Right: condition number, κ,

for H̃
−1
H and H̃

−1
HGN for these di�erent preconditioners, and no preconditioner

(NONE). All operators are evaluated at the β that solves the inverse problem for
γ = 7.3× 103, as determined by the Morozov discrepancy principle.

larger condition numbers. The condition numbers are similar for both H̃
−1
H and

H̃
−1
HGN, demonstrating that the a PSF preconditioner built based on the Gauss-

Newton Hessian HGN can e�ectively precondition the Hessian H .

3.5 Conclusion

We presented an e�cient matrix-free PSF method for approximating operators with
locally supported non-negative integral kernels. The method only requires access to
the operator via application of the operator to a small number of vectors. The idea of
the method is to compute batches of impulses by applying the operator to Dirac combs
of scattered point sources, then interpolate these impulses to approximate entries of
the operator's integral kernel. The interpolation is based on a local mean displacement
invariance principle, which generalizes and improves upon local translation invariance.
The ability to quickly approximate arbitrary integral kernel entries permits us to form
a H-matrix approximation of the operator. Fast H-matrix arithmetic is then used
to perform further linear algebra operations that cannot be performed easily with
the original operator, such as matrix factorization and inversion. The supports of
the impulses are estimated to be contained in ellipsoids, which are determined a-
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priori via a new procedure that involves applying the operator to a small number
of polynomial functions. Point source locations for the impulse batches are chosen
using a greedy ellipsoid packing procedure, in which we choose as many impulses per
batch as possible, while ensuring that the corresponding ellipsoids do not overlap.
We applied the method to approximate the Gauss-Newton Hessian in a Stokes ice
sheet inverse problem, and saw that the approximation substantially outperforms
existing Hessian approximation methods. Although the method we presented is not
applicable to all Hessians, it is applicable to many Hessians of practical interest. For
these Hessians, our method o�ers a data scalable alternative to conventional low-
rank approximation, because our method can form high-rank approximations of an
operator using a small number of operator applies.
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Chapter 4

A Multigrid Interior-Point Approach

for PDE- and Bound-Constrained

Optimization

4.1 Introduction

In this Chapter we target PDE-constrained optimization problems with an additional
bound constraint on the parameter m(x). Formally, the determination or inversion
of a spatially distributed state u(x) and parameter m(x) can be done by solving a
PDE- and bound-constrained optimization problem in the form of

min
(u,m)∈V×M

f(u,m), (4.1)

such that c(u,m, λ) = 0, ∀λ ∈ V0, (4.2)

and m(x) ≥ m`(x), ∀x ∈ Ω. (4.3)

Here, f(u,m) is the objective functional whose minimizer is saught, c de�nes the
weak form of a partial di�erential equation, which in the context of the optimization
problem is a partial di�erential equality constraint, m` is a pointwise parameter lower-
bound, and V0 is a homogeneous version of the space V , that is (u + v) ∈ V for any
u ∈ V and v ∈ V0. Here it is assumed, as before that the objective functional f(u,m)
is the sum of mis�t and regularization components f(u,m) = fmis�t(u) +R(m).

In the reduced-space approach to solve optimization problems with PDE con-
straints [9, 2], as in Chapters 2 and 3 of this dissertation, one formally eliminates the
state-variable u, by making use of the implicitly de�ned mapping from the parameter
m to the PDE-solution u(m). With this approach, evaluating various quantities such
as the reduced-space functional f(m) := f(u(m),m), or its various derivatives by the
adjoint method [9, 103], can be computationally expensive, as they require the solu-
tion of (nonlinear) PDEs and optimizer estimation may require a signi�cant number
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of such evaluations. Here we use a full-space approach in which functional evaluation
and gradient computations are less computationally expensive as they do not require
PDE-solution computation. An additional challenge of the full-space approach is that
the Jacobian of the perturbed �rst-order optimality conditions, whose inverse action
is needed for Newton-based methods, is an inde�nite saddle-point matrix, for which
e�ective preconditioners are challenging to construct and for which direct linear sys-
tem solution methods, which poorly scale, are often applied. A central contribution
of this work is a preconditioner (see Section 4.3.1) for such problems, which relies on
the ill-posedness of the unregularized inverse problem and e�cient algebraic multigrid
schemes to solve sparse elliptic linear systems. The methodology presented in this
Chapter is a hierarchical approach as the title of this thesis suggests, as hierarchies of
algebraically de�ned grids are leveraged to exploit relations among multiple problem
resolutions for e�cient elliptic linear system solution by algebraic multigrid [104, 105].

4.1.1 Notation

Bold faced symbols generally indicate discretized quantitities, e.g., vector and ma-
trices. The scalar xi denotes the ith component of the vector x and Ai,j the entry
of A that resides in its the i-th row and j-th column. The symbol 1 refers to a
vector with all entries equal to one, 0 refers to a vectors with all entries equal to
zero, and In refers to the n×n identity matrix. The elementwise Hadamard product
is indicated by �, that is (x� y)i = xiyi. The standard Euclidean vector norm√
x>x, is denoted by ‖x‖2, whereas weighted inner products, e.g., the M -weighted

inner product
√
x>Mx is denoted by ‖x‖M , where M is assumed to be symmetric

positive de�nite. The closure of a set S is denoted by S, and ∅ is the empty set.

4.2 Interior-point methods for nonlinear

PDE-constrained optimization

Our optimization approach falls under the umbrella of interior-point methods. Specif-
ically, we employ a �lter line-search interior-point method (IPM) [106] that has
emerged recently as one of the most robust methods for nonlinear nonconvex op-
timization. This method also possesses best-in-class global and local convergence
properties [107, 108].

An interior-point method involves solving a sequence of log-barrier subproblems,
whose optimality conditions can be viewed as smoothed versions of the (nonsmooth)
optimality conditions of (4.1)-(4.3). Mathematically, a so-called log-barrier parameter
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µ is introduced and a sequence of problems

min
(u,m)∈V×M

ϕ(u,m) := f(u,m)− µ
∫

Ω

log(m−m`)dx, (4.4)

such that c(u,m, λ) = 0, ∀λ ∈ V0, (4.5)

for µ→ 0+, is approximately solved. The inequality constraints m ≥ m` are enforced
implicitly in the form of m > m` via a line-search along a Newton direction, as
detailed later in this section.

4.2.1 Discretization and derivatives calculations

In order to obtain a computational solution of Equations (4.4)-(4.5), said equations
must be discretized. In this work, the discretization of the state equation (4.5) as
well as all continuous �elds are obtained by the �nite element method with �rst-order
continuous elements, but other �nite elements or discretization methods, such as �nite
di�erences [109, 110] can be used as well. A careful analysis is needed to discretize the
log-barrier term (see Equation (4.4)) to ensure consistency with the underlying �nite
element Hilbert space for m as shown in [111]. A careful analysis is also needed to
make appropriate choices for the �nite element representations for the dual variables
(i.e., λ, z` in Equations (4.12)-(4.15) below), discretized inner products and norms,
and discretized stopping criteria. If the underlying �nite element spaces are not
properly accounted for then the IPM is prone to mesh dependence performance [111],
such as requiring a mesh dependent number of optimization steps. This is especially
pervasive when the meshes are nonuniform, for example, as the result of adaptive mesh
re�nement. We refer the reader to [111] for details and a comparative discussion of the
di�erences between the discretized IPM of this work and the �nite element-oblivious
IPM from [106].

