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A Framework for Concept Formation:

J. Daniel Easterlin
Pat Langley

Irvine Computational Intelligence Project
Department of Information and Computer Science
University of California, Irvine 92717

INTRODUCTION

Our approach to concept formation differs from the traditional view. In this paper, we outline an
alternative view of concept learning, and argue that the goals of the learner play a central role in this process.
We propose that goals act to determine significant features of the world, and that without such goals as
a basis, concept formation is a semantically empty data summarization task. We begin by examining the
components of the concept formation process. After laying this foundation, we review previous approaches
to concept formation in these terms, rejecting two of the assumptions upon which this work has been based -
the presence of a tutor and the “all-or-none” character of concepts. This leads us to propose an alternative
model of the concept formation process, in which goals and prototypes figure prominently.

THE COMPONENTS OF CONCEPT FORMATION

Aggregation Characterization > Utilization

P

Figure 1. The Components of Concept Formation.

Previous research in machine learning suggests that the process of concept formation can be divided
into three distinct components. The first of these — aggregation — involves grouping instances of the
concept into collections. The second component — characterization — involves generating some description
of the instances in the aggregate. The final subprocess — utilization — involves making use of the resulting
description. Let us examine each of these components in more detail

Aggregation

Aggregation is a process of collection, in which objects or instances of some concept (possibly still to be
learned) are grouped together into a set. Aggregation is not a process of description, but involves collecting
entities into an aggregate, from which a description or characterization can subsequently be formed. In
the task of learning from examples as studied by machine learning researchers, the aggregation process is
made trivial (Hunt, Marin & Stone, 1966). The tutor provides explicit aggregation of the examples into
sets of positive and negative instances, and some characterization of the positive instances is generated. In
contrast, in the task of learning search heuristics, aggregation must be performed by the learning system itself
(Mitchell, Utgoff & Banerji 1983). Instances that led to the successful solution of a problem are aggregated
as positive instances of the responsible rule’s use, while instances that led away from the solution path are
aggregated as negative instances. Thus, aggregates are generated by the learner on the basis of performance,
rather than relying on a tutor, as in the case of learning from examples. The utility of discussing aggregation
as a distinct process in concept formation is that it focuses attention on what constitutes significance for
the system. As a result, one begins to question the plausibility of existing aggregation techniques, and to
explore alternative methods.

Characterization

Characterization is the process that is usually discussed in machine learning under the name “concept
learning”. It involves constructing a description for an aggregate of entities, based on individual descriptions
of each entity. This may occur either incrementally or non-incrementally, depending on whether instances
are presented simultaneously or one at a time. Researchers in machine learning have proposed a number of
computational methods for characterization, and these constitute their contributions to concept formation.

! This research was supported in part by the IBM Corporation, and in part by a gift from Hughes Aircraft
Company.
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Utilization

The utilization process integrates the characterization or concept description with the performance
element. In the case of recognition, it contains a matching process for identifying positive instances of the
description that were constructed during the characterization process. Following recognition, some action
may be taken or a metric may be applied to test the adequacy of the description in recognizing the instance.
For the most part, concept descriptions are used to recognize positive instances of the concept when they
occur in the problem domain. Since most Al learning research has assumed “all-or-none” concepts, the
recognition process has typically involved a “complete matching” mechanism, in which all conditions must
be satisfied before instances of the concept are recognized.

TRADITIONAL APPROACHES TO CONCEPT FORMATION

We are interested in concept formation as it occurs in complex, reactive environments that are similar
to the real-world. In this section, we review the components of the concept learning process, and find that
such environments lead one to reject some important assumptions upon which earlier machine learning work

has been based.

Tutors and Aggregation

Previous research on concept learning has assumed careful guidance by a tutor, despite the intuition
that humans learn most of their concepts through experience with the world. For example, children clearly
learn concepts such as “dog” and “chair” before they know the words for these concepts. In the traditional
approach to learning concepts from examples, a tutor trivializes the aggregation problem, by providing
positive and negative instances of the concept to be learned. In contrast, learners in the real world must
aggregate instances in some other manner.