Upon discretization by �nite elements, Equations (4.4)-(4.5) become

min
(u,m)∈Rn1×Rn2

ϕh(u,m) := fh(u,m)− µ1>M log(m−m`), (4.6)

such that c(u,m) = 0. (4.7)

Here the �nite element approximation (uh(x), mh(x)) ∈ Vh ×Mh of (u(x), m(x)) ∈
V ×M is given in terms of the basis elements {φi(x)}n1

i=1 ⊂ Vh, {ψi(x)}n2
i=1 ⊂Mh as

uh(x) =

n1∑
i=1

uiφi(x), mh(x) =

n2∑
i=1

miψi(x), (4.8)

furthermore M i,j =
∫

Ω
ψi(x)ψj(x) dx is the mass matrix with respect to the space

Mh used to discretize the parameter m(x) and the discretized partial di�erential
equality constraint c is given by

[c(u,m)]i = c(uh,mh, φi), 1 ≤ i ≤ n1.
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It is to be noted that log(m−m`) is a vector representation of a nodal discretization
of log(m − m`), rather than the logarithm of the di�erence of nodal discretizations
of m and m`. We choose the former approach due to its simplicity and remark that
the resultant discretized vectors from these two approaches converge to one another
under mesh re�nement. Formally, the IPM requires the solution of a sequence of
subproblems described in Equations (4.6)-(4.7), each said subproblem solution, for a
given µ, must necessarily satisfy the �rst-order optimality conditions

∇uϕh + J>uλ = ∇ufh + J>uλ = 0, (4.9)

∇mϕh + J>mλ = ∇mfh + J>mλ−ML(µ1/(m−m`)) = 0, (4.10)

c = 0, (4.11)

where for the sake of compactness, function arguments have been omitted. Above, λ
is a Lagrange multiplier associated to the equality constraint (4.11),ML = diag(M1)
is a diagonal lumped mass matrix, Jm ∈ Rn1×n2 and Ju ∈ Rn1×n1 are the Jacobians
of the (discretized) state constraint function from (4.11) with respect to m and u
respectively; furthermore, ∇u,∇m are the gradient operators with respect to u and
m, with which we utilize the forms of f(u,m) and c(u,m, λ) to compute quantities
needed for a complete description of the optimality system (4.9)-(4.11), i.e.,

(∇ufh)i =
δ

δuh
f(uh,mh)(φi) :=

[
d

dε
f(uh + εφi,mh)

]
ε=0

,

(∇mfh)i =
δ

δmh

f(uh,mh)(ψi) :=

[
d

dε
f(uh,mh + εψj)

]
ε=0

,

(Ju)i,j =
δ

δuh
c(uh,mh, φi)(φj) :=

[
d

dε
c(uh + εφj,mh, φi)

]
ε=0

,

(Jm)i,j =
δ

δmh

c(uh,mh, φi)(ψj) :=

[
d

dε
c(uh,mh + εψj, φi)

]
ε=0

.

Finally, we note that the term ML(µ1/(m −m`)), is the gradient of the log term
µ1>M log(m−m`), of the discretized log-barrier objective.

We formally introduce the dual variable z` := µ1/(m −m`), associated to the
bound constraint. With this formulation, the �rst-order optimality conditions require
that a primal-dual solution (u?,m?,λ?, z?`) of the log-barrier subproblem (4.6)-(4.7)
satis�es the nonlinear system of equations

∇ufh + J>uλ
? = 0, (4.12)

∇mfh + J>mλ
? −MLz

?
` = 0, (4.13)

c = 0, (4.14)

z?` � (m? −m`)− µ1 = 0, (4.15)

where for µ > 0, (4.15) guarantees that z?` = µ1/(m? −m`).
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4.2.2 Newton iterations

The primal-dual nonlinear optimality system for the log-barrier subproblem (4.12)-
(4.15) is solved by using a damped Newton's method. This is achieved by �rst lin-
earizing Equations (4.12)-(4.15), which results in

Hu,u Hu,m J>u 0
Hm,u Hm,m J>m −ML

Ju Jm 0 0
0 diag(z`) 0 diag(m−m`)



û
m̂

λ̂
ẑ`

 = −


ru
rm
rλ
rz`

 , (4.16)

where

Hu,u = ∇2
u,u(fh + λ>c), (Hu,u)i,j =

δ2

δu2
h

(f(uh,mh) + c(uh,mh, λh))(φi, φj),

(4.17a)

Hm,m = ∇2
m,m(fh + λ>c), (Hm,m)i,j =

δ2

δm2
h

(f(uh,mh) + c(uh,mh, λh))(ψi, ψj),

(4.17b)

Hu,m = ∇2
u,m(fh + λ>c), (4.17c)

H>m,u = Hu,m, (Hu,m)i,j =
δ2

δuhδmh

(f(uh,mh) + c(uh,mh, λh))(φi, ψj). (4.17d)

Furthermore, the right-hand side of the Newton linearization system (4.16) is given
by

ru = ∇ufh + J>uλ,

rm = ∇mfh + J>mλ−MLz`,

rλ = c,

rz` = z` � (m−m`)− µ1.

The solution (û, m̂, λ̂, ẑ`) of Equation (4.16) is the so-called Newton direction
and is used to update a given optimizer estimate (u,m,λ, z`) and obtain an updated
estimate (u+,m+,λ+, z+

` ) based on a linear update in the form of[
u+ m+ λ+

]
=
[
u m λ

]
+ αp

[
û m̂ λ̂

]
, (4.18)

z+
` = z` + αd ẑ`, (4.19)

where the primal and dual step-lengths αp and αd are computed using the convergence-
enforcing �lter line-search algorithm presented in Section 4.2.3.
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We algebraically eliminate ẑ` to obtain a symmetric saddle-point system of equa-
tions, AX = b in the formHu,u Hu,m J>u

Hm,u Wm,m J>m
Ju Jm 0


︸ ︷︷ ︸

A

 ûm̂
λ̂


︸ ︷︷ ︸
X

=

bubm
bλ


︸ ︷︷ ︸

b

, (4.20)

where

Wm,m = Hm,m +MLdiag(z`/(m−m`)), (4.21)

bm = −(rm +MLdiag(m−m`)rz`), (4.22)

bu = −ru, bλ = −rλ. (4.23)

We remark that once a solution to the linear system described in Equation (4.20) has
been found, the bound multiplier search direction can be computed as

ẑ` = −
[
z` + diag(m−m`)

−1(z` � m̂− µ1)
]
.

It is common practice to symmetrize IPM linear systems (see Equation (4.16))
since direct LDL> factorizations can be used and are generally more stable and
more e�cient than LU . Symmetrization is also favorable for Krylov subspace meth-
ods as generally having reduced computational requirements due to all system matrix
eigenvalues being real. The reduction of Equation (4.16) to Equation (4.20) provides
a symmetric linear system of reduced size at minimal computation since the com-
putation of the second-term in Wm,m, bm, and ẑ` requires only elementwise vector
operations. A potential disadvantage of this approach is the deterioration of the con-
dition number of the 4 × 4 system (4.16) caused by the diagonal term from (4.21),
whose condition number can grow unbounded as the IPM progresses towards the opti-
mal solution [6, Chapter 14]. Other symmetrization strategies for (4.16) are possible.
Recent work by Ghannad et al. [112] (also see related previous theoretical work by
Greig et al. [113] that bound the eigenvalues and condition number of various for-
mulations of IPM linear systems) indicates that symmetrizations of (4.16) that keep
the 4× 4 structure have better condition number than our reduced symmetric linear
system (4.20) for convex problems with proper regularizations. Likely this applies to
our nonconvex setup; in fact, the state-of-the-art solver Ipopt [106] works with one
such 4× 4 symmetric linear system. However, in the case of the problems considered
in this work, the ill-conditioning of the reduced symmetric 3× 3 linear system (4.20)
can be e�ectively factored out by algebraic multigrid preconditioning, as we elaborate
in Section 4.3.

4.2.3 Robust Newton IPM convergence

To address the potential lack of converge from arbitrary initial points, we use a line-
search method and inertia regularization. For the line-search, we use the algorithm
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of Wächter and Biegler [107] for nonlinear nonconvex optimization that is based
on �lters [114]. In the context of the log-barrier problem (4.6)-(4.7), the salient idea
behind the �lter line-search is to accept the trial point (4.19) whenever the log-barrier
objective (4.6) or the norm of the constraint (4.7) are smaller than their counterparts
at the previous iterations. Whenever this condition is not satis�ed, the step-length
αp is reduced. The so-called dual step-length αd is chosen using a fraction-to-the-
boundary rule to maintain the positiveness of the dual variables z`.

A notable di�erence from the �lter line-search algorithm presented in [107] is that
our method uses the inertia-free regularization technique from [115]. Inertia regular-
ization is necessary for line-search IPMs for nonconvex problems to ensure that the so-
lution of (4.20) is a descent direction of the log-barrier objective for points that nearly
satisfy the equality constraint (4.14), and is critical to ensure global convergence of
the IPM [107]. Inertia regularization essentially consists of altering the diagonal of
the blocks Hu,u, Wm,m from (4.20) whenever the system matrix A does not have
the desired inertia. Since we target large-scale problems by utilizing a linear solve
strategy for Equation (4.20) based on Krylov-subspace methods, in this setting, it is
not computationally feasible to compute the inertia of the system matrix. Instead, we
use the inertia-free regularization from [115] that repeatedly perturbs diagonal blocks
of the system matrix until the line-search passes carefully designed �curvature� tests;
these tests require only matrix-vector products (in addition to adding a diagonal to
the system matrix). We refer the reader to [106] for details; the previously mentioned
work by the authors [111] contains the discretization considerations needed in the
context of PDE-constrained optimization problems.