All-or-None Concepts and Characterization

According to the classical view described by Smith and Medin (1981), a concept is defined by necessary
and sufficient conditions, and machine learning researchers have used a similar notion of concepts. In other
words, for an object to be recognized as a positive instance of some concept, it must satisfy all of the
conditions specified in the concept description, and additional features have no effect. However, most of our
everyday concepts are “fuzzy”, with exemplars being better or worse, rather than instances or non-instances
(Rosch & Mervis, 1975). For instance, a robin is a better instance of the concept “bird” than a penguin, and
some chairs are better than others (e.g., ones that are missing a leg). Such concepts cannot be described in
terms of necessary and sufficient conditions, so some other representation is required.

Smith and Medin (1981) have outlined two alternatives to the all-or-none framework. The “prototype”
(or “probabilistic”) approach, first proposed by Rosch and Mervis (1975), assumes that there exists an
abstract representation of each concept, and that instances are judged to be better or worse examples
depending on the degree to which they match this representation. Smith and Medin also discuss the ezemplar
approach, in which concepts are represented not as abstract structures, but as disjunctions of many specific
instances. Both approaches have their advantages, and evidence exists for both theoretical frameworks. In
this paper, we will focus on the prototype—probabilistic approach for a simple reason — this approach is
computationally much more tractable.

The most common Al methods for characterization are generalization and discrimination. Upon closer
examination, we find that these methods encounter serious difficulty when applied to “fuzzy” concepts.
The problem is that both methods rely on a strong distinction between positive and negative instances:
generalization finds structures held in common among positive instances, and discrimination finds differences
between positive and negative instances.

Complete Matching and Utilization

Recognition involves determining the most appropriate concept to describe the current data. This task
is considerably simplified by the assumption that concepts are defined by a set of necessary and sufficient
conditions. However, we have already argued that real-world concepts cannot be defined in this manner.
Thus, complete matching of object to characterization must be rejected.

AN ALTERNATIVE APPROACH TO CONCEPT FORMATION

In the previous section, we argued that real-world concepts are not learned from a tutor, and that
they cannot be described in terms of necessary and sufficient conditions. If we hope to account for the
process of concept formation, this forces us to propose new techniques for aggregating sets of instances, for
characterizing the resulting aggregates, and for recognizing the best concept for a given situation.
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Goals and Aggregation

By rejecting the traditional assumptions of tutor -provided instances, we must find some other solution
to the problem of aggregation. We believe that the goals of the learner play a major role in this process,
and presume that at each point in time, the agent has one or more active goals (possibly organized as a
hierarchy of goals and subgoals). In describing their means—ends analysis theory of human problem solving,
Newell and Simon (1972) distinguish between three types of goals. Although each of these goal types can
be used to direct the aggregation process, the most obvious examples involve apply—operator goals, in which
one wants to apply an operator to some object or state. For instance, suppose the agent is tired, and decides
to apply the operator sit-down.t This operator requires some object upon which to sit, and the agent will
gcan its immediate environment for a likely candidate. The important point is that by applying its operator
to candidate objects, the agent will discover that some objects produce better results than others. These
will be good instances of “sittable” objects, while others (such as chairs with wobbly legs, or with a tack on
their seat) will be poor instances. In any case, objects to which the operator has been applied that more or
less satisfy the goal are passed on to the characterization process.

Our attention to the importance of goals arises primarily from recognizing aggregation as a distinct
process demanding a supporting basis. As this basis, goals play a dual role — they identify which objects
should be grouped together for input to the characterization mechanism, and they provide a test indicating
the degree to which the desired state has been achieved. Thus, they tie objects and operators to experience
by indicating their relative value in satisfying goals. Certain objects and operators are rated higher than
others, since the application of particular operators to particular objects manifests properties of those objects
that are instrumental in satisfying the posted goals, while others are not. Objects are thus rated higher to
the degree they manifest functional properties in achieving goals. This provides the feedback necessary to
identify some combinations of objects and operators in experience as more significant to the learner than
others.

In summary, we believe that the learner’s goals direct the aggregation process. Furthermore, objects
and operators are grouped together according to the degree to which their interaction satisfies goals. It is
through this interaction between operators and objects that objects manifest properties which are functional
in satisfying goals. Thus, not only do goals identify significant objects and operators, but they further suggest
the existence of significant functional properties within an object.