4.2.4 Stopping criteria

Next various metrics are presented that we use to measure progress towards solving
a discretized optimization problem (4.1)-(4.3) as well as a discretized log-barrier sub-
problem (4.6)-(4.7). As in [111] we utilize norms, which measure proximity towards
a local optimum and that are expected to be well-de�ned with respect to an in�nite-
dimensional problem formulation. Such norms are used in order to avoid discretization
dependent performance of the optimization algorithm. To measure stationarity we
use

errstat(u,m,λ, z`) :=
√
‖∇ufh + J>uλ‖2

M−1
u

+ ‖∇mfh + J>mλ−MLz`‖2
M−1 ,

and

errfeas(u,m) := ‖c(u,m)‖M−1
u
,

to measure feasibility, where Mu is the mass matrix with respect to the space Vh,
i.e., (Mu)i,j =

∫
Ω
φi(x)φj(x) dx and as beforeM is the mass matrix with respect to
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the spaceMh. To measure complementarity we make use of

errcompl(m, z`;µ) := 1>M(z` � (m−m`)− µ1).

These measures are combined into the single optimality measure

err(u,m,λ, z`;µ) := max
{
errstat(u,m,λ, z`)/sd, e

rr
feas(u,m), errcompl(m, z`;µ)/sc

}
,

where the scaling values sc and sd are given by

sc = max {smax, ‖z`‖M−1} /smax,

sd = max

{
1

2
‖λ‖M−1

u
+

1

2
‖z`‖M−1 , smax

}
/smax,

where smax is a constant equal to 100 in all numerical results in this Chapter. We note
that err(u,m,λ, z`;µ) is an optimality measure for the log-barrier subproblem (4.6)-
(4.7) and err(u,m,λ, z`; 0) is an optimality measure for the (discretized) PDE- and
bound-constrained optimization problem (4.1)-(4.3).

4.3 Scalable IP-Newton linear system solution

computation

A common approach to solve inde�nite saddle-point interior-point Newton systems
is a direct solver such as in [116]. Due to the undesirably high asymptotic compu-
tational cost of direct linear solves, such an approach severely limits the scalability
for problems such as that studied here, wherein the dimension of the discretized opti-
mization variable can be made arbitrarily large under mesh re�nement. Here we take
advantage of problem speci�c structure and propose a multigrid-based preconditioner,
whose scaling relies only on underlying multigrid linear solves of block matrices which
are known to be amenable to such treatment. The described framework achieves algo-
rithmic scalability, in the sense that the number of outer optimization iterations and
inner Krylov subspace iterations is largely independent of discretization. Due to the
aforementioned algorithmic scalability and an implementation that leverages scalable
scienti�c software libraries, we obtain a scalable means of minimizer computation.

4.3.1 Block Gauss-Seidel preconditioner performance

Here, we introduce the block Gauss-Seidel preconditioner

Ã =

Hu,u 0 J>u
Hm,u Wm,m J>m
Ju 0 0

 , (4.24)
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to accelerate the Krylov-subspace solution of linear system (4.20). We determine,
under mild assumptions for PDE-constrained optimization problems, that the block
Gauss-Seidel preconditioned GMRES solves converge at a discretization independent
rate. This result is obtained by utilizing the spectrum of the diagonalizable block

Gauss-Seidel preconditioned IP-Newton system matrix Ã
−1
A. This discretization

independent linear solve convergence rate is numerically veri�ed and reported in Ta-
ble 4.3.

To make the block triangular structure clear to the reader and facilitate a quan-
titative discussion of the preconditioner's properties, it is useful to permute the IPM
linear system (4.20) so that A becomes

Ap =

[
U V >

V W

]
, (4.25)

where

U =

[
Hu,u J>u
Ju 0

]
∈ R2n1×2n1 ,

V =
[
Hm,u J>m

]
∈ Rn2×2n1 ,

andW = Wm,m ∈ Rn2×n2 . The corresponding permutation of the preconditioner Ã
from (4.24) is

Ãp =

[
U 0
V W

]
, (4.26)

which makes clear why we call Ã a block Gauss-Seidel preconditioner. The rationale

behind our choice of the preconditioner is that the preconditioned matrix Ã
−1
A

enjoys spectral properties that are favorable for use in Krylov-subspace methods. For
example, it is known that in exact arithmetic the preconditioner

P =

[
U 0
V

(
W − V U−1V >

)] , (4.27)

causes GMRES to converge in two iterations since the minimum polynomial for the
preconditioned matrix P−1Ap is of degree two [8, Section 10.1.2]. The preconditioner

Ãp can be viewed as an approximation of the preconditioner P , wherein the Schur
complement W − V U−1V > is approximated by W . A number of papers advocate
this and related strategies for building e�cient preconditioners for saddle-point linear
systems e.g., [117, 118, 119] and references therein. For our block triangular precon-
ditioner Ãp, a similar characterization is possible as inspection of the preconditioned
matrix reveals that

Ã
−1

p Ap =

[
I2n1 U−1V >

0 In2 −W−1
(
V U−1V >

)] . (4.28)
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We note thatW−1
(
V U−1V >

)
= −W−1

m,mĤd, where Ĥd := (J−1
u Jm)>Hu,u(J−1

u Jm)−[
Hm,uJ

−1
u Jm + (Hm,uJ

−1
u Jm)>

]
is the reduced-space data-mis�t Hessian. By (4.28)

we see that Ã
−1

p Ap contains 2n1 eigenvalues that are equal to 1. We next show that

the preconditioned matrix Ã
−1

p Ap is diagonalizable and that the n2 eigenvalues that
have yet to be characterized, decay rapidly to 1, and such decay rate is independent
of the discretization. This implies by [120, Proposition 4], assuming a certain charac-

ter of the eigenvectors of Ã
−1
A, that the block Gauss-Seidel preconditioned GMRES

solver will converge at a rapid discretization independent rate.
Let QΛQ> = −W−1/2V U−1V >W−1/2 be the (symmetric) Schur decomposi-

tion [121, Theorems 7.1.3., 8.1.1.], whereQ is unitary (Q = Q−>) and Λ is a diagonal
matrix. We now show that the diagonalized form[

I2n1 X

0 W−1/2Q

] [
I2n1 0
0 In2 + Λ

] [
I2n1 X

0 W−1/2Q

]−1

, (4.29)

where X = −U−1V >(V U−1V >)−1W 1/2Q, is equal to Ã
−1

p Ap. We proceed by
multiplying all three matrices of the diagonalized form (4.29)[

I2n1 X

0 W−1/2Q

] [
I2n1 0
0 In2 + Λ

] [
I2n1 −XQ>W 1/2

0 Q>W 1/2

]
=

[
I2n1 X

0 W−1/2Q

] [
I2n1 −XQ>W 1/2

0 (In2 + Λ)Q>W 1/2

]
=

[
I2n1 −XQ>W 1/2 +X(In2 + Λ)Q>W 1/2

0 W−1/2Q(I + Λ)Q>W 1/2

]
=

[
I2n1 XΛQ>W 1/2

0 In2 +W−1/2QΛQ>W 1/2

]
=

[
I2n1 U−1V >

0 In2 −W−1V U−1V >

]
= Ã

−1

p Ap,

hence Ã
−1

p Ap is diagonalizable. Given that the Gauss-Seidel preconditioned IP-
Newton system matrix is diagonalizable we now utilize [120, Proposition 4] to bound
the residual norm ‖r(k+1)‖2 at the kth step of GMRES as

‖r(k+1)‖2 ≤ κ(Y )‖r(0)‖2 min
p∈Pk,p(0)=1

max
1≤j≤n2+2n1

p(λj(Ã
−1
A)),

where Y =

[
I2n1 X

0 W−1/2Q

]
is the matrix of eigenvectors of Ã

−1

p Ap and Pk is the

set of all polynomials whose degree does not exceed k. We assume k < n2 and that
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the eigenvalues of Ã
−1
A are given in descending order as follows

1 ≤ λj := λj(Ã
−1
A) =

{
1 + λj(W

−1
m,mĤd) 1 ≤ j ≤ n2,

1 n2 + 1 ≤ j ≤ n2 + 2n1,

where λ1(W−1
m,mĤd) ≥ λ2(W−1

m,mĤd) ≥ · · · ≥ λn2(W
−1
m,mĤd). We choose, similarly

to [120, Theorem 5], q ∈ Pk with q(0) = 1 as

q(λ) =
k∏
j=1

(
1− λ

λj

)
,

that is then utilized to bound ‖r(k+1)‖2

min
p∈Pk,p(0)=1

max
1≤j≤n2+2n1

p(λj) ≤ max
1≤j≤n2+2n1

q(λj) = max
k+1≤j≤n2+2n1

q(λj),

as by construction q(λj) = 0 for j = 1, 2, . . . , k. We note that (1− λ
λj

) is a nonnegative

decreasing function of λ on [1, λj], so that

max
k+1≤j≤n2+2n1

q(λj) ≤ q(1) =
k∏
j=1

(
1− 1

λj

)
=

m∏
j=1

(
λj − 1

λj

)

=
k∏
j=1

(
λj(W

−1
m,mĤd)

1 + λj(W
−1
m,mĤd)

)

≤
k∏
j=1

(
λj(H

−1
m,mĤd)

1 + λj(H
−1
m,mĤd)

)
=: δk.

To get a sense of the behavior of δk we note that for a large class of PDE-constrained
optimization problems the eigenvalues of the regularization preconditioned reduced-
space data-mis�t HessianH−1

m,mĤd decay rapidly to zero and in a mesh-independent
manner [63, 78, 20], which is related to the informativeness of the data [21, Chapter 4].
Assuming Hm,m, Ĥd, Wm,m are symmetric semide�nite, that Hm,m are invertible
and Wm,m and Wm,m ≥Hm,m one can show (see Appendix A.4) that

0 ≤ λj(W
−1
m,mĤd) ≤ λj(H

−1
m,mĤd), j = 1, 2, . . . , n2,

which allows one to conclude that the eigenvalues ofW−1
m,mĤd, like the eigenvalues of

H−1
m,mĤd, rapidly decay to zero. Finally we have that the eigenvalues λj(H

−1
m,mĤd)

decay rapidly and in a mesh-independent manner from which we conclude that for k
large-enough, but independent of the problem discretization δk � 1. Assuming that,
at worst, κ(Y ) has mild growth then by ‖r(k+1)‖2 ≤ (δk κ(Y )) ‖r(0)‖2, we see that a
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small and largely mesh-independent number of Gauss-Seidel preconditioned GMRES
iterations are required to achieve a speci�ed relative reduction of the residual-norm.

There are symmetric variants of the chosen block Gauss-Seidel preconditioner,
whose application only relies on similar block solves, such as

Ã1 =

Hu,u Hu,m J>u
Hm,u Wm,m 0
Ju 0 0

 , and Ã2 =

Hu,u 0 J>u
0 Wm,m 0
Ju 0 0

 .
In practice, we �nd that Ã1 and Ã2 do not perform as well as the proposed pre-
conditioner Ã for IP-Newton GMRES solves and while they are symmetric, they are
guaranteed to not be positive de�nite [8, Theorem 3.5] and thus do not allow for
use of other Krylov-subspace solvers which exploit symmetry such as MINRES [16].
A means to utilize an iterative solver that exploits symmetry is to �rst reformulate
AX = b, by taking the Schur complement with respect to m. The resultant linear
system is Ĥxm = b̂, where Ĥ = Wm,m + Ĥd is the reduced Hessian. Furthermore,

Ĥd is the reduced data-mis�t Hessian and b̂ is the reduced right hand side, namely

Ĥd := (J−1
u Jm)>Hu,u(J−1

u Jm)−
[
Hm,uJ

−1
u Jm + (Hm,uJ

−1
u Jm)>

]
, (4.30)

b̂ := bm −Hm,uJ
−1
u bλ − J>mJ−>u (bu −Hu,uJ

−1
u bλ). (4.31)

The reduced Hessian Ĥ is symmetric but not necessarily positive de�nite, e.g., far
from an optimal point, however for some problems, such as that studied here,Wm,m

is symmetric and positive de�nite. Thus, one can solve the reduced Newton system
Ĥxm = b̂ with a MINRES solver and a Wm,m preconditioner. The Gauss-Seidel
preconditioned GMRES solve of the IP-Newton system utilized in this work and
a Wm,m preconditioned MINRES of the reduced Newton system both require one
Ju solve, one Ju solve and one Wm,m solve per Krylov subspace iteration. As

seen from the discussion in Section 4.3.1 and that W−1
m,mĤ = I + W−1

m,mĤd =

I −W−1V U−1V >, both preconditioning strategies have identical eigenvalues which
di�er from unity, so that the rates of convergence for the linear solvers do not di�er
due to having distinct eigenvalue distributions. MINRES is a more favorable solver
due to, for instance, smaller memory requirements but here we use GMRES due to
its robustness.

4.3.2 Block Gauss-Seidel preconditioner cost

Having established that a GMRES solve of the block Gauss-Seidel preconditioned
interior-point Newton linear system is expected to converge in a discretization inde-
pendent number of Krylov-subspace iterations, we now discuss a scalable means to
apply the block Gauss-Seidel preconditioner. A scalable means to apply the block
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Gauss-Seidel preconditioner enables the scalable solution of the PDE- and bound-
constrained optimization example problem described in Section 4.4 as reported in
Figure 4.2.

As elucidated in Algorithm 3 and as expected of a block triangular matrix, apply-

ing Ã
−1

to a vector requires a sequence of block solves. Particularly, the computa-

tional cost to apply Ã
−1

to a vector, critically depends on the cost to apply J−1
u , J−>u

andW−1
m,m. The Jacobian of the PDE constraint with respect to u, Ju, is amenable

to an algebraic multigrid treatment, e.g., when the constraint (4.11) describes a dis-
cretized elliptic PDE. If c depends linearly on the parameter m, then Wm,m is the
sum of the objective Hessian with respect to the parameter and the Hessian of the
log-barrier term MLdiag(z`/(m −m`)). While, the ill-conditioning of the Hessian
of the log-barrier term deteriorates the performance of many linear system solution
strategies, here the convergence of the algebraic multigrid preconditioned conjugate
gradient (CG-AMG) Wm,m solve is accelerated by the (diagonal) positive-de�nite
Hessian of the log-barrier term. For the example problem described in Section 4.4,
Hm,m is the Hessian of the regularization term of the objective and the regulariza-
tion is a linear combination of the squared L2 norm of m and the squared L2 norm
of the gradient of m, for this reason the Hessian of the regularization is a linear com-
bination of mass and sti�ness matrices, hence an invertible discretized second order
elliptic PDE operator. The structure of Hm,m is part of what makes CG-AMG a
performant choice for to solve linear systems with a Wm,m system matrix.

Algorithm 3 Block Gauss-Seidel preconditioner action X = Ã
−1
b.

Input: b =
[
b>u b>m b>λ

]>
.

Output: Solution X =
[
x>u x>m x>λ

]>
of the linear system ÃX = b.

1: Solve Juxu = bλ {AMG preconditioned CG solve}
2: Solve J>uxλ = bu −Hu,uxu {AMG preconditioned CG solve}
3: Solve Wm,mxm = bm −Hm,uxu − J>mxλ {AMG preconditioned CG solve}

The ill-conditioned positive-de�nite diagonal log-barrier HessianMLdiag(z`/(m−
m`)), which is a component of Wm,m, signi�cantly deteriorates the computational
performance of many Krylov-subspace based strategies for the IP-Newton system (4.20).
However, our approach is robust against such ill-conditioning due to the following

1. The condition number of the block Gauss-Seidel preconditioned interior-point
Newton system matrix, as detailed in Section 4.3.1 and demonstrated numeri-
cally in Table 4.1, weakly depends on the ill-conditioning present in Wm,m.

2. Generally, the convergence rate of an iterative scheme such as Jacobi iteration
or a Krylov-subspace solver with a smoothing preconditioner, such as Jacobi,
will increase as the diagonal dominance of the linear system matrix. Speci�cally,
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the diagonal dominance ofWm,m is increased due to presence of the log-barrier
Hessian and thus the smoothing components of a multigrid scheme tend to
reduce the residual norm faster.