The Representation of Concepts

Traditional approaches to characterization assume the all-or-none nature of concepts, which simply
does not hold for many everyday object concepts. As a result, we must find another solution to the
characterization problem. Our approach must be able to represent “fuzzy” concepts, and to incrementally
modify these descriptions in response to new instances of the concept. In real-world concepts, some features
and relations are more important than others. Thus, our representation must include some measure of each
feature’s criteriality. We specify this in terms of a weight ranging from zero to one, with zero denoting low
importance and one indicating high importance. Of course, these numbers have little meaning detached from
the utilization process. In our framework, conditions (features or relations) with high weights contribute
more to the overall degree of match than conditions with low weights. Moreover, conditions with very high
weights (near one) must be matched for a reasonable overall match to result. As a result, the notion of
all-or-none concepts emerges as a special case of this scheme, in which all conditions have weights of one.

Since we are concerned with object concepts, we believe that structures similar to Binford’s (1971
generalized cylinders will prove adequate. This representation has the advantage of combining structur
relations between the components of an object with numeric features of those components. This is an
important characteristic, since the real-world has both structural and numeric aspects. For instance, a
prototypical chair might be represented with the components of four legs, a seat, and a back arranged
in particular spatial relations to each other. In addition, each component would be described by numeric
features, such as length, diameter, and orientation (normalized for the overall size of the object). In addition,
the use of numeric features leads to a novel interpretation of the weights on each feature. With each numeric
feature, one can associate a mean value of the positive instances that have been observed, and a standard
deviation of those values. High standard deviations imply that a wide range of values of the feature are
satisfactory, while low standard deviations imply that only a narrow range of values for the feature is
acceptable. Thus, one might use the inverse of the standard deviation for a feature as its associated weight.
This would give low criteriality to features with widely varying values, and high criteriality to features with
nearly constant values. For instance, the legs of a chair are nearly always half the length of the entire chair’s

t Obviously, the action sit-down is not primitive in any sense; it is a high-level operator (or macro—operator)
that must be acquired from experience.
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height. Thus, this feature would have a low standard deviation and be highly criterial, giving it an important
role in judgements of prototypicality.

However, recall that we are assuming the characterization process receives more than prototypical
instances as input. Rather, it is given the degree to which each object satisfies the agent’s goals. We would
like our learning mechanism to use this information in creating the concept description. In order to do this,
we require more than a feature’s mean value; we require a function relating features and operators to the
“goodness” of an object in satisfying goals. We propose constructing this function by considering operators
in addition to physical features as relevant to the object’s goodness and including them as a special type of
feature in the concept description. By regressing goodness against the values of all feature types, we derive a
relation between important physical features of the object, those operators that operate on the features, and
values of goal satisfaction. Thus, we have a description of the object that expresses the object’s functional
properties as they relate to goal satisfaction and the object’s physical characteristics for use in recognition.
The representation is an equation providing both a means for predicting values of goal satisfaction and a
measure of the goodness of fit for such predictions. Returning to our interest in the criteriality of features
for predicting goal satisfaction, the percentage of variance in goal satisfaction accounted for by an individual
feature can be taken as a measure of that feature’s criteriality in the concept definition.

The Characterization Process

Let us now turn to the mechanism of characterization, by which the learner goes from instances of some
concept to a description of that concept. Within the current framework, we are assuming that the aggregation
process has determined which object and operators should be incorporated into the concept description, and
that aggregation also provides the degree to which the object and operators satisfy the relevant goal. The
task of characterization is to modify the existing description to better predict the “goodness” of the current
object. We also assume that instances are processed incrementally, since the agent generally interacts with
one object at a time (or a few at most). Thus, each instance leads to only minor modifications in the concept
description. Before a concept description can be altered, it must first be created, and issues arise about
the nature of such initial descriptions. Since early descriptions are based on a single instance, one might
make each feature very criterial by having a weight of one. Through experience, as additional instances are
observed and variation among feature values (including operators) occurs, constraints on the feature values
become looser.