4.4 Problem setup

Here we detail a PDE- and bound-constrained optimization problem, to determine
�elds u(x), m(x) de�ned over the unit square Ω = (0, 1) × (0, 1), used to test the
computational performance of the framework detailed in this Chapter and from which
we obtain the results that are presented in Section 4.5. The objective functional is a
linear combination of so-called data-mis�t fmis�t and regularization R terms

f(u,m) = fmis�t(u) +R(m),

where fmis�t provides a discrepancy measure between u and a given data �eld ud. The
regularization term

R(m) =
γ1

2

∫
Ω

m2(x) dx+
γ2

2

∫
Ω

∇xm(x) ·∇xm(x) dx,

acts to penalize the squared L2(Ω) norms of m(x) and ∇xm(x), and is chosen as
such to reduce the sensitivity of the solution of the optimization problem to random
noise contained in the data ud. The partial di�erential equality constraint, c, is the
weak form of an elliptic PDE that when expressed in strong form reads

−∇x · (m∇xu) + u = g, in Ω, (4.32a)

m∇xu · n = 0, on ∂Ω, (4.32b)

where ∂Ω is the boundary of the spatial domain Ω, n is the outward normal to ∂Ω
and g is a forcing term. The forcing term g(x) = −∇x · (mtrue∇xûd) + ûd, is chosen
so that the noise free data ûd(x) = cos(π x1) cos(π x2) solves the PDE for the given
�true� parameter �eld mtrue(x) = 0.5 + 1>x. The data ud is generated by adding
random 1% pointwise relative random noise to ûd. It is to be noted that mtrue does
not satisfy the lower-bound constraint m ≥ m` = 1.0, and so it is expected that the
optimizer m? is active on a subset of Ω and that the inclusion of the bound-constraint
has a nontrivial impact on the optimization problem. In the following, the parameters
γ1, γ2 that de�ne the regularization regularization function R(m) are both set to 10−1.

4.5 Numerical results

We next discuss two minor variants of the problem detailed in Section 4.4, which
only di�er by the data-mis�t component fmis�t of the objective functional f . In
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Section 4.5.1 we present a study of the condition number of the IP-Newton system
matrix and the block Gauss-Seidel preconditioned IP-Newton system matrix. In Sec-
tion 4.5.2 we demonstrate both the algorithmic scaling of the framework but also
that scalable IPM solves are achieved due to the aforementioned favorable algorith-
mic scaling and the utilization of mature high-performant parallel �nite element and
algebraic multigrid code bases.

4.5.1 IP-Newton condition number study

In this subsection, the presented results are obtained with a serial Python implemen-
tation of the IPM framework. We utilize FEniCS [122] for the �nite element dis-
cretization and all sparse �nite element matrices are converted to scipy [123] sparse
matrices for ease of manipulation. Furthermore, all block solves required of a block
Gauss-Seidel preconditioner apply are done with sparse direct linear solvers. We uti-
lize a pointwise observation operator available in the Inverse Problems PYthon library
hIPPYlib [124], in order to de�ne a pointwise data-mis�t

fmis�t(u) =
1

2

k∑
i=1

(
u(x(i))− ud(x(i))

)2
,

on a set of k points {x(i)}ki=1 ⊂ Ω. Here and in Section 4.5.2, x(i) are 25 evenly
distributed points on Ω. We defer further discussion of convergence, plots of the
solution �elds to Section 4.5.2 and instead focus on the condition of the IP-Newton
system matrix A and the block Gauss-Siedel preconditioned matrix Ã

−1
A. Table 4.1

provides computational evidence that, as expected, the IP-Newton system matrix
grows increasingly ill-conditioned, as the IPM progresses, due to the log-barrier Hes-
sian and further suggests that the block Gauss-Seidel preconditioner is an e�ective
preconditioner for this example problem. Table 4.2 shows that the condition number

εopt 10−2 10−4 10−6 10−8

κ(A) 1.61× 105 1.23× 106 1.86× 108 2.32× 1010

κ(Ã
−1
A) 4.07× 101 4.29× 101 4.69× 101 4.75× 101

Table 4.1: Condition number κ(A) of A for dim(m)= 441, and the condition num-

ber of the GS-preconditioned IP-Newton system matrix Ã
−1
A, as a function of the

optimality error εopt, which sets the termination condition εopt > err(u,m,λ, z`; 0)
of the IPM.

of the IP-Newton system matrix is relatively stable with respect to uniform mesh
re�nement.
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dim(m) 441 961 1 681 2 601

κ(A) 1.86× 108 2.31× 108 2.33× 108 6.44× 108

κ(Ã
−1
A) 4.69× 101 4.93× 101 5.95× 101 6.19× 101

Table 4.2: Condition number κ(A) of A for εopt = 10−6, and the condition number

of the GS-preconditioned IP-Newton system matrix Ã
−1
A, as a function of the level

of mesh re�nement as indicated by the dimension of m, dim(m).

4.5.2 Scaling of the IPM framework

In this subsection we present results via a performant distributed memory paral-
lel C++ optimization package that we developed, which makes signi�cant use of the
modular �nite elements library MFEM [125] for �nite-element discretization and con-
tains wrappers to hypre [126], scalable linear algebra solvers, which we speci�cally
use for it's AMG preconditioned Krylov-subspace solvers. The package includes

� optimizationProblem abstract parent class which provides methods to derived
classes to e.g., evaluate the gradient of the log-barrier objective from a derived
class method for evaluating the objective function.

� Various helper functions, such as a GSPreconditioner object which inherits

from MFEM::Solver and provides the action of Ã
−1
, with hypre based CG-

AMG block solves and can be used as a preconditioner for a preconditioned
Krylov-subspace solver such as GMRES.

� interiorPtSolver class, which utilizes an optimizationProblem to determine
a minimizer by the interior-point �lter line-search approach detailed in this
Chapter.

Here, the data-mis�t term of the objective functional is given by

fmis�t(u) =
1

2

∫
Ω

w(x) (u(x)− ud(x))2 dx,

where w(x) > 0 provides a weighted L2(Ω) distance between the state u(x) and
a data set ud(x). The weighting function w(x) is chosen as a linear combination
of k normalized Gaussian distributions, with variance σ2, which are each radially
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symmetric about their respective means x(i)

w(x) =
k∑
i=1

wi(x),

wi(x) = Ci(2πσ
2)−r/2 exp

(
−‖x− x

(i)‖2
2

2σ2

)
,

where r is the geometric dimension of Ω. The scaling factor Ci = 4 if x(i) is a corner
of Ω, Ci = 2 when x(i) lies on a edge but not a corner and Ci = 1 when x(i) is interior
to Ω. The weights Ci are chosen as such so that

∫
Ω
wi(x)dx ≈ 1, for i = 1, 2, . . . , k.

The weight function w(x) is de�ned as it is in order that we mimic∫
Ω

w(x) (u(x)− ud(x))2 dx ≈
k∑
i=1

(
u(x(i))− ud(x(i))

)2
,

the data-mis�t term detailed in Section 4.5.1. Figure 4.1 shows a representative
state and parameter reconstruction, along with the bound-constraint multiplier z`,
whose signi�cantly nonzero values indicate, when strict complementarity holds, at
which locations the lower-bound constraint is active. Table 4.1 shows that the IP-
Newton system matrix A, driven by the log-barrier Hessian, grows increasingly ill-
conditioned as the interior-point optimization procedure progresses and furthermore
that the Gauss-Seidel preconditioner stabilizes the conditioning ofA. Table 4.3 shows,
by the reported number of IP-Newton linear system solves that the outer optimization
loop is mesh-independent, by the average number of GMRES iterations per Newton
solve we see that the performance of the GS-preconditioner does not appear to degrade
under uniform mesh re�nement.

Figure 4.2 shows both strong and weak scaling for computing the solution of
the PDE- and bound-constrained optimization problem discussed in this Section on
various numbers of Intel Xeon E5-2695 CPU's. Here it is seen that the framework
has strong and weak scaling that favorably compares to the ideal strong and weak
scaling.
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Figure 4.1: Top row: State reconstruction u? (left), true state �eld ûd (middle),
adjoint reconstruction λ?, bottom row: m? reconstruction (left), infeasible �true�
parameter mtrue (middle), bound constraint multiplier reconstruction z?` (right). Here
the dimension of each of the discretized �elds is 7 921.