Once a stable description has been formed, the feature values of new instances are used to modify
the regression coefficients associated with each feature. By retaining the number of instances that have
been observed so far, one can easily compute a revised equation that includes the new feature value. This
accommodates gradual changes in the concept description over time. For example, if the learner began to
see chairs with longer legs, his coefficients for the “length of leg” features would slowly be revised. Thus,
this method can respond to changing environments, unlike most traditional approaches to concept learning.

However, if the agent encounters an object with feature values that fall far outside previous experience,
this is an occasion to generate a disjunctive version of the current concept. For instance, if one sees a chair
in which the legs are substantially longer than expected (such as a baby’s high—hair), then it is natural to
distinguish this from other chairs that more closely match one’s expectations. Such variants are stored near
to the initial concept, but are characterized independently of the original version. Note that this implies
the order of presentation is relevant to learning. If gradual changes in feature values are observed, a single
concept will be learned; however, if instances with extreme values are alternated, disjunctive concepts will
be acquired instead.

Goal-Indexed Partial Matching and Utilization

Traditional Al approaches to concept learning assume that complete matching can be used for
recognition. However, in rejecting the notion of necessary and sufficient conditions, we are inevitably led
to replace this with some form of partial matching mechanism. Hayes-Roth (1978) has argued that partial
matching is computationally expensive, and the best known algorithm is exponential in the general case.
Therefore, we would like to take advantage of constraints to make the task manageable.

Recall that we are assuming different weights on the various conditions composing the concept
description. To a certain extent, we can constrain the partial matching process by attempting to match
more criterial conditions (those with higher weights) first, and leaving less criterial features and relations
until later. This leads to a best—first search through the space of partial matches, and is much more attractive
than an exhaustive version. Like all heuristic search approaches, the method is not guaranteed to find the
optimal solution (in this case the best partial match), but it will nearly always find a satisfactory one with
considerably less effort.
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However, recall also that the agent must choose between hundreds and thousands of competing
concepts, and it is unlikely that the above method will suffice. Fortunately, in this framework concepts
are created because their instances have been instrumental in achieving the learner’s goals. Thus, it is
natural to organize concepts around the goals they help satisfy. If we index concepts by the goals with
which they are associated, then the agent can use its currently active goals as probes to retrieve potentially
relevant concepts. As a result, the partial match is constrained to those concepts likely to aid in achieving
the current goal, presumably a few instead of thousands.

Since it is central to the recognition process, we should say a little more about the partial matching
mechanism. Given the description of some object and the characterization of some concept, the matcher
returns a mapping between the two structures, along with the degree to which the match was successful. If
the match was high, then the agent can infer that the object will prove ideal for satisfying the goal under
which its concept was indexed. If the match is only fair, then it may still want to use the object, provided no
better objects are found in the immediate vicinity. Furthermore, since information about which operators
to apply is included in the object concept, guidelines for instrumental use of the object derive not from
additional problem solving, but directly from the concept’s content. Thus, inferences regarding the object’s
functionality co-occur with recognition.

Goals => Aggregation
Incremental weighting => Characterization
Goal-indexed partial matching => Utilization

Figure 2. An alternative approach to concept formation.

CONCLUSION

In the preceding pages, we identified three components of the concept learning process — aggregation,
characterization, and utilization — and found that earlier work relied on two assumptions that made each of
the tasks manageable. The first involved the presence of a tutor, who made the aggregation problem trivial
by providing positive and negative instances of the concept to be learned. The second involved the notion
that concepts are all-or-none in nature, so that they can be described by a set of necessary and sufficient
conditions. Since we were concerned with concept formation in real-world settings, we rejected these two
assumptions. However, this forced us to propose new methods for dealing with the three components of
concept formation. In response, we proposed an alternative framework in which goals were used to aggregate
experience. In this approach, goals are also used to index and retrieve potentially relevant concepts, reducing
the task of partial matching against prototypes to reasonable proportions. Finally, we proposed a method
for incrementally characterizing concepts, based on weighting numeric features and operators in terms of
their observed variance. This gave us both physical criteria for recognizing future instances of the concept
and information about the functional properties of objects. Taken together, we believe that these methods
constitute a viable alternative to traditional approaches to concept formation, and in our future work we
plan to instantiate the framework as a running system, and to test its learning abilities in a complex, reactive
environment.
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