16 32 64 128 256

102

103

104

1

1

Number of Cores

IP
M

so
lv
e
ti
m
e
(s
ec
o
n
d
s)

dim(m) = 5.9× 105
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dim(m) = 9.4× 106
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dim(m) = 9.3× 103 (per core)

dim(m) = 3.7× 104 (per core)

dim(m) = 1.5× 105 (per core)

dim(m) = 5.9× 105 (per core)

Figure 4.2: Strong and weak scaling for the IPM framework on the example problem
described in Section 4.4. Strong scaling in the solid colored lines for a range of problem
sizes, ideal weak scaling shown with the reference triangle in the upper right of the
�gure. Weak scaling shown in dashed gray lines for a range of problem dimensions
per processor i.e., core.
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IP-Newton linear solves Preconditioned GMRES iterations

dim(m) per optimizer computation per IP-Newton linear solve

148 225 24 20.58

591 361 25 20.60

2 362 369 25 20.93

9 443 329 25 20.93

37 761 025 25 21.10

151 019 521 25 21.60

Table 4.3: Algorithmic performance metrics for the interior-point optimizer with
block Gauss-Seidel preconditioning for GMRES solves of the interior-point Newton
linear systems. The outer optimization tolerance is set to 10−6 and a GMRES solve is
terminated when the norm of the preconditioned linear system residual is smaller than
10−14 or is reduced by a factor of 10−10 relative to the initial preconditioned linear
system residual. The algorithmic performance is tested on a sequence of meshes with
di�erent levels of uniform re�nement, as indicated by the dimension of the discretized
parameter dim(m).

4.5.3 Example problem discretization

The partial di�erential equaltiy constraint whose strong form is given in Equation (4.32)
is described as �nd uh ∈ Vh such that

c(uh,mh, λh) =

∫
Ω

(mh∇xuh ·∇xλh + uh λh − g λh) dx = 0, ∀λh ∈ Vh,

wherein Vh =Mh are �nite-dimensional subspaces of of the Sobolev space H1(Ω). As
before {φi}n1

i=1 is a basis for Vh and {ψi}
n2
i=1 is a basis forMh. The discrete constraint

is then

[c(u,m)]i = c(uh,mh, φi),

with Jacobians

(Ju)i,j =

∫
Ω

(mh∇xφi ·∇xφj + φi φj)dx,

(Jm)i,j =

∫
Ω

ψj∇xuh ·∇xφjdx.
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The remaining IP-Newton system matrix blocks are via Equations (4.17)

(Hu,u)i,j =

∫
Ω

w φi φjdx,

(Hm,m)i,j =

∫
Ω

(γ1 ψi ψj + γ2∇xψi ·∇xψj) dx,

(Hu,m)i,j =

∫
Ω

ψj∇xφi ·∇xλh dx.

4.6 Conclusion

We have presented a scalable, with respect to mesh re�nement, means to solve ellip-
tic PDE- and bound-constrained optimization problems that ultimately leverages the
limited amount of information contained in the data that de�nes the optimization
problem. We utilized an interior-point method to smoothen the nonsmooth, com-
plementarity conditions which are a component of the optimality conditions. The
nonsmooth complementarity equations were smoothened and then homotopy was ap-
plied in order to approach the solution of the nonsmooth equations by traversing the
central path. To solve the nonlinear interior-point optimality condition subproblem,
we utilized a Newton method with a globalizing �lter line-search. The Newton linear
system matrices are large, inde�nite, of saddle-point type and poorly conditioned. Ef-
fective preconditioners are thus essential in order that the number of Krylov-subspace
iterations required of a Newton linear system solve is not excessively large. We pro-
posed a block Gauss-Seidel preconditioner and demonstrated that the spectrum of
the preconditioned interior-point Newton system matrix decays rapidly to one and
in a mesh-independent manner, which indicates that the number of Krylov-subspace
iterations is mesh-independent. Finally, on an example problem we demonstrated
the algorithmic scalability, of both the outer optimization and inner Krylov-subspace
linear solutions of interior-point Newton systems. Furthermore, by utilizing mature
scalable algebraic multigrid accelerated Krylov-subspace solvers for the block solves
required to apply the inverse of the Gauss-Seidel preconditioner, we generated strong
and weak scaling results for the time to compute the optimizer which compares well
with the ideal strong and weak scaling. The work presented in this Chapter is in-
tended to be submitted soon.
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Chapter 5

Conclusion

In this thesis, we detailed Newton-based optimization methods to solve large-scale in-
verse problems governed by PDEs and computationally e�cient means of approximat-
ing Newton linear system matrices. In particular, we utilized hierarchical matrices as
a data-scalable means to approximate Hessians in inverse problems and demonstrated
that such methods are e�ective in large-scale ice sheet inverse problems (Chapters 2
and 3). To alleviate computational challenges of generating hierarchical matrix ap-
proximations of matrix-free operators by black-box randomized peeling methods, as
discussed in Chapter 2, we presented a local point spread function formalism in Chap-
ter 3, for which a mesh-independent number of Hessian-vector products are required
to generate hierarchical matrix approximations which satisfy a strong-admissibility
criterion. In Chapter 4, we presented a scalable means to solve elliptic PDE- and
bound-constrained optimization problems, using a full-space interior-point �lter line
search approach. The Newton linear systems were solved with the Krylov-subspace
method GMRES and preconditioned by a block Gauss-Seidel preconditioner. Our
analysis shows that the performance of the block Gauss-Seidel preconditioner does not
degrade as the spatial discretization is re�ned or as bound-constraints are approached
along the central path as it ultimately only relies on the limited, mesh-independent
amount of information contained in the data that de�nes the inverse problem. We
now outline potential future avenues of research.

� HODLR approximation of matrix-free Hessian operators by black-box peeling
processes can be more computationally e�cient than global low-rank Hessian
approximations, as shown in Chapter 2. The cost to generate such HODLR ap-
proximations is scalable with respect to the data-dimension but unfortunately
is not scalable with dimension of the discretized parameter. There have been re-
cent advances in randomized black-box compression algorithms [127], in which
the number of matrix-vector products required to generate such approxima-
tions is independent of the problem dimension. Such a compression scheme
has potential to further reduce the computational cost to generate hierarchical
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approximations of Hessians in e.g., large-scale ice sheet inverse problems.

� The framework outlined in Chapter 4 has been shown to perform well on the
presented elliptic PDE- and bound-constrained example problem. It is clear
to the author that incorporating a �xed, mesh-independent number of general
inequality constraints could be easily handled by a small modi�cation of the
existing framework. Furthermore applying such a framework to a broader range
of objective functionals would be of interest and relevant for applications such
as topology optimization [128].
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Appendix A

Randomized Compression Algorithms

and Additional Analysis

A.1 Randomized compression algorithms

We now describe randomized matrix-free double-pass global low-rank and HODLR
compression algorithms as well as symmetric double-pass and single-pass algorithmic
variants of the double-pass algorithm. The essential ideas of the randomized double-
pass low-rank algorithm [43] are

1. the application of a vector ω ∈ RN with random entries to a matrix A ∈ RN×N ,
yields a vector y = Aω, which is likely aligned with the dominant left singular
vectors of A;

2. a matrixQ ∈ RN×k, k ≤ N whose columns are nearly aligned with the dominant
left singular vectors of A, can be used to construct an accurate low-rank ap-
proximation Ã = QQ>A of A, when the singular values of A decay su�ciently
fast.

Before detailing said randomized algorithms, we �rst provide more details concerning
item 1. above. Any matrixA possesses a singular value decompositionU ?Σ?(V ?)> [121,
Section 2.5], where U ? is an orthonormal matrix whose columns are the left-singular
vectors of A, V ? is an orthonormal matrix whose columns are the right-singular vec-
tors and Σ? is a diagonal matrix whose diagonal elements are the singular values of
A. If the entries of ω are i.i.d. and drawn from a standard normal distribution then
so are the entries of χ where ω = V ?χ. We now verify the claim that the Aω is likely
aligned with the dominant left-singular vectors of A by determining a few statistical
moments of the random variable Ξk := |(u(k))>Aω|, the magnitude of the projection
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of Aω on u(k) the kth column of U ?

E (Ξk) =
2

π
σk, (A.1)

Var (Ξk) =

(
1− 2

π

)
σ2
k, (A.2)

where σk is the kth singular value of A. Equation A.1 shows that on average the
magnitude of the component of Aω along the left singular vector u(k) is proportional
to the associated singular value σk and thus Aω is likely aligned with the dominant
left singular vectors of A. Equation A.2 shows that statistical �uctuations of Ξk are
larger for the dominant left-singular vectors, which motivates the use of strategies
such as oversampling, for a much more thorough analysis we refer the reader to [43].

The randomized double-pass algorithm that is presented in Algorithm 4 does not
signi�cantly di�er from that in [43], speci�cally lines 7, 8 and 9 are distinct. This
minor modi�cation frees us from the need to compute a (parallel) singular value
decomposition (SVD) of a (distributed) N × k matrix, such as Z. Here, we only
need to compute an SVD of the smaller k×k matrix RZ . In the distributed memory
parallelism setting of Section 2.6, this algorithmic modi�cation allows us to only
require the invocation of serial SVD routines, as RZ , which is typically small, is
available on each processor.

Algorithm 4 Double-pass randomized SVD.
Input: A ∈ RN×N , r ∈ N desired rank and oversampling parameter d ∈ N.
Output: low-rank approximation Ã of A

1: k = r + d
2: Ω = randn(N, k) {Initiate random matrix}
3: Y = AΩ {Sample column space}
4: QY = orthog(Y ) {Orthogonalize column samples}
5: Z = A>QY {Sample row space}
6: QZ = orthog(Z) {Orthogonalize row samples}
7: RZ = QZ

>Z {Compress row samples}
8: RZ = V̂ ΣÛ

> {SVD of k × k compressed row sample matrix}
9: V = QZV̂ {Project row space information}
10: U = QY Û {Project column space information}
11: Ã = UΣV > {Form low-rank approximation}

The randomized hierarchical o�-diagonal low-rank algorithm proceeds by com-
pressing o�-diagonal blocks by the double-pass algorithm. The larger o�-diagonal
blocks are compressed prior to the compression of smaller o�-diagonal blocks, via a
peeling procedure [27]. Here, both A and Ã are assumed to be symmetric as we seek
compression of symmetric operators and computation of symmetric approximants.
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Algorithm 5 Symmetric matrix-free randomized HODLR.
Input: symmetric A ∈ RN×N , hierarchical depth L ∈ N, r1, . . . , rL desired ranks of
the o�-diagonal blocks at each hierarchical depth and oversampling parameter d.
Output: symmetric HODLR approximation Ã of A

1: for ` = 1, 2, . . . , L do

2: k` = r` + d
3: Ω = zeros(N, k`)
4: for j = 1, . . . , 2`−1 do

5: Ω(I(`)
2j , :) = randn(|I(`)

2j |, k`) {Initiate structured random matrix}
6: end for

7: Y =
(
A−

∑`−1
j=1A

(j)
)

Ω {Sample o�-diagonal block column spaces}
8: for j = 1, . . . , 2`−1 do

9: Y (j) = zeros(N, k`)

10: Y (j)(I(`)
2j−1, :) = Y (I(`)

2j−1, :)

11: QY
(j) = orthog(Y (j)) {Orthogonalize column samples of the level `

o�-diagonal blocks}
12: end for

13: QY =
∑2`−1

j=1 QY
(j) {Row space sampling matrix}

14: Z =
(
A−

∑`−1
j=1A

(j)
)
QY {Sample o�-diagonal block row spaces}

15: for j = 1, . . . , 2`−1 do

16: Z(j) = Z(I(`)
2j , :)

17: QZ
(j) = orthog(Z(j)) {Orthogonalize row samples of the level `

o�-diagonal blocks}
18: RZ

(j) =
(
QZ

(j)
)>
Z(j) {Compress level ` o�-diagonal block row samples}

19: RZ
(j) = V̂

(`)

2j−1Σ
(`)
2j−1Û

(`)

2j−1 {SVD of k` × k` compressed row sample matrix}
20: V

(`)
2j−1 = QZ

(j)V̂
(`)

2j−1 {Project row space information}
21: U

(`)
2j−1 = QY

(j)Û
(`)

2j−1 {Project column space information}
22: V

(`)
2j = U

(`)
2j−1

23: U
(`)
2j = V

(`)
2j−1

24: Σ
(`)
2j = Σ

(`)
2j−1

25: end for

26: A(`) =
∑2`

j=1U
(`)
j Σ

(`)
j

(
V

(`)
j

)>
27: end for

28: obtain block diagonal D of A by sampling A−
∑L

j=1A
(j)

29: Ã = D +
∑L

`=1A
(`)

We now describe a few randomized global low-rank algorithmic variants of the
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double-pass algorithm. Once more, we mention that if the columns of Q, obtained
from random column samples of A are nearly aligned with the dominant eigenvec-
tors of A, then QQ>A can well approximate A. Symmetry is frequently a de-
sirable property of a matrix and when A is symmetric, by choosing the double-
pass approximant as QQ>AQQ>, the symmetry is preserved by the approxima-
tion scheme and does not require any additional A-vector products. This symmet-
ric low-rank approximation scheme does however incur a modest additional error as
‖A −QQ>AQQ>‖2 ≤ 2‖A −QQ>A‖2, for any symmetric matrix A and Q with
orthonormal columns. In Algorithm 6 we present a means of generating an explicit
approximate truncated eigenvalue decomposition of said approximation.

Algorithm 6 Double-pass randomized SVD (symmetric variant).
Input: Symmetric A ∈ RN×N , r ∈ N desired rank and oversampling parameter
d ∈ N.
Output: symmetric low-rank approximation Ã of A

1: k = r + d
2: Ω = randn(N, k) {Initiate random matrix}
3: Y = AΩ {Sample column space}
4: QY = orthog(Y ) {Orthogonalize column samples}
5: Ac = Q>(AQ) {Compress operator}
6: Ac = ÛΛÛ

> {SVD of compressed k × k matrix}
7: U = QÛ {Project compressed eigenvectors}
8: Ã = UΛU> {Form low-rank approximation}

The single-pass algorithm is an extension of the symmetric double-pass algorithm
in which an approximate compressed matrix Ãc is generated in such a way that
avoids additionalA-vector products, thus only requiring a single-pass of matrix-vector
product computations, AΩ, which are needed to generate random samples from the
column space of A. The approximation of the compressed matrix Ac proceeds as
follows

Ac = Q>AQ,

AcQ
>Ω = Q>AQQ>Ω,

AcQ
>Ω ≈ Q>AΩ = Q>Y .

The approximant Ãc is then chosen as the symmetric matrix which minimizes the
objective function J(X) = ‖XC −D‖F , were C = Q>Ω and D = Q>Y . From the

�rst-order necessary optimality conditions it is determined that Ãc = 1
2
(Âc + Â

>
c ) is

the symmetrization of the solution of the Sylvester equation

ÂcE +EÂc = F , where E = CC>,F = DC> +CD>.
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Algorithm 7 Single-pass randomized SVD.
Input: Symmetric A ∈ RN×N , r ∈ N desired rank and oversampling parameter
d ∈ N.
Output: symmetric low-rank approximation Ã of A

1: k = r + d
2: Ω = randn(N, k) {Initiate random matrix}
3: Y = AΩ {Sample column space}
4: QY = orthog(Y ) {Orthogonalize column samples}
5: C = Q>Ω {Compress random sampling matrix}
6: D = Q>Y {Compress column samples}
7: E = CC>, F = DC> +CD> {Compute Sylvester problem data}
8: solve(ÂcE +EÂc = F ) {Sylvester equation solve}
9: Ãc = 1

2
(Âc + Â

>
c ) {Enforce symmetry}

10: Ãc = ÛΛÛ {SVD of approximate compressed k × k matrix}
11: U = QÛ {Project compressed eigenvectors}
12: Ã = UΛU> {Form low-rank approximation}

The single-pass algorithm like the symmetric double-pass algorithm produces a
symmetric approximation but does incur additional approximation errors, namely
via approximating Q>AQQ>Ω by Q>Y . Thus, a rank k approximation generated
by the single-pass algorithm will likely more poorly approximate A than a rank k
approximation generated by either double-pass algorithm. However, a rank k ap-
proximation generated by either of the presented double-pass algorithms requires
twice the number of A-vector products.

For a direct numerical comparison of the algorithms, we utilize the double-pass,
symmetric double-pass and single-pass algorithms to generate rank k approximations
of a data-mis�t Hessian for the deterministic inverse problem detailed in [57], which
is a problem for inferring a spatially distributed di�usion coe�cient for an elliptic
PDE which models the steady-state temperate �eld on a 40× 40 quadrilateral mesh
of the unit square. This problem is small enough (Hmis�t ∈ R1 681×1 681) to allow for
the explicit construction and storage of the data-mis�t Hessian which, in practice, is
typically not the case. For this problem, an explicit representation of data-mis�t Hes-
sianHmis�t, is made available by applying the matrix-free data-mis�t Hessian to each
column of the identity matrix. We make use of the generated explicit representation
of the data-mi�t Hessian to compute rank k randomized singular value decomposition
approximation errors as measured in the Frobenius matrix norm ‖ · ‖F . The approxi-
mation error computations are displayed in Figure A.1, which demonstrates that only
a small amount of additional error is incurred when using the symmetric variant of
the double-pass algorithm. Rank k approximations generated by the computation-
ally cheaper single-pass algorithm do however incur signi�cantly more approximation
error. In Figure A.1, it is seen that the single-pass randomized algorithm is more
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sensitive to random statistical �uctuations inherent in the algorithm, as the error is
nonmonotone in the rank k. The nonmonotonicity is also due to not using a common
random seed for each rank k approximation and thus each rank k approximation is a
distinct random realization of the output of the randomized singular value decompo-
sition algorithms.
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mis�t represents a rank k approximation of the steady state data-mis�t
Hessian Hmis�t. The approximation error is measured in the Frobenius norm || · ||F .
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A.2 Global HODLR approximation error from

low-rank o�-diagonal block approximation

Let A be a N ×N matrix and consider the following partitioning

A(1) =

[
0 A

(1)
1,2

A
(1)
2,1 0

]
,

A(2) =


0 A

(2)
1,2 0 0

A
(2)
2,1 0 0 0

0 0 0 A
(2)
3,4

0 0 A
(2)
4,3 0

 ,

D =


A

(2)
1,1 0 0 0

0 A
(2)
2,2 0 0

0 0 A
(2)
3,3 0

0 0 0 A
(2)
4,4

 ,
where A

(`)
i,j is the (i, j) block of a 2` × 2` block partitioning of A, where 1 ≤ ` ≤ L.

A(`) contains all blocks A
(`)
i,j such that |i− j| = 1 and D contains the diagonal blocks

A
(L)
i,i . Above, we show the decomposition A =

∑L
`=1A

(`) +D for L = 2 hierarchical
depth but in the following analysis L is arbitrary. Let x ∈ RN , then

Ax =
L∑
j=1

A(j)x+Dx,

A(1)x =

[
A

(1)
1,2x

(1)
2

A
(1)
2,1x

(1)
1

]
, x =

[
x

(1)
1

x
(2)
2

]
,

A(j)x =


A

(j)
1,2x

(j)
2

A
(j)
2,1x

(j)
1

...

A
(j)

2j−1,2j
x

(j)

2j

A
(j)

2j ,2j−1
x2j−1

 , x =


x

(j)
1

x
(j)
2
...

x
(j)

2j−1

x
(j)

2j

 ,

from which we obtain the following expression

‖A(j)x‖2
2 =

2j−1∑
k=1

(
‖A(j)

2 k−1,2 kx
(j)
2 k‖

2
2 + ‖A(j)

2 k,2 k−1x
(j)
2 k−1‖

2
2

)
.
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Now assume that Ã is an HODLR approximation of A, whose diagonal D is equal
to the diagonal of A so that

(
A− Ã

)
=

L∑
j=1

∆A(j),

∆A(j) :=
(
A(j) − Ã(j)

)
.

Here we assume each o�-diagonal block has been approximated to some absolute
tolerance ε > 0, so that ‖∆A(j)

2 k−1,2 k‖2, ‖∆A(j)
2 k,2 k−1‖ ≤ ε for each j = 1, 2, . . . , L and

k = 1, 2, . . . , 2j−1. For x ∈ RN we have

‖
(
A− Ã

)
x‖2 ≤

L∑
j=1

‖∆A(j) x‖2,

‖∆A(j) x‖2 =

√√√√2j−1∑
k=1

(
‖∆A(j)

2 k−1,2 k x
(j)
2 k‖2

2 + ‖∆A(j)
2 k,2 k−1 x

(j)
2 k−1‖2

2

)

≤

√√√√2j−1∑
k=1

(
ε2‖x(j)

2 k‖2
2 + ε2‖x(j)

2 k−1‖2
2

)
,

‖∆A(j) x‖2 ≤ ε

√√√√2j−1∑
k=1

(
‖x(j)

2 k‖2
2 + ‖x(j)

2 k−1‖2
2

)
= ε‖x‖2,

‖
(
A− Ã

)
x‖2 ≤ εL ‖x‖2,

‖A− Ã‖2 := sup
x6=0

‖
(
A− Ã

)
x‖2

‖x‖2

 ≤ εL.

A.3 Analysis of posterior-covariance error due to

prior-preconditioned data-mis�t error

Consider a symmetric matrix A ∈ RN×N , whose eigenvalues are bounded below by a
number greater than −1 and a symmetric approximant Ã, with discrepancy ∆A =
A−Ã. We signify a generic eigenvalue of S by λ (S) so that s1 ≤ λ (S) ≤ s2 indicates
that all eigenvalues of S are bounded below by s1 and above by s2. Now we provide a

bound for the error of (I +A)−1−
(
I + Ã

)−1

, given that ‖∆A‖2 = ε, so that one may
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assess the accuracy of an HODLR Gaussianized posterior covariance. When, as in Sec-

tion 2.3.2, A is the prior-preconditioned Hessian mis�t, ‖ (I +A)−1 −
(
I + Ã

)−1

‖2

quanti�es the discrepancy between an HODLR approximate Gaussianized posterior
covariance and the true Gaussianized posterior covariance.

(I +A)−1 −
(
I + Ã

)−1

= (I +A)−1 − (I +A−∆A)−1 =

(I +A)−1 −
(
(I +A)

(
I − (I +A)−1 ∆A

))−1
=

(I +A)−1 −
(
I − (I +A)−1 ∆A

)−1
(I +A)−1 =(

I −
(
I − (I +A)−1 ∆A

)−1
)

(I +A)−1 .

Given that ‖∆A‖2 = ε, we have

−ε ≤ λ (∆A) ≤ ε,

−ε∗ ≤ λ
(
(I +A)−1 ∆A

)
≤ ε∗,

ε∗ := ε(1 + λmin(A))−1,

1 + ε∗ ≥ λ
(
I − (I +A)−1 ∆A

)
≥ 1− ε∗,

we next assume ε∗ < 1, so that the eigenvalues of I − (I +A)−1 ∆A are necessarily
positive and

(1 + ε∗)−1 ≤ λ
((
I − (I +A)−1 ∆A

)−1
)
≤ (1− ε∗)−1 .

With this it follows that

‖ (I +A)−1 −
(
I + Ã

)−1

‖2/‖ (I +A)−1 ‖2 ≤
(
1− (1 + ε∗)−1)

‖ (I +A)−1 −
(
I + Ã

)−1

‖2/‖ (I +A)−1 ‖2 ≤
ε∗

1 + ε∗
,

where, as before ε∗ = ‖∆A‖2/ (1 + λmin (A)).

A.4 Generalized eigenvalue ordering

Here we detail a result, that we do not believe is novel but nonetheless include it here
for completeness as it is explicitly used in Section 4.3.1.

Theorem A.4.1. Let A ∈ RN×N be symmetric semide�nite and B,C ∈ RN×N

be symmetric positive de�nite with generalized eigenvectors u(i),v(i) and eigenvalues
β1 ≥ β2 · · · ≥ βN ≥ 0, ξ1 ≥ ξ2 ≥ · · · ≥ ξN ≥ 0

Au(i) = βiBu
(i), 1 ≤ i ≤ N,

Av(i) = ξiCv
(i), 1 ≤ i ≤ N.
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Assume that x ∈ RN =⇒ ‖x‖2
B = x>Bx ≥ x>Cx = ‖x‖2

C, then βk ≤ ξk for
k = 1, 2, . . . , N .

Proof. For an arbitrary k, with 1 ≤ k ≤ N de�ne Eu
k =Span{u(1),u(2), . . . ,u(k)} and

Ev
k =Span{v(1),v(2), . . . ,v(k)}. By utilizing the B-orthogonality of the eigenvectors

u(i),
(
u(i)
)>
Bu(j) = 0 for i 6= j it can be shown that

x ∈ Eu
k =⇒ x>Ax ≥ βkx

>Cx.

We now de�ne Ev,⊥
j = {x ∈ RN such that x>Cv(1) = x>Cv(2) = · · · = x>Cv(j) =

0}, Eu,⊥
j = {x ∈ RN such that x>Bu(1) = x>Bu(2) = · · · = x>Bu(j) = 0}. Utiliz-

ing such subspaces and the C-orthogonality structure of the generalized eigenvectors
v(1),v(2), . . .v(N) we have

ξk = sup
x∈Ev,⊥

k−1\{0}

‖x‖2
A

‖x‖2
C

≥ sup
x∈(Eu

k∩E
v,⊥
k−1)\{0}

‖x‖2
A

‖x‖2
C

≥ βk,

where it is guaranteed that (Eu
k ∩E

v,⊥
k−1) \ {0} 6= ∅, as Eu

k is a k-dimensional subspace

of RN and Ev,⊥
k−1 is an (N + 1− k)-dimensional subspace of RN .
